Sample records for narrow ecological niche

  1. Synergistic selection between ecological niche and mate preference primes diversification.

    PubMed

    Boughman, Janette W; Svanbäck, Richard

    2017-01-01

    The ecological niche and mate preferences have independently been shown to be important for the process of speciation. Here, we articulate a novel mechanism by which ecological niche use and mate preference can be linked to promote speciation. The degree to which individual niches are narrow and clustered affects the strength of divergent natural selection and population splitting. Similarly, the degree to which individual mate preferences are narrow and clustered affects the strength of divergent sexual selection and assortative mating between diverging forms. This novel perspective is inspired by the literature on ecological niches; it also explores mate preferences and how they may contribute to speciation. Unlike much comparative work, we do not search for evolutionary patterns using proxies for adaptation and sexual selection, but rather we elucidate how ideas from niche theory relate to mate preference, and how this relationship can foster speciation. Recognizing that individual and population niches are conceptually and ecologically linked to individual and population mate preference functions will significantly increase our understanding of rapid evolutionary diversification in nature. It has potential to help solve the difficult challenge of testing the role of sexual selection in the speciation process. We also identify ecological factors that are likely to affect individual niche and individual mate preference in synergistic ways and as a consequence to promote speciation. The ecological niche an individual occupies can directly affect its mate preference. Clusters of individuals with narrow, differentiated niches are likely to have narrow, differentiated mate preference functions. Our approach integrates ecological and sexual selection research to further our understanding of diversification processes. Such integration may be necessary for progress because these processes seem inextricably linked in the natural world. © 2016 The Author(s). Evolution

  2. Ecological niche of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliermans, C.B.

    1983-01-01

    This paper discusses the ecological niches, relationships and controls of Legionella derived from environmental sources. Only as clinical cases and studies relate directly to the ecological understanding of the bacterium will they be discussed. This review seeks to separate the ecological parameters associated with Legionella that are often incorporated into the medical literature as well as to highlight specific ecological studies. A series of ecological studies demonstrates the niches of Legionella, the ecological parameters that allow the bacterium to survive, grow and to be disseminated. Relationships among given habitats are explored along with biological relationships within a given habitat.

  3. How is the rate of climatic-niche evolution related to climatic-niche breadth?

    PubMed

    Fisher-Reid, M Caitlin; Kozak, Kenneth H; Wiens, John J

    2012-12-01

    The rate of climatic-niche evolution is important to many research areas in ecology, evolution, and conservation biology, including responses of species to global climate change, spread of invasive species, speciation, biogeography, and patterns of species richness. Previous studies have implied that clades with higher rates of climatic-niche evolution among species should have species with narrower niche breadths, but there is also evidence suggesting the opposite pattern. However, the relationships between rate and breadth have not been explicitly analyzed. Here, we examine the relationships between the rate of climatic-niche evolution and climatic-niche breadth using phylogenetic and climatic data for 250 species in the salamander family Plethodontidae, a group showing considerable variation in both rates of climatic-niche evolution and climatic-niche breadths. Contrary to some expectations, we find no general relationship between climatic-niche breadth and the rate of climatic-niche evolution. Climatic-niche breadths for some ecologically important climatic variables considered separately (temperature seasonality and annual precipitation) do show significant relationships with the rate of climatic-niche evolution, but rates are faster in clades in which species have broader (not narrower) niche breadths. In summary, our results show that narrower niche breadths are not necessarily associated with faster rates of niche evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  4. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents.

    PubMed

    Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani

    2017-05-01

    Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.

