A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression
Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando
2013-01-01
The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient. PMID:28788412
The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer
NASA Astrophysics Data System (ADS)
Wu, Liang-Yu; Wu, Mei-Ling; Chen, Lien-Wen
2009-01-01
In this paper, we study the defect bands of a 1D phononic crystal consisting of aluminum (Al) and polymethyl methacrylate (PMMA) layers with a dielectric elastomer (DE) defect layer. The plane wave expansion (PWE) method and supercell calculation are used to calculate the band structure and the defect bands. The transmission spectra are obtained using the finite element method (FEM). Since the thickness of the dielectric elastomer defect layer is controlled by applying an electric voltage, the frequencies of the defect bands can be tuned. A narrow pass band filter can be developed and designed by using the dielectric elastomer.
NASA Astrophysics Data System (ADS)
Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-01
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-29
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Multispectral Imager With Improved Filter Wheel and Optics
NASA Technical Reports Server (NTRS)
Bremer, James C.
2007-01-01
Figure 1 schematically depicts an improved multispectral imaging system of the type that utilizes a filter wheel that contains multiple discrete narrow-band-pass filters and that is rotated at a constant high speed to acquire images in rapid succession in the corresponding spectral bands. The improvement, relative to prior systems of this type, consists of the measures taken to prevent the exposure of a focal-plane array (FPA) of photodetectors to light in more than one spectral band at any given time and to prevent exposure of the array to any light during readout. In prior systems, these measures have included, variously the use of mechanical shutters or the incorporation of wide opaque sectors (equivalent to mechanical shutters) into filter wheels. These measures introduce substantial dead times into each operating cycle intervals during which image information cannot be collected and thus incoming light is wasted. In contrast, the present improved design does not involve shutters or wide opaque sectors, and it reduces dead times substantially. The improved multispectral imaging system is preceded by an afocal telescope and includes a filter wheel positioned so that its rotation brings each filter, in its turn, into the exit pupil of the telescope. The filter wheel contains an even number of narrow-band-pass filters separated by narrow, spoke-like opaque sectors. The geometric width of each filter exceeds the cross-sectional width of the light beam coming out of the telescope. The light transmitted by the sequence of narrow-band filters is incident on a dichroic beam splitter that reflects in a broad shorter-wavelength spectral band that contains half of the narrow bands and transmits in a broad longer-wavelength spectral band that contains the other half of the narrow spectral bands. The filters are arranged on the wheel so that if the pass band of a given filter is in the reflection band of the dichroic beam splitter, then the pass band of the adjacent filter is in the longer-wavelength transmission band of the dichroic beam splitter (see Figure 2). Each of the two optical paths downstream of the dichroic beam splitter contains an additional broad-band-pass filter: The filter in the path of the light transmitted by the dichroic beam splitter transmits and attenuates in the same bands that are transmitted and reflected, respectively, by the beam splitter; the filter in the path of the light reflected by the dichroic beam splitter transmits and attenuates in the same bands that are reflected and transmitted, respectively, by the dichroic beam splitter. In each of these paths, the filtered light is focused onto an FPA. As the filter wheel rotates at a constant angular speed, its shaft angle is monitored, and the shaft-angle signal is used to synchronize the exposure times of the two FPAs. When a single narrowband-pass filter on the wheel occupies the entire cross section of the beam of light coming out of the telescope, the spectrum of light that reaches the dichroic beam splitter lies entirely within the pass band of that filter. Therefore, the beam in its entirety is either transmitted by the dichroic beam splitter and imaged on the longer-wavelength FPA or reflected by the beam splitter and imaged onto the shorter-wavelength FPA.
Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon
2014-11-17
Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.
Avendaño, Carlos G; Palomares, Laura O
2018-04-20
We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.
Series-Coupled Pairs of Silica Microresonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Handley, Tim
2009-01-01
Series-coupled pairs of whispering-gallery-mode optical microresonators have been demonstrated as prototypes of stable, narrow-band-pass photonic filters. Characteristics that are generally considered desirable in a photonic or other narrow-band-pass filter include response as nearly flat as possible across the pass band, sharp roll-off, and high rejection of signals outside the pass band. A single microresonator exhibits a Lorentzian filter function: its peak response cannot be made flatter and its roll-off cannot be made sharper. However, as a matter of basic principle applicable to resonators in general, it is possible to (1) use multiple resonators, operating in series or parallel, to obtain a roll-off sharper, and out-of-band rejection greater, relative to those of a Lorentzian filter function and (2) to make the peak response (the response within the pass band) flatter by tuning the resonators to slightly different resonance frequencies that span the pass band. The first of the two microresonators in each series-coupled pair was a microtorus made of germania-doped silica (containing about 19 mole percent germania), which is a material used for the cores of some optical fibers. The reasons for choosing this material is that exposing it to ultraviolet light causes it to undergo a chemical change that changes its index of refraction and thereby changes the resonance frequency. Hence, this material affords the means to effect the desired slight relative detuning of the two resonators. The second microresonator in each pair was a microsphere of pure silica. The advantage of making one of the resonators a torus instead of a sphere is that its spectrum of whispering-gallery-mode resonances is sparser, as needed to obtain a frequency separation of at least 100 GHz between resonances of the filter as a whole.
Elastic superlattices with simultaneously negative effective mass density and shear modulus
NASA Astrophysics Data System (ADS)
Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.
2013-03-01
We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.
Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees
2013-03-01
The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination. © 2012 American Academy of Forensic Sciences.
Characterization on Smart Optics Using Ellipsometry
NASA Technical Reports Server (NTRS)
Song, Kyo D.
2002-01-01
Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.
Ishidoshiro, K; Chinone, Y; Hasegawa, M; Hazumi, M; Nagai, M; Tajima, O
2012-05-01
We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.
Narrow-band double-pass superluminescent diodes emitting at 1060 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobintsov, A A; Perevozchikov, M V; Shramenko, M V
2009-09-30
Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)
NASA Astrophysics Data System (ADS)
Xiao, Ze-xin; Chen, Kuan
2008-03-01
Biochemical analyzer is one of the important instruments in the clinical diagnosis, and its optical system is the important component. The operation of this optical system can be regard as three parts. The first is transforms the duplicate colored light as the monochromatic light. The second is transforms the light signal of the monochromatic, which have the information of the measured sample, as the electric signal by use the photoelectric detector. And the last is to send the signal to data processing system by use the control system. Generally, there are three types monochromators: prism, optical grating and narrow-band pass filter. Thereinto, the narrow-band pass filter were widely used in the semi-auto biochemical analyzer. Through analysed the principle of biochemical analyzer base on the narrow-band pass filter, we known that the optical has three features. The first is the optical path of the optical system is a non- imaging system. The second, this system is wide spectrum region that contain visible light and ultraviolet spectrum. The third, this is a little aperture and little field monochromatic light system. Therefore, design idea of this optical system is: (1) luminous energy in the system less transmission loss; (2) detector coupled to the luminous energy efficient; mainly correct spherical aberration. Practice showed the point of Image quality evaluation: (1) dispersion circle diameter equal the receiving device pixel effective width of 125%, and the energy distribution should point target of 80% of energy into the receiving device pixel width of the effective diameter in this dispersion circle; (2) With MTF evaluation, the requirements in 20lp/ mm spatial frequency, the MTF values should not be lower than 0.6. The optical system should be fit in with ultraviolet and visible light width spectrum, and the detector image plane can but suited the majority visible light spectrum when by defocus optimization, and the image plane of violet and ultraviolet excursion quite large. Traditional biochemical analyzer optical design not fully consider this point, the authors introduce a effective image plane compensation measure innovatively, it greatly increased the reception efficiency of the violet and ultraviolet.
Spectral band passes for a high precision satellite sounder
NASA Technical Reports Server (NTRS)
Kaplan, L. D.; Chahine, M. T.; Susskind, J.; Searl, J. E.
1977-01-01
Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-micron band of CO2 by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-micron region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.
NASA Astrophysics Data System (ADS)
Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.
2010-01-01
We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.
NASA Technical Reports Server (NTRS)
Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.
1981-01-01
The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.
Beam splitter coupled CDSE optical parametric oscillator
Levinos, Nicholas J.; Arnold, George P.
1980-01-01
An optical parametric oscillator is disclosed in which the resonant radiation is separated from the pump and output radiation so that it can be manipulated without interfering with them. Thus, for example, very narrow band output may readily be achieved by passing the resonant radiation through a line narrowing device which does not in itself interfere with either the pump radiation or the output radiation.
A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain
NASA Astrophysics Data System (ADS)
Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong
2016-06-01
In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.
Ring resonator based narrow-linewidth semiconductor lasers
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander (Inventor)
2005-01-01
The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.
Enhanced tunable narrow-band THz emission from laser-modulated electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, D.; Stupakov, G.; /SLAC
2009-06-19
We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers andmore » dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.« less
NASA Astrophysics Data System (ADS)
Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.
2018-05-01
Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.
Design of dual ring wavelength filters for WDM applications
NASA Astrophysics Data System (ADS)
Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.
2016-12-01
Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.
Raman imaging using fixed bandpass filter
NASA Astrophysics Data System (ADS)
Landström, L.; Kullander, F.; Lundén, H.; Wästerby, P.
2017-05-01
By using fixed narrow band pass optical filtering and scanning the laser excitation wavelength, hyperspectral Raman imaging could be achieved. Experimental, proof-of-principle results from the Chemical Warfare Agent (CWA) tabun (GA) as well as the common CWA simulant tributyl phosphate (TBP) on different surfaces/substrates are presented and discussed.
Spatial-frequency spectra of printed characters and human visual perception.
Põder, Endel
2003-06-01
It is well known that certain spatial frequency (SF) bands are more important than others for character recognition. Solomon and Pelli [Nature 369 (1994) 395-397] have concluded that human pattern recognition mechanism is able to use only a narrow band from available SF spectrum of letters. However, the SF spectra of letters themselves have not been studied carefully. Here I report the results of an analysis of SF spectra of printed characters and discuss their relationship to the observed band-pass nature of letter recognition.
MEANS FOR VISUALIZING FLUID FLOW PATTERNS
Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.
1961-05-16
An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.
A novel filter bank for biotelemetry.
Karagözoglu, B
2001-03-01
In a multichannel biotelemetry system, signals taken from a patient are distributed along the available frequency range (bandwidth) of the system through frequency-division-multiplexing, and combined into a single composite signal. Biological signals that are limited to low frequencies (below 10 Hz) modulate the frequencies of respective sub-carriers. Other biological signals are carried in amplitude-modulated forms. It is recognized that recovering original signals from a composite signal at the receiver side is a technical challenge when a telemetry system with narrow bandwidth capacity is used, since such a system leaves little frequency spacing between information channels. A filter bank is therefore utilized for recovering biological signals that are transmitted. The filter bank contains filter units comprising switched-capacitor filter integrated circuits. The filters have two distinct and opposing outputs (band-stop (notch) and band-pass). Since most biological signals are at low frequencies, and modulated signals occupy a narrow band around the carrier, notch filters can be used to efficiently stop signals in the narrow frequency range. Once the interim channels are removed, other channels become well separated from each other, and band-pass filters can select them. In the proposed system, efficient filtering of closely packed channels is achieved, with low interference, from neighboring channels. The filter bank is applied to a system that carries four biological signals and a battery status indicator signal. Experimental results reinforce theoretical predictions that the filter bank successfully de-multiplexes closely packed information channels with low crosstalk between them. It is concluded that the proposed filter bank allows utilization of cost-effective multichannel biotelemetry systems that are designed around commercial audio devices, and that it can be readily adapted to a broad range of physiological recording requirements.
Wang, Fang; Cheng, Yong Zhi; Wang, Xian; Zhang, Yi Nan; Nie, Yan; Gong, Rong Zhou
2018-06-27
In this paper, we present a high-efficiency narrow band filter (NBF) based on quasi-one-dimensional photonic crystal (PC) with a mirror symmetric heterostructure. Similarly to the Fabry-Perot-like resonance cavity, the alternately-arranged dielectric layers on both sides act as the high reflectance and the junction layers used as the defect mode of the quasi-one-dimensional PC, which can be designed as a NBF. The critical conditions for the narrow pass band with high transmittance are demonstrated and analyzed by simulation and experiment. The simulation results indicate that the transmission peak of the quasi-one-dimensional PC-based NBF is up to 95.99% at the telecommunication wavelength of 1550 nm, which agrees well with the experiment. Furthermore, the influences of the periodicity and thickness of dielectric layers on the transmission properties of the PC-based NBF also have been studied numerically. Due to its favorable properties of PC-based NBF, it is can be found to have many potential applications, such as detection, sensing, and communication.
Architecture and design of optical path networks utilizing waveband virtual links
NASA Astrophysics Data System (ADS)
Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi
2016-02-01
We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.
NittanySat Final Report for University Nanosatellite-5 Program
2009-10-12
Figures 9 through 12 and tabulated in Table 2. Figure 9 – 14-MHz BPF . Figure 10 – 21-MHz BPF . Page 13 Figure 11 – 28-MHz BPF ...Figure 12 – 50-MHz BPF . Table 2 - Narrow Band-pass Filter Parameters Frequency Band [MHz] Bandwidth Range [MHz] Insertion Loss [dB] Return Loss...surface area, and surface properties (e.g., absorptivity, emissivity) of the various components. In order to make predictions and guide design choices, an
Effective distance adaptation traffic dispatching in software defined IP over optical network
NASA Astrophysics Data System (ADS)
Duan, Zhiwei; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa; Lin, Yi
2017-10-01
The rapid growth of IP traffic has contributed to the wide deployment of optical devices (ROADM/OXC, etc.). Meanwhile, with the emergence and application of high-performance network services such as ultra-high video transmission, people are increasingly becoming more and more particular about the quality of service (QoS) of network. However, the pass-band shape of WSSs which is utilized in the ROADM/OXC is not ideal, causing narrowing of spectrum. Spectral narrowing can lead to signal impairment. Therefore, guard-bands need to be inserted between adjacent paths. In order to minimize the bandwidth waste due to guard bands, we propose an effective distance-adaptation traffic dispatching algorithm in IP over optical network based on SDON architecture. We use virtualization technology to set up virtual resources direct links by extracting part of the resources on paths which meet certain specific constraints. We also assign different bandwidth to each IP request based on path length. There is no need for guard-bands between the adjacent paths on the virtual link, which can effectively reduce the number of guard-bands and save the spectrum.
Linear variable narrow bandpass optical filters in the far infrared (Conference Presentation)
NASA Astrophysics Data System (ADS)
Rahmlow, Thomas D.
2017-06-01
We are currently developing linear variable filters (LVF) with very high wavelength gradients. In the visible, these filters have a wavelength gradient of 50 to 100 nm/mm. In the infrared, the wavelength gradient covers the range of 500 to 900 microns/mm. Filter designs include band pass, long pass and ulta-high performance anti-reflection coatings. The active area of the filters is on the order of 5 to 30 mm along the wavelength gradient and up to 30 mm in the orthogonal, constant wavelength direction. Variation in performance along the constant direction is less than 1%. Repeatable performance from filter to filter, absolute placement of the filter relative to a substrate fiducial and, high in-band transmission across the full spectral band is demonstrated. Applications include order sorting filters, direct replacement of the spectrometer and hyper-spectral imaging. Off-band rejection with an optical density of greater than 3 allows use of the filter as an order sorting filter. The linear variable order sorting filters replaces other filter types such as block filters. The disadvantage of block filters is the loss of pixels due to the transition between filter blocks. The LVF is a continuous gradient without a discrete transition between filter wavelength regions. If the LVF is designed as a narrow band pass filter, it can be used in place of a spectrometer thus reducing overall sensor weight and cost while improving the robustness of the sensor. By controlling the orthogonal performance (smile) the LVF can be sized to the dimensions of the detector. When imaging on to a 2 dimensional array and operating the sensor in a push broom configuration, the LVF spectrometer performs as a hyper-spectral imager. This paper presents performance of LVF fabricated in the far infrared on substrates sized to available detectors. The impact of spot size, F-number and filter characterization are presented. Results are also compared to extended visible LVF filters.
Gao, Bo-Cai; Chen, Wei
2012-06-20
The visible/infrared imaging radiometer suite (VIIRS) is now onboard the first satellite platform managed by the Joint Polar Satellite System of the National Oceanic and Atmospheric Administration and NASA. It collects scientific data from an altitude of approximately 830 km in 22 narrow bands located in the 0.4-12.5 μm range. The seven visible and near-infrared (VisNIR) bands in the wavelength interval between 0.4-0.9 μm are known to suffer from the out-of-band (OOB) responses--a small amount of radiances far away from the center of a given band that can pass through the filter and reach detectors in the focal plane. A proper treatment of the OOB effects is necessary in order to obtain calibrated at-sensor radiance data [referred to as the Sensor Data Records (SDRs)] from measurements with these bands and subsequently to derive higher-level data products [referred to as the Environmental Data Records (EDRs)]. We have recently developed a new technique, called multispectral decomposition transform (MDT), which can be used to correct/remove the OOB effects of VIIRS VisNIR bands and to recover the true narrow band radiances from the measured radiances containing OOB effects. An MDT matrix is derived from the laboratory-measured filter transmittance functions. The recovery of the narrow band signals is performed through a matrix multiplication--the production between the MDT matrix and a multispectral vector. Hyperspectral imaging data measured from high altitude aircraft and satellite platforms, the complete VIIRS filter functions, and the truncated VIIRS filter functions to narrower spectral intervals, are used to simulate the VIIRS data with and without OOB effects. Our experimental results using the proposed MDT method have demonstrated that the average errors after decomposition are reduced by more than one order of magnitude.
Hurwitz, H. Jr.
1960-04-01
An apparatus is described for indicating the approach to prompt criticality of a neutronic reactor and comprises means for oscillating an absorber in the reactor, a detector for measuring neutron flux in the reactor, two channels into which the output of the detector can be directed, one of which includes a narrow band filter with band pass frequency equal to that of the oscillator, and means for indicating the ratio of the signal produced by the channel with the filter to the signal produced by the other channel, which constitutes an indication of the approach to prompt criticality.
Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations
NASA Technical Reports Server (NTRS)
Shambayati, Shervin; Morabito, David; Border, James S.; Davarian, Faramaz; Lee, Dennis; Mendoza, Ricardo; Britcliffe, Michael; Weinreb, Sander
2006-01-01
The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR. In addition, DSN performed well. However, there are concerns with the active pointing of the Ka-band antennas as well as delivery of the monitor data from the stations. The spacecraft also presented challenges not normally associated with planetary missions mostly because of its very high equivalent isotropic radiated power (EIRP). This caused problems in accurately evaluating the in-flight EIRP of the spacecraft which led to difficulties evaluating the quality of the HGA calibration data. These led to the development of additional measurement techniques that could be used for future high-power deep space missions.
Optimum filters for narrow-band frequency modulation.
NASA Technical Reports Server (NTRS)
Shelton, R. D.
1972-01-01
The results of a computer search for the optimum type of bandpass filter for low-index angle-modulated signals are reported. The bandpass filters are discussed in terms of their low-pass prototypes. Only filter functions with constant numerators are considered. The pole locations for the optimum filters of several cases are shown in a table. The results are fairly independent of modulation index and bandwidth.
Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Chrien, T.H.; Gorelick, N.S.
2003-01-01
Estimates of spectrometer band pass, sampling interval, and signal-to-noise ratio required for identification of pure minerals and plants were derived using reflectance spectra convolved to AVIRIS, HYDICE, MIVIS, VIMS, and other imaging spectrometers. For each spectral simulation, various levels of random noise were added to the reflectance spectra after convolution, and then each was analyzed with the Tetracorder spectra identification algorithm [Clark et al., 2003]. The outcome of each identification attempt was tabulated to provide an estimate of the signal-to-noise ratio at which a given percentage of the noisy spectra were identified correctly. Results show that spectral identification is most sensitive to the signal-to-noise ratio at narrow sampling interval values but is more sensitive to the sampling interval itself at broad sampling interval values because of spectral aliasing, a condition when absorption features of different materials can resemble one another. The band pass is less critical to spectral identification than the sampling interval or signal-to-noise ratio because broadening the band pass does not induce spectral aliasing. These conclusions are empirically corroborated by analysis of mineral maps of AVIRIS data collected at Cuprite, Nevada, between 1990 and 1995, a period during which the sensor signal-to-noise ratio increased up to sixfold. There are values of spectrometer sampling and band pass beyond which spectral identification of materials will require an abrupt increase in sensor signal-to-noise ratio due to the effects of spectral aliasing. Factors that control this threshold are the uniqueness of a material's diagnostic absorptions in terms of shape and wavelength isolation, and the spectral diversity of the materials found in nature and in the spectral library used for comparison. Array spectrometers provide the best data for identification when they critically sample spectra. The sampling interval should not be broadened to increase the signal-to-noise ratio in a photon-noise-limited system when high levels of accuracy are desired. It is possible, using this simulation method, to select optimum combinations of band-pass, sampling interval, and signal-to-noise ratio values for a particular application that maximize identification accuracy and minimize the volume of imaging data.
Macías, Silvio; Hernández-Abad, Annette; Hechavarría, Julio C; Kössl, Manfred; Mora, Emanuel C
2015-05-01
It has been reported previously that in the inferior colliculus of the bat Molossus molossus, neuronal duration tuning is ambiguous because the tuning type of the neurons dramatically changes with the sound level. In the present study, duration tuning was examined in the auditory cortex of M. molossus to describe if it is as ambiguous as the collicular tuning. From a population of 174 cortical 104 (60 %) neurons did not show duration selectivity (all-pass). Around 5 % (9 units) responded preferentially to stimuli having longer durations showing long-pass duration response functions, 35 (20 %) responded to a narrow range of stimulus durations showing band-pass duration response functions, 24 (14 %) responded most strongly to short stimulus durations showing short-pass duration response functions and two neurons (1 %) responded best to two different stimulus durations showing a two-peaked duration-response function. The majority of neurons showing short- (16 out of 24) and band-pass (24 out 35) selectivity displayed "O-shaped" duration response areas. In contrast to the inferior colliculus, duration tuning in the auditory cortex of M. molossus appears level tolerant. That is, the type of duration selectivity and the stimulus duration eliciting the maximum response were unaffected by changing sound level.
Ultra narrow flat-top filter based on multiple equivalent phase shifts
NASA Astrophysics Data System (ADS)
Wang, Fei; Zou, Xihua; Yin, Zuowei; Chen, Xiangfei; Shen, Haisong
2008-11-01
Instead of real phase shifts, equivalent phase shifts (EPS) are adopted to construct ultra narrow phase-shifted band-pass filer in sampled Bragg gratings (SBG). Two optimized distributions of multiple equivalent phase shifts, using 2 and 5 EPSs respectively, are given in this paper to realize flat-top and ripple-free transmission characteristics simultaneously. Also two demonstrations with 5 EPSs both on hydrogen-loaded and photosensitive fibers are presented and their spectrums are examined by an optical vector analyzer (OVA). Given only ordinary phase mask and sub-micrometer precision control, ultra-narrowband flat-top filters with expected performance can be achieved flexibly and cost-effectively.
Tunable-Bandwidth Filter System
NASA Technical Reports Server (NTRS)
Bailey, John W.
2004-01-01
A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.
Tunable-Bandwidth Filter System
NASA Technical Reports Server (NTRS)
Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra
2006-01-01
A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.
NASA Astrophysics Data System (ADS)
Choi, Muhan; Kang, Byungsoo; Yi, Yoonsik; Lee, Seung Hoon; Kim, Inbo; Han, Jae-Hyung; Yi, Minwoo; Ahn, Jaewook; Choi, Choon-Gi
2016-05-01
We introduce a flexible multilayered THz metamaterial designed by using the Babinet's principle with the functionality of narrow band-pass filter. The metamaterial gives us systematic way to design frequency selective surfaces working on intended frequencies and bandwidths. It shows highly enhanced transmission of 80% for the normal incident THz waves due to the strong coupling of the two layers of metamaterial complementary to each other.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Ultrawide low frequency band gap of phononic crystal in nacreous composite material
NASA Astrophysics Data System (ADS)
Yin, J.; Huang, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.
2014-06-01
The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results.
Design of tunable thermo-optic C-band filter based on coated silicon slab
NASA Astrophysics Data System (ADS)
Pinhas, Hadar; Malka, Dror; Danan, Yossef; Sinvani, Moshe; Zalevsky, Zeev
2018-03-01
Optical filters are required to have narrow band-pass filtering in the spectral C-band for applications such as signal tracking, sub-band filtering or noise suppression. These requirements lead to a variety of filters such as Mach-Zehnder interferometer inter-leaver in silica, which offer thermo-optic effect for optical switching, however, without proper thermal and optical efficiency. In this paper we propose tunable thermo-optic filtering device based on coated silicon slab resonator with increased Q-factor for the C-band optical switching. The device can be designed either for long range wavelength tuning of for short range with increased wavelength resolution. Theoretical examination of the thermal parameters affecting the filtering process is shown together with experimental results. Proper channel isolation with an extinction ratio of 20dBs is achieved with spectral bandpass width of 0.07nm.
The Narrow Cold-Frontal Rainband of 22/23 November 2013
NASA Technical Reports Server (NTRS)
Kidd, Christopher
2015-01-01
The recent paper in Weather by Young (2014) provided a detailed analysis of an intensive cold front as it passed over the UK on 2223 November 2013. This was an extremely good example of linear convection, as it is described in the paper, or a narrow cold-frontal rainband (NCFR; Hobbs and Biswas, 1979). These features are associated with a low-level jet that lies ahead and parallel to the surface cold front, generating a band of intense but relatively shallow convection (see Koch and Kocin, 1991). Although the structure associated with these systems is not uncommon (e.g. Gatzen, 2011), this case was notable for the (linear) length and the longevity of the feature. Critically, fine-scale radar observations using the 1km, 5min UK composite radar product, produced by the UK Met Office and supplied by the British Atmospheric Data Centre, enabled the timing and progression of the most intense band of this feature tobe examined (see Figure 1).
Improved color coordinates of green monochromatic pc-LED capped with a band-pass filter.
Oh, Ji Hye; Yang, Su Ji; Sung, Yeon-Goog; Do, Young Rag
2013-02-25
This study introduces a "greener" green monochromatic phosphor-converted light-emitting diode (pc-LED) using a band-pass filter (BPF) combined with a long-pass dichroic filter (LPDF) and a short-pass dichroic filter (SPDF) to improve the color quality of our previously developed LPDF-capped green pc-LED. This can also address the drawbacks of III-V semiconductor-type green LEDs, which show a low luminous efficacy and a poor current dependence of the efficacy and color coordinates compared to blue semiconductor-type LEDs. The optical properties of green monochromatic pc-LEDs using a BPF are compared with those of LPDF-capped green pc-LEDs, which have a broad band spectrum, and III-V semiconductor-type green LEDs by changing the transmittance wavelength range of the BPF and the peak wavelength of the green phosphors. BPF-capped green monochromatic pc-LEDs provide a high luminous efficacy (134 lm/W at 60 mA), and "greener" 1931 Commission Internationale d'Eclairage (CIE; CIEx, CIEy) color coordinates (0.24, 0.66) owing to the narrowed emission spectrum. We also propose a two-dimensional (2D) polystyrene (PS) microbead (2-μm diameter) monolayer as a scattering layer to overcome the poor angular dependence of the color coordinates of the transmitted light through a nano-multilayered dichroic filter such as an LPDF or BPF. The 2D PS scattering layer improves the angular dependence of the green color emitted from a BPF-capped green pc-LED with only 3% loss of luminous efficacy.
Band limited emission with central frequency around 2 Hz accompanying powerful cyclones
NASA Technical Reports Server (NTRS)
Troitskaia, V. A.; Shepetnov, K. S.; Dvobnia, B. D.
1992-01-01
It has been found that powerful cyclones are proceeded, accompanied and followed by narrow band electromagnetic emission with central frequency around 2 Hz. It is shown that the signal from this emission is unique and clearly distinguishable from known types of magnetic pulsations, spectra of local thunderstorms, and signals from industrial sources. This emission was first observed during an unusually powerful cyclone with tornadoes in the western European part of the Soviet Union, which passed by the observatory of Borok from south to north-east. The emission has been confirmed by analysis of similar events in Antarctica. The phenomenon described presents a new aspect of interactions of processes in the lower atmosphere and the ionosphere.
NASA Technical Reports Server (NTRS)
Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)
1998-01-01
A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.
NASA Astrophysics Data System (ADS)
Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano
2016-05-01
Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.
Photodiode Preamplifier for Laser Ranging With Weak Signals
NASA Technical Reports Server (NTRS)
Abramovici, Alexander; Chapsky, Jacob
2007-01-01
An improved preamplifier circuit has been designed for processing the output of an avalanche photodiode (APD) that is used in a high-resolution laser ranging system to detect laser pulses returning from a target. The improved circuit stands in contrast to prior such circuits in which the APD output current pulses are made to pass, variously, through wide-band or narrow-band load networks before preamplification. A major disadvantage of the prior wide-band load networks is that they are highly susceptible to noise, which degrades timing resolution. A major disadvantage of the prior narrow-band load networks is that they make it difficult to sample the amplitudes of the narrow laser pulses ordinarily used in ranging. In the improved circuit, a load resistor is connected to the APD output and its value is chosen so that the time constant defined by this resistance and the APD capacitance is large, relative to the duration of a laser pulse. The APD capacitance becomes initially charged by the pulse of current generated by a return laser pulse, so that the rise time of the load-network output is comparable to the duration of the return pulse. Thus, the load-network output is characterized by a fast-rising leading edge, which is necessary for accurate pulse timing. On the other hand, the resistance-capacitance combination constitutes a lowpass filter, which helps to suppress noise. The long time constant causes the load network output pulse to have a long shallow-sloping trailing edge, which makes it easy to sample the amplitude of the return pulse. The output of the load network is fed to a low-noise, wide-band amplifier. The amplifier must be a wide-band one in order to preserve the sharp pulse rise for timing. The suppression of noise and the use of a low-noise amplifier enable the ranging system to detect relatively weak return pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Tatsuyuki; Tanaka, Tomohiro; Morimune, Atsushi
Effect of narrow band nonuniformity on unsteady heat up process of water vapor under radiation-conduction combined heat transfer is examined by comparing the result of numerical simulations with and without incorporation of narrow band nonuniformity. The authors propose a rational and comprehensive computational approach for incorporating the narrow band nonuniformity into numerical simulations of radiative heat transfer when the considered field is nonisothermal. Results of examination exhibited that the contribution of radiative heat transfer to the heat up rate of water vapor may be almost twice overestimated, if the narrow band nonuniformity effect is neglected. Separate analyses of radiative energymore » attributed to wall emission and gas emission clarified that the absorption of wall emission is overestimated and, on the contrary, the absorption of radiation energy emitted by water vapor itself is underestimated if the narrow band nonuniformity is neglected. The reason why such over- or under-estimation is induced is understood by examining the influence of line overlap parameter on the transmittance averaged within a narrow band. Smaller value of line overlap parameter {gamma}/d means more violent narrow band nonuniformity. The broken lines show the narrow band transmittance for flat incident power spectrum, and the solid lines show that for the radiative emission from the absorbing gas itself. It is also clarified that the disregard of the narrow band nonuniformity give rise to serious error in the estimation of absorption rate of wall and gas emission even in the case where the disregard of narrow band nonuniformity bring little change to the temperature distribution. The results illustrated in this paper suggest that the narrow band nonuniformity should not be neglected.« less
Study of performance loss of Lyman alpha filters due to chemical contamination
NASA Astrophysics Data System (ADS)
Faye, Delphine; Zhang, Xueyan; Etcheto, Pierre; Auchère, Frédéric
2017-05-01
Observations in the UV and EUV allow many diagnostics of the outer layers of the stars and the Sun so that more and more space telescopes are developed to operate in this fundamental spectral range. However, absorption by residual contaminants coming from polymers outgassing causes critical effects such as loss of signal, spectral shifts, stray light… Thus, a cleanliness and contamination control plan has to be defined to mitigate the risk of damage of sensitive surfaces. In order to specify acceptable cleanliness levels, it is paramount to improve our knowledge and understanding of contamination effects, especially in the UV/EUV range. Therefore, an experimental study has been carried out in collaboration between CNES and IAS, in the frame of the development of the Extreme UV Imager suite for the ESA Solar Orbiter mission; this instrument consists of two High Resolution Imagers and one Full Sun Imager designed for narrow pass-band EUV imaging of the solar corona, and thus very sensitive to contamination. Here, we describe recent results of performance loss measured on representative optical samples. Six narrow pass-band filters, with a multilayer coating designed to select the solar Lyman Alpha emission ray, were contaminated with different amounts of typical chemical species. The transmittance spectra were measured between 100 and 200 nm under high vacuum on the SOLEIL synchrotron beam line. They were compared before and after contamination, and also after a long exposure of the contaminated area to EUV-visible radiations.
Narrow-band evoked oto-acoustic emission from ears with normal and pathologic conditions.
Takeda, Taizo; Kakigi, Akinobu; Takebayashi, Shinji; Ohono, Satoshi; Nishioka, Rie; Nakatani, Hiroaki
2010-01-01
Evoked oto-acoustic emission (EOAE), in particular the slow component, is fragile with the inner ear lesions and is apt to disappear in impaired ears. This presence is thought to mean that inner ear is not badly damaged, and that the presence of EOAEs in early stage sudden deafness carries a good prognosis. Narrow-band EOAE analysis would open a potentially promising way to manage sensorineural deafness. The aim of present study was to evaluate the characteristics of EOAEs from pathologic ears by a narrow-band EOAE analysis, which allowed us to investigate amplitude, frequency content and latency of EOAEs simultaneously and also to easily detect weak echoes in cases with inner ear lesions. EOAEs were analyzed by investigating narrow-band frequency contents of EOAEs, filtered by a 100-Hz step of pass bandwidth in frequency regions from 1.0 to 2.0 kHz, and by 500 Hz of pass bandwidth in the frequency ranges of 0.5-1.0 and 2.0-5.0 kHz. EOAE testing was performed in 40 normal ears and 111 ears with pathologic disorders, including sudden deafness, Ménière's disease and surgically proven acoustic neurinomas. Spontaneous oto-acoustic emission was investigated in some cases. In acoustic neurinoma, especially computed tomography scan and magnetic resonance imaging tests were performed to assess the tumor size. (1) Narrow-band EOAE analysis revealed that EOAEs from normal ears were composed of two main echo trains and several sub-echoes. The main echo trains were divided into a fast component with a short latency of <10 ms and a slow component with a long latency of >10 ms. (2) EOAEs could often be detected from ears with moderate to severe hearing loss >45 dB HL in early stage sudden deafness. The prognosis of sudden deafness was good in cases where both a fast component and slow component were detected in the acute stage within 2 weeks after the deafness onset, and was pessimistic, when either or both of them failed to recover. (3) In Ménière's disease, EOAE was found in 6 (40%) of 15 cases with hearing loss >50 dB, and detected in 54 (90%) of 60 cases with slight to moderate deafness <50 dB HL. Echo duration tended to become shorter, and the slow component decreased in amplitude even in ears with slight deafness <30 dB. The detection threshold of the slow component was also elevated. In ears with more advanced deafness, the slow component disappeared and only the fast component with short latency persisted. Ultimately, the fast component also faded out if the hearing was severely impaired. (4) EOAEs were detectable in 20 (95.2%) of 21 ears with surgically proven acoustic neurinoma, 16 of which had both the slow and fast components. The echo pattern of acoustic neurinoma was basically similar to that of normal ears, but the detection threshold was elevated to a varying degree, although there were some cases with much better detection threshold as compared with severe deafness.
Narrow band gap amorphous silicon semiconductors
Madan, A.; Mahan, A.H.
1985-01-10
Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.
