Sample records for narrow bandwidth interference

  1. Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser.

    PubMed

    Shi, Jiawei; Li, Yuhua; Liu, Shuhui; Wang, Haiyan; Liu, Ningliang; Lu, Peixiang

    2011-01-31

    Bragg gratings with the bandwidth(FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.

  2. Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.

    1998-01-01

    A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.

  3. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  4. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  5. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  6. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  7. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    PubMed Central

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide. PMID:28071681

  8. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.

  9. Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction.

    PubMed

    Ma, Yiqiu; Danilishin, Shtefan L; Zhao, Chunnong; Miao, Haixing; Korth, W Zach; Chen, Yanbei; Ward, Robert L; Blair, D G

    2014-10-10

    We propose using optomechanical interaction to narrow the bandwidth of filter cavities for achieving frequency-dependent squeezing in advanced gravitational-wave detectors, inspired by the idea of optomechanically induced transparency. This can allow us to achieve a cavity bandwidth on the order of 100 Hz using small-scale cavities. Additionally, in contrast to a passive Fabry-Pérot cavity, the resulting cavity bandwidth can be dynamically tuned, which is useful for adaptively optimizing the detector sensitivity when switching amongst different operational modes. The experimental challenge for its implementation is a stringent requirement for very low thermal noise of the mechanical oscillator, which would need a superb mechanical quality factor and a very low temperature. We consider one possible setup to relieve this requirement by using optical dilution to enhance the mechanical quality factor.

  10. Narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using multimode interference filter.

    PubMed

    Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S

    2017-05-01

    A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240  ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.

  11. Mid-wave infrared narrow bandwidth guided mode resonance notch filter.

    PubMed

    Zhong, Y; Goldenfeld, Z; Li, K; Streyer, W; Yu, L; Nordin, L; Murphy, N; Wasserman, D

    2017-01-15

    We have designed, fabricated, and characterized a guided mode resonance notch filter operating in the technologically vital mid-wave infrared (MWIR) region of the electromagnetic spectrum. The filter provides a bandstop at λ≈4.1  μm, with a 12 dB extinction on resonance. In addition, we demonstrate a high transmission background (>80%), less than 6% transmission on resonance, and an ultra-narrow bandwidth transmission notch (10  cm-1). Our filter is optically characterized using angle- and polarization-dependent Fourier transform infrared spectroscopy, and simulated using rigorous coupled-wave analysis (RCWA) with excellent agreement between simulations and our experimental results. Using our RCWA simulations, we are able to identify the optical modes associated with the transmission dips of our filter. The presented structure offers a potential route toward narrow-band laser filters in the MWIR.

  12. Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  13. Tunable polarization plasma channel undulator for narrow bandwidth photon emission

    DOE PAGES

    Rykovanov, S. G.; Wang, J. W.; Kharin, V. Yu.; ...

    2016-09-09

    The theory of a plasma undulator excited by a short intense laser pulse in a parabolic plasma channel is presented. The undulator fields are generated either by the laser pulse incident off-axis and/or under the angle with respect to the channel axis. Linear plasma theory is used to derive the wakefield structure. It is shown that the electrons injected into the plasma wakefields experience betatron motion and undulator oscillations. Optimal electron beam injection conditions are derived for minimizing the amplitude of the betatron motion, producing narrow-bandwidth undulator radiation. Polarization control is readily achieved by varying the laser pulse injection conditions.

  14. Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  15. Narrow bandwidth detection of vibration signature using fiber lasers

    DOEpatents

    Moore, Sean; Soh, Daniel B.S.

    2018-05-08

    The various technologies presented herein relate to extracting a portion of each pulse in a series of pulses reflected from a target to facilitate determination of a Doppler-shifted frequency for each pulse and, subsequently, a vibration frequency for the series of pulses. Each pulse can have a square-wave configuration, whereby each pulse can be time-gated to facilitate discarding the leading edge and the trailing edge (and associated non-linear effects) of each pulse and accordingly, capture of the central portion of the pulse from which the Doppler-shifted frequency, and ultimately, the vibration frequency of the target can be determined. Determination of the vibration velocity facilitates identification of the target being in a state of motion. The plurality of pulses can be formed from a laser beam (e.g., a continuous wave), the laser beam having a narrow bandwidth.

  16. Silicon Nitride Grating Coupler with Flexible Bandwidth Incorporating a Serially Concatenated Multimode Interference Filter

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Ju; Lee, Hak-Soon; Lee, Sang-Shin

    2012-04-01

    A compact silicon nitride grating coupler with flexible bandwidth was demonstrated taking advantage of a basic grating integrated with a serially connected multistage multimode interference (MMI) filter. The spectral response could be tailored by varying the order of the MMI filter, without affecting the basic grating structure. The dependence of the spectral response of the proposed device on the order of the MMI stage was thoroughly investigated. As regards the fabricated grating coupler with a four-stage MMI filter, the observed spectral bandwidth was efficiently altered from 53 to 21 nm in the ˜1550 nm spectral band.

  17. High bandwidth all-optical 3×3 switch based on multimode interference structures

    NASA Astrophysics Data System (ADS)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  18. Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination

    NASA Technical Reports Server (NTRS)

    Tao, Jian-Ping

    1998-01-01

    The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent

  19. The minimum bandwidths of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Baumback, M. M.; Calvert, W.

    1987-01-01

    The bandwidths of the discrete spectral components of the auroral kilometric radiation can sometimes be as narrow as 5 Hz. Since this would imply an apparent source thickness of substantially less than the wavelength, it is inconsistent with the previous explanation for such discrete components based simply upon vertical localization of a cyclotron source. Instead, such narrow bandwidths can only be explained by radio lasing.

  20. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  1. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  2. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  3. Self-stabilized narrow-bandwidth and high-fidelity entangled photons generated from cold atoms

    NASA Astrophysics Data System (ADS)

    Yu, Y. C.; Ding, D. S.; Dong, M. X.; Shi, S.; Zhang, W.; Shi, B. S.

    2018-04-01

    Entangled photon pairs are critically important in fundamental quantum mechanics research as well as in many areas within the field of quantum information, such as quantum communication, quantum computation, and quantum cryptography. Previous demonstrations of entangled photons based on atomic ensembles were achieved by using a reference laser to stabilize the phase of two spontaneous four-wave mixing paths. Here, we demonstrate a convenient and efficient scheme to generate polarization-entangled photons with a narrow bandwidth of 57.2 ±1.6 MHz and a high-fidelity of 96.3 ±0.8 % by using a phase self-stabilized multiplexing system formed by two beam displacers and two half-wave plates where the relative phase between the different signal paths can be eliminated completely. It is possible to stabilize an entangled photon pair for a long time with this system and produce all four Bell states, making this a vital step forward in the field of quantum information.

  4. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs.

    PubMed

    Yuan, Fanglong; Yuan, Ting; Sui, Laizhi; Wang, Zhibin; Xi, Zifan; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Tan, Zhan'ao; Chen, Anmin; Jin, Mingxing; Yang, Shihe

    2018-06-08

    Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon's intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54-72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882-4762 cd m -2 and current efficiency of 1.22-5.11 cd A -1 . This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.

  5. Locata Performance Evaluation in the Presence of Wide- and Narrow-Band Interference

    NASA Astrophysics Data System (ADS)

    Khan, Faisal A.; Rizos, Chris; Dempster, Andrew G.

    Classically difficult positioning environments often call for augmentation technology to assist the GPS, or more generally the Global Navigation Satellite System (GNSS) technology. The ground-based ranging technology offers augmentation, and even replacement, to GPS in such environments. However, like any other system relying on wireless technology, a Locata positioning network also faces issues in the presence of RF interference (RFI). This problem is magnified due to the fact that Locata operates in the licence-free 2·4 GHz Industrial, Scientific and Medical (ISM) band. The licence-free nature of this band attracts a much larger number of devices using a wider range of signal types than for licensed bands, resulting in elevation of the noise floor. Also, harmonics from out-of-band signals can act as potential interferers. WiFi devices operating in this band have been identified as the most likely potential interferer, due partially to their use of the whole ISM band, but also because Locata applications often also may use a wireless network. This paper evaluates the performance of Locata in the presence of both narrow- and wide-band interfering signals. Effects of received interference on both raw measurements and final solutions are reported and analysed. Test results show that Locata performance degrades in the presence of received interference. It is also identified that high levels of received interference can affect Locata carriers even if the interference is not in co-frequency situation with the affected carrier. Finally, Locata characteristics have been identified which can be exploited to mitigate RFI issues.

  6. Impact of Raman scattering on pulse dynamics in a fiber laser with narrow gain bandwidth

    NASA Astrophysics Data System (ADS)

    Uthayakumar, T.; Alsaleh, M.; Igbonacho, J.; Tchomgo Felenou, E.; Tchofo Dinda, P.; Grelu, Ph; Porsezian, K.

    2018-06-01

    We examine theoretically the multi-pulse dynamics in a dispersion-managed fiber laser, in which the pulse’s spectral width is controlled by a pass-band filter. We show that in the domain of stable states with very narrow spectral width, i.e. which is one order of magnitude smaller than the bandwidth of the Raman gain of the intra-cavity fiber system, the Raman scattering (RS) significantly alters the multi-pulse dynamics. RS is found to have a greater impact in the immediate vicinity of some critical values of the pump power of the intra-cavity gain medium, where processes of pulse fragmentation occur. As a result, all the borders between the zones of stability of the multi-pulse states are altered, i.e. either shifted or suppressed.

  7. Single-longitudinal-mode, narrow bandwidth double-ring fiber laser stabilized by an efficiently taper-coupled high roundness microsphere resonator

    NASA Astrophysics Data System (ADS)

    Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing

    2018-06-01

    This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.

  8. Optimal Bandwidth for High Efficiency Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Yang, Ronggui; Chen, Gang; Dresselhaus, Mildred S.

    2011-11-01

    The thermoelectric figure of merit (ZT) in narrow conduction bands of different material dimensionalities is investigated for different carrier scattering models. When the bandwidth is zero, the transport distribution function (TDF) is finite, not infinite as previously speculated by Mahan and Sofo [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)PNASA60027-842410.1073/pnas.93.15.7436], even though the carrier density of states goes to infinity. Such a finite TDF results in a zero electrical conductivity and thus a zero ZT. We point out that the optimal ZT cannot be found in an extremely narrow conduction band. The existence of an optimal bandwidth for a maximal ZT depends strongly on the scattering models and the dimensionality of the material. A nonzero optimal bandwidth for maximizing ZT also depends on the lattice thermal conductivity. A larger maximum ZT can be obtained for materials with a smaller lattice thermal conductivity.

  9. Frequency Bandwidth Optimization of Left-Handed Metamaterial

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.

    2004-01-01

    Recently, left-handed metamaterials (LHM s) have been demonstrated with an effective negative index of refraction and with antiparallel group and phase velocities for microwave radiation over a narrow frequency bandwidth. In order to take advantage of these characteristics for practical applications, it will be beneficial to develop LHM s with increased frequency bandwidth response and lower losses. In this paper a commercial three-dimensional electromagnetic simulation code is used to explore the effects of geometry parameter variations on the frequency bandwidth of a LHM at microwave frequencies. Utilizing an optimizing routine in the code, a geometry was generated with a bandwidth more than twice as large as the original geometry.

  10. Comparative study on the performance of power and bandwidth efficient modulations in LMSS under fading and interference

    NASA Technical Reports Server (NTRS)

    Liu, Jian; Kim, Junghwan; Kwatra, S. C.; Stevens, Grady H.

    1991-01-01

    Aspects of error performance of various power and bandwidth efficient modulations for the land mobile satellite systems (LMSS) were investigated under multipath fading and interferences by using Monte-Carlo simulation. A differential detection for 16QAM (quadrature amplitude modulation) was proposed to cope with Ricean fading and Doppler shift. Computer simulation results show that the performance of 16QAM with differential detection is as good as that of 16PSK with coherent detection and 3 dB better than that of 16PSK with differential detection, although it degrades by about 4.5 dB as compared to 16QAM with coherent detection under an additive white Gaussian noise (AWGN) channel. For the nonlinear channels, 16QAM with modified signal constellations is introduced and analyzed. The simulation results show that the modified 16QAM exhibits a gain of 2.5 dB over 16PSK under traveling-wave tube nonlinearity, and about 4 dB gain over 16PSK at the bit error rate of 10 exp -5 under AWGN. Computer simulation results for modified 16 QAM under cochannel interference and adjacent-channel interference are also presented.

  11. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    PubMed

    Rechner, Ole; Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants.

  12. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    PubMed Central

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  13. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump.

    PubMed

    Co, Dick T; Lockard, Jenny V; McCamant, David W; Wasielewski, Michael R

    2010-04-01

    Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  14. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  15. The effect of bandwidth on filter instrument total ozone accuracy

    NASA Technical Reports Server (NTRS)

    Basher, R. E.

    1977-01-01

    The effect of the width and shape of the New Zealand filter instrument's passbands on measured total-ozone accuracy is determined using a numerical model of the spectral measurement process. The model enables the calculation of corrections for the 'bandwidth-effect' error and shows that highly attenuating passband skirts and well-suppressed leakage bands are at least as important as narrow half-bandwidths. Over typical ranges of airmass and total ozone, the range in the bandwidth-effect correction is about 2% in total ozone for the filter instrument, compared with about 1% for the Dobson instrument.

  16. Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law.

    PubMed

    Li, Qi; Luo, Tian-Yi; Zhou, Meng; Abroshan, Hadi; Huang, Jingchun; Kim, Hyung J; Rosi, Nathaniel L; Shao, Zhengzhong; Jin, Rongchao

    2016-09-27

    Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon's intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.

  17. Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer

    NASA Astrophysics Data System (ADS)

    Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.

    2018-03-01

    An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.

  18. Method for shaping and aiming narrow beams. [sonar mapping and target identification

    NASA Technical Reports Server (NTRS)

    Heyser, R. C. (Inventor)

    1981-01-01

    A sonar method and apparatus is discribed which utilizes a linear frequency chirp in a transmitter/receiver having a correlator to synthesize a narrow beamwidth pattern from otherwise broadbeam transducers when there is relative velocity between the transmitter/receiver and the target. The chirp is so produced in a generator in bandwidth, B, and time, T, as to produce a time bandwidth product, TB, that is increased for a narrower angle. A replica of the chirp produced in a generator is time delayed and Doppler shifted for use as a reference in the receiver for correlation of received chirps from targets. This reference is Doppler shifted to select targets preferentially, thereby to not only synthesize a narrow beam but also aim the beam in azimuth and elevation.

  19. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGES

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; ...

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  20. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  1. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    PubMed

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.

  2. Design of ultrathin dual-resonant reflective polarization converter with customized bandwidths

    NASA Astrophysics Data System (ADS)

    Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay

    2017-10-01

    In this paper, an ultrathin dual-resonant reflective polarization converter is proposed to obtain customized bandwidths using precise space-filling technique to its top geometry. The unit cell of the dual-resonant prototype consists of conductive square ring with two diagonally arranged slits, supported by metal-backed thin dielectric layer. It offers two narrow bands with fractional bandwidths of 3.98 and 6.65% and polarization conversion ratio (PCR) of 97.16 and 98.87% at 4.52 and 6.97 GHz, respectively. The resonances are brought in proximity to each other by changing the length of surface current paths of the two resonances. By virtue of this mechanism, two polarization converters with two different types of bandwidths are obtained. One polarization converter produces a full-width at half-maxima PCR bandwidth of 34%, whereas another polarization converter produces a 90% PCR bandwidth of 19%. All the proposed polarization converters are insensitive to wide variations of incident angle for both TE- and TM-polarized incident waves. Measured results show good agreement with the numerically simulated results.

  3. Evaluation of Critical Bandwidth Using Digitally Processed Speech.

    DTIC Science & Technology

    1982-05-12

    observed after re- peating the two tests on persons with confirmed cases of sensorineural hearing impairment. Again, the plotted speech discrimination...quantifying the critical bandwidth of persons on a cli- nical or pre-employment level. The complex portion of the test design (the computer generation of...34super" normal hearing indi- viduals (i.e., those persons with narrower-than-normal cri- tical bands). This ability of the test shows promise as a valuable

  4. Highly linear dual ring resonator modulator for wide bandwidth microwave photonic links.

    PubMed

    Hosseinzadeh, Arash; Middlebrook, Christopher T

    2016-11-28

    A highly linear dual ring resonator modulator (DRRM) design is demonstrated to provide high spur-free dynamic range (SFDR) in a wide operational bandwidth. Harmonic and intermodulation distortions are theoretically analyzed in a single ring resonator modulator (RRM) with Lorentzian-shape transfer function and a strategy is proposed to enhance modulator linearity for wide bandwidth applications by utilizing DRRM. Third order intermodulation distortion is suppressed in a frequency independent process with proper splitting ratio of optical and RF power and proper dc biasing of the ring resonators. Operational bandwidth limits of the DRRM are compared to the RRM showing the capability of the DRRM in providing higher SFDR in an unlimited operational bandwidth. DRRM bandwidth limitations are a result of the modulation index from each RRM and their resonance characteristics that limit the gain and noise figure of the microwave photonic link. The impact of the modulator on microwave photonic link figure of merits is analyzed and compared to RRM and Mach-Zehnder Interference (MZI) modulators. Considering ± 5 GHz operational bandwidth around the resonance frequency imposed by the modulation index requirement the DRRM is capable of a ~15 dB SFDR improvement (1 Hz instantaneous bandwidth) versus RRM and MZI.

  5. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  6. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.

    PubMed

    Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin

    2015-06-12

    Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.

  7. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of themore » scattered radiation.« less

  8. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  9. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product

    NASA Astrophysics Data System (ADS)

    Bagci, Fulya; Akaoglu, Baris

    2018-05-01

    In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.

  10. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    PubMed

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  11. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    NASA Astrophysics Data System (ADS)

    Su, J.; Liu, L.; Luo, B.; Wang, W.; Jing, F.; Wei, X.; Zhang, X.

    2008-05-01

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  12. Frequency tracking and variable bandwidth for line noise filtering without a reference.

    PubMed

    Kelly, John W; Collinger, Jennifer L; Degenhart, Alan D; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2011-01-01

    This paper presents a method for filtering line noise using an adaptive noise canceling (ANC) technique. This method effectively eliminates the sinusoidal contamination while achieving a narrower bandwidth than typical notch filters and without relying on the availability of a noise reference signal as ANC methods normally do. A sinusoidal reference is instead digitally generated and the filter efficiently tracks the power line frequency, which drifts around a known value. The filter's learning rate is also automatically adjusted to achieve faster and more accurate convergence and to control the filter's bandwidth. In this paper the focus of the discussion and the data will be electrocorticographic (ECoG) neural signals, but the presented technique is applicable to other recordings.

  13. Narrow bandwidth Laser-Plasma Accelerator driven Thomson photon source development

    NASA Astrophysics Data System (ADS)

    Geddes, C. G. R.; Tsai, H.-E.; Otero, G.; Liu, X.; van Tilborg, J.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Friedman, A.; Grote, D. P.; Leemans, W. P.

    2017-10-01

    Compact, high-quality photon sources at MeV energies can be provided by Thomson scattering of a laser from the electron beam of a Laser-Plasma Accelerator (LPA). Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV sources. Simulations indicate that high flux with narrow energy spread can be achieved via control of the scattering laser pulse shape and laser guiding, and that undesired background bremsstrahlung can be mitigated by plasma based deceleration of the electron beam after photon production. Construction of experiments and laser capabilities to combine these elements will be presented, along with initial operations, towards a compact photon source system. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  14. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    PubMed Central

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-01-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254

  15. Interference-free SDMA for FBMC-OQAM

    NASA Astrophysics Data System (ADS)

    Horlin, François; Fickers, Jessica; Deleu, Thibault; Louveaux, Jérome

    2013-12-01

    Filter-bank multi-carrier (FBMC) modulations have recently been considered for the emerging wireless communication systems as a means to improve the utilization of the physical resources and the robustness to channel time variations. FBMC divides the overall frequency channel in a set of subchannels of bandwidth proportionally decreasing with the number of subchannels. If the number of subchannels is high enough, the bandwidth of each subchannel is small enough to assume that it is approximately flat. On the other hand, space-division multiple access (SDMA) is a recognized technique to support multiple access in the downlink of a multi-user system. The user signals are precoded at the base station equipped with multiple antennas to separate the users in the spatial domain. The application of SDMA to FBMC is unfortunately difficult when the channel is too frequency selective (or when the number of subchannels to too small) to assume flat subchannels. In that case, the system suffers from inter-symbol and inter-subchannel interference, besides the multi-user interference inherent to SDMA. State-of-the art solutions simply neglect the inter-symbol/subchannel interference. This article proposes a new SDMA precoder for FBMC capable of mitigating the three sources of interference. It is constructed per subchannel in order to keep an acceptable complexity and has the structure of a filter applied on each subchannel and its neighbors at twice the symbol rate. Numerical results demonstrate that the precoder can get rid of all the interference present in the system and benefit therefore from the diversity and power gains achievable with multiple antenna systems.

  16. Very broad bandwidth klystron amplifiers

    NASA Astrophysics Data System (ADS)

    Faillon, G.; Egloff, G.; Farvet, C.

    Large surveillance radars use transmitters at peak power levels of around one MW and average levels of a few kW, and possibly several tens of kW, in S band, or even C band. In general, the amplification stage of these transmitters is a microwave power tube, frequently a klystron. Although designers often turn to klystrons because of their good peak and average power capabilities, they still see them as narrow band amplifiers, undoubtedly because of their resonant cavities which, at first sight, would seem highly selective. But, with the progress of recent years, it has now become quite feasible to use these tubes in installations requiring bandwidths in excess of 10 - 12 percent, and even 15 percent, at 1 MW peak for example, in S-band.

  17. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  18. Bandwidth broadening of a graphene-based circular polarization converter by phase compensation.

    PubMed

    Gao, Xi; Yang, Wanli; Cao, Weiping; Chen, Ming; Jiang, Yannan; Yu, Xinhua; Li, Haiou

    2017-10-02

    We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.

  19. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, Y. L.; Lee, J. H.; Shin, W.

    2016-05-01

    We proposed a multimode interference (MMI) fiber based saturable absorber using bismuth telluride at  ∼2 μm region. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The MMI functioned as both wavelength fixed filter and saturable absorber. The 3 dB bandwidth and insertion loss of MMI were 42 nm and 3.4 dB at wavelength of 1958 nm, respectively. We have also reported a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm using a multimode interference. A temporal bandwidth of  ∼46 ps was experimentally obtained at a repetition rate of 8.58 MHz.

  20. An adaptive narrow band frequency modulation voice communication system

    NASA Technical Reports Server (NTRS)

    Wishna, S.

    1972-01-01

    A narrow band frequency modulation communication system is described which provides for the reception of good quality voice at low carrier-to-noise ratios. The high level of performance is obtained by designing a limiter and phase lock loop combination as a demodulator, so that the bandwidth of the phase lock loop decreases as the carrier level decreases. The system was built for the position location and aircraft communication equipment experiment of the ATS 6 program.

  1. CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.

    1996-01-01

    Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.

  2. Method of making an improved superconducting quantum interference device

    DOEpatents

    Wu, Cheng-Teh; Falco, Charles M.; Kampwirth, Robert T.

    1977-01-01

    An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper.

  3. Interference-induced angle-independent acoustical transparency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lehua; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn; Wang, Ning

    2014-12-21

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtzmore » resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.« less

  4. Narrow-band erbium-doped fibre linear–ring laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolegov, A A; Sofienko, G S; Minashina, L A

    2014-01-31

    We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)

  5. Intelligent bandwidth compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 bandwidth-compressed images are presented.

  6. Hazard Monitoring in a Spectrum-Challenged Future: US Department of Transportation Adjacent Band Compatibility Assessment of Interference on High-Precision GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.

    2016-12-01

    In 2012 the Federal Communications Commission (FCC) reversed its decision to allow communications company LightSquared to use GPS-adjacent spectrum for a ground based network after testing demonstrated harmful interference to GPS receivers. Now rebranded as Ligado, they have submitted modified application to use a smaller portion of the L-band spectrum at much lower power. Many GPS community stakeholders, including the hazard monitoring and EEW communities remain concerned that Ligado's proposed use could still cause harmful interference, causing signal degradation, real-time positioning errors, and total failure of GNSS hardware in widespread use in hazard monitoring networks. The Department of Transportation (DoT) has conducted hardware tests to determine adjacent-band transmitter power limit criteria that would prevent harmful interference from Ligado's operations. We present preliminary results produced from the data collected by the three UNAVCO receiver types tested: Trimble NetRS, Trimble NetR9, and Septentrio PolaRx5. In the first round of testing, simulated GNSS signals were broadcast in an anechoic chamber (pictured below) while interfering signals are broadcast simultaneously with varying amplitude and frequency. The older GPS-only NetRS receiver showed smaller reductions in SNR at frequencies adjacent to GPS L1 as compared to the other receivers, suggesting narrower L1 filter bandwidth in the RF frontend. The NetR9 showed greater decreases in observed SNR in the 1615 to 1625 MHz range when compared to the other two receivers. This suggests that the NetR9's L1 filter bandwidth has been increased to accommodate GNSS signals. Linearity tests were conducted to better relate SNR measurements between receiver types. The PolaRx5 receiver showed less SNR variation between tracking channels than both Trimble receivers. Our results show the power levels at which adjacent-band interference begins degrading receiver performance and eventually disables tracking. As

  7. Network bandwidth utilization forecast model on high bandwidth networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wuchert; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  8. Imaging RF Phased Array Receivers using Optically-Coherent Up-conversion for High Beam-Bandwidth Processing

    DTIC Science & Technology

    2017-03-01

    It does so by using an optical lens to perform an inverse spatial Fourier Transform on the up-converted RF signals, thereby rendering a real-time... simultaneous beams or other engineered beam patterns. There are two general approaches to array-based beam forming: digital and analog. In digital beam...of significantly limiting the number of beams that can be formed simultaneously and narrowing the operational bandwidth. An alternate approach that

  9. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2017-02-01

    In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.

  10. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  11. Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2014-02-01

    Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.

  12. High power narrow-band fiber-based ASE source.

    PubMed

    Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A

    2011-02-28

    In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.

  13. A Review of the Current Available Studies of the Interference Susceptibility of Various Modulation Schemes

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1994-01-01

    This report reviews the current available work on interference susceptibility for various modulation schemes. Only known and published work in this area is descussed. This report classifies the interference signal into three different categories, namely, narrow-band (in-band), wide-band and pluse interference.

  14. Narrow-band far-infrared interference filters with high-T c, superconducting reflectors

    NASA Astrophysics Data System (ADS)

    Schönberger, R.; Prückl, A.; Pechen, E. V.; Anzin, V. B.; Brunner, B.; Renk, K. F.

    1994-10-01

    We report on experiments showing that high-T c, superconductors are well suitable for constructing of high-quality far-infrared Fabry-Perot interference filters in the terahertz frequency range. In an interference filter we use two plane-parallel MgO plates with YBa 2 Cu 3 O 7 thin films as partly transparent reflectors on adjacent surfaces. For the first-order main resonances adjusted to frequencies around 2 THz a quality factor of ≅200 and a peak-transmissivity of 0˜.5 have been reached. Study of the filters with YBa 2 Cu 3 O 7 films of different thickness indicate the possibility of reaching still higher selectivity. An analysis of the filter characteristics delivered the dynamical conductivity of the high-T c films.

  15. Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2001-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64

  16. Identification and mitigation of interference sources present in SSB-based wireless MRI receiver arrays

    PubMed Central

    Riffe, Matthew J.; Twieg, Michael D.; Gudino, Natalia; Blumenthal, Colin J.; Heilman, Jeremy A.; Griswold, Mark A.

    2013-01-01

    Purpose Single sideband amplitude modulation (SSB) is an appealing platform for highly parallel wireless MRI detector arrays because the spacing between channels is ideally limited only by the MRI signal bandwidth. However this assumes that no other sources of interference are present outside that bandwidth. This work investigates the practical interference between multiple SSB-encoded MRI signals. Methods Noise from coil preamplifiers and carrier bleed-through are identified as sources of interference. Two different SSB systems were designed for 1.5T with different noise filtering properties. We show how the differences between the filtered noise profiles impact the received MR signal’s dynamic range (DRsig) and image signal-to-noise ratio (SNR) through simulation, bench measurements, and phantom imaging experiments. Results When operating individually in the MR scanner, both SSB systems were shown to minimally impact the original DRsig and SNR. On the other hand, when all eight channels were operating simultaneously, an average SNR loss was observed to be 12% in the one system, while a second system with more complex filtering was able to achieve a 3% loss in SNR. Conclusion Successful wireless transmission of multiple SSB-encoded MRI signals is possible as long as channel interference is properly managed through design and simulation. PMID:23413242

  17. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Kim, Seung-Jun; Mohammed, Priscilla N.

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interference-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  18. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    PubMed

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  19. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  20. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  1. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  2. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  3. 47 CFR 2.202 - Bandwidths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... documents for the bandwidths of the commonly used television systems Number of lines=525; Nominal video bandwidth: 4.2 MHz, Sound carrier relative to video carrier=4.5 MHz 5M75C3F Total vision bandwidth: 5.75 MHz... 6. Composite Emissions Double-sideband, television relay Bn=2C+2M+2D Video limited to 5 MHz, audio...