  5. Ecological and evolutionary consequences of niche construction for its agent.

    PubMed

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  6. Modelling the ecological niche from functional traits

    PubMed Central

    Kearney, Michael; Simpson, Stephen J.; Raubenheimer, David; Helmuth, Brian

    2010-01-01

    The niche concept is central to ecology but is often depicted descriptively through observing associations between organisms and habitats. Here, we argue for the importance of mechanistically modelling niches based on functional traits of organisms and explore the possibilities for achieving this through the integration of three theoretical frameworks: biophysical ecology (BE), the geometric framework for nutrition (GF) and dynamic energy budget (DEB) models. These three frameworks are fundamentally based on the conservation laws of thermodynamics, describing energy and mass balance at the level of the individual and capturing the prodigious predictive power of the concepts of ‘homeostasis’ and ‘evolutionary fitness’. BE and the GF provide mechanistic multi-dimensional depictions of climatic and nutritional niches, respectively, providing a foundation for linking organismal traits (morphology, physiology, behaviour) with habitat characteristics. In turn, they provide driving inputs and cost functions for mass/energy allocation within the individual as determined by DEB models. We show how integration of the three frameworks permits calculation of activity constraints, vital rates (survival, development, growth, reproduction) and ultimately population growth rates and species distributions. When integrated with contemporary niche theory, functional trait niche models hold great promise for tackling major questions in ecology and evolutionary biology. PMID:20921046

  7. Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds.

    PubMed

    Title, Pascal O; Burns, Kevin J

    2015-05-01

    By employing a recently inferred phylogeny and museum occurrence records, we examine the relationship of ecological niche evolution to diversification in the largest family of songbirds, the tanagers (Thraupidae). We test whether differences in species numbers in the major clades of tanagers can be explained by differences in rate of climatic niche evolution. We develop a methodological pipeline to process and filter occurrence records. We find that, of the ecological variables examined, clade richness is higher in clades with higher climatic niche rate, and that this rate is also greater for clades that occupy a greater extent of climatic space. Additionally, we find that more speciose clades contain species with narrower niche breadths, suggesting that clades in which species are more successful at diversifying across climatic gradients have greater potential for speciation or are more buffered from the risk of extinction. © 2015 John Wiley & Sons Ltd/CNRS.

  8. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling

    PubMed Central

    Escobar, Luis E.; Craft, Meggan E.

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  9. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling.

    PubMed

    Escobar, Luis E; Craft, Meggan E

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks.

  10. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids.

    PubMed

    Karunarathne, Piyal; Schedler, Mara; Martínez, Eric J; Honfi, Ana I; Novichkova, Anastasiia; Hojsgaard, Diego

    2018-05-11

    Niche divergence between polyploids and their lower ploidy progenitors is one of the primary mechanisms fostering polyploid establishment and adaptive divergence. However, within-species chromosomal and reproductive variability have usually been neglected in community ecology and biodiversity analyses even though they have been recognized to play a role in the adaptive diversification of lineages. We used Paspalum intermedium, a grass species with diverging genetic systems (diploidy vs. autopolyploidy, allogamy vs. autogamy and sexuality vs. apomixis), to recognize the causality of biogeographic patterns, adaptation and ecological flexibility of cytotypes. Chromosome counts and flow cytometry were used to characterize within-species genetic systems diversity. Environmental niche modelling was used to evaluate intraspecific ecological attributes associated with environmental and climatic factors and to assess correlations among ploidy, reproductive modes and ecological conditions ruling species' population dynamics, range expansion, adaptation and evolutionary history. Two dominant cytotypes non-randomly distributed along local and regional geographical scales displayed niche differentiation, a directional shift in niche optima and signs of disruptive selection on ploidy-related ecological aptitudes for the exploitation of environmental resources. Ecologically specialized allogamous sexual diploids were found in northern areas associated with higher temperature, humidity and productivity, while generalist autogamous apomictic tetraploids occurred in southern areas, occupying colder and less productive environments. Four localities with a documented shift in ploidy and four mixed populations in a zone of ecological transition revealed an uneven replacement between cytotypes. Polyploidy and contrasting reproductive traits between cytotypes have promoted shifts in niche optima, and increased ecological tolerance and niche divergence. Ecologically specialized diploids

  11. A NICHE FOR ISOTOPIC ECOLOGY

    EPA Science Inventory

    Fifty years ago, GE Hutchinson defined the ecological niche as a hypervolume in n-dimensional space with environmental variables as axes. Ecologists have recently developed renewed interest in the concept, and technological advances now allow us to use stable isotope analyses to ...