Observations and Mitigation of RFI in ALOS PALSAR SAR Data; Implications for the Desdyni Mission
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Hensley, Scott; Le, Charles
2008-01-01
Initial examination of ALOS PALSAR synthetic aperture radar (SAR) data has indicated significant radio frequency interference (RFI) in several geographic locations around the world. RFI causes significant reduction in image contrast, introduces periodic and quasi-periodic image artifacts, and introduces significant phase noise in repeat pass interferometric data reduction. The US National Research Council Decadal Survey of Earth Science has recommended DESDynI, a Deformation, Ecosystems, and Dynamics of Ice satellite mission comprising an L-band polarimetric radar configured for repeat pass interferometry. There is considerable interest internationally in other future L-band and lower frequency systems as well. Therefore the issues of prevalence and possibilities of mitigation of RFI in these crowded frequency bands is of considerable interest. RFI is observed in ALOS PALSAR in California, USA, and in southern Egypt in data examined to date. Application of several techniques for removing it from the data prior to SAR image formation, ranging from straightforward spectral normalization to time-domain, multi-phase filtering techniques are considered. Considerable experience has been gained from the removal of RFI from P-band acquired by the GeoSAR system. These techniques applied to the PALSAR data are most successful when the bandwidth of any particular spectral component of the RFI is narrow. Performance impacts for SAR imagery and interferograms are considered in the context of DESDynI measurement requirements.
Analysis of signal to noise enhancement using a highly selective modulation tracking filter
NASA Technical Reports Server (NTRS)
Haden, C. R.; Alworth, C. W.
1972-01-01
Experiments are reported which utilize photodielectric effects in semiconductor loaded superconducting resonant circuits for suppressing noise in RF communication systems. The superconducting tunable cavity acts as a narrow band tracking filter for detecting conventional RF signals. Analytical techniques were developed which lead to prediction of signal-to-noise improvements. Progress is reported in optimization of the experimental variables. These include improved Q, new semiconductors, improved optics, and simplification of the electronics. Information bearing signals were passed through the system, and noise was introduced into the computer model.
Ni, X-G; Zhang, Q-Q; Wang, G-Q
2016-11-01
This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.
An enhanced narrow-band imaging method for the microvessel detection
NASA Astrophysics Data System (ADS)
Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng
2018-02-01
A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.
NASA Astrophysics Data System (ADS)
Karabutov, A. A.; Kozhushko, V. V.; Pelivanov, I. M.; Podymova, N. B.
2001-03-01
The propagation of ultrasound in a one-dimensional model and actual periodic structures (PSs) is studied experimentally by the method of optoacoustic spectroscopy based on the laser thermooptical excitation and wide-band piezodetection of short acoustic pulses. It is shown that the ultrasound transmission spectrum of a PS has stop and pass bands, and the greater the number of layers in the PSs, the deeper the stop bands. The case where the thickness, density, and ultrasound velocity of one or several layers in the PS are modified is studied in detail. In this case, a narrow local maximum of ultrasound transmission appears in the stop band, whose location depends considerably on the position of the "defective" layer in the PS. The experimental data obtained coincide well with the theoretical calculation. The nondestructive evaluation of actual PSs consisting of two epoxy-glued identical aluminum plates is carried out by the optoacoustic method. Such materials are widely used in aircraft industry. It is shown that the ultrasound transmission spectrum for these materials depends considerably on the thickness of the epoxy-glue layer.
Willey, Melvin G.
1981-01-01
An infinite blender that achieves a homogeneous mixture of fuel microspheres is provided. Blending is accomplished by directing respective groups of desired particles onto the apex of a stationary coaxial cone. The particles progress downward over the cone surface and deposit in a space at the base of the cone that is described by a flexible band provided with a wide portion traversing and in continuous contact with the circumference of the cone base and extending upwardly therefrom. The band, being attached to the cone at a narrow inner end thereof, causes the cone to rotate on its arbor when the band is subsequently pulled onto a take-up spool. As a point at the end of the wide portion of the band passes the point where it is tangent to the cone, the blended particles are released into a delivery tube leading directly into a mold, and a plate mounted on the lower portion of the cone and positioned between the end of the wide portion of the band and the cone assures release of the particles only at the tangent point.
Pennachi, Caterina Maria Pia Simoni; Moura, Diogo Turiani Hourneaux de; Amorim, Renato Bastos Pimenta; Guedes, Hugo Gonçalo; Kumbhari, Vivek; Moura, Eduardo Guimarães Hourneaux de
2017-01-01
The diagnosis of corrosion cancer should be suspected in patients with corrosive ingestion if after a latent period of negligible symptoms there is development of dysphagia, or poor response to dilatation, or if respiratory symptoms develop in an otherwise stable patient of esophageal stenosis. Narrow Band Imaging detects superficial squamous cell carcinoma more frequently than white-light imaging, and has significantly higher sensitivity and accuracy compared with white-light. To determinate the clinical applicability of Narrow Band Imaging versus Lugol´s solution chromendoscopy for detection of early esophageal cancer in patients with caustic/corrosive agent stenosis. Thirty-eight patients, aged between 28-84 were enrolled and examined by both Narrow Band Imaging and Lugol´s solution chromendoscopy. A 4.9mm diameter endoscope was used facilitating examination of a stenotic area without dilation. Narrow Band Imaging was performed and any lesion detected was marked for later biopsy. Then, Lugol´s solution chromoendoscopy was performed and biopsies were taken at suspicious areas. Patients who had abnormal findings at the routine, Narrow Band Imaging or Lugol´s solution chromoscopy exam had their stenotic ring biopsied. We detected nine suspicious lesions with Narrow Band Imaging and 14 with Lugol´s solution chromendoscopy. The sensitivity and specificity of the Narrow Band Imaging was 100% and 80.6%, and with Lugol´s chromoscopy 100% and 66.67%, respectively. Five (13%) suspicious lesions were detected both with Narrow Band Imaging and Lugol's chromoscopy, two (40%) of these lesions were confirmed carcinoma on histopathological examination. Narrow Band Imaging is an applicable option to detect and evaluate cancer in patients with caustic /corrosive stenosis compared to the Lugol´s solution chromoscopy.
Impact of Raman scattering on pulse dynamics in a fiber laser with narrow gain bandwidth
NASA Astrophysics Data System (ADS)
Uthayakumar, T.; Alsaleh, M.; Igbonacho, J.; Tchomgo Felenou, E.; Tchofo Dinda, P.; Grelu, Ph; Porsezian, K.
2018-06-01
We examine theoretically the multi-pulse dynamics in a dispersion-managed fiber laser, in which the pulse’s spectral width is controlled by a pass-band filter. We show that in the domain of stable states with very narrow spectral width, i.e. which is one order of magnitude smaller than the bandwidth of the Raman gain of the intra-cavity fiber system, the Raman scattering (RS) significantly alters the multi-pulse dynamics. RS is found to have a greater impact in the immediate vicinity of some critical values of the pump power of the intra-cavity gain medium, where processes of pulse fragmentation occur. As a result, all the borders between the zones of stability of the multi-pulse states are altered, i.e. either shifted or suppressed.
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors
Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; ...
2016-05-09
Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less
Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei
Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less
Single SOA based simultaneous amplitude regeneration for WDM-PDM RZ-PSK signals.
Wu, Wenhan; Yu, Yu; Zou, Bingrong; Yang, Weili; Zhang, Xinliang
2013-03-25
We propose and demonstrate all-optical amplitude regeneration for the wavelength division multiplexing and polarization division multiplexing (WDM-PDM) return-to-zero phase shift keying (RZ-PSK) signals using a single semiconductor optical amplifier (SOA) and subsequent filtering. The regeneration is based on the cross phase modulation (XPM) effect in the saturated SOA and the subsequent narrow filtering. The spectrum of the distorted signal can be broadened due to the phase modulation induced by the synchronous optical clock signal. A narrow band pass filter is utilized to extract part of the broadened spectrum and remove the amplitude noise, while preserving the phase information. The working principle for multi-channel and polarization orthogonality preserving is analyzed. 4-channel dual polarization signals can be simultaneously amplitude regenerated without introducing wavelength and polarization demultiplexing. An average power penalty improvement of 1.75dB can be achieved for the WDM-PDM signals.
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Jain, M.; Aloshyna-Lesuffleur, M.; Mohanty, S.; Berker, A.; Greger, R. W.
2008-09-01
The transmission of acoustic waves through centimeter-scale elastic and viscoelastic two-dimensional silicone rubber/air phononic crystal structures is investigated theoretically and experimentally. We introduce a finite difference time domain method for two-dimensional elastic and viscoelastic composite structures. Elastic fluid-solid phononic crystals composed of a two-dimensional array of cylindrical air inclusions in a solid rubber matrix, as well as an array of rubber cylinders in an air matrix, are shown to behave similarly to fluid-fluid composite structures. These systems exhibit very wide band gaps in their transmission spectra that extend to frequencies in the audible range of the spectrum. This effect is associated with the very low value of the transverse speed of sound in rubber compared to that of the longitudinal polarization. The difference in transmission between elastic and viscoelastic rubber/air crystals results from attenuation of transmission over a very wide frequency range, leaving only narrow passing bands at very low frequencies. These phononic crystals demonstrate the practical design of elastic or viscoelastic solid rubber/air acoustic band gap sound barriers with small dimensions.
Variable optical filters for earth-observation imaging minispectrometers
NASA Astrophysics Data System (ADS)
Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.
2017-11-01
Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.
Digital signal processing the Tevatron BPM signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cancelo, G.; James, E.; Wolbers, S.
2005-05-01
The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describesmore » the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.« less
Narrow band imaging combined with water immersion technique in the diagnosis of celiac disease.
Valitutti, Francesco; Oliva, Salvatore; Iorfida, Donatella; Aloi, Marina; Gatti, Silvia; Trovato, Chiara Maria; Montuori, Monica; Tiberti, Antonio; Cucchiara, Salvatore; Di Nardo, Giovanni
2014-12-01
The "multiple-biopsy" approach both in duodenum and bulb is the best strategy to confirm the diagnosis of celiac disease; however, this increases the invasiveness of the procedure itself and is time-consuming. To evaluate the diagnostic yield of a single biopsy guided by narrow-band imaging combined with water immersion technique in paediatric patients. Prospective assessment of the diagnostic accuracy of narrow-band imaging/water immersion technique-driven biopsy approach versus standard protocol in suspected celiac disease. The experimental approach correctly diagnosed 35/40 children with celiac disease, with an overall diagnostic sensitivity of 87.5% (95% CI: 77.3-97.7). An altered pattern of narrow-band imaging/water immersion technique endoscopic visualization was significantly associated with villous atrophy at guided biopsy (Spearman Rho 0.637, p<0.001). Concordance of narrow-band imaging/water immersion technique endoscopic assessments was high between two operators (K: 0.884). The experimental protocol was highly timesaving compared to the standard protocol. An altered narrow-band imaging/water immersion technique pattern coupled with high anti-transglutaminase antibodies could allow a single guided biopsy to diagnose celiac disease. When no altered mucosal pattern is visible even by narrow-band imaging/water immersion technique, multiple bulbar and duodenal biopsies should be obtained. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola
2017-02-01
In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.
NASA Astrophysics Data System (ADS)
Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko
2018-01-01
We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.
NASA Technical Reports Server (NTRS)
Sadr, R.; Shahshahani, M.
1989-01-01
Four techniques for uniform sampling of band-bass signals are examined. The in-phase and quadrature components of the band-pass signal are computed in terms of the samples of the original band-pass signal. The relative implementation merits of these techniques are discussed with reference to the Deep Space Network (DSN).
Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System
NASA Technical Reports Server (NTRS)
Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)
2002-01-01
Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.
Image-enhanced endoscopy for diagnosis of colorectal tumors in view of endoscopic treatment
Yoshida, Naohisa; Yagi, Nobuaki; Yanagisawa, Akio; Naito, Yuji
2012-01-01
Recently, image-enhanced endoscopy (IEE) has been used to diagnose gastrointestinal tumors. This method is a change from conventional white-light (WL) endoscopy without dyeing solution, requiring only the push of a button. In IEE, there are many advantages in diagnosis of neoplastic tumors, evaluation of invasion depth for cancerous lesions, and detection of neoplastic lesions. In narrow band imaging (NBI) systems (Olympus Medical Co., Tokyo, Japan), optical filters that allow narrow-band light to pass at wavelengths of 415 and 540 nm are used. Mucosal surface blood vessels are seen most clearly at 415 nm, which is the wavelength that corresponds to the hemoglobin absorption band, while vessels in the deep layer of the mucosa can be detected at 540 nm. Thus, NBI also can detect pit-like structures named surface pattern. The flexible spectral imaging color enhancement (FICE) system (Fujifilm Medical Co., Tokyo, Japan) is also an IEE but different to NBI. FICE depends on the use of spectral-estimation technology to reconstruct images at different wavelengths based on WL images. FICE can enhance vascular and surface patterns. The autofluorescence imaging (AFI) video endoscope system (Olympus Medical Co., Tokyo, Japan) is a new illumination method that uses the difference in intensity of autofluorescence between the normal area and neoplastic lesions. AFI light comprises a blue light for emitting and a green light for hemoglobin absorption. The aim of this review is to highlight the efficacy of IEE for diagnosis of colorectal tumors for endoscopic treatment. PMID:23293724
Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band
NASA Astrophysics Data System (ADS)
Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.
2018-02-01
To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.
Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute
2004-01-01
An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the resonance quality factors (Q values) of the TM modes are higher. If Q values were not of major concern, it would be better to use the TE modes because the electro-optical shifts of the TE modes are 3 times those of the TM modes.
Tunable Filter Made From Three Coupled WGM Resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey
2006-01-01
A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery-modes of the third WGM resonator to an output optical fiber. The filter operates at a nominal wavelength of 1,550 nm and can be tuned over a frequency range of plus or minus 12 GHz by applying a potential in the range of plus or minus 150 V to the electrodes. The insertion loss (the loss between the input and output coupling optical fibers) was found to be repeatable at 6 dB. The resonance quality factor (Q) of the main sequence of resonator modes was found to be 5 x 10(exp 6), which corresponds to a bandwidth of 30 MHz. The filter can be shifted from one operating frequency to another within a tuning time less than or equal to 30 micro seconds. The transmission curve of the filter at frequencies near the middle of the passband closely approximates a theoretical third-order Butterworth filter profile, as shown in Figure 2.
Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures
NASA Astrophysics Data System (ADS)
Aly, Arafa H.; Mehaney, Ahmed
2016-11-01
This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.
2004-01-01
A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.
NASA Technical Reports Server (NTRS)
Kleinberg, L.
1982-01-01
Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.
Dutta, Amit Kumar; Sajith, Kattiparambil Gangadharan; Shah, Gautam; Pulimood, Anna Benjamin; Simon, Ebby George; Joseph, Anjilivelil Joseph; Chacko, Ashok
2014-11-01
Narrow band imaging with magnification enables detailed assessment of duodenal villi and may be useful in predicting the presence of villous atrophy or normal villi. We aimed to assess the morphology of duodenal villi using magnification narrow band imaging and correlate it with histology findings in patients with clinically suspected malabsorption syndrome. Patients with clinical suspicion of malabsorption presenting at a tertiary care center were prospectively recruited in this diagnostic intervention study. Patients underwent upper gastrointestinal endoscopy using magnification narrow band imaging. The villous morphology in the second part of the duodenum was assessed independently by two endoscopists and the presence of normal or atrophic villi was recorded. Biopsy specimen was obtained from the same area and was examined by two pathologists together. The sensitivity and specificity of magnification narrow band imaging in detecting the presence of duodenal villous atrophy was calculated and compared to the histology. One hundred patients with clinically suspected malabsorption were included in this study. Sixteen patients had histologically confirmed villous atrophy. The sensitivity and specificity of narrow band imaging in predicting villous atrophy was 87.5% and 95.2%, respectively, for one endoscopist. The corresponding figures for the second endoscopist were 81.3% and 92.9%, respectively. The interobserver agreement was very good with a kappa value of 0.87. Magnification narrow band imaging performed very well in predicting duodenal villous morphology. This may help in carrying out targeted biopsies and avoiding unnecessary biopsies in patients with suspected malabsorption. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.
Klimza, Hanna; Jackowska, Joanna; Piazza, Cesare; Banaszewski, Jacek; Wierzbicka, Malgorzata
2018-03-01
Trans-oral laser microsurgery is an established technique for the treatment of early and moderately advanced laryngeal cancer. The authors intend to test the usefulness of narrow-band imaging in the intraoperative assessment of the larynx mucosa in terms of specifying surgical margins. Forty-four consecutive T1-T2 glottic cancers treated with trans-oral laser microsurgery Type I-VI cordectomy were presented. Suspected areas (90 samples/44 patients) were biopsied under the guidance of narrow-band imaging and white light and sent for frozen section. Our study revealed that 75 of 90 (83.3%) white light and narrow-band imaging-guided samples were histopathologically positive: 30 (40%) were confirmed as carcinoma in situ or invasive carcinoma and 45 (60%) as moderate to severe dysplasia. In 6 patients mucosa was suspected only in narrow-band imaging, with no suspicion under white light. Thus, in these 6 patients 18/90 (20%) samples were taken. In 5/6 patients 16/18 (88.8%) samples were positive in frozen section: in 6/18 (33.3%) carcinoma (2 patients), 10/18 (66.6%) severe dysplasia was confirmed (3 patients). In 1 patient 2/18 (11.1%) samples were negative in frozen section. Presented analysis showed, that sensitivity, specificity and accuracy of white light was 79.5%, 20% and 71.1% respectively, while narrow-band imaging was 100%, 0.0% and 85.7%, respectively. The intraoperative use of narrow-band imaging proved to be valuable in the visualization of suspect areas of the mucosa. Narrow-band imaging confirms the suspicions undertaken in white light and importantly, it showed microlesions beyond the scope of white light. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.
Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho
2016-12-16
Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.
Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms
NASA Astrophysics Data System (ADS)
Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho
2016-12-01
Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.
Narrow-linewidth Q-switched random distributed feedback fiber laser.
Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu
2016-08-22
A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.
Flow analysis system and method
NASA Technical Reports Server (NTRS)
Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)
1998-01-01
A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.
NASA Technical Reports Server (NTRS)
Emmons, R.; Preski, R. J.; Kierstead, F. H., Jr.; Doll, F. C.; Wight, D. T.; Romick, D. C.
1973-01-01
A study was made to evaluate the potential for remote ground-based measurement of upper atmospheric ozone by determining the absorption ratio of selected narrow bands of sunlight as reflected by satellites while passing into eclipse, using the NASA Mobile Satellite Photometric Observatory (MOSPO). Equipment modifications to provide optimum performance were analyzed and recommendations were made for improvements to the system to accomplish this. These included new sensor tubes, pulse counting detection circuitry, filters, beam splitters and associated optical revision, along with an automatic tracking capability plus corresponding operational techniques which should extend the overall measurement capability to include use of satellites down to 5th magnitude.
Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films
NASA Astrophysics Data System (ADS)
Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi
2017-07-01
We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.
Tunable acoustic metamaterial based on piezoelectric ceramic transducer
NASA Astrophysics Data System (ADS)
Zhu, Xiaohui; Qiao, Jing; Zhang, Guangyu; Zhou, Qiang; Wu, Yingdan; Li, Longqiu
2017-04-01
In this paper, a tunable metamaterial consisting of periodic layers of steel, polyurea and piezoelectric ceramic transducer (PZT) was presented. The PZT layer in this structure was connected to an inductor L. Transfer matrix method was used to calculate the band structure of the sample. It was observed that an extremely narrow stop band was induced by the PZT layer with inductor L. This narrow stop band was attributed to the resonance circuit constituted by the piezoelectric layer, for the piezoelectric layer with electrodes could be seen as a capacitor. Further, homogenization was used to calculate the effective elastic constants of the sample. Results showed that the effective parameters of this structure behaved negative in the narrow stop band. The location of the narrow stop band was in the charge of inductor L, which could be used to design acoustic filters or noise insulators by changing the parameters of structure.
Fiber-Optic Gratings for Lidar Measurements of Water Vapor
NASA Technical Reports Server (NTRS)
Vann, Leila B.; DeYoung, Russell J.
2006-01-01
Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters nominally designed and fabricated to have transmission wavelengths that, in the absence of stretching, would be slightly too short.
Computational Spectrally Correlated Thermal Radiation through Gaseous Mixture
NASA Astrophysics Data System (ADS)
Lakhal, W.; Trabelsi, S.; Sediki, E.; Soufiani, A.; Moussa, M.
2007-09-01
The Treatment of the spectral nature of thermal radiation in absorbing emitting gases at high temperature inside a heated or cooled duct is presented with taking into account the non-gray behavior of gas. Radiative properties of the flowing gases (H2O or CO2) are modeled by using narrow-band and global models. Although the narrow-band models are considered more accurate, global model are more adequate for combined heat transfer study in complex geometry. Thus, accuracy of narrow-band and global models study is provide. In this investigation, we focus our attention on the practical way to use the Correlated-K narrow-band model in radiative transfer, as the asymptotic limit of accuracy of the global model. Results are presented in terms of radiative power fields.
NASA Astrophysics Data System (ADS)
Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi
2018-05-01
A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.
On the estimation of phase synchronization, spurious synchronization and filtering
NASA Astrophysics Data System (ADS)
Rios Herrera, Wady A.; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F.
2016-12-01
Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.
Wu, Sheng; Deev, Andrei; Palm, Steve L.; Tang, Yongchun; Goddard, William A.
2010-11-30
A frequency modulated spectroscopy system, including a photo-detector, a band-pass filter to filter the output of the photo-detector, and a rectifier to demodulate. The band-pass filter has a relatively high Q factor. With the high Q factor band-pass filter and rectifier, a reference sinusoid is not required for demodulation, resulting in phase-insensitive spectroscopy. Other embodiments are described and claimed.
Lyman Alpha Searches at Redshift Z>7
NASA Astrophysics Data System (ADS)
Willis, Jon
2007-05-01
The ZEN survey is a narrow J-band survey for Ly-alpha emitting galaxies at z > 7. I will briefly review the pros and cons of narrow band observations before summarising the ZEN1 and ZEN2 searches based upon deep ISAAC pointings. I will then present ZEN3, consisting of wide field, narrow band observations of two fields using the CFHT WIRCam facility. I will conclude by reviewing the current sample of candidates and what we have learned about the z > 7 Ly-alpha emitting population.
Galaxy properties from J-PAS narrow-band photometry
NASA Astrophysics Data System (ADS)
Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez
2017-11-01
We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2018-05-01
The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.
Skinner, L.V.
1959-09-29
A narrow-band frequency-modulated distance measuring system is described. Reflected wave energy is fed into a mixer circuit together with a direct wave energy portion from the transmitter. These two input signals are out of phase by an amount proportional to the distance. Two band pass filter s select two different frequency components (both multiples of transmitter modulation frequency) from the beat frequency. These component frequencies are rectified and their voltage values, which are representative of those frequencies, are compared. It has been found that these voltages will have equal values producing a null output only when an object attains a preselected distance. The null output may be utilized to operate a normally closed relay, for example. At other ranges the voltage comparison will yield a voltage sufficient to keep the relay energized. Ranges may be changed by varying the degree of modulation of the transmitter carrier frequency. A particular advantage of this system lies in its high degree of accuracy throughout a range of distances approaching zero as a minimum.
Measuring Solar Coronal Magnetism during the Total Solar Eclipse of 2017
NASA Astrophysics Data System (ADS)
Gibson, K. L.; Tomczyk, S.
2017-12-01
The total solar eclipse on August 21, 2017 provided a notable opportunity to measure the solar corona at specific emission wavelengths to gain information about coronal magnetic fields. Solar magnetic fields are intimately related to the generation of space weather and its effects on the earth, and the infrared imaging and polarization information collected on coronal emission lines here will enhance the scientific value of several other ongoing experiments, as well as benefit the astrophysics and upper atmosphere communities. Coronal measurements were collected during the 2 minute and 24 second totality period from Casper Mountain, WY. Computer-controlled telescopes automatically inserted four different narrow band pass filters to capture images in the visible range on a 4D PolCam, and in the infrared range on the FLIR 8501c camera. Each band pass filter selects a specific wavelength range that corresponds to a known coronal emission line possessing magnetic sensitivity. The 4D PolCam incorporated a novel grid of linear polarizers precisely aligned with the micron scale pixels. This allowed for direct measurement of the degree of linear polarization in a very small instrument with no external moving parts as is typically required. The FLIR offers short exposure times to freeze motion and output accurate thermal measurements. This allowed a new observation of the sun's corona using thermo infrared technology.
Cokl, A; Virant-Doberlet, M; Stritih, N
2000-01-01
Substrate born songs of the southern green stinkbug Nezara viridula (L.) from Slovenia were recorded and analysed. The male calling song is composed of narrow-band regularly repeated single pulses and of broad-band frequency modulated pulses grouped into pulse trains. The female calling song is characterised by broad-band pulsed and narrow-band non-pulsed pulse trains. A frequency modulated pre-pulse precedes the narrow-band pulse train. A frequency-modulated post-pulse usually follows the pulse train of the male courtship song. The male calling song triggers broad-band pulse trains of the female courtship song. The female also produces a repelling low-frequency vibration that inhibits male calling and courtship. The male rival song is characterised by prolonged pulses with a typical frequency modulation.
NASA Astrophysics Data System (ADS)
Dong, Li-Ming; Ni, Chen-Yin; Shen, Zhong-Hua; Ni, Xiao-Wu
2011-09-01
Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.
Application of narrow-band television to industrial and commercial communications
NASA Technical Reports Server (NTRS)
Embrey, B. C., Jr.; Southworth, G. R.
1974-01-01
The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.
Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris
NASA Technical Reports Server (NTRS)
Lang, K. R.; Willson, R. F.
1986-01-01
Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.
Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm
NASA Astrophysics Data System (ADS)
Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad
2016-03-01
Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.
NASA Astrophysics Data System (ADS)
Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.
2014-12-01
The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geoCARB depolarizer or polarizer. Enabled by measurement of the geoCARB grating efficiencies the simulated intensities Ism include the slow polarization induced spectral change across the band. These Ism are input to the retrieval SW that was used in the original study. There is no significant change to the very positive previous results for the mission objective of gas column retrieval.
The diagnostic value of narrow-band imaging for early and invasive lung cancer: a meta-analysis.
Zhu, Juanjuan; Li, Wei; Zhou, Jihong; Chen, Yuqing; Zhao, Chenling; Zhang, Ting; Peng, Wenjia; Wang, Xiaojing
2017-07-01
This study aimed to compare the ability of narrow-band imaging to detect early and invasive lung cancer with that of conventional pathological analysis and white-light bronchoscopy. We searched the PubMed, EMBASE, Sinomed, and China National Knowledge Infrastructure databases for relevant studies. Meta-disc software was used to perform data analysis, meta-regression analysis, sensitivity analysis, and heterogeneity testing, and STATA software was used to determine if publication bias was present, as well as to calculate the relative risks for the sensitivity and specificity of narrow-band imaging vs those of white-light bronchoscopy for the detection of early and invasive lung cancer. A random-effects model was used to assess the diagnostic efficacy of the above modalities in cases in which a high degree of between-study heterogeneity was noted with respect to their diagnostic efficacies. The database search identified six studies including 578 patients. The pooled sensitivity and specificity of narrow-band imaging were 86% (95% confidence interval: 83-88%) and 81% (95% confidence interval: 77-84%), respectively, and the pooled sensitivity and specificity of white-light bronchoscopy were 70% (95% confidence interval: 66-74%) and 66% (95% confidence interval: 62-70%), respectively. The pooled relative risks for the sensitivity and specificity of narrow-band imaging vs the sensitivity and specificity of white-light bronchoscopy for the detection of early and invasive lung cancer were 1.33 (95% confidence interval: 1.07-1.67) and 1.09 (95% confidence interval: 0.84-1.42), respectively, and sensitivity analysis showed that narrow-band imaging exhibited good diagnostic efficacy with respect to detecting early and invasive lung cancer and that the results of the study were stable. Narrow-band imaging was superior to white light bronchoscopy with respect to detecting early and invasive lung cancer; however, the specificities of the two modalities did not differ significantly.
Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi
2016-08-03
Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.
Quality evaluation of different fusion techniques applied on Worldview-2 data
NASA Astrophysics Data System (ADS)
Vaiopoulos, Aristides; Nikolakopoulos, Konstantinos G.
2015-10-01
In the current study a Worldview-2 image was used for fusion quality assessment. The bundle image was collected on July 2014 over Araxos area in Western Peloponnese. Worldview-2 is the first satellite that collects at the same time a panchromatic (Pan) image and 8 band multispectral (MS) image. The Pan data have a spatial resolution of 0.46m while the MS data have a spatial resolution of 1.84m. In contrary to the respective Pan band of Ikonos and Quickbird that range between 0.45 and 0.90 micrometers the Worldview Pan band is narrower and ranges between 0.45 and 0.8 micrometers. The MS bands include four conventional visible and near-infrared bands common to multispectral satellites like Ikonos Quickbird, Geoeye Landsat-7 etc., and four new bands. Thus, it is quite interesting to investigate the assessment of commonly used fusion algorithms with Worldview-2 data. Twelve fusion techniques and more especially the Ehlers, Gram-Schmidt, Color Normalized, High Pass Filter, Hyperspherical Color Space, Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Modified IHS (ModIHS), Pansharp, Pansharp2, PCA and Wavelet were used for the fusion of Worldview-2 panchromatic and multispectral data. The optical result, the statistical parameters and different quality indexes such as ERGAS, Q and entropy difference were examined and the results are presented. The quality control was evaluated both in spectral and spatial domain.
Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors
NASA Astrophysics Data System (ADS)
Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree
2014-04-01
A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.
Further improvements in program to calculate electronic properties of narrow band gap materials
NASA Technical Reports Server (NTRS)
Patterson, James D.
1991-01-01
Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.
NASA Astrophysics Data System (ADS)
Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao
2017-02-01
Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.
Method and apparatus for instantaneous band ratioing in a reflectance radiometer
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H. (Inventor); Machida, Richard A. (Inventor)
1982-01-01
A hand-held instrument is provided to compare information from selected infrared and visible bands in the 0.4 to 2.5 micrometer range, to perform ratioing via a dividing circuit (17) and to directly read out, via a display system (18), ratio values in a continuous digital display. The dual-beam, ratioing radiometer contains two optical trains (10, 12), each having two repeater lenses (L1a, L1b and L2a, L2b) and a cooled lead sulfide detector (D1, D2). One of the trains (10) is pivotal to facilitate measurements at distances ranging from about 1 meter to infinity. The optical trains are intersected by a set of two coaxially-mounted filter wheels (F1, F2), each containing up to five interference filters and slits to pass radiation filtered by the other. Filters with band passes as narrow as 0.01 micrometer are used in the region 0.4 to 2.5 micrometers. The total time for a calibration and measurement is only a few seconds. It is known from previous field studies using prior art devices, that materials, e.g., clay minerals, and carbonate minerals such as limestone, have unique spectral properties in the 2.0 to 2.5 micrometer region. Using properly chosen spectral filters, and ratioing the signals to remove the effect of topography on the brightness measured, the instrument can be used for real-time analysis of reflecting materials in the field. Other materials in the broader range of 0.4 to 2.5 micrometers (and even beyond) could be similarly identified once the reflectance spectrum of the material is established by any means.
Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Ke, Xuezhi; Chen, Changfeng
2011-01-01
We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.
Band structures of TiO2 doped with N, C and B*
Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong
2006-01-01
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532
A Quasi-Classical Model of the Hubbard Gap in Lightly Compensated Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poklonski, N. A.; Vyrko, S. A.; Kovalev, A. I.
2016-03-15
A quasi-classical method for calculating the narrowing of the Hubbard gap between the A{sup 0} and A{sup +} acceptor bands in a hole semiconductor or the D{sup 0} and D{sup –} donor bands in an electron semiconductor is suggested. This narrowing gives rise to the phenomenon of a semiconductor transition from the insulator to metal state with an increase in doping level. The major (doping) impurity can be in one of three charge states (–1, 0, or +1), while the compensating impurity can be in states (+1) or (–1). The impurity distribution over the crystal is assumed to be randommore » and the width of Hubbard bands (levels), to be much smaller than the gap between them. It is shown that narrowing of the Hubbard gap is due to the formation of electrically neutral acceptor (donor) states of the quasicontinuous band of allowed energies for holes (electrons) from excited states. This quasicontinuous band merges with the top of the valence band (v band) for acceptors or with the bottom of the conduction band (c band) for donors. In other words, the top of the v band for a p-type semiconductor or the bottom of the c band for an n-type semiconductor is shifted into the band gap. The value of this shift is determined by the maximum radius of the Bohr orbit of the excited state of an electrically neutral major impurity atom, which is no larger than half the average distance between nearest impurity atoms. As a result of the increasing dopant concentration, the both Hubbard energy levels become shallower and the gap between them narrows. Analytical formulas are derived to describe the thermally activated hopping transition of holes (electrons) between Hubbard bands. The calculated gap narrowing with increasing doping level, which manifests itself in a reduction in the activation energy ε{sub 2} is consistent with available experimental data for lightly compensated p-Si crystals doped with boron and n-Ge crystals doped with antimony.« less
Ultrabright, narrow-band photon-pair source for atomic quantum memories
NASA Astrophysics Data System (ADS)
Tsai, Pin-Ju; Chen, Ying-Cheng
2018-06-01
We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.
A narrow band pattern-matching model of vowel perception
NASA Astrophysics Data System (ADS)
Hillenbrand, James M.; Houde, Robert A.
2003-02-01
The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /h
Kajiwara, Mitsuru; Inoue, Shougo; Kobayashi, Kanao; Ohara, Shinya; Teishima, Jun; Matsubara, Akio
2014-04-01
Narrow band imaging cystoscopy can increase the visualization and detection of Hunner's lesions. A single-center, prospective clinical trial was carried out aiming to show the effectiveness of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. A total of 23 patients (19 women and 4 men) diagnosed as having ulcer-type interstitial cystitis/painful bladder syndrome were included. All typical Hunner's lesions and suspected areas identified by narrow band imaging were electrocoagulated endoscopically after the biopsy of those lesions. Therapeutic efficacy was assessed prospectively by using visual analog scale score of pain, O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score. The mean follow-up period was 22 months. All patients (100%) experienced a substantial improvement in pain. The average visual analog scale pain scores significantly decreased from 7.3 preoperatively to 1.2 1 month postoperatively. A total of 21 patients (91.3%) who reported improvement had at least a 50% reduction in bladder pain, and five reported complete resolution. Daytime frequency was significantly decreased postoperatively. O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score were significantly decreased postoperatively. However, during the follow-up period, a total of six patients had recurrence, and repeat narrow band imaging-assisted transurethral electrocoagulation of the recurrent lesions was carried out for five of the six patients, with good response in relieving bladder pain. Our results showed that narrow band imaging-assisted transurethral electrocoagulation could be a valuable therapeutic alternative in patients with ulcer-type interstitial cystitis/painful bladder syndrome, with good efficacy and reduction of recurrence rate. © 2014 The Japanese Urological Association.
NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang
2016-01-01
The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014
Derivative Analysis of AVIRIS Data for Crop Stress Detection
NASA Technical Reports Server (NTRS)
Estep, Lee; Carter, Gregory A.; Berglund, Judith
2003-01-01
Low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery of a cornfield in Nebraska was used to determine whether derivative analysis methods provided enhanced plant stress detection compared with narrow-band ratios. The field was divided into 20 plots representing 4 replicates each of 5 nitrogen (N) fertilization treatments that ranged from 0 to 200 kg N/ha in 50 kg/ha increments. The imagery yielded a 3 m ground pixel size for 224 spectral bands. Derivative analysis provided no advantage in stress detection compared with the performance of narrow-band indices derived from the literature. This result was attributed to a high leaf area index at the time of overflight (LAI approx. equal to 5 to 6t) and the high signal-to-noise character of the narrow AVIRIS bands.