  4. Cascaded chirped narrow bandpass filter with flat-top based on two-dimensional photonic crystals.

    PubMed

    Zhuang, Yuyang; Chen, Heming; Ji, Ke

    2017-05-10

    We propose a structure of a cascaded chirped narrow bandpass filter with a flat-top based on two-dimensional (2D) photonic crystals (PhCs). The filter discussed here consists of three filter units, each with a resonator and two reflectors. Coupled mode theory and transfer matrix method are methodologies applied in the analysis of the features. The calculations show that the bandwidth of the filter can be adjusted by changing the distances between resonators and reflectors, and based on this, a flat-top response can be achieved by chirped-cascading the filter units. According to the theoretical model, we design a narrow bandpass filter based on 2D PhCs with a triangular lattice of air holes, the parameters of which are calculated using the finite element method. The simulation results show that the filter has a center frequency of 193.40 THz, an insertion loss of 0.18 dB, a flat bandwidth of 40 GHz, and ripples of about 0.2 dB in the passband. The filter is suitable for dense-wavelength-division-multiplexed optical communication systems with 100 GHz channel spacing.

  5. Tunable, high-sensitive measurement of inter-dot transition via tunneling induced absorption

    NASA Astrophysics Data System (ADS)

    Peng, Yandong; Yang, Aihong; Chen, Bing; Li, Lei; Liu, Shande; Guo, Hongju

    2016-10-01

    A tunable, narrow absorption spectrum induced by resonant tunneling is demonstrated and proposed for measuring interdot tunneling. Tunneling-induced absorption (TIA) arises from constructive interference between different transition paths, and the large nonlinear TIA significantly enhances the total absorption. The narrow nonlinear TIA spectrum is sensitive to inter-dot tunneling, and its sensor characteristics, including sensitivity and bandwidth, are investigated in weak-coupling and strong-coupling regimes, respectively.

  6. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.

    PubMed

    Tombez, L; Schilt, S; Hofstetter, D; Südmeyer, T

    2013-12-01

    We report on a technique for frequency noise reduction and linewidth-narrowing of a distributed-feedback mid-IR quantum cascade laser (QCL) that does not involve any optical frequency reference. The voltage fluctuations across the QCL are sensed, amplified and fed back to the temperature of the QCL at a fast rate using a near-IR laser illuminating the top of the QCL chip. A locking bandwidth of 300 kHz and a reduction of the frequency noise power spectral density by a factor of 10 with respect to the free-running laser are achieved. From 2 MHz for the free-running QCL, the linewidth is narrowed below 700 kHz (10 ms observation time).

  7. Video bandwidth compression system

    NASA Astrophysics Data System (ADS)

    Ludington, D.

    1980-08-01

    The objective of this program was the development of a Video Bandwidth Compression brassboard model for use by the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, in evaluation of bandwidth compression techniques for use in tactical weapons and to aid in the selection of particular operational modes to be implemented in an advanced flyable model. The bandwidth compression system is partitioned into two major divisions: the encoder, which processes the input video with a compression algorithm and transmits the most significant information; and the decoder where the compressed data is reconstructed into a video image for display.

  8. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    PubMed

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  9. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  10. Fokker-Planck electron diffusion caused by an obliquely propagating electromagnetic wave packet of narrow bandwidth

    NASA Technical Reports Server (NTRS)

    Hizanidis, Kyriakos

    1989-01-01

    The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.

  11. Waveguide bandpass filter with easily adjustable transmission zeros and 3-dB bandwidth

    NASA Astrophysics Data System (ADS)

    Bage, Amit; Das, Sushrut; Murmu, Lakhindar; Pattapu, Udayabhaskar; Biswal, Sonika

    2018-07-01

    This paper presents a compact waveguide bandpass filter with adjustable transmission zeros (TZs) and bandwidth. The design provides the flexibility to place the TZs at the desired locations for better interference rejection. To demonstrate, initially a three-pole bandpass filter has been designed by placing three single slot resonator structures inside a WR-90 waveguide. Next, two additional asymmetrical slot structures have been used with each of the above resonators to generate two TZs, one on each side of the passband. Since three resonators were used, this process results in six asymmetric slot structures those results in six TZs. The final filter operates at 9.98 GHz with a 3-dB bandwidth of 1.02 GHz and TZs at 8.23/8.70/9.16/10.9/11.6 and 13.115 GHz. Equivalent circuits and necessary design equations have been provided. To validate the simulation, the proposed filter has been fabricated and measured. The measured data show good agreement with simulated data.

  12. Optimal Bandwidth for Multitaper Spectrum Estimation

    DOE PAGES

    Haley, Charlotte L.; Anitescu, Mihai

    2017-07-04

    A systematic method for bandwidth parameter selection is desired for Thomson multitaper spectrum estimation. We give a method for determining the optimal bandwidth based on a mean squared error (MSE) criterion. When the true spectrum has a second-order Taylor series expansion, one can express quadratic local bias as a function of the curvature of the spectrum, which can be estimated by using a simple spline approximation. This is combined with a variance estimate, obtained by jackknifing over individual spectrum estimates, to produce an estimated MSE for the log spectrum estimate for each choice of time-bandwidth product. The bandwidth that minimizesmore » the estimated MSE then gives the desired spectrum estimate. Additionally, the bandwidth obtained using our method is also optimal for cepstrum estimates. We give an example of a damped oscillatory (Lorentzian) process in which the approximate optimal bandwidth can be written as a function of the damping parameter. Furthermore, the true optimal bandwidth agrees well with that given by minimizing estimated the MSE in these examples.« less

  13. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    NASA Astrophysics Data System (ADS)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  14. Ultra-small and broadband polarization splitters based on double-slit interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chengwei; Li, Hongyun; Gong, Qihuang

    2016-03-07

    An ultra-small and broadband polarization splitter is numerically and experimentally demonstrated based on the double-slit interference in a polymer-film-coated double-slit structure. The hybrid slab waveguide (air-polymer-Au) supports both the transverse-magnetic and transverse-electric modes. The incident beam from the back side can excite these two guided modes of orthogonally polarized states in the hybrid structure. By exploiting the difference slit widths and the large mode birefringence, these two guided modes propagate to the opposite directions along the front metal surface. Moreover, the short interference length broadens the operation bandwidth. Experimentally, a polarization splitter with a lateral dimension of only about 1.6 μmmore » and an operation bandwidth of 50 nm is realized. By designing the double-slit structure in a hybrid strip waveguide, the device dimension can be significant downscaled to about 0.3 × 1.3 μm{sup 2}. Such an ultra-small and broadband polarization splitter may find important applications in the integrated photonic circuits.« less

  15. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  16. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  17. 47 CFR 95.633 - Emission bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (b) The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz. (c) The authorized bandwidth for emission type F3E or F2D...

  18. Operation bandwidth optimization of photonic differentiators.

    PubMed

    Yan, Siqi; Zhang, Yong; Dong, Jianji; Zheng, Aoling; Liao, Shasha; Zhou, Hailong; Wu, Zhao; Xia, Jinsong; Zhang, Xinliang

    2015-07-27

    We theoretically investigate the operation bandwidth limitation of the photonic differentiator including the upper limitation, which is restrained by the device operation bandwidth and the lower limitation, which is restrained by the energy efficiency (EE) and detecting noise level. Taking the silicon photonic crystal L3 nano-cavity (PCN) as an example, for the first time, we experimentally demonstrate that the lower limitation of the operation bandwidth does exist and differentiators with different bandwidths have significantly different acceptable pulse width range of input signals, which are consistent to the theoretical prediction. Furthermore, we put forward a novel photonic differentiator scheme employing cascaded PCNs with different Q factors, which is likely to expand the operation bandwidth range of photonic differentiator dramatically.

  19. Super-resolution differential interference contrast microscopy by structured illumination.

    PubMed

    Chen, Jianling; Xu, Yan; Lv, Xiaohua; Lai, Xiaomin; Zeng, Shaoqun

    2013-01-14

    We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.

  20. High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts

    NASA Astrophysics Data System (ADS)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2016-02-01

    Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high

  1. Photonic bandgap narrowing in conical hollow core Bragg fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightlymore » smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.« less

  2. Optimal filter bandwidth for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  3. Optimal filter bandwidth for pulse oximetry.

    PubMed

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  4. Got Bandwidth?

    ERIC Educational Resources Information Center

    Villano, Matt

    2009-01-01

    Video-heavy distance learning programs can put a strain on the campus network. This article describes how three institutions are managing bandwidth to ensure high-quality service for eLearning students.

  5. Improved-Bandwidth Transimpedance Amplifier

    NASA Technical Reports Server (NTRS)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  6. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks.

    PubMed

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-05-25

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.

  7. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks

    PubMed Central

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-01-01

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085

  8. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors.

    PubMed

    Fortier, T M; Roos, P A; Jones, D J; Cundiff, S T; Bhat, R D R; Sipe, J E

    2004-04-09

    We demonstrate quantum interference control of injected photocurrents in a semiconductor using the phase stabilized pulse train from a mode-locked Ti:sapphire laser. Measurement of the comb offset frequency via this technique results in a signal-to-noise ratio of 40 dB (10 Hz resolution bandwidth), enabling solid-state detection of carrier-envelope phase shifts of a Ti:sapphire oscillator.

  9. Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Tong, Xin; Jiang, Chenyang

    2015-06-05

    In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.

  10. Bandwidth compression of multispectral satellite imagery

    NASA Technical Reports Server (NTRS)

    Habibi, A.

    1978-01-01

    The results of two studies aimed at developing efficient adaptive and nonadaptive techniques for compressing the bandwidth of multispectral images are summarized. These techniques are evaluated and compared using various optimality criteria including MSE, SNR, and recognition accuracy of the bandwidth compressed images. As an example of future requirements, the bandwidth requirements for the proposed Landsat-D Thematic Mapper are considered.

  11. Ultra-narrow bandwidth voice coding

    DOEpatents

    Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA

    2007-01-09

    A system of removing excess information from a human speech signal and coding the remaining signal information, transmitting the coded signal, and reconstructing the coded signal. The system uses one or more EM wave sensors and one or more acoustic microphones to determine at least one characteristic of the human speech signal.

  12. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. (a) Each authorization issued pursuant to these rules...

  13. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. (a) Each authorization issued pursuant to these rules...

  14. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. (a) Each authorization issued pursuant to these rules...

  15. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  16. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. Link to an amendment published at 76 FR 59572, Sept. 27...

  17. 47 CFR 101.109 - Bandwidth.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Bandwidth. 101.109 Section 101.109 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.109 Bandwidth. Link to an amendment published at 77 FR 54432, Sept. 5...

  18. Bandwidth in bolometric interferometry

    NASA Astrophysics Data System (ADS)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  19. Interference graph-based dynamic frequency reuse in optical attocell networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan

    2017-11-01

    Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).

  20. Cognitive software defined radar: waveform design for clutter and interference suppression

    NASA Astrophysics Data System (ADS)

    Kirk, Benjamin H.; Owen, Jonathan W.; Narayanan, Ram M.; Blunt, Shannon D.; Martone, Anthony F.; Sherbondy, Kelly D.

    2017-05-01

    Clutter and radio frequency interference (RFI) are prevalent issues in the field of radar and are specifically of interest to of cognitive radar. Here, methods for applying and testing the utility of cognitive radar for clutter and RFI mitigation are explored. Using the adaptable transmit capability, environmental database, and general "awareness" of a cognitive radar system (i.e. spectrum sensing, geographical location, etc.), a matched waveform is synthesized that improves the signal-to-clutter ratio (SCR), assuming at least an estimate of the target response and the environmental clutter response are known a prior i. RFI may also be mitigated by sensing the RF spectrum and adapting the transmit center frequency and bandwidth using methods that optimize bandwidth and signal-to-interference plus noise ratio (SINR) (i.e. the spectrum sensing, multi-objective (SS-MO) algorithm). The improvement is shown by a decrease in the noise floor. The above methods' effectiveness are examined via a test-bed developed around a software defined radio (SDR). Testing and the general use of commercial off the shelf (COTS) devices are desirable for their cost effectiveness, general ease of use, as well as technical and community support, but these devices provide design challenges in order to be effective. The universal software radio peripheral (USRP) X310 SDR is a relatively cheap and portable device that has all the system components of a basic cognitive radar. Design challenges of the SDR include phase coherency between channels, bandwidth limitations, dynamic range, and speed of computation and data communication / recording.

  1. Thermal tuning On narrow linewidth fiber laser

    NASA Astrophysics Data System (ADS)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  2. 47 CFR 87.135 - Bandwidth of emission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth of emission. 87.135 Section 87.135 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Technical Requirements § 87.135 Bandwidth of emission. (a) Occupied bandwidth is the width of a frequency...

  3. Estimating Bottleneck Bandwidth using TCP

    NASA Technical Reports Server (NTRS)

    Allman, Mark

    1998-01-01

    Various issues associated with estimating bottleneck bandwidth using TCP are presented in viewgraph form. Specific topics include: 1) Why TCP is wanted to estimate the bottleneck bandwidth; 2) Setting ssthresh to an appropriate value to reduce loss; 3) Possible packet-pair solutions; and 4) Preliminary results: ACTS and the Internet.

  4. Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz

    NASA Astrophysics Data System (ADS)

    Pan, Guan-Zhong; Guan, Bao-Lu; Xu, Chen; Li, Peng-Tao; Yang, Jia-Wei; Liu, Zhen-Yang

    2018-01-01

    Not Available Project supported by the Foundation of Based Technology of China (Grant No. YXBGD20151JL01), the National Natural Science Foundation of China (Grant Nos. 61376049, 61604007, 11674016, 61378058, 61575008, and 61574011), the Natural Science Foundation of Beijing City, China (Grant Nos. 4172009 and 4152003), and the Beijing Municipal Commission of Education of China (Grant Nos. PXM2017_014204_500034 and PXM2016_014204_500018).

  5. Improving the Bandwidth Selection in Kernel Equating

    ERIC Educational Resources Information Center

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  6. Paired comparisons of nonlinear frequency compression, extended bandwidth, and restricted bandwidth hearing-aid processing for children and adults with hearing loss

    PubMed Central

    Brennan, Marc A.; McCreery, Ryan; Kopun, Judy; Hoover, Brenda; Alexander, Joshua; Lewis, Dawna; Stelmachowicz, Patricia G.

    2014-01-01

    Background Preference for speech and music processed with nonlinear frequency compression and two controls (restricted and extended bandwidth hearing-aid processing) was examined in adults and children with hearing loss. Purpose Determine if stimulus type (music, sentences), age (children, adults) and degree of hearing loss influence listener preference for nonlinear frequency compression, restricted bandwidth and extended bandwidth. Research Design Within-subject, quasi-experimental study. Using a round-robin procedure, participants listened to amplified stimuli that were 1) frequency-lowered using nonlinear frequency compression, 2) low-pass filtered at 5 kHz to simulate the restricted bandwidth of conventional hearing aid processing, or 3) low-pass filtered at 11 kHz to simulate extended bandwidth amplification. The examiner and participants were blinded to the type of processing. Using a two-alternative forced-choice task, participants selected the preferred music or sentence passage. Study Sample Sixteen children (8–16 years) and 16 adults (19–65 years) with mild-to-severe sensorineural hearing loss. Intervention All subjects listened to speech and music processed using a hearing-aid simulator fit to the Desired Sensation Level algorithm v.5.0a (Scollie et al, 2005). Results Children and adults did not differ in their preferences. For speech, participants preferred extended bandwidth to both nonlinear frequency compression and restricted bandwidth. Participants also preferred nonlinear frequency compression to restricted bandwidth. Preference was not related to degree of hearing loss. For music, listeners did not show a preference. However, participants with greater hearing loss preferred nonlinear frequency compression to restricted bandwidth more than participants with less hearing loss. Conversely, participants with greater hearing loss were less likely to prefer extended bandwidth to restricted bandwidth. Conclusion Both age groups preferred access to

  7. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  8. Optical bandwidth in coupling: the multicore photonic switch.

    PubMed

    Attard, Alfred E

    2003-05-20

    In the present study, the bandwidth of a photonic switch described previously [Appl. Opt. 37,2296 (1998); 38, 3239 (1999)] is evaluated. First the optical bandwidth is evaluated for coupling between two fiber-core waveguides, in which the cores are embedded within the same cladding. Then the coupling bandwidth is determined for a fiber-core-to-slab-core waveguide, in which the cores are embedded within the same cladding. These bandwidths are then compared and contrasted with the bandwidths of the photonic switch, which consists of two fiber cores and a control waveguide. Two configurations of the photonic switch are considered: one in which the control waveguide is a fiber core and one in which the control waveguide is a slab core. For the photonic switch, the bandwidth characteristics are more complicated than for the coupled pairs, and these characteristics are discussed in detail.

  9. Complex Signal Kurtosis and Independent Component Analysis for Wideband Radio Frequency Interference Detection

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen

    2016-01-01

    Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  10. 47 CFR 90.209 - Bandwidth limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bandwidth limitations. 90.209 Section 90.209 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND... not necessarily indicate the bandwidth occupied by the emission at any instant. In those cases where...

  11. Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Yang, James; Hu, Frank

    2017-05-01

    In 2016, we presented a low SWaP wirelessly controlled MEMS mirror-based LiDAR prototype which utilized an OEM laser rangefinder for distance measurement [1]. The MEMS mirror was run in open loop based on its exceptionally fast design and high repeatability performance. However, to further extend the bandwidth and incorporate necessary eyesafety features, we recently focused on providing mirror position feedback and running the system in closed loop control. Multiple configurations of optical position sensors, mounted on both the front- and the back-side of the MEMS mirror, have been developed and will be presented. In all cases, they include a light source (LED or laser) and a 2D photosensor. The most compact version is mounted on the backside of the MEMS mirror ceramic package and can "view" the mirror's backside through openings in the mirror's PCB and its ceramic carrier. This version increases the overall size of the MEMS mirror submodule from 12mm x 12mm x 4mm to 15mm x 15mm x 7mm. The sensors also include optical and electronic filtering to reduce effects of any interference from the application laser illumination. With relatively simple FPGA-based PID control running at the sample rate of 100 kHz, we could configure the overall response of the system to fully utilize the MEMS mirror's native bandwidth which extends well beyond its first resonance. When compared to the simple open loop method of suppressing overshoot and ringing which significantly limits bandwidth utilization, running the mirrors in closed loop control increased the bandwidth to nearly 3.7 times. A 2.0mm diameter integrated MEMS mirror with a resonant frequency of 1300 Hz was limited to 500Hz bandwidth in open loop driving but was increased to 3kHz bandwidth with the closed loop controller. With that bandwidth it is capable of very sharply defined uniform-velocity scans (sawtooth or triangle waveforms) which are highly desired in scanned mirror LiDAR systems. A 2.4mm diameter mirror with

  12. Directing Traffic: Managing Internet Bandwidth Fairly

    ERIC Educational Resources Information Center

    Paine, Thomas A.; Griggs, Tyler J.

    2008-01-01

    Educational institutions today face budgetary restraints and scarce resources, complicating the decision of how to allot bandwidth for campus network users. Additionally, campus concerns over peer-to-peer networking (specifically outbound Internet traffic) have increased because of bandwidth and copyright issues. In this article, the authors…

  13. Over-the-air in-band full-duplex system with hybrid RF optical and baseband digital self-interference cancellation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin

    2017-12-01

    In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.

  14. An ultrawide-bandwidth single-sideband modulator for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Meijer, A. S.; Berden, G.; Arslanov, D. D.; Ozerov, M.; Jongma, R. T.; van der Zande, W. J.

    2016-11-01

    Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s-1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.

  15. Continued Development of an Ultra-Narrow Bandpass Filter for Solar Research

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1993-01-01

    The objective of work under this task was to develop ultranarrow optical bandpass filters and related technology necessary for construction of a compact solar telescope capable of operating unattended in space. The scientific problems to which such a telescope could be applied include solar seismology, solar activity monitoring, solar irradiance variations, solar magnetic field evolution, and the location of targets for narrow-field specialized telescopes. We have demonstrated a Y-cut lithium-niobate Fabry-Perot etalon. This filter will be used on the Flare Genesis Experiment. We also obtained solar images with a Z-cut etalon. The technical report on etalon filters is attached to this final report. We believe that work under this grant will lead to the commercial availability of a universal optical filter with approximately 0.1 A bandwidth. Progress was made toward making a suitable 1-2 A tunable blocker filter, but it now appears that the best approach is to make a double-cavity etalon that will not require such a narrow blocker. Broader band blockers are commercially available.

  16. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nong, Hanond, E-mail: Nong.Hanond@rub.de; Markmann, Sergej; Hekmat, Negar

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunesmore » the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.« less

  17. The effect of bandwidth on telerobot system performance

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Ali, Michael S.; Minis, Ioannis

    1991-01-01

    The purpose of the experiment was to determine the effect that various slave-joint bandwidths have on telerobot system performance. The telerobot system consisted of a slave arm controlled by a master. The slave incorporated an impedance loop to provide local compliance in addition to the compliance provided by the operator via force feedback. Three joint bandwidths, 0.5, 1.0, and 2.0 Hz, were used. The performance measures were the task completion time and the sums of the squared forces and moments exerted on the environment. The task consisted of peg-in-hole insertion and removal. The results of the experiment indicate a significant performance decrease at 0.5-Hz bandwidth relative to the 1- and 2-Hz bandwidths. There was no significant change in performance between the 1- and 2-Hz bandwidths.

  18. High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth

    PubMed Central

    Babin, Sergey A.; Zlobina, Ekaterina A.; Kablukov, Sergey I.; Podivilov, Evgeniy V.

    2016-01-01

    Random Raman lasers attract now a great deal of attention as they operate in non-active turbid or transparent scattering media. In the last case, single mode fibers with feedback via Rayleigh backscattering generate a high-quality unidirectional laser beam. However, such fiber lasers have rather poor spectral and polarization properties, worsening with increasing power and Stokes order. Here we demonstrate a linearly-polarized cascaded random Raman lasing in a polarization-maintaining fiber. The quantum efficiency of converting the pump (1.05 μm) into the output radiation is almost independent of the Stokes order, amounting to 79%, 83%, and 77% for the 1st (1.11 μm), 2nd (1.17 μm) and 3rd (1.23 μm) order, respectively, at the polarization extinction ratio >22 dB for all orders. The laser bandwidth grows with increasing order, but it is almost independent of power in the 1–10 W range, amounting to ~1, ~2 and ~3 nm for orders 1–3, respectively. So, the random Raman laser exhibits no degradation of output characteristics with increasing Stokes order. A theory adequately describing the unique laser features has been developed. Thus, a full picture of the cascaded random Raman lasing in fibers is shown. PMID:26940082

  19. Bandwidth enhancement of dielectric resonator antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    An experimental investigation of bandwidth enhancement of dielectric resonator antennas (DRA) using parasitic elements is reported. Substantial bandwidth enhancement for the HE(sub 11delta) mode of the stacked geometry and for the HE(sub 13delta) mode of the coplanar collinear geometry was demonstrated. Excellent radiation patterns for the HE(sub 11delta) mode were also recorded.

  20. Amplitude modulation detection with concurrent frequency modulation.

    PubMed

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  1. High-speed photodiodes for InP-based photonic integrated circuits.

    PubMed

    Rouvalis, E; Chtioui, M; Tran, M; Lelarge, F; van Dijk, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J

    2012-04-09

    We demonstrate the feasibility of monolithic integration of evanescently coupled Uni-Traveling Carrier Photodiodes (UTC-PDs) having a bandwidth exceeding 100 GHz with Multimode Interference (MMI) couplers. This platform is suitable for active-passive, butt-joint monolithic integration with various Multiple Quantum Well (MQW) devices for narrow linewidth millimeter-wave photomixing sources. The fabricated devices achieved a high 3-dB bandwidth of up to 110 GHz and a generated output power of more than 0 dBm (1 mW) at 120 GHz with a flat frequency response over the microwave F-band (90-140 GHz).

  2. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents.

    PubMed

    Roos, P A; Li, Xiaoqin; Smith, R P; Pipis, Jessica A; Fortier, T M; Cundiff, S T

    2005-04-01

    We demonstrate carrier-envelope phase stabilization of a mode-locked Ti:sapphire laser by use of quantum interference control of injected photocurrents in a semiconductor. No harmonic generation is required for this stabilization technique. Instead, interference between coexisting single- and two-photon absorption pathways in the semiconductor provides a phase comparison between different spectral components. The phase comparison, and the detection of the photocurrent that it produces, both occur within a single low-temperature-grown gallium arsenide sample. The carrier-envelope offset beat note fidelity is 30 dB in a 10-kHz resolution bandwidth. The out-of-loop phase-noise level is essentially identical to the best previous measurements with the standard self-referencing technique.

  3. Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers

    NASA Astrophysics Data System (ADS)

    Nikandish, Gholamreza; Medi, Ali

    2015-02-01

    The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.

  4. Comparing bandwidth requirements for digital baseband signals.

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Green, T. A.

    1972-01-01

    This paper describes the relative bandwidth requirements of the common digital baseband signaling techniques used for data transmission. Bandwidth considerations include the percentage of total power in a properly encoded PN sequence passed at bandwidths of 0.5, 1, 2 and 3 times the reciprocal of the bit interval. The signals considered in this study are limited to the binary class. The study compares such signaling techniques as delay modulation, bipolar, biternary, duobinary, pair selected ternary and time polarity control in addition to the conventional NRZ, RZ and BI-phi schemes.

  5. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  6. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  7. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  8. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  9. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Measurement detector functions and bandwidths... DEVICES General § 15.35 Measurement detector functions and bandwidths. The conducted and radiated emission... measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths...

  10. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  11. [Study on the Spectral Characteristics of the Narrow-Band Filter in SHS].

    PubMed

    Luo, Hai-yan; Shi, Hai-liang; Li, Zhi-wei; Li, Shuang; Xiong, Wei; Hong, Jin

    2015-04-01

    The spectral response of spatial heterodyne spectroscopy (SHS) is determined by the spectrum property of narrow-band filter. As discussed in previous studies, the symmetric heterodyned interferogram of high frequency waves modulated by SHS and lack of sample lead to spectral confusion, which is associated with the true and ghost spectra. Because of the deviation from theoretical index of narrow-band filter in the process of coating, the boarded spectral response and middle wave shift are presented, and conditions in the theoretical Littrow wavelength made the effective wavelength range of SHS reduced. According to the measured curve of filter, a new wavenumber of zero spatial frequency can be reset by tunable laser, and it is easy for SHS to improve the spectral aliasing distortion. The results show that it is utilized to the maximum extent of the effective bandwidth by adjusting the grating angle of rotation to change the Littrow wavelength of the basic frequency, and the spectral region increased to 14.9 nm from original 12.9 nm.

  12. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  13. Negative inductance circuits for metamaterial bandwidth enhancement

    NASA Astrophysics Data System (ADS)

    Avignon-Meseldzija, Emilie; Lepetit, Thomas; Ferreira, Pietro Maris; Boust, Fabrice

    2017-12-01

    Passive metamaterials have yet to be translated into applications on a large scale due in large part to their limited bandwidth. To overcome this limitation many authors have suggested coupling metamaterials to non-Foster circuits. However, up to now, the number of convincing demonstrations based on non-Foster metamaterials has been very limited. This paper intends to clarify why progress has been so slow, i.e., the fundamental difficulty in making a truly broadband and efficient non-Foster metamaterial. To this end, we consider two families of metamaterials, namely Artificial Magnetic Media and Artificial Magnetic Conductors. In both cases, it turns out that bandwidth enhancement requires negative inductance with almost zero resistance. To estimate bandwidth enhancement with actual non-Foster circuits, we consider two classes of such circuits, namely Linvill and gyrator. The issue of stability being critical, both metamaterial families are studied with equivalent circuits that include advanced models of these non-Foster circuits. Conclusions are different for Artificial Magnetic Media coupled to Linvill circuits and Artificial Magnetic Conductors coupled to gyrator circuits. In the first case, requirements for bandwidth enhancement and stability are very hard to meet simultaneously whereas, in the second case, an adjustment of the transistor gain does significantly increase bandwidth.

  14. [Estimation of rice LAI by using NDVI at different spectral bandwidths].

    PubMed

    Wang, Fu-min; Huang, Jing-feng; Tang, Yan-lin; Wang, Xiu-zhen

    2007-11-01

    The canopy hyperspectral reflectance data of rice at its different development stages were collected from field measurement, and the corresponding NDVIs as well as the correlation coefficients of NDVIs and LAI were computed at extending bandwidth of TM red and near-infrared (NIR) spectra. According to the variation characteristics of best fitted R2 with spectral bandwidth, the optimal bandwidth was determined. The results showed that the correlation coefficients of LAI and ND-VI and the maximum R2 of the best fitted functions at different spectral bandwidths had the same variation trend, i.e., decreased with increasing bandwidth when the bandwidth was less than 60 nm. However, when the bandwidth was beyond 60 nm, the maximum R2 somewhat fluctuated due to the effect of NIR. The analysis of R2 variation with bandwidth indicated that 15 nm was the optimal bandwidth for the estimation of rice LAI by using NDVI.

  15. Analysis of HF interference with application to digital communications

    NASA Astrophysics Data System (ADS)

    Gott, G. F.; Dutta, S.; Doany, P.