  12. Framework for analyzing ecological trait-based models in multidimensional niche spaces

    NASA Astrophysics Data System (ADS)

    Biancalani, Tommaso; DeVille, Lee; Goldenfeld, Nigel

    2015-05-01

    We develop a theoretical framework for analyzing ecological models with a multidimensional niche space. Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community interaction matrix of these models, making it possible to predict the conditions for niche differentiation and, close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our method using the Lotka-Volterra equations with an exponential competition kernel.

  13. Ecological niche transferability using invasive species as a case study.

    PubMed

    Fernández, Miguel; Hamilton, Healy

    2015-01-01

    Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species' native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species' native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger's I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species' dynamics in the invaded range.

  14. Range bagging: a new method for ecological niche modelling from presence-only data

    PubMed Central

    Drake, John M.

    2015-01-01

    The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling is the problem of presence-only modelling. That is, can an ecological niche be identified from records drawn only from the set of niche environments without records from non-niche environments for comparison? Here, I introduce a new method for ecological niche modelling from presence-only data called range bagging. Range bagging draws on the concept of a species' environmental range, but was inspired by the empirical performance of ensemble learning algorithms in other areas of ecological research. This paper extends the concept of environmental range to multiple dimensions and shows that range bagging is computationally feasible even when the number of environmental dimensions is large. The target of the range bagging base learner is an environmental tolerance of the species in a projection of its niche and is therefore an ecologically interpretable property of a species' biological requirements. The computational complexity of range bagging is linear in the number of examples, which compares favourably with the main alternative, Qhull. In conclusion, range bagging appears to be a reasonable choice for niche modelling in applications in which a presence-only method is desired and may provide a solution to problems in other disciplines where one-class classification is required, such as outlier detection and concept learning. PMID:25948612

  15. Range bagging: a new method for ecological niche modelling from presence-only data.

    PubMed

    Drake, John M

    2015-06-06

    The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling is the problem of presence-only modelling. That is, can an ecological niche be identified from records drawn only from the set of niche environments without records from non-niche environments for comparison? Here, I introduce a new method for ecological niche modelling from presence-only data called range bagging. Range bagging draws on the concept of a species' environmental range, but was inspired by the empirical performance of ensemble learning algorithms in other areas of ecological research. This paper extends the concept of environmental range to multiple dimensions and shows that range bagging is computationally feasible even when the number of environmental dimensions is large. The target of the range bagging base learner is an environmental tolerance of the species in a projection of its niche and is therefore an ecologically interpretable property of a species' biological requirements. The computational complexity of range bagging is linear in the number of examples, which compares favourably with the main alternative, Qhull. In conclusion, range bagging appears to be a reasonable choice for niche modelling in applications in which a presence-only method is desired and may provide a solution to problems in other disciplines where one-class classification is required, such as outlier detection and concept learning.

  16. Ecological Niche Modelling of Bank Voles in Western Europe

    PubMed Central

    Amirpour Haredasht, Sara; Barrios, Miguel; Farifteh, Jamshid; Maes, Piet; Clement, Jan; Verstraeten, Willem W.; Tersago, Katrien; Van Ranst, Marc; Coppin, Pol; Berckmans, Daniel; Aerts, Jean-Marie

    2013-01-01

    The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ2 tests, p < 10−6). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole’s population. PMID:23358234

  17. Ecological niche modelling of bank voles in Western Europe.

    PubMed

    Amirpour Haredasht, Sara; Barrios, Miguel; Farifteh, Jamshid; Maes, Piet; Clement, Jan; Verstraeten, Willem W; Tersago, Katrien; Van Ranst, Marc; Coppin, Pol; Berckmans, Daniel; Aerts, Jean-Marie

    2013-01-28

    The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ(2) tests, p < 10(-6)). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole's population.