NASA Astrophysics Data System (ADS)
Wei, Chao-Tsang; Shieh, Han-Ping D.
2005-10-01
In this paper, we report the in situ measurement of the temperature stability of narrow-band-pass filters on different types of substrate, for dense wavelength division multiplexing (DWDM) filters in optical-fiber transmission systems. The DWDM filters were designed as all-dielectric Fabry-Perot filters and fabricated by reactive ion-assisted deposition. Ta2O5 and SiO2 were used as high- and low-refractive-index layers, respectively, for constructing the DWDM filters. The accuracy and stability of the coating process were evaluated for fabricating the DWDM filters for the temperature stability of the center wavelength. The center wavelength shift was determined to be greatly dependent on the coefficient of thermal expansion of the substrate on which the filter is deposited.
Scalora, Michael; Mattiucci, Nadia; D'Aguanno, Giuseppe; Larciprete, MariaCristina; Bloemer, Mark J
2006-01-01
We numerically study the nonlinear optical properties of metal-dielectric photonic band gap structures in the pulsed regime. We exploit the high chi3 of copper metal to induce nonlinear effects such as broadband optical limiting, self-phase modulation, and unusual spectral narrowing of high intensity pulses. We show that in a single pass through a typical, chirped multilayer stack nonlinear transmittance and peak powers can be reduced by nearly two orders of magnitude compared to low light intensity levels across the entire visible range. Chirping dielectric layer thickness dramatically improves the linear transmittance through the stack and achieves large fields inside the copper to access the large nonlinearity. At the same time, the linear properties of the stack block most of the remaining electromagnetic spectrum.
NASA Astrophysics Data System (ADS)
Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej
2015-03-01
Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.
The Cloud Detection and UV Monitoring Experiment (CLUE)
NASA Technical Reports Server (NTRS)
Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.
2004-01-01
We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.
Imaging Breathing Rate in the CO
Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis
2005-01-01
Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO
A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface
NASA Astrophysics Data System (ADS)
Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li
2018-03-01
Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qian; Li, Shourui; Wang, Kai
Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH 3-(CH 2) 4-NH 3]CuCl 4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl 4 2–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the springmore » cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl 4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.« less
NASA Astrophysics Data System (ADS)
Agrawal, B. P.; Ghosh, P. K.
2017-03-01
Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.
Narrow-Band Applications of Communications Satellites.
ERIC Educational Resources Information Center
Cowlan, Bert; Horowitz, Andrew
This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…
Narrow-band filters for the lightning imager
NASA Astrophysics Data System (ADS)
Piegari, Angela; Di Sarcina, Ilaria; Grilli, Maria Luisa; Menchini, Francesca; Scaglione, Salvatore; Sytchkova, Anna; Zola, Danilo; Cuevas, Leticia P.
2017-11-01
The study of lightning phenomena will be carried out by a dedicated instrument, the lightning imager, that will make use of narrow-band transmission filters for separating the Oxygen emission lines in the clouds, from the background signal. The design, manufacturing and testing of these optical filters will be described here.
Broadly tunable picosecond ir source
Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.
1980-04-23
A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 ..mu..m picosecond pulses (1) pass through a 4.5 cm long LiNbO/sub 3/ optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO/sub 3/ optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 ..mu..m along both pump lines are 6 to 8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 ..mu..m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 ..mu..J of tunable radiation over the 14.8 to 18.5 ..mu..m region. The bandwidth and wavelength of both the 2 and 16 ..mu..m radiation output are controlled solely by the diffraction grating.
Seismpol_ a visual-basic computer program for interactive and automatic earthquake waveform analysis
NASA Astrophysics Data System (ADS)
Patanè, Domenico; Ferrari, Ferruccio
1997-11-01
A Microsoft Visual-Basic computer program for waveform analysis of seismic signals is presented. The program combines interactive and automatic processing of digital signals using data recorded by three-component seismic stations. The analysis procedure can be used in either an interactive earthquake analysis or an automatic on-line processing of seismic recordings. The algorithm works in the time domain using the Covariance Matrix Decomposition method (CMD), so that polarization characteristics may be computed continuously in real time and seismic phases can be identified and discriminated. Visual inspection of the particle motion in hortogonal planes of projection (hodograms) reduces the danger of misinterpretation derived from the application of the polarization filter. The choice of time window and frequency intervals improves the quality of the extracted polarization information. In fact, the program uses a band-pass Butterworth filter to process the signals in the frequency domain by analysis of a selected signal window into a series of narrow frequency bands. Significant results supported by well defined polarizations and source azimuth estimates for P and S phases are also obtained for short-period seismic events (local microearthquakes).
Broadly tunable picosecond IR source
Campillo, Anthony J.; Hyer, Ronald C.; Shapiro, Stanley J.
1982-01-01
A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 .mu.m picosecond pulses (1) pass through a 4.5 cm long LiNbO.sub.3 optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO.sub.3 optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 .mu.m along both pump lines are 6-8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 .mu.m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 .mu.J of tunable radiation over the 14.8 to 18.5 .mu.m region. The bandwidth and wavelength of both the 2 and 16 .mu.m radiation output are controlled solely by the diffraction grating.
Evaluating sensor linearity of chosen infrared sensors
NASA Astrophysics Data System (ADS)
Walczykowski, P.; Orych, A.; Jenerowicz, A.; Karcz, P.
2014-11-01
The paper describes a series of experiments conducted as part of the IRAMSWater Project, the aim of which is to establish methodologies for detecting and identifying pollutants in water bodies using aerial imagery data. The main idea is based on the hypothesis, that it is possible to identify certain types of physical, biological and chemical pollutants based on their spectral reflectance characteristics. The knowledge of these spectral curves is then used to determine very narrow spectral bands in which greatest reflectance variations occur between these pollutants. A frame camera is then equipped with a band pass filter, which allows only the selected bandwidth to be registered. In order to obtain reliable reflectance data straight from the images, the team at the Military University of Technology had developed a methodology for determining the necessary acquisition parameters for the sensor (integration time and f-stop depending on the distance from the scene and it's illumination). This methodology however is based on the assumption, that the imaging sensors have a linear response. This paper shows the results of experiments used to evaluate this linearity.
NASA Astrophysics Data System (ADS)
Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.
2015-09-01
Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.
Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh
2016-04-01
In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.
NASA Astrophysics Data System (ADS)
He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping
2018-04-01
Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.
Perfect narrow band absorber for sensing applications.
Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing
2016-05-02
We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.
The EarthCARE mission BBR instrument: ground testing of radiometric performance
NASA Astrophysics Data System (ADS)
Caldwell, Martin E.; Spilling, David; Grainger, William; Theocharous, E.; Whalley, Martin; Wright, Nigel; Ward, Anthony K.; Jones, Edward; Hampton, Joseph; Parker, David; Delderfield, John; Pearce, Alan; Richards, Anthony G.; Munro, Grant J.; Poynz Wright, Oliver; Hampson, Matthew; Forster, David
2017-09-01
In the EarthCARE mission the BBR (Broad Band Radiometer) has the role of measuring the net earth radiance (i.e. total reflected-solar and thermally-emitted radiances), from the same earth scene as viewed by the other instruments (aerosol lidar, cloud radar and spectral imager). It does this measurement at 10km scene size and in 3 view angles. It is an imaging radiometer in that it uses micro-bolometer linear-array detector (pushbroom orientation), to over-sample these required scenes, with the samples being binned on-ground to produce the 10km radiance data. For the measurements of total earth radiance, the BBR is based on the heritage of Earth Radiation Budget (ERB) instruments. The ground calibration methods of this type of sensor is technically very similar to other EO instruments that measure in the thermalIR, but with added challenges: (1) The thermal-IR measurement has to have a much wider spectral range than normal thermal-IR channels to cover the whole earth-emission spectrum i.e. 4 to >50microns (2) The 2nd channel (reflected solar radiance) must also have a broad response to cover almost the whole solar spectrum, i.e. 0.3 to 4microns. And this solar channel must be measured on the same radiometric calibration as the thermal channel, which in practice is best done by using the same radiometer for both channels. The radiometer is designed to be very broad-band i.e. 0.3 to 50microns (i.e. more than two decades), to cover both ranges, and a switchable spectral filter (short-pass cutoff at 4μm) is used to separate the channels. The on-ground measurements which are required to link the calibration of these channels will be described. A calibration of absolute responsivity in each of the two bands is needed; in the thermal-IR channel this is by the normal method of using a calibrated blackbody test source, and in the solar channel it is by means of a narrow-band (laser) and a reference radiometer (from NPL). A calibration of relative spectral response is also needed, across this wide range, for the purpose of linking the two channels, and for converting the narrow-band solar channel measurement to broad-band.
Acquisition and visualization techniques for narrow spectral color imaging.
Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón
2013-06-01
This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.
Infrared radiation models for atmospheric methane
NASA Technical Reports Server (NTRS)
Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.
1986-01-01
Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.
Intensity Variations of Narrow Bands of Solar UV Radiation during Descending Phases of SACs 21-23
NASA Astrophysics Data System (ADS)
Gigolashvili, M.; Kapanadze, N.
2014-12-01
The study of variations of four narrow bands of solar spectral irradiance (SSI) in the ultraviolet (UV) range for period 1981-2008 is presented. Observational data obtained by space-flight missions SORCE, UARS, SME and daily meanings of international sunspot number (ISN) have been used. The investigated data cover the decreasing phases of the solar activity cycles (SACs) 21, 22 and 23. We have revealed a peculiar behavior of intensity variability of some solar ultraviolet spectral lines originated in the solar chromospheres for period corresponding to the declining phase of the solar cycle 23. It is found that variability of emission of different solar spectral narrow bands (289.5 nm, 300.5 nm) does not agree equally well with ISN variability during decreasing phase of the solar activity cycle 23. The negative correlations between total solar irradiance and the solar spectral narrow bands of UV emission (298.5 nm, 300.5 nm) had been revealed. The existence of the negative correlation can be explained by the sensitivity of SSI of some emission lines to the solar global magnetic field.
Multi-band filter design with less total film thickness for short-wave infrared
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Chien, I.-Pen; Chen, Po-Han; Chen, Sheng-Hui; Tsai, Yi-Chun; Ou-Yang, Mang
2017-08-01
A multi-band pass filter array was proposed and designed for short wave infrared applications. The central wavelength of the multi-band pass filters are located about 905 nm, 950 nm, 1055 nm and 1550 nm. In the simulation of an optical interference band pass filter, high spectrum performance (high transmittance ratio between the pass band and stop band) relies on (1) the index gap between the selected high/low-index film materials, with a larger gap correlated to higher performance, and (2) sufficient repeated periods of high/low-index thin-film layers. When determining high and low refractive index materials, spectrum performance was improved by increasing repeated periods. Consequently, the total film thickness increases rapidly. In some cases, a thick total film thickness is difficult to process in practice, especially when incorporating photolithography liftoff. Actually the maximal thickness of the photoresist being able to liftoff will bound the total film thickness of the band pass filter. For the application of the short wave infrared with the wavelength range from 900nm to 1700nm, silicone was chosen as a high refractive index material. Different from other dielectric materials used in the visible range, silicone has a higher absorptance in the visible range opposite to higher transmission in the short wave infrared. In other words, designing band pass filters based on silicone as a high refractive index material film could not obtain a better spectrum performance than conventional high index materials like TiO2 or Ta2O5, but also its material cost would reduce about half compared to the total film thickness with the conventional material TiO2. Through the simulation and several experimental trials, the total film thickness below 4 um was practicable and reasonable. The fabrication of the filters was employed a dual electric gun deposition system with ion assisted deposition after the lithography process. Repeating four times of lithography and deposition process and black matrix coating, the optical device processes were completed.
NASA Astrophysics Data System (ADS)
Fangxiong, Chen; Min, Lin; Heping, Ma; Hailong, Jia; Yin, Shi; Forster, Dai
2009-08-01
An asymmetric MOSFET-C band-pass filter (BPF) with on chip charge pump auto-tuning is presented. It is implemented in UMC (United Manufacturing Corporation) 0.18 μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump outputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point (IIP3) is 16.621 dBm, with 50 Ω as the source impedance. The input referred noise is about 47.455 μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm2 and it can be utilized in GPS (global positioning system) and Bluetooth systems.
Calibrating the PAU Survey's 46 Filters
NASA Astrophysics Data System (ADS)
Bauer, A.; Castander, F.; Gaztañaga, E.; Serrano, S.; Sevilla, N.; Tonello, N.; PAU Team
2016-05-01
The Physics of the Accelerating Universe (PAU) Survey, being carried out by several Spanish institutions, will image an area of 100-200 square degrees in 6 broad and 40 narrow band optical filters. The team is building a camera (PAUCam) with 18 CCDs, which will be installed in the 4 meter William Herschel Telescope at La Palma in 2013. The narrow band filters will each cover 100Å, with the set spanning 4500-8500Å. The broad band set will consist of standard ugriZy filters. The narrow band filters will provide low-resolution (R˜50) photometric "spectra" for all objects observed in the survey, which will reach a depth of ˜24 mag in the broad bands and ˜22.5 mag (AB) in the narrow bands. Such precision will allow for galaxy photometric redshift errors of 0.0035(1+z), which will facilitate the measurement of cosmological parameters with precision comparable to much larger spectroscopic and photometric surveys. Accurate photometric calibration of the PAU data is vital to the survey's science goals, and is not straightforward due to the large and unusual filter set. We outline the data management pipelines being developed for the survey, both for nightly data reduction and coaddition of multiple epochs, with emphasis on the photometric calibration strategies. We also describe the tools we are developing to test the quality of the reduction and calibration.
Masaki, Takashi; Katada, Chikatoshi; Nakayama, Meijin; Takeda, Masahiko; Miyamoto, Shunsuke; Seino, Yutomo; Koizumi, Wasaburo; Tanabe, Satoshi; Horiguchi, Satoshi; Okamoto, Makito
2009-12-01
Narrow band imaging (NBI) is a novel optical technique that enhances the diagnostic capability of the gastrointestinal endoscope (GIE) by illuminating the intraepithelial papillary capillary loop (IPCL) using narrow bandwidth filters in a red-green-blue sequential illumination system (CV-260SL processor and CLV-260SL light source, Olympus Optical Co. Ltd, Tokyo, Japan). The NBI filter sets (415 nm and 540 nm) are selected to obtain fine images of the microvascular structure. Because 415 nm is the hemoglobin absorption band, capillaries on the mucosal surface can be seen most clearly at this wavelength. NBI is able to represent more clearly both capillary patterns and the boundary between different types of tissue, which are necessary for diagnosing a tumor in its early stage (Gono K, Yamazaki K, Doguchi N, Nonami T, Obi T, Yamaguchi M, et al. Endoscopic observation of tissue by narrow band illumination. Opt Rev 2003;10:211-215, Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue feature in narrow-band endoscopic imaging. J Biomed Opt 2004;9:568-577). We present two patients with laryngeal squamous cell carcinoma in whom the spread and the depth of invasion was evaluated with transnasal GIE equipped with NBI. Based on our results, the vascular neoplastic changes of carcinoma in situ of the larynx could be similar to carcinoma in situ of the esophagus.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Ho, Hsuan-Wei; Nguyen, Xuan-Loc
2010-02-01
This article presents a novel band-pass filter for Fourier transform profilometry (FTP) for accurate 3-D surface reconstruction. FTP can be employed to obtain 3-D surface profiles by one-shot images to achieve high-speed measurement. However, its measurement accuracy has been significantly influenced by the spectrum filtering process required to extract the phase information representing various surface heights. Using the commonly applied 2-D Hanning filter, the measurement errors could be up to 5-10% of the overall measuring height and it is unacceptable to various industrial application. To resolve this issue, the article proposes an elliptical band-pass filter for extracting the spectral region possessing essential phase information for reconstructing accurate 3-D surface profiles. The elliptical band-pass filter was developed and optimized to reconstruct 3-D surface models with improved measurement accuracy. Some experimental results verify that the accuracy can be effectively enhanced by using the elliptical filter. The accuracy improvement of 44.1% and 30.4% can be achieved in 3-D and sphericity measurement, respectively, when the elliptical filter replaces the traditional filter as the band-pass filtering method. Employing the developed method, the maximum measured error can be kept within 3.3% of the overall measuring range.
Active Narrow-Band Vibration Isolation of Large Engineering Structures
NASA Technical Reports Server (NTRS)
Rahman, Zahidul; Spanos, John
1994-01-01
We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.
Band-Pass Amplifier Without Discrete Reactance Elements
NASA Technical Reports Server (NTRS)
Kleinberg, L.
1984-01-01
Inherent or "natural" device capacitance exploited. Band-Pass Circuit has input impedance of equivalent circuit at frequencies much greater than operational-amplifier rolloff frequency. Apparent inductance and capacitance arise from combined effects of feedback and reactive component of amplifier gain in frequency range.
A test of ν stability using a 200 GeV narrow-band neutrino beam at BEBC
NASA Astrophysics Data System (ADS)
Deden, H.; Grässler, H.; Kirch, D.; Schultze, K.; Böckmann, K.; Glimpf, W.; Kokott, T. P.; Nellen, B.; Saarikko, H.; Wünsch, B.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Peyrou, Ch.; Skjeggestad, O.; Wachsmuth, H.; Mermikides, M.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Petrides, A.; Powell, K. J.; Albajar, C.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Poppe, M.; Radojicic, D.; Renton, P.; Saitta, B.; Wells, J.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration
1981-01-01
νe induced events obtained in a 200 GeV narrow-band beam have been studied and compared to the number expected from K e3+ decay. Agreement is found between the expected and observed numbers allowing limits to be set on νe → νx mixing.
Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions
NASA Astrophysics Data System (ADS)
Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; Irwin, Patrick; Jennings, Donald E.; Kessler, Ernst; Lakew, Brook; Loeffler, Mark; Mellon, Michael; Nicoletti, Anthony; Nixon, Conor A.; Putzig, Nathaniel; Quilligan, Gerard; Rathbun, Julie; Segura, Marcia; Spencer, John; Spitale, Joseph; West, Garrett
2016-11-01
The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 μm, in five spectral pass bands, for outer planet fly-by missions is described. The dual-telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field-of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.
NASA Astrophysics Data System (ADS)
Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng
2017-08-01
A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.
Rushford, Michael C.
1988-01-01
A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten metal in an atomic vapor laser isotope separation (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. To accomplish this, the assembly utilizes the combination of interference filter and a liquid crystal notch filter. The latter which preferably includes a cholesteric liquid crystal arrangement is configured to pass light at all wavelengths, except a relatively narrow wavelength band which defines the filter's notch, and includes means for causing the notch to vary to at least a limited extent with the intensity of light at its light incidence surface.
Signal bi-amplification in networks of unidirectionally coupled MEMS
NASA Astrophysics Data System (ADS)
Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere
2016-01-01
The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.
Dual-Telescope Multi-Channel Thermal-Infrared Radiometer for Outer Planet Fly-By Missions
NASA Technical Reports Server (NTRS)
Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane;
2016-01-01
The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 microns, in five spectral pass bands, for outer planet fly-by missions is described. The dual- telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field- of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.
NASA Astrophysics Data System (ADS)
Kwak, J. S.; Lee, J. H.; Kim, C. O.; Hong, J. P.; Han, S. K.; Char, K.
2002-07-01
Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5 × 17 × 41 mm3. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.
Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.
Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R
2016-08-24
The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.
Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si
NASA Astrophysics Data System (ADS)
Persson, C.; Lindefelt, U.; Sernelius, B. E.
1999-10-01
Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
The assessment of mucosal surgical margins in head and neck cancer surgery with narrow band imaging.
Šifrer, Robert; Urbančič, Jure; Strojan, Primož; Aničin, Aleksandar; Žargi, Miha
2017-07-01
The diagnostic gain of narrow band imaging in the definition of surgical margins in the treatment of head and neck cancer was evaluated. A prospective study, blinded to the pathologist, with historical comparison. The study group included 45 patients subjected to the intraoperative definition of margins by narrow band imaging. The control group included 55 patients who had undergone standard definition of margins. All patients underwent resection of the tumor and frozen section analysis of superficial margins. The rate of initial R 0 resection and the ratio of histologically negative margins for both groups were statistically compared. The rate of initial R 0 resection in the study group and in the control group was 88.9% and 70.9% (P = .047), and the ratio of histologically negative margins was 95.9% and 88.4% (P = .017), respectively. Narrow band imaging reveals a microscopic extension of the tumor that could be effectively used to better define superficial margins and to achieve a higher rate of initial R 0 resections. 4 Laryngoscope, 127:1577-1582, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Design of dual band FSS by using quadruple L-slot technique
NASA Astrophysics Data System (ADS)
Fauzi, Noor Azamiah Md; Aziz, Mohamad Zoinol Abidin Abd.; Said, Maizatul Alice Meor; Othman, Mohd Azlishah; Ahmad, Badrul Hisham; Malek, Mohd Fareq Abd
2015-05-01
This paper presents a new design of dual band frequency selective surface (FSS) for band pass microwave transmission application. FSS can be used on energy saving glass to improve the transmission of wireless communication signals through the glass. The microwave signal will be attenuate when propagate throughout the different structure such as building. Therefore, some of the wireless communication system cannot be used in the optimum performance. The aim of this paper is designed, simulated and analyzed the new dual band FSS structure for microwave transmission. This design is based on a quadruple L slot combined with cross slot to produce pass band at 900 MHz and 2.4 GHz. The vertical of pair inverse L slot is used as the band pass for the frequency of 2.4GHz. While, the horizontal of pair inverse L slot is used as the band pass at frequency 900MHz. This design is simulated and analyzed by using Computer Simulation Technology (CST) Microwave Studio (MWS) software. The characteristics of the transmission (S21) and reflection (S11) of the dual band FSS were simulater and analyzed. The bandwidth of the first band is 118.91MHz which covered the frequency range from 833.4MHz until 952.31MHz. Meanwhile, the bandwidth for the second band is 358.84MHz which covered the frequency range from 2.1475GHz until 2.5063GHz. The resonance/center frequency of this design is obtained at 900MHz with a 26.902dB return loss and 2.37GHz with 28.506dB a return loss. This FSS is suitable as microwave filter for GSM900 and WLAN 2.4GHz application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nong, Hanond, E-mail: Nong.Hanond@rub.de; Markmann, Sergej; Hekmat, Negar
2014-09-15
A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunesmore » the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.« less
Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Hongliang; Du, Mao-Hua
Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less
Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators
Shi, Hongliang; Du, Mao-Hua
2015-05-12
Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less
Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view
NASA Astrophysics Data System (ADS)
Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.
2013-07-01
The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.
NASA Astrophysics Data System (ADS)
Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo
In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.
Stabilized Alkali-Metal Ultraviolet-Band-Pass Filters
NASA Technical Reports Server (NTRS)
Mardesich, Nick; Fraschetti, George A.; Mccann, Timothy; Mayall, Sherwood D.; Dunn, Donald E.; Trauger, John T.
1995-01-01
Layers of bismuth 5 to 10 angstrom thick incorporated into alkali-metal ultraviolet-band-pass optical filters by use of advanced fabrication techniques. In new filters layer of bismuth helps to reduce surface migration of sodium. Sodium layer made more stable and decreased tendency to form pinholes by migration.
NASA Astrophysics Data System (ADS)
Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill
2013-04-01
We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T eq > 230 K, stars with five or more detected candidates or stars with a super-Earth (R p < 3 R ⊕) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 × 1021 erg s-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be {<}10^{-6}\\ M^{-1}_\\odot. Here we describe our observations, data reduction procedures and results.
Increasing capacity of baseband digital data communication networks
Frankel, Robert S.; Herman, Alexander
1985-01-01
This invention provides broadband network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.
Increasing capacity of baseband digital data communication networks
Frankel, R.S.; Herman, A.
This invention provides broadbank network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.
A wave-mechanical model of incoherent quasielastic scattering in complex systems.
Frauenfelder, Hans; Fenimore, Paul W; Young, Robert D
2014-09-02
Quasielastic incoherent neutron scattering (QENS) is an important tool for the exploration of the dynamics of complex systems such as biomolecules, liquids, and glasses. The dynamics is reflected in the energy spectra of the scattered neutrons. Conventionally these spectra are decomposed into a narrow elastic line and a broad quasielastic band. The band is interpreted as being caused by Doppler broadening due to spatial motion of the target molecules. We propose a quantum-mechanical model in which there is no separate elastic line. The quasielastic band is composed of sharp lines with twice the natural line width, shifted from the center by a random walk of the protein in the free-energy landscape of the target molecule. The walk is driven by vibrations and by external fluctuations. We first explore the model with the Mössbauer effect. In the subsequent application to QENS we treat the incoming neutron as a de Broglie wave packet. While the wave packet passes the protons in the protein and the hydration shell it exchanges energy with the protein during the passage time of about 100 ns. The energy exchange broadens the ensemble spectrum. Because the exchange involves the free-energy landscape of the protein, the QENS not only provides insight into the protein dynamics, but it may also illuminate the free-energy landscape of the protein-solvent system.
Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua
2014-03-10
A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.
Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters
NASA Technical Reports Server (NTRS)
Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)
2018-01-01
A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-05-25
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-01-01
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Germany, G. A.; Brittnacher, M. J.; Parks, G. K.; Elsen, R.
1997-01-01
The January 10-11, 1997 magnetic cloud event provided a rare opportunity to study auroral energy deposition under varying but intense IMF conditions. The Wind spacecraft located about 100 RE upstream monitored the IMF and plasma parameters during the passing of the cloud. The Polar Ultraviolet Imager (UVI) observed the aurora[ precipitation during the first encounter of the cloud with Earth's magnetosphere and during several subsequent substorm events. The UVI has the unique capability of measuring the energy flux and characteristic energy of the precipitating electrons through the use of narrow band filters that distinguish short and long wavelength molecular nitrogen emissions. The spatial and temporal characteristics of the precipitating electron energy will be discussed beginning with the inception of the event at the Earth early January 1 Oth and continuing through the subsidence of auroral activity on January 11th.
Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry
Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo
2016-01-01
This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object. PMID:27608021
Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm
NASA Astrophysics Data System (ADS)
Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu
2015-05-01
A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.
Solar cell and module performance assessment based on indoor calibration methods
NASA Astrophysics Data System (ADS)
Bogus, K.
A combined space/terrestrial solar cell test calibration method that requires five steps and can be performed indoors is described. The test conditions are designed to qualify the cell or module output data in standard illumination and temperature conditions. Measurements are made of the short-circuit current, the open circuit voltage, the maximum power, the efficiency, and the spectral response. Standard sunlight must be replicated both in earth surface and AM0 conditions; Xe lamps are normally used for the light source, with spectral measurements taken of the light. Cell and module spectral response are assayed by using monochromators and narrow band pass monochromatic filters. Attention is required to define the performance characteristics of modules under partial shadowing. Error sources that may effect the measurements are discussed, as are previous cell performance testing and calibration methods and their effectiveness in comparison with the behaviors of satellite solar power panels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, A. S., E-mail: alastair.moore@physics.org; Ahmed, M. F.; Soufli, R.
A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features inmore » the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.« less
Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry.
Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo
2016-09-06
This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment's shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.
Daryasafar, Navid; Baghbani, Somaye; Moghaddasi, Mohammad Naser; Sadeghzade, Ramezanali
2014-01-01
We intend to design a broadband band-pass filter with notch-band, which uses coupled transmission lines in the structure, using new models of coupled transmission lines. In order to realize and present the new model, first, previous models will be simulated in the ADS program. Then, according to the change of their equations and consequently change of basic parameters of these models, optimization and dependency among these parameters and also their frequency response are attended and results of these changes in order to design a new filter are converged.
A potassium Faraday anomalous dispersion optical filter
NASA Technical Reports Server (NTRS)
Yin, B.; Shay, T. M.
1992-01-01
The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.
Photometric Signatures of Starbursts in Interacting Galaxies and the Butcher-Oemler Effect
NASA Technical Reports Server (NTRS)
Rakos, Karl D.; Maindl, Thomas I.; Schombert, James M.
1996-01-01
This paper presents new and synthetic narrow band photometry of ellipticals, spirals, Seyferts and interacting galaxies in an attempt to identify the cause of the unusually high fraction of blue cluster galaxies in distant clusters (the Butcher-Oemler Effect). The properties and distribution of the low redshift sample specifically points to starbursts as the origin of the blue narrow band colors in interacting Arp galaxies.
Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan
2015-01-01
Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387
Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P. J.; Mouritsen, Henrik
2016-01-01
Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth’s magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
RF-MEMS tunable interdigitated capacitor and fixed spiral inductor for band pass filter applications
NASA Astrophysics Data System (ADS)
Bade, Ladon Ahmed; Dennis, John Ojur; Khir, M. Haris Md; Wen, Wong Peng
2016-11-01
This research presents the tunable Radio Frequency Micro Electromechanical Systems (RF-MEMS) coupled band-pass filter (BPF), which possess a wide tuning range and constructed by using the Chebyshev fourth degree equivalent circuit consisting of fixed inductors and interdigitated tunable capacitors. The suggested method was authenticated by designing a new tunable BPF with a 100% tuning range from 3.1 GHz to 4.9 GHz. The Metal Multi-User MEMS Process (Metal MUMPs) was involved in the process of design of this band-pass filter. It aimed to achieve the reconfiguration of frequencies and show high efficiency of RF in the applications that using Ultra Wide Band (UWB) such as wireless sensor networks. The RF performance of this filter was found to be very satisfactory due to its simple fabrication. Moreover, it showed less insertion loss of around 4 dB and high return loss of around 20 dB.
Seeing ghosts - Photometry of Saturn's G Ring
NASA Technical Reports Server (NTRS)
Showalter, Mark R.; Cuzzi, Jeffrey N.
1993-01-01
Saturn's faint and narrow G Ring is only visible to the eye in two Voyager images, each taken at a rather high solar phase angle of about 160 deg. In this paper we introduce a new photometric technique for averaging across multiple Voyager images, and use it to detect the G Ring at several additional viewing geometries. The resultant phase curve suggests that the G Ring is composed of dust particles obeying a very steep power-law size distribution. The dust is generally smaller than that seen in other rings, ranging down to 0.03 micron. The G Ring occupies the region between orbital radii 166,000 and 173,000 km, and has a peak somewhat closer to the inner edge. Based on these limits, we demonstrate that Voyager 2 passed through and directly sampled this ring during its 1981 encounter with Saturn. Combined analysis of additional data sets suggests that a population of larger bodies is also present in the G Ring; these bodies occupy a narrower band near the observed peak and are likely the source for the visible dust. Based on some preliminary dynamical models, we propose that these larger bodies represent leftover debris from the collisional breakup of a small moon in Saturn's distant past.
NASA Astrophysics Data System (ADS)
Fujiwara, Takahiro; Uchiito, Haruki; Tokairin, Tomoya; Kawai, Hiroyuki
2017-04-01
Regarding Structural Health Monitoring (SHM) for seismic acceleration, Wireless Sensor Networks (WSN) is a promising tool for low-cost monitoring. Compressed sensing and transmission schemes have been drawing attention to achieve effective data collection in WSN. Especially, SHM systems installing massive nodes of WSN require efficient data transmission due to restricted communications capability. The dominant frequency band of seismic acceleration is occupied within 100 Hz or less. In addition, the response motions on upper floors of a structure are activated at a natural frequency, resulting in induced shaking at the specified narrow band. Focusing on the vibration characteristics of structures, we introduce data compression techniques for seismic acceleration monitoring in order to reduce the amount of transmission data. We carry out a compressed sensing and transmission scheme by band pass filtering for seismic acceleration data. The algorithm executes the discrete Fourier transform for the frequency domain and band path filtering for the compressed transmission. Assuming that the compressed data is transmitted through computer networks, restoration of the data is performed by the inverse Fourier transform in the receiving node. This paper discusses the evaluation of the compressed sensing for seismic acceleration by way of an average error. The results present the average error was 0.06 or less for the horizontal acceleration, in conditions where the acceleration was compressed into 1/32. Especially, the average error on the 4th floor achieved a small error of 0.02. Those results indicate that compressed sensing and transmission technique is effective to reduce the amount of data with maintaining the small average error.
Deeply etched MMI-based components on 4 μm thick SOI for SOA-based optical RAM cell circuits
NASA Astrophysics Data System (ADS)
Cherchi, Matteo; Ylinen, Sami; Harjanne, Mikko; Kapulainen, Markku; Aalto, Timo; Kanellos, George T.; Fitsios, Dimitrios; Pleros, Nikos
2013-02-01
We present novel deeply etched functional components, fabricated by multi-step patterning in the frame of our 4 μm thick Silicon on Insulator (SOI) platform based on singlemode rib-waveguides and on the previously developed rib-tostrip converter. These novel components include Multi-Mode Interference (MMI) splitters with any desired splitting ratio, wavelength sensitive 50/50 splitters with pre-filtering capability, multi-stage Mach-Zehnder Interferometer (MZI) filters for suppression of Amplified Spontaneous Emission (ASE), and MMI resonator filters. These novel building blocks enable functionalities otherwise not achievable on our SOI platform, and make it possible to integrate optical RAM cell layouts, by resorting to our technology for hybrid integration of Semiconductor Optical Amplifiers (SOAs). Typical SOA-based RAM cell layouts require generic splitting ratios, which are not readily achievable by a single MMI splitter. We present here a novel solution to this problem, which is very compact and versatile and suits perfectly our technology. Another useful functional element when using SOAs is the pass-band filter to suppress ASE. We pursued two complimentary approaches: a suitable interleaved cascaded MZI filter, based on a novel suitably designed MMI coupler with pre-filtering capabilities, and a completely novel MMI resonator concept, to achieve larger free spectral ranges and narrower pass-band response. Simulation and design principles are presented and compared to preliminary experimental functional results, together with scaling rules and predictions of achievable RAM cell densities. When combined with our newly developed ultra-small light-turning concept, these new components are expected to pave the way for high integration density of RAM cells.
Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José
2008-01-07
We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.
Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis.
Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan; Henson, Zachary B; Nguyen, Thuc-Quyen; Heeger, Alan J; Bazan, Guillermo C
2013-12-02
PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R
2001-04-15
Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.
Monte Carlo modeling of light-tissue interactions in narrow band imaging.
Le, Du V N; Wang, Quanzeng; Ramella-Roman, Jessica C; Pfefer, T Joshua
2013-01-01
Light-tissue interactions that influence vascular contrast enhancement in narrow band imaging (NBI) have not been the subject of extensive theoretical study. In order to elucidate relevant mechanisms in a systematic and quantitative manner we have developed and validated a Monte Carlo model of NBI and used it to study the effect of device and tissue parameters, specifically, imaging wavelength (415 versus 540 nm) and vessel diameter and depth. Simulations provided quantitative predictions of contrast-including up to 125% improvement in small, superficial vessel contrast for 415 over 540 nm. Our findings indicated that absorption rather than scattering-the mechanism often cited in prior studies-was the dominant factor behind spectral variations in vessel depth-selectivity. Narrow-band images of a tissue-simulating phantom showed good agreement in terms of trends and quantitative values. Numerical modeling represents a powerful tool for elucidating the factors that affect the performance of spectral imaging approaches such as NBI.
Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046
2014-05-07
In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less
Meet the New and Improved Section 504
ERIC Educational Resources Information Center
Cortiella, Candace; Kaloi, Laura
2010-01-01
In late 2008, Congress passed the Americans with Disabilities Act Amendments Act (ADAAA) and the new law became effective on January 1, 2009. The amended law corrected what Congress considered to be a departure from the intent of the original ADA (passed in 1990) brought about by several narrow interpretations by the courts. Because the ADAAA…
NASA Astrophysics Data System (ADS)
Ramos, A.; Calas, H.; Diez, L.; Moreno, E.; Prohías, J.; Villar, A.; Carrillo, E.; Jiménez, A.; Pereira, W. C. A.; Von Krüger, M. A.