    1983-08-01

    Recent observations of HF spectral occupancy and the design of devices to overcome the effects of interference on digital communications are reported. Spectral occupancy was determined at a resolution bandwidth of 100 Hz in 50-kHz bands, corresponding to the optimum working frequency over 1000 km, at noon, midnight, dawn, and dusk; and the data are analyzed in terms of congestion and voice-band availability. The implications for DPSK, frequency-exchange FSK, and frequency-diversity FSK data-transmission systems are discussed. The findings were used in the design of three improved diversity combiners (Dutta, 1977), which were tested over a 140-km range and found to reduce interference-related losses. Even better results are predicted for a sixth-order diversity modem with a sophisticated hopping scheme, now under development. Preliminary congestion spectra for the entire HF band, obtained with a calibrated active vertical antenna at noon and midnight of the summer and winter solstices in 1980, are presented.

  16. 47 CFR 101.515 - Emissions and bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emissions and bandwidth. 101.515 Section 101... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.515 Emissions and bandwidth. Different types of emissions may be authorized if the applicant describes fully the modulation...

  17. Thin film interference optics for imaging the O II 834-A airglow

    NASA Technical Reports Server (NTRS)

    Seely, John F.; Hunter, William R.

    1991-01-01

    Normal incidence thin film interference mirrors and filters have been designed to image the O II 834-A airglow. It is shown that MgF2 is a useful spacer material for this wavelength region. The mirrors consist of thin layers of MgF2 in combination with other materials that are chosen to reflect efficiently in a narrow band centered at 834 A. Peak reflectance of 60 percent can be obtained with a passband 200 A wide. Al/MgF2/Si and Al/MgF2/SiC interference coatings have been designed to reflect 834 A and to absorb the intense H I 1216 A airglow. An In/MgF2/In interference filter is designed to transmit 834 A and attenuate 1216 A radiation. Interference photocathode coatings for rejecting 1216 A radiation are also discussed.

  18. Gaussian entanglement distribution with gigahertz bandwidth.

    PubMed

    Ast, Stefan; Ast, Melanie; Mehmet, Moritz; Schnabel, Roman

    2016-11-01

    The distribution of entanglement with Gaussian statistic can be used to generate a mathematically proven secure key for quantum cryptography. The distributed secret key rate is limited by the entanglement strength, the entanglement bandwidth, and the bandwidth of the photoelectric detectors. The development of a source for strongly bipartite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25 GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300 MHz to about 2.8 at 1.2 GHz, extending further to about 3.1 at 1.48 GHz. In the experiment we used two 2.6 mm long monolithic periodically poled potassium titanyl phosphate (KTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550 nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed.

  19. Novel schemes for the optimization of the SPARC narrow band THz source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, B., E-mail: barbara.marchetti@desy.de; Zagorodnov, I.; Bacci, A.

    2015-07-15

    A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-bandmore » and acting as a longitudinal phase space linearizer.« less

  20. High bandwidth electro-optic technology for intersatellite optical communications

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    The research and development of electronic and electro-optic components for geosynchronous and low earth orbiting satellite optical high bandwidth communications at the NASA-Goddard Space Flight Center is reviewed. Intersatellite optical communications retains a strong reliance on microwave circuit technology in several areas - the microwave to optical interface, the laser transmitter modulation driver and the optical receiver. A microwave to optical interface is described requiring high bandwidth electronic downconverters and demodulators. Electrical bandwidth and current drive requirements for the laser modulation driver for three laser alternatives are discussed. Bandwidth and noise requirements are presented for optical receiver architectures.

  1. Bandwidth Enabled Flight Operations: Examining the Possibilities

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Renema, Fritz; Clancy, Dan (Technical Monitor)

    2002-01-01

    The Bandwidth Enabled Flight Operations project is a research effort at the NASA Ames Research Center to investigate the use of satellite communications to improve aviation safety and capacity. This project is a follow on to the AeroSAPIENT Project, which demonstrated methods for transmitting high bandwidth data in various configurations. For this research, we set a goal to nominally use only 10 percent of the available bandwidth demonstrated by AeroSAPIENT or projected by near-term technology advances. This paper describes the results of our research, including available satellite bandwidth, commercial and research efforts to provide these services, and some of the limiting factors inherent with this communications medium. It also describes our investigation into the needs of the stakeholders (Airlines, Pilots, Cabin Crews, ATC, Maintenance, etc). The paper also describes our development of low-cost networked flight deck and airline operations center simulations that were used to demonstrate two application areas: Providing real time weather information to the commercial flight deck, and enhanced crew monitoring and control for airline operations centers.

  2. Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam; Kim, Seung-Jun; Mohammed-Tano, Priscilla

    2017-01-01

    Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interferece-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.

  3. Developments of capacitance stabilised etalon technology

    NASA Astrophysics Data System (ADS)

    Bond, R. A.; Foster, M.; Thwaite, C.; Thompson, C. K.; Rees, D.; Bakalski, I. V.; Pereira do Carmo, J.

    2017-11-01

    This paper describes a high-resolution optical filter (HRF) suitable for narrow bandwidth filtering in LIDAR applications. The filter is composed of a broadband interference filter and a narrowband Fabry-Perot etalon based on the capacitance stabilised concept. The key requirements for the HRF were a bandwidth of less than 40 pm, a tuneable range of over 6 nm and a transmission greater than 50%. These requirements combined with the need for very high out-of-band rejection (greater than 50 dB in the range 300 nm to 1200 nm) drive the design of the filter towards a combination of high transmission broadband filter and high performance tuneable, narrowband filter.

  4. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.

    PubMed

    Ast, Stefan; Samblowski, Aiko; Mehmet, Moritz; Steinlechner, Sebastian; Eberle, Tobias; Schnabel, Roman

    2012-06-15

    Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a nonclassical cw laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric downconversion via a periodically poled potassium titanyl phosphate crystal. We did not use any resonant enhancement for the fundamental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the nonlinear crystal.

  5. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  6. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  7. Evidence for Itinerant Carriers in an Anisotropic Narrow-Gap Semiconductor by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi

    2018-01-01

    The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 47 CFR 2.1049 - Measurements required: Occupied bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... established for the characteristic baseband frequency. (Modulation reference level is defined as the average....1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS... Certification § 2.1049 Measurements required: Occupied bandwidth. The occupied bandwidth, that is the frequency...

  9. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and emission...

  10. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and emission...

  11. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and emission...

  12. 47 CFR 101.809 - Bandwidth and emission limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Bandwidth and emission limitations. 101.809 Section 101.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101.809 Bandwidth and emission...

  13. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  14. High bandwidth deflection readout for atomic force microscopes

    NASA Astrophysics Data System (ADS)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62 fm / √{ Hz } .

  15. Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming

    2018-01-01

    Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.

  16. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  17. Out-of-Band 40 DB Bandwidth of EESS (Active) Spaceborne SARS

    NASA Technical Reports Server (NTRS)

    Huneycutt, Bryan L.

    2005-01-01

    This document presents a study of out of band (OOB) 40 dB bandwidth requirements of spaceborne SARs in the Earth Exploration-Satellite Service (active) and Space Research Service (active). The purpose of the document is to study the OOB 40 dB bandwidth requirements and compare the 40 dB bandwidth B-40 as measured in simulations with that calculated using the ITU-R Rec SM.1541 equations. The spectra roll-off and resulting OOB 40 dB bandwidth of the linear FM signal is affected by the time-bandwidth product and the rise/fall times. Typical values of these waveform characteristics are given for existing EESS (active) sensors.

  18. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    NASA Astrophysics Data System (ADS)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  19. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    PubMed

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  20. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  1. Optimal Bandwidth Selection in Observed-Score Kernel Equating

    ERIC Educational Resources Information Center

    Häggström, Jenny; Wiberg, Marie

    2014-01-01

    The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…

  2. Modulation bandwidth enhancement for coupled twin-square microcavity lasers.

    PubMed

    Xiao, Zhi-Xiong; Huang, Yong-Zhen; Yang, Yue-De; Tang, Min; Xiao, Jin-Long

    2017-08-15

    Modulation bandwidth enhancements are investigated for coupled twin-square microcavity lasers due to photon-photon resonance effect. For a coupled twin-square microcavity laser with the square side length of 20 μm, we demonstrate the increase of 3-dB modulation bandwidth from 9.6 GHz to 19.5 GHz, by adjusting the resonance mode wavelength interval between two square microcavities. The enhanced modulation bandwidth is explained by rate equation analysis, and numerical simulations are conducted for large signal modulation with improved eye-diagrams at 40 Gbit/s.

  3. Bandwidth turbulence control based on flow community structure in the Internet

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Gu, Rentao; Ji, Yuefeng

    2016-10-01

    Bursty flows vary rapidly in short period of time, and cause fierce bandwidth turbulence in the Internet. In this letter, we model the flow bandwidth turbulence process by constructing a flow interaction network (FIN network), with nodes representing flows and edges denoting bandwidth interactions among them. To restrain the bandwidth turbulence in FIN networks, an immune control strategy based on flow community structure is proposed. Flows in community boundary positions are immunized to cut off the inter-community turbulence spreading. By applying this control strategy in the first- and the second-level flow communities separately, 97.2% flows can effectively avoid bandwidth variations by immunizing 21% flows, and the average bandwidth variation degree reaches near zero. To achieve a similar result, about 70%-90% immune flows are needed with targeted control strategy based on flow degrees and random control strategy. Moreover, simulation results showed that the control effect of the proposed strategy improves significantly if the immune flow number is relatively smaller in each control step.

  4. Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment.

    PubMed

    Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming

    2018-01-01

    Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Design concepts for a high-impedance narrow-band 42 GHz power TWT using a fundamental/forward ladder-based circuit

    NASA Technical Reports Server (NTRS)

    Karp, A.

    1980-01-01

    A low-cost, narrowband, millimeter wave space communications TWT design was studied. Cold test interaction structure scale models were investigated and analyses were undertaken to predict the electrical and thermal response of the hypothetical 200 W TWT at 42 GHz and 21 kV beam voltage. An intentionally narrow instantaneous bandwidth (1%, with the possibility of electronic tuning of the center frequency over several percent) was sought with a highly dispersive, high impedance "forward wave' interaction structure based on a ladder (for economy in fabrication) and nonspace harmonic interaction, for a high gain rate and a short, economically focused tube. The "TunneLadder' interaction structure devised combines ladder properties with accommodation for a pencil beam. Except for the impedance and bandwidth, there is much in common with the millimeter wave helix TWTs which provided the ideal of diamond support rods. The benefits of these are enhanced in the TunneLadder case because of spatial separation of beam interception and RF current heating.

  6. Shot noise limited detection of OH using the technique of laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  7. Shot noise limited detection of OH using the technique of laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Wang, C. C.; Kakos, S.; Morris, P. T.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluoresence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the short-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  8. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  9. Bandwidth efficient coding for satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.

    1992-01-01

    An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.

  10. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    PubMed Central

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684

  11. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband.

    PubMed

    Tang, Haitao; Yu, Yuan; Wang, Ziwei; Xu, Lu; Zhang, Xinliang

    2018-05-15

    A novel wideband tunable optoelectronic oscillator based on a microwave photonic filter (MPF) with an ultra-narrow passband is proposed and experimentally demonstrated. The single-passband MPF is realized by cascading an MPF based on stimulated Brillouin scattering and an infinite impulse response (IIR) MPF based on an active fiber recirculating delay loop. The measured full width at half-maximum bandwidth of the cascaded MPFs is 150 kHz. To the best of my knowledge, this is the first time realizing such a narrow passband in single-passband MPF. The oscillation frequency of the OEO can be tuned from 0 to 40 GHz owing to the wideband tunability of the MPF. Thanks to the ultrahigh mode selectivity of the IIR filter, the mode hopping is successfully suppressed. A stable microwave signal at 8.18 GHz is obtained with a phase noise of -113  dBc/Hz at 10 kHz, and the side mode noise is below -95  dBc/Hz. The signal-to-noise ratio exceeds 50 dB during the tuning process.

  12. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have

  13. Tactical Decision Aids High Bandwidth Links Using Autonomous Vehicles

    DTIC Science & Technology

    2004-01-01

    1 Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) A. J. Healey, D. P. Horner, Center for Autonomous Underwater Vehicle...SUBTITLE Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  14. Effect of camera resolution and bandwidth on facial affect recognition.

    PubMed

    Cruz, Mario; Cruz, Robyn Flaum; Krupinski, Elizabeth A; Lopez, Ana Maria; McNeeley, Richard M; Weinstein, Ronald S

    2004-01-01

    This preliminary study explored the effect of camera resolution and bandwidth on facial affect recognition, an important process and clinical variable in mental health service delivery. Sixty medical students and mental health-care professionals were recruited and randomized to four different combinations of commonly used teleconferencing camera resolutions and bandwidths: (1) one chip charged coupling device (CCD) camera, commonly used for VHSgrade taping and in teleconferencing systems costing less than $4,000 with a resolution of 280 lines, and 128 kilobytes per second bandwidth (kbps); (2) VHS and 768 kbps; (3) three-chip CCD camera, commonly used for Betacam (Beta) grade taping and in teleconferencing systems costing more than $4,000 with a resolution of 480 lines, and 128 kbps; and (4) Betacam and 768 kbps. The subjects were asked to identify four facial affects dynamically presented on videotape by an actor and actress presented via a video monitor at 30 frames per second. Two-way analysis of variance (ANOVA) revealed a significant interaction effect for camera resolution and bandwidth (p = 0.02) and a significant main effect for camera resolution (p = 0.006), but no main effect for bandwidth was detected. Post hoc testing of interaction means, using the Tukey Honestly Significant Difference (HSD) test and the critical difference (CD) at the 0.05 alpha level = 1.71, revealed subjects in the VHS/768 kbps (M = 7.133) and VHS/128 kbps (M = 6.533) were significantly better at recognizing the displayed facial affects than those in the Betacam/768 kbps (M = 4.733) or Betacam/128 kbps (M = 6.333) conditions. Camera resolution and bandwidth combinations differ in their capacity to influence facial affect recognition. For service providers, this study's results support the use of VHS cameras with either 768 kbps or 128 kbps bandwidths for facial affect recognition compared to Betacam cameras. The authors argue that the results of this study are a consequence of the

  15. A terrain based simulation system to predict the interference caused by networks of spread spectrum systems

    NASA Astrophysics Data System (ADS)

    Hagen, William E.; Holtzman, Julian C.

    The Army Terrain Integrated Interference Prediction System (ATIIPS), a CAD terrain based simulation tool for determining the degradation effects on a network on nonspread spectrum radios caused by a network of spread spectrum radios is presented. A brief overview of the program is given, with typical graphics displays shown. Typical results for both a link simulation of interference and for a network simulation, using a slow hopped FM/FSK spread spectrum interfering radio network on a narrow band FM/FSK fixed frequency digital radio are presented.

  16. Back pressure based multicast scheduling for fair bandwidth allocation.

    PubMed

    Sarkar, Saswati; Tassiulas, Leandros

    2005-09-01

    We study the fair allocation of bandwidth in multicast networks with multirate capabilities. In multirate transmission, each source encodes its signal in layers. The lowest layer contains the most important information and all receivers of a session should receive it. If a receiver's data path has additional bandwidth, it receives higher layers which leads to a better quality of reception. The bandwidth allocation objective is to distribute the layers fairly. We present a computationally simple, decentralized scheduling policy that attains the maxmin fair rates without using any knowledge of traffic statistics and layer bandwidths. This policy learns the congestion level from the queue lengths at the nodes, and adapts the packet transmissions accordingly. When the network is congested, packets are dropped from the higher layers; therefore, the more important lower layers suffer negligible packet loss. We present analytical and simulation results that guarantee the maxmin fairness of the resulting rate allocation, and upper bound the packet loss rates for different layers.

  17. Compact antenna arrays with wide bandwidth and low sidelobe levels

    DOEpatents

    Strassner, II, Bernd H.

    2014-09-09

    Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.

  18. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  19. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    PubMed

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  20. Bandwidth auction for SVC streaming in dynamic multi-overlay

    NASA Astrophysics Data System (ADS)

    Xiong, Yanting; Zou, Junni; Xiong, Hongkai

    2010-07-01

    In this paper, we study the optimal bandwidth allocation for scalable video coding (SVC) streaming in multiple overlays. We model the whole bandwidth request and distribution process as a set of decentralized auction games between the competing peers. For the upstream peer, a bandwidth allocation mechanism is introduced to maximize the aggregate revenue. For the downstream peer, a dynamic bidding strategy is proposed. It achieves maximum utility and efficient resource usage by collaborating with a content-aware layer dropping/adding strategy. Also, the convergence of the proposed auction games is theoretically proved. Experimental results show that the auction strategies can adapt to dynamic join of competing peers and video layers.

  1. Bandwidth tunable microwave photonic filter based on digital and analog modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Jie; Li, Qiang; Wang, Yubing; Sun, Xian; Dong, Wei; Zhang, Xindong

    2018-05-01

    A bandwidth tunable microwave photonic filter based on digital and analog modulation is proposed and experimentally demonstrated. The digital modulation is used to broaden the effective gain spectrum and the analog modulation is to get optical lines. By changing the symbol rate of data pattern, the bandwidth is tunable from 50 MHz to 700 MHz. The interval of optical lines is set according to the bandwidth of gain spectrum which is related to the symbol rate. Several times of bandwidth increase are achieved compared to a single analog modulation and the selectivity of the response is increased by 3.7 dB compared to a single digital modulation.

  2. Ultra-high bandwidth quantum secured data transmission

    NASA Astrophysics Data System (ADS)

    Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-10-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

  3. On the bandwidth of the plenoptic function.

    PubMed

    Do, Minh N; Marchand-Maillet, Davy; Vetterli, Martin

    2012-02-01

    The plenoptic function (POF) provides a powerful conceptual tool for describing a number of problems in image/video processing, vision, and graphics. For example, image-based rendering is shown as sampling and interpolation of the POF. In such applications, it is important to characterize the bandwidth of the POF. We study a simple but representative model of the scene where band-limited signals (e.g., texture images) are "painted" on smooth surfaces (e.g., of objects or walls). We show that, in general, the POF is not band limited unless the surfaces are flat. We then derive simple rules to estimate the essential bandwidth of the POF for this model. Our analysis reveals that, in addition to the maximum and minimum depths and the maximum frequency of painted signals, the bandwidth of the POF also depends on the maximum surface slope. With a unifying formalism based on multidimensional signal processing, we can verify several key results in POF processing, such as induced filtering in space and depth-corrected interpolation, and quantify the necessary sampling rates. © 2011 IEEE

  4. Highly efficient frequency conversion with bandwidth compression of quantum light

    PubMed Central

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  5. Path connectivity based spectral defragmentation in flexible bandwidth networks.

    PubMed

    Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi

    2013-01-28

    Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.

  6. Invited article: Broadband highly-efficient dielectric metadevices for polarization control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less

  7. Invited article: Broadband highly-efficient dielectric metadevices for polarization control

    DOE PAGES

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; ...

    2016-06-06

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less

  8. Effective bandwidth guaranteed routing schemes for MPLS traffic engineering

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Jain, Nidhi

    2001-07-01

    In this work, we present online algorithms for dynamic routing bandwidth guaranteed label switched paths (LSPs) where LSP set-up requests (in terms of a pair of ingress and egress routers as well as its bandwidth requirement) arrive one by one and there is no a priori knowledge regarding future LSP set-up requests. In addition, we consider rerouting of LSPs in this work. Rerouting of LSPs has not been well studied in previous work on LSP routing. The need of LSP rerouting arises in a number of ways: occurrence of faults (link and/or node failures), re-optimization of existing LSPs' routes to accommodate traffic fluctuation, requests with higher priorities, and so on. We formulate the bandwidth guaranteed LSP routing with rerouting capability as a multi-commodity flow problem. The solution to this problem is used as the benchmark for comparing other computationally less costly algorithms studied in this paper. Furthermore, to more efficiently utilize the network resources, we propose online routing algorithms which route bandwidth demands over multiple paths at the ingress router to satisfy the customer requests while providing better service survivability. Traffic splitting and distribution over the multiple paths are carefully handled using table-based hashing schemes while the order of packets within a flow is preserved. Preliminary simulations are conducted to show the performance of different design choices and the effectiveness of the rerouting and multi-path routing algorithms in terms of LSP set-up request rejection probability and bandwidth blocking probability.

  9. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  10. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  11. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  12. Tunable resonator-based devices for producing variable delays and narrow spectral linewidths

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)

    2006-01-01

    Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.

  13. Developing Strategies for Affordable Bandwidth.

    ERIC Educational Resources Information Center

    Educause Quarterly, 2000

    2000-01-01

    Written by Educause's Net@EDU Broadband Pricing Working Group, this article discusses what institutions of higher education can do to develop good partnerships with broadband vendors in order to negotiate affordable pricing for increased bandwidth. Describes problems with the marketplace, examples from a few universities, and points to remember…

  14. Adaptive Broadcasting Mechanism for Bandwidth Allocation in Mobile Services

    PubMed Central

    Horng, Gwo-Jiun; Wang, Chi-Hsuan; Chou, Chih-Lun

    2014-01-01

    This paper proposes a tree-based adaptive broadcasting (TAB) algorithm for data dissemination to improve data access efficiency. The proposed TAB algorithm first constructs a broadcast tree to determine the broadcast frequency of each data and splits the broadcast tree into some broadcast wood to generate the broadcast program. In addition, this paper develops an analytical model to derive the mean access latency of the generated broadcast program. In light of the derived results, both the index channel's bandwidth and the data channel's bandwidth can be optimally allocated to maximize bandwidth utilization. This paper presents experiments to help evaluate the effectiveness of the proposed strategy. From the experimental results, it can be seen that the proposed mechanism is feasible in practice. PMID:25057509

  15. A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth

    NASA Technical Reports Server (NTRS)

    Zeng, Lingzhen; Bennette, Charles L.; Chuss, David T.; Wollack, Edward J.

    2009-01-01

    Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approx. 14deg FWHM beam is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A power reflection below -28 dB was measured across the band.

  16. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  17. Cutter Connectivity Bandwidth Study

    DTIC Science & Technology

    2002-10-01

    U.S. Coast Guard Research and Development Center 1082 Shennecossett Road, Groton, CT 06340-6096 Report No. CG-D-03-02 CUTTER CONNECTIVITY BANDWIDTH...or regulation. Marc B. Mandler, Ph.D. Technical Director United States Coast Guard Research & Development Center 1082 Shennecossett Road Groton, CT...Organization Report No. R&DC 617 9. Performing Organization Name and Address U.S. Coast Guard Research and Development Center 1082 Shennecossett Road

  18. Ultra-high bandwidth quantum secured data transmission

    PubMed Central

    Dynes, James F.; Tam, Winci W-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-01-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment. PMID:27734921

  19. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    NASA Astrophysics Data System (ADS)

    Chang, John

    Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic

  20. Variable Bandwidth Filtering for Improved Sensitivity of Cross-Frequency Coupling Metrics

    PubMed Central

    McDaniel, Jonathan; Liu, Song; Cornew, Lauren; Gaetz, William; Roberts, Timothy P.L.; Edgar, J. Christopher

    2012-01-01

    Abstract There is an increasing interest in examining cross-frequency coupling (CFC) between groups of oscillating neurons. Most CFC studies examine how the phase of lower-frequency brain activity modulates the amplitude of higher-frequency brain activity. This study focuses on the signal filtering that is required to isolate the higher-frequency neuronal activity which is hypothesized to be amplitude modulated. In particular, previous publications have used a filter bandwidth fixed to a constant for all assessed modulation frequencies. The present article demonstrates that fixed bandwidth filtering can destroy amplitude modulation and create false-negative CFC measures. To overcome this limitation, this study presents a variable bandwidth filter that ensures preservation of the amplitude modulation. Simulated time series data were created with theta-gamma, alpha-gamma, and beta-gamma phase-amplitude coupling. Comparisons between filtering methods indicate that the variable bandwidth approach presented in this article is preferred when examining amplitude modulations above the theta band. The variable bandwidth method of filtering an amplitude modulated signal is proposed to preserve amplitude modulation and enable accurate CFC measurements. PMID:22577870

  1. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC

  2. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC

  3. Constrained ℋ∞ control for low bandwidth active suspensions

    NASA Astrophysics Data System (ADS)

    Wasiwitono, Unggul; Sutantra, I. Nyoman

    2017-08-01

    Low Bandwidth Active Suspension (LBAS) is shown to be more competitive to High Bandwidth Active Suspension (HBAS) when energy and cost aspects are taken into account. In this paper, the constrained ℋ∞ control scheme is applied for LBAS system. The ℋ∞ performance is used to measure ride comfort while the concept of reachable set in a state-space ellipsoid defined by a quadratic storage function is used to capture the time domain constraint that representing the requirements for road holding, suspension deflection limitation and actuator saturation. Then, the control problem is derived in the framework of Linear Matrix Inequality (LMI) optimization. The simulation is conducted considering the road disturbance as a stationary random process. The achievable performance of LBAS is analyzed for different values of bandwidth and damping ratio.

  4. Bandwidth correction for LED chromaticity based on Levenberg-Marquardt algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chan; Jin, Shiqun; Xia, Guo

    2017-10-01

    Light emitting diode (LED) is widely employed in industrial applications and scientific researches. With a spectrometer, the chromaticity of LED can be measured. However, chromaticity shift will occur due to the broadening effects of the spectrometer. In this paper, an approach is put forward to bandwidth correction for LED chromaticity based on Levenberg-Marquardt algorithm. We compare chromaticity of simulated LED spectra by using the proposed method and differential operator method to bandwidth correction. The experimental results show that the proposed approach achieves an excellent performance in bandwidth correction which proves the effectiveness of the approach. The method has also been tested on true blue LED spectra.

  5. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.

    PubMed

    Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R

    2013-09-01

    Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.

  6. Is Perceptual Narrowing Too Narrow?

    ERIC Educational Resources Information Center

    Cashon, Cara H.; Denicola, Christopher A.

    2011-01-01

    There is a growing list of examples illustrating that infants are transitioning from having earlier abilities that appear more "universal," "broadly tuned," or "unconstrained" to having later abilities that appear more "specialized," "narrowly tuned," or "constrained." Perceptual narrowing, a well-known phenomenon related to face, speech, and…

  7. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.

  8. Low Bandwidth Robust Controllers for Flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  9. Low bandwidth robust controllers for flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1993-01-01

    Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.

  10. Time-optimal control with finite bandwidth

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  11. Enhanced spectral efficiency using bandwidth switchable SAW filtering for mobile satellite communications systems

    NASA Technical Reports Server (NTRS)

    Peach, Robert; Malarky, Alastair

    1990-01-01

    Currently proposed mobile satellite communications systems require a high degree of flexibility in assignment of spectral capacity to different geographic locations. Conventionally this results in poor spectral efficiency which may be overcome by the use of bandwidth switchable filtering. Surface acoustic wave (SAW) technology makes it possible to provide banks of filters whose responses may be contiguously combined to form variable bandwidth filters with constant amplitude and phase responses across the entire band. The high selectivity possible with SAW filters, combined with the variable bandwidth capability, makes it possible to achieve spectral efficiencies over the allocated bandwidths of greater than 90 percent, while retaining full system flexibility. Bandwidth switchable SAW filtering (BSSF) achieves these gains with a negligible increase in hardware complexity.

  12. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  13. Managing high-bandwidth real-time data storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigelow, David D.; Brandt, Scott A; Bent, John M

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended tomore » address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.« less

  14. Spectrally resolved laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip

    2018-07-01

    We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.

  15. Electro-Optic Characterisation of Extremely Wide Bandwidth Electrical Signals

    DTIC Science & Technology

    1993-02-01

    In this report an ultrafast electro - optic sampling system suitable for applications such as device characterisation is described. The aperture time of the sampler is calculated to be about 290 fs, implying an attainable device bandwidth in excess of 300 GHz. The sampler was characterised using a test pulse with approximately 12 GHz of frequency content, and the results compared to those obtained from an 18 GHz digital sampling oscilloscope. Signal Processing, Bandwidth, Frequencies, Oscilloscopes.

  16. Real-space mapping of Fano interference in plasmonic metamolecules.

    PubMed

    Alonso-Gonzalez, Pablo; Schnell, Martin; Sarriugarte, Paulo; Sobhani, Heidar; Wu, Chihhui; Arju, Nihal; Khanikaev, Alexander; Golmar, Federico; Albella, Pablo; Arzubiaga, Libe; Casanova, Felix; Hueso, Luis E; Nordlander, Peter; Shvets, Gennady; Hillenbrand, Rainer

    2011-09-14

    An unprecedented control of the spectral response of plasmonic nanoantennas has recently been achieved by designing structures that exhibit Fano resonances. This new insight is paving the way for a variety of applications, such as biochemical sensing and surface-enhanced Raman spectroscopy. Here we use scattering-type near-field optical microscopy to map the spatial field distribution of Fano modes in infrared plasmonic systems. We observe in real space the interference of narrow (dark) and broad (bright) plasmonic resonances, yielding intensity and phase toggling between different portions of the plasmonic metamolecules when either their geometric sizes or the illumination wavelength is varied.