  18. Ecological niche modeling of rabies in the changing Arctic of Alaska.

    PubMed

    Huettmann, Falk; Magnuson, Emily Elizabeth; Hueffer, Karsten

    2017-03-20

    Rabies is a disease of global significance including in the circumpolar Arctic. In Alaska enzootic rabies persist in northern and western coastal areas. Only sporadic cases have occurred in areas outside of the regions considered enzootic for the virus, such as the interior of the state and urbanized regions. Here we examine the distribution of diagnosed rabies cases in Alaska, explicit in space and time. We use a geographic information system (GIS), 20 environmental data layers and provide a quantitative non-parsimonious estimate of the predicted ecological niche, based on data mining, machine learning and open access data. We identify ecological correlates and possible drivers that determine the ecological niche of rabies virus in Alaska. More specifically, our models show that rabies cases are closely associated with human infrastructure, and reveal an ecological niche in remote northern wilderness areas. Furthermore a model utilizing climate modeling suggests a reduction of the current ecological niche for detection of rabies virus in Alaska, a state that is disproportionately affected by a changing climate. Our results may help to better inform public health decisions in the future and guide further studies on individual drivers of rabies distribution in the Arctic.

  19. The transition between the niche and neutral regimes in ecology

    PubMed Central

    Fisher, Charles K.; Mehta, Pankaj

    2014-01-01

    An ongoing debate in ecology concerns the impacts of ecological drift and selection on community assembly. Here, we show that there is a transition in diverse ecological communities between a selection-dominated regime (the niche phase) and a drift-dominated regime (the neutral phase). Simulations and analytic arguments show that the niche phase is favored in communities with large population sizes and relatively constant environments, whereas the neutral phase is favored in communities with small population sizes and fluctuating environments. Our results demonstrate how apparently neutral populations may arise even in communities inhabited by species with varying traits. PMID:25157131

  20. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling.

    PubMed

    Blackburn, Jason K; McNyset, Kristina M; Curtis, Andrew; Hugh-Jones, Martin E

    2007-12-01

    The ecology and distribution of Bacillus anthracis is poorly understood despite continued anthrax outbreaks in wildlife and livestock throughout the United States. Little work is available to define the potential environments that may lead to prolonged spore survival and subsequent outbreaks. This study used the genetic algorithm for rule-set prediction modeling system to model the ecological niche for B. anthracis in the contiguous United States using wildlife and livestock outbreaks and several environmental variables. The modeled niche is defined by a narrow range of normalized difference vegetation index, precipitation, and elevation, with the geographic distribution heavily concentrated in a narrow corridor from southwest Texas northward into the Dakotas and Minnesota. Because disease control programs rely on vaccination and carcass disposal, and vaccination in wildlife remains untenable, understanding the distribution of B. anthracis plays an important role in efforts to prevent/eradicate the disease. Likewise, these results potentially aid in differentiating endemic/natural outbreaks from industrial-contamination related outbreaks or bioterrorist attacks.

  1. [Ecological niches of sucking lice (Phthiraptera: Anoplura) and their coevolution relationship with small mammal hosts in Yunnan, China].

    PubMed

    Meng, Yan-Fen; Guo, Xian-Guo; Men, Xing-Yuan; Wu, Dian

    2008-02-28

    To investigate the ecological niches of sucking lice (Phthiraptera: Anoplura) on the body surface of small mammal hosts and the co-evolutionary relationship between lice and mammal hosts in Yunnan Province. Thirty species of small mammals were captured and used as 30 resource sequences. The distribution and composition of the dominant 22 species of sucking lice on the body surface of the 30 species small mammal hosts were analyzed as the utilization proportion for each resource sequence. The niche breadth and proportional similarity were measured. SPSS 13.0 statistical software was used for analyzing the niche overlap matrix of sucking lice by hierarchical clustering analysis, and a dendrogram was made. The niche breadth was narrow for most species of sucking louse. Among the detected species, Hoplopleura pacifica showed the widest niche breadth, but only 0.1536. Indices of niche proportional similarity of most sucking lice were relatively small from 0.0005 to 0.4695. The 22 species of sucking lice were classified into 16 niche overlap groups, by lambda = 5.5, through a hierarchical clustering analysis for the niche overlaps, and the clustering process of most sucking lice was late. The sucking lice have a high specificity for hosts, of which different species show an apparent niche divergence on host selection. The results reveal a high coevolution between sucking lice and the mammal hosts.

  2. Overlap and partitioning of the ecological and isotopic niches

    Treesearch

    Elizabeth A. Flaherty; Merav Ben-David

    2010-01-01

    Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a...