The cardio-pathology by ischemia is an important cause of death, but the re-vascularization of coronary arteries (by-pass operation) is an useful solution to reduce associated morbidity improving quality of life in patients. During these surgeries, the flow in coronary vessels must be measured, using non-invasive ultrasonic methods, known as transit time flow measurements (TTFM), which are the most accurate option nowadays. TTFM is a common intra-operative tool, in conjunction with classic Doppler velocimetry, to check the quality of these surgery processes for implanting grafts in parallel with the coronary arteries. This work shows important improvements achieved in flow-metering, obtained in our research laboratories (CSIC, ICIMAF, COPPE) and tested under real surgical conditions in Cardiocentro-HHA, for both narrowband NB and broadband BB regimes, by applying results of a CYTED multinational project (Ultrasonic & computational systems for cardiovascular diagnostics). mathematical models and phantoms were created to evaluate accurately flow measurements, in laboratory conditions, before our new electronic designs and low-cost implementations, improving previous ttfm systems, which include analogic detection, acquisition & post-processing, and a portable PC. Both regimes (NB and BB), with complementary performances for different conditions, were considered. Finally, specific software was developed to offer facilities to surgeons in their interventions.
2016-09-01
as an example the integration of cryogenic superconductor components, including filters and amplifiers to improve the pulse quality and validate the...5 5.1 CRYOGENIC BAND-PASS FILTERS .............................................................................10 6. BIBLIOGRAPHY...10 16. Gain plot of DARPA SURF tunable band-pass filter tuned to 950-MHz .............................. 10 v 17. VSG at -50 dBm: Experimental
NASA Astrophysics Data System (ADS)
Hariyadi, T.; Mulyasari, S.; Mukhidin
2018-02-01
In this paper we have designed and simulated a Band Pass Filter (BPF) at X-band frequency. This filter is designed for X-band weather radar application with 9500 MHz center frequency and bandwidth -3 dB is 120 MHz. The filter design was performed using a hairpin microstrip combined with an open stub and defected ground structure (DGS). The substrate used is Rogers RT5880 with a dielectric constant of 2.2 and a thickness of 1.575 mm. Based on the simulation results, it is found that the filter works on frequency 9,44 - 9,56 GHz with insertion loss value at pass band is -1,57 dB.
Pass-band reconfigurable spoof surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun
2018-04-01
In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.
Diluted magnetic semiconductors with narrow band gaps
NASA Astrophysics Data System (ADS)
Gu, Bo; Maekawa, Sadamichi
2016-10-01
We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.
An intelligent subsurface buoy design for measuring ocean ambient noise
NASA Astrophysics Data System (ADS)
Li, Bing; Wang, Lei
2012-11-01
A type of ultra-low power subsurface buoy system is designed to measure and record ocean ambient noise data. The buoy utilizes a vector hydrophone (pass band 20Hz-1.2kHz) and a 6-element vertical hydrophone array (pass band 20Hz-2kHz) to measure ocean ambient noise. The acoustic signals are passed through an automatically modified gain, a band pass filter, and an analog-to-digital (A/D) conversion module. They are then stored in high-capacity flash memory. In order to identify the direction of noise source, the vector sensor measuring system has integrated an electric-magnetic compass. The system provides a low-rate underwater acoustic communication system which is used to report the buoy state information and a high-speed USB interface which is used to retrieve the recorded data on deck. The whole system weighs about 125kg and can operate autonomously for more than 72 hours. The system's main architecture and the sea-trial test results are provided in this paper.
Dynamics of monochromatically generated nonequilibrium phonons in LaF3:Pr3+
NASA Astrophysics Data System (ADS)
Tolbert, W. A.; Dennis, W. M.; Yen, W. M.
1990-07-01
The temporal evolution of nonequilibrium phonon populations in LaF3:Pr3+ is investigated at low temperatures (1.8 K) utilizing pulsed, tunable, monochromatic generation and time-resolved, tunable, narrow-band detection. High occupation number, narrow-band phonon populations are generated via far-infrared pumping of defect-induced one-phonon absorption. Time-resolved, frequency-selective detection is provided by optical sideband absorption. Nonequilibrium phonon decay times are measured and attributed to anharmonic decay.
An adaptive narrow band frequency modulation voice communication system
NASA Technical Reports Server (NTRS)
Wishna, S.
1972-01-01
A narrow band frequency modulation communication system is described which provides for the reception of good quality voice at low carrier-to-noise ratios. The high level of performance is obtained by designing a limiter and phase lock loop combination as a demodulator, so that the bandwidth of the phase lock loop decreases as the carrier level decreases. The system was built for the position location and aircraft communication equipment experiment of the ATS 6 program.
Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang
2014-01-01
The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316
Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.
2016-01-01
Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555
Ferguson, B G; Lo, K W
2000-10-01
Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.
Conformal Membrane Reflectors for Deployable Optics
NASA Technical Reports Server (NTRS)
Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)
2002-01-01
This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.
Microstrip patch antenna receiving array operating in the Ku band
NASA Technical Reports Server (NTRS)
Walcher, Douglas A.
1996-01-01
Microstrip patch antennas were first investigated from the idea that it would be highly advantageous to fabricate radiating elements (antennas) on the same dielectric substrate as RF circuitry and transmission lines. Other advantages were soon discovered to be its lightweight, low profile, conformability to shaped surfaces, and low manufacturing costs. Unfortunately, these same patches continually exhibit narrow bandwidths, wide beamwidths, and low antenna gain. This thesis will present the design and experimental results of a microstrip patch antenna receiving array operating in the Ku band. An antenna array will be designed in an attempt to improve its performance over a single patch. Most Ku band information signals are either wide band television images or narrow band data and voice channels. An attempt to improve the gain of the array by introducing parasitic patches on top of the array will also be presented in this thesis.
First-principles study of direct and narrow band gap semiconducting β -CuGaO 2
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...
2015-04-16
Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less
Crystal Growth and Characterization of the Narrow-Band-Gap Semiconductors OsPn 2 (Pn = P, As, Sb)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Shoemaker, Daniel P.
2014-09-15
Using metal fluxes, crystals of the binary osmium dipnictides OsPn(2) (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn(6) octahedra, as well as [Pn(2)(-4)] anions. Raman spectroscopy shows the presence of PP single bonds, consistent with the presence of [Pn(2)(-4)] anions and formally Os4+ cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2more » and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn(2) dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a PnPn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment.« less
Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin
2017-12-01
Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.
Sobrino-Cossío, S; Abdo Francis, J M; Emura, F; Galvis-García, E S; Márquez Rocha, M L; Mateos-Pérez, G; González-Sánchez, C B; Uedo, N
2018-02-12
Atrophy and intestinal metaplasia are early phenotypic markers in gastric carcinogenesis. White light endoscopy does not allow direct biopsy of intestinal metaplasia due to a lack of contrast of the mucosa. Narrow-band imaging is known to enhance the visibility of intestinal metaplasia, to reduce sampling error, and to increase the diagnostic yield of endoscopy for intestinal metaplasia in Asian patients. The aim of our study was to validate the diagnostic performance of narrow-band imaging using 1.5× electronic zoom endoscopy (with no high magnification) to diagnose intestinal metaplasia in Mexican patients. A retrospective cohort study was conducted on consecutive patients with dyspeptic symptoms at a private endoscopy center within the time frame of January 2015 to December 2016. A total of 338 patients (63±8.4 years of age, 40% women) were enrolled. The prevalence of H. pylori infection was 10.9% and the incidence of intestinal metaplasia in the gastric antrum and corpus was 23.9 and 5.9%, respectively. Among the patients with intestinal metaplasia, 65.3% had the incomplete type, 42.7% had multifocal disease, and one third had extension to the gastric corpus. Two patients had low-grade dysplasia. The sensitivity of white light endoscopy was 71.2%, with a false negative rate of 9.9%. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of narrow-band imaging (with a positive light blue crest) were 85, 98, 86.8, 97.7, and 87.2%, respectively. The prevalence of H. pylori infection and intestinal metaplasia in dyspeptic Mexican patients was not high. Through the assessment of the microsurface structure and light blue crest sign, non-optical zoom narrow-band imaging had high predictive values for detecting intestinal metaplasia in patients from a general Western setting. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.
EIT in resonator chains: similarities and differences with atomic media
NASA Technical Reports Server (NTRS)
Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.
2004-01-01
We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.
Midlatitude Measurements of L-Band Ionospheric Scintillation with the ATS-5 Spacecraft
DOT National Transportation Integrated Search
1975-09-01
The report presents some results of L-band signal level measurements taken from the ATS-5 spacecraft operating in the narrow-band frequency translation mode. The uplink signal was sent from the DOT/TSC/Westford Propagation Facility in Westford, Massa...
Krause, C M; Viemerö, V; Rosenqvist, A; Sillanmäki, L; Aström, T
2000-05-26
The reactivity of different narrow electroencephalographic (EEG) frequencies (4-6, 6-8, 8-10 and 10-12 Hz) to three types of emotionally laden film clips (aggressive, sad, neutral) were examined. We observed that different EEG frequency bands responded differently to the three types of film content. In the 4-6 Hz frequency band, the viewing of aggressive film content elicited greater relative synchronization as compared the responses elicited by the viewing of sad and neutral film content. The 6-8 Hz and 8-10 Hz frequency bands exhibited reactivity to the chronological succession of film viewing whereas the responses of the 10-12 Hz frequency band evolved within minutes during film viewing. Our results propose dissociations between the responses of different frequencies within the EEG to different emotion-related stimuli. Narrow frequency band EEG analysis offers an adequate tool for studying cortical activation patterns during emotion-related information processing.
NASA Astrophysics Data System (ADS)
Jia, Weitao; Tang, Yan; Ning, Fangkun; Le, Qichi; Cui, Jianzhong
2018-04-01
Different rolling operations of as-cast AZ31B alloy were performed under different rolling speed (18 ∼ 72 m min‑1) and rolling pass conditions at 400 °C. Microstructural studies, tensile testing and formability evaluation relevant to each rolling operation were investigated. For 1-pass rolling, coarse average grain size (CAGS) region gradually approached the center layer as the rolling speed increased. Moreover, twins, shear bands and coarse-grain structures were the dominant components in the microstructure of plates rolled at 18, 48 and 72 m min‑1, respectively, indicating the severe deformation inhomogeneity under the high reduction per pass condition. For 2-pass rolling and 4-pass rolling, dynamic recrystallization was observed to be well and CAGS region has substantially disappeared, indicating the significant improvement in deformation uniformity and further the grain homogenization under the conditions. Microstructure uniformity degree of 2-pass rolled plates did not vary much as the rolling speed varied. On this basis, shear band distribution dominated the deformation behavior during the uniaxial tension of the 2-pass rolled plates. However, microstructure uniformity accompanied by twin distribution played a leading role in stretching the 4-pass rolled plates.
Fully Integrated Biopotential Acquisition Analog Front-End IC
Song, Haryong; Park, Yunjong; Kim, Hyungseup; Ko, Hyoungho
2015-01-01
A biopotential acquisition analog front-end (AFE) integrated circuit (IC) is presented. The biopotential AFE includes a capacitively coupled chopper instrumentation amplifier (CCIA) to achieve low input referred noise (IRN) and to block unwanted DC potential signals. A DC servo loop (DSL) is designed to minimize the offset voltage in the chopper amplifier and low frequency respiration artifacts. An AC coupled ripple rejection loop (RRL) is employed to reduce ripple due to chopper stabilization. A capacitive impedance boosting loop (CIBL) is designed to enhance the input impedance and common mode rejection ratio (CMRR) without additional power consumption, even under an external electrode mismatch. The AFE IC consists of two-stage CCIA that include three compensation loops (DSL, RRL, and CIBL) at each CCIA stage. The biopotential AFE is fabricated using a 0.18 µm one polysilicon and six metal layers (1P6M) complementary metal oxide semiconductor (CMOS) process. The core chip size of the AFE without input/output (I/O) pads is 10.5 mm2. A fourth-order band-pass filter (BPF) with a pass-band in the band-width from 1 Hz to 100 Hz was integrated to attenuate unwanted signal and noise. The overall gain and band-width are reconfigurable by using programmable capacitors. The IRN is measured to be 0.94 µVRMS in the pass band. The maximum amplifying gain of the pass-band was measured as 71.9 dB. The CIBL enhances the CMRR from 57.9 dB to 67 dB at 60 Hz under electrode mismatch conditions. PMID:26437404
NASA Astrophysics Data System (ADS)
Tonucci, R. J.; Jacobsen, S. M.; Yen, W. M.
1990-10-01
Using a tunable narrow-band infrared laser, we demonstrate for the first time infrared-fluorescnece line narrowing in the system Ni 2+:MgF 2. High-resolution emission spectra were obtained by pumping the lowest spin-orbit component B 3 ( 3T 2g) (orthorhombic notation with octahedral notation in parentheses) of the 3T 2g multiplet and observing the B 3( 3T 2g)→B 1, A, B 2( 3A 2g) luminescent transitions at low temperature. By tuning the narrow-band laser over the B 3( 3T 2g) band, resonant and non-resonant fluorescence were obtained which narrowed with respect to the inhomogeneously broadened profile, and additional lines were observed. The spectra can be understood in terms of a simultaneous excitation of two different subsets of Ni 2+ ions which have their B 2( 3A 2g)→B 3( 3T 2g) and A( 3A 2g)→B 3( 3T 2g) transitions in resonance with the laser. The A( 3A 2g) and B 1( 3A 2g) spin-orbit components of the ground-state multiplet lie 1.9 cm -1 and 6.5 cm -1 above the B 2( 3A 2g) ground state, respectively, at 2 K.
Polaron theory of high- Tc superconductors
NASA Astrophysics Data System (ADS)
Alexandrov, A. S.
1989-05-01
It is shown that the ordinary electron-phonon interaction can produce a high Tc as a result of the polaron narrowing of the band, which is not considered by the traditional theory of strong-coupling superconductors based on Migdal-Eliashberg equations, which are violated even in the range of moderate values λ ⪖1. Numerous experimental data are discussed which seem to favour a phonon-mediated attraction, polaron mass enhancement, narrow band and nonadiabatic motion of carriers and charged Bose-like excitations in high Tc metallic oxides.
Broadband External-Cavity Diode Laser
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S.
2005-01-01
A broadband external-cavity diode laser (ECDL) has been invented for use in spectroscopic surveys preparatory to optical detection of gases. Heretofore, commercially available ECDLs have been designed, in conjunction with sophisticated tuning assemblies, for narrow- band (and, typically, single-frequency) operation, as needed for high sensitivity and high spectral resolution in some gas-detection applications. However, for preparatory spectroscopic surveys, high sensitivity and narrow-band operation are not needed; in such cases, the present broadband ECDL offers a simpler, less-expensive, more-compact alternative to a commercial narrowband ECDL.
The Hazard of Exposure to 2.075 kHz Center Frequency Narrow Band Impulses
1991-09-01
i By r James H. Patterson, Jr. Kevin Bordwell Sensory Research Division and Roger P. Hamernik William A. Ahroon George Turrentine C. E. Hargett, Jr...The hazard of exposure to 2.075 kHz center frequency narrow band impulses 12. PERSONAL AUTHOR(S) James H. Patterson, Jr., Kevin Bordwell , Roger P...Patterson, J. H., Jr., Carrier, M., Jr., Bordwell , K., Lomba Gautier, I. M., Hamernik, R. P., Ahroon, W. A., Turrentine, G. A., and Hargett, C. E., Jr
Narrow-band microwave radiation from a biased single-Cooper-pair transistor.
Naaman, O; Aumentado, J
2007-06-01
We show that a single-Cooper-pair transistor (SCPT) electrometer emits narrow-band microwave radiation when biased in its subgap region. Photoexcitation of quasiparticle tunneling in a nearby SCPT is used to spectroscopically detect this radiation in a configuration that closely mimics a qubit-electrometer integrated circuit. We identify emission lines due to Josephson radiation and radiative transport processes in the electrometer and argue that a dissipative superconducting electrometer can severely disrupt the system it attempts to measure.
Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR
NASA Technical Reports Server (NTRS)
Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.
1995-01-01
During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.
Yoshino, A; Shigemura, J; Kobayashi, Y; Nomura, S; Shishikura, K; Den, R; Wakisaka, H; Kamata, S; Ashida, H
2001-09-01
We assessed the reliability of remote video psychiatric interviews conducted via the internet using narrow and broad bandwidths. Televideo psychiatric interviews conducted with 42 in-patients with chronic schizophrenia using two bandwidths (narrow, 128 kilobits/s; broad, 2 megabits/s) were assessed in terms of agreement with face-to-face interviews in a test-retest fashion. As a control, agreement was assessed between face-to-face interviews. Psychiatric symptoms were rated using the Oxford version of the Brief Psychiatric Rating Scale (BPRS), and agreement between interviews was estimated as the intraclass correlation coefficient (ICC). The ICC was significantly lower in the narrow bandwidth than in the broad bandwidth and the control for both positive symptoms score and total score. While reliability of televideo psychiatric interviews is insufficient using the present narrow-band internet infrastructure, the next generation of infrastructure (broad-band) may permit reliable diagnostic interviews.
Forest canopy height estimation using double-frequency repeat pass interferometry
NASA Astrophysics Data System (ADS)
Karamvasis, Kleanthis; Karathanassi, Vassilia
2015-06-01
In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.
Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming
2018-02-01
Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.
Rau, Florian; Clemens, Jan; Naumov, Victor; Hennig, R Matthias; Schreiber, Susanne
2015-11-01
In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.
Tonotopic tuning in a sound localization circuit.
Slee, Sean J; Higgs, Matthew H; Fairhall, Adrienne L; Spain, William J
2010-05-01
Nucleus laminaris (NL) neurons encode interaural time difference (ITD), the cue used to localize low-frequency sounds. A physiologically based model of NL input suggests that ITD information is contained in narrow frequency bands around harmonics of the sound frequency. This suggested a theory, which predicts that, for each tone frequency, there is an optimal time course for synaptic inputs to NL that will elicit the largest modulation of NL firing rate as a function of ITD. The theory also suggested that neurons in different tonotopic regions of NL require specialized tuning to take advantage of the input gradient. Tonotopic tuning in NL was investigated in brain slices by separating the nucleus into three regions based on its anatomical tonotopic map. Patch-clamp recordings in each region were used to measure both the synaptic and the intrinsic electrical properties. The data revealed a tonotopic gradient of synaptic time course that closely matched the theoretical predictions. We also found postsynaptic band-pass filtering. Analysis of the combined synaptic and postsynaptic filters revealed a frequency-dependent gradient of gain for the transformation of tone amplitude to NL firing rate modulation. Models constructed from the experimental data for each tonotopic region demonstrate that the tonotopic tuning measured in NL can improve ITD encoding across sound frequencies.
Novel instrumentation of multispectral imaging technology for detecting tissue abnormity
NASA Astrophysics Data System (ADS)
Yi, Dingrong; Kong, Linghua
2012-10-01
Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Thurman, S. W.
1992-01-01
An approximate six-parameter analytic model for Earth-based differenced range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 microrad, and angular rate precision on the order of 10 to 25(10)(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wide band and narrow band (delta)VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 /microrad, and angular rate precisions of 0.5 to 1.0(10)(exp -12) rad/sec.
Narrow-band filters for ocean colour imager
NASA Astrophysics Data System (ADS)
Krol, Hélène; Chazallet, Frédéric; Archer, Julien; Kirchgessner, Laurent; Torricini, Didier; Grèzes-Besset, Catherine
2017-11-01
During the last few years, the evolution of deposition technologies of optical thin films coatings and associated in-situ monitoring methods enables us today to successfully answer the increasingly request of space systems for Earth observation. Geostationary satellite COMS-1 (Communication, Ocean, Meteorological Satellite-1) of Astrium has the role of ensuring meteorological observation as well as monitoring of the oceans. It is equipped with a colour imager to observe the marine ecosystem through 8 bands in the visible spectrum with a ground resolution of 500m. For that, this very high technology instrument is constituted with a filters wheel in front of the oceanic colour imager with 8 narrow band filters carried out and qualified by Cilas.
Characterization and Simulation of Transient Vibrations Using Band Limited Temporal Moments
Smallwood, David O.
1994-01-01
A method is described to characterize shocks (transient time histories) in terms of the Fourier energy spectrum and the temporal moments of the shock passed through a contiguous set of band pass filters. The product model is then used to generate of a random process as simulations that in the mean will have the same energy and moments as the characterization of the transient event.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of travel of the satellite; the Y axis is parallel to a line passing through the geographic north and south poles of the Earth, with the positive direction pointing south; and the Z axis passes through the satellite and the center of the Earth, with the positive direction pointing toward the Earth, the applicant...
Code of Federal Regulations, 2012 CFR
2012-10-01
... of travel of the satellite; the Y axis is parallel to a line passing through the geographic north and south poles of the Earth, with the positive direction pointing south; and the Z axis passes through the satellite and the center of the Earth, with the positive direction pointing toward the Earth, the applicant...
Code of Federal Regulations, 2011 CFR
2011-10-01
... of travel of the satellite; the Y axis is parallel to a line passing through the geographic north and south poles of the Earth, with the positive direction pointing south; and the Z axis passes through the satellite and the center of the Earth, with the positive direction pointing toward the Earth, the applicant...
Code of Federal Regulations, 2013 CFR
2013-10-01
... of travel of the satellite; the Y axis is parallel to a line passing through the geographic north and south poles of the Earth, with the positive direction pointing south; and the Z axis passes through the satellite and the center of the Earth, with the positive direction pointing toward the Earth, the applicant...
Jeong, Mi-Yun; Mang, Jin Yeob
2018-03-10
Spatially continuous tunable optical notch and band-pass filter systems that cover the visible (VIS) and near-infrared (NIR) spectral ranges from ∼460 nm to ∼1,000 nm are realized by combining left- and right-handed circular cholesteric liquid crystal (CLC) wedge cells with continuous pitch gradient. The notch filter system is polarization independent in all of the spectral ranges. The band-pass filter system, when the left- and right-handed CLCs are arranged in a row, is polarization independent, while when they are arranged at right angles, they are polarization dependent; furthermore, the full-width at half-maximum of the band-pass filter can be changed reversibly from the original bandwidth of 36 nm to 16 nm. Depending on the CLC materials, this strategy could be applied to the UV, VIS, and IR spectral ranges. Due to the high performance in the broad spectral range, cost-effective facile fabrication process, simple mechanical control, and small size, it is expected that our optical tunable filter strategies could become one of the key parts of laser-based Raman spectroscopy, fluorescence, life science devices, optical communication systems, astronomical telescopes, and so forth.
[Study on the Spectral Characteristics of the Narrow-Band Filter in SHS].
Luo, Hai-yan; Shi, Hai-liang; Li, Zhi-wei; Li, Shuang; Xiong, Wei; Hong, Jin
2015-04-01
The spectral response of spatial heterodyne spectroscopy (SHS) is determined by the spectrum property of narrow-band filter. As discussed in previous studies, the symmetric heterodyned interferogram of high frequency waves modulated by SHS and lack of sample lead to spectral confusion, which is associated with the true and ghost spectra. Because of the deviation from theoretical index of narrow-band filter in the process of coating, the boarded spectral response and middle wave shift are presented, and conditions in the theoretical Littrow wavelength made the effective wavelength range of SHS reduced. According to the measured curve of filter, a new wavenumber of zero spatial frequency can be reset by tunable laser, and it is easy for SHS to improve the spectral aliasing distortion. The results show that it is utilized to the maximum extent of the effective bandwidth by adjusting the grating angle of rotation to change the Littrow wavelength of the basic frequency, and the spectral region increased to 14.9 nm from original 12.9 nm.
Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS
NASA Astrophysics Data System (ADS)
Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.
2018-04-01
A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.
High power narrow-band fiber-based ASE source.
Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A
2011-02-28
In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.
Narrow-band radio flares from red dwarf stars
NASA Technical Reports Server (NTRS)
White, Stephen M.; Kundu, Mukul R.; Jackson, Peter D.
1986-01-01
VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles.
An infrared search for extraterrestrial laser signals
NASA Technical Reports Server (NTRS)
Betz, A.
1986-01-01
The focus of project SETI is on microwave frequencies, where receivers fundamentally have the best sensitivity for the detection of narrow band signals. Such receivers, when coupled to existing radio telescopes, form an optimum system for broad area searches over the sky. Detection of narrow band infrared signals is best done with a laser heterodyne reciever similar in function to a microwave spectral line receiver. A receiver was built for astrophysical observations at 30 THz (10 microns) and the spectrometer is being adapted for SETI work. The receiver uses a small CO2 laser as the local oscillator, a HgCdTe diode as the photomixer, and a multichannel intermediate frequency (IF) filterbank. An advanced multichannel IF processor is now being built to detect infrared line radiation in 1000 spectral channels each 1 MHz wide. When completed this processor will be used with a ground based telescope next year for a survey of several hundred selected stars for narrow band CO2 laser signals at 30 THz.
A high-sensitivity search for extraterrestrial intelligence at lambda 18 cm
NASA Technical Reports Server (NTRS)
Tarter, J.; Cuzzi, J.; Black, D.; Clark, T.
1980-01-01
A targeted high-sensitivity search for narrow-band signals near a wavelength of 18 cm has been conducted using the 91-m radiotelescope of the National Radio Astronomy Observatory. The search included 201 nearby solar-type stars and achieved a frequency resolution of 5.5 Hz over a 1.4-MHz bandwidth. This high spectral resolution was obtained through a non-real-time reduction procedure using a Mark I VLBI recording terminal in conjunction with the CDC 7600 computational facility at the NASA-Ames Research Center. This is the first high-resolution search for narrow-band signals in this wavelength regime. To date it is the most sensitive search per unit observing time of any search strategy which does not postulate a unique magic frequency. Data show no evidence for narrow-band signals due to extraterrestrial intelligence at a 12-standard-deviation upper limit on signal strength of 1.1 x 10 to the -23rd W/sq m.
Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin
2015-06-12
Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.
Nonlinear Bloch waves in metallic photonic band-gap filaments
NASA Astrophysics Data System (ADS)
Kaso, Artan; John, Sajeev
2007-11-01
We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingping; Liu, Gang; Gong, Jue
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to -100% increase) under mild pressures at -0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing anymore » adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.« less
Meesters, Ybe; Duijzer, Wianne B; Hommes, Vanja
2018-05-01
Ever since a new photoreceptor was discovered with a highest sensitivity to 470-490 nm blue light, it has been speculated that blue light has some advantages in the treatment of Seasonal Affective Disorder (SAD) over more traditional treatments. In this study we compared the effects of exposure to narrow-band blue light (BLUE) to those of broad-wavelength white light (BLT) in the treatment of SAD. In a 15-day design, 45 patients suffering from SAD completed 30-min sessions of light treatment on 5 consecutive days. 21 subjects received white-light treatment (BLT, broad-wavelength without UV, 10 000 lx, irradiance 31.7 W/m 2 ), 24 subjects received narrow-band blue light (BLUE, 100 lx, irradiance 1.0 W/m 2 ). All participants completed weekly questionnaires concerning mood and energy levels, and were also assessed by means of the SIGH-SAD, which is the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 73.2%, effect size 3.37; BLUE 67%, effect size 2.63), which outcomes were not statistically significant different between both conditions. Small sample size. Light treatment is an effective treatment for SAD. The use of narrow-band blue light is equally effective as a treatment using bright white-light. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan
2013-04-10
We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire bandmore » between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.« less
NASA Technical Reports Server (NTRS)
Nguyen, Tien M.
1994-01-01
This report reviews the current available work on interference susceptibility for various modulation schemes. Only known and published work in this area is descussed. This report classifies the interference signal into three different categories, namely, narrow-band (in-band), wide-band and pluse interference.
A Simple Band for Gastric Banding.
Broadbent
1993-08-01
The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation.
Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.
Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel
2018-04-11
Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.
Design and Performance of a Wideband Radio Telescope
NASA Technical Reports Server (NTRS)
Weinreb, Sander; Imbriale, William A.; Jones, Glenn; Mani, Handi
2012-01-01
The Goldstone Apple Valley Radio Telescope (GAVRT) is an outreach project, a partnership involving NASA's Jet Propulsion Laboratory (JPL), the Lewis Center for Educational Research (LCER), and the Apple Valley Unified School District near the NASA Goldstone deep space communication complex. This educational program currently uses a 34-meter antenna, DSS12, at Goldstone for classroom radio astronomy observations via the Internet. The current program utilizes DSS12 in two narrow frequency bands around S-band (2.3 GHz) and X-band (8.45 GHz), and is used by a training program involving a large number of secondary school teachers and their classrooms. To expand the program, a joint JPL/LCER project was started in mid-2006 to retrofit an additional existing 34-meter beam-waveguide antenna, DSS28, with wideband feeds and receivers to cover the 0.5-to- 14-GHz frequency bands. The DSS28 antenna has a 34-meter diameter main reflector, a 2.54-meter subreflector, and a set of beam waveguide mirrors surrounded by a 2.43-meter tube. The antenna was designed for high power and a narrow frequency band around 7.2 GHz. The performance at the low end of the frequency band desired for the educational program would be extremely poor if the beam waveguide system was used as part of the feed system. Consequently, the 34-meter antenna was retrofitted with a tertiary offset mirror placed at the vertex of the main reflector. The tertiary mirror can be rotated to use two wideband feeds that cover the 0.5-to-14-GHz band. The earlier designs for both GAVRT and the DSN only used narrow band feeds and consequently, only covered a small part of the S- and X-band frequencies. By using both a wideband feed and wideband amplifiers, the entire band from 0.5 to 14 GHz is covered, expanding significantly the science activities that can be studied using this system.
Chang, Sun-Il; Yoon, Euisik
2009-01-01
We report an energy efficient pseudo open-loop amplifier with programmable band-pass filter developed for neural interface systems. The proposed amplifier consumes 400nA at 2.5V power supply. The measured thermal noise level is 85nV/ radicalHz and input-referred noise is 1.69microV(rms) from 0.3Hz to 1 kHz. The amplifier has a noise efficiency factor of 2.43, the lowest in the differential topologies reported up to date to our knowledge. By programming the switched-capacitor frequency and bias current, we could control the bandwidth of the preamplifier from 138 mHz to 2.2 kHz to meet various application requirements. The entire preamplifier including band-pass filters has been realized in a small area of 0.043mm(2) using a 0.25microm CMOS technology.
Cohen, Rajal G.; Chao, Amanda; Nutt, John G.; Horak, Fay B.
2011-01-01
Background Many patients with Parkinson’s disease (PD) develop freezing of gait (FoG), which may manifest as a hesitation or “getting stuck” when they attempt to pass through a doorway. In two experiments, we asked whether FoG is associated with (1) a deficit in internal representation of one’s body size with respect to a doorway and (2) a mismatch between imagined and actual walking times when passing through a doorway. Method 24 subjects with PD (11 with and 13 without FoG) and 10 control subjects of similar age completed two experiments. In the Passability experiment, subjects judged the passability of doorways with different apertures scaled to their body widths. We compared passability estimates across groups. In the Imagery experiment, subjects timed themselves while: (1) imagining walking through doorways of different apertures and from different distances, and (2) actually walking in the same conditions they had just imagined. We compared imagined and actual walking durations across groups and conditions. Results In the Passability experiment, the estimated just-passable doorway was wider, relative to body width, in PD subjects than in control subjects, but there was no difference between PD subjects with and without FoG. In the Imagery experiment, subjects in all groups walked more slowly through narrow doorways than though wide doorways, and subjects with FoG walked much more slowly through the narrowest doorways. PD subjects with FoG showed a large discrepancy between actual and imagined time to pass through narrow doorways, unlike PD subjects without FoG and control subjects. Conclusions The equivalent passability judgments in PD subjects with and without FoG indicate that FoG is not specifically associated with a deficit in ability to internally represent space with reference to body size. However, the large difference in duration between actual and imagined walking through narrow doorways in subjects with FoG suggests that PD subjects with FoG did not know how much they would slow down to pass through narrow doorways. The observed discrepancy between imagined and actual walking times may point to a specific problem that contributes to the occurrence of FoG. These results also suggest that caution should be used when interpreting brain imaging results from locomotor imagery studies with PD subjects who have FoG. PMID:22027173
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: Analysis of SSEM Sensor Data Using BEAM; Hairlike Percutaneous Photochemical Sensors; Video Guidance Sensors Using Remotely Activated Targets; Simulating Remote Sensing Systems; EHW Approach to Temperature Compensation of Electronics; Polymorphic Electronic Circuits; Micro-Tubular Fuel Cells; Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter; PVM Wrapper; Simulation of Hyperspectral Images; Algorithm for Controlling a Centrifugal Compressor; Hybrid Inflatable Pressure Vessel; Double-Acting, Locking Carabiners; Position Sensor Integral with a Linear Actuator; Improved Electromagnetic Brake; Flow Straightener for a Rotating-Drum Liquid Separator; Sensory-Feedback Exoskeletal Arm Controller; Active Suppression of Instabilities in Engine Combustors; Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs; Chemical Thinning Process for Fabricating UV-Imaging CCDs; Pseudoslit Spectrometer; Waste-Heat-Driven Cooling Using Complex Compound Sorbents; Improved Refractometer for Measuring Temperatures of Drops; Semiconductor Lasers Containing Quantum Wells in Junctions; Phytoplankton-Fluorescence-Lifetime Vertical Profiler; Hexagonal Pixels and Indexing Scheme for Binary Images; Finding Minimum-Power Broadcast Trees for Wireless Networks; and Automation of Design Engineering Processes.
Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraiskii, A V; Mironova, T V; Sultanov, T T
2010-09-10
A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)
NASA Astrophysics Data System (ADS)
Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi
2006-02-01
Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Sun, Y. -E; Maxwell, T. J.
2011-06-27
We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
The Lyman Imaging Telescope Experiment (LITE)
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.
1997-01-01
The scientific aim of the LITE mission is to carry out the first set of very high spatial resolution (0.2 arc sec), wide field of view (10 arc minute), pointed astronomical observations in several narrow wavelength bands in the far ultraviolet region of the spectrum (900-1600 A). Two wavelength regions in the far UV were chosen to be of prime scientific importance for the LITE mission: 1030A and 1240A. It was therefore decided to design and test novel, narrow band, high reflectance multilayer filters for these observations.
Narrow-band erbium-doped fibre linear–ring laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolegov, A A; Sofienko, G S; Minashina, L A
2014-01-31
We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)
NASA Astrophysics Data System (ADS)
Kraiskii, A. V.; Mironova, T. V.; Sultanov, T. T.
2010-09-01
A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases.
Wafer-scale aluminum nano-plasmonics
NASA Astrophysics Data System (ADS)
George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric
2014-09-01
The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.
ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY
Cole, Kenneth S.; Curtis, Howard J.
1939-01-01
Alternating current impedance measurements have been made over a wide frequency range on the giant axon from the stellar nerve of the squid, Loligo pealii, during the passage of a nerve impulse. The transverse impedance was measured between narrow electrodes on either side of the axon with a Wheatstone bridge having an amplifier and cathode ray oscillograph for detector. When the bridge was balanced, the resting axon gave a narrow line on the oscillograph screen as a sweep circuit moved the spot across. As an impulse passed between impedance electrodes after the axon had been stimulated at one end, the oscillograph line first broadened into a band, indicating a bridge unbalance, and then narrowed down to balance during recovery. From measurements made during the passage of the impulse and appropriate analysis, it was found that the membrane phase angle was unchanged, the membrane capacity decreased about 2 per cent, while the membrane conductance fell from a resting value of 1000 ohm cm.2 to an average of 25 ohm cm.2 The onset of the resistance change occurs somewhat after the start of the monophasic action potential, but coincides quite closely with the point of inflection on the rising phase, where the membrane current reverses in direction, corresponding to a decrease in the membrane electromotive force. This E.M.F. and the conductance are closely associated properties of the membrane, and their sudden changes constitute, or are due to, the activity which is responsible for the all-or-none law and the initiation and propagation of the nerve impulse. These results correspond to those previously found for Nitella and lead us to expect similar phenomena in other nerve fibers. PMID:19873125
Multi-photon excited coherent random laser emission in ZnO powders
NASA Astrophysics Data System (ADS)
Tolentino Dominguez, Christian; Gomes, Maria De A.; Macedo, Zélia S.; de Araújo, Cid B.; Gomes, Anderson S. L.