  17. Ultrafast Narrow Band Modulation of VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.

  18. Optimum ArFi laser bandwidth for 10nm node logic imaging performance

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Timoshkov, Vadim; Wong, Patrick; Rechtsteiner, Gregory; Baselmans, Jan; Mailfert, Julien

    2015-03-01

    Lithography process window (PW) and CD uniformity (CDU) requirements are being challenged with scaling across all device types. Aggressive PW and yield specifications put tight requirements on scanner performance, especially on focus budgets resulting in complicated systems for focus control. In this study, an imec N10 Logic-type test vehicle was used to investigate the E95 bandwidth impact on six different Metal 1 Logic features. The imaging metrics that track the impact of light source E95 bandwidth on performance of hot spots are: process window (PW), line width roughness (LWR), and local critical dimension uniformity (LCDU). In the first section of this study, the impact of increasing E95 bandwidth was investigated to observe the lithographic process control response of the specified logic features. In the second section, a preliminary assessment of the impact of lower E95 bandwidth was performed. The impact of lower E95 bandwidth on local intensity variability was monitored through the CDU of line end features and the LWR power spectral density (PSD) of line/space patterns. The investigation found that the imec N10 test vehicle (with OPC optimized for standard E95 bandwidth of300fm) features exposed at 200fm showed pattern specific responses, suggesting areas of potential interest for further investigation.

  19. Bandwidth characteristics of multimedia data traffic on a local area network

    NASA Technical Reports Server (NTRS)

    Chuang, Shery L.; Doubek, Sharon; Haines, Richard F.

    1993-01-01

    Limited spacecraft communication links call for users to investigate the potential use of video compression and multimedia technologies to optimize bandwidth allocations. The objective was to determine the transmission characteristics of multimedia data - motion video, text or bitmap graphics, and files transmitted independently and simultaneously over an ethernet local area network. Commercial desktop video teleconferencing hardware and software and Intel's proprietary Digital Video Interactive (DVI) video compression algorithm were used, and typical task scenarios were selected. The transmission time, packet size, number of packets, and network utilization of the data were recorded. Each data type - compressed motion video, text and/or bitmapped graphics, and a compressed image file - was first transmitted independently and its characteristics recorded. The results showed that an average bandwidth of 7.4 kilobits per second (kbps) was used to transmit graphics; an average bandwidth of 86.8 kbps was used to transmit an 18.9-kilobyte (kB) image file; a bandwidth of 728.9 kbps was used to transmit compressed motion video at 15 frames per second (fps); and a bandwidth of 75.9 kbps was used to transmit compressed motion video at 1.5 fps. Average packet sizes were 933 bytes for graphics, 498.5 bytes for the image file, 345.8 bytes for motion video at 15 fps, and 341.9 bytes for motion video at 1.5 fps. Simultaneous transmission of multimedia data types was also characterized. The multimedia packets used transmission bandwidths of 341.4 kbps and 105.8kbps. Bandwidth utilization varied according to the frame rate (frames per second) setting for the transmission of motion video. Packet size did not vary significantly between the data types. When these characteristics are applied to Space Station Freedom (SSF), the packet sizes fall within the maximum specified by the Consultative Committee for Space Data Systems (CCSDS). The uplink of imagery to SSF may be performed at

  20. Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Guojun; Tierney, Brian

    2003-01-31

    Distinguishing available bandwidth and achievable throughput is essential for improving network applications' performance. Achievable throughput is the throughput considering a number of factors such as network protocol, host speed, network path, and TCP buffer space, where as available bandwidth only considers the network path. Without understanding this difference, trying to improve network applications' performance is like ''blind men feeling the elephant'' [4]. In this paper, we define and distinguish bandwidth and throughput, and debate which part of each is achievable and which is available. Also, we introduce and discuss a new concept - Maximum Burst Size that is crucial tomore » the network performance and bandwidth sharing. A tool, netest, is introduced to help users to determine the available bandwidth, and provides information to achieve better throughput with fairness of sharing the available bandwidth, thus reducing misuse of the network.« less

  1. Programmable bandwidth management in software-defined EPON architecture

    NASA Astrophysics Data System (ADS)

    Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming

    2016-07-01

    This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.

  2. Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

    NASA Astrophysics Data System (ADS)

    LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

    2016-05-01

    Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

  3. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less

  4. Optically activated switches for the generation of complex electrical waveforms with multigigahertz bandwidth

    NASA Astrophysics Data System (ADS)

    Skeldon, Mark D.; Okishev, Andrey V.; Letzring, Samuel A.; Donaldson, William R.; Green, Kenton; Seka, Wolf D.; Fuller, Lynn F.

    1995-01-01

    An electrical pulse-generation system using two optically activated Si photoconductive switches can generate shaped electrical pulses with multigigahertz bandwidth. The Si switches are activated by an optical pulse whose leading edge is steepened by stimulated Brillouin scattering (SBS) in CCl4. With the bandwidth generated by the SBS process, a laser having a 1- to 3-ns pulse width is used to generate electrical pulses with approximately 80-ps rise times (approximately 4-GHz bandwidth). Variable impedance microstrip lines are used to generate complex electrical waveforms that can be transferred to a matched load with minimal loss of bandwidth.

  5. Tunable all-fiber dissipative-soliton laser with a multimode interference filter.

    PubMed

    Zhang, Lei; Hu, Jinmeng; Wang, Jianhua; Feng, Yan

    2012-09-15

    We report on a tunable all-fiber dissipative-soliton laser with a multimode interference filter that consists of a multimode fiber spliced between two single-mode fibers. By carefully selecting the fiber parameters, a filter with a central wavelength at 1032 nm and a bandwidth of 7.6 nm is constructed and used for spectral filtering in an all-normal-dispersion mode-locked ytterbium-doped fiber laser based on nonlinear polarization evolution. The laser delivers 31 mW of average output power with positively chirped 7 ps pulses. The repetition rate of the pulses is 15.3 MHz, and pulse energy is 2.1 nJ. Tunable dissipative-soliton over 12 nm is achieved by applying tension to the single-mode-multimode-single-mode filter.

  6. [Tumor segmentation of brain MRI with adaptive bandwidth mean shift].

    PubMed

    Hou, Xiaowen; Liu, Qi

    2014-10-01

    In order to get the adaptive bandwidth of mean shift to make the tumor segmentation of brain magnetic resonance imaging (MRI) to be more accurate, we in this paper present an advanced mean shift method. Firstly, we made use of the space characteristics of brain image to eliminate the impact on segmentation of skull; and then, based on the characteristics of spatial agglomeration of different tissues of brain (includes tumor), we applied edge points to get the optimal initial mean value and the respectively adaptive bandwidth, in order to improve the accuracy of tumor segmentation. The results of experiment showed that, contrast to the fixed bandwidth mean shift method, the method in this paper could segment the tumor more accurately.

  7. A novel dynamic wavelength bandwidth allocation scheme over OFDMA PONs

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Guo, Wei; Jin, Yaohui; Hu, Weisheng

    2011-12-01

    With rapid growth of Internet applications, supporting differentiated service and enlarging system capacity have been new tasks for next generation access system. In recent years, research in OFDMA Passive Optical Networks (PON) has experienced extraordinary development as for its large capacity and flexibility in scheduling. Although much work has been done to solve hardware layer obstacles for OFDMA PON, scheduling algorithm on OFDMA PON system is still under primary discussion. In order to support QoS service on OFDMA PON system, a novel dynamic wavelength bandwidth allocation (DWBA) algorithm is proposed in this paper. Per-stream QoS service is supported in this algorithm. Through simulation, we proved our bandwidth allocation algorithm performs better in bandwidth utilization and differentiate service support.

  8. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    NASA Astrophysics Data System (ADS)

    Qian, Lipeng

    absorption and fluorescence. The optimum resolution of the fluorescent image is predicted by simulation. Radiation trapping is also shown to be useful for the generation of ultra-narrow linewidth light from an atomic vapor flash lamp. A 2 nanosecond, high voltage pulse is used to excite low pressure mercury vapor mixed with noble gases, producing high intensity emission at the mercury resonant line at 253.7 nm. With a nanosecond pumping time and high electrical current, the radiation intensity of the mercury discharge is increased significantly compared to a normal glow discharge lamp, while simultaneously suppressing the formation of an arc discharge. By avoiding the arc discharge, discrete spectral lines of mercury were kept at narrow bandwidth. Due to radiation trapping, the emission linewidth from the nanosecond mercury lamp decreases with time and produces ultra-narrow linewidth emission 100 ns after of the excitation, this linewidth is verified by absorption measurements through low pressure mercury absorption filter. The lamp is used along with mercury absorption filters for spectroscopic applications, including Filtered Rayleigh Scattering with different CO2 pressures and Raman scattering from methanol.

  9. Airborne Remote Observations of L-Band Radio Frequency Interference and Implications for Satellite Missions

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh

    2011-01-01

    Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.

  10. Bandwidth-sharing in LHCONE, an analysis of the problem

    NASA Astrophysics Data System (ADS)

    Wildish, T.

    2015-12-01

    The LHC experiments have traditionally regarded the network as an unreliable resource, one which was expected to be a major source of errors and inefficiency at the time their original computing models were derived. Now, however, the network is seen as much more capable and reliable. Data are routinely transferred with high efficiency and low latency to wherever computing or storage resources are available to use or manage them. Although there was sufficient network bandwidth for the experiments’ needs during Run-1, they cannot rely on ever-increasing bandwidth as a solution to their data-transfer needs in the future. Sooner or later they need to consider the network as a finite resource that they interact with to manage their traffic, in much the same way as they manage their use of disk and CPU resources. There are several possible ways for the experiments to integrate management of the network in their software stacks, such as the use of virtual circuits with hard bandwidth guarantees or soft real-time flow-control, with somewhat less firm guarantees. Abstractly, these can all be considered as the users (the experiments, or groups of users within the experiment) expressing a request for a given bandwidth between two points for a given duration of time. The network fabric then grants some allocation to each user, dependent on the sum of all requests and the sum of available resources, and attempts to ensure the requirements are met (either deterministically or statistically). An unresolved question at this time is how to convert the users’ requests into an allocation. Simply put, how do we decide what fraction of a network's bandwidth to allocate to each user when the sum of requests exceeds the available bandwidth? The usual problems of any resourcescheduling system arise here, namely how to ensure the resource is used efficiently and fairly, while still satisfying the needs of the users. Simply fixing quotas on network paths for each user is likely to lead

  11. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    PubMed Central

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  12. A MAP blind image deconvolution algorithm with bandwidth over-constrained

    NASA Astrophysics Data System (ADS)

    Ren, Zhilei; Liu, Jin; Liang, Yonghui; He, Yulong

    2018-03-01

    We demonstrate a maximum a posteriori (MAP) blind image deconvolution algorithm with bandwidth over-constrained and total variation (TV) regularization to recover a clear image from the AO corrected images. The point spread functions (PSFs) are estimated by bandwidth limited less than the cutoff frequency of the optical system. Our algorithm performs well in avoiding noise magnification. The performance is demonstrated on simulated data.

  13. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Chaffee, Paul H.

    1991-01-01

    A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  14. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  15. Narrow-band evoked oto-acoustic emission from ears with normal and pathologic conditions.

    PubMed

    Takeda, Taizo; Kakigi, Akinobu; Takebayashi, Shinji; Ohono, Satoshi; Nishioka, Rie; Nakatani, Hiroaki

    2010-01-01

    Evoked oto-acoustic emission (EOAE), in particular the slow component, is fragile with the inner ear lesions and is apt to disappear in impaired ears. This presence is thought to mean that inner ear is not badly damaged, and that the presence of EOAEs in early stage sudden deafness carries a good prognosis. Narrow-band EOAE analysis would open a potentially promising way to manage sensorineural deafness. The aim of present study was to evaluate the characteristics of EOAEs from pathologic ears by a narrow-band EOAE analysis, which allowed us to investigate amplitude, frequency content and latency of EOAEs simultaneously and also to easily detect weak echoes in cases with inner ear lesions. EOAEs were analyzed by investigating narrow-band frequency contents of EOAEs, filtered by a 100-Hz step of pass bandwidth in frequency regions from 1.0 to 2.0 kHz, and by 500 Hz of pass bandwidth in the frequency ranges of 0.5-1.0 and 2.0-5.0 kHz. EOAE testing was performed in 40 normal ears and 111 ears with pathologic disorders, including sudden deafness, Ménière's disease and surgically proven acoustic neurinomas. Spontaneous oto-acoustic emission was investigated in some cases. In acoustic neurinoma, especially computed tomography scan and magnetic resonance imaging tests were performed to assess the tumor size. (1) Narrow-band EOAE analysis revealed that EOAEs from normal ears were composed of two main echo trains and several sub-echoes. The main echo trains were divided into a fast component with a short latency of <10 ms and a slow component with a long latency of >10 ms. (2) EOAEs could often be detected from ears with moderate to severe hearing loss >45 dB HL in early stage sudden deafness. The prognosis of sudden deafness was good in cases where both a fast component and slow component were detected in the acute stage within 2 weeks after the deafness onset, and was pessimistic, when either or both of them failed to recover. (3) In Ménière's disease, EOAE was found

  16. Spectral line narrowing in PPLN OPO devices for 1-μm wavelength doubling

    NASA Astrophysics Data System (ADS)

    Perrett, Brian J.; Terry, Jonathan A. C.; Mason, Paul D.; Orchard, David A.

    2004-12-01

    One route to generating mid-infrared (mid-IR) radiation is through a two-stage non-linear conversion process from the near-IR, exploiting powerful neodymium lasers operating at wavelengths close to 1 μm. In the first stage of this process non-linear conversion within a degenerate optical parametric oscillator (OPO) is used to double the wavelength of the 1 μm laser. The resultant 2 μm radiation is then used to pump a second OPO, based on a material such as ZGP, for conversion into the 3 to 5 μm mid-IR waveband. Periodically poled lithium niobate (PPLN) is a useful material for conversion from 1 to 2 μm due to its high non-linear coefficient (deff ~ 16 pm/V) and the long crystal lengths available (up to 50 mm). Slope efficiencies in excess of 40% have readily been achieved using a simple plane-plane resonator when pumped at 10 kHz with 3.5 mJ pulses from a 1.047 μm Nd:YLF laser. However, the OPO output was spectrally broad at degeneracy with a measured full-width-half-maximum (FWHM) linewidth of approximately 65 nm. This output linewidth is significantly broader than the spectral acceptance bandwidth of ZGP for conversion into the mid-IR. In this paper techniques for spectral narrowing the output from a degenerate PPLN OPO are investigated using two passive elements, a diffraction grating and an air spaced etalon. Slope efficiencies approaching 20% have been obtained using the grating in a dog-leg cavity configuration producing spectrally narrow 2 μm output with linewidths as low as 2 nm. A grating-narrowed degenerate PPLN OPO has been successfully used to pump a ZGP OPO.

  17. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV...

  18. Distribute Off-Time Office Internet bandwidth Using Topology Mesh For Sorrounding Neighbour

    NASA Astrophysics Data System (ADS)

    Zendrato, Niskarto; Sihombing, Oloan; Laia, Yonata; Sabarita Barus, Ertina

    2018-04-01

    The Internet as one of the very rapidly growing information technology can provide data and information with wide world, complete, and up to date. Users can download and upload data such as the application file, multimedia and text through the Internet network. But for the Internet availability is still less equal access because of the lack of availability of adequate infrastructure, therefore the author make the utilization of bandwidth that can be establish Internet balancing although still on a small scale. By this research the authors use bandwidth from PT. Deltauli Home Teknikarya that where bandwidth necessity on when time off-time unused office, where the office always pay full for Internet connection even though at the time of the off-time. It’s many of the available bandwidth, so that the author is trying to take advantage of the bandwidth at the time of the off-time the office to be used by the community using radio connection link and use the radius server as user management and server to send sms and user and password to the users who want to enjoy free internet connection.

  19. Coarse-Grain Bandwidth Estimation Techniques for Large-Scale Space Network

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Jennings, Esther

    2013-01-01

    In this paper, we describe a top-down analysis and simulation approach to size the bandwidths of a store-andforward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. We use these techniques to estimate the wide area network (WAN) bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network.

  20. Quantitative orientation-independent differential interference contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; LaFountain, James; Biggs, David; Inoué, Shinya

    2007-02-01

    We describe a new DIC technique, which records phase gradients within microscopic specimens independently of their orientation. The proposed system allows the generation of images representing the distribution of dry mass (optical path difference) in the specimen. Unlike in other forms of interference microscopes, this approach does not require a narrow illuminating cone. The orientation-independent differential interference contrast (OI-DIC) system can also be combined with orientation-independent polarization (OI-Pol) measurements to yield two complementary images: one showing dry mass distribution (which is proportional to refractive index) and the other showing distribution of birefringence (due to structural or internal anisotropy). With a model specimen used for this work -- living spermatocytes from the crane fly, Nephrotoma suturalis --- the OI-DIC image clearly reveals the detailed shape of the chromosomes while the polarization image quantitatively depicts the distribution of the birefringent microtubules in the spindle, both without any need for staining or other modifications of the cell. We present examples of a pseudo-color combined image incorporating both orientation-independent DIC and polarization images of a spermatocyte at diakinesis and metaphase of meiosis I. Those images provide clear evidence that the proposed technique can reveal fine architecture and molecular organization in live cells without perturbation associated with staining or fluorescent labeling. The phase image was obtained using optics having a numerical aperture 1.4, thus achieving a level of resolution never before achieved with any interference microscope.

  1. Narrow band imaging in the diagnosis of intra-epithelial and invasive laryngeal squamous cell carcinoma: a preliminary report of two cases.

    PubMed

    Masaki, Takashi; Katada, Chikatoshi; Nakayama, Meijin; Takeda, Masahiko; Miyamoto, Shunsuke; Seino, Yutomo; Koizumi, Wasaburo; Tanabe, Satoshi; Horiguchi, Satoshi; Okamoto, Makito

    2009-12-01

    Narrow band imaging (NBI) is a novel optical technique that enhances the diagnostic capability of the gastrointestinal endoscope (GIE) by illuminating the intraepithelial papillary capillary loop (IPCL) using narrow bandwidth filters in a red-green-blue sequential illumination system (CV-260SL processor and CLV-260SL light source, Olympus Optical Co. Ltd, Tokyo, Japan). The NBI filter sets (415 nm and 540 nm) are selected to obtain fine images of the microvascular structure. Because 415 nm is the hemoglobin absorption band, capillaries on the mucosal surface can be seen most clearly at this wavelength. NBI is able to represent more clearly both capillary patterns and the boundary between different types of tissue, which are necessary for diagnosing a tumor in its early stage (Gono K, Yamazaki K, Doguchi N, Nonami T, Obi T, Yamaguchi M, et al. Endoscopic observation of tissue by narrow band illumination. Opt Rev 2003;10:211-215, Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue feature in narrow-band endoscopic imaging. J Biomed Opt 2004;9:568-577). We present two patients with laryngeal squamous cell carcinoma in whom the spread and the depth of invasion was evaluated with transnasal GIE equipped with NBI. Based on our results, the vascular neoplastic changes of carcinoma in situ of the larynx could be similar to carcinoma in situ of the esophagus.

  2. Fast Faraday Cup With High Bandwidth

    DOEpatents

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  3. Wavelength scanning digital interference holography for high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kim, M. K.; Kay, Christine N.

    2009-02-01

    An improved digital interference holography (DIH) technique suitable for fundus images is proposed. This technique incorporates a dispersion compensation algorithm to compensate for the unknown axial length of the eye. Using this instrument we acquired successfully tomographic fundus images in human eye with narrow axial resolution less than 5μm. The optic nerve head together with the surrounding retinal vasculature were constructed. We were able to quantify a depth of 84μm between the retinal fiber and the retinal pigmented epithelium layers. DIH provides high resolution 3D information which could potentially aid in guiding glaucoma diagnosis and treatment.

  4. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV booster station authorizes the transmission of the visual signal by amplitude modulation (A5) and the...

  5. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV booster station authorizes the transmission of the visual signal by amplitude modulation (A5) and the...

  6. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV booster station authorizes the transmission of the visual signal by amplitude modulation (A5) and the...

  7. 47 CFR 74.736 - Emissions and bandwidth.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Booster Stations § 74.736 Emissions and bandwidth. (a) The license of a low power TV, TV translator, or TV booster station authorizes the transmission of the visual signal by amplitude modulation (A5) and the...

  8. Cross-phase modulation bandwidth in ultrafast fiber wavelength converters

    NASA Astrophysics Data System (ADS)

    Luís, Ruben S.; Monteiro, Paulo; Teixeira, António

    2006-12-01

    We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1THz, making it the most appropriate for ultrafast wavelength conversion.

  9. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    PubMed

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  10. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light

  11. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses

  12. Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua

    2018-03-01

    We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).

  13. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    PubMed Central

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  14. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  15. All-optical central-frequency-programmable and bandwidth-tailorable radar

    PubMed Central

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596

  16. Method and apparatus for telemetry adaptive bandwidth compression

    NASA Technical Reports Server (NTRS)

    Graham, Olin L.

    1987-01-01

    Methods and apparatus are provided for automatic and/or manual adaptive bandwidth compression of telemetry. An adaptive sampler samples a video signal from a scanning sensor and generates a sequence of sampled fields. Each field and range rate information from the sensor are hence sequentially transmitted to and stored in a multiple and adaptive field storage means. The field storage means then, in response to an automatic or manual control signal, transfers the stored sampled field signals to a video monitor in a form for sequential or simultaneous display of a desired number of stored signal fields. The sampling ratio of the adaptive sample, the relative proportion of available communication bandwidth allocated respectively to transmitted data and video information, and the number of fields simultaneously displayed are manually or automatically selectively adjustable in functional relationship to each other and detected range rate. In one embodiment, when relatively little or no scene motion is detected, the control signal maximizes sampling ratio and causes simultaneous display of all stored fields, thus maximizing resolution and bandwidth available for data transmission. When increased scene motion is detected, the control signal is adjusted accordingly to cause display of fewer fields. If greater resolution is desired, the control signal is adjusted to increase the sampling ratio.

  17. Low bandwidth robust controllers for flight

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.; Chou, Hwei-Lan

    1992-01-01

    During the final reporting period (Jun. - Dec. 1992), analyses of the longitudinal and lateral flying qualities were made for propulsive-only flight control (POFC) of a Boeing 720 aircraft model. Performance resulting from compensators developed using Quantitative Feedback Theory (QFT) is documented and analyzed. This report is a first draft of a thesis to be presented by graduate student Hwei-Lan Chou. The final thesis will be presented to NASA when it is completed later this year. The latest landing metrics related to bandwidth criteria and based on the Neal-Smith approach to flying qualities prediction were used in developing performance criteria for the controllers. The compensator designs were tested on the NASA simulator and exhibited adequate performance for piloted flight. There was no significant impact of QFT on performance of the propulsive-only flight controllers in either the longitudinal or lateral modes of flight. This was attributed to the physical limits of thrust available and the engine rate of response, both of whiih severely limited the available bandwidth of the closed-loop system.

  18. 47 CFR 74.1236 - Emission and bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Emission and bandwidth. 74.1236 Section 74.1236 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and...

  19. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    PubMed

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  20. Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection

    DOE PAGES

    Huang, Li; Chang, Chun-Chieh; Zeng, Beibei; ...

    2017-08-09

    Optical antireflection has long been pursued for a wide range of applications, but existing approaches encounter issues in the performance, bandwidth, and structure complexity, particularly in the long-wavelength infrared regime. Here we present the demonstration of bilayer metasurfaces that accomplish dual- and broadband optical antireflection in the terahertz and mid-infrared spectral ranges. Furthermore, by simply tailoring the structural geometry and dimensions, here we show that subwavelength metal/dielectric structures enable dramatic reduction of Fresnel reflection and significant enhancement of transmission at a substrate surface, operating either at two discrete narrow bands or over a broad bandwidth up to 28%. We alsomore » use a semianalytical interference model to interpret the obtained results, in which we find that the dispersion of the constituent structures plays a critical role in achieving the observed broadband optical antireflection.« less

  1. Dynamic Online Bandwidth Adjustment Scheme Based on Kalai-Smorodinsky Bargaining Solution

    NASA Astrophysics Data System (ADS)

    Kim, Sungwook

    Virtual Private Network (VPN) is a cost effective method to provide integrated multimedia services. Usually heterogeneous multimedia data can be categorized into different types according to the required Quality of Service (QoS). Therefore, VPN should support the prioritization among different services. In order to support multiple types of services with different QoS requirements, efficient bandwidth management algorithms are important issues. In this paper, I employ the Kalai-Smorodinsky Bargaining Solution (KSBS) for the development of an adaptive bandwidth adjustment algorithm. In addition, to effectively manage the bandwidth in VPNs, the proposed control paradigm is realized in a dynamic online approach, which is practical for real network operations. The simulations show that the proposed scheme can significantly improve the system performances.

  2. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  3. Bandwidth tunable amplifier for recording biopotential signals.

    PubMed

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  4. Characterization and application of a broad bandwidth oscillator for the HELEN laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, J.E.; Stevenson, R.M.; Bett, T.H.

    1995-12-31

    Preliminary investigations of a potential broad band oscillator for the HELEN laser facility and its proposed upgrade are described. The reasons for the need of broad bandwidth and the choice of commercial technology to achieve it are discussed. The characterization of the device and the diagnostics used for the investigations are described. Small signal amplification of the bandwidth by a glass amplifier was also performed along with investigations of the effect of various bandwidths on the far field beam quality when using random phase plates.

  5. 47 CFR 74.1236 - Emission and bandwidth.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1236 Emission and bandwidth. (a) The license of a station...) apply. (b) Standard width FM channels will be assigned and the transmitting apparatus shall be operated...

  6. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory

    PubMed Central

    Fisher, Kent A. G.; England, Duncan G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Resch, Kevin J.; Sussman, Benjamin J.

    2016-01-01

    The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion. PMID:27045988

  7. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory.

    PubMed

    Fisher, Kent A G; England, Duncan G; MacLean, Jean-Philippe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J

    2016-04-05

    The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.

  8. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  9. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniquesmore » in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.« less

  10. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE PAGES

    Yoo, Wucherl; Sim, Alex

    2016-06-24

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  11. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters

    NASA Astrophysics Data System (ADS)

    Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-01

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  12. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters.

    PubMed

    Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-29

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  13. Extending the Peak Bandwidth of Parameters for Softmax Selection in Reinforcement Learning.

    PubMed

    Iwata, Kazunori

    2016-05-11

    Softmax selection is one of the most popular methods for action selection in reinforcement learning. Although various recently proposed methods may be more effective with full parameter tuning, implementing a complicated method that requires the tuning of many parameters can be difficult. Thus, softmax selection is still worth revisiting, considering the cost savings of its implementation and tuning. In fact, this method works adequately in practice with only one parameter appropriately set for the environment. The aim of this paper is to improve the variable setting of this method to extend the bandwidth of good parameters, thereby reducing the cost of implementation and parameter tuning. To achieve this, we take advantage of the asymptotic equipartition property in a Markov decision process to extend the peak bandwidth of softmax selection. Using a variety of episodic tasks, we show that our setting is effective in extending the bandwidth and that it yields a better policy in terms of stability. The bandwidth is quantitatively assessed in a series of statistical tests.

  14. Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate.

    PubMed

    Zhang, Caihong; Avetisyan, Yuri; Glosser, Andreas; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2012-04-09

    A new scheme of optical rectification (OR) of femtosecond laser pulses in a periodically poled lithium niobate (PPLN) crystal, which generates high energy and bandwidth tunable multicycle THz pulses, is proposed and demonstrated. We show that the number of the oscillation cycles of the THz electric field and therefore bandwidth of generated THz spectrum can easily and smoothly be tuned from a few tens of GHz to a few THz by changing the pump optical spot size on PPLN crystal. The minimal bandwidth is 17 GHz that is smallest ever of reported in scheme of THz generation by OR at room temperature. Similar to the case of Cherenkov-type OR in single-domain LiNbO₃, the spectrum of THz generation extends from 0.1 THz to 3 THz when laser beam is focused to a size close to half-period of PPLN structure. The energy spectral density of narrowband THz generation is almost independent of the bandwidth and is typically 220 nJ/THz for ~1 W pump power at 1 kHz repetition rate.

  15. THz-bandwidth photonic Hilbert transformers based on fiber Bragg gratings in transmission.

    PubMed

    Fernández-Ruiz, María R; Wang, Lixian; Carballar, Alejandro; Burla, Maurizio; Azaña, José; LaRochelle, Sophie

    2015-01-01

    THz-bandwidth photonic Hilbert transformers (PHTs) are implemented for the first time, to the best of our knowledge, based on fiber Bragg grating (FBG) technology. To increase the practical bandwidth limitation of FBGs (typically <200  GHz), a superstructure based on two superimposed linearly-chirped FBGs operating in transmission has been employed. The use of a transmission FBG involves first a conversion of the non-minimum phase response of the PHT into a minimum-phase response by adding an anticipated instantaneous component to the desired system temporal impulse response. Using this methodology, a 3-THz-bandwidth integer PHT and a fractional (order 0.81) PHT are designed, fabricated, and successfully characterized.

  16. Beamforming design with proactive interference cancelation in MISO interference channels

    NASA Astrophysics Data System (ADS)

    Li, Yang; Tian, Yafei; Yang, Chenyang

    2015-12-01

    In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.

  17. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  18. The propagation of sound in narrow street canyons

    NASA Astrophysics Data System (ADS)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  19. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A

    PubMed Central

    Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun

    2017-01-01

    Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR. PMID:28489064

  20. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A.

    PubMed

    Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun

    2017-05-10

    Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR.

  1. Bandwidth, Broadband, and Planning for Public Access

    ERIC Educational Resources Information Center

    Blowers, Helene

    2012-01-01

    Broadband and bandwidth allocation is an essential technology planning activity that libraries should address on a continual basis. There are five key factors that will impact your network's performance: 1. infrastructure, 2. network load, 3. workstation performance, 4. prioritization of services, and 5. network management. The author thinks it's…

  2. EIT in resonator chains: similarities and differences with atomic media

    NASA Technical Reports Server (NTRS)

    Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.