  3. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation.

    PubMed

    Pyron, R Alexander; Costa, Gabriel C; Patten, Michael A; Burbrink, Frank T

    2015-11-01

    Phylogenetic niche conservatism (PNC) typically refers to the tendency of closely related species to be more similar to each other in terms of niche than they are to more distant relatives. This has been implicated as a potential driving force in speciation and other species-richness patterns, such as latitudinal gradients. However, PNC has not been very well defined in most previous studies. Is it a pattern or a process? What are the underlying endogenous (e.g. genetic) and exogenous (e.g. ecological) factors that cause niches to be conserved? What degree of similarity is necessary to qualify as PNC? Is it possible for the evolutionary processes causing niches to be conserved to also result in niche divergence in different habitats? Here, we revisit these questions, codifying a theoretical and operational definition of PNC as a mechanistic evolutionary process resulting from several factors. We frame this both from a macroevolutionary and population-genetic perspective. We discuss how different axes of physical (e.g. geographic) and environmental (e.g. climatic) heterogeneity interact with the fundamental process of PNC to produce different outcomes of ecological speciation. We also review tests for PNC, and suggest ways that these could be improved or better utilized in future studies. Ultimately, PNC as a process has a well-defined mechanistic basis in organisms, and future studies investigating ecological speciation would be well served to consider this, and frame hypothesis testing in terms of the processes and expected patterns described herein. The process of PNC may lead to patterns where niches are conserved (more similar than expected), constrained (divergent within a limited subset of available niches), or divergent (less similar than expected), based on degree of phylogenetic relatedness between species. © 2014 Cambridge Philosophical Society.

  4. Using Ecological Niche Models and Niche Analyses to Understand Speciation Patterns: The Case of Sister Neotropical Orchid Bees

    PubMed Central

    Silva, Daniel P.; Vilela, Bruno; De Marco, Paulo; Nemésio, André

    2014-01-01

    The role of past connections between the two major South American forested biomes on current species distribution has been recognized a long time ago. Climatic oscillations that further separated these biomes have promoted parapatric speciation, in which many species had their continuous distribution split, giving rise to different but related species (i.e., different potential distributions and realized niche features). The distribution of many sister species of orchid bees follow this pattern. Here, using ecological niche models and niche analyses, we (1) tested the role of ecological niche differentiation on the divergence between sister orchid-bees (genera Eulaema and Eufriesea) from the Amazon and Atlantic forests, and (2) highlighted interesting areas for new surveys. Amazonian species occupied different realized niches than their Atlantic sister species. Conversely, species of sympatric but distantly related Eulaema bees occupied similar realized niches. Amazonian species had a wide potential distribution in South America, whereas Atlantic Forest species were more limited to the eastern coast of the continent. Additionally, we identified several areas in need of future surveys. Our results show that the realized niche of Atlantic-Amazonian sister species of orchid bees, which have been previously treated as allopatric populations of three species, had limited niche overlap and similarity. These findings agree with their current taxonomy, which treats each of those populations as distinct valid species. PMID:25422941

  5. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Friedlaender, Ari S.; Johnston, David W.; Fraser, William R.; Burns, Jennifer; Halpin, Patrick N.; Costa, Daniel P.

    2011-07-01

    Adélie penguins ( Pygoscelis adeliae), carabeater seals ( Lobodon carcinophagus), humpback ( Megaptera novaeangliae), and minke whales ( Balaenoptera bonaernsis) are found in the waters surrounding the Western Antarctic Peninsula. Each species relies primarily on Antarctic krill ( Euphausia superba) and has physiological constraints and foraging behaviors that dictate their ecological niches. Understanding the degree of ecological overlap between sympatric krill predators is critical to understanding and predicting the impacts on climate-driven changes to the Antarctic marine ecosystem. To explore ecological relationships amongst sympatric krill predators, we developed ecological niche models using a maximum entropy modeling approach (Maxent) that allows the integration of data collected by a variety of means (e.g. satellite-based locations and visual observations). We created spatially explicit probability distributions for the four krill predators in fall 2001 and 2002 in conjunction with a suite of environmental variables. We find areas within Marguerite Bay with high krill predator occurrence rates or biological hot spots. We find the modeled ecological niches for Adélie penguins and crabeater seals may be affected by their physiological needs to haul-out on substrate. Thus, their distributions may be less dictated by proximity to prey and more so by physical features that over time provide adequate access to prey. Humpback and minke whales, being fully marine and having greater energetic demands, occupy ecological niches more directly proximate to prey. We also find evidence to suggest that the amount of overlap between modeled niches is relatively low, even for species with similar energetic requirements. In a rapidly changing and variable environment, our modeling work shows little indication that krill predators maintain similar ecological niches across years around Marguerite Bay. Given the amount of variability in the marine environment around the