2014-11-01
We report the observation and analysis of anti-Stokes coherent random laser (RL) emission from zinc oxide (ZnO) powders excited by one-, two- or three-photon femtosecond laser radiation. The ZnO powders were produced via a novel proteic sol-gel, low-cost and environmentally friendly route using coconut water in the polymerization step of the metal precursor. One- and two-photon excitation at 354 nm and 710 nm, respectively, generated single-band emissions centred at about 387 nm. For three-photon excitation, the emission spectra showed a strong ultraviolet (UV) band (380-396 nm) attributed to direct three-photon absorption from the valence band to the conduction band. The presence of an intensity threshold and a bandwidth narrowing of the UV band from about 20 to 4 nm are clear evidence of RL action. The observation of multiple sub-nanometre narrow peaks in the emission spectra for excitation above the RL threshold is consistent with random lasing by coherent feedback.
Filters for the International Solar Terrestrial Physics (ISTP) mission far ultraviolet imager
NASA Technical Reports Server (NTRS)
Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin; Spann, James F.; Torr, Marsha R.
1993-01-01
The far ultraviolet (FUV) imager for the International Solar Terrestrial Physics (ISTP) mission is designed to image four features of the aurora: O I lines at 130.4 nm and 135.6 nm and the N2 Lyman-Birge-Hopfield (LBH) bands between 140 nm - 160 nm (LBH long) and 160 nm - 180 nm (LBH long). In this paper we report the design and fabrication of narrow-band and broadband filters for the ISTP FUV imager. Narrow-band filters designed and fabricated for the O I lines have a bandwidth of less than 5 nm and a peak transmittance of 23.9 percent and 38.3 percent at 130.4 nm and 135.6 nm, respectively. Broadband filters designed and fabricated for LBH bands have the transmittance close to 60 percent. Blocking of out-of-band wavelengths for all filters is better than 5x10(exp -3) percent with the transmittance at 121.6 nm of less than 10(exp -6) percent.
Forest tree species discrimination in western Himalaya using EO-1 Hyperion
NASA Astrophysics Data System (ADS)
George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.
2014-05-01
The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.
Ultrabright narrow-band telecom two-photon source for long-distance quantum communication
NASA Astrophysics Data System (ADS)
Niizeki, Kazuya; Ikeda, Kohei; Zheng, Mingyang; Xie, Xiuping; Okamura, Kotaro; Takei, Nobuyuki; Namekata, Naoto; Inoue, Shuichiro; Kosaka, Hideo; Horikiri, Tomoyuki
2018-04-01
We demonstrate an ultrabright narrow-band two-photon source at the 1.5 µm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 104. Our measurement of the second-order correlation function G (2)(τ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 µm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 105 pairs/(s·MHz·mW) is also the highest reported over all wavelengths.
2008-09-01
Description NDVI Narrow-band Normalized Difference Vegetation Index (can check all possible two-band combinations, and determine best band combinations...were calculated for each site. The band indices were: • NDVI (Hyperion bands 45 & 33) (Figure 2) • NDWI (Hyperion bands 51 & 109) • PRI (Hyperion...between categories for these groups. NDVI and NDWI were very close to achiev- ing a significant result, and were still particularly good at separating two
NASA Astrophysics Data System (ADS)
Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin
2013-08-01
An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.
NASA Technical Reports Server (NTRS)
Mustel, E. R.
1979-01-01
The type 1 supernova discovered late in 1966 in NGC 3198 has broad minima in its spectrum break down into a number of significantly narrower absorption bands. The broad minima of tau, sigma and mu, which usually show no details in the spectra of type supernovas, contain a number of narrow absorption bands. The reality of most of these absorption bands is demonstrated by comparison of recordings of spectra of the supernova presented for two moments in time. These minima (particularly of tau and mu,) are a result of blending of several broad absorption bands. The minimum of tau should be a blend of intensive and very broad Fe absorption lines, in which the lower level is metastable. The wavelengths of these line are: 5169, 5198, 5235, 5276, 5317, 5363A.
User's guide to noise data acquisition and analysis programs for HP9845: Nicolet analyzers
NASA Technical Reports Server (NTRS)
Mcgary, M. C.
1982-01-01
A software interface package was written for use with a desktop computer and two models of single channel Fast Fourier analyzers. This software features a portable measurement and analysis system with several options. Two types of interface hardware can alternately be used in conjunction with the software. Either an IEEE-488 Bus interface or a 16-bit parallel system may be used. Two types of storage medium, either tape cartridge or floppy disc can be used with the software. Five types of data may be stored, plotted, and/or printed. The data types include time histories, narrow band power spectra, and narrow band, one-third octave band, or octave band sound pressure level. The data acquisition programming includes a front panel remote control option for the FFT analyzers. Data analysis options include choice of line type and pen color for plotting.
InGaP Heterojunction Barrier Solar Cells
NASA Technical Reports Server (NTRS)
Welser, Roger E. (Inventor)
2014-01-01
A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.
High-Pressure Band-Gap Engineering in Lead-Free Cs 2 AgBiBr 6 Double Perovskite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qian; Wang, Yonggang; Pan, Weicheng
Novel inorganic lead-free double perovskites with improved stability are regarded as alternatives to state-of-art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–propertymore » relationship in lead-free double perovskites, but also offers new strategies for further development of advanced perovskite devices.« less
Conduction Band-Edge Non-Parabolicity Effects on Impurity States in (In,Ga)N/GaN Cylindrical QWWs
NASA Astrophysics Data System (ADS)
Haddou El, Ghazi; Anouar, Jorio
2014-02-01
In this paper, the conduction band-edge non-parabolicity (NP) and the circular cross-section radius effects on hydrogenic shallow-donor impurity ground-state binding energy in zinc-blende (ZB) InGaN/GaN cylindrical QWWs are reported. The finite potential barrier between (In,Ga)N well and GaN environment is considered. Two models of the conduction band-edge non-parabolicity are taking into account. The variational approach is used within the framework of single band effective-mass approximation with one-parametric 1S-hydrogenic trial wave-function. It is found that NP effect is more pronounced in the wire of radius equal to effective Bohr radius than in large and narrow wires. Moreover, the binding energy peak shifts to narrow wire under NP effect. A good agreement is shown compared to the findings results.
Influence of the narrow {111} planes on axial and planar ion channeling.
Motapothula, M; Dang, Z Y; Venkatesan, T; Breese, M B H; Rana, M A; Osman, A
2012-05-11
We report channeling patterns where clearly resolved effects of the narrow {111} planes are observed in axial and planar alignments for 2 MeV protons passing through a 55 nm [001] silicon membrane. At certain axes, such as <213> and <314>, the offset in atomic rows forming the narrow {111} planes results in shielding from the large potential at the wide {111} planes, producing a region of shallow, asymmetric potential from which axial channeling patterns have no plane of symmetry. At small tilts from such axes, different behavior is observed from the wide and narrow {111} planes. At planar alignment, distinctive channeling effects due to the narrow planes are observed. As a consequence of the shallow potential well at the narrow planes, incident protons suffer dechanneled trajectories which are excluded from channeling within the wide planes, resulting in an anomalously large scattered beam at {111} alignment.
NASA Astrophysics Data System (ADS)
Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo
2014-04-01
To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.
Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo
2014-04-01
To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.
Design and manufacture of super-multilayer optical filters based on PARMS technology
NASA Astrophysics Data System (ADS)
Lü, Shaobo; Wang, Ruisheng; Ma, Jing; Jiang, Chao; Mu, Jiali; Zhao, Shuaifeng; Yin, Xiaojun
2018-04-01
Three multilayer interference optical filters, including a UV band-pass, a VIS dual-band-pass and a notch filter, were designed by using Ta2O5, Nb2O5, Al2O3 and SiO2 as high- and low-index materials. During the design of the coating process, a hybrid optical monitoring and RATE-controlled layer thickness control scheme was adopted. The coating process was simulated by using the optical monitoring system (OMS) Simulator, and the simulation result indicated that the layer thickness can be controlled within an error of less than ±0.1%. The three filters were manufactured on a plasma-assisted reactive magnetic sputtering (PARMS) coating machine. The measurements indicate that for the UV band-pass filter, the peak transmittance is higher than 95% and the blocking density is better than OD6 in the 300-1100 nm region, whereas for the dual-band-pass filter, the center wavelength positioning accuracy of the two passbands are less than ±2 nm, the peak transmittance is higher than 95% and blocking density is better than OD6 in the 300-950 nm region. Finally, for the notch filter, the minimum transmittance rates are >90% and >94% in the visible and near infrared, respectively, and the blocking density is better than OD5.5 at 808 nm.
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
NASA Astrophysics Data System (ADS)
Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.
2016-02-01
Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high resolution. The NRH data indicate that the spikes are not fluctuations of the background, but represent additional emission such as what would be expected from small-scale reconnection.
NASA Astrophysics Data System (ADS)
Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin
2018-04-01
Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.
High Probability of Cyclone Development in the Bay of Bengal
2014-05-22
The Joint Typhoon Warning Center states that formation of a significant tropical cyclone is possible in the Bay of Bengal within the next 12 - 24 hours as of 0730Z on May 21, 2014. Along with deep convective banding associated with a consolidating low-level circulation center, warm sea surface temperatures are conducive for further development. This image was taken by the Suomi NPP satellite's VIIRS instrument in two passes, the east pass around 0615Z and the west pass around 0755Z on May 21, 2014. Credit: NASA/NOAA/NPP/VIIRS The Joint Typhoon Warning Center states that formation of a significant tropical cyclone is possible in the Bay of Bengal within the next 12 - 24 hours as of 0730Z on May 21, 2014. Along with deep convective banding associated with a consolidating low-level circulation center, warm sea surface temperatures are conducive for further development. This image was taken by the Suomi NPP satellite's VIIRS instrument in two passes, the east pass around 0615Z and the west pass around 0755Z on May 21, 2014.
Response to narrow-band UVB--vitiligo-melasma versus vitiligo: a comparative study.
Sharma, Parikshit; Pai, Harsha S; Pai, Ganesh S; Kuruvila, Maria; Kolar, Reshma
2011-04-01
Vitiligo is the most common depigmentary disorder of the skin and hair, resulting from selective destruction of melanocytes. Melasma, a hyperpigmentary disorder, presents as irregular, brown, macular hypermelanosis. A small subset of vitiligo patients paradoxically also have melasma. To evaluate and compare the response to narrow-band UVB in a group of patients with vitiligo, and another group of patients with vitiligo and coexisting melasma (vitiligo-melasma). Patients in both groups were treated with narrow-band UVB and a comparison of the zonal repigmentation was made at 4, 8, and 12 weeks after the initiation of therapy. At the end of 12 weeks, 86% of patients in the vitiligo-melasma group attained ≥75% pigmentation on the face, whereas this was achieved in only 12.5% of patients in the vitiligo group. Over the limbs, 73% of patients in the vitiligo-melasma group attained 75% or more pigmentation at the end of 12 weeks compared with only 9% in the vitiligo group. On the trunk, only 20% of vitiligo-melasma patients showed ≥75% pigmentation at 12 weeks compared with 63% of patients in the vitiligo group. Patients having both vitiligo and melasma have a significantly better prognosis for repigmentation on the face and limbs with narrow-band UVB compared with patients with vitiligo alone; the vitiligo-melasma patients achieve repigmentation much earlier and also attain a greater level of repigmentation. Unexpectedly, for truncal lesions, patients with vitiligo alone responded better than those with both conditions. Although the vitiligo-melasma group with truncal lesions started repigmenting earlier, the final pigmentation was more extensive in the vitiligo group.
... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...
Asynchronous glimpsing of speech: Spread of masking and task set-size
Ozmeral, Erol J.; Buss, Emily; Hall, Joseph W.
2012-01-01
Howard-Jones and Rosen [(1993). J. Acoust. Soc. Am. 93, 2915–2922] investigated the ability to integrate glimpses of speech that are separated in time and frequency using a “checkerboard” masker, with asynchronous amplitude modulation (AM) across frequency. Asynchronous glimpsing was demonstrated only for spectrally wide frequency bands. It is possible that the reduced evidence of spectro-temporal integration with narrower bands was due to spread of masking at the periphery. The present study tested this hypothesis with a dichotic condition, in which the even- and odd-numbered bands of the target speech and asynchronous AM masker were presented to opposite ears, minimizing the deleterious effects of masking spread. For closed-set consonant recognition, thresholds were 5.1–8.5 dB better for dichotic than for monotic asynchronous AM conditions. Results were similar for closed-set word recognition, but for open-set word recognition the benefit of dichotic presentation was more modest and level dependent, consistent with the effects of spread of masking being level dependent. There was greater evidence of asynchronous glimpsing in the open-set than closed-set tasks. Presenting stimuli dichotically supported asynchronous glimpsing with narrower frequency bands than previously shown, though the magnitude of glimpsing was reduced for narrower bandwidths even in some dichotic conditions. PMID:22894234
First-principles study of Mn-S codoped anatase TiO2
NASA Astrophysics Data System (ADS)
Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui
2018-04-01
In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.
Rajamani, Saravanan; Arora, Kanika; Konakov, Anton; Belov, Alexey; Korolev, Dmitry; Nikolskaya, Alyona; Mikhaylov, Alexey N; Surodin, Sergey; Kryukov, Ruslan; Nikolichev, Dmitri; Sushkov, Artem; Pavlov, Dmitry; Tetelbaum, David; Kumar, Mukesh; Kumar, Mahesh
2018-04-20
Semiconductor quantum dots (QDs) have attracted tremendous attention owing to their novel electrical and optical properties due to the size dependent quantum confinement effects. This provides an advantage of tunable wavelength detection, which is essential to realize spectrally selective photodetectors. We report the fabrication and characterization of high performance narrow band ultraviolet photodetector (UV-B) based on In2O3 nanocrystals embedded in Al2O3 matrices. The In2O3 nanocrystals are synthesized in Al2O3 matrix by sequential implantation of In+ and N2+ ions and post-implantation annealing. The photodetector exhibits excellent optoelectronic performances with high spectral responsivity and external quantum efficiency. The spectral response showed a band-selective nature with a full width half maximum of ∼ 60 nm, and the responsivity reaches up to 70 A/W under 290 nm at 5 V bias. The corresponding rejection ratio to visible region was as high as 8400. The high performance of this photodetector makes it highly suitable for practical applications such as narrow-band spectrum-selective photodetectors. The device design based on ion-synthesized nanocrystals would provide a new approach for realizing a visible-blind photodetector. © 2018 IOP Publishing Ltd.
Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie
2017-07-01
Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.
Radio-Frequency and Wideband Modulation Arraying
NASA Technical Reports Server (NTRS)
Brockman, M. H.
1984-01-01
Summing network receives coherent signals from all receivers in array. Method sums narrow-band radio-frequency (RF) carrier powers and wide-band spectrum powers of array of separate antenna/receiver systems designed for phase-locked-loop or suppressed-carrier operation.
Chen, Xiaoming; Lu, Yanhua; Hu, Hao; Tong, Lixin; Zhang, Lei; Yu, Yi; Wang, Juntao; Ren, Huaijin; Xu, Liu
2018-03-05
We present investigations into a narrow-linewidth, quasi-continuous-wave pulsed all-solid-state amplified spontaneous emission (ASE) source by use of a novel multiple-pass zigzag slab amplifier. The SE fluorescence emitted from a Nd:YAG slab active medium acts as the seed and is amplified back and forth 8 times through the same slab. Thanks to the angular multiplexing nature of the zigzag slab, high-intensity 1064-nm ASE output can be produced without unwanted self-lasing in this configuration. Experimentally, the output energy, optical conversion efficiency, pulse dynamics, spectral property, and beam quality of the ASE source are studied when the Nd:YAG slab end-pumped by two high-brightness laser diode arrays. The maximum single pulse energy of 347 mJ is generated with an optical efficiency of ~5.9% and a beam quality of 3.5/17 in the thickness/width direction of the slab. As expected, smooth pulses without relaxing spikes and continuous spectra are achieved. Moreover, the spectral width of the ASE source narrows versus the pump energy, getting a 3-dB linewidth of as narrow as 20 pm (i.e. 5.3 GHz). Via the sum frequency generation, high-intensity, smooth-pulse, and narrow-linewidth ASE sources are preferred for solving the major problem of saturation of the mesospheric sodium atoms and can create a much brighter sodium guide star to meet the needs of adaptive imaging applications in astronomy.
Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU
NASA Astrophysics Data System (ADS)
Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.
2018-01-01
There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.
UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.
Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Rincon, Rafael; Lee, Seung Kuk; Fatoyinbo, Temilola; Bollian, Tobias
2017-01-01
EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques.
NASA Technical Reports Server (NTRS)
Morrison, R. B.; Cooley, M. E.
1973-01-01
The author has identified the following significant results. The red MSS band 5 gives the sharpest definition of modern arroyos. On the best images, modern arroy0s can be distinguished as narrow as 150 to 200 feet in reaches where their contrast with adjacent areas is only moderate, and as narrow as 60 to 75 feet where their contrast is high. Both the red and infrared bands show differences is soils and vegetation. In the late fall and winter imagery, band 7 generally is the most useful for mapping the areas of the more erodible soils. A map at 1:1,000,000 scale has been prepared that shows all the arroyos within the 17,000 square mile study area that have been identified from ERTS-1 images. Also, from U-2 color infrared airphotos, a 1:125,000 scale map has been made of a 50 mile reach along San Simon Wash, in southeastern Arizona. This map shows not only the arroyo channels and narrow flood plains that have developed since 1890, but also areas within a few miles of the wash that are severely guilled, severely sheet-eroded, and moderately sheet-eroded. Two important effects of the third largest recorded flood of the upper Gila River also have been determined from the ERTS-1 images. The inundated area is best displayed on band 7, and the areas of severe sand/gravel erosion/deposition show best on band 5.
Imaging Spectrometer on a Chip
NASA Technical Reports Server (NTRS)
Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Zheng, Xinyu
2007-01-01
A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure). The design of the heterostructure would exploit the fact that within the visible portion of the spectrum, the characteristic depth of penetration of photons increases with wavelength. Proceeding from the front toward the back, each successive long-wavelength-pass filter would have a longer cutoff wavelength, and each successive photodetector would be made thicker to enable it to absorb a greater proportion of incident longer-wavelength photons. Incident light would pass through the first photodetector and encounter the first filter, which would reflect light having wavelengths shorter than its cutoff wavelength and pass light of longer wavelengths. A large portion of the incident and reflected shorter-wavelength light would be absorbed in the first photodetector. The light that had passed through the first photodetector/filter pair of layers would pass through the second photodetector and encounter the second filter, which would reflect light having wavelengths shorter than its cutoff wavelength while passing light of longer wavelengths. Thus, most of the light reflected by the second filter would lie in the wavelength band between the cutoff wavelengths of the first and second filters. Thus, further, most of the light absorbed in the second photodetector would lie in this wavelength band. In a similar manner, each successive photodetector would detect, predominantly, light in a successively longer wavelength band bounded by the shorter cutoff wavelength of the preceding filter and the longer cutoff wavelength of the following filter.
Electrical characteristics of tunneling field-effect transistors with asymmetric channel thickness
NASA Astrophysics Data System (ADS)
Kim, Jungsik; Oh, Hyeongwan; Kim, Jiwon; Meyyappan, M.; Lee, Jeong-Soo
2017-02-01
Effects of using asymmetric channel thickness in tunneling field-effect transistors (TFET) are investigated in sub-50 nm channel regime using two-dimensional (2D) simulations. As the thickness of the source side becomes narrower in narrow-source wide-drain (NSWD) TFETs, the threshold voltage (V th) and the subthreshold swing (SS) decrease due to enhanced gate controllability of the source side. The narrow source thickness can make the band-to-band tunneling (BTBT) distance shorter and induce much higher electric field near the source junction at the on-state condition. In contrast, in a TFET with wide-source narrow-drain (WSND), the SS shows almost constant values and the V th slightly increases with narrowing thickness of the drain side. In addition, the ambipolar current can rapidly become larger with smaller thickness on the drain side because of the shorter BTBT distance and the higher electric-field at the drain junction. The on-current of the asymmetric channel TFET is lower than that of conventional TFETs due to the volume limitation of the NSWD TFET and high series resistance of the WSND TFET. The on-current is almost determined by the channel thickness of the source side.
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Delcroix, Marc; Baranec, Christoph; Sánchez-Lavega, Agustín; María Gómez-Forrellad, Josep; Félix Rojas, Jose; Luszcz-Cook, Statia; de Pater, Imke; de Kleer, Katherine; Colas, François; Guarro, Joan; Goczynski, Peter; Jones, Paul; Kivits, Willem; Maxson, Paul; Phillips, Michael; Sussenbach, John; Wesley, Anthony; Hammel, Heidi B.; Pérez-Hoyos, Santiago; Mendikoa, Iñigo; Riddle, Reed; Law, Nicholas M.; Sayanagi, Kunio
2015-11-01
Observations of Neptune over the last few years obtained with small telescopes (30-50 cm) have resulted in several detections of bright features on the planet. In 2013, 2014 and 2015, different observers have repeatedly observed features of high contrast at Neptune’s mid-latitudes using long-pass red filters. This success at observing Neptune clouds with such small telescopes is due to the presence of strong methane absorption bands in Neptune’s spectra at red and near infrared wavelengths; these bands provide good contrast for elevated cloud structures. In each case, the atmospheric features identified in the images survived at least a few weeks, but were essentially much more variable and apparently shorter-lived, than the large convective system recently reported on Uranus [de Pater et al. 2015]. The latest and brightest spot on Neptune was first detected on July 13th 2015 with the 2.2m telescope at Calar Alto observatory with the PlanetCam UPV/EHU instrument. The range of wavelengths covered by PlanetCam (from 350 nm to the H band including narrow-band and wide-band filters in and out of methane bands) allows the study of the vertical cloud structure of this bright spot. In particular, the spot is particularly well contrasted at the H band where it accounted to a 40% of the total planet brightness. Observations obtained with small telescopes a few days later provide a good comparison that can be used to scale similar structures in 2013 and 2014 that were observed with 30-50 cm telescopes and the Robo-AO instrument at Palomar observatory. Further high-resolution observations of the 2015 event were obtained in July 25th with the NIRC2 camera in the Keck 2 10-m telescope. These images show the bright spot as a compact bright feature in H band with a longitudinal size of 8,300 km and a latitudinal extension of 5,300 km, well separated from a nearby bright band. The ensemble of observations locate the structure at -41º latitude drifting at about +24.27º/day or -92.3 m/s consistently with the zonal winds. This work demonstrates excellent opportunities for pro-am collaboration in the study of Neptune and the value of nearly continuous monitoring of the planet by a broad network of amateur collaborators.
A simplified scheme for generating narrow-band mid-ultraviolet laser radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almog, G.; Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München; Scholz, M., E-mail: Matthias.Scholz@toptica.com
2015-03-15
We report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6{sup 1}S{sub 0} → 6{sup 3}P{sub 1} intercombination line at 253.7 nm. We could perform Doppler-free saturation spectroscopy on this line and were able to lock our laser to the transition frequency on long time scales.
NASA Astrophysics Data System (ADS)
Vermande, P.; Gilard, O.; Rosak, A.
2017-11-01
The Fourier transform spectrometry is useful to obtain optical spectra with high resolution. But in case of narrow band spectra, the number of sample become very important, related to the useful information (the sampling is proportional to the higher wavelength). By changing the sampling, it is possible to obtain narrow band spectra with far less samples. With fewer samples, static interferometers become possible to use. So with these two ideas (a better sampling and static interferometer) we can build a very simple, compact, and static instrument. We will show several possible application of this instrument.
NASA Astrophysics Data System (ADS)
Kirkland, L. E.; Herr, K. C.; Adams, P. M.
2001-05-01
A region on Mars within Sinus Meridiani has been interpreted as a surface partially covered by coarse-grained (gray) hematite, using spectra measured by the 1996 Global Surveyor Thermal Emission Spectrometer (TES) [Lane et al., 1999; Christensen et al., 2000]. The band strengths recorded by TES of this region are consistent with either coarse-grained hematite, or cemented poorly crystalline or cemented fine-grained hematite. The band strengths are inconsistent with unconsolidated, poorly crystalline or fine-grained hematite, including nanophase hematite dust [Christensen et al., 2000]. Currently the gray hematite interpretation is based on bands centered near 22 and 33 microns. TES also records a band centered near 18 microns that was used in early hematite interpretations [Lane et al., 1999]. However, it was noted [Kirkland et al., 1999a] that the 18 micron band is too narrow in both TES and the 1971 Mariner Mars IRIS spectra to be a good match to typical spectra of well-crystalline hematite [e.g. Salisbury et al., 1991]. The 18 micron band is near the very strong 15 micron atmospheric CO2 band, but if anything the nearby CO2 band should cause the 18 micron band to appear wider, not narrower. In addition, the higher spectral resolution of IRIS allows improved separation of the bands [Kirkland et al., 1999b]. More recent publications no longer show the TES 18 micron band [e.g. Lane et al., 2000; Christensen et al., 2000], which temporarily resolved the issue. However, we feel it is important to understand why TES and IRIS spectra exhibit an 18 micron band that is too narrow to match typical spectra of coarse-grained hematite. Smooth-surfaced cemented (e.g. ferricrete) or coated materials (e.g. desert varnish) have spectral contrast that is consistent with the observed IRIS and TES band contrast. On Mars, one possible source for cemented material or coatings would be the nanophase hematite dust. Cemented materials may occur in bulk (e.g. duricrust or ferricrete), or as a thin coating (e.g. desert varnish). We have investigated the signatures of naturally occurring cemented materials that contain hematite, and found samples that exhibit 22 and 33 micron bands that are consistent with coarse-grained hematite signatures, and yet also exhibit narrower 18 micron bands. We are continuing to study the materials more in-depth to examine the variations in spectral shape, and to determine the cause of varied 18 micron band width. References. Christensen, P. R. et al., JGR 105, 9632, 2000. Kirkland, L., K. Herr, P. Forney, and J. Salisbury, LPSC XXX, abs. 1693 and oral presentation, 1999a. Kirkland, L., K. Herr, and P. Forney, 5th Internat'l Conf. on Mars, abs. 6174, 1999b. Lane, M., R. Morris, and P. Christensen, LPSC XXX, abs. 1469, 1999. Lane, M., R. Morris, and P. Christensen, LPSC XXXI, abs. 1140, 2000. Salisbury, J., L. Walter, N. Vergo, D. D'Aria, Infrared (2.1-25 micron) Spectra of Minerals, Johns Hopkins UP, 1991.
Characterization and Modeling of Dual Stage Quadruple Pass Configurations
NASA Astrophysics Data System (ADS)
Sellami, M.; Sellami, A.; Berrah, S.
In this paper, the proposed system achieves a gain of 62dBs. It employs a dual-stage (DS) to enhance the amplification and a tunable band-pass filter (TBF) to filter out the backward amplified spontaneous emission (ASE) that degrades the signal amplification at the input end of the EDFA. The technique there by reduces the effect of ASE self-saturation [1]. This configuration is also useful in reducing the sensitivity of the EDFA to extra strenuous reflections caused by imperfections of the splices and other optical components [2]. as well as improving noise figure and gain. The experimental work will build up by using the active component Silica based EDF (Si-EDF) in Dual Stage Quadruple Pass (DSQP) configuration. By using Tunable Band pass Filter (TBF) in DSQP between the port 1 and port 2 of circulators (CRT2, CRT3) to filter out the unwanted ASE.
Standoff Spectroscopy via Remote Generation of a Backward-Propagating Laser Beam
2011-02-04
nighttime probing of stratospheric ozone and measurements in polar and equatorial regions. Appl Opt 28:3616–3624. 2. Bisson SE, Goldsmith JEM, Mitchell...MG (1999) Narrow-band, narrow-field-of-view Raman Lidar with combined day and night capability for tropospheric water-vapor profile measurements. Appl
Alpha-theta border EEG abnormalities in preclinical Huntington's disease.
Ponomareva, Natalya; Klyushnikov, Sergey; Abramycheva, Natalya; Malina, Daria; Scheglova, Nadejda; Fokin, Vitaly; Ivanova-Smolenskaia, Irina; Illarioshkin, Sergey
2014-09-15
Brain dysfunction precedes clinical manifestation of Huntington's disease (HD) by decades. This study was aimed to determine whether resting EEG is altered in preclinical HD mutations carriers (pre-HD). We examined relative power of broad traditional EEG bands as well as 1-Hz sub-bands of theta and alpha from the resting-state EEG of 29 pre-HD individuals and of 29 age-matched normal controls. The relative power of the narrow sub-band in the border of theta-alpha (7-8 Hz) was significantly reduced in pre-HD subjects as compared to normal controls, while the alterations in relative power of the broad frequency bands were not significant. In pre-HD subjects, the number of CAG repeats in the huntingtin (HTT) gene as well as the disease burden score (DBS) showed a positive correlation with relative power of the delta and theta frequency bands and their sub-bands and a negative correlation with alpha band relative power and the differences of relative power of the 7-8 Hz and 4-5 Hz frequency sub-bands. The obtained results suggest that EEG alterations in pre-HD individuals may be related to the course of the pathological process and to HD endophenotype. Analysis of the narrow EEG bands was found to be more useful for assessing EEG alterations in pre-HD individuals than a more traditional approach using broad bandwidths. Copyright © 2014 Elsevier B.V. All rights reserved.
Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination
NASA Technical Reports Server (NTRS)
Tao, Jian-Ping
1998-01-01
The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent channel and reduce power efficiency. Some particular pulses (filters), such as trapezoid and pulses with different transits (such as weighted raised cosine transit) were found to reduce bandwidth and not generate spectral spikes. Although a solid state power amplifier (SSPA) was simulated in the non-linear (saturation) region, output power spectra did not spread due to the constant envelope 8-PSK signals.
Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.
2015-01-01
We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395
Goswami, Usha; Cumming, Ruth; Chait, Maria; Huss, Martina; Mead, Natasha; Wilson, Angela M.; Barnes, Lisa; Fosker, Tim
2016-01-01
Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed. PMID:27303348
Doughan, Samer; Uddayasankar, Uvaraj; Peri, Aparna; Krull, Ulrich J
2017-04-15
Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reductive amination to evaluate the multiplexing capacity of luminescence resonance energy transfer (LRET) between UCNPs and quantum dots (QDs). This is the first account of a multiplexed bioassay strategy that demonstrates the principle of use of a single form of UCNP as donor and three different color emitting QDs as acceptors to concurrently determine three analytes. Broad absorbance profiles of green, orange and red QDs that spanned from the first exciton absorption peak to the UV region were in overlap with a blue emission band from UCNPs composed of NaYF 4 that was doped with 30% Yb 3+ , 0.5% Tm 3+ , allowing for LRET that was stimulated using 980 nm near-infrared radiation. The characteristic narrow and well-defined emission peaks of UCNPs and QDs allowed for the collection of luminescence from each nanoparticle using a band-pass optical filter and an epi-fluorescence microscope. The LRET system was used for the concurrent detection of uidA, Stx1A and tetA gene fragments with selectivity even in serum samples, and reached limits of detection of 26 fmol, 56 fmol and 76 fmol, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Ptolemy, Adam S; Tran, Lara; Britz-McKibbin, Philip
2006-07-15
Capillary electrophoresis (CE) represents a versatile platform for integrating sample pretreatment with chemical analysis because of its ability to tune analyte electromigration and band dispersion properties in discontinuous electrolyte systems. In this article, a single-step method that combines on-line sample preconcentration with in-capillary chemical derivatization is developed for rapid, sensitive, and enantioselective analysis of micromolar levels of amino acids that lack intrinsic chromophores by CE with UV detection. Time-resolved electrophoretic studies revealed two distinct stages of amino acid band narrowing within the original long sample injection plug occurring both prior to and after in-capillary labeling via zone passing by ortho-phthalaldehyde/N-acetyl l-cysteine (OPA/NAC). This technique enabled direct analysis of d-amino acids in a 95% enantiomeric excess mixture with sub-micromolar detection limits and minimal sample handling, where the capillary functions as a preconcentrator, microreactor, and chiral selector. On-line sample preconcentration with chemical derivatization CE (SPCD-CE) was applied to study the enantioselective amino acid flux in Escherichia coli bacteria cultures, which demonstrated a unique l-Ala efflux into the extracellular medium. New strategies for high-throughput analyses of low-abundance metabolites are important for understanding fundamental physiological processes in bacteria required for screening the efficacy of new classes of antibiotics as well as altered metabolism in genetically modified mutant strains.
NASA Technical Reports Server (NTRS)
Bregman, Jesse; Sloan, G. C.
1996-01-01
The emission from polycyclic aromatic hydrocarbons (PAH's) in the Orion Bar region is investigated using a combination of narrow-band imaging and long-slit spectroscopy. The goal was to study how the strength of the PAH bands vary with spatial position in this edge-on photo-dissociation region. The specific focus here is how these variations constrain the carrier of the 3.4 micron band.
Measuring the critical band for speech.
Healy, Eric W; Bacon, Sid P
2006-02-01
The current experiments were designed to measure the frequency resolution employed by listeners during the perception of everyday sentences. Speech bands having nearly vertical filter slopes and narrow bandwidths were sharply partitioned into various numbers of equal log- or ERBN-width subbands. The temporal envelope from each partition was used to amplitude modulate a corresponding band of low-noise noise, and the modulated carriers were combined and presented to normal-hearing listeners. Intelligibility increased and reached asymptote as the number of partitions increased. In the mid- and high-frequency regions of the speech spectrum, the partition bandwidth corresponding to asymptotic performance matched current estimates of psychophysical tuning across a number of conditions. These results indicate that, in these regions, the critical band for speech matches the critical band measured using traditional psychoacoustic methods and nonspeech stimuli. However, in the low-frequency region, partition bandwidths at asymptote were somewhat narrower than would be predicted based upon psychophysical tuning. It is concluded that, overall, current estimates of psychophysical tuning represent reasonably well the ability of listeners to extract spectral detail from running speech.
Meesters, Ybe; Winthorst, Wim H; Duijzer, Wianne B; Hommes, Vanja
2016-02-18
The discovery of a novel photoreceptor in the retinal ganglion cells with a highest sensitivity of 470-490 nm blue light has led to research on the effects of short-wavelength light in humans. Several studies have explored the efficacy of monochromatic blue or blue-enriched light in the treatment of SAD. In this study, a comparison has been made between the effects of broad-wavelength light without ultraviolet (UV) wavelengths compared to narrow-band blue light in the treatment of sub-syndromal seasonal affective disorder (Sub-SAD). In a 15-day design, 48 participants suffering from Sub-SAD completed 20-minute sessions of light treatment on five consecutive days. 22 participants were given bright white-light treatment (BLT, broad-wavelength light without UV 10 000 lux, irradiance 31.7 Watt/m(2)) and 26 participants received narrow-band blue light (BLUE, 100 lux, irradiance 1.0 Watt/m(2)). All participants completed daily and weekly questionnaires concerning mood, activation, sleep quality, sleepiness and energy. Also, mood and energy levels were assessed by means of the SIGH-SAD, the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 54.8 %, effect size 1.7 and BLUE 50.7 %, effect size 1.9). No statistically significant differences were found on the main outcome measures. Light treatment is an effective treatment for Sub-SAD. The use of narrow-band blue-light treatment is equally effective as bright white-light treatment. This study was registered in the Dutch Trial Register (Nederlands Trial Register TC = 4342 ) (20-12-2013).