    2004-01-01

    We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.

  3. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  4. Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers.

    PubMed

    Maresca, David; Renaud, Guillaume; van Soest, Gijs; Li, Xiang; Zhou, Qifa; Shung, K Kirk; de Jong, Nico; van der Steen, Antonius F W

    2013-04-01

    We demonstrate two methods for vasa vasorum imaging using contrast-enhanced intravascular ultrasound, which can be performed using commercial catheters. Plaque neovascularization was recognized as an independent marker of coronary artery plaque vulnerability. IVUS-based methods to image the microvessels available to date require high bandwidth (-6 dB relative frequency bandwidth >70%), which are not routinely available commercially. We explored the potential of ultraharmonic imaging and chirp reversal imaging for vasa vasorum imaging. In vitro recordings were performed on a tissue-mimicking phantom using a commercial ultrasound contrast agent and a transducer with a center frequency of 34 MHz and a -6 dB relative bandwidth of 56%. Acoustic peak pressures <500 kPa were used. A tissue-mimicking phantom with channels down to 200 μm in diameter was successfully imaged by the two contrast detection sequences while the smallest channel stayed invisible in conventional intravascular ultrasound images. Ultraharmonic imaging provided the best contrast agent detection. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  5. Relative intensity noise transfer of large-bandwidth pump lasers in Raman fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Keita, Kafing; Delaye, Philippe; Frey, Robert; Roosen, Gérald

    2006-12-01

    A theoretical analysis of the Raman amplification in optical fibers and the pump-to-signal relative intensity noise (RIN) transfer has been performed in the spectral domain. An efficient Raman amplification of a monochromatic signal beam by a large-bandwidth pump beam has been demonstrated for a pump bandwidth much smaller than the Raman linewidth. Under the same approximation the pump-to-signal RIN transfer has been calculated in both cases of copropagating and counterpropagating beams in the two limiting cases of modulated monochromatic and smooth-profile large-bandwidth pump beams. At low frequencies the excess of noise evidenced in the case of a modulated monochromatic pump beam did not exist in the case of large-bandwidth pseudoincoherent sources. As this noise reduction can be as large as 13 dB for a 40 dB net gain of the amplifier, such incoherent pumping sources must be considered for the purpose of low-noise Raman amplifiers.

  6. Studies of radio frequency interference at Parkes Observatory

    NASA Astrophysics Data System (ADS)

    Backus, Peter R.; Laroque, Sam; Tarter, Jill C.; Dreher, John; Gullers, Kent; Patrick, Alan; Heiligman, Gary

    1997-01-01

    From February through early June 1995, Project Phoenix conducted SETI observations of 209 stars over the frequency range from 1195 to 3005 MHz. A byproduct of this search is a unique data set suitable for studying the Radio Frequency Interference (RFI) environment at the Parkes 64-m telescope in New South Wales, Australia. RFI is an increasing problem for SETI and other radio astronomy observations conducted outside of the 'protected' frequency bands. The data analyzed for this paper were 'mean baseline' spectra in Left and Right Circular Polarization (LCP, RCP), integrated for either 138 or 276 s, covering a 10-MHz bandwidth with 15,552 channels at a resolution of 643 Hz. Channels were identified as contaminated by RFI when the power in the channel exceeded the mean noise by 3 percent. The 'spectral occupancy', the fraction of time RFI was seen, was determined for each channel. The RFI occupancy for LCP and RCP are distinctly different. Approximately 100 MHz of the spectrum was too heavily contaminated for SETI observations.

  7. Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars.

    PubMed

    She, C Y

    2001-09-20

    It is well known that scattering lidars, i.e., Mie, aerosol-wind, Rayleigh, high-spectral-resolution, molecular-wind, rotational Raman, and vibrational Raman lidars, are workhorses for probing atmospheric properties, including the backscatter ratio, aerosol extinction coefficient, temperature, pressure, density, and winds. The spectral structure of molecular scattering (strength and bandwidth) and its constituent spectra associated with Rayleigh and vibrational Raman scattering are reviewed. Revisiting the correct name by distinguishing Cabannes scattering from Rayleigh scattering, and sharpening the definition of each scattering component in the Rayleigh scattering spectrum, the review allows a systematic, logical, and useful comparison in strength and bandwidth between each scattering component and in receiver bandwidths (for both nighttime and daytime operation) between the various scattering lidars for atmospheric sensing.

  8. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  9. Pre-emphasis determination for an S-band constant bandwidth FM/FM station

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Salter, W. E.

    1972-01-01

    Pre-emphasis schedules are given for 11 constant-bandwidth FM subcarriers modulating an S band transmitter at three receiver signal to noise ratios (i.e., 9, 15, and 25 dB). The criterion for establishing these pre-emphasis curves is the achievement, at various receiver intermediate frequency signal to noise ratios, of equal receiver output signal to noise ratios for all channels. It is realized that these curves may not be the optimum pre-emphasis curves based on overall efficiency or maximum utilization of the allotted spectrum, but they are near-optimum for data with channels which require equal output signal to noise ratios, such as spectral densities. The empirically derived results are compared with a simplified, analytically derived schedule and the primary differences are explained. The S band pre-emphasis schedule differs from the lower frequency VHF case. Since most proportional bandwidth and constant bandwidth systems use ground based recorders and some use flight recorders (as the Saturn systems did on VHF proportional bandwidth telemetry), the effects of these recorders are discussed and a modified pre-emphasis schedule is presented showing the results of this study phase.

  10. Out-of-band and adjacent-channel interference reduction by analog nonlinear filters

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.

    2015-12-01

    In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components

  11. Predation by killer whales (Orcinus orca) and the evolution of whistle loss and narrow-band high frequency clicks in odontocetes.

    PubMed

    Morisaka, T; Connor, R C

    2007-07-01

    A disparate selection of toothed whales (Odontoceti) share striking features of their acoustic repertoires including the absence of whistles and high frequency but weak (low peak-to-peak source level) clicks that have a relatively long duration and a narrow bandwidth. The non-whistling, high frequency click species include members of the family Phocoenidae, members of one genus of delphinids, Cephalorhynchus, the pygmy sperm whale, Kogia breviceps, and apparently the sole member of the family Pontoporiidae. Our review supports the 'acoustic crypsis' hypothesis that killer whale predation risk was the primary selective factor favouring an echolocation and communication system in cephalorhynchids, phocoenids and possibly Pontoporiidae and Kogiidae restricted to sounds that killer whales hear poorly or not at all (< 2 and > 100 kHz).

  12. Fine-pitched microgratings encoded by interference of UV femtosecond laser pulses.

    PubMed

    Kamioka, Hayato; Miura, Taisuke; Kawamura, Ken-ichi; Hirano, Masahiro; Hosono, Hideo

    2002-01-01

    Fine-pitched microgratings are encoded on fused silica surfaces by a two-beam laser interference technique employing UV femtosecond pulses from the third harmonics of a Ti:sapphire laser. A pump and prove method utilizing a laser-induced optical Kerr effect or transient optical absorption change has been developed to achieve the time coincidence of the two pulses. Use of the UV pulses makes it possible to narrow the grating pitches to an opening as small as 290 nm, and the groove width of the gratings is of nanoscale size. The present technique provides a novel opportunity for the fabrication of periodic nanoscale structures in various materials.

  13. Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Zheng, C.; Pong, Philip W. T.

    Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model.more » The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.« less

  14. Remote driving with reduced bandwidth communication

    NASA Technical Reports Server (NTRS)

    Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.

    1993-01-01

    Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.

  15. Vector/Matrix Quantization for Narrow-Bandwidth Digital Speech Compression.

    DTIC Science & Technology

    1982-09-01

    8217o 0 -X -u -vc "oi ’" o 0 00i MN nM I -r -: I I Ir , I C 64 ut c 4c -C ;6 19I *~I C’ I I I 1 Kall 9 I I V4 S.0 M r4) ** al Iw* 0 0 10* 0 f 65 signal...Prediction of the Speech Wave, JASA Vol. 50, pp. 637-655, April 1971 . - 2. I. Itakura and S. Saito, Analysis Synthesis Telephony Based Upon the Maximum

  16. Bandwidth constraints to using video and other rich media in behavior change websites.

    PubMed

    Danaher, Brian G; Jazdzewski, Stephen A; McKay, H Garth; Hudson, Clinton R

    2005-09-16

    Web-based behavior change interventions often include rich media (eg, video, audio, and large graphics). The rationale for using rich media includes the need to reach users who are not inclined or able to use text-based website content, encouragement of program engagement, and following the precedent set by news and sports websites. We describe the development of a bandwidth usage index, which seeks to provide a practical method to gauge the extent to which websites can successfully be used within different Internet access scenarios (eg, dial-up and broadband). We conducted three studies to measure bandwidth consumption. In Study 1, we measured the bandwidth usage index for three video-rich websites (for smoking cessation, for caregivers, and for improving eldercare by family members). We then estimated the number of concurrent users that could be accommodated by each website under various Internet access scenarios. In Study 2, we sought to validate our estimated threshold number of concurrent users by testing the video-rich smoking cessation website with different numbers of concurrent users. In Study 3, we calculated the bandwidth usage index and threshold number of concurrent users for three versions of the smoking cessation website: the video-rich version (tested in Study 1), an audio-rich version, and a Web-enabled CD-ROM version in which all media-rich content was placed on a CD-ROM on the client computer. In Study 1, we found that the bandwidth usage index of the video-rich websites ranged from 144 Kbps to 93 Kbps. These results indicated that dial-up modem users would not achieve a "good user experience" with any of the three rich media websites. Results for Study 2 confirmed that usability was compromised when the estimated threshold number of concurrent users was exceeded. Results for Study 3 indicated that changing a website from video- to audio-rich content reduced the bandwidth requirement by almost 50%, but it remained too large to allow satisfactory

  17. Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.

    PubMed

    St-Yves, Jonathan; Bahrami, Hadi; Jean, Philippe; LaRochelle, Sophie; Shi, Wei

    2015-12-01

    Next-generation high-capacity optical networks require flexible allocation of spectrum resources, for which low-cost optical filters with an ultra-wide bandwidth tunability beyond 100 GHz are desired. We demonstrate an integrated band-pass filter with the bandwidth continuously tuned across 670 GHz (117-788 GHz) which, to the best of our knowledge, is the widest tuning span ever demonstrated on a silicon chip. The filter also features simultaneous wavelength tuning and an unlimited free spectral range. We measured an out-of-band contrast of up to 55 dB, low in-band ripples of less than 0.3 dB, and in-band group delay variation of less than 8 ps. This result was achieved using cascaded Bragg-grating-assisted contra-directional couplers and micro-heaters on the 220 nm silicon-on-insulator platform with a very compact footprint of less than 7000  μm2. Another design with the bandwidth continuously tunable from 50 GHz to 1 THz is also presented.

  18. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast

    PubMed Central

    Ganguli, Dwaipayan; Chereji, Răzvan V.; Iben, James R.; Cole, Hope A.

    2014-01-01

    RSC and SWI/SNF are related ATP-dependent chromatin remodeling machines that move nucleosomes, regulating access to DNA. We addressed their roles in nucleosome phasing relative to transcription start sites in yeast. SWI/SNF has no effect on phasing at the global level. In contrast, RSC depletion results in global nucleosome repositioning: Both upstream and downstream nucleosomal arrays shift toward the nucleosome-depleted region (NDR), with no change in spacing, resulting in a narrower and partly filled NDR. The global picture of RSC-depleted chromatin represents the average of a range of chromatin structures, with most genes showing a shift of the +1 or the −1 nucleosome into the NDR. Using RSC ChIP data reported by others, we show that RSC occupancy is highest on the coding regions of heavily transcribed genes, though not at their NDRs. We propose that RSC has a role in restoring chromatin structure after transcription. Analysis of gene pairs in different orientations demonstrates that phasing patterns reflect competition between phasing signals emanating from neighboring NDRs. These signals may be in phase, resulting in constructive interference and a regular array, or out of phase, resulting in destructive interference and fuzzy positioning. We propose a modified barrier model, in which a stable complex located at the NDR acts as a bidirectional phasing barrier. In RSC-depleted cells, this barrier has a smaller footprint, resulting in narrower NDRs. Thus, RSC plays a critical role in organizing yeast chromatin. PMID:25015381

  19. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  20. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  1. Novel method of detecting movement of the interference fringes using one-dimensional PSD.

    PubMed

    Wang, Qi; Xia, Ji; Liu, Xu; Zhao, Yong

    2015-06-02

    In this paper, a method of using a one-dimensional position-sensitive detector (PSD) by replacing charge-coupled device (CCD) to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z) interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe's phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.

  2. Achieving increased bandwidth for 4 degree of freedom self-tuning energy harvester

    NASA Astrophysics Data System (ADS)

    Staaf, L. G. H.; Smith, A. D.; Köhler, E.; Lundgren, P.; Folkow, P. D.; Enoksson, P.

    2018-04-01

    The frequency response of a self-tuning energy harvester composed of two piezoelectric cantilevers connected by a middle beam with a sliding mass is investigated. Measurements show that incorporation of a free-sliding mass increases the bandwidth. Using an analytical model, the system is explained through close investigation of the resonance modes. Resonance mode behavior further suggests that, by breaking the symmetry of the system, even broader bandwidths are achievable.

  3. High bandwidth specialty optical fibers for data communications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Sun, Xiaoguang

    2008-11-01

    Perhaps the most common specialty optical fiber is HCS hard polymer clad silica fiber. It was invented almost 30 years ago for transmitting laser light to initiate explosives in mining industry and later adapted to be used in a variety of new applications, such as data communications. The most typical HCS fiber typically consists of a 200 μm pure silica glass core, a thin coating of low refractive index hard polymer as the cladding, and an ETFE buffer. This design enables the "crimp-and-cleave" technique of terminating and connectorizing fibers quickly and reliably. Its greater glass diameter also renders greater robustness allowing the fiber to endure greater forces during installation. Due to its larger core size and high numerical aperture (NA), the fiber can be used with a plastic connector and low cost LED transmitter that can greatly reduce the system cost. It can also be used at higher temperature and humidity conditions than standard optical fibers coated with telecommunications grade acrylate material. As applications evolve and require greater bandwidth and/or performance over a greater distance, the challenge now is to develop specialty optical fibers with significantly greater bandwidth-length product while maintaining all other characteristics critical to their ease of use and performance. As a response to the demand, two new fiber types have been designed and developed as higher bandwidth versions of the original HCS fiber. In this paper, we will discuss some of the main design requirements for the fibers, describe in detail the two designs, and present the results of fiber performance.

  4. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.

  5. Telepsychiatry: assessment of televideo psychiatric interview reliability with present- and next-generation internet infrastructures.

    PubMed

    Yoshino, A; Shigemura, J; Kobayashi, Y; Nomura, S; Shishikura, K; Den, R; Wakisaka, H; Kamata, S; Ashida, H

    2001-09-01

    We assessed the reliability of remote video psychiatric interviews conducted via the internet using narrow and broad bandwidths. Televideo psychiatric interviews conducted with 42 in-patients with chronic schizophrenia using two bandwidths (narrow, 128 kilobits/s; broad, 2 megabits/s) were assessed in terms of agreement with face-to-face interviews in a test-retest fashion. As a control, agreement was assessed between face-to-face interviews. Psychiatric symptoms were rated using the Oxford version of the Brief Psychiatric Rating Scale (BPRS), and agreement between interviews was estimated as the intraclass correlation coefficient (ICC). The ICC was significantly lower in the narrow bandwidth than in the broad bandwidth and the control for both positive symptoms score and total score. While reliability of televideo psychiatric interviews is insufficient using the present narrow-band internet infrastructure, the next generation of infrastructure (broad-band) may permit reliable diagnostic interviews.

  6. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

  7. Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth.

    PubMed

    Briles, Travis C; Yost, Dylan C; Cingöz, Arman; Ye, Jun; Schibli, Thomas R

    2010-05-10

    We present a high bandwidth piezoelectric-actuated mirror for length stabilization of an optical cavity. The actuator displays a transfer function with a flat amplitude response and greater than 135 masculine phase margin up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a closed servo loop. To the best of our knowledge, this actuator has achieved the largest servo bandwidth for a piezoelectric transducer (PZT). The actuator should be very useful in a wide variety of applications requiring precision control of optical lengths, including laser frequency stabilization, optical interferometers, and optical communications. (c) 2010 Optical Society of America.

  8. Wavelength and bandwidth tunable photonic stopband of ferroelectric liquid crystals.

    PubMed

    Ozaki, Ryotaro; Moritake, Hiroshi

    2012-03-12

    The chiral smectic C phase of ferroelectric liquid crystals (FLCs) has a self-assembling helical structure which is regarded as a one-dimensional pseudo-photonic crystal. It is well known that a stopband of a FLC can be tuned in wavelength domain by changing temperature or electric field. We here have demonstrated an FLC stopband with independently tunable wavelength and bandwidth by controlling temperature and incident angle. At highly oblique incidence, the stopband does not have polarization dependence. Furthermore, the bandwidth at highly oblique incidence is much wider than that at normal incidence. The mechanism of the tunable stopband is clarified by considering the reflection at oblique incidence.

  9. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.

    PubMed

    Peled, Itay; Kaminsky, Ron; Kotler, Zvi

    2015-06-01

    In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%.

  10. Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-05-01

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.

  11. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics.

    PubMed

    Chen, Sen; Luo, Sheng Nian

    2018-03-01

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  12. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sen; Luo, Sheng-Nian

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamentalmore » harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.« less

  13. Bandwidth Constraints to Using Video and Other Rich Media in Behavior Change Websites

    PubMed Central

    Jazdzewski, Stephen A; McKay, H Garth; Hudson, Clinton R

    2005-01-01

    Background Web-based behavior change interventions often include rich media (eg, video, audio, and large graphics). The rationale for using rich media includes the need to reach users who are not inclined or able to use text-based website content, encouragement of program engagement, and following the precedent set by news and sports websites. Objectives We describe the development of a bandwidth usage index, which seeks to provide a practical method to gauge the extent to which websites can successfully be used within different Internet access scenarios (eg, dial-up and broadband). Methods We conducted three studies to measure bandwidth consumption. In Study 1, we measured the bandwidth usage index for three video-rich websites (for smoking cessation, for caregivers, and for improving eldercare by family members). We then estimated the number of concurrent users that could be accommodated by each website under various Internet access scenarios. In Study 2, we sought to validate our estimated threshold number of concurrent users by testing the video-rich smoking cessation website with different numbers of concurrent users. In Study 3, we calculated the bandwidth usage index and threshold number of concurrent users for three versions of the smoking cessation website: the video-rich version (tested in Study 1), an audio-rich version, and a Web-enabled CD-ROM version in which all media-rich content was placed on a CD-ROM on the client computer. Results In Study 1, we found that the bandwidth usage index of the video-rich websites ranged from 144 Kbps to 93 Kbps. These results indicated that dial-up modem users would not achieve a “good user experience” with any of the three rich media websites. Results for Study 2 confirmed that usability was compromised when the estimated threshold number of concurrent users was exceeded. Results for Study 3 indicated that changing a website from video- to audio-rich content reduced the bandwidth requirement by almost 50%, but it

  14. Problems in the use of interference filters for spectrophotometric determination of total ozone

    NASA Technical Reports Server (NTRS)

    Basher, R. E.; Matthews, W. A.

    1977-01-01

    An analysis of the use of ultraviolet narrow-band interference filters for total ozone determination is given with reference to the New Zealand filter spectrophotometer under the headings of filter monochromaticity, temperature dependence, orientation dependence, aging, and specification tolerances and nonuniformity. Quantitative details of each problem are given, together with the means used to overcome them in the New Zealand instrument. The tuning of the instrument's filter center wavelengths to a common set of values by tilting the filters is also described, along with a simple calibration method used to adjust and set these center wavelengths.

  15. Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan

    An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.

  16. Coherence bandwidth loss in transionospheric radio propagation

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Gonzalez, V. H.; Hessing, A. R.

    1980-01-01

    In this report a theoretical model is developed that predicts the single-point, two-frequency coherence function for transionospheric radio waves. The theoretical model is compared to measured complex frequency correlation coefficients using data from the seven equispaced, phase-coherent UHF signals transmitted by the Wideband satellite. The theory and data are in excellent agreement. The theory is critically dependent upon the power-law index, and the frequency coherence data clearly favor the comparatively small spectral indices that have been consistently measured from the wideband satellite phase data. A model for estimating the pulse delay jitter induced by the coherence bandwidth loss is also developed and compared with the actual delay jitter observed on synthesized pulses obtained from the Wideband UFH comb. The results are in good agreement with the theory. The results presented in this report, which are based on an asymptotic theory, are compared with the more commonly used quadratic theory. The model developed and validated in this report can be used to predict the effects of coherence bandwidth loss in disturbed nuclear environments. Simple formulas for the resultant pulse delay jitter are derived that can be used in predictive codes.

  17. MEMS-based wide-bandwidth electromagnetic energy harvester with electroplated nickel structure

    NASA Astrophysics Data System (ADS)

    Sun, Shi; Dai, Xuhan; Sun, Yunna; Xiang, Xiaojian; Ding, Guifu; Zhao, Xiaolin

    2017-11-01

    A novel nickel-based nonlinear electromagnetic energy harvester has been designed, fabricated, and characterized in this work. Electroplated nickel is very suitable for a stretching-based mechanism to broaden the bandwidth due to its good process and mechanical properties. A strong hardening nonlinearity is induced due to the large deformation of the thin nickel based guided-beam structure. Combining the merits of both the mechanical properties and guided-beam structure, the energy harvester shows good bandwidth performance. It is found that increasing the thickness of the central platform could guarantee nonlinearity. Static and dynamic models of the energy harvester are simulated and validated. Test results show that the energy harvester has good repeatability without any destruction under a large deformation condition. At the acceleration of 0.5 g, comparative large bandwidths of 129 and 59 Hz are obtained for displacement and RMS output voltage, respectively. Power output of 3.4 µW and normalized power density of 125.92 µW cm-3 g-2 are achieved with the load resistance of 38 Ω.

  18. Controlling Laser Plasma Instabilities Using Temporal Bandwidths Under Shock Ignition Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2017-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under plasma conditions relevant to experiments on the Nike laser with induced spatial incoherence (ISI). With ISI, the instantaneous laser intensity can be 3-4 times larger than the average intensity, leading to the excitation of additional TPD modes and producing electrons with larger angular spread. In our simulations, we observe that although ISI can increase the interaction regions for short bursts of time, time-averaged (over many pico-seconds) laser plasma interactions can be reduced by a factor of 2 in systems with sufficiently large bandwidths (where the inverse bandwidth is comparable with the linear growth time). We will quantify these effects and investigate higher dimensional effects such as laser speckles and the effects of Coulomb collisions. Work supported by NRL, NNSA, and NSF.

  19. Amplified spontaneous emission in N2 lasers: Saturation and bandwidth study

    NASA Astrophysics Data System (ADS)

    Hariri, A.; Sarikhani, S.

    2014-05-01

    A complete ASE analysis in a 3-level laser system based on the model of the geometrically dependent gain coefficient (GDGC) is presented. For the study, the photon density/intensity rate equation in the saturated and unsaturated conditions, along with reported experimental measurements on the ASE output energy and spectral bandwidth for N2-lasers were utilized. It was found that the GDGC model is able to explain the ASE output energy behavior and gain profiles correctly. In addition, the model was used to predict the spontaneous emission bandwidth Δν0 and consequently the stimulated emission cross-section for the C→B transition of nitrogen molecule at 337.1 nm. In this work, for example, Δν0 was found to be 766 GHz (2.9 Å) which is consistent with the earliest experimental observation on the ASE bandwidth reduction in a N2-laser as reported to be ~3. This is the first theoretical result that explains the spontaneous emission bandwidth which is different from the commonly used value of ~1 Å obtained from measurements of N2-lasers output spectra. The method was also applied for a filament N2 laser for the C→B transition produced in atmosphere, and a good consistency between the laboratory and filament lasers was obtained. Details of the calculations for this study are presented. The results obtained from 3-level systems confirm further the potential of applying the GDGC model for the ASE study in different laser systems and is unifying lasers of the same active medium.

  20. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  1. IETS and quantum interference: Propensity rules in the presence of an interference feature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykkebo, Jacob; Solomon, Gemma C., E-mail: gsolomon@nano.ku.dk; Gagliardi, Alessio

    2014-09-28

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low current or a particular line shape in current-voltage curves, depending on the position of the interference feature. Second, we consider how inelastic electron tunneling spectroscopy can be used to probe the presence of an interference feature by identifying vibrational modes that are selectively suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electronmore » tunneling spectroscopy to molecules with destructive quantum interference.« less

  2. I/O-aware bandwidth allocation for petascale computing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhou; Yang, Xu; Zhao, Dongfang

    In the Big Data era, the gap between the storage performance and an appli- cation's I/O requirement is increasing. I/O congestion caused by concurrent storage accesses from multiple applications is inevitable and severely harms the performance. Conventional approaches either focus on optimizing an ap- plication's access pattern individually or handle I/O requests on a low-level storage layer without any knowledge from the upper-level applications. In this paper, we present a novel I/O-aware bandwidth allocation framework to coordinate ongoing I/O requests on petascale computing systems. The motivation behind this innovation is that the resource management system has a holistic view ofmore » both the system state and jobs' activities and can dy- namically control the jobs' status or allocate resource on the y during their execution. We treat a job's I/O requests as periodical subjobs within its lifecycle and transform the I/O congestion issue into a classical scheduling problem. Based on this model, we propose a bandwidth management mech- anism as an extension to the existing scheduling system. We design several bandwidth allocation policies with different optimization objectives either on user-oriented metrics or system performance. We conduct extensive trace- based simulations using real job traces and I/O traces from a production IBM Blue Gene/Q system at Argonne National Laboratory. Experimental results demonstrate that our new design can improve job performance by more than 30%, as well as increasing system performance.« less

  3. HARLIE 3-D Aerosol Backscatter and Wind Profile Measurements During Recent Field Experiments: Background Noise Reduction with a Fabry-Perot Etalon Filter in the HARLIE System

    NASA Technical Reports Server (NTRS)

    Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)

    2002-01-01

    Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.

  4. Strong fiber Bragg grating based asymmetric Fabry-Perot sensor system with multiple reflections for high sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming

    2014-03-01

    A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.

  5. United time-frequency spectroscopy for dynamics and global structure.

    PubMed

    Marian, Adela; Stowe, Matthew C; Lawall, John R; Felinto, Daniel; Ye, Jun

    2004-12-17

    Ultrashort laser pulses have thus far been used in two distinct modes. In the time domain, the pulses have allowed probing and manipulation of dynamics on a subpicosecond time scale. More recently, phase stabilization has produced optical frequency combs with absolute frequency reference across a broad bandwidth. Here we combine these two applications in a spectroscopic study of rubidium atoms. A wide-bandwidth, phase-stabilized femtosecond laser is used to monitor the real-time dynamic evolution of population transfer. Coherent pulse accumulation and quantum interference effects are observed and well modeled by theory. At the same time, the narrow linewidth of individual comb lines permits a precise and efficient determination of the global energy-level structure, providing a direct connection among the optical, terahertz, and radio-frequency domains. The mechanical action of the optical frequency comb on the atomic sample is explored and controlled, leading to precision spectroscopy with an appreciable reduction in systematic errors.

  6. The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed

    NASA Technical Reports Server (NTRS)

    Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.

    2006-01-01

    The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.

  7. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    Traditionally, radio astronomy receivers have been limited to bandwidths less than an octave, and as a result multiple feeds and receivers are necessary to observe over a wide bandwidth. Next generation of instruments for radio astronomy will benefit greatly from reflector antenna feeds that demonstrate very wide instantaneous bandwidth, and exhibit low noise behavior. There is an increasing interest in wideband systems from both the cost and science point of view. A wideband feed will allow simultaneous observations or sweeps over a decade or more bandwidth. Instantaneous wide bandwidth is necessary for detection of short duration pulses. Future telescopes like square kilometer array (SKA), consisting of 2000 to 3000 coherently connected antennas and covering a frequency range of 70 MHz to 30 GHz, will need decade bandwidth single pixel feeds (SPFs) along with integrated LNAs to achieve the scientific objectives in a cost effective way. This dissertation focuses on the design and measurement of a novel decade bandwidth sinuous-type, dual linear polarized, fixed phase center, low loss feed with an integrated LNA. A decade bandwidth, low noise amplifier is specially designed for noise match to the higher terminal impedance encountered by this antenna yielding an improved sensitivity over what is possible with conventional 50 O amplifiers. The self-complementary, frequency independent nature of the planar sinuous geometry results in a nearly constant beam pattern and fixed phase center over more than a 10:1 operating frequency range. In order to eliminate the back-lobe response over such a wide frequency range, we have projected the sinuous pattern onto a cone, and a ground plane is placed directly behind the cone's apex. This inverted, conical geometry assures wide bandwidth operation by locating each sinuous resonator a quarter wavelength above the ground plane. The presence of a ground plane near a self complementary antenna destroys the self complementary nature

  8. Radio Frequency Interference Mitigation

    NASA Astrophysics Data System (ADS)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.

    2017-09-01

    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  9. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast.