  6. Compatible ecological niche signals between biological and archaeological datasets for late-surviving Neandertals.

    PubMed

    Bible, Rachael C; Peterson, A Townsend

    2018-04-17

    To assess ecological niche similarity for biological and archaeological samples representing late-surviving Neandertals in Europe to evaluate the validity of combining these two types of data in ecological niche modeling analyses. Tests of niche conservatism were used to assess niche similarity and niche identity of samples of morphologically diagnostic Neandertal remains and Middle Paleolithic (MP) archaeological sites dating to the time period leading up to Neandertal extinction. Paleoenvironmental reconstructions for the Pre-H4 (43.3-40.2 ky cal BP) were used as environmental space analyses. Null hypotheses of niche similarity and identity of the two types of samples could not be rejected. As primary and secondary evidence of Neandertal occurrence during the Pre-H4 show high levels of niche similarity and identity, combining the two types of occurrence data to create larger samples for niche analyses is justified without the concern that different environmental signals could complicate future research. © 2018 Wiley Periodicals, Inc.

  7. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry

    PubMed Central

    Pallas, Sarah L.

    2017-01-01

    Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways. PMID:28701910

  8. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry.

    PubMed

    Pallas, Sarah L

    2017-01-01

    Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways.

  9. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis

    PubMed Central

    Barro, Alassane S.; Fegan, Mark; Moloney, Barbara; Porter, Kelly; Muller, Janine; Warner, Simone; Blackburn, Jason K.

    2016-01-01

    The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP), historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies. PMID:27280981

  10. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis.

    PubMed

    Barro, Alassane S; Fegan, Mark; Moloney, Barbara; Porter, Kelly; Muller, Janine; Warner, Simone; Blackburn, Jason K

    2016-06-01

    The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP), historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies.

  11. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus)

    Treesearch

    Jesse D’Elia; Susan M. Haig; Matthew Johnson; Richard Young; Bruce G. Marcot

    2015-01-01

    Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor (Gymnogyps californianus) to aid in...

  12. Genetically informed ecological niche models improve climate change predictions.

    PubMed

    Ikeda, Dana H; Max, Tamara L; Allan, Gerard J; Lau, Matthew K; Shuster, Stephen M; Whitham, Thomas G

    2017-01-01

    We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species' ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species' niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12-fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change. © 2016 John Wiley & Sons Ltd.

  13. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  14. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, S.T.; Betancourt, J.L.; Booth, R.K.; Gray, S.T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and morefundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  15. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    PubMed Central

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics. PMID:19805104

  16. Ecological allometries and niche use dynamics across Komodo dragon ontogeny

    NASA Astrophysics Data System (ADS)

    Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.

    2016-04-01

    Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.

  17. Ecological niche of three teuthophageous odontocetes in the northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Praca, E.; Gannier, A.

    2007-10-01

    In the northwestern Mediterranean Sea, sperm whales, pilot whales and Risso's dolphins prey on cephalopods exclusively or preferentially. In order to evaluate their competition, we modelled their habitat suitability with the Ecological Niche Factor Analysis (ENFA) and compared their ecological niche using a discriminant analysis. We used a long term (1995-2005) small boat data set, with visual and acoustic (sperm whale) detections. Risso's dolphin had the shallowest and the more spatially restricted principal habitat, mainly located on the upper part of the continental slope (640 m mean depth). With a wider principal habitat, at 1750 m depth in average, the sperm whale used a deeper part of the slope as well as close offshore waters. Finally, the pilot whale has the most oceanic habitat (2500 m mean depth) mainly located in the central Ligurian Sea and Provençal basin. Therefore, potential competition for food between these species may be reduced by the differentiation of their ecological niches.