NASA Astrophysics Data System (ADS)
Qi, Wenyuan; Zhang, Yuyin
2018-04-01
A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.
2017-04-01
complementary fusion: Fourth-order Butterworth filter was used to high -pass ocelli and low-pass optic flow. The normalized cutoff frequency had to be kept...information introduced by luminance change. The high - frequency cutoff was added to reject the flickering noise for indoor usage. The filtered signals from the...function of the low- pass filter is to attenuate high - frequency noise. The final band-pass filter transfer function is in Eq. 2. (()
NASA Astrophysics Data System (ADS)
Rahman, B. M. Farid
Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter wavelength has been reduced from 14.86mm to 4.7mm at 2GHz. DC current which is the most convenient and available tuning parameter in a practical circuit board has been used, the developed SWS can function as quarter wave transmission line from 2GHz to 1.80GHz (i.e. 10%). Lead Zirconium Titanate (PZT) is grown and patterned on top of the section with standard sol-gel method to increase capacitance value. The inter digit capacitor type structure along with PZT thin film has been adopted and results showed capacitance value increment by 36%. An electric field between signal and ground has been applied to change the polarization of the thin film which resulted in a tuning of center frequency by 15% (1.75GHz to 2GHz). In addition, a novel approach has been implemented by integrating both the ferromagnetic and the ferroelectric thin films simultaneously to achieve higher slow wave effect, wider tuning range and smaller variation in Characteristics Impedance. The size of the final structure for a quarter wavelengths has been reduced from 14.86mm to 3.98mm while the center frequency has been tuned from 2GHz to 1.5GHz (i.e. 25%). Tunable RF applications of the ferro-magnetic thin films are also demonstrated as a DC current band pass filter, tunable noise suppressor and meander line inductor. A well designed frequency tunable band pass filter (BPF) is implemented at 4GHz with patterned Permalloy. The pass band frequency of a band pass filter has been tuned from 4GHz to 4.02GHz by applying a DC current. The suppression frequency of the developed noise suppressor is tuned from 4.8GHz to 6GHz and 4GHz to 6GHz by changing the aspect ratio of the Py bars and the gap in between them. Moreover, a novel way of tuning the stop band frequency of the noise suppressor by using an external direct current changed the suppression frequency from 6GHz to 4.3GHz. A pass band loss of 1.5%, less than 2° transmitted signal phase distortion, and 3 dB extra return loss of the designed noise suppressor showed the promise the noise suppressors. The increase in the number of turns of a meander line inductor has increased the inductance density from 2565nH/m to 3396nH/m while application of the patterned Py has increased the inductance density from 2565nH/m to 3060nH/m. The tuning of the meander line inductor has been performed by applying DC current until the FMR frequency 4.51GHz.
The Distribution of Wolf-Rayet Stars in NGC 6744
NASA Astrophysics Data System (ADS)
Sandford, Emily; Bibby, J. L.; Zurek, D.; Crowther, P.
2013-01-01
We undertake a survey of the Wolf-Rayet population of NGC 6744, a spiral galaxy located at an estimated distance of 11.6 Mpc, in order to determine whether the distribution of this population is consistent with the distributions of various ccSNe subtypes. 242 Wolf-Rayet candidate sources are identified, 40% of which are only detected in narrow-band helium II imaging, not in broad-band imaging. The spatial distribution of WR candidates is compared to the distributions of ccSNe subtype populations in the broad-band B filter and the narrow-band Hα filter. WR stars appear to follow the Type Ic distribution in the faintest 30% of the galaxy in the B image, but follow the Ib or II distribution in the brightest regions, possibly due to the difficulty of detecting WR stars in the brightest regions. WR candidates are found to be closely associated with HII regions; however, the treatment of the residual background strongly affects the distribution, and this result must be investigated further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong
The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less
NASA Astrophysics Data System (ADS)
Liu, Wei-wei; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong
2017-02-01
Effect of N doping concentration on the electronic structure of N-doped CuAlO2 was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO2 were structurally stable. The calculated band gaps for N-doped CuAlO2 narrowed compared to pure CuAlO2, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO2 shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO2 materials in optoelectronic and electronic devices.
2011-05-19
only a narrow supply line that passed along a narrow one-lane path called the Kall Trail.13 The Germans mounted fierce counter-attacks well supported...Bradley. New York: Ballantine Books, 1971 . ________. West Wall: The Battle For Hitler’s Siegfried Line. Conshohocken, PA.: Da Capo Press, 2000
Red Lake Forestry Greenhouse Program
Gloria Whitefeather-Spears
2002-01-01
In 1916, The Red Lake Indian Forest Act was created. The Red Lake Band of Chippewa in Minnesota stood alone and refused to consent to allotment. Consequently, The Red Lake Band is the only tribe in Minnesota for which a congressional act was passed to secure a permanent economic foundation for the band and its future.
Luo, Feng; Metzner, Walter; Wu, Feijian; Wu, Feijian J; Zhang, Shuyi; Zhang, Shuyi Y; Chen, Qicai; Chen, Qicai C
2008-01-01
The present study examines duration-sensitive neurons in the inferior colliculus (IC) of the least horseshoe bat, Rhinolophus pusillus, from China. In contrast to other bat species tested for duration selectivity so far, echolocation pulses emitted by horseshoe bats are generally longer and composed of a long constant-frequency (CF) component followed by a short downward frequency-modulated (FM) sweep (CF-FM pulse). We used combined CF-FM pulses to analyze the differential effects that these two pulse components had on the duration tuning in neurons of the horseshoe bat's IC. Consistent with results from other mammals, duration-sensitive neurons found in the least horseshoe bat fall into three main classes: short-pass, band-pass, and long-pass. Using a CF stimulus alone, 54% (51/95) of all IC neurons showed at least one form of duration selectivity at one or more stimulus intensities. In 65 of the 95 IC neurons tested with CF pulses, we were also able to test their duration selectivity for a combined CF-FM pulse, which increased the ratio of duration-sensitive neurons to 66% (43/65). Seven to 15 neurons that failed to show duration tuning for CF bursts became duration sensitive for CF-FM pulses, with most of them exhibiting short-pass (depending on stimulus intensity, between 4 and 8 neurons) or band-pass tuning (1-3 neurons). Increasing stimulus intensities did not affect the duration tuning in 53% (23/43) of duration-sensitive neurons for CF bursts and in about 26% (7/27) for CF-FM stimuli. In the remaining neurons, increasing sound levels generally reduced the ratio of duration-sensitive neurons to 33% for CF and 37% for CF-FM stimulation. In those that remained duration sensitive, louder CF bursts shortened best durations in band-pass neurons and cutoff durations in short- and long-pass neurons, whereas louder CF-FM stimuli reduced the cutoff durations only in short-pass neurons. Bandwidths of band-pass neurons were not significantly affected by any stimulus configuration, with only a slight trend for increasing bandwidths for louder CF bursts (but not CF-FM stimuli). Best durations and cutoff durations reached higher values than those in the other bat species examined so far and roughly match the longer durations of echolocation pulses emitted by horseshoe bats. Therefore presentation of a CF-FM stimulus improved the duration sensitivity in IC neurons by increasing the ratio of duration-tuned neurons and making them less susceptible to changes in signal intensity.
The Effect of High N-DOPED Anatase TiO2 on the Band Gap Narrowing and Redshift by First-Principles
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Jin, Yongjun; Ying, Chun; Zhao, Erjun; Zhang, Yue; Dong, Hongying
2012-10-01
Anatase TiO2 supercells were studied by first-principles, in which one was undoped and another three were high N-doping. Partial densities of states, band structure, population and absorption spectrum were calculated. The calculated results indicated that in the condition of TiO2-xNx (x = 0.0625, 0.125, 0.25), the higher the doping concentration is, the shorter will be the lattice parameters parallel to the direction of c-axis. The strength of covalent bond significantly varied. The formation energy increases at first, and then decreases. The doping models become less stable as N-doping concentration increases. Meanwhile, the narrower the band gap is, the more significant will be the redshift, which is in agreement with the experimental results.
1982-12-06
different model aircraft in different wave bands (P,L, S and X). Yet, the obtained results were relatively complex and it was not easy to find regularity...hertz for the S wave band . This type of narrow wave band signifies that the drift velocity of the target viewed in the reflection center is very low... Band of Airborne Radar With Pulse Width of 0.02)4 s and Grazing Angle of 470) Key: 1. Probability exceeding horizontal coordinates 2. Clutter section 3
NASA Astrophysics Data System (ADS)
Menon, Sumithra Sivadas; Baskar, K.; Singh, Shubra
2017-06-01
Hydrogen evolution by overall water splitting has emerged as a potential method for green energy generation due to the introduction of highly efficient photocatalysts active under visible region of spectra. In the present work, we focus on a comparative study of the properties of Ga1-xZnxN1-yOy oxynitride samples synthesized by two techniques and their effect on the sample properties. The samples were prepared by both traditional nitridation technique and solution combustion method. Room temperature photoluminescence studies revealed the introduction of additional energy levels above the valence band which in turns broadens the valence band and subsequently reduces the band gap. The band gap narrowing was further confirmed using diffuse reflectance spectroscopy and Valence band X-ray photoelectron spectroscopy (VB-XPS). It was also realized from VB XPS that the reduction of band gap in both the samples was due to upshift of valence band without affecting the conduction band. The presence of disorder activated modes in the samples was examined using temperature dependent Raman spectroscopy. In this work we corroborate the theoretical prediction reported by Al-Jassim et. al that the bandgap narrowing mechanism in ZnO rich solid solution and GaN rich solid solution is asymmetric and a significant bandgap reduction could be observed for ZnO rich solid solution than GaN rich.
Multi-band optical variability studies of Blazars
NASA Astrophysics Data System (ADS)
Agarwal, Aditi
2018-04-01
To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of a dozen blazars. CCD magnitudes in B, V, R and I pass-bands were determined for > 10,000f new optical observations from 300 nights made during 2011 – 2016, with an average length of 4 h each, using seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse timescales. Blazar variability studies helped us in understanding their nature and extreme conditions within the emission region. To explain possible physical causes of the observed spectral variability, we also investigated spectral energy distributions using B, V, R, I, J and K pass-band data.
Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.
Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf
2018-04-26
Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.
Q-band 4-state phase shifter in planar technology: Circuit design and performance analysis.
Villa, E; Cagigas, J; Aja, B; de la Fuente, L; Artal, E
2016-09-01
A 30% bandwidth phase shifter with four phase states is designed to be integrated in a radio astronomy receiver. The circuit has two 90° out-of-phase microwave phase-shifting branches which are combined by Wilkinson power dividers. Each branch is composed of a 180° phase shifter and a band-pass filter. The 180° phase shifter is made of cascaded hybrid rings with microwave PIN diodes as switching devices. The 90° phase shift is achieved with the two band-pass filters. Experimental characterization has shown significant results, with average phase shift values of -90.7°, -181.7°, and 88.5° within the operation band, 35-47 GHz, and mean insertion loss of 7.4 dB. The performance of its integration in a polarimetric receiver for radio astronomy is analyzed, which validates the use of the presented phase shifter in such type of receiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
2011-06-27
We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
Investigation of narrow-band thermal emission from intersubband transitions in quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Zoysa, M.; Hakubi Center, Kyoto University, Yoshida, Kyoto 606-8501; Asano, T.
2015-09-14
We investigate thermal emission from n-doped GaAs/AlGaAs quantum wells (QWs). Emission peaks with Lorentzian shapes (linewidth 11∼19 meV) that reflect transitions between the first and second conduction subbands are observed in the mid-infrared range. It is demonstrated that the emission characteristics can be tuned by modifying the QW parameters. The peak emissivity is increased from 0.3 to 0.9 by modifying the doping density, and the peak wavelength is tuned from 6 to 10 μm by changing the well width. The obtained results are useful for the design of narrow-band thermal emitters.
Narrowband noise study of sliding charge density waves in NbSe3 nanoribbons
NASA Astrophysics Data System (ADS)
Onishi, Seita; Jamei, Mehdi; Zettl, Alex
2017-02-01
Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasing sample thickness.
Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R
1998-03-01
Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.
Electronic structure of uranium overlayers on magnesium and aluminium
NASA Astrophysics Data System (ADS)
Gouder, T.
1997-06-01
We studied U overlayers on polycrystalline Mg and Al by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS, respectively), and compared the mode of growth and the evolution of the electronic structure as a function of coverage. The goal of this work was to detect localization, or at least correlation effects, in U overlayers and U substrate near surface alloys, which were expected to occur because of the reduced U 5f bandwidth in these systems. On Mg, U deposits as a pure overlayer without any interdiffusion, while on Al spontaneous interdiffusion takes place. The U 4f spectra of {U}/{Mg} show only weak correlation satellites. Nevertheless, the asymmetrical shape of the U 4f peak indicates 5f band narrowing. On Al, strong correlation satellites are observed in addition to plasmon loss features. It seems that U-substrate interactions promote correlation effects, while the reduced coordination in overlayers plays a less important role. UPS valence-band (VB) spectra of the two systems look remarkably similar. They do not show any correlation satellites. With decreasing overlayer thickness the 5f peak narrows, which is attributed to 5f band narrowing at the surface.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Serafinelli, R.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2015-01-01
In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.;
2015-01-01
In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong
2009-08-01
The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.
An L-band SAR for repeat pass deformation measurements on a UAV platform
NASA Technical Reports Server (NTRS)
Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don
2003-01-01
We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.
Prieve, Beth A; Calandruccio, Lauren; Fitzgerald, Tracy; Mazevski, Annette; Georgantas, Lea M
2008-08-01
Otoacoustic emission (OAE) testing is now a standard component of the diagnostic audiology protocol for infants and toddlers and is an excellent tool for detecting moderate-to-profound cochlear hearing loss. Detection of hearing loss is especially important in infants and toddlers. Unfortunately, middle-ear dysfunction has a high incidence in this age range and can confound interpretation of OAEs. The goal of the study was to determine how transient-evoked otoacoustic emission (TEOAE) and noise levels were different when tympanometric peak pressures (TPP) measured from tympanograms were normal versus negative in the same individual. Another goal was to determine how TEOAE screening pass rates using a priori pass criteria were affected on days when TPP was negative. TEOAE and noise levels were collected in 18 cases under 2 conditions: on a day when the tympanogram TPP was normal and on a day when the tympanogram TPP was negative. Data were collected from 11 children aged 3 to 39 mo, some of whom were tested more than once. Paired t tests were performed to determine whether there were changes in overall TEOAE and noise levels and TEOAE and noise levels analyzed into half-octave bands. A one-way ANOVA was performed on differences across half-octave bands to determine whether TPP affected TEOAE levels for some frequency bands more than others. Equality-of-proportion Z tests were run to determine whether there were significant differences in the percentage of "passes" on days when TPP was negative and TPP was normal. Mean TEOAE level was lower when TPP was negative, but noise levels did not change between the 2 conditions. Mean TEOAE levels were lower for all frequency bands from 1000 to 4000 Hz and no significant differences were found among the mean reduction across frequency bands. There were no significant differences in the percentage of passes between TEOAEs collected on days when TPP was normal and when TPP was negative. Mean data indicated that when tympanograms had negative TPP, TEOAE level was lower by approximately 4 dB across all frequency bands. However, this affected the pass rate in only 5% to 6% of cases. Although the number of participants in the current study was small, the data suggest that it is possible to measure TEOAEs in children with negative TPP. If emission-to-noise ratio is used to identify hearing loss in mid-to-high frequency bands, the majority of children will still have TEOAEs that meet clinical criteria, this providing the clinician with important information about cochlear status.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Sik; Lee, Sanggyun
2013-06-15
Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequenciesmore » are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.« less
High-power single-pass pumped diamond Raman oscillator
NASA Astrophysics Data System (ADS)
Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.
Dual-Band Band-Pass Filter with Fixed Low Band and Fluidically-Tunable High Band
Park, Eiyong; Lim, Daecheon
2017-01-01
In this work, we present a dual-band band-pass filter with fixed low-band resonant frequency and tunable high-band resonant frequency. The proposed filter consists of two split-ring resonators (SRRs) with a stub and microfluidic channels. The lower resonant frequency is determined by the length of the SRR alone, whereas the higher resonant frequency is determined by the lengths of the SRR and the stub. Using this characteristic, we fix the lower resonant frequency by fixing the SRR length and tune the higher resonant frequency by controlling the stub length by injecting liquid metal in the microfluidic channel. We fabricated the filter on a Duroid substrate. The microfluidic channel was made from polydimethylsiloxane (PDMS), and eutectic gallium–indium (EGaIn) was used as the liquid metal. This filter operates in two states—with, and without, the liquid metal. In the state without the liquid metal, the filter has resonant frequencies at 1.85 GHz and 3.06 GHz, with fractional bandwidths of 4.34% and 2.94%, respectively; and in the state with the liquid metal, it has resonant frequencies at 1.86 GHz and 2.98 GHz, with fractional bandwidths of 4.3% and 2.95%, respectively. PMID:28813001
Li, Wen-Di; Chou, Stephen Y
2010-01-18
We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.
2017-01-18
The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet. Daphnis (5 miles or 8 kilometers across) orbits within the 42-kilometer (26-mile) wide Keeler Gap. Cassini's viewing angle causes the gap to appear narrower than it actually is, due to foreshortening. The little moon's gravity raises waves in the edges of the gap in both the horizontal and vertical directions. Cassini was able to observe the vertical structures in 2009, around the time of Saturn's equinox (see PIA11654). Like a couple of Saturn's other small ring moons, Atlas and Pan, Daphnis appears to have a narrow ridge around its equator and a fairly smooth mantle of material on its surface -- likely an accumulation of fine particles from the rings. A few craters are obvious at this resolution. An additional ridge can be seen further north that runs parallel to the equatorial band. Fine details in the rings are also on display in this image. In particular, a grainy texture is seen in several wide lanes which hints at structures where particles are clumping together. In comparison to the otherwise sharp edges of the Keeler Gap, the wave peak in the gap edge at left has a softened appearance. This is possibly due to the movement of fine ring particles being spread out into the gap following Daphnis' last close approach to that edge on a previous orbit. A faint, narrow tendril of ring material follows just behind Daphnis (to its left). This may have resulted from a moment when Daphnis drew a packet of material out of the ring, and now that packet is spreading itself out. The image was taken in visible (green) light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21056
Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy
Eom, Seunghyun; Memon, Muhammad Usman; Lim, Sungjoon
2017-01-01
In this paper, we have proposed a frequency-switchable complementary split-ring resonator (CSRR)-loaded quarter-mode substrate-integrated-waveguide (QMSIW) band-pass filter. For frequency switching, a microfluidic channel and liquid metal are used. The liquid metal used is eutectic gallium-indium (EGaIn), consisting of 24.5% indium and 75.5% gallium. The microfluidic channels are built using the elastomer polydimethylsiloxane (PDMS) and three-dimensional-printed microfluidic channel frames. The CSRR-loaded QMSIW band-pass filter is designed to have two states. Before the injection of the liquid metal, the measured center frequency and fractional bandwidths are 2.205 GHz and 6.80%, respectively. After injection, the center frequency shifts from 2.205 GHz to 2.56 GHz. Although the coupling coefficient is practically unchanged, the fractional bandwidth changes from 6.8% to 9.38%, as the CSRR shape changes and the external quality factor decreases. After the removal of the liquid metal, the measured values are similar to the values recorded before the liquid metal was injected. The repeatability of the frequency-switchable mechanism is, therefore, verified. PMID:28350355
NASA Astrophysics Data System (ADS)
O'Brien, James G.; Chiarelli, Thomas L.; Mannheim, Philip D.
2018-07-01
In a recent paper McGaugh, Lelli, and Schombert showed that in an empirical plot of the observed centripetal accelerations in spiral galaxies against those predicted by the Newtonian gravity of the luminous matter in those galaxies the data points occupied a remarkably narrow band. While one could summarize the mean properties of the band by drawing a single mean curve through it, by fitting the band with the illustrative conformal gravity theory with fits that fill out the width of the band we show here that the width of the band is just as physically significant. We show that at very low luminous Newtonian accelerations the plot can become independent of the luminous Newtonian contribution altogether, but still be non-trivial due to the contribution of matter outside of the galaxies (viz. the rest of the visible universe). We present a new empirical plot of the difference between the observed centripetal accelerations and the luminous Newtonian expectations as a function of distance from the centers of galaxies, and show that at distances greater than 10 kpc the plot also occupies a remarkably narrow band, one even close to constant. Using the conformal gravity theory we provide a first principles derivation of the empirical Tully-Fisher relation.
NASA Technical Reports Server (NTRS)
Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)
2002-01-01
Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.
Fabrication of dense wavelength division multiplexing filters with large useful area
NASA Astrophysics Data System (ADS)
Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng
2006-08-01
Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.
Experimental Study of Temperature-Dependence Laws of Non-Voigt Absorption Line Shape Parameters
NASA Astrophysics Data System (ADS)
Wilzewski, Jonas; Birk, Manfred; Loos, Joep; Wagner, Georg
2017-06-01
To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν_3 rovibrational band of CO_2 perturbed by 10, 30, 100, 300 and 1000 mbar of N_2 were measured at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we will present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range. Tran et al. JQSRT 129, 199-203 (2013); JQSRT 134, 104 (2014). Loos et al., 2014; http://doi.org/10.5281/zenodo.11156. Ngo et al. JQSRT 29, 89-100 (2013); JQSRT 134, 105 (2014).
Laser-induced plasmas in air studied using two-color interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zefeng; Wu, Jian, E-mail: jxjawj@mail.xjtu.edu.cn; Li, Xingwen
2016-08-15
Temporally and spatially resolved density profiles of Cu atoms, electrons, and compressed air, from laser-induced copper plasmas in air, are measured using fast spectral imaging and two-color interferometry. From the intensified CCD images filtered by a narrow-band-pass filter centered at 515.32 nm, the Cu atoms expansion route is estimated and used to determine the position of the fracture surface between the Cu atoms and the air. Results indicate that the Cu atoms density at distances closer to the target (0–0.4 mm) is quite low, with the maximum density appearing at the edge of the plasma's core being ∼4.6 × 10{sup 24 }m{sup −3} at 304 ns.more » The free electrons are mainly located in the internal region of the plume, which is supposed to have a higher temperature. The density of the shock wave is (4–6) × 10{sup 25 }m{sup −3}, corresponding to air compression of a factor of 1.7–2.5.« less
Visualization of hump formation in high-speed gas metal arc welding
NASA Astrophysics Data System (ADS)
Wu, C. S.; Zhong, L. M.; Gao, J. Q.
2009-11-01
The hump bead is a typical weld defect observed in high-speed welding. Its occurrence limits the improvement of welding productivity. Visualization of hump formation during high-speed gas metal arc welding (GMAW) is helpful in the better understanding of the humping phenomena so that effective measures can be taken to suppress or decrease the tendency of hump formation and achieve higher productivity welding. In this study, an experimental system was developed to implement vision-based observation of the weld pool behavior during high-speed GMAW. Considering the weld pool characteristics in high-speed welding, a narrow band-pass and neutral density filter was equipped for the CCD camera, the suitable exposure time was selected and side view orientation of the CCD camera was employed. The events that took place at the rear portion of the weld pools were imaged during the welding processes with and without hump bead formation, respectively. It was found that the variation of the weld pool surface height and the solid-liquid interface at the pool trailing with time shows some useful information to judge whether the humping phenomenon occurs or not.
Scotti, F.; Soukhanovskii, V. A.
2015-12-09
A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3more » orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.« less
Measurements of terahertz radiation generated using a metallic, corrugated pipe
Bane, Karl; Stupakov, Gennady; Antipov, Sergey; ...
2016-11-23
Here, a method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 µm. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam comparedmore » to the wavelength of the radiation, but with short rise time, to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation. For the THz pulse we obtain and compare with calculations: the central frequency, the bandwidth, and the spectral power—compared to a diffraction radiation background signal.« less
Measurements of terahertz radiation generated using a metallic, corrugated pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, Karl; Stupakov, Gennady; Antipov, Sergey
Here, a method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 µm. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam comparedmore » to the wavelength of the radiation, but with short rise time, to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation. For the THz pulse we obtain and compare with calculations: the central frequency, the bandwidth, and the spectral power—compared to a diffraction radiation background signal.« less
NASA Technical Reports Server (NTRS)
Chubb, Donald L. (Inventor)
1992-01-01
This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.
NASA Technical Reports Server (NTRS)
Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.
1980-01-01
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.
A search for narrow band signals with SERENDIP II: a progress report
NASA Technical Reports Server (NTRS)
Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.
1988-01-01
Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.
Modeling Bi-induced changes in the electronic structure of GaAs1-xBix alloys
NASA Astrophysics Data System (ADS)
Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.
2013-12-01
We suggested recently [V. Virkkala , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.88.035204 88, 035204 (2013)] that the band-gap narrowing in dilute GaAs1-xNx alloys can be explained to result from the broadening of the localized N states due to the N-N interaction along the zigzag chains in the <110> directions. In that study our tight-binding modeling based on first-principles density-functional calculations took into account the random distribution of N atoms in a natural way. In this work we extend our modeling to GaAs1-xBix alloys. Our results indicate that Bi states mix with host material states. However, the states near the valence-band edge agglomerate along the zigzag chains originating from individual Bi atoms. This leads to Bi-Bi interactions in a random alloy broadening these states in energy and causing the band-gap narrowing.
A search for narrow band signals with SERENDIP II: a progress report.
Werthimer, D; Brady, R; Berezin, A; Bowyer, S
1988-01-01
Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.
Dual-band frequency selective surface with large band separation and stable performance
NASA Astrophysics Data System (ADS)
Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo
2012-05-01
A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.
Photonic band structures in one-dimensional photonic crystals containing Dirac materials
NASA Astrophysics Data System (ADS)
Wang, Lin; Wang, Li-Gang
2015-09-01
We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions.
Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang
2017-05-15
In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.
Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS)
NASA Astrophysics Data System (ADS)
Kumer, John B.; Rairden, Richard L.; Mitchell, Keith E.; Roche, Aidan E.; Mergenthaler, John L.
2002-11-01
The Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS) uses relatively inexpensive off the shelf components in a small and simple package to provide ultra high spectral resolution over a limited spectral range. For example, the modest first try laboratory test setup DECTOSS we describe in this presentation achieves resolving power ~ 105 on a spectral range of about 1 nm centered near 760 nm. This ultra high spectral resolution facilitates some important atmospheric remote sensing applications including profiling cirrus and/or aerosol above bright reflective surfaces in the O2 A-band and the column measurements of CO and CO2 utilizing solar reflectance spectra. We show details of the how the use of ultra high spectral resolution in the O2 A-band improves the profiling of cirrus and aerosol. The DECTOSS utilizes a Narrow Band Spectral Filter (NBSF), a Low Resolution Etalon (LRE) and a High Resolution Etalon (HRE). Light passing through these elements is focused on to a 2 Dimensional Array Detector (2DAD). Off the shelf, solid etalons with airgap or solid spacer gap are used in this application. In its simplest application this setup utilizes a spatially uniform extended source so that spatial and spectral structure are not confused. In this presentation we'll show 2D spectral data obtained in a desktop test configuration, and in the first try laboratory test setup. These were obtained by illuminating a Lambertian screen with (1) monochromatic light, and (2) with atmospheric absorption spectra in the oxygen (O2) A-band. Extracting the 1D spectra from these data is a work in progress and we show preliminary results compared with (1) solar absorption data obtained with a large Echelle grating spectrometer, and (2) theoretical spectra. We point out areas for improvement in our laboratory test setup, and general improvements in spectral range and sensitivity that are planned for our next generation field test setup.
High brightness diode lasers controlled by volume Bragg gratings
NASA Astrophysics Data System (ADS)
Glebov, Leonid
2017-02-01
Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.
NASA Astrophysics Data System (ADS)
Hazelaar, Colien; Dahele, Max; Mostafavi, Hassan; van der Weide, Lineke; Slotman, Ben; Verbakel, Wilko
2018-06-01
Lung tumors treated in breath-hold are subject to inter- and intra-breath-hold variations, which makes tumor position monitoring during each breath-hold important. A markerless technique is desirable, but limited tumor visibility on kV images makes this challenging. We evaluated if template matching + triangulation of kV projection images acquired during breath-hold stereotactic treatments could determine 3D tumor position. Band-pass filtering and/or digital tomosynthesis (DTS) were used as image pre-filtering/enhancement techniques. On-board kV images continuously acquired during volumetric modulated arc irradiation of (i) a 3D-printed anthropomorphic thorax phantom with three lung tumors (n = 6 stationary datasets, n = 2 gradually moving), and (ii) four patients (13 datasets) were analyzed. 2D reference templates (filtered DRRs) were created from planning CT data. Normalized cross-correlation was used for 2D matching between templates and pre-filtered/enhanced kV images. For 3D verification, each registration was triangulated with multiple previous registrations. Generally applicable image processing/algorithm settings for lung tumors in breath-hold were identified. For the stationary phantom, the interquartile range of the 3D position vector was on average 0.25 mm for 12° DTS + band-pass filtering (average detected positions in 2D = 99.7%, 3D = 96.1%, and 3D excluding first 12° due to triangulation angle = 99.9%) compared to 0.81 mm for band-pass filtering only (55.8/52.9/55.0%). For the moving phantom, RMS errors for the lateral/longitudinal/vertical direction after 12° DTS + band-pass filtering were 1.5/0.4/1.1 mm and 2.2/0.3/3.2 mm. For the clinical data, 2D position was determined for at least 93% of each dataset and 3D position excluding first 12° for at least 82% of each dataset using 12° DTS + band-pass filtering. Template matching + triangulation using DTS + band-pass filtered images could accurately determine the position of stationary lung tumors. However, triangulation was less accurate/reliable for targets with continuous, gradual displacement in the lateral and vertical directions. This technique is therefore currently most suited to detect/monitor offsets occurring between initial setup and the start of treatment, inter-breath-hold variations, and tumors with predominantly longitudinal motion.
Searching for Wolf-Rayet Stars Beyond the Local Group
NASA Astrophysics Data System (ADS)
Bibby, J. L.; Shara, M. M.; Crowther, P. A.; Moffat, A. F. J.
2012-12-01
We present preliminary results from our HST/WFC3 F469N narrow-band imaging of the nearby star-forming galaxy M101 in which we search for Wolf-Rayet (WR) stars, possible progenitors of Type Ibc core-collapse supernovae (ccSNe). From analysis of the central pointing of M101 we identify ˜1000 WR candidates from photometric analysis and estimate ˜ 450 using the “blinking” method. From analysis of a sample region we find that 35% of our WR candidates would not be detected in ground-based surveys and 40% of sources are not detected in the HST F435W images, highlighting the importance of high spatial resolution narrow-band imaging.
Narrowband noise study of sliding charge density waves in NbSe 3 nanoribbons
Onishi, Seita; Jamei, Mehdi; Zettl, Alex
2017-01-12
Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe 3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasingmore » sample thickness.« less
Sky-radiance gradient measurements at narrow bands in the visible.
Winter, E M; Metcalf, T W; Stotts, L B
1995-07-01
Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.
H-tailored surface conductivity in narrow band gap In(AsN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O.
2015-01-12
We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.
Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awari, N.; University of Groningen, 9747 AG Groningen; Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie
2016-07-18
Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.
Applications of Microwave Photonics in Radio Astronomy and Space Communication
NASA Technical Reports Server (NTRS)
D'Addario, Larry R.; Shillue, William P.
2006-01-01
An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.
NASA Astrophysics Data System (ADS)
Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.
2018-03-01
We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.
Time course of dichoptic masking in normals and suppression in amblyopes.
Zhou, Jiawei; McNeal, Suzanne; Babu, Raiju J; Baker, Daniel H; Bobier, William R; Hess, Robert F
2014-04-17
To better understand the relationship between dichoptic masking in normal vision and suppression in amblyopia we address three questions: First, what is the time course of dichoptic masking in normals and amblyopes? Second, is interocular suppression low-pass or band-pass in its spatial dependence? And third, in the above two regards, is dichoptic masking in normals different from amblyopic suppression? We measured the dependence of dichoptic masking in normal controls and amblyopes on the temporal duration of presentation under three conditions; monocular (the nontested eye-i.e., dominant eye of normals or nonamblyopic eye of amblyopes, being patched), dichoptic-luminance (the nontested eye seeing a mean luminance-i.e., a DC component) and dichoptic-contrast (the nontested eye seeing high-contrast visual noise). The subject had to detect a letter in the other eye, the contrast of which was varied. We found that threshold elevation relative to the patched condition occurred in both normals and amblyopes when the nontested eye saw either 1/f or band-pass filtered noise, but not just mean luminance (i.e., there was no masking from the DC component that corresponds to a channel responsive to a spatial frequency of 0 cyc/deg); longer presentation of the target (corresponding to lower temporal frequencies) produced greater threshold elevation. Dichoptic masking exhibits similar properties in both subject groups, being low-pass temporally and band-pass spatially, so that masking was greatest at the longest presentation durations and was not greatly affected by mean luminance in the nontested eye. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Effects of spatial frequency content on classification of face gender and expression.
Aguado, Luis; Serrano-Pedraza, Ignacio; Rodríguez, Sonia; Román, Francisco J
2010-11-01
The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cutoff frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickmott, T. W.
Narrow band-pass filters have been used to measure the spectral distribution of electroluminescent photons with energies between 1.8 eV and 3.0 eV from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12 nm and 18 nm. Electroforming of metal-insulator-metal (MIM) diodes is a non-destructive dielectric breakdown that results in a conducting channel in the insulator and changes the initial high resistance of the MIM diode to a low resistance state. It is a critical step in the development of resistive-switching memories that utilize MIM diodes as the active element. Electroforming of Al-Al{sub 2}O{sub 3}-Ag diodes in vacuum results in voltage-controlledmore » negative resistance (VCNR) in the current-voltage (I-V) characteristics. Electroluminescence (EL) and electron emission into vacuum (EM) develop simultaneously with the current increase that results in VCNR in the I-V characteristics. EL is due to recombination of electrons injected at the Al-Al{sub 2}O{sub 3} interface with radiative defect centers in Al{sub 2}O{sub 3}. Measurements of EL photons between 1.8 eV and 3.0 eV using a wide band-pass filter showed that EL intensity is exponentially dependent on Al{sub 2}O{sub 3} thickness for Al-Al{sub 2}O{sub 3}-Ag diodes between 12 nm and 20 nm thick. Enhanced El intensity in the thinnest diodes is attributed to an increase in the spontaneous emission rate of recombination centers due to high electromagnetic fields generated in Al{sub 2}O{sub 3} when EL photons interact with electrons in Ag or Al to form surface plasmon polaritons at the Al{sub 2}O{sub 3}-Ag or Al{sub 2}O{sub 3}-Al interface. El intensity is a maximum at 2.0–2.2 eV for Al-Al{sub 2}O{sub 3}-Ag diodes with Al{sub 2}O{sub 3} thicknesses between 12 nm and 18 nm. EL in diodes with 12 nm or 14 nm of Al{sub 2}O{sub 3} is enhanced by factors of 8–10 over EL from a diode with 18 nm of Al{sub 2}O{sub 3}. The extent of EL enhancement in the thinnest diodes can vary significantly between samples. A narrow band of recombination centers was found in one Al-Al{sub 2}O{sub 3}-Ag diode with 12 nm of Al{sub 2}O{sub 3}; it had EL intensity 100 times greater at 2.15 eV than the diode with 18 nm of Al{sub 2}O{sub 3}. EL intensity for photons with energies greater than 2.6 eV is nearly the same for all diodes.« less
VizieR Online Data Catalog: New planetary nebulae in LMC (Reid+, 2006)
NASA Astrophysics Data System (ADS)
Reid, W. A.; Parker, Q. A.