    PubMed

    Ganguli, Dwaipayan; Chereji, Răzvan V; Iben, James R; Cole, Hope A; Clark, David J

    2014-10-01

    RSC and SWI/SNF are related ATP-dependent chromatin remodeling machines that move nucleosomes, regulating access to DNA. We addressed their roles in nucleosome phasing relative to transcription start sites in yeast. SWI/SNF has no effect on phasing at the global level. In contrast, RSC depletion results in global nucleosome repositioning: Both upstream and downstream nucleosomal arrays shift toward the nucleosome-depleted region (NDR), with no change in spacing, resulting in a narrower and partly filled NDR. The global picture of RSC-depleted chromatin represents the average of a range of chromatin structures, with most genes showing a shift of the +1 or the -1 nucleosome into the NDR. Using RSC ChIP data reported by others, we show that RSC occupancy is highest on the coding regions of heavily transcribed genes, though not at their NDRs. We propose that RSC has a role in restoring chromatin structure after transcription. Analysis of gene pairs in different orientations demonstrates that phasing patterns reflect competition between phasing signals emanating from neighboring NDRs. These signals may be in phase, resulting in constructive interference and a regular array, or out of phase, resulting in destructive interference and fuzzy positioning. We propose a modified barrier model, in which a stable complex located at the NDR acts as a bidirectional phasing barrier. In RSC-depleted cells, this barrier has a smaller footprint, resulting in narrower NDRs. Thus, RSC plays a critical role in organizing yeast chromatin. Published by Cold Spring Harbor Laboratory Press.

  10. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Monavarian, M.; Rashidi, A.; Aragon, A. A.; Oh, S. H.; Rishinaramangalam, A. K.; DenBaars, S. P.; Feezell, D.

    2018-01-01

    High-speed InGaN/GaN blue light-emitting diodes (LEDs) are needed for future gigabit-per-second visible-light communication systems. Large LED modulation bandwidths are typically achieved at high current densities, with reports close to 1 GHz bandwidth at current densities ranging from 5 to 10 kA/cm2. However, the internal quantum efficiency (IQE) of InGaN/GaN LEDs is quite low at high current densities due to the well-known efficiency droop phenomenon. Here, we show experimentally that nonpolar and semipolar orientations of GaN enable higher modulation bandwidths at low current densities where the IQE is expected to be higher and power dissipation is lower. We experimentally compare the modulation bandwidth vs. current density for LEDs on nonpolar (10 1 ¯ 0 ), semipolar (20 2 ¯ 1 ¯) , and polar (" separators="|0001 ) orientations. In agreement with wavefunction overlap considerations, the experimental results indicate a higher modulation bandwidth for the nonpolar and semipolar LEDs, especially at relatively low current densities. At 500 A/cm2, the nonpolar LED has a 3 dB bandwidth of ˜1 GHz, while the semipolar and polar LEDs exhibit bandwidths of 260 MHz and 75 MHz, respectively. A lower carrier density for a given current density is extracted from the RF measurements for the nonpolar and semipolar LEDs, consistent with the higher wavefunction overlaps in these orientations. At large current densities, the bandwidth of the polar LED approaches that of the nonpolar and semipolar LEDs due to coulomb screening of the polarization field. The results support using nonpolar and semipolar orientations to achieve high-speed LEDs at low current densities.

  11. Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano

    NASA Astrophysics Data System (ADS)

    Evita, Maria; Djamal, Mitra; Zimanowski, Bernd; Schilling, Klaus

    2017-01-01

    Volcano monitoring requires the system which has high-fidelity operation and real-time acquisition. MONICA (Mobile Monitoring System for Indonesian Volcano), a system based on Wireless Sensor Network, mobile robot and satellite technology has been proposed to fulfill this requirement for volcano monitoring system in Indonesia. This system consists of fixed-mode for normal condition and mobile mode for emergency situation. The first and second modes have been simulated in slow motion earthquake cases of Merapi Volcano, Indonesia. In this research, we have investigated the application of our bandwidth management for high-fidelity operation and real time acquisition in mobile mode of a strong motion earthquake from this volcano. The simulation result showed that our system still could manage the bandwidth even when there were 2 died fixed node after had stroked by the lightning. This result (64% to 83% throughput in average) was still better than the bandwidth utilized by the existing equipment (0% throughput because of the broken seismometer).

  12. Fault-tolerant bandwidth reservation strategies for data transfers in high-performance networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Liudong; Zhu, Michelle M.; Wu, Chase Q.

    2016-11-22

    Many next-generation e-science applications need fast and reliable transfer of large volumes of data with guaranteed performance, which is typically enabled by the bandwidth reservation service in high-performance networks. One prominent issue in such network environments with large footprints is that node and link failures are inevitable, hence potentially degrading the quality of data transfer. We consider two generic types of bandwidth reservation requests (BRRs) concerning data transfer reliability: (i) to achieve the highest data transfer reliability under a given data transfer deadline, and (ii) to achieve the earliest data transfer completion time while satisfying a given data transfer reliabilitymore » requirement. We propose two periodic bandwidth reservation algorithms with rigorous optimality proofs to optimize the scheduling of individual BRRs within BRR batches. The efficacy of the proposed algorithms is illustrated through extensive simulations in comparison with scheduling algorithms widely adopted in production networks in terms of various performance metrics.« less

  13. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less

  14. Bandwidth and SIMDUCE as simulator fidelity criteria

    NASA Technical Reports Server (NTRS)

    Key, David

    1992-01-01

    The potential application of two concepts from the new Handling Qualities Specification for Military Rotorcraft was discussed. The first concept is bandwidth, a measure of the dynamic response to control. The second is a qualitative technique developed for assessing the visual cue environment the pilot has in bad weather and at night. Simulated Day Usable Cue Environment (SIMDUCE) applies this concept to assessing the day cuing fidelity in the simulator.

  15. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  16. Adaptive limited feedback for interference alignment in MIMO interference channels.

    PubMed

    Zhang, Yang; Zhao, Chenglin; Meng, Juan; Li, Shibao; Li, Li

    2016-01-01

    It is very important that the radar sensor network has autonomous capabilities such as self-managing, etc. Quite often, MIMO interference channels are applied to radar sensor networks, and for self-managing purpose, interference management in MIMO interference channels is critical. Interference alignment (IA) has the potential to dramatically improve system throughput by effectively mitigating interference in multi-user networks at high signal-to-noise (SNR). However, the implementation of IA predominantly relays on perfect and global channel state information (CSI) at all transceivers. A large amount of CSI has to be fed back to all transmitters, resulting in a proliferation of feedback bits. Thus, IA with limited feedback has been introduced to reduce the sum feedback overhead. In this paper, by exploiting the advantage of heterogeneous path loss, we first investigate the throughput of IA with limited feedback in interference channels while each user transmits multi-streams simultaneously, then we get the upper bound of sum rate in terms of the transmit power and feedback bits. Moreover, we propose a dynamic feedback scheme via bit allocation to reduce the throughput loss due to limited feedback. Simulation results demonstrate that the dynamic feedback scheme achieves better performance in terms of sum rate.

  17. Multi-Modulator for Bandwidth-Efficient Communication

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Lee, Dennis; Lay, Norman; Cheetham, Craig; Fong, Wai; Yeh, Pen-Shu; King, Robin; Ghuman, Parminder; Hoy, Scott; Fisher, Dave

    2009-01-01

    A modulator circuit board has recently been developed to be used in conjunction with a vector modulator to generate any of a large number of modulations for bandwidth-efficient radio transmission of digital data signals at rates than can exceed 100 Mb/s. The modulations include quadrature phaseshift keying (QPSK), offset quadrature phase-shift keying (OQPSK), Gaussian minimum-shift keying (GMSK), and octonary phase-shift keying (8PSK) with square-root raised-cosine pulse shaping. The figure is a greatly simplified block diagram showing the relationship between the modulator board and the rest of the transmitter. The role of the modulator board is to encode the incoming data stream and to shape the resulting pulses, which are fed as inputs to the vector modulator. The combination of encoding and pulse shaping in a given application is chosen to maximize the bandwidth efficiency. The modulator board includes gallium arsenide serial-to-parallel converters at its input end. A complementary metal oxide/semiconductor (CMOS) field-programmable gate array (FPGA) performs the coding and modulation computations and utilizes parallel processing in doing so. The results of the parallel computation are combined and converted to pulse waveforms by use of gallium arsenide parallel-to-serial converters integrated with digital-to-analog converters. Without changing the hardware, one can configure the modulator to produce any of the designed combinations of coding and modulation by loading the appropriate bit configuration file into the FPGA.

  18. Peak Source Power Associated with Positive Narrow Bipolar Lightning Pulses

    NASA Astrophysics Data System (ADS)

    Bandara, S. A.; Marshall, T. C.; Karunarathne, S.; Karunarathne, N. D.; Siedlecki, R. D., II; Stolzenburg, M.

    2017-12-01

    During the summer of 2016, we deployed a lightning sensor array in and around Oxford Mississippi, USA. The array system comprised seven lightning sensing stations in a network approximately covering an area of 30 km × 30 km. Each station is equipped with four sensors: Fast antenna (10 ms decay time), Slow antenna (1.0 s decay time)), field derivative sensor (dE/dt) and Log-RF antenna (bandwidth 187-192 MHz). We have observed 319 Positive NBPs and herein we report on comparisons of the NBP properties measured from the Fast antenna data with the Log-RF antenna data. These properties include 10-90% rise time, full width at half maximum, zero cross time, and range-normalized amplitude at 100 km. NBPs were categorized according to the fine structure of the electric field wave shapes into Types A-D, as in Karunarathne et al. [2015]. The source powers of NBPs in each category were determined using single station Log-RF data. Furthermore, we also categorized the NBPs in three other groups: initial event of an IC flash, isolated, and not-isolated (according to their spatiotemporal relationship with other lightning activity). We compared the source powers within each category. Karunarathne, S., T. C. Marshall, M. Stolzenburg, and N. Karunarathna (2015), Observations of positive narrow bipolar pulses, J. Geophys. Res. Atmos., 120, doi:10.1002/2015JD023150.

  19. Orientation masking and cross-orientation suppression (XOS): implications for estimates of filter bandwidth.

    PubMed

    Meese, Tim S; Holmes, David J

    2010-10-01

    Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.

  20. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  1. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  2. Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.

    2018-04-01

    The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWR<2 for entire bandwidth of antenna and peak gain is 5.2 dB. Thus the antenna covers the UWB range and it can also be used for bands such as 2.4/3.6/5 -GHz WLAN bands, 2.5/3.5/5.5GHz WiMAX bands and X band satellite communication at 7.25-8.395 GHz.

  3. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.

    PubMed

    Meng, Bo; Wang, Qi Jie

    2012-01-16

    In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

  4. Neural mechanisms of interference control in working memory: effects of interference expectancy and fluid intelligence.

    PubMed

    Burgess, Gregory C; Braver, Todd S

    2010-09-20

    A critical aspect of executive control is the ability to limit the adverse effects of interference. Previous studies have shown activation of left ventrolateral prefrontal cortex after the onset of interference, suggesting that interference may be resolved in a reactive manner. However, we suggest that interference control may also operate in a proactive manner to prevent effects of interference. The current study investigated the temporal dynamics of interference control by varying two factors - interference expectancy and fluid intelligence (gF) - that could influence whether interference control operates proactively versus reactively. A modified version of the recent negatives task was utilized. Interference expectancy was manipulated across task blocks by changing the proportion of recent negative (interference) trials versus recent positive (facilitation) trials. Furthermore, we explored whether gF affected the tendency to utilize specific interference control mechanisms. When interference expectancy was low, activity in lateral prefrontal cortex replicated prior results showing a reactive control pattern (i.e., interference-sensitivity during probe period). In contrast, when interference expectancy was high, bilateral prefrontal cortex activation was more indicative of proactive control mechanisms (interference-related effects prior to the probe period). Additional results suggested that the proactive control pattern was more evident in high gF individuals, whereas the reactive control pattern was more evident in low gF individuals. The results suggest the presence of two neural mechanisms of interference control, with the differential expression of these mechanisms modulated by both experimental (e.g., expectancy effects) and individual difference (e.g., gF) factors.

  5. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation

    NASA Astrophysics Data System (ADS)

    Korobko, M.; Kleybolte, L.; Ast, S.; Miao, H.; Chen, Y.; Schnabel, R.

    2017-04-01

    The shot-noise limited peak sensitivity of cavity-enhanced interferometric measurement devices, such as gravitational-wave detectors, can be improved by increasing the cavity finesse, even when comparing fixed intracavity light powers. For a fixed light power inside the detector, this comes at the price of a proportional reduction in the detection bandwidth. High sensitivity over a large span of signal frequencies, however, is essential for astronomical observations. It is possible to overcome this standard sensitivity-bandwidth limit using nonclassical correlations in the light field. Here, we investigate the internal squeezing approach, where the parametric amplification process creates a nonclassical correlation directly inside the interferometer cavity. We theoretically analyze the limits of the approach and measure 36% increase in the sensitivity-bandwidth product compared to the classical case. To our knowledge, this is the first experimental demonstration of an improvement in the sensitivity-bandwidth product using internal squeezing, opening the way for a new class of optomechanical force sensing devices.

  6. Analysis of Terrestrial Interference Protection from UAS CNPC Satellite Transmitters

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    Unmanned aircraft (UA) are projected to have a major impact on future aviation. Larger UA operating at altitudes above 3000 feet will require at least occasional access to non-segregated, that is, controlled airspace. In order for unmanned aircraft to be integrated into the airspace and operate with other commercial aircraft, a very reliable command and control (a. k. a. control and non-payload communications, (CNPC)) link is required. For operations covering large distances or over remote locations, a beyond-line-of-sight (BLOS) CNPC link implemented through a satellite will almost always be required. Protected aviation spectrum (aeronautical mobile satellite (route) service, or AMS(R)S) would normally be used for such a safety-critical link, however studies have shown that currently available aviation safety satellite spectrum is inadequate to support the projected BLOS CNPC link bandwidth requirements. To address this inadequacy, the 2015 World Radio communication Conference studied the possible use of the Fixed Satellite Service (FSS) to provide CNPC, including possible allocations in Ku-Band and Ka-Band, under Agenda Item (AI) 1.5. Although UA CNPC satellite links in these bands were shown to meet operational availability and continuity requirements, a serious complication exists in that there are also terrestrial service allocations in these bands, in particular, Fixed Service (FS) point-to-point and point-to-multipoint microwave digital links. During the WRC-15 study cycle, much opposition to AI 1.5 was generated based on fears that UA CNPC satellite transmitters in these bands would impose unacceptable levels of interference to the FS receivers. NASA analyzed the possible interference from the UA transmitters based on probable UA transmission and FS receiver characteristics, and UA traffic distributions and densities to determine conditions under which UA could operate without imposing unacceptable interference levels to the FS. Ultimately, UA power flux

  7. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    NASA Astrophysics Data System (ADS)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  8. Using sensor habituation in mobile robots to reduce oscillatory movements in narrow corridors.

    PubMed

    Chang, Carolina

    2005-11-01

    Habituation is a form of nonassociative learning observed in a variety of species of animals. Arguably, it is the simplest form of learning. Nonetheless, the ability to habituate to certain stimuli implies plastic neural systems and adaptive behaviors. This paper describes how computational models of habituation can be applied to real robots. In particular, we discuss the problem of the oscillatory movements observed when a Khepera robot navigates through narrow hallways using a biologically inspired neurocontroller. Results show that habituation to the proximity of the walls can lead to smoother navigation. Habituation to sensory stimulation to the sides of the robot does not interfere with the robot's ability to turn at dead ends and to avoid obstacles outside the hallway. This paper shows that simple biological mechanisms of learning can be adapted to achieve better performance in real mobile robots.

  9. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  10. Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues.

    PubMed

    Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng

    2012-09-01

    This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.

  11. Enhanced directional second harmonic radiation via nonlinear interference in 1D metamaterials

    NASA Astrophysics Data System (ADS)

    Guo, B. S.; Loo, Y. L.; Zhao, Q.; Ong, C. K.

    2018-06-01

    By using a one-dimensional nonlinear metamaterial in the experiment, we achieve a directional second harmonic radiation via nonlinear interference at approximately 2.5 GHz. Each meta-atom has the structure of coupled split-ring resonators and two varactors arranged parallel (symmetric) or antiparallel (antisymmetric) to each other. With an incident power of approximately  ‑2.7 dBm, the power of the emitted directional wave from the sample is at the scale of nanowatt. This relatively high magnitude of directional nonlinear power is the result of the 1D metamaterial abilities in exhibiting nonlinear magnetoelectric coupling, as well as supporting an electric dipole or magnetic dipole resonance within a narrow second harmonic frequency range.

  12. A TorPath to TorCoin: Proof-of-Bandwidth Altcoins for Compensating Relays

    DTIC Science & Technology

    2014-07-18

    incentive scheme for Tor relying on two novel concepts. We introduce TorCoin, an “altcoin” that uses the Bitcoin protocol to re- ward relays for...or altcoin, based on the Bitcoin protocol [8]. Unlike Bitcoin , its proof-of-work scheme is based on bandwidth rather than computation. To “mine” a...concepts. We introduce TorCoin, an altcoin" that uses the Bitcoin protocol to re- ward relays for contributing bandwidth. Relays mine" TorCoins, then

  13. Optimal design of similariton fiber lasers without gain-bandwidth limitation.

    PubMed

    Li, Xingliang; Zhang, Shumin; Yang, Zhenjun

    2017-07-24

    We have numerically investigated broadband high-energy similariton fiber lasers, demonstrated that the self-similar evolution of pulses can locate in a segment of photonic crystal fiber without gain-bandwidth limitation. The effects of various parameters, including the cavity length, the spectral filter bandwidth, the pump power, the length of the photonic crystal fiber and the output coupling ratio have also been studied in detail. Using the optimal parameters, a single pulse with spectral width of 186.6 nm, pulse energy of 23.8 nJ, dechirped pulse duration of 22.5 fs and dechirped pulse peak power of 1.26 MW was obtained. We believe that this detailed analysis of the behaviour of pulses in the similariton regime may have major implications in the development of broadband high-energy fiber lasers.

  14. Narrow-headed garter snake (Thamnophis rufipunctatus)

    USGS Publications Warehouse

    Nowak, Erika M.

    2006-01-01

    The narrow-headed garter snake is a harmless, nonvenomous snake that is distinguished by its elongated, triangular-shaped head and the red or dark spots on its olive to tan body. Today, the narrow-headed garter snake is a species of special concern in the United States because of its decline over much of its historic range. Arizona's Oak Creek has historically contained the largest population of narrow-headed garter snakes in the United States. The U.S. Geological Survey (USGS) and the Arizona Game and Fish Department jointly funded research by USGS scientists in Oak Creek to shed light on the factors causing declining population numbers. The research resulted in better understanding of the snake's habitat needs, winter and summer range, and dietary habits. Based on the research findings, the U.S. Forest Service has developed recommendations that visitors and local residents can adopt to help slow the decline of the narrow-headed garter snake in Oak Creek.

  15. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  16. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  17. Herschel's Interference Demonstration.

    ERIC Educational Resources Information Center

    Perkalskis, Benjamin S.; Freeman, J. Reuben

    2000-01-01

    Describes Herschel's demonstration of interference arising from many coherent rays. Presents a method for students to reproduce this demonstration and obtain beautiful multiple-beam interference patterns. (CCM)

  18. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    NASA Astrophysics Data System (ADS)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  19. Dependency-dependent interference: NPI interference, agreement attraction, and global pragmatic inferences.

    PubMed

    Xiang, Ming; Grove, Julian; Giannakidou, Anastasia

    2013-01-01

    Previous psycholinguistics studies have shown that when forming a long distance dependency in online processing, the parser sometimes accepts a sentence even though the required grammatical constraints are only partially met. A mechanistic account of how such errors arise sheds light on both the underlying linguistic representations involved and the processing mechanisms that put such representations together. In the current study, we contrast the negative polarity items (NPI) interference effect, as shown by the acceptance of an ungrammatical sentence like "The bills that democratic senators have voted for will ever become law," with the well-known phenomenon of agreement attraction ("The key to the cabinets are … "). On the surface, these two types of errors look alike and thereby can be explained as being driven by the same source: similarity based memory interference. However, we argue that the linguistic representations involved in NPI licensing are substantially different from those of subject-verb agreement, and therefore the interference effects in each domain potentially arise from distinct sources. In particular, we show that NPI interference at least partially arises from pragmatic inferences. In a self-paced reading study with an acceptability judgment task, we showed NPI interference was modulated by participants' general pragmatic communicative skills, as quantified by the Autism-Spectrum Quotient (AQ, Baron-Cohen et al., 2001), especially in offline tasks. Participants with more autistic traits were actually less prone to the NPI interference effect than those with fewer autistic traits. This result contrasted with agreement attraction conditions, which were not influenced by individual pragmatic skill differences. We also show that different NPI licensors seem to have distinct interference profiles. We discuss two kinds of interference effects for NPI licensing: memory-retrieval based and pragmatically triggered.

  20. Dependency-dependent interference: NPI interference, agreement attraction, and global pragmatic inferences

    PubMed Central

    Xiang, Ming; Grove, Julian; Giannakidou, Anastasia

    2013-01-01

    Previous psycholinguistics studies have shown that when forming a long distance dependency in online processing, the parser sometimes accepts a sentence even though the required grammatical constraints are only partially met. A mechanistic account of how such errors arise sheds light on both the underlying linguistic representations involved and the processing mechanisms that put such representations together. In the current study, we contrast the negative polarity items (NPI) interference effect, as shown by the acceptance of an ungrammatical sentence like “The bills that democratic senators have voted for will ever become law,” with the well-known phenomenon of agreement attraction (“The key to the cabinets are … ”). On the surface, these two types of errors look alike and thereby can be explained as being driven by the same source: similarity based memory interference. However, we argue that the linguistic representations involved in NPI licensing are substantially different from those of subject-verb agreement, and therefore the interference effects in each domain potentially arise from distinct sources. In particular, we show that NPI interference at least partially arises from pragmatic inferences. In a self-paced reading study with an acceptability judgment task, we showed NPI interference was modulated by participants' general pragmatic communicative skills, as quantified by the Autism-Spectrum Quotient (AQ, Baron-Cohen et al., 2001), especially in offline tasks. Participants with more autistic traits were actually less prone to the NPI interference effect than those with fewer autistic traits. This result contrasted with agreement attraction conditions, which were not influenced by individual pragmatic skill differences. We also show that different NPI licensors seem to have distinct interference profiles. We discuss two kinds of interference effects for NPI licensing: memory-retrieval based and pragmatically triggered. PMID:24109468

  1. Bandwidth Management in Universities in Zimbabwe: Towards a Responsible User Base through Effective Policy Implementation

    ERIC Educational Resources Information Center

    Chitanana, Lockias

    2012-01-01

    This research was undertaken to investigate the issue of how to maximise or make efficient use of bandwidth. In particular, the research sought to find out about what universities in Zimbabwe are doing to manage their bandwidth. It was, therefore, appropriate to survey a sample of five universities and to catalogue their experiences. Results show…

  2. Sensing mode coupling analysis for dual-mass MEMS gyroscope and bandwidth expansion within wide-temperature range

    NASA Astrophysics Data System (ADS)

    Cao, Huiliang; Li, Hongsheng; Shao, Xingling; Liu, Zhiyu; Kou, Zhiwei; Shan, Yanhu; Shi, Yunbo; Shen, Chong; Liu, Jun

    2018-01-01

    This paper presents the bandwidth expanding method with wide-temperature range for sense mode coupling dual-mass MEMS gyro. The real sensing mode of the gyroscope is analyzed to be the superposition of in-phase and anti-phase sensing modes. The mechanical sensitivity and bandwidth of the gyroscope structure are conflicted with each other and both governed by the frequency difference between sensing and drive modes (min {Δω1, Δω2}). The sensing mode force rebalancing combs stimulation method (FRCSM) is presented to simulate the Coriolis force, and based on this method, the gyro's dynamic characteristics are tested. The sensing closed- loop controller is achieved by operational amplifier based on phase lead method, which enable the magnitude margin and phase margin of the system to reach 7.21 dB and 34.6° respectively, and the closed-loop system also expands gyro bandwidth from 13 Hz (sensing open-loop) to 102 Hz (sensing closed-loop). What's more, the turntable test results show that the sensing closed-loop works stably in wide-temperature range (from -40 °C to 60 °C) and the bandwidth values are 107 Hz @-40 °C and 97 Hz @60 °C. The results indicate that the higher temperature causes lower bandwidth, and verify the simulation results are 103 Hz @-40 °C and 98.2 Hz @60 °C. The new bottleneck of the closed loop bandwidth is the valley generated by conjugate zeros, which is formed by superposition of sensing modes.

  3. Flexible power and bandwidth allocation in mobile satellites

    NASA Astrophysics Data System (ADS)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  4. Compression of transmission bandwidth requirements for a certain class of band-limited functions.

    NASA Technical Reports Server (NTRS)

    Smith, I. R.; Schilling, D. L.

    1972-01-01

    A study of source-encoding techniques that afford a reduction of data-transmission rates is made with particular emphasis on the compression of transmission bandwidth requirements of band-limited functions. The feasibility of bandwidth compression through analog signal rooting is investigated. It is found that the N-th roots of elements of a certain class of entire functions of exponential type possess contour integrals resembling Fourier transforms, the Cauchy principal values of which are compactly supported on an interval one N-th the size of that of the original function. Exploring this theoretical result, it is found that synthetic roots can be generated, which closely approximate the N-th roots of a certain class of band-limited signals and possess spectra that are essentially confined to a bandwidth one N-th that of the signal subjected to the rooting operation. A source-encoding algorithm based on this principle is developed that allows the compression of data-transmission requirements for a certain class of band-limited signals.

  5. Application of inexpensive, low-cost, low-bandwidth silhouette profiling UGS systems to current remote sensing operations

    NASA Astrophysics Data System (ADS)

    Haskovic, Emir Y.; Walsh, Sterling; Cloud, Glenn; Winkelman, Rick; Jia, Yingqing; Vishnyakov, Sergey; Jin, Feng

    2013-05-01

    Low cost, power and bandwidth UGS can be used to fill the growing need for surveillance in remote environments. In particular, linear and 2D thermal sensor systems can run for up to months at a time and their deployment can be scaled to suit the size of the mission. Thermal silhouette profilers like Brimrose's SPOT system reduce power and bandwidth requirements by performing elementary classification and only transmitting binary data using optimized compression methods. These systems satisfy the demands for an increasing number of surveillance operations where reduced bandwidth and power consumption are mission critical.

  6. Effects of Restricted Launch Conditions for the Enhancement of Bandwidth-Distance Product of Multimode Fiber Links

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    2000-01-01

    Several techniques had been proposed to enhance multimode fiber bandwidth-distance product. Single mode-to-multimode offset launch condition technique had been experimented with at Kennedy Space Center. Significant enhancement in multimode fiber link bandwidth is achieved using this technique. It is found that close to three-fold bandwidth enhancement can be achieved compared to standard zero offset launch technique. Moreover, significant reduction in modal noise has been observed as a function of offset launch displacement. However, significant reduction in the overall signal-to-noise ratio is also observed due to signal attenuation due to mode radiation from fiber core to its cladding.

  7. The bandwidth of consolidation into visual short-term memory (VSTM) depends on the visual feature

    PubMed Central

    Miller, James R.; Becker, Mark W.; Liu, Taosheng

    2014-01-01

    We investigated the nature of the bandwidth limit in the consolidation of visual information into visual short-term memory. In the first two experiments, we examined whether previous results showing differential consolidation bandwidth for color and orientation resulted from methodological differences by testing the consolidation of color information with methods used in prior orientation experiments. We briefly presented two color patches with masks, either sequentially or simultaneously, followed by a location cue indicating the target. Participants identified the target color via button-press (Experiment 1) or by clicking a location on a color wheel (Experiment 2). Although these methods have previously demonstrated that two orientations are consolidated in a strictly serial fashion, here we found equivalent performance in the sequential and simultaneous conditions, suggesting that two colors can be consolidated in parallel. To investigate whether this difference resulted from different consolidation mechanisms or a common mechanism with different features consuming different amounts of bandwidth, Experiment 3 presented a color patch and an oriented grating either sequentially or simultaneously. We found a lower performance in the simultaneous than the sequential condition, with orientation showing a larger impairment than color. These results suggest that consolidation of both features share common mechanisms. However, it seems that color requires less information to be encoded than orientation. As a result two colors can be consolidated in parallel without exceeding the bandwidth limit, whereas two orientations or an orientation and a color exceed the bandwidth and appear to be consolidated serially. PMID:25317065

  8. Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor

    NASA Astrophysics Data System (ADS)

    Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke

    2018-04-01

    In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.