  18. Ecologic Niche Modeling of Blastomyces dermatitidis in Wisconsin

    PubMed Central

    Reed, Kurt D.; Meece, Jennifer K.; Archer, John R.; Peterson, A. Townsend

    2008-01-01

    Background Blastomycosis is a potentially fatal mycosis that is acquired by inhaling infectious spores of Blastomyces dermatitidis present in the environment. The ecology of this pathogen is poorly understood, in part because it has been extremely difficult to identify the niche(s) it occupies based on culture isolation of the organism from environmental samples. Methodology/Principal Findings We investigated the ecology of blastomycosis by performing maximum entropy modeling of exposure sites from 156 cases of human and canine blastomycosis to provide a regional-scale perspective of the geographic and ecologic distribution of B. dermatitidis in Wisconsin. Based on analysis with climatic, topographic, surface reflectance and other environmental variables, we predicted that ecologic conditions favorable for maintaining the fungus in nature occur predominantly within northern counties and counties along the western shoreline of Lake Michigan. Areas of highest predicted occurrence were often in proximity to waterways, especially in northcentral Wisconsin, where incidence of infection is highest. Ecologic conditions suitable for B. dermatitidis are present in urban and rural environments, and may differ at the extremes of distribution of the species in the state. Conclusions/Significance Our results provide a framework for a more informed search for specific environmental factors modulating B. dermatitidis occurrence and transmission and will be useful for improving public health awareness of relative exposure risks. PMID:18446224

  19. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation

    PubMed Central

    Simard, Frédéric; Ayala, Diego; Kamdem, Guy Colince; Pombi, Marco; Etouna, Joachim; Ose, Kenji; Fotsing, Jean-Marie; Fontenille, Didier; Besansky, Nora J; Costantini, Carlo

    2009-01-01

    Background Speciation among members of the Anopheles gambiae complex is thought to be promoted by disruptive selection and ecological divergence acting on sets of adaptation genes protected from recombination by polymorphic paracentric chromosomal inversions. However, shared chromosomal polymorphisms between the M and S molecular forms of An. gambiae and insufficient information about their relationship with ecological divergence challenge this view. We used Geographic Information Systems, Ecological Niche Factor Analysis, and Bayesian multilocus genetic clustering to explore the nature and extent of ecological and chromosomal differentiation of M and S across all the biogeographic domains of Cameroon in Central Africa, in order to understand the role of chromosomal arrangements in ecological specialisation within and among molecular forms. Results Species distribution modelling with presence-only data revealed differences in the ecological niche of both molecular forms and the sibling species, An. arabiensis. The fundamental environmental envelope of the two molecular forms, however, overlapped to a large extent in the rainforest, where they occurred in sympatry. The S form had the greatest niche breadth of all three taxa, whereas An. arabiensis and the M form had the smallest niche overlap. Correspondence analysis of M and S karyotypes confirmed that molecular forms shared similar combinations of chromosomal inversion arrangements in response to the eco-climatic gradient defining the main biogeographic domains occurring across Cameroon. Savanna karyotypes of M and S, however, segregated along the smaller-scale environmental gradient defined by the second ordination axis. Population structure analysis identified three chromosomal clusters, each containing a mixture of M and S specimens. In both M and S, alternative karyotypes were segregating in contrasted environments, in agreement with a strong ecological adaptive value of chromosomal inversions. Conclusion Our

  20. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians

    PubMed Central

    Bonetti, Maria Fernanda; Wiens, John J.

    2014-01-01

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. PMID:25274369

  1. Ecological allometries and niche use dynamics across Komodo dragon ontogeny.

    PubMed

    Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S

    2016-04-01

    Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.

  2. Insights from ecological niche modeling on the taxonomic distinction and niche differentiation between the black-spotted and red-spotted tokay geckoes (Gekko gecko).