2006-05-01
Over the last few years, we have specially constructed additional deep, homogeneous, narrow-band H and matching broad-band 'SR' (Short Red) maps of the entire central 25deg2 of the LMC. These unique maps were obtained from co-adding 12 well-matched UKST 2-h Hα exposures and six 15-min equivalent SR-band exposures on the same field using high-resolution Tech-Pan film. The 'SuperCOSMOS' plate-measuring machine at the Royal Observatory Edinburgh (Hambly et al., 2001MNRAS.326.1279) has scanned, co-added and pixel-matched these exposures, creating 10-m (0.67-arcsec) pixel data which goes 1.35 and 1mag deeper than individual exposures, achieving the full canonical Poissonian depth gain, e.g. Bland-Hawthorn, Shopbell & Malin (1993AJ....106.2154B). This gives a depth ~21.5 for the SR images and Requiv~22 for Hα (4.5x10-17erg/cm2/s/{AA}) which is at least 1-mag deeper than the best wide-field narrow-band LMC images currently available. (2 data files).
Implementation of a piezoelectric energy harvester in railway health monitoring
NASA Astrophysics Data System (ADS)
Li, Jingcheng; Jang, Shinae; Tang, Jiong
2014-03-01
With development of wireless sensor technology, wireless sensor network has shown a great potential for railway health monitoring. However, how to supply continuous power to the wireless sensor nodes is one of the critical issues in long-term full-scale deployment of the wireless smart sensors. Some energy harvesting methodologies have been available including solar, vibration, wind, etc; among them, vibration-based energy harvester using piezoelectric material showed the potential for converting ambient vibration energy to electric energy in railway health monitoring even for underground subway systems. However, the piezoelectric energy harvester has two major problems including that it could only generate small amount of energy, and that it should match the exact narrow band natural frequency with the excitation frequency. To overcome these problems, a wide band piezoelectric energy harvester, which could generate more power on various frequencies regions, has been designed and validated with experimental test. Then it was applied to a full-scale field test using actual railway train. The power generation of the wide band piezoelectric array has been compared to a narrow-band, resonant-based, piezoelectric energy harvester.
Step width alters iliotibial band strain during running.
Meardon, Stacey A; Campbell, Samuel; Derrick, Timothy R
2012-11-01
This study assessed the effect of step width during running on factors related to iliotibial band (ITB) syndrome. Three-dimensional (3D) kinematics and kinetics were recorded from 15 healthy recreational runners during overground running under various step width conditions (preferred and at least +/- 5% of their leg length). Strain and strain rate were estimated from a musculoskeletal model of the lower extremity. Greater ITB strain and strain rate were found in the narrower step width condition (p < 0.001, p = 0.040). ITB strain was significantly (p < 0.001) greater in the narrow condition than the preferred and wide conditions and it was greater in the preferred condition than the wide condition. ITB strain rate was significantly greater in the narrow condition than the wide condition (p = 0.020). Polynomial contrasts revealed a linear increase in both ITB strain and strain rate with decreasing step width. We conclude that relatively small decreases in step width can substantially increase ITB strain as well as strain rates. Increasing step width during running, especially in persons whose running style is characterized by a narrow step width, may be beneficial in the treatment and prevention of running-related ITB syndrome.
47 CFR 101.131 - Transmitter construction and installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... by the licensee. (b) In any case where the maximum modulating frequency of a transmitter is prescribed by the Commission, the transmitter must be equipped with a low-pass or band-pass modulation filter of suitable performance characteristics. In those cases where a modulation limiter is employed, the...
NASA Astrophysics Data System (ADS)
Ryan, Colan Graeme Matthew
Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates NRI-TL elements to achieve circular polarization at 2.3 GHz and 2.7 GHz, with radiation efficiencies of 70% and 78%, respectively. Optical transparency of 50% is then realized by cutting a grid through the antenna and substrate, making the device suitable for direct integration with solar panels. Therefore, this research provides several proof-of-concept devices to highlight the flexibility and multi-band properties of the G-NRI-TL which extend the capabilities of microwave transceiver systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in
Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less
Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals
NASA Technical Reports Server (NTRS)
Horowitz, Paul; Sagan, Carl
1993-01-01
We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.
Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing
2016-01-01
Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540
NASA Astrophysics Data System (ADS)
Gandhi, Y.; Rajanikanth, P.; Sundara Rao, M.; Ravi Kumar, V.; Veeraiah, N.; Piasecki, M.
2016-07-01
This study is mainly focused on enriching the UVB 311 narrow emission band of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glasses doped with 1.0 mol% of Gd2O3 and mixed with different concentrations of SnO2 (0-7.0 mol%). The emission spectra SnO2 free glasses exhibited intense narrow UVB band at 311 nm due to 6P7/2 → 8S7/2 transition of Gd3+ ions when excited at 273 nm. The intensity of this band is found to be enhanced nearly four times when the glasses are mixed with 3.0 mol% of SnO2. The reasons for this enhancement have been explored in the light of energy transfer from Sn4+ to Gd3+ ions with the help of rate equations. The declustering of Gd3+ ions (that reduce cross relaxation losses) by tin ions is also found to the other reason for such enrichment. The 311 nm radiation is an efficient in the treatment of various skin diseases and currently it is one of the most desirable and commonly utilised UVB in the construction of phototherapy devices.
Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian
2018-03-20
The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.
Rectangular optical filter based on high-order silicon microring resonators
NASA Astrophysics Data System (ADS)
Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan
2017-07-01
The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.
Noise in two-color electronic distance meter measurements revisited
Langbein, J.
2004-01-01
Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.
Cluster analysis of multiple planetary flow regimes
NASA Technical Reports Server (NTRS)
Mo, Kingtse; Ghil, Michael
1988-01-01
A modified cluster analysis method developed for the classification of quasi-stationary events into a few planetary flow regimes and for the examination of transitions between these regimes is described. The method was applied first to a simple deterministic model and then to a 500-mbar data set for Northern Hemisphere (NH), for which cluster analysis was carried out in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters were found in the low-frequency band of more than 10 days, while transient clusters were found in the band-pass frequency window between 2.5 and 6 days. In the low-frequency band, three pairs of clusters determined EOFs 1, 2, and 3, respectively; they exhibited well-known regional features, such as blocking, the Pacific/North American pattern, and wave trains. Both model and low-pass data exhibited strong bimodality.
Faraday anomalous dispersion optical filters
NASA Technical Reports Server (NTRS)
Shay, T. M.; Yin, B.
1992-01-01
The present calculations of the performance of Faraday anomalous dispersion optical filters (FADOF) on IR transitions indicate that such filters may furnish high transmission, narrow-pass bandwidth, and low equivalent noise bandwidth under optimum operating conditions. A FADOF consists of an atomic vapor cell between crossed polarizers that are subject to a dc magnetic field along the optical path; when linearly polarized light travels along the direction of the magnetic field through the dispersive atomic vapor, a polarization rotation occurs. If FADOF conditions are suitably adjusted, a maximum transmission with very narrow bandwidth is obtained.
Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan
2017-01-26
Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV 0.2 , indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections.
Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan
2017-01-01
Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections. PMID:28772469
Nondestrucive analysis of fuel pins
Stepan, I.E.; Allard, N.P.; Suter, C.R.
1972-11-03
Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.
NASA Astrophysics Data System (ADS)
Hirayama, Toru; Kozawa, Yuichi; Nakamura, Takahiro; Sato, Shunichi
2006-12-01
We demonstrated a generation of cylindrically symmetric, polarized laser beams with narrow linewidth and fine tunability. Since an LP11 mode beam in an optical fiber is a superposition of an HE21 (hybrid) mode beam and a TE01 or TM01 mode beam, firstly, a higher order transverse (TEM01 or TEM10) mode laser beam with narrow linewidth and fine tunability was generated from an external cavity diode laser (ECDL) in conjunction with a phase adjustment plate. Then the beam generated was passed in a two mode optical fiber. A doughnut shaped laser beam with the cylindrically symmetric polarization (a radially or azimuthally polarized beam) was obtained by properly adding stress-induced birefringence in the optical fiber.
A novel speech processing algorithm based on harmonicity cues in cochlear implant
NASA Astrophysics Data System (ADS)
Wang, Jian; Chen, Yousheng; Zhang, Zongping; Chen, Yan; Zhang, Weifeng
2017-08-01
This paper proposed a novel speech processing algorithm in cochlear implant, which used harmonicity cues to enhance tonal information in Mandarin Chinese speech recognition. The input speech was filtered by a 4-channel band-pass filter bank. The frequency ranges for the four bands were: 300-621, 621-1285, 1285-2657, and 2657-5499 Hz. In each pass band, temporal envelope and periodicity cues (TEPCs) below 400 Hz were extracted by full wave rectification and low-pass filtering. The TEPCs were modulated by a sinusoidal carrier, the frequency of which was fundamental frequency (F0) and its harmonics most close to the center frequency of each band. Signals from each band were combined together to obtain an output speech. Mandarin tone, word, and sentence recognition in quiet listening conditions were tested for the extensively used continuous interleaved sampling (CIS) strategy and the novel F0-harmonic algorithm. Results found that the F0-harmonic algorithm performed consistently better than CIS strategy in Mandarin tone, word, and sentence recognition. In addition, sentence recognition rate was higher than word recognition rate, as a result of contextual information in the sentence. Moreover, tone 3 and 4 performed better than tone 1 and tone 2, due to the easily identified features of the former. In conclusion, the F0-harmonic algorithm could enhance tonal information in cochlear implant speech processing due to the use of harmonicity cues, thereby improving Mandarin tone, word, and sentence recognition. Further study will focus on the test of the F0-harmonic algorithm in noisy listening conditions.
Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal
NASA Astrophysics Data System (ADS)
Yue, Chenxi; Tan, Wei; Liu, Jianjun
2018-05-01
In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2018-05-01
In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.
Multiband product rule and consonant identification.
Li, Feipeng; Allen, Jont B
2009-07-01
The multiband product rule, also known as band-independence, is a basic assumption of articulation index and its extension, the speech intelligibility index. Previously Fletcher showed its validity for a balanced mix of 20% consonant-vowel (CV), 20% vowel-consonant (VC), and 60% consonant-vowel-consonant (CVC) sounds. This study repeats Miller and Nicely's version of the hi-/lo-pass experiment with minor changes to study band-independence for the 16 Miller-Nicely consonants. The cut-off frequencies are chosen such that the basilar membrane is evenly divided into 12 segments from 250 to 8000 Hz with the high-pass and low-pass filters sharing the same six cut-off frequencies in the middle. Results show that the multiband product rule is statistically valid for consonants on average. It also applies to subgroups of consonants, such as stops and fricatives, which are characterized by a flat distribution of speech cues along the frequency. It fails for individual consonants.
Detached rock evaluation device
Hanson, David R.
1986-01-01
A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.
Broad band waveguide spectrometer
Goldman, Don S.
1995-01-01
A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.
Theoretical colours and isochrones for some Hubble Space Telescope colour systems
NASA Technical Reports Server (NTRS)
Edvardsson, B.; Bell, R. A.
1989-01-01
Synthetic spectra for effective temperatures of 4000-7250 K, logarithmic surface gravities typical of dwarfs and subgiants, and metallicities from solar values to 0.001 of the solar metallicity were used to derive a grid of synthetic surface brightness magnitudes for 21 of the Hubble Space Telescope Wide Field Camera (WFC) band passes. The absolute magnitudes of these 21 band passes are also obtained for a set of globular cluster isochrones with different helium abundances, metallicities, oxygen abundances, and ages. The usefulness and efficiency of different sets of broad and intermediate bandwidth WFC colors for determining ages and metallicities for globular clusters are evaluated.
Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan
2013-05-20
We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.
Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun
2015-01-01
We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies. PMID:26552584
Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun
2015-11-10
We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.
NASA Astrophysics Data System (ADS)
Arnaud, F.; Piégay, H.; Schmitt, L.; Rollet, A. J.; Ferrier, V.; Béal, D.
2015-05-01
The Old Rhine downstream of the Kembs diversion dam is one of the largest by-passed river reaches in the world (50 km). It offers a unique opportunity to study the morphological effects of by-passing and address physical and ecological restoration approaches in regulated rivers. We conduct a space-time analysis of channel adjustment over a period of 80 years (1932 to 2011). We examine planform changes (from aerial photographs), erosional and depositional patterns (from vertical profiles), sediment sizes within the active channel and the new established floodplain, and we date riparian vegetation encroachment. Results show that the Old Rhine exhibited rapid response to the completion of the by-passing scheme in the 1950s, with a 26% narrowing in median active channel width between 1956 and 2008, from vegetation encroachment on dewatered channel margins (mostly groyne fields). The narrowing was accompanied by overbank fine sediment deposition (~ 1.5 cm y- 1 aggradation since 1950) as well as slight bed degradation (~ 0.7 cm y- 1 since 1950). We found no downstream propagation of active channel narrowing over time, nor propagation of bed degradation. The channel was already significantly adjusted prior to the diversion scheme, following the nineteenth century river straightening and groyne construction. By-passing (dewatering) mainly provided new pioneer habitat for synchronous vegetation establishment and promoted channel stability by decreasing sediment transport owing to peak flow reduction. The morphological budget calculated over the past 20 years estimated a downstream output for coarse sediments at 16,000 m3 y- 1, with 80% originating from bed degradation and 20% from bank erosion, without significant inputs from upstream. The present-day morphodynamics remain sensitive to changes because of dynamic bed armouring (< 2.1). This retrospective analysis permits us to discuss management strategies for altered rivers. Recommended activities are gravel reintroduction with particle-sizes finer than the armoured river bed to enhance sediment transport and promote form dynamism under current flood magnitudes. This should be coupled with river widening to allow for complex depositional patterns that benefit ecological habitats. These actions should not be implemented without prior analysis of local sediment transfer processes based on in situ experiments and modelling.
Locata Performance Evaluation in the Presence of Wide- and Narrow-Band Interference
NASA Astrophysics Data System (ADS)
Khan, Faisal A.; Rizos, Chris; Dempster, Andrew G.
Classically difficult positioning environments often call for augmentation technology to assist the GPS, or more generally the Global Navigation Satellite System (GNSS) technology. The ground-based ranging technology offers augmentation, and even replacement, to GPS in such environments. However, like any other system relying on wireless technology, a Locata positioning network also faces issues in the presence of RF interference (RFI). This problem is magnified due to the fact that Locata operates in the licence-free 2·4 GHz Industrial, Scientific and Medical (ISM) band. The licence-free nature of this band attracts a much larger number of devices using a wider range of signal types than for licensed bands, resulting in elevation of the noise floor. Also, harmonics from out-of-band signals can act as potential interferers. WiFi devices operating in this band have been identified as the most likely potential interferer, due partially to their use of the whole ISM band, but also because Locata applications often also may use a wireless network. This paper evaluates the performance of Locata in the presence of both narrow- and wide-band interfering signals. Effects of received interference on both raw measurements and final solutions are reported and analysed. Test results show that Locata performance degrades in the presence of received interference. It is also identified that high levels of received interference can affect Locata carriers even if the interference is not in co-frequency situation with the affected carrier. Finally, Locata characteristics have been identified which can be exploited to mitigate RFI issues.
Novel schemes for the optimization of the SPARC narrow band THz source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, B., E-mail: barbara.marchetti@desy.de; Zagorodnov, I.; Bacci, A.
2015-07-15
A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-bandmore » and acting as a longitudinal phase space linearizer.« less
Update on narrow band imaging in disorders of the upper gastrointestinal tract.
Singh, Rajvinder; Lee, Shok Y; Vijay, Nimal; Sharma, Prateek; Uedo, Noriya
2014-03-01
With the ever-increasing concern regarding morbidity and mortality associated with diseases of the gastrointestinal tract, the importance of an effective and efficient diagnostic tool cannot be overstated. The standard of care currently is an examination using conventional white light endoscopy. This approach may occasionally overlook areas exhibiting a premalignant change. Numerous image-enhanced modalities have been recently introduced. Narrow band imaging (NBI) appears to be the most prominent of these and perhaps the most commonly used. Thepresent review will focus on some of the newer studies on NBI and its utility in the diagnosis of malignant, pre-malignant and chronic inflammatory conditions of the upper gastrointestinal tract. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.
NASA Astrophysics Data System (ADS)
Kondo, Daiyu; Sato, Shintaro; Awano, Yuji
2006-05-01
Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution have been synthesized by hot-filament chemical vapor deposition using acetylene at 590 °C. Iron nanoparticles with diameters of 1.6, 2.0, 2.5, 5.0 and 10 nm (standard deviation: ≈10%) obtained with a differential mobility analyzer were used as a catalyst without any supporting materials on a substrate. SWNTs were obtained from 2.0 nm or smaller particles. The ratio of G band to D band in Raman spectra was as high as 35 without purification, indicating that high-quality SWNTs were synthesized. The SWNT diameters correlated with the particle diameters, demonstrating diameter-controlled SWNT growth.
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; ...
2017-11-10
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less
Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn
NASA Astrophysics Data System (ADS)
Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2011-06-01
Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
NASA Astrophysics Data System (ADS)
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
2017-10-01
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. Here we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling, and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.
UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band
NASA Astrophysics Data System (ADS)
Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei
2017-12-01
A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.
VizieR Online Data Catalog: Merging galaxies with tidal tails in COSMOS to z=1 (Wen+, 2016)
NASA Astrophysics Data System (ADS)
Wen, Z. Z.; Zheng, X. Z.
2017-02-01
Our study utilizes the public data and catalogs from multi-band deep surveys of the COSMOS field. The UltraVISTA survey (McCracken+ 2012, J/A+A/544/A156) provides ultra-deep near-IR imaging observations of this field in the Y,J,H, and Ks-band, as well as a narrow band (NB118). The HST/ACS I-band imaging data are publicly available, allowing us to measure morphologies in the rest-frame optical for galaxies at z<=1. The HST/ACS I-band images reach a 5σ depth of 27.2 magnitude for point sources. (1 data file).
HIGH-SPEED GC/MS FOR AIR ANALYSIS
High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...
Lee, Ji Hyung; Park, Chang Geun; Kim, Aesun; Kim, Hyung Jong; Kim, Youngseo; Park, Sungnam; Cho, Min Ju; Choi, Dong Hoon
2018-06-06
We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm 2 , demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.
Ternary arsenides ATt{sub 3}As{sub 3} (A=K, Rb; Tt=Ge, Sn) with layered structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatun, Mansura; Stoyko, Stanislav S.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca
2016-06-15
The four ternary arsenides ATt{sub 3}As{sub 3} (A=K, Rb; Tt=Ge, Sn) were obtained by reaction of the elements at 600–650 °C. They adopt an orthorhombic structure (space group Pnma, Z=4, with cell parameters ranging from a=9.9931(11) Å, b=3.7664(4) Å, c=18.607(2) Å for KGe{sub 3}As{sub 3} to a=10.3211(11) Å, b=4.0917(4) Å, c=19.570(2) Å for RbSn{sub 3}As{sub 3}) containing corrugated [Tt{sub 3}As{sub 3}] layers built from Tt-centred trigonal pyramids and tetrahedra forming five-membered rings decorated with As handles. They can be considered to be Zintl phases with Tt atoms in +4, +3, and +1 oxidation states. Band structure calculations predict that thesemore » compounds are semiconductors with narrow band gaps (0.71 eV in KGe{sub 3}As{sub 3}, 0.50 eV in KSn{sub 3}As{sub 3}). - Graphical abstract: Ternary arsenides ATt{sub 3}As{sub 3} (A=K, Rb; Tt=Ge, Sn) contain corrugated layers with Tt atoms in three different oxidation states and are narrow band gap semiconductors. Display Omitted - Highlights: • ATt{sub 3}As{sub 3} (A=K, Rb; Tt=Ge, Sn) contains Tt atoms in three oxidation states. • The structure differs from NaGe{sub 3}P{sub 3} in terms of layer stacking arrangement. • The compounds are predicted to be narrow band gap semiconductors.« less
Multi-Pass Quadrupole Mass Analyzer
NASA Technical Reports Server (NTRS)
Prestage, John D.
2013-01-01
Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The QMA-based instrument will thus give way to substantial reductions of the mass of flight instruments.
NASA Astrophysics Data System (ADS)
Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro
2013-09-01
We have been studied a finite asymmetric metal-insulator-metal (MIM) structure on glass plate for near-future visible light communication (VLC) system with white LED illuminations in the living space (DOI: 10.1117/12.929201). The metal layers are vacuum-evaporated thin silver (Ag) films (around 50 nm and 200 nm, respectively), and the insulator layer (around 150 nm) is composed of magnesium fluoride (MgF2). A characteristic narrow band filtering of the MIM structure at visible region might cause a confinement of intense surface plasmon polaritons (SPPs) at specific monochromatic frequency inside a subwavelength insulator layer of the MIM structure. Central wavelength and depth of such absorption dip in flat spectral reflectance curve is controlled by changing thicknesses of both insulator and thinner metal layers. On the other hand, we have proposed a twin-hole pass-through wave guide for SPPs in thick Ag film (DOI: 10.1117/12.863587). At that time, the twin-hole converted a incoming plane light wave into a pair of channel plasmon polaritons (CPPs), and united them at rear surface of the Ag film. This research is having an eye to extract, guide, and focus the SPPs through a thicker metal layer of the MIM with FIBed subwavelength pass-through holes. The expected outcome is a creation of noble, monochromatic, and tunable fiber probe for scanning near-field optical microscopes (SNOMs) with intense white light sources. Basic experimental and FEM simulation results will be presented.
EPR and photoluminescence study of irradiated anion-defective alumina single crystals
NASA Astrophysics Data System (ADS)
Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.
2017-09-01
Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.
Optical polarimetry of Comet NEAT C/2001 Q4
NASA Astrophysics Data System (ADS)
Ganesh, S.; Joshi, U. C.; Baliyan, K. S.
2009-06-01
Comet NEAT C/2001 Q4 was observed for linear polarization using the optical polarimeter mounted at the 1.2 m telescope at Mt. Abu Observatory, during the months of May and June 2004. Observations were conducted through the International Halley Watch narrow band (continuum) and BVR broad band filters. During the observing run the phase angle ranged from 85.6° in May to 55° in June. As expected, polarization increases with wavelength in this phase angle range. Polarization colour in the narrow bands changes at different epochs, perhaps related to cometary activity or molecular emission contamination. The polarization was also measured in the cometary coma at different locations along a line, in the direction of the tail. As expected, we notice minor decrease in the polarization as photocenter (nucleus) is traversed while brightness decreases sharply away from it. Based on these polarization observations we infer that the Comet NEAT C/2001 Q4 has high polarization and a typical grain composition—mixture of silicates and organics.
Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials
NASA Astrophysics Data System (ADS)
Song, Justin C. W.; Kats, Mikhail A.
2016-12-01
Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.
Estimating Extracellular Spike Waveforms from CA1 Pyramidal Cells with Multichannel Electrodes
Molden, Sturla; Moldestad, Olve; Storm, Johan F.
2013-01-01
Extracellular (EC) recordings of action potentials from the intact brain are embedded in background voltage fluctuations known as the “local field potential” (LFP). In order to use EC spike recordings for studying biophysical properties of neurons, the spike waveforms must be separated from the LFP. Linear low-pass and high-pass filters are usually insufficient to separate spike waveforms from LFP, because they have overlapping frequency bands. Broad-band recordings of LFP and spikes were obtained with a 16-channel laminar electrode array (silicone probe). We developed an algorithm whereby local LFP signals from spike-containing channel were modeled using locally weighted polynomial regression analysis of adjoining channels without spikes. The modeled LFP signal was subtracted from the recording to estimate the embedded spike waveforms. We tested the method both on defined spike waveforms added to LFP recordings, and on in vivo-recorded extracellular spikes from hippocampal CA1 pyramidal cells in anaesthetized mice. We show that the algorithm can correctly extract the spike waveforms embedded in the LFP. In contrast, traditional high-pass filters failed to recover correct spike shapes, albeit produceing smaller standard errors. We found that high-pass RC or 2-pole Butterworth filters with cut-off frequencies below 12.5 Hz, are required to retrieve waveforms comparable to our method. The method was also compared to spike-triggered averages of the broad-band signal, and yielded waveforms with smaller standard errors and less distortion before and after the spike. PMID:24391714
NASA Astrophysics Data System (ADS)
Hüger, E.; Osuch, K.
2005-03-01
We investigate the possibility of inducing ferromagnetic order in 4d and 5d late transition metals through crystal symmetry change. First principles, self-consistent density functional theory calculations, with spin-orbit coupling included, performed at 0 K show that ferromagnetism occurs in the bulk of Rh and Pd at the optimum lattice constant if Rh is in the bcc and Pd in the hcp/dhcp phase. The ferromagnetic order originates in the d-band occupancy of Rh or Pd which locates the Fermi energy at the top of the highest peak of the respective (paramagnetic) density of states induced by the bcc or hcp/dhcp structure. This peak in the density of states is caused by flat bands which lie at the surface of the respective Brillouin zone. For a bcc crystal these flat bands have the eg character and are positioned at the surface of the bcc Brillouin zone along the N-P line. The origin of the flatness of the bands was found to be the translation symmetry of the cubic lattice which causes the bands with the eg character to be narrow along the k-lines whose k-vector directions are furthest off the directions to which the orbitals of the eg symmetry point. Due to the d-band occupancy of Rh these flat bands lie in the paramagnetic state at the Fermi energy, whereas in the ferromagnetic state they exhibit the largest energetic split. This indicates that a smaller degree of orbital overlap narrows electronic bands enhancing the tendency of the system for ferromagnetic band split. For the hcp/dhcp structure the states contributing to the high density of para-magnetic states at the Fermi level of Pd lie in the vicinity of the M-L line of the hcp Brillouin zone boundary, which possesses a high number of symmetry (M and L) points. Moreover, the M-L line is aligned with the stacking sequence direction ([0001]) which is furthest off the densest-packed atomic chain direction of an hcp-crystal and, consequently, the weakest-bond direction in the crystal. This makes the narrow bands along the M-L line flat. The instability of the bcc and the meta-stability of the hcp crystal phase modifications for metals with native close-packed crystal structures is subsequently analysed in order to find whether they can be grown as films on suitable substrates.
NASA Astrophysics Data System (ADS)
Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.
2017-12-01
We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.
Z mode radiation in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Chen, R. F.; Moses, S. L.; Coroniti, F.; Kurth, W. S.
1987-01-01
Results of a survey of the Voyager plasma wave instrument wide-band frames that exhibit a narrow-band emission below the low-frequency cutoff of the continuum band are discussed. The analysis of these waves made it possible to identify them as the slow branch of the X mode, the so-called Z mode. As the Voyager 1 spacecraft approached the plasma sheet on March 8, 1979, the Z mode intensified and then disappeared on plasma sheet entry. This observation is interpreted as evidence of local Z mode generation.
24-71 GHz PCB Array for 5G ISM
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2017-01-01
Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.
A tunable acoustic metamaterial with double-negativity driven by electromagnets
Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin
2016-01-01
With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196
WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER
Laine, E.F.
1959-11-17
A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.
Photoluminescence from narrow InAs-AlSb quantum wells
NASA Technical Reports Server (NTRS)
Brar, Berinder; Kroemer, Herbert; Ibbetson, James; English, John H.
1993-01-01
We report on photoluminescence spectra from narrow InAs-AlSb quantum wells. Strong, clearly resolved peaks for well widths from 2 to 8 monolayers were observed. Transmission electron micrographs show direct evidence for the structural quality of the quantum well structures. The transition energies of the narrowest wells suggest a strong influence of the AlSb X-barrier on the electronic states in the conduction band.
ERIC Educational Resources Information Center
Manzo, Kathleen Kennedy
2008-01-01
Like teachers in many urban school districts with large numbers of disadvantaged children, the faculty at New Holland Core Knowledge Academy strives to build the foundational skills necessary for later academic success. At New Holland, however, content is king. While many schools have narrowed the curriculum since Congress passed the No Child Left…
Advanced Crash Survivable Flight Data Recorder And Accident Information Retrieval System (AIRS).
1981-08-01
Costs ................................. 151 Portable Ground Unit (PGU) ............................... 151 Maintenance Readout Unit ( MRU ...95 31 NARROW-BAND CONDUCTED EMISSIONS ON THE AIRS 24 VDC POWER RETURN (CE04 TESI ) ......................... 96 32 BROAD-BAND...Shunt) N/A Any Any Change Change MRU (Shunt) N/A Any Any ...... _Change Change PGU (Shunt) N/A --- Any Any Change Change 15 .. . . .i A, TABLE 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Diego, J. A.; De Leo, M. A.; Cepa, J.
Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. Wemore » compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.« less
Photometric Type Ia supernova surveys in narrow-band filters
NASA Astrophysics Data System (ADS)
Xavier, Henrique S.; Abramo, L. Raul; Sako, Masao; Benítez, Narciso; Calvão, Maurício O.; Ederoclite, Alessandro; Marín-Franch, Antonio; Molino, Alberto; Reis, Ribamar R. R.; Siffert, Beatriz B.; Sodré, Laerte.
2014-11-01
We study the characteristics of a narrow-band Type Ia supernova (SN) survey through simulations based on the upcoming Javalambre Physics of the accelerating Universe Astrophysical Survey. This unique survey has the capabilities of obtaining distances, redshifts and the SN type from a single experiment thereby circumventing the challenges faced by the resource-intensive spectroscopic follow-up observations. We analyse the flux measurements signal-to-noise ratio and bias, the SN typing performance, the ability to recover light-curve parameters given by the SALT2 model, the photometric redshift precision from Type Ia SN light curves and the effects of systematic errors on the data. We show that such a survey is not only feasible but may yield large Type Ia SN samples (up to 250 SNe at z < 0.5 per month of search) with low core-collapse contamination (˜1.5 per cent), good precision on the SALT2 parameters (average σ _{m_B}=0.063, σ _{x_1}=0.47 and σc = 0.040) and on the distance modulus (average σμ = 0.16, assuming an intrinsic scatter σint = 0.14), with identified systematic uncertainties σsys ≲ 0.10σstat. Moreover, the filters are narrow enough to detect most spectral features and obtain excellent photometric redshift precision of σz = 0.005, apart from ˜2 per cent of outliers. We also present a few strategies for optimizing the survey's outcome. Together with the detailed host galaxy information, narrow-band surveys can be very valuable for the study of SN rates, spectral feature relations, intrinsic colour variations and correlations between SN and host galaxy properties, all of which are important information for SN cosmological applications.
NASA Technical Reports Server (NTRS)
Gunapala, S.; Bandara, S.; Ivanov, A.
2003-01-01
GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.
Band-gap narrowing and magnetic behavior of Ni-doped Ba(Ti0.875Ce0.125)O3 thin films
NASA Astrophysics Data System (ADS)
Zhou, Wenliang; Deng, Hongmei; Yu, Lu; Yang, Pingxiong; Chu, Junhao
2015-11-01
Band-gap narrowing and magnetic effects have been observed in a Ni-doped Ba(Ti0.875Ce0.125)O3 (BTC) thin film. Structural characterizations and microstructural analysis show that the as-prepared Ba(Ti0.75Ce0.125Ni0.125)O3-δ (BTCN) thin film exhibits a cubic perovskite structure with an average grain size of 25 nm. The Ce doping at the Ti-site results in an increasing perovskite volume to favour an O-vacancy-stabilized Ni2+ substitution. Raman spectroscopy, however, shows the cubic symmetry of crystalline structures is locally lowered by the presence of dopants, significantly deviating from the ideal Pm3m space group. Moreover, BTCN presents a narrowed band-gap, much smaller than that of BaTiO3 and BTC, due to new states of both the highest occupied molecular orbital and the lowest unoccupied molecular orbital in an electronic structure with the presence of Ni. Also, magnetic enhancement driven by co-doping has been confirmed in the films, which mainly stems from the exchange interaction of Ni2+ ions via an electron trapped in a bridging oxygen vacancy. These findings may open an avenue to discover and design optimal perovskite compounds for solar-energy devices and information storage.
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
NASA Astrophysics Data System (ADS)
Kuklin, Artem V.; Kuzubov, Alexander A.; Kovaleva, Evgenia A.; Lee, Hyosun; Sorokin, Pavel B.; Sakai, Seiji; Entani, Shiro; Naramoto, Hiroshi; Avramov, Paul
2017-10-01
Induced spin polarization of π-conjugated carbon and h-BN low dimensional fragments at the interfaces formed by deposition of pentacene molecule and narrow zigzag graphene and h-BN nanoribbons on MnO2-terminated LSMO(001) thin film was studied using GGA PBE+U PAW D3-corrected approach. Induced spin polarization of π-conjugated low-dimensional fragments is caused by direct exchange with Mn ions of LSMO(001) MnO-derived surface. Due to direct exchange, the pentacene molecule changes its diamagnetic narrow-band gap semiconducting nature to the ferromagnetic semiconducting state with 0.15 eV energy shift between spin-up and spin-down valence bands and total magnetic moment of 0.11 μB. Direct exchange converts graphene nanoribbon to 100% spin-polarized half-metal with large amplitude of spin-up electronic density at the Fermi level. The direct exchange narrows the h-BN nanoribbon band gap from 4.04 to 1.72 eV in spin-up channel and converts the h-BN ribbon semiconducting diamagnetic nature to a semiconducting magnetic one. The electronic structure calculations demonstrate a possibility to control the spin properties of low-dimensional π-conjugated carbon and h-BN fragments by direct exchange with MnO-derived LSMO(001) surface for spin-related applications.
Line Narrowing Parameter Measurement by Modulation Spectroscopy
NASA Technical Reports Server (NTRS)
Dharamsi, Amin N.
1998-01-01
Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown that the measurement was yielded a very sensitive technique for obtaining the narrowing parameter that describes the deviation of Oxygen A-band lines from the Voigt profile. In particular, it was seen that the best fits were obtained consistently when the narrowing parameter value used was 0.022 1/cm, 1/Atm, Previous work, upon which the current work was based has resulted in several accurate measurements of properties of particular lines of the Oxygen A band. For example, this work has resulted in the measurement of the collision cross sections of several lines including the RQ(13,14) and the RR(15,15) lines. A major achievement of achievement of the work was also the demonstration that the technique we have developed can accurately probe the structure of the absorption lineshape function. In particular, the method we have developed is very well suited for experimentally probing the characteristics of lines in their wings. This work was accepted for publication in the Journal of Applied Physics, and is scheduled to appear in the December 15, 1998 issue.
NASA Astrophysics Data System (ADS)
Bernardi, A.; Fraser-Smith, A. C.; Villard, O. G.
1985-02-01
An index of geomagnetic activity in the upper part of the ultra low frequency (ULF) range (less than 4.55 Hz) has been developed. This index will be referred to as the MA index (magnetic activity index). The MA index is prepared every half hour and is a measure of the strength of the geomagnetic activity in the Pc1-Pc3 pulsation frequency range during that half hour period. Activity in the individual Pc pulsation ranges can also be measured, if desired. The index is calculated from the running average of the full-wave rectified values of the band pass filtered geomagnetic signals and thus it provides a better indication of the magnitude of these band pass filtered magnetic pulsations than does the ap index, for example. Daily variations of the band pass filtered magnetic signals are also better captured by the MA index. To test this system we used analog tape recordings of wide-band geomagnetic signals. The indices for these tapes are presented in the form of plots, together with a comparison with the ap indices of the same time intervals. The MA index shows the daily variation of the geometric signals quite clearly during times when there is strong activity, i.e., when the ap index values are large. Because impulsive signals, such as lightning discharges, tend to be suppressed in the averaging process, the MA index is insensitive to impulsive noise. It is found that the time variation of the MA index is in general markedly different from the variation of the ap index for the same time intervals.