  9. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  10. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  11. Narrow and Deep Fano Resonances in a Rod and Concentric Square Ring-Disk Nanostructures

    PubMed Central

    Huo, Yanyan; Jia, Tianqing; Zhang, Yi; Zhao, Hua; Zhang, Shian; Feng, Donghai; Sun, Zhenrong

    2013-01-01

    Localized surface plasmon resonances (LSPRs) in metallic nanostructures have been studied intensely in the last decade. Fano interference is an important way to decrease the resonance linewidth and enhance the spectral detection resolution, but realizing a Fano lineshape with both a narrow linewidth and high spectral contrast-ratio is still challenging. Here we propose a metallic nanostructure consisting of a concentric square ring-disk (CSRD) nanostructure and an outside nanorod. Fano linewidth and spectral contrast ratio can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to 5 nm, the quadrupolar Fano linewidth is of 0.025 eV, with a contrast ratio of 80%, and the figure of merit reaches 15. PMID:24064596

  12. Role of location-dependent transverse wind on root-mean-square bandwidth of temporal light-flux fluctuations in the turbulent atmosphere.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2017-11-01

    The root-mean-square (RMS) bandwidth of temporal light-flux fluctuations is formulated for both plane and spherical waves propagating in the turbulent atmosphere with location-dependent transverse wind. Two path weighting functions characterizing the joint contributions of turbulent eddies and transverse winds at various locations toward the RMS bandwidth are derived. Based on the developed formulations, the roles of variations in both the direction and magnitude of transverse wind velocity with locations over a path on the RMS bandwidth are elucidated. For propagation paths between ground and space, comparisons of the RMS bandwidth computed based on the Bufton wind profile with that calculated by assuming a nominal constant transverse wind velocity are made to exemplify the effect that location dependence of transverse wind velocity has on the RMS bandwidth. Moreover, an expression for the weighted RMS transverse wind velocity has been derived, which can be used as a nominal constant transverse wind velocity over a path for accurately determining the RMS bandwidth.

  13. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system.

    PubMed

    Shi, Peng; Zhou, Guangya; Deng, Jie; Tian, Feng; Chau, Fook Siong

    2015-09-29

    We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 10(5).

  14. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.

    PubMed

    Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li

    2018-06-01

    State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

  15. Optical notch filter with tunable bandwidth based on guided-mode resonant polarization-sensitive spectral feature.

    PubMed

    Qian, Linyong; Zhang, Dawei; Dai, Bo; Wang, Qi; Huang, Yuanshen; Zhuang, Songlin

    2015-07-13

    A novel bandwidth-tunable notch filter is proposed based on the guided-mode resonance effect. The notch is created due to the superposition spectra response of two guided-mode resonant filters. The compact, bandwidth tuning capability is realized by taking advantage the effect of spectra-to-polarization sensitivity in one-dimensional classical guided-mode resonance filter, and using a liquid crystal polarization rotator for precise and simple polarization control. The operation principle and the design of the device are presented, and we demonstrate it experimentally. The central wavelength is fixed at 766.4 nm with a relatively symmetric profile. The full width at half maximum bandwidth could be tuned from 8.6 nm to 18.2 nm by controlling the applied voltage in electrically-driving polarization rotator.

  16. Narrow Networks on the Individual Marketplace in 2017.

    PubMed

    Polski, Daniel; Weiner, Janet; Zhang, Yuehan

    2017-09-01

    This Issue Brief describes the breadth of physician networks on the ACA marketplaces in 2017. We find that the overall rate of narrow networks is 21%, which is a decline since 2014 (31%) and 2016 (25%). Narrow networks are concentrated in plans sold on state-based marketplaces, at 42%, compared to 10% of plans on federally-facilitated marketplaces. Issuers that have traditionally offered Medicaid coverage have the highest prevalence of narrow network plans at 36%, with regional/local plans and provider-based plans close behind at 27% and 30%. We also find large differences in narrow networks by state and by plan type.

  17. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  18. Characterizing the In-Phase Reflection Bandwidth Theoretical Limit of Artificial Magnetic Conductors With a Transmission Line Model

    NASA Technical Reports Server (NTRS)

    Xie, Yunsong; Fan, Xin; Chen, Yunpeng; Wilson, Jeefrey D.; Simons, Rainee N.; Xiao, John Q.

    2013-01-01

    We validate through simulation and experiment that artificial magnetic conductors (AMC s) can be well characterized by a transmission line model. The theoretical bandwidth limit of the in-phase reflection can be expressed in terms of the effective RLC parameters from the surface patch and the properties of the substrate. It is found that the existence of effective inductive components will reduce the in-phase reflection bandwidth of the AMC. Furthermore, we propose design strategies to optimize AMC structures with an in-phase reflection bandwidth closer to the theoretical limit.

  19. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  20. Novel high-bandwidth bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Michael S.; Laycock, Leslie C.; Archer, Nick J.

    2004-12-01

    Adaptive Optics (AO) is a critical underpinning technology for future laser delivery (including free-space optical communications), target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS Advanced Technology Centre is developing multi-element bimorph deformable mirrors for such an applications. Our initial designs were based on a standard construction and exhibited a resonant frequency of 1kHz with a maximum stroke of +/-20μm for an active aperture of 50mm. These devices were limited by the necessity to have a 'dead space' between the inner active area and the mirror boundary; this ensured that both the requirements for the stroke and the fixed boundary conditions could be met simultaneously. However, there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of iteration steps, we have created novel mounting arrangements that reduce dead space and thus provide the optimum trade-off between bandwidth and stroke. These schemes include supporting the mirror from underneath, rather than at its edge. As a result, models of 60mm active diameter mirrors predict a resonance in excess of 5kHz, combined with a maximum stroke greater than +/-40μm. This paper will discuss a number of different mirror designs and present experimental results for recently assembled devices.

  1. Faraday anomalous dispersion optical filters

    NASA Technical Reports Server (NTRS)

    Shay, T. M.; Yin, B.

    1992-01-01

    The present calculations of the performance of Faraday anomalous dispersion optical filters (FADOF) on IR transitions indicate that such filters may furnish high transmission, narrow-pass bandwidth, and low equivalent noise bandwidth under optimum operating conditions. A FADOF consists of an atomic vapor cell between crossed polarizers that are subject to a dc magnetic field along the optical path; when linearly polarized light travels along the direction of the magnetic field through the dispersive atomic vapor, a polarization rotation occurs. If FADOF conditions are suitably adjusted, a maximum transmission with very narrow bandwidth is obtained.

  2. An Extremely Wide Bandwidth, Low-Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas

    2002-01-01

    Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.

  3. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    PubMed

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  4. Modulation bandwidth of spin torque oscillators under current modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinsat, M.; CEA, INAC-SPINTEC, F-38054 Grenoble; CNRS, SPINTEC, F-38054 Grenoble

    2014-10-13

    For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature ofmore » the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.« less

  5. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  6. Specification for wide channel bandwidth one-inch video tape

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1988-01-01

    Standards and controls are established for the procurement of wide channel bandwidth one inch video magnetic recording tapes for Very Long Base Interferometer (VLBI) system applications. The Magnetic Tape Certification Facility (MTCF) currently maintains three specifications for the Quality Products List (QPL) and acceptance testing of magnetic tapes. NASA-TM-79724 is used for the QPL and acceptance testing of new analog tapes; NASA-TM-80599 is used for QPL and acceptance testing of new digital tapes; and NASA-TM-100702 is used for the QPL and acceptance testing of new IBM/IBM compatible 3480 magnetic tape cartridges. This specification will be used for the QPL and acceptance testing of new wide channel bandwidth one inch video magnetic recording tapes. The one inch video tapes used by the Jet Propulsion Lab., the Deep Space Network and the Haystack Observatory will be covered by this specification. These NASA stations will use the video tapes for their VLBI system applications. The VLBI system is used for the tracking of quasars and the support of interplanetary exploration.

  7. The Effect of Pulse Shaping QPSK on Bandwidth Efficiency

    NASA Technical Reports Server (NTRS)

    Purba, Josua Bisuk Mubyarto; Horan, Shelia

    1997-01-01

    This research investigates the effect of pulse shaping QPSK on bandwidth efficiency over a non-linear channel. This investigation will include software simulations and the hardware implementation. Three kinds of filters: the 5th order Butterworth filter, the 3rd order Bessel filter and the Square Root Raised Cosine filter with a roll off factor (alpha) of 0.25,0.5 and 1, have been investigated as pulse shaping filters. Two different high power amplifiers, one a Traveling Wave Tube Amplifier (TWTA) and the other a Solid State Power Amplifier (SSPA) have been investigated in the hardware implementation. A significant improvement in the bandwidth utilization (rho) for the filtered data compared to unfiltered data through the non-linear channel is shown in the results. This method promises strong performance gains in a bandlimited channel when compared to unfiltered systems. This work was conducted at NMSU in the Center for Space Telemetering, and Telecommunications Systems in the Klipsch School of Electrical and Computer Engineering Department and is supported by a grant from the National Aeronautics and Space Administration (NASA) NAG5-1491.

  8. Investigation of the bandwidth of multimode optical fibers used with 1550-nm LED and laser sources

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1992-01-01

    Multimode optical fibers are not intended to be used with 1550-nm sources; however, it is desirable to utilize 1300/1550-nm wavelength division multiplexing (WDM) on some multimode fibers at Kennedy Space Center (KSC). No information from fiber vendors nor from the literature is available to support this use. Preliminary studies at KSC have suggested that these fibers might be usable at 1550-nm if the fibers possessed enough bandwidth when sourced by LEDs. Detailed bandwidth studies were made on 12 multimode fibers using 1300- and 1550-nm lasers and LEDs. The results showed that the modal bandwidth at 1550-nm was about 50 percent of the 1300-nm value and that the chromatic dispersion could be predicted by extrapolating the vendor's specifications for wavelengths outside the 1550-nm region. Utilizing these data, predictions of the fiber's optical bandwidth were accurately made. Problems with launch conditions and possible differential attenuation at connectors was noted at 1300-nm but was less significant at 1550-nm. It appears that the multimode fibers studied will offer adequate performance in the 1550-nm region for a number of current KSC needs. Studies of additional fibers are encouraged to gain more confidence and better understanding of the 1550-nm bandwidth of KSC's multimode optical fibers before committing to 1300/1550-nm WDM.

  9. Thick Film Interference.

    ERIC Educational Resources Information Center

    Trefil, James

    1983-01-01

    Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)

  10. Investigation of Extended Bandwidth Hearing Aid Amplification on Speech Intelligibility and Sound Quality in Adults with Mild-to-Moderate Hearing Loss.

    PubMed

    Seeto, Angeline; Searchfield, Grant D

    2018-03-01

    Advances in digital signal processing have made it possible to provide a wide-band frequency response with smooth, precise spectral shaping. Several manufacturers have introduced hearing aids that are claimed to provide gain for frequencies up to 10-12 kHz. However, there is currently limited evidence and very few independent studies evaluating the performance of the extended bandwidth hearing aids that have recently become available. This study investigated an extended bandwidth hearing aid using measures of speech intelligibility and sound quality to find out whether there was a significant benefit of extended bandwidth amplification over standard amplification. Repeated measures study designed to examine the efficacy of extended bandwidth amplification compared to standard bandwidth amplification. Sixteen adult participants with mild-to-moderate sensorineural hearing loss. Participants were bilaterally fit with a pair of Widex Mind 440 behind-the-ear hearing aids programmed with a standard bandwidth fitting and an extended bandwidth fitting; the latter provided gain up to 10 kHz. For each fitting, and an unaided condition, participants completed two speech measures of aided benefit, the Quick Speech-in-Noise test (QuickSIN™) and the Phonak Phoneme Perception Test (PPT; high-frequency perception in quiet), and a measure of sound quality rating. There were no significant differences found between unaided and aided conditions for QuickSIN™ scores. For the PPT, there were statistically significantly lower (improved) detection thresholds at high frequencies (6 and 9 kHz) with the extended bandwidth fitting. Although not statistically significant, participants were able to distinguish between 6 and 9 kHz 50% better with extended bandwidth. No significant difference was found in ability to recognize phonemes in quiet between the unaided and aided conditions when phonemes only contained frequency content <6 kHz. However significant benefit was found with the

  11. Theoretical Design Study of a 2-18 GHz Bandwidth Helix TWT (Traveling Wave Tube) Amplifier

    DTIC Science & Technology

    1987-02-01

    Inckode Security Clanification) THEORETICAL DESIGN STUDY OF A 2-18 GHz BANDWIDTH HELIX TWT AMPLIFIER 12. PERSONAL AUTNOR(S) Michael A. Frisoni 13a. TYPE...in a traveling-wave tube ( TWT ) output circuit in A’ order to realize a 2-18 GHz frequency bandwidth. The nondispersive helix circuit provides the...Input Parameters . . . . . . . . . . . 30 V. ULTRA- BROADBAND THEORY BASED ON TWT COMPUTER SIMULATION • . 33 A. Definitions

  12. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  13. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    NASA Astrophysics Data System (ADS)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  14. New Definitions of Electromagnetic Screening of Cases in Front of Radiates Interferences

    NASA Astrophysics Data System (ADS)

    Garcia Perez, Luis Gines

    results have been obtained for some definitions and used SE indicators for incident plane wave against enclosures in a specific bandwidth. The plane wave has been treated as a reference interference to compare to other electromagnetic interference cases. It has been verified that the laboratory measurements and the simulations are in good agreement. The effects of the electric (dipole) and magnetic (loop) probes presences have been analysed too, as they can modified the results. In this study new SE definitions (new indicators) have been evaluated too, and they have been compared with the classical time-domain SE definitions. These new indicators have been studied as function of several parameters that can be modified in the enclosures as the aperture dimensions or the enclosure dimensions. Finally, in order to get more generic solutions that can be useful to later SE studies, the new SE results have been analysed and interpreted for an aperture size scanning that provide an unique value for the more critical SE indicator and for an specific bandwidth allowing direct SE comparisons with other enclosures.

  15. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    NASA Astrophysics Data System (ADS)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  16. REM sleep rescues learning from interference

    PubMed Central

    McDevitt, Elizabeth A.; Duggan, Katherine A.; Mednick, Sara C.

    2015-01-01

    Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost. PMID:25498222

  17. Effect of Stimulus Level and Bandwidth on Speech-Evoked Envelope Following Responses in Adults With Normal Hearing.

    PubMed

    Easwar, Vijayalakshmi; Purcell, David W; Aiken, Steven J; Parsa, Vijay; Scollie, Susan D

    2015-01-01

    The use of auditory evoked potentials as an objective outcome measure in infants fitted with hearing aids has gained interest in recent years. This article proposes a test paradigm using speech-evoked envelope following responses (EFRs) for use as an objective-aided outcome measure. The method uses a running speech-like, naturally spoken stimulus token /susa∫i/ (fundamental frequency [f0] = 98 Hz; duration 2.05 sec), to elicit EFRs by eight carriers representing low, mid, and high frequencies. Each vowel elicited two EFRs simultaneously, one from the region of formant one (F1) and one from the higher formants region (F2+). The simultaneous recording of two EFRs was enabled by lowering f0 in the region of F1 alone. Fricatives were amplitude modulated to enable recording of EFRs from high-frequency spectral regions. The present study aimed to evaluate the effect of level and bandwidth on speech-evoked EFRs in adults with normal hearing. As well, the study aimed to test convergent validity of the EFR paradigm by comparing it with changes in behavioral tasks due to bandwidth. Single-channel electroencephalogram was recorded from the vertex to the nape of the neck over 300 sweeps in two polarities from 20 young adults with normal hearing. To evaluate the effects of level in experiment I, EFRs were recorded at test levels of 50 and 65 dB SPL. To evaluate the effects of bandwidth in experiment II, EFRs were elicited by /susa∫i/ low-pass filtered at 1, 2, and 4 kHz, presented at 65 dB SPL. The 65 dB SPL condition from experiment I represented the full bandwidth condition. EFRs were averaged across the two polarities and estimated using a Fourier analyzer. An F test was used to determine whether an EFR was detected. Speech discrimination using the University of Western Ontario Distinctive Feature Differences test and sound quality rating using the Multiple Stimulus Hidden Reference and Anchors paradigm were measured in identical bandwidth conditions. In experiment I

  18. Photonic generation of low phase noise arbitrary chirped microwave waveforms with large time-bandwidth product.

    PubMed

    Xie, Weilin; Xia, Zongyang; Zhou, Qian; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2015-07-13

    We present a photonic approach for generating low phase noise, arbitrary chirped microwave waveforms based on heterodyne beating between high order correlated comb lines extracted from frequency-agile optical frequency comb. Using the dual heterodyne phase transfer scheme, extrinsic phase noises induced by the separate optical paths are efficiently suppressed by 42-dB at 1-Hz offset frequency. Linearly chirped microwave waveforms are achieved within 30-ms temporal duration, contributing to a large time-bandwidth product. The linearity measurement leads to less than 90 kHz RMS frequency error during the entire chirp duration, exhibiting excellent linearity for the microwave and sub-THz waveforms. The capability of generating arbitrary waveforms up to sub-THz band with flexible temporal duration, long repetition period, broad bandwidth, and large time-bandwidth product is investigated and discussed.

  19. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters

    NASA Astrophysics Data System (ADS)

    Miao, Haixing; Ma, Yiqiu; Zhao, Chunnong; Chen, Yanbei

    2015-11-01

    Advanced interferometric gravitational-wave detectors use optical cavities to resonantly enhance their shot-noise-limited sensitivity. Because of positive dispersion of these cavities—signals at different frequencies pick up different phases, there is a tradeoff between the detector bandwidth and peak sensitivity, which is a universal feature for quantum measurement devices having resonant cavities. We consider embedding an active unstable filter inside the interferometer to compensate the phase, and using feedback control to stabilize the entire system. We show that this scheme in principle can enhance the bandwidth without sacrificing the peak sensitivity. However, the unstable filter under our current consideration is a cavity-assisted optomechanical device operating in the instability regime, and the thermal fluctuation of the mechanical oscillator puts a very stringent requirement on the environmental temperature and the mechanical quality factor.

  20. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    PubMed

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  1. Demonstration of an X-Band Multilayer Yagi-Like Microstrip Patch Antenna With High Directivity and Large Bandwidth

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zaman, Afroz; Lee, Richard Q.; Lambert, Kevin

    2005-01-01

    The feasibility of obtaining large bandwidth and high directivity from a multilayer Yagi-like microstrip patch antenna at 10 GHz is investigated. A measured 10-dB bandwidth of approximately 20 percent and directivity of approximately 11 dBi is demonstrated through the implementation of a vertically-stacked structure with three parasitic directors, above the driven patch, and a single reflector underneath the driven patch. Simulated and measured results are compared and show fairly close agreement. This antenna offers the advantages of large bandwidth, high directivity, and symmetrical broadside patterns, and could be applicable to satellite as well as terrestrial communications.

  2. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipton, Robert, E-mail: lipton@math.lsu.edu; Polizzi, Anthony, E-mail: polizzi@math.lsu.edu

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  3. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  4. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    PubMed

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  5. Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.

    PubMed

    Irwin, Zachary T; Thompson, David E; Schroeder, Karen E; Tat, Derek M; Hassani, Ali; Bullard, Autumn J; Woo, Shoshana L; Urbanchek, Melanie G; Sachs, Adam J; Cederna, Paul S; Stacey, William C; Patil, Parag G; Chestek, Cynthia A

    2016-05-01

    Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; however, current solutions have high power requirements which limit their usability. Lowering this power consumption typically limits the system to a single neural modality, or signal type, and thus to a relatively small clinical market. Here, we address both of these issues by investigating the use of signal power in a single narrow frequency band as a decoding feature for extracting information from electrocorticographic (ECoG), electromyographic (EMG), and intracortical neural data. We have designed and tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which extracts and transmits signal power in a single, configurable frequency band. In prerecorded datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff between power savings and decoding performance losses. When processing intracortical data, the MINI achieved a power consumption 89.7% less than a more typical system designed to extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in accuracy relative to using high-bandwidth, modality-specific signal features. We believe this system architecture can be used to produce a viable, cost-effective, clinical BMI.

  6. A Design Method for a State Feedback Microcomputer Controller of a Wide Bandwidth Analog Plant.

    DTIC Science & Technology

    1983-12-01

    Il IIIz NAVAL POSTGRADUATE SCHOOLMonterey, California THESIS A A DESIGN METHOD FOR A STATE FEEDBACK MICROCOMPUTER CONTROLLER OF A WIDE BANDWIDTH...of a microcomputer regulator, continuous or discrete method can be applied. The o:bjective of this thesis is to provide a continuous controller ...estimation and control type problem. In this thesis , a wide bandwidth analog computer system is chosen as the plant so that the effect of transport

  7. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    PubMed

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  8. Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].

    PubMed

    Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph

    2018-04-01

    Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.

  9. Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution.

    PubMed

    Chong, A; Liu, H; Nie, B; Bale, B G; Wabnitz, S; Renninger, W H; Dantus, M; Wise, F W

    2012-06-18

    With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration.

  10. Realization of an Ultra-thin Metasurface to Facilitate Wide Bandwidth, Wide Angle Beam Scanning.

    PubMed

    Bah, Alpha O; Qin, Pei-Yuan; Ziolkowski, Richard W; Cheng, Qiang; Guo, Y Jay

    2018-03-19

    A wide bandwidth, ultra-thin, metasurface is reported that facilitates wide angle beam scanning. Each unit cell of the metasurface contains a multi-resonant, strongly-coupled unequal arm Jerusalem cross element. This element consists of two bent-arm, orthogonal, capacitively loaded strips. The wide bandwidth of the metasurface is achieved by taking advantage of the strong coupling within and between its multi-resonant elements. A prototype of the proposed metasurface has been fabricated and measured. The design concept has been validated by the measured results. The proposed metasurface is able to alleviate the well-known problem of impedance mismatch caused by mutual coupling when the main beam of an array is scanned. In order to validate the wideband and wide scanning ability of the proposed metasurface, it is integrated with a wideband antenna array as a wide angle impedance matching element. The metasurface-array combination facilitates wide angle scanning over a 6:1 impedance bandwidth without the need for bulky dielectrics or multi-layered structures.

  11. Ocular Biometrics of Myopic Eyes With Narrow Angles.

    PubMed

    Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay

    2016-02-01

    The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.

  12. Intramyocardial arterial narrowing in dogs with subaortic stenosis.

    PubMed

    Falk, T; Jönsson, L; Pedersen, H D

    2004-09-01

    Earlier studies have described intramyocardial arterial narrowing based on hyperplasia and hypertrophy of the vessel wall in dogs with subaortic stenosis (SAS). In theory, such changes might increase the risk of sudden death, as they seem to do in heart disease in other species. This retrospective pathological study describes and quantifies intramyocardial arterial narrowing in 44 dogs with naturally occurring SAS and in eight control dogs. The majority of the dogs with SAS died suddenly (n=27); nine had died or been euthanased with signs of heart failure and eight were euthanased without clinical signs. Dogs with SAS had significantly narrower intramyocardial arteries (P<0.001) and more myocardial fibrosis (P<0.001) than control dogs. Male dogs and those with more severe hypertrophy had more vessel narrowing (P=0.02 and P=0.02, respectively), whereas dogs with dilated hearts had slightly less pronounced arterial thickening (P=0.01). Arterial narrowing was not related to age, but fibrosis increased with age (P=0.047). Dogs that died suddenly did not have a greater number of arterial changes than other dogs with SAS. This study suggests that most dogs with SAS have intramyocardial arterial narrowing and that the risk of dying suddenly is not significantly related to the overall degree of vessel obliteration.

  13. Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications

    NASA Astrophysics Data System (ADS)

    Guan, Xun

    Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light

  14. Interference tables: a useful model for interference analysis in asynchronous multicarrier transmission

    NASA Astrophysics Data System (ADS)

    Medjahdi, Yahia; Terré, Michel; Ruyet, Didier Le; Roviras, Daniel

    2014-12-01

    In this paper, we investigate the impact of timing asynchronism on the performance of multicarrier techniques in a spectrum coexistence context. Two multicarrier schemes are considered: cyclic prefix-based orthogonal frequency division multiplexing (CP-OFDM) with a rectangular pulse shape and filter bank-based multicarrier (FBMC) with physical layer for dynamic spectrum access and cognitive radio (PHYDYAS) and isotropic orthogonal transform algorithm (IOTA) waveforms. First, we present the general concept of the so-called power spectral density (PSD)-based interference tables which are commonly used for multicarrier interference characterization in spectrum sharing context. After highlighting the limits of this approach, we propose a new family of interference tables called `instantaneous interference tables'. The proposed tables give the interference power caused by a given interfering subcarrier on a victim one, not only as a function of the spectral distance separating both subcarriers but also with respect to the timing misalignment between the subcarrier holders. In contrast to the PSD-based interference tables, the accuracy of the proposed tables has been validated through different simulation results. Furthermore, due to the better frequency localization of both PHYDYAS and IOTA waveforms, FBMC technique is demonstrated to be more robust to timing asynchronism compared to OFDM one. Such a result makes FBMC a potential candidate for the physical layer of future cognitive radio systems.

  15. High-bandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner.

    PubMed

    Feng, Zhao; Ling, Jie; Ming, Min; Xiao, Xiao-Hui

    2017-08-01

    For precision motion, high-bandwidth and flexible tracking are the two important issues for significant performance improvement. Iterative learning control (ILC) is an effective feedforward control method only for systems that operate strictly repetitively. Although projection ILC can track varying references, the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying (LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate that the proposed approach can locate the high-frequency regions accurately and achieve the best performance under varying references compared with traditional frequency-domain and projection ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed approach.

  16. An Extremely Wide Bandwidth, Low Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    Our group has designed a heterodyne submillimeter receiver that offers a very wide IF bandwidth of 12 GHz, while still maintaining a low noise temperature. The 180-300 GHz double-sideband design uses a single SI5 device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz. providing an instantaneous RF bandwidth of 24 GHz (double-sideband). Intensive simulations predict that the junction will achieve a conversion loss better than 1-2 dB and a mixer noise temperature of less than 20 K across the band (twice the quantum limit). The single sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical and environmental observations beyond the capabilities of current instruments. Lab testing of the receiver will begin this summer, and first light on the CSO should be in the Spring of 2003. At the CSO, we plan to use receiver with WASP2, a wideband spectrometer, to search for spectral lines from SCUBA sources. This approach should allow us to rapidly develop a catalog of redshifts for these objects.

  17. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7more » Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.« less

  18. Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates

    PubMed Central

    Jiang, Zhi Hao; Lin, Lan; Ma, Ding; Yun, Seokho; Werner, Douglas H.; Liu, Zhiwen; Mayer, Theresa S.

    2014-01-01

    Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to ±40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities. PMID:25524830

  19. Design of a 0.13 µm SiGe Limiting Amplifier with 14.6 THz Gain-Bandwidth-Product

    NASA Astrophysics Data System (ADS)

    Park, Sehoon; Du, Xuan-Quang; Grözing, Markus; Berroth, Manfred

    2017-09-01

    This paper presents the design of a limiting amplifier with 1-to-3 fan-out implementation in a 0.13 µm SiGe BiCMOS technology and gives a detailed guideline to determine the circuit parameters of the amplifier for optimum high-frequency performance based on simplified gain estimations. The proposed design uses a Cherry-Hooper topology for bandwidth enhancement and is optimized for maximum group delay flatness to minimize phase distortion of the input signal. With regard to a high integration density and a small chip area, the design employs no passive inductors which might be used to boost the circuit bandwidth with inductive peaking. On a RLC-extracted post-layout simulation level, the limiting amplifier exhibits a gain-bandwidth-product of 14.6 THz with 56.6 dB voltage gain and 21.5 GHz 3 dB bandwidth at a peak-to-peak input voltage of 1.5 mV. The group delay variation within the 3 dB bandwidth is less than 0.5 ps and the power dissipation at a power supply voltage of 3 V including output drivers is 837 mW.

  20. Sleep can reduce proactive interference.

    PubMed

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2014-01-01

    Sleep has repeatedly been connected to processes of memory consolidation. While extensive research indeed documents beneficial effects of sleep on memory, little is yet known about the role of sleep for interference effects in episodic memory. Although two prior studies reported sleep to reduce retroactive interference, no sleep effect has previously been found for proactive interference. Here we applied a study format differing from that employed by the prior studies to induce a high degree of proactive interference, and asked participants to encode a single list or two interfering lists of paired associates via pure study cycles. Testing occurred after 12 hours of diurnal wakefulness or nocturnal sleep. Consistent with the prior work, we found sleep in comparison to wake did not affect memory for the single list, but reduced retroactive interference. In addition we found sleep reduced proactive interference, and reduced retroactive and proactive interference to the same extent. The finding is consistent with the view that arising benefits of sleep are caused by the reactivation of memory contents during sleep, which has been suggested to strengthen and stabilise memories. Such stabilisation may make memories less susceptible to competition from interfering memories at test and thus reduce interference effects.

  1. A multiprocessor computer simulation model employing a feedback scheduler/allocator for memory space and bandwidth matching and TMR processing

    NASA Technical Reports Server (NTRS)

    Bradley, D. B.; Irwin, J. D.

    1974-01-01

    A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.

  2. Urban sparrows respond to a sexually selected trait with increased aggression in noise.

    PubMed

    Phillips, Jennifer N; Derryberry, Elizabeth P

    2018-05-14

    Animals modify acoustic communication signals in response to noise pollution, but consequences of these modifications are unknown. Vocalizations that transmit best in noise may not be those that best signal male quality, leading to potential conflict between selection pressures. For example, slow paced, narrow bandwidth songs transmit better in noise but are less effective in mate choice and competition than fast paced, wide bandwidth songs. We test the hypothesis that noise affects response to song pace and bandwidth in the context of competition using white-crowned sparrows (Zonotrichia leucophrys). We measure male response to song variation along a gradient of ambient noise levels in San Francisco, CA. We find that males discriminate between wide and narrow bandwidth songs but not between slow and fast paced songs. These findings are biologically relevant because songs in noisy areas tend to have narrow bandwidths. Therefore, this song phenotype potentially increases transmission distance in noise, but elicits weaker responses from competitors. Further, we find that males respond more strongly to stimuli in noisier conditions, supporting the 'urban anger' hypothesis. We suggest that noise affects male responsiveness to song, possibly leading to more territorial conflict in urban areas.

  3. Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.

    PubMed

    Ashrafi, Reza; Azaña, José

    2012-07-01

    A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.

  4. Understanding the Perceptions of Network Gatekeepers on Bandwidth and Online Video Streams in Ahmadu Bello University, Nigeria

    ERIC Educational Resources Information Center

    Odigie, Imoisili Ojeime; Gbaje, Ezra Shiloba

    2017-01-01

    Online video streaming is a learning technology used in today's world and reliant on the availability of bandwidth. This research study sought to understand the perceptions of network gatekeepers about bandwidth and online video streams in Ahmadu Bello University, Nigeria. To achieve this, the interpretive paradigm and the Network Gatekeeping…

  5. Delaying Interference Training Has Equivalent Effects in Various Pavlovian Interference Paradigms

    ERIC Educational Resources Information Center

    Powell, Elizabeth J.; Escobar, Martha; Kimble, Whitney

    2013-01-01

    Spontaneous recovery in extinction appears to be inversely related to the acquisition-to-extinction interval, but it remains unclear why this is the case. Rat subjects trained with one of three interference paradigms exhibited less spontaneous recovery of the original response after delayed than immediate interference, regardless of whether…

  6. Programmable noise bandwidth reduction by means of digital averaging

    NASA Technical Reports Server (NTRS)

    Poklemba, John J. (Inventor)

    1993-01-01

    Predetection noise bandwidth reduction is effected by a pre-averager capable of digitally averaging the samples of an input data signal over two or more symbols, the averaging interval being defined by the input sampling rate divided by the output sampling rate. As the averaged sample is clocked to a suitable detector at a much slower rate than the input signal sampling rate the noise bandwidth at the input to the detector is reduced, the input to the detector having an improved signal to noise ratio as a result of the averaging process, and the rate at which such subsequent processing must operate is correspondingly reduced. The pre-averager forms a data filter having an output sampling rate of one sample per symbol of received data. More specifically, selected ones of a plurality of samples accumulated over two or more symbol intervals are output in response to clock signals at a rate of one sample per symbol interval. The pre-averager includes circuitry for weighting digitized signal samples using stored finite impulse response (FIR) filter coefficients. A method according to the present invention is also disclosed.

  7. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering

    NASA Astrophysics Data System (ADS)

    Tsakmakidis, K. L.; Shen, L.; Schulz, S. A.; Zheng, X.; Upham, J.; Deng, X.; Altug, H.; Vakakis, A. F.; Boyd, R. W.

    2017-06-01

    A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δt inversely proportional to the bandwidth (Δt·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this “fundamental” limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.

  8. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    PubMed

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< -10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  9. Application of Tryptophan Fluorescence Bandwidth-Maximum Plot in Analysis of Monoclonal Antibody Structure.

    PubMed

    Huang, Cheng-Yen; Hsieh, Ming-Ching; Zhou, Qinwei

    2017-04-01

    Monoclonal antibodies have become the fastest growing protein therapeutics in recent years. The stability and heterogeneity pertaining to its physical and chemical structures remain a big challenge. Tryptophan fluorescence has been proven to be a versatile tool to monitor protein tertiary structure. By modeling the tryptophan fluorescence emission envelope with log-normal distribution curves, the quantitative measure can be exercised for the routine characterization of monoclonal antibody overall tertiary structure. Furthermore, the log-normal deconvolution results can be presented as a two-dimensional plot with tryptophan emission bandwidth vs. emission maximum to enhance the resolution when comparing samples or as a function of applied perturbations. We demonstrate this by studying four different monoclonal antibodies, which show the distinction on emission bandwidth-maximum plot despite their similarity in overall amino acid sequences and tertiary structures. This strategy is also used to demonstrate the tertiary structure comparability between different lots manufactured for one of the monoclonal antibodies (mAb2). In addition, in the unfolding transition studies of mAb2 as a function of guanidine hydrochloride concentration, the evolution of the tertiary structure can be clearly traced in the emission bandwidth-maximum plot.

  10. The effect of recording and analysis bandwidth on acoustic identification of delphinid species.

    PubMed

    Oswald, Julie N; Rankin, Shannon; Barlow, Jay

    2004-11-01

    Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n = 484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours.

  11. Narrow-linewidth Q-switched random distributed feedback fiber laser.

    PubMed

    Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu

    2016-08-22

    A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.

  12. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  13. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical network

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-03-01

    The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.

  14. Infants Experience Perceptual Narrowing for Nonprimate Faces

    ERIC Educational Resources Information Center

    Simpson, Elizabeth A.; Varga, Krisztina; Frick, Janet E.; Fragaszy, Dorothy

    2011-01-01

    Perceptual narrowing--a phenomenon in which perception is broad from birth, but narrows as a function of experience--has previously been tested with primate faces. In the first 6 months of life, infants can discriminate among individual human and monkey faces. Though the ability to discriminate monkey faces is lost after about 9 months, infants…

  15. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  16. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    NASA Astrophysics Data System (ADS)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  17. Coarse-Grain Bandwidth Estimation Scheme for Large-Scale Network

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Jennings, Esther H.; Sergui, John S.

    2013-01-01

    A large-scale network that supports a large number of users can have an aggregate data rate of hundreds of Mbps at any time. High-fidelity simulation of a large-scale network might be too complicated and memory-intensive for typical commercial-off-the-shelf (COTS) tools. Unlike a large commercial wide-area-network (WAN) that shares diverse network resources among diverse users and has a complex topology that requires routing mechanism and flow control, the ground communication links of a space network operate under the assumption of a guaranteed dedicated bandwidth allocation between specific sparse endpoints in a star-like topology. This work solved the network design problem of estimating the bandwidths of a ground network architecture option that offer different service classes to meet the latency requirements of different user data types. In this work, a top-down analysis and simulation approach was created to size the bandwidths of a store-and-forward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. These techniques were used to estimate the WAN bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network. A new analytical approach, called the "leveling scheme," was developed to model the store-and-forward mechanism of the network data flow. The term "leveling" refers to the spreading of data across a longer time horizon without violating the corresponding latency requirement of the data type. Two versions of the leveling scheme were developed: 1. A straightforward version that simply spreads the data of each data type across the time horizon and doesn't take into account the interactions among data types within a pass, or between data types across overlapping passes at a network node, and is inherently sub-optimal. 2. Two-state Markov leveling scheme that takes into account the second order behavior of

  18. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai

    2006-10-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  19. SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  20. Quantitative evaluation of mucosal vascular contrast in narrow band imaging using Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-06-01

    Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.

  1. A high performance long-reach passive optical network with a novel excess bandwidth distribution scheme

    NASA Astrophysics Data System (ADS)

    Chao, I.-Fen; Zhang, Tsung-Min

    2015-06-01

    Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.

  2. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-05

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  3. A bandwidth efficient coding scheme for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J., Jr.

    1991-01-01

    As a demonstration of the performance capabilities of trellis codes using multidimensional signal sets, a Viterbi decoder was designed. The choice of code was based on two factors. The first factor was its application as a possible replacement for the coding scheme currently used on the Hubble Space Telescope (HST). The HST at present uses the rate 1/3 nu = 6 (with 2 (exp nu) = 64 states) convolutional code with Binary Phase Shift Keying (BPSK) modulation. With the modulator restricted to a 3 Msym/s, this implies a data rate of only 1 Mbit/s, since the bandwidth efficiency K = 1/3 bit/sym. This is a very bandwidth inefficient scheme, although the system has the advantage of simplicity and large coding gain. The basic requirement from NASA was for a scheme that has as large a K as possible. Since a satellite channel was being used, 8PSK modulation was selected. This allows a K of between 2 and 3 bit/sym. The next influencing factor was INTELSAT's intention of transmitting the SONET 155.52 Mbit/s standard data rate over the 72 MHz transponders on its satellites. This requires a bandwidth efficiency of around 2.5 bit/sym. A Reed-Solomon block code is used as an outer code to give very low bit error rates (BER). A 16 state rate 5/6, 2.5 bit/sym, 4D-8PSK trellis code was selected. This code has reasonable complexity and has a coding gain of 4.8 dB compared to uncoded 8PSK (2). This trellis code also has the advantage that it is 45 deg rotationally invariant. This means that the decoder needs only to synchronize to one of the two naturally mapped 8PSK signals in the signal set.

  4. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ke; Yang, Zhongjie; Feng, Yijun, E-mail: yjfeng@nju.edu.cn

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezedmore » radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.« less

  5. End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change

    NASA Astrophysics Data System (ADS)

    Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro

    This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.

  6. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    NASA Astrophysics Data System (ADS)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-09-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.

  7. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    PubMed Central

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-01-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796

  8. Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    2000-01-01

    The primary work during this year has been the analysis and interpretation of our HST spectra from two extreme Narrow-line Seyfert 1 galaxies (NLS1s) Infrared Astronomy Satellite (IRAS) 13224-3809 and 1H 0707-495. This work has been presented as an invited talk at the workshop entitled "Observational and theoretical progress in the Study of Narrow-line Seyfert 1 Galaxies" held in Bad Honnef, Germany December 8-11, as a contributed talk at the January 2000 AAS meeting in Atlanta, Georgia, and as a contributed talk at the workshop "Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring" held at Goddard Space Flight Center June 20-22, 2000.

  9. Development of Information Assurance Protocol for Low Bandwidth Nanosatellite Communications

    DTIC Science & Technology

    2017-09-01

    INFORMATION ASSURANCE PROTOCOL FOR LOW BANDWIDTH NANOSATELLITE COMMUNICATIONS by Cervando A. Banuelos II September 2017 Thesis Advisor...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information . Send comments

  10. Improvements in Raman Lidar Measurements Using New Interference Filter Technology

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Veselovskii, Igor; Cadirola, Martin; Rush, Kurt; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultra-violet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground-based, upward-looking tests. Measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary and mixed layer profiling of water vapor mixing ratio up to an altitude of approximately 4 h is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction-to-backscatter ratio measurements are made using 1 -minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. A description of the filter technology developments is provided followed by examples of the improved Raman lidar measurements.

  11. Interference Effects in Schizophrenic Short-Term Memory

    ERIC Educational Resources Information Center

    Bauman, Edward; Kolisnyk, Eugene

    1976-01-01

    Assesses the effects of input and output interference on schizophrenic recall. Input interference is the interference resulting from the interpolation of items between presentation and recall of the probed item. Output interference is the interference resulting from the interpolation of responses between the presentation and recall of the probed…

  12. Cutter Connectivity Bandwidth Study

    NASA Astrophysics Data System (ADS)

    2002-10-01

    The goal of this study was to determine how much bandwidth is required for cutters to meet emerging data transfer requirements. The Cutter Connectivity Business Solutions Team with guidance front the Commandant's 5 Innovation Council sponsored this study. Today, many Coast Guard administrative and business functions are being conducted via electronic means. Although our larger cutters can establish part-time connectivity using commercial satellite communications (SATCOM) while underway, there are numerous complaints regarding poor application performance. Additionally, smaller cutters do not have any standard means of underway connectivity. The R&D study shows the most important factor affecting web performance and enterprise applications onboard cutters was latency. Latency describes the time it takes the signal to reach the satellite and come back down through space. The latency due to use of higher orbit satellites is causing poor application performance and inefficient use of expensive SATCOM links. To improve performance, the CC must, (1) reduce latency by using alternate communications links such as low-earth orbit satellites, (2) tailor applications to the SATCOM link and/or (3) optimize protocols used for data communication to minimize time required by present applications to establish communications between the user and the host systems.

  13. 2. Photocopied July 1971 from photostat Jordan Narrows Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopied July 1971 from photostat Jordan Narrows Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. JORDAN NARROWS STATION. PLAN AND SECTION. - Salt Lake City Water & Electrical Power Company, Jordan Narrows Hydroelectric Plant, Jordan River, Riverton, Salt Lake County, UT

  14. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering.

    PubMed

    Tsakmakidis, K L; Shen, L; Schulz, S A; Zheng, X; Upham, J; Deng, X; Altug, H; Vakakis, A F; Boyd, R W

    2017-06-23

    A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δ t inversely proportional to the bandwidth (Δ t ·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this "fundamental" limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Nonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data

    NASA Astrophysics Data System (ADS)

    Bura, E.; Zhmurov, A.; Barsegov, V.

    2009-01-01

    Dynamic force spectroscopy and steered molecular simulations have become powerful tools for analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and aggregates. Probability density functions of the unfolding forces and unfolding times for proteins, and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the forced unfolding and unbinding transitions, and mapping the biomolecular free energy landscape. The inference of the unknown probability distribution functions from the experimental and simulated forced unfolding and unbinding data, as well as the assessment of analytically tractable models of the protein unfolding and unbinding requires the use of a bandwidth. The choice of this quantity is typically subjective as it draws heavily on the investigator's intuition and past experience. We describe several approaches for selecting the "optimal bandwidth" for nonparametric density estimators, such as the traditionally used histogram and the more advanced kernel density estimators. The performance of these methods is tested on unimodal and multimodal skewed, long-tailed distributed data, as typically observed in force spectroscopy experiments and in molecular pulling simulations. The results of these studies can serve as a guideline for selecting the optimal bandwidth to resolve the underlying distributions from the forced unfolding and unbinding data for proteins.

  16. Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth

    NASA Astrophysics Data System (ADS)

    Fartookzadeh, Mahdi

    2017-10-01

    In this paper, bandwidth improvement of reflection-mode linear to circular polarization converters (RMCPs) is studied. The proposed RMCP is based on multi-layer rectangular patches. Equivalent transmission line circuit of multi-layer reflection-mode polarization converters is used for designing the proposed metamirror. In addition, the approximate equation of axial ratio (AR) of the reflected wave is obtained from the structures containing rectangular patches on each layer. Polarization converters containing multi-layer rectangular patches can be utilized for different ranges of frequencies. However, the frequency range of 2-8 THz is considered in this paper without losing generality. The incident wave is assumed to be linearly polarized with 45° polarization angle. AR equation is used for initial optimization of the dimensions of rectangular patches to obtain the widest possible bandwidth of RMCPs with two- and three-layer patches. Secondary optimization is applied after specifying largest dimensions of the unit cell and excluding them from the variables of optimization. Finally, modified dimensions of the three-layer RMCP are obtained using parametrical study in simulations. The proposed three-layer polarization converter has the 3 dB axial ratio bandwidth of more than 116% and the permitted incident angle of higher than 25°.

  17. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, K. P.

    1986-01-01

    Data obtained from UHF Radar observation of direct-lightning strikes to the NASA F-106B airplane have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero volts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The new system was implemented with four shutter-type field mills located at strategic points on the airplane. The bandwidth of the new system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 Hz to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite-difference time-domain electromagnetic computer code.

  18. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, Klaus P.

    1989-01-01

    Data obtained from UHF radar observation of direct-lightning strikes to the NASA F-106B aircraft have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero bolts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The system was implemented with four shutter-type field mills located at strategic points on the aircraft. The bandwidth of the system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite difference time-domain electromagnetic computer code.

  19. Near-ideal optical metamaterial absorbers with super-octave bandwidth.

    PubMed

    Bossard, Jeremy A; Lin, Lan; Yun, Seokho; Liu, Liu; Werner, Douglas H; Mayer, Theresa S

    2014-02-25

    Nanostructured optical coatings with tailored spectral absorption properties are of interest for a wide range of applications such as spectroscopy, emissivity control, and solar energy harvesting. Optical metamaterial absorbers have been demonstrated with a variety of customized single band, multiple band, polarization, and angular configurations. However, metamaterials that provide near unity absorptivity with super-octave bandwidth over a specified optical wavelength range have not yet been demonstrated experimentally. Here, we show a broadband, polarization-insensitive metamaterial with greater than 98% measured average absorptivity that is maintained over a wide ± 45° field-of-view for mid-infrared wavelengths between 1.77 and 4.81 μm. The nearly ideal absorption is realized by using a genetic algorithm to identify the geometry of a single-layer metal nanostructure array that excites multiple overlapping electric resonances with high optical loss across greater than an octave bandwidth. The response is optimized by substituting palladium for gold to increase the infrared metallic loss and by introducing a dielectric superstrate to suppress reflection over the entire band. This demonstration advances the state-of-the-art in high-performance broadband metamaterial absorbers that can be reliably fabricated using a single patterned layer of metal nanostructures.

  20. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  1. Determining a bisection bandwidth for a multi-node data communications network

    DOEpatents

    Faraj, Ahmad A.

    2010-01-26

    Methods, systems, and products are disclosed for determining a bisection bandwidth for a multi-node data communications network that include: partitioning nodes in the network into a first sub-network and a second sub-network in dependence upon a topology of the network; sending, by each node in the first sub-network to a destination node in the second sub-network, a first message having a predetermined message size; receiving, by each node in the first sub-network from a source node in the second sub-network, a second message; measuring, by each node in the first sub-network, the elapsed communications time between the sending of the first message and the receiving of the second message; selecting the longest elapsed communications time; and calculating the bisection bandwidth for the network in dependence upon the number of the nodes in the first sub-network, the predetermined message size of the first test message, and the longest elapsed communications time.

  2. An enhanced narrow-band imaging method for the microvessel detection

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  3. Cryogenic Detectors (Narrow Field Instruments)

    NASA Astrophysics Data System (ADS)

    Hoevers, H.; Verhoeve, P.

    Two cryogenic imaging spectrometer arrays are currently considered as focal plane instruments for XEUS. The narrow field imager 1 (NFI 1) will cover the energy range from 0.05 to 3 keV with an energy resolution of 2 eV, or better, at 500 eV. A second narrow field imager (NFI 2) covers the energy range from 1 to 15 keV with an energy resolution of 2 eV (at 1 keV) and 5 eV (at 7 keV), creating some overlap with part of the NFI 1 energy window. Both narrow field imagers have a 0.5 arcmin field of view. Their imaging capabilities are matched to the XEUS optics of 2 to 5 arcsec leading to 1 arcsec pixels. The detector arrays will be cooled by a closed cycle system comprising a mechanical cooler with a base temperature of 2.5 K and either a low temperature 3He sorption pump providing the very low temperature stage and/or an Adiabatic Demagnetization Refrigerator (ADR). The ADR cooler is explicitly needed to cool the NFI 2 array. The narrow field imager 1} Currently a 48 times 48 element array of superconducting tunnel junctions (STJ) is envisaged. Its operating temperature is in the range between 30 and 350 mK. Small, single Ta STJs (20-50 mum on a side) have shown 3.5 eV (FWHM) resolution at E = 525 eV and small arrays have been successfully demonstrated (6 times 6 pixels), or are currently tested (10 times 12 pixels). Alternatively, a prototype Distributed Read-Out Imaging Device (DROID), consisting of a linear superconducting Ta absorber of 20 times 100 mum2, including a 20 times 20 mum STJ for readout at either end, has shown a measured energy resolution of 2.4 eV (FWHM) at E = 500 eV. Simulations involving the diffusion properties as well as loss and tunnel rates have shown that the performance can be further improved by slight modifications in the geometry, and that the size of the DROIDS can be increased to 0.5-1.0 mm without loss in energy resolution. The relatively large areas and good energy resolution compared to single STJs make DROIDS good candidates for the

  4. Acquisition and visualization techniques for narrow spectral color imaging.

    PubMed

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  5. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  6. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  7. Electrical tweezer for highly parallelized electrorotation measurements over a wide frequency bandwidth.

    PubMed

    Rohani, Ali; Varhue, Walter; Su, Yi-Hsuan; Swami, Nathan S

    2014-07-01

    Electrorotation (ROT) is a powerful tool for characterizing the dielectric properties of cells and bioparticles. However, its application has been somewhat limited by the need to mitigate disruptions to particle rotation by translation under positive DEP and by frictional interactions with the substrate. While these disruptions may be overcome by implementing particle positioning schemes or field cages, these methods restrict the frequency bandwidth to the negative DEP range and permit only single particle measurements within a limited spatial extent of the device geometry away from field nonuniformities. Herein, we present an electrical tweezer methodology based on a sequence of electrical signals, composed of negative DEP using 180-degree phase-shifted fields for trapping and levitation of the particles, followed by 90-degree phase-shifted fields over a wide frequency bandwidth for highly parallelized electrorotation measurements. Through field simulations of the rotating electrical field under this wave-sequence, we illustrate the enhanced spatial extent for electrorotation measurements, with no limitations to frequency bandwidth. We apply this methodology to characterize subtle modifications in morphology and electrophysiology of Cryptosporidium parvum with varying degrees of heat treatment, in terms of shifts in the electrorotation spectra over the 0.05-40 MHz region. Given the single particle sensitivity and the ability for highly parallelized electrorotation measurements, we envision its application toward characterizing heterogeneous subpopulations of microbial and stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Associations between narrow angle and adult anthropometry: the Liwan Eye Study.

    PubMed

    Jiang, Yuzhen; He, Mingguang; Friedman, David S; Khawaja, Anthony P; Lee, Pak Sang; Nolan, Winifred P; Yin, Qiuxia; Foster, Paul J

    2014-06-01

    To assess the associations between narrow angle and adult anthropometry. Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p < 0.001; vs height p < 0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women.

  9. 4Bs or Not 4Bs: Bricks, Bytes, Brains, and Bandwidth

    ERIC Educational Resources Information Center

    Treat, Tod

    2011-01-01

    The effective integration of planning to include bricks, bytes, brains, and bandwidth (the 4Bs) represents an opportunity for community colleges to extend their capacity as knowledge-intensive organizations, coupling knowledge, technology, and learning. Integration is important to ensure that the interplay among organizations, agents within them,…

  10. The Effects of Acoustic Bandwidth on Simulated Bimodal Benefit in Children and Adults with Normal Hearing.

    PubMed

    Sheffield, Sterling W; Simha, Michelle; Jahn, Kelly N; Gifford, René H

    2016-01-01

    The primary purpose of this study was to examine the effect of acoustic bandwidth on bimodal benefit for speech recognition in normal-hearing children with a cochlear implant (CI) simulation in one ear and low-pass filtered stimuli in the contralateral ear. The effect of acoustic bandwidth on bimodal benefit in children was compared with the pattern of adults with normal hearing. Our hypothesis was that children would require a wider acoustic bandwidth than adults to (1) derive bimodal benefit, and (2) obtain asymptotic bimodal benefit. Nineteen children (6 to 12 years) and 10 adults with normal hearing participated in the study. Speech recognition was assessed via recorded sentences presented in a 20-talker babble. The AzBio female-talker sentences were used for the adults and the pediatric AzBio sentences (BabyBio) were used for the children. A CI simulation was presented to the right ear and low-pass filtered stimuli were presented to the left ear with the following cutoff frequencies: 250, 500, 750, 1000, and 1500 Hz. The primary findings were (1) adults achieved higher performance than children when presented with only low-pass filtered acoustic stimuli, (2) adults and children performed similarly in all the simulated CI and bimodal conditions, (3) children gained significant bimodal benefit with the addition of low-pass filtered speech at 250 Hz, and (4) unlike previous studies completed with adult bimodal patients, adults and children with normal hearing gained additional significant bimodal benefit with cutoff frequencies up to 1500 Hz with most of the additional benefit gained with energy below 750 Hz. Acoustic bandwidth effects on simulated bimodal benefit were similar in children and adults with normal hearing. Should the current results generalize to children with CIs, these results suggest pediatric CI recipients may derive significant benefit from minimal acoustic hearing (<250 Hz) in the nonimplanted ear and increasing benefit with broader bandwidth

  11. Ultranarrow-bandwidth filter based on a thermal EIT medium.

    PubMed

    Wang, Gang; Wang, Yu-Sheng; Huang, Emily Kay; Hung, Weilun; Chao, Kai-Lin; Wu, Ping-Yeh; Chen, Yi-Hsin; Yu, Ite A

    2018-05-21

    We present high-contrast electromagnetically-induced-transparency (EIT) spectra in a heated vapor cell of single isotope 87 Rb atoms. The EIT spectrum has both high resonant transmission up to 67% and narrow linewidth of 1.1 MHz. We get rid of the possible amplification resulted from the effects of amplification without population inversion and four-wave mixing. Therefore, this high transmitted light is not artificial. The theoretical prediction of the probe transmission agrees well with the data and the experimental parameters can be derived reasonably from the model. Such narrow and high-contrast spectral profile can be employed as a high precision bandpass filter, which provides a significant advantage in terms of stability and tunability. The central frequency tuning range of the filter is larger than 100 MHz with out-of-band blocking ≥15 dB. This bandpass filter can effectively produce light fields with subnatural linewidth. Nonlinearity associating with the narrow-linewidth and high-contrast EIT profile can be very useful in the applications utilizing the EIT effect.

  12. Developing Reliable Telemedicine Platforms with Unreliable and Limited Communication Bandwidth

    DTIC Science & Technology

    2017-10-01

    hospital health care, the benefit of high -resolution medical data is greatly limited in battlefield or natural disaster areas, where communication to...sampling rate. For high - frequency data like waveforms, the downsampling approach could directly reduce the amount of data. Therefore, it could be used...AFRL-SA-WP-TR-2017-0019 Developing Reliable Telemedicine Platforms with Unreliable and Limited Communication Bandwidth Peter F

  13. Single-photon Coulomb explosion of methanol using broad bandwidth ultrafast EUV pulses.

    PubMed

    Luzon, Itamar; Jagtap, Krishna; Livshits, Ester; Lioubashevski, Oleg; Baer, Roi; Strasser, Daniel

    2017-05-31

    Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H 2 O + , which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

  14. Terabit bandwidth-adaptive transmission using low-complexity format-transparent digital signal processing.

    PubMed

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Qiu, Meng; Plant, David V

    2014-02-10

    In this paper, we propose a low-complexity format-transparent digital signal processing (DSP) scheme for next generation flexible and energy-efficient transceiver. It employs QPSK symbols as the training and pilot symbols for the initialization and tracking stage of the receiver-side DSP, respectively, for various modulation formats. The performance is numerically and experimentally evaluated in a dual polarization (DP) 11 Gbaud 64QAM system. Employing the proposed DSP scheme, we conduct a system-level study of Tb/s bandwidth-adaptive superchannel transmissions with flexible modulation formats including QPSK, 8QAM and 16QAM. The spectrum bandwidth allocation is realized in the digital domain instead of turning on/off sub-channels, which improves the performance of higher order QAM. Various transmission distances ranging from 240 km to 6240 km are demonstrated with a colorless detection for hardware complexity reduction.

  15. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  16. Local intelligent electronic device (IED) rendering templates over limited bandwidth communication link to manage remote IED

    DOEpatents

    Bradetich, Ryan; Dearien, Jason A; Grussling, Barry Jakob; Remaley, Gavin

    2013-11-05

    The present disclosure provides systems and methods for remote device management. According to various embodiments, a local intelligent electronic device (IED) may be in communication with a remote IED via a limited bandwidth communication link, such as a serial link. The limited bandwidth communication link may not support traditional remote management interfaces. According to one embodiment, a local IED may present an operator with a management interface for a remote IED by rendering locally stored templates. The local IED may render the locally stored templates using sparse data obtained from the remote IED. According to various embodiments, the management interface may be a web client interface and/or an HTML interface. The bandwidth required to present a remote management interface may be significantly reduced by rendering locally stored templates rather than requesting an entire management interface from the remote IED. According to various embodiments, an IED may comprise an encryption transceiver.

  17. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis.

    PubMed

    Bordin, Dimorvan; Bergamo, Edmara T P; Fardin, Vinicius P; Coelho, Paulo G; Bonfante, Estevam A

    2017-07-01

    To assess the probability of survival (reliability) and failure modes of narrow implants with different diameters. For fatigue testing, 42 implants with the same macrogeometry and internal conical connection were divided, according to diameter, as follows: narrow (Ø3.3×10mm) and extra-narrow (Ø2.9×10mm) (21 per group). Identical abutments were torqued to the implants and standardized maxillary incisor crowns were cemented and subjected to step-stress accelerated life testing (SSALT) in water. The use-level probability Weibull curves, and reliability for a mission of 50,000 and 100,000 cycles at 50N, 100, 150 and 180N were calculated. For the finite element analysis (FEA), two virtual models, simulating the samples tested in fatigue, were constructed. Loading at 50N and 100N were applied 30° off-axis at the crown. The von-Mises stress was calculated for implant and abutment. The beta (β) values were: 0.67 for narrow and 1.32 for extra-narrow implants, indicating that failure rates did not increase with fatigue in the former, but more likely were associated with damage accumulation and wear-out failures in the latter. Both groups showed high reliability (up to 97.5%) at 50 and 100N. A decreased reliability was observed for both groups at 150 and 180N (ranging from 0 to 82.3%), but no significant difference was observed between groups. Failure predominantly involved abutment fracture for both groups. FEA at 50N-load, Ø3.3mm showed higher von-Mises stress for abutment (7.75%) and implant (2%) when compared to the Ø2.9mm. There was no significant difference between narrow and extra-narrow implants regarding probability of survival. The failure mode was similar for both groups, restricted to abutment fracture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Associations between Narrow Angle and Adult Anthropometry: The Liwan Eye Study

    PubMed Central

    Jiang, Yuzhen; He, Mingguang; Friedman, David S.; Khawaja, Anthony P.; Lee, Pak Sang; Nolan, Winifred P.; Yin, Qiuxia; Foster, Paul J.

    2015-01-01

    Purpose To assess the associations between narrow angle and adult anthropometry. Methods Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Results Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p<0.001; vs height p<0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Conclusion Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women. PMID:24707840

  19. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  20. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.