An L-band SAR for repeat pass deformation measurements on a UAV platform
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Hensley, Scott; Lou, Yunling
2004-01-01
We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).
Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline
NASA Astrophysics Data System (ADS)
Ho, Min-Hua; Hsu, Wei-Hong
In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.
Conformal fractal antenna and FSS for low-RCS applications
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Vinoy, K. J.; Jose, K. A.; Varadan, Vasundara V.
2000-06-01
On many situations the reduction of radar cross section (RCS) is of continued strategic interest, especially with aircraft and missiles. Once the overall RCS of the vehicle is reduced, the reflections from the antennas can dominate. The commonly known approaches to RCS reduction may not be applicable for antennas, and hence special techniques are followed. These include configuring the antennas completely conformal, and using band pass frequency selective surfaces. The use fractal patterns have shown to result in such band pass characteristics. The overall RCS of a typical target body is experimentally found to be reduced when these screens are used. The paper presents the experimental result on the transmission and backscatter characteristics of a fractal FSS screen.
Thin film solar cell including a spatially modulated intrinsic layer
Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.
1989-03-28
One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.
ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.
1989-01-01
Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.
Experimental observation of phase-flip transitions in the brain
NASA Astrophysics Data System (ADS)
Dotson, Nicholas M.; Gray, Charles M.
2016-10-01
The phase-flip transition has been demonstrated in a host of coupled nonlinear oscillator models, many pertaining directly to understanding neural dynamics. However, there is little evidence that this phenomenon occurs in the brain. Using simultaneous microelectrode recordings in the nonhuman primate cerebral cortex, we demonstrate the presence of phase-flip transitions between oscillatory narrow-band local field potential signals separated by several centimeters. Specifically, we show that sharp transitions between in-phase and antiphase synchronization are accompanied by a jump in synchronization frequency. These findings are significant for two reasons. First, they validate predictions made by model systems. Second, they have potentially far reaching implications for our understanding of the mechanisms underlying corticocortical communication, which are thought to rely on narrow-band oscillatory synchronization with specific relative phase relationships.
TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.
Zhang, Junying; Zhu, Hailing; Zheng, Shukai; Pan, Feng; Wang, Tianmin
2009-10-01
Coupling a narrow-band-gap semiconductor with TiO(2) is an effective method to produce photocatalysts that work under UV-vis light irradiation. Usually photocatalytic coupled-semiconductors exist mainly as powders, and photocatalytic activity is only favored when a small loading amount of narrow-band-gap semiconductor is used. Here we propose a heavy-loading photocatalyst configuration in which 51% of the surface of the TiO(2) film is covered by a Cu(2)O microgrid. The coupled system shows higher photocatalytic activity under solar light irradiation than TiO(2) and Cu(2)O films. This improved performance is due to the efficient charge transfer between the two phases and the similar opportunity each has to be exposed to irradiation and adsorbates.
Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang
2016-01-01
Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768
Low temperature FTIR spectra and hydrogen bonds in polycrystalline cytidine.
Rozenberg, M; Jung, C; Shoham, G
2004-08-01
FTIR spectra of polycrystalline samples of cytidine, pure and containing a small quantity of N(O)H or N(O)D groups (<20%), were measured in KBr pellets from 4000 to 400 cm(-1) at temperatures from 300 to 20K. For the first time the bands of the narrow isotopically decoupled proton stretching vibration mode (nu(1)) of OH- and NH- groups were found; their number corresponds to the number of H-bonds in crystal according to structural data. The FTIR spectra at low temperature in the out-of-plane bending nu(4) proton mode range (lower than 1000 cm(-1)) of N(O)H groups revealed narrow bands, which correspond to nu(1) bands together with several "extra" bands, which are influenced by the isotopic exchange and (or) cooling. All of them have their counterparts in the N(O)D-substance spectrum with an isotopic frequency ratio of 1.30-1.40. The "extra" bands are assigned to the H-bound OH and NH protons, which are disordered and cannot be seen with X-ray crystal structure analysis. The peak positions of both mode bands (expressed as the red shift of nu(1) or blue shift of nu(4) modes relatively free molecules) were used for the estimation of the energy of different H-bonds using previously established empirical correlations between spectral and thermodynamic parameters of hydrogen bonds. The correlation of the red shift and H-bond length is also confirmed for all five H-bonds of cytidine.
The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan
NASA Astrophysics Data System (ADS)
Chen, S. C.; Wu, C.; Shih, P.
2012-12-01
Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm in 3 days in 2009 Typhoon Morakot is also discussed in the study. A extreme river discharge with the return period of 100 year transported the macro sediment with the total volume of around 3.2×107 m3 in 8 days during 2009 Typhoon Morakot, and it also resulted in 18.1% increase of the mean river width and 4 m increase of the mean scouring depth in Chenyulan River, especially the mean increase of 50 m in river width resulted from the total sediment volume of 1.9×107 m3 deposited within 8 km from the sediment-yielded area, i.e. Shenmu watershed. Furthermore, the distribution of sediment deposition in a narrow pass is also discussed in the research. Sediment deposited apparently in the upstream of a narrow pass and also results in the disordered river patterns. The high velocity flow due to the contraction of the river width in the narrow pass section also leads to the headwater erosion in the upstream of the narrow pass section. Contrarily, the unapparent sediment deposition in the downstream of the narrow pass section brings about the stable main channel and swinging flow patterns from our decade observation.
Using spectral information in forensic imaging.
Miskelly, Gordon M; Wagner, John H
2005-12-20
Improved detection of forensic evidence by combining narrow band photographic images taken at a range of wavelengths is dependent on the substance of interest having a significantly different spectrum from the underlying substrate. While some natural substances such as blood have distinctive spectral features which are readily distinguished from common colorants, this is not true for visualization agents commonly used in forensic science. We now show that it is possible to select reagents with narrow spectral features that lead to increased visibility using digital cameras and computer image enhancement programs even if their coloration is much less intense to the unaided eye than traditional reagents. The concept is illustrated by visualising latent fingermarks on paper with the zinc complex of Ruhemann's Purple, cyanoacrylate-fumed fingerprints with Eu(tta)(3)(phen), and soil prints with 2,6-bis(benzimidazol-2-yl)-4-[4'-(dimethylamino)phenyl]pyridine [BBIDMAPP]. In each case background correction is performed at one or two wavelengths bracketing the narrow absorption or emission band of these compounds. However, compounds with sharp spectral features would also lead to improved detection using more advanced algorithms such as principal component analysis.
Decorrelation of L-band and C-band interferometry to volcanic risk prevention
NASA Astrophysics Data System (ADS)
Malinverni, E. S.; Sandwell, D.; Tassetti, A. N.; Cappelletti, L.
2013-10-01
SAR has several strong key features: fine spatial resolution/precision and high temporal pass frequency. Moreover, the InSAR technique allows the accurate detection of ground deformations. This high potential technology can be invaluable to study volcanoes: it provides important information on pre-eruption surface deformation, improving the understanding of volcanic processes and the ability to predict eruptions. As a downside, SAR measurements are influenced by artifacts such as atmospheric effects or bad topographic data. Correlation gives a measure of these interferences, quantifying the similarity of the phase of two SAR images. Different approaches exists to reduce these errors but the main concern remain the possibility to correlate images with different acquisition times: snow-covered or heavily-vegetated areas produce seasonal changes on the surface. Minimizing the time between passes partly limits decorrelation. Though, images with a short temporal baseline aren't always available and some artifacts affecting correlation are timeindependent. This work studies correlation of pairs of SAR images focusing on the influence of surface and climate conditions, especially snow coverage and temperature. Furthermore, the effects of the acquisition band on correlation are taken into account, comparing L-band and C-band images. All the chosen images cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated. To isolate temporal decorrelation, pairs of images with the shortest baseline are chosen. Correlation maps are analyzed in relation to snow depth and temperature. Results obtained with ENVISAT and ERS satellites (C-band) are compared with the ones from ALOS (L-band). Results show a good performance during winter and a bad attitude towards wet snow (spring and fall). During summer both L-band and C-band maintain a good coherence with L-band performing better over vegetation.
Lemieux, Chantal L; Collin, Charles A; Nelson, Elizabeth A
2015-02-01
In two experiments, we examined the effects of varying the spatial frequency (SF) content of face images on eye movements during the learning and testing phases of an old/new recognition task. At both learning and testing, participants were presented with face stimuli band-pass filtered to 11 different SF bands, as well as an unfiltered baseline condition. We found that eye movements varied significantly as a function of SF. Specifically, the frequency of transitions between facial features showed a band-pass pattern, with more transitions for middle-band faces (≈5-20 cycles/face) than for low-band (≈<5 cpf) or high-band (≈>20 cpf) ones. These findings were similar for the learning and testing phases. The distributions of transitions across facial features were similar for the middle-band, high-band, and unfiltered faces, showing a concentration on the eyes and mouth; conversely, low-band faces elicited mostly transitions involving the nose and nasion. The eye movement patterns elicited by low, middle, and high bands are similar to those previous researchers have suggested reflect holistic, configural, and featural processing, respectively. More generally, our results are compatible with the hypotheses that eye movements are functional, and that the visual system makes flexible use of visuospatial information in face processing. Finally, our finding that only middle spatial frequencies yielded the same number and distribution of fixations as unfiltered faces adds more evidence to the idea that these frequencies are especially important for face recognition, and reveals a possible mediator for the superior performance that they elicit.
Polyp detection rates using magnification with narrow band imaging and white light.
Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C
2015-05-16
To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other's findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ(2) test and means were compared using the Student's t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for adenomas). Miss rate of polyps and adenomas however was significantly higher when NBI was used first (29.3% and 30.3%, respectively; P < 0.05). Most missed adenomas were ≤ 5 mm in size. There was only one advanced neoplasia (defined by size only) missed during the first look. Our data suggest that the tandem nature of the procedure rather than the optical techniques was associated with the detection of additional polyps' and adenomas.
Polyp detection rates using magnification with narrow band imaging and white light
Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C
2015-01-01
AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for adenomas). Miss rate of polyps and adenomas however was significantly higher when NBI was used first (29.3% and 30.3%, respectively; P < 0.05). Most missed adenomas were ≤ 5 mm in size. There was only one advanced neoplasia (defined by size only) missed during the first look. CONCLUSION: Our data suggest that the tandem nature of the procedure rather than the optical techniques was associated with the detection of additional polyps’ and adenomas. PMID:25992195
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, J.J.; Harris, L.H.; Hennecke, H.J.
1985-09-01
The primary objective of this project was to investigate the spectral irradiance and luminosity versus time for the first thermal pulse at Shot Small Boy. This was accomplished by use of spectral filters with narrow band passes, phototubes, and magnetic tape recorders with high time resolution at two locations. The measured elapsed time to the first thermal maximum was from 50 to 110 microseconds, depending on wavelength. A graph of radiant thermal power versus time was obtained for the thermal pulse. The delineation of the first thermal pulse, especially the rise portion, is considered to be more definite than hasmore » been obtained previously. The resolution time of the instrumentation was approximately 50 microseconds. Secondary objectives were to measure the total luminosity versus time and also to measure the atmospheric attenuation. These objectives were accomplished by making measurements at two distances, 2.5 and 3.5 miles, from ground zero. In the case of the total luminosity measurements, a system of filters with a spectral transmittance approximating the sensitivity response of the average human eye was used. The results are tabulated in the report.« less
Bernheim, M
2006-03-01
This study aims to evaluate the spatial resolution achievable with photoelectrons in order to perform localised UPS or XPS analyses on various heterogeneous samples. This investigation is intentionally restricted to direct image acquisition by immersion objective lenses, involving electrons ejected with initial energies of several tenths of an electron-volt. In order to characterise the contribution of all optical elements, analytical investigations were associated to numerical simulations based on SIMION 7 software. The acquisition of high-quality images implies a simultaneous reduction in spherical and chromatic aberrations by a narrow aperture stop placed at the output pupil of the objective. With such limitations in useful emission angles, it is shown that monochromatic electron beams build images with a resolution of about 1 nm, especially for the acceleration bias mode where the focussing electrode is biased at a positive high voltage. Even energy dispersed electron beams, limited by a 4 eV band pass spectrometer, can produce images convenient for highly localised ESCA analyses (resolution 3 nm), where the objective lens is associated with an aperture stop of 30 microm in diameter without using acceleration voltages above 5000 V.
Nonlinear ultrasonic imaging with X wave
NASA Astrophysics Data System (ADS)
Du, Hongwei; Lu, Wei; Feng, Huanqing
2009-10-01
X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.
Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing
2018-06-01
A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.
Multiple rings around Wolf-Rayet evolution
NASA Technical Reports Server (NTRS)
Marston, A. P.
1995-01-01
We present optical narrow-band imaging of multiple rings existing around galactic Wolf-Rayet (WR) stars. The existence of multiple rings of material around Wolf-Rayet stars clearly illustrates the various phases of evolution that massive stars go through. The objects presented here show evidence of a three stage evolution. O stars produce an outer ring with the cavity being partially filled by ejecta from a red supergiant of luminous blue variable phase. A wind from the Wolf-Rayet star then passes into the ejecta materials. A simple model is presented for this three stage evolution. Using observations of the size and dynamics of the rings allows estimates of time scales for each stage of the massive star evolution. These are consistent with recent theoretical evolutionary models. Mass estimates for the ejecta, from the model presented, are consistent with previous ring nebula mass estimates from IRAS data, showing a number of ring nebulae to have large masses, most of which must in be in the form of neutral material. Finally, we illustrate how further observations will allow the determination of many of the parameters of the evolution of massive stars such as total mass loss, average mass loss rates, stellar abundances, and total time spent in each evolutionary phase.
Imaging experiment: The Viking Mars orbiter
Carr, M.H.; Baum, W.A.; Briggs, G.A.; Masursky, H.; Wise, D.W.; Montgomery, D.R.
1972-01-01
The general objectives of the Imaging Experiment on the Viking Orbiter are to aid the selection of Viking Lander sites, to map and monitor the chosen sites during lander operations, to aid in the selection of future landing sites, and to extend our knowledge of the planet. The imaging system consists of two identical vidicon cameras each attached to a 1026 mm T/8 telescope giving approximately 1?? square field of view. From an altitude of 1500 km the picture elements will be approximately 24m apart. The vidicon is coupled with an image intensifier which provides increased sensitivity and permits electronic shuttering and image motion compensation. A vidicon readout time of 2.24 sec enables pictures to be taken in rapid sequence for contiguous coverage at high resolution. The camera differs from those previously flown to Mars by providing contiguous coverage at high resolution on a single orbital pass, by having sufficient sensitivity to use narrow band color filters at maximum resolution, and by having response in the ultraviolet. These capabilities will be utelized to supplement lander observations and to extend our knowledge particularly of volcanic, erosional, and atmospheric phenomena on Mars. ?? 1972.
Impurity-induced deep centers in Tl 6SI 4
Shi, Hongliang; Lin, Wenwen; Kanatzidis, Mercouri G.; ...
2017-04-13
Tl 6SI 4 is a promising material for room-temperature semiconductor radiation detection applications. The history of the development of semiconductor radiation detection materials has demonstrated that impurities strongly affect the carrier transport and that material purification is a critically important step in improving the carrier transport and thereby the detector performance. Here, we report combined experimental and theoretical studies of impurities in Tl 6SI 4. Impurity concentrations in Tl 6SI 4 were analyzed by glow discharge mass spectrometry. Purification of the raw material by multi-pass vertical narrow zone refining was found to be effective in reducing the concentrations of mostmore » impurities. Density functional theory calculations were also performed to study the trapping levels introduced by the main impurities detected in experiments. We show that, among dozens of detected impurities, most are either electrically inactive or shallow. In the purified Tl 6SI 4 sample, only Bi has a significant concentration (0.2 ppm wt) and introduces deep electron trapping levels in the band gap. Lastly, improvement of the purification processes is expected to further reduce the impurity concentrations and their impact on carrier transport in Tl 6SI 4, leading to improved detector performance.« less
Diffuse Interstellar Bands. A Survey of Observational Facts
NASA Astrophysics Data System (ADS)
Krełowski, J.
2018-07-01
The paper presents and documents the most important observational results concerning the enigmatic diffuse interstellar bands (DIBs) that have remained unidentified since 1922. It demonstrates why the bands are commonly considered as having originated in many still unknown carriers. The mutual correlations of different DIBs, aiming at finding “families” of common origin, are briefly discussed. It was found that the strength ratio of the major DIBs, 5780 and 5797, is heavily variable; at the same E(B‑V), the DIB intensities may vary by as much as a factor of three or more. Certain DIB strength ratios seem to be related to intensities of the known features of simple molecular species; this led to the introduction of the so-called σ and ζ type interstellar clouds. In the former (prototype HD147165), broad DIBs are very strong, while the narrow ones and molecular features are weak. In the latter (prototype HD149757), narrow DIBs, as well as bands of simple radicals, are strong while the broad DIBs are weak (in relation to E(B‑V)). Details of the profiles of narrow DIBs, documenting their molecular origin, are presented. The relative DIB strengths as well as those of the simple radicals seem to be related to the shapes of interstellar extinction curves. Possible carriers of DIBs are only mentioned, as all of the proposed ones remain uncertain. The survey is biased in the sense that it presents the author’s point of view. It was prepared for the thirtieth anniversary of the first DIB survey, published in PASP (Krełowski 1988), and demonstrates how far our knowledge has evolved since then.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wenliang; Yang, Pingxiong, E-mail: pxyang@ee.ecnu.edu.cn; Chu, Junhao
2014-09-15
Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1−x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3−δ}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ≥ 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it ismore » noted that KBNNO with compositions x = 0.1–0.3 have quite narrow E{sub g} of below 1.5 eV, much smaller than the 3.2 eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagnetic–antiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.« less
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew; Głas, Dariusz
2017-06-01
Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.
NASA Astrophysics Data System (ADS)
Wang, B.; Righetti, F.; Cappelli, M. A.
2018-03-01
We present simulations of the response of a one-dimensional striated plasma slab to incident electromagnetic waves that span regions both above and below the plasma frequency, ωp. Photonic bandgap modes are present throughout these regions, and volume and surface plasmon modes facilitate the response below ωp, where the dielectric constant, ɛp < 0. In the vicinity of ωp, most apparently, when ωp is in proximity of the lattice frequency, there is a feature for transverse magnetic (TM) polarization that is associated with the emergence of new dispersion branches. Also for TM polarization, a very low frequency mode emerges outside of the light line. Both these features are plasmonic and are attributed to the excitation of symmetric and asymmetric surface plasmon polaritons (SPPs) at the plasma-dielectric interface of the multi-layer plasma slabs. The features seen in the bandgap maps near ωp reveal the possible presence of Fano resonances between the symmetric branch of the SPP and the Bragg resonance as a narrow stop band (anti-node) is superimposed on the otherwise broad transmission band seen for transverse-electric polarization. We provide renderings that allow the visualization of where the transmission bands are and compute the transmittance and reflectance to facilitate the design and interpretation of experiments. The transmission bands associated with photonic bandgap modes above the plasma frequency are rather broad. The plasmonic modes, i.e., those associated with ɛp ≤ 0, can be quite narrow and are tuned by varying the plasma density, affording an opportunity for the application of these structures as ultra-narrow tunable microwave transmission filters.
Technology optimization techniques for multicomponent optical band-pass filter manufacturing
NASA Astrophysics Data System (ADS)
Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.
2016-04-01
Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Derek William; Cardenas, Tana; Doss, Forrest W.
In this paper, the High Energy Density Physics program at Los Alamos National Laboratory (LANL) has had a multiyear campaign to verify the predictive capability of the interface evolution of shock propagation through different profiles machined into the face of a plastic package with an iodine-doped plastic center region. These experiments varied the machined surface from a simple sine wave to a double sine wave and finally to a multitude of different profiles with power spectrum ranges and shapes to verify LANL’s simulation capability. The MultiMode-A profiles had a band-pass flat region of the power spectrum, while the MultiMode-B profilemore » had two band-pass flat regions. Another profile of interest was the 1-Peak profile, a band-pass concept with a spike to one side of the power spectrum. All these profiles were machined in flat and tilted orientations of 30 and 60 deg. Tailor-made machining profiles, supplied by experimental physicists, were compared to actual machined surfaces, and Fourier power spectra were compared to see the reproducibility of the machining process over the frequency ranges that physicists require.« less
Schmidt, Derek William; Cardenas, Tana; Doss, Forrest W.; ...
2018-01-15
In this paper, the High Energy Density Physics program at Los Alamos National Laboratory (LANL) has had a multiyear campaign to verify the predictive capability of the interface evolution of shock propagation through different profiles machined into the face of a plastic package with an iodine-doped plastic center region. These experiments varied the machined surface from a simple sine wave to a double sine wave and finally to a multitude of different profiles with power spectrum ranges and shapes to verify LANL’s simulation capability. The MultiMode-A profiles had a band-pass flat region of the power spectrum, while the MultiMode-B profilemore » had two band-pass flat regions. Another profile of interest was the 1-Peak profile, a band-pass concept with a spike to one side of the power spectrum. All these profiles were machined in flat and tilted orientations of 30 and 60 deg. Tailor-made machining profiles, supplied by experimental physicists, were compared to actual machined surfaces, and Fourier power spectra were compared to see the reproducibility of the machining process over the frequency ranges that physicists require.« less
Universal Network Access System
2003-11-01
128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1
Nonelectronic Parts Reliability Data 1991
1991-05-01
E6) Page Electrical Filter, Micrwave ,Band Pass Com GB 13567-021 < 0.0377 0 26.5512 3-180 Electrical Filter,Micridave, High Pass Ccm GB 13567-021...device and equipment manufacturers , government laboratories and equipment users (government and industry). Automatic distribution lists, voluntary...information and data contained herein have been compiled from government and nongovernment technical reports and from material supplied by various manufacturers
Saha, S. K.; Dutta, R.; Choudhury, R.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2013-01-01
In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems. PMID:23844390
Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P
2013-01-01
In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.
Spectral filters for laser communications
NASA Technical Reports Server (NTRS)
Shaik, K.
1991-01-01
Optical communication systems must perform reliabily under strong background light interference. Since the transmitting lasers operate within a narrow spectral band, high signal to noise ratios can be achieved when narrowband spectral optical filters can be used to reject out of band light. Here, a set of general requirements for such filters are developed, and an overview is given of suitable spectral filter technologies for optical communication systems.
Optically trapped atomic resonant devices for narrow linewidth spectral imaging
NASA Astrophysics Data System (ADS)
Qian, Lipeng
This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the absorption and fluorescence. The optimum resolution of the fluorescent image is predicted by simulation. Radiation trapping is also shown to be useful for the generation of ultra-narrow linewidth light from an atomic vapor flash lamp. A 2 nanosecond, high voltage pulse is used to excite low pressure mercury vapor mixed with noble gases, producing high intensity emission at the mercury resonant line at 253.7 nm. With a nanosecond pumping time and high electrical current, the radiation intensity of the mercury discharge is increased significantly compared to a normal glow discharge lamp, while simultaneously suppressing the formation of an arc discharge. By avoiding the arc discharge, discrete spectral lines of mercury were kept at narrow bandwidth. Due to radiation trapping, the emission linewidth from the nanosecond mercury lamp decreases with time and produces ultra-narrow linewidth emission 100 ns after of the excitation, this linewidth is verified by absorption measurements through low pressure mercury absorption filter. The lamp is used along with mercury absorption filters for spectroscopic applications, including Filtered Rayleigh Scattering with different CO2 pressures and Raman scattering from methanol.
Coaxial charged particle energy analyzer
NASA Technical Reports Server (NTRS)
Kelly, Michael A. (Inventor); Bryson, III, Charles E. (Inventor); Wu, Warren (Inventor)
2011-01-01
A non-dispersive electrostatic energy analyzer for electrons and other charged particles having a generally coaxial structure of a sequentially arranged sections of an electrostatic lens to focus the beam through an iris and preferably including an ellipsoidally shaped input grid for collimating a wide acceptance beam from a charged-particle source, an electrostatic high-pass filter including a planar exit grid, and an electrostatic low-pass filter. The low-pass filter is configured to reflect low-energy particles back towards a charged particle detector located within the low-pass filter. Each section comprises multiple tubular or conical electrodes arranged about the central axis. The voltages on the lens are scanned to place a selected energy band of the accepted beam at a selected energy at the iris. Voltages on the high-pass and low-pass filters remain substantially fixed during the scan.
Parallel Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.
1995-01-01
Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.
NASA Astrophysics Data System (ADS)
Umarji, Govind; Qureshi, Nilam; Gosavi, Suresh; Mulik, Uttam; Kulkarni, Atul; Kim, Taesung; Amalnerkar, Dinesh
2017-02-01
In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better center frequency ( f 0 = 10.588 GHz) and comparable ripple and attenuation bandwidth performance on par with Cu thin film.
NASA Astrophysics Data System (ADS)
Meygret, Aimé; Santer, Richard P.; Berthelot, Béatrice
2011-10-01
La Crau test site is used by CNES since 1987 for vicarious calibration of SPOT cameras. The former calibration activities were conducted during field campaigns devoted to the characterization of the atmosphere and the site reflectances. Since 1997, au automatic photometric station (ROSAS) was set up on the site on a 10m height pole. This station measures at different wavelengths, the solar extinction and the sky radiances to fully characterize the optical properties of the atmosphere. It also measures the upwelling radiance over the ground to fully characterize the surface reflectance properties. The photometer samples the spectrum from 380nm to 1600nm with 9 narrow bands. Every non cloudy days the photometer automatically and sequentially performs its measurements. Data are transmitted by GSM (Global System for Mobile communications) to CNES and processed. The photometer is calibrated in situ over the sun for irradiance and cross-band calibration, and over the Rayleigh scattering for the short wavelengths radiance calibration. The data are processed by an operational software which calibrates the photometer, estimates the atmosphere properties, computes the bidirectional reflectance distribution function of the site, then simulates the top of atmosphere radiance seen by any sensor over-passing the site and calibrates it. This paper describes the instrument, its measurement protocol and its calibration principle. Calibration results are discussed and compared to laboratory calibration. It details the surface reflectance characterization and presents SPOT4 calibration results deduced from the estimated TOA radiance. The results are compared to the official calibration.
Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping
NASA Astrophysics Data System (ADS)
Kruse, Fred A.; McDowell, Meryl
2015-05-01
Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.
Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation
NASA Astrophysics Data System (ADS)
Huang, Jin
1993-01-01
Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been successfully applied to the detection of cracks emanating from rivet holes in aircraft fuselage panel samples. A compact fiber-optic dual-probe interferometer has also been developed and applied to the above mentioned problem of crack detection. Results agree well with those obtained with a bulk LBU system.
Photovoltaic measurement of bandgap narrowing in moderately doped silicon
NASA Astrophysics Data System (ADS)
del Alamo, Jesus A.; Swanson, Richard M.; Lietoila, Arto
1983-05-01
Solar cells have been fabricated on n-type and p-type moderately doped Si. The shrinkage of the Si bandgap has been obtained by measuring the internal quantum efficiency in the near infrared spectrum ( hv = 1.00-1.25 eV) around the fundamental absorption edge. The results agree with previous optical measurements of bandgap narrowing in Si. It is postulated that this optically-determined bandgap narrowing is the rigid shrinkage of the forbidden gap due to many-body effects. The "device bandgap narrowing" obtained by measuring the pn product in bipolar devices leads to discrepant values because (i) the density of states in the conduction and valence band is modified due to the potential fluctuations originated in the variations in local impurity density, and (ii) the influence of Fermi-Dirac statistics.
Translations on Eastern Europe Political, Sociological, and Military Affairs No. 1564
1978-07-18
to all this, he has enough knowledge from his high school studies and passes the written exams in mathematics and the Russian language, and does well...activities or technical hobbies. You can find in the’ school a brass band, a cymbal band, a violin quintet, 60-member choir and a jazz ballet--and
EMI survey for maritime satellite, L-band, shipboard terminal
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Brandel, D. L.; Hill, J. S.
1975-01-01
The paper presents results of an onboard EMI survey of an L-band shipboard terminal for operation with two geostationary maritime satellites. Significant EMC results include: (1) antenna noise temperature measurements indicate a maximum of 70 K steady background component at 1.6 GHz at sea for elevation angles of 5 degrees and higher; (2) field intensity measurements from 1-10 GHz show that a L-band terminal can operate simultaneously with onboard S-band and X-band navigation radar; (3) radar transmitter case emissions, below deck, in-band from 1535-1660 MHz, at 1 m distance from the cabinet, are equivalent, or greater than above-deck emissions in the same frequency range; and (4) conducted-emission tests of a ship's power lines to both radars show both narrow band and broad band emissions are 15 dB to 50 dB higher than equivalent U.S. commercial power lines from 150 kHz to 32 MHz.
Prime-Color Concept: Lighting for the Future
ERIC Educational Resources Information Center
Modern Schools, 1976
1976-01-01
A major technological breakthrough--the isolation and then combination of narrow bands of blue-violet, pure green, and orange-red energy--has resulted in a highly efficient white fluorescent lamp. (Author/MLF)
Microwave diode amplifiers with low intermodulation distortion
NASA Technical Reports Server (NTRS)
Cooper, H. W.; Cohn, M.; Buck, D. C.
1975-01-01
Distortions can be greatly reduced in narrow-band applications by using the second harmonic. The ac behavior of simplified diode amplifier has negative resistance depending on slope of equivalent I-V curve.
Viscoelastic effect on acoustic band gaps in polymer-fluid composites
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R. W.; Mohanty, S.; Berker, A.
2009-10-01
In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals.
Yi, Xiaofeng; Zhang, Jian; Fan, Tiehu; Tian, Baofeng; Jiang, Chuandong
2018-03-13
Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7-9 m in front of the wall for underground mining projects.
Yi, Xiaofeng; Fan, Tiehu; Tian, Baofeng
2018-01-01
Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7–9 m in front of the wall for underground mining projects. PMID:29534007
Application of Methods of Numerical Analysis to Physical and Engineering Data.
1980-10-15
directed algorithm would seem to be called for. However, 1(0) is itself a random process, making its gradient too unreliable for such a sensitive algorithm...radiation energy on the detector . Active laser systems, on the other hand, have created now the possibility for extremely narrow path band systems...emitted by the earth and its atmosphere. The broad spectral range was selected so that the field of view of the detector could be narrowed to obtain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl; Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara; Nojima, S.
2015-10-07
The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables themore » efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a PhC, which are made of GaAs.« less
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
1999-01-01
A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.
Stream capture to form Red Pass, northern Soda Mountains, California
Miller, David; Mahan, Shannon
2014-01-01
Red Pass, a narrow cut through the Soda Mountains important for prehistoric and early historic travelers, is quite young geologically. Its history of downcutting to capture streams west of the Soda Mountains, thereby draining much of eastern Fort Irwin, is told by the contrast in alluvial fan sediments on either side of the pass. Old alluvial fan deposits (>500 ka) were shed westward off an intact ridge of the Soda Mountains but by middle Pleistocene time, intermediate-age alluvial fan deposits (~100 ka) were laid down by streams flowing east through the pass into Silurian Valley. The pass was probably formed by stream capture driven by high levels of groundwater on the west side. This is evidenced by widespread wetland deposits west of the Soda Mountains. Sapping and spring discharge into Silurian Valley over millennia formed a low divide in the mountains that eventually was overtopped and incised by a stream. Lessons include the importance of groundwater levels for stream capture and the relatively youthful appearance of this ~100-200 ka feature in the slowly changing Mojave Desert landscape.
VizieR Online Data Catalog: Spectroscopy of luminous compact blue galaxies (Crawford+, 2016)
NASA Astrophysics Data System (ADS)
Crawford, S. M.; Wirth, G. D.; Bershady, M. A.; Randriamampandry, S. M.
2017-10-01
Deep imaging data in UBRIz and two narrow bands were obtained with the Mini-Mosaic camera from the WIYN 3.5 m telescope for all five clusters between 1999 October and 2004 June. We obtained spectroscopic observations for a sample of cluster star-forming galaxies with the DEIMOS, Faber et al. 2003 on the Keck II Telescope during 2005 October and 2007 April. The narrow-band filters were specifically designed to detect [OII] λ3727 at the redshift of each cluster. All of the clusters have been the target of extensive observations with the HST, primarily using either WFPC2 or the Advanced Camera for Surveys (ACS). For all measurements, we have attempted to select data taken in a filter closest to the rest-frame B band. We have employed ACS imaging data whenever possible and substituted WFPC2 images only when required. For clusters observed in the far-infrared regime by the Spitzer Space Telescope, we extracted MIPS 24μm flux densities, S24, from images obtained through the Enhanced Imaging Products archive. (2 data files).
Hybrid recursive active filters for duplexing in RF transmitter front-ends
NASA Astrophysics Data System (ADS)
Gottardo, Giuseppe; Donati, Giovanni; Musolff, Christian; Fischer, Georg; Felgentreff, Tilman
2016-08-01
Duplex filters in modern base transceiver stations shape the channel in order to perform common frequency division duplex operations. Usually, they are designed as cavity filters, which are expensive and have large dimensions. Thanks to the emerging digital technology and fast digital converters, it is possible to transfer the efforts of designing analog duplex filters into digital numeric algorithms applied to feedback structures, operating on power. This solution provides the shaping of the signal spectrum directly at the output of the radio frequency (RF) power amplifiers (PAs) relaxing the transmitter design especially in the duplexer and in the antenna sections. The design of a digital baseband feedback applied to the analog power RF amplifiers (hybrid filter) is presented and verified by measurements. A model to describe the hybrid system is investigated, and the relation between phase and resonance peaks of the resulting periodic band-pass transfer function is described. The stability condition of the system is analyzed using Nyquist criterion. A solution involving a number of digital feedback and forward branches is investigated defining the parameters of the recursive structure. This solution allows the closed loop system to show a periodic band pass with up to 500 kHz bandwidth at the output of the RF amplifier. The band-pass magnitude reaches up to 17 dB selectivity. The rejection of the PA noise in the out-of-band frequencies is verified by measurements. The filter is tested with a modulated LTE (Long Term Evolution) signal showing an ACPR (Adjacent Channel Power Ratio) enhancement of 10 dB of the transmitted signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, T.; Hagihara, R.; Yugo, M.
1994-12-31
The authors have successfully developed and industrialized a new frequency-shift anti-islanding protection method using a twin-peak band-pass filter (BPF) for grid-interconnected photovoltaic (PV) systems. In this method, the power conditioner has a twin-peak BPF in a current feed back loop in place of the normal BPF. The new method works perfectly for various kinds of loads such as resistance, inductive and capacitive loads connected to the PV system. Furthermore, because there are no mis-detections, the system enables the most effective generation of electric energy from solar cells. A power conditioner equipped with this protection was officially certified as suitable formore » grid-interconnection.« less
Metallic nano-structures for polarization-independent multi-spectral filters
NASA Astrophysics Data System (ADS)
Tang, Yongan; Vlahovic, Branislav; Brady, David Jones
2011-05-01
Cross-shaped-hole arrays (CSHAs) are selected for diminishing the polarization-dependent transmission differences of incident plane waves. We investigate the light transmission spectrum of the CSHAs in a thin gold film over a wide range of features. It is observed that two well-separated and high transmission efficiency peaks could be obtained by designing the parameters in the CSHAs for both p-polarized and s-polarized waves; and a nice transmission band-pass is also observed by specific parameters of a CSHA too. It implicates the possibility to obtain a desired polarization-independent transmission spectrum from the CSHAs by designing their parameters. These findings provide potential applications of the metallic nano-structures in optical filters, optical band-pass, optical imaging, optical sensing, and biosensors.
Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert
2013-04-01
An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.