    PubMed

    Zhang, Yueyun; Chen, Chongtao; Li, Li; Zhao, Chengjian; Chen, Weicai; Huang, Yong

    2014-09-01

    The black-spotted tokay and the red-spotted tokay are morphologically distinct and have largely allopatric distributions. The black-spotted tokay is characterized by a small body size and dark skin with sundry spots, while the red-spotted tokay has a relatively large body size and red spots. Based on morphological, karyotypic, genetic, and distribution differences, recent studies suggested their species status; however, their classifications remain controversial, and additional data such as ecological niches are necessary to establish firm hypotheses regarding their taxonomic status. We reconstructed their ecological niches models using climatic and geographic data. We then performed niche similarity tests (niche identity and background tests) and point-based analyses to explore whether ecological differentiation has occurred, and whether such differences are sufficient to explain the maintenance of their separate segments of environmental ranges. We found that both niche models of the black- and the red-spotted tokay had a good fit and a robust performance, as indicated by the high area under the curve (AUC) values ("black" = 0.982, SD = ± 0.002, "red" = 0.966 ± 0.02). Significant ecological differentiation across the entire geographic range was found, indicating that the involvement of ecological differentiation is important for species differentiation. Divergence along the environmental axes is highly associated with climatic conditions, with isothermality being important for the "black" form, while temperature seasonality, precipitation of warmest quarter, and annual temperature range together being important for the "red" form. These factors are likely important factors in niche differentiation between the two forms, which result in morphological replacement. Overall, beside morphological and genetic differentiation information, our results contribute to additional insights into taxonomic distinction and niche differentiation between the black- and the red

  3. Divergence is not enough: the use of ecological niche models for the validation of taxon boundaries.

    PubMed

    Dagnino, D; Minuto, L; Casazza, G

    2017-11-01

    Delimiting taxon boundaries is crucial for any evolutionary research and conservation regulation. In order to avoid mistaken description of species, the approach of integrative taxonomy recommends considering multidisciplinary lines of evidence, including ecology. Unfortunately, ecological data are often difficult to quantify objectively. Here we test and discuss the potential use of ecological niche models for validating taxon boundaries, using three pairs of closely related plant taxa endemic to the south-western Alps as a case study. We also discuss the application of ecological niche models for species delimitation and the implementation of different approaches. Niche overlap, niche equivalency and niche similarity were assessed both in multidimensional environmental space and in geographic space to look for differences in the niche of three pairs of closely related plant taxa. We detected a high degree of niche differentiation between taxa although this result seems not due to differences in habitat selection. The different statistical tests gave contrasting outcomes between environmental and geographic spaces. According to our results, niche divergence does not seem to support taxon boundaries at species level, but may have had important consequences for local adaptation and in generating phenotypic diversity at intraspecific level. Environmental space analysis should be preferred to geographic space as it provides more clear results. Even if the different analyses widely disagree in their conclusions about taxon boundaries, our study suggests that ecological niche models may help taxonomists to reach a decision. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus)

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Johnson, Matthew J.; Marcot, Bruce G.; Young, Richard

    2015-01-01

    Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor (Gymnogyps californianus) to aid in reintroduction planning in California, Oregon, and Washington, USA, (2) test the accuracy of these models using empirical data withheld from model development, and (3) integrate model results with information on condor movement ecology and biology to produce predictive maps of reintroduction site suitability. Our approach, which disentangles niche models into activity-specific components, has applications for other species where it is routinely assumed (often incorrectly) that individuals fulfill all requirements for life within a single environmental space. Ecological niche models conformed to our understanding of California condor ecology, had good predictive performance when tested with data withheld from model development, and aided in the identification of several candidate reintroduction areas outside of the current distribution of the species. Our results suggest there are large unoccupied regions of the California condor’s historical range that have retained ecological features similar to currently occupied habitats, and thus could be considered for future reintroduction efforts. Combining our activity-specific ENMs with ground reconnaissance and information on other threat factors that could not be directly incorporated into empirical ENMs will ultimately improve our ability to select successful reintroduction sites for the California condor.

  5. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change

    PubMed Central

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-01-01

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443

  6. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change.

    PubMed

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-09-27

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.

  7. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.

    PubMed

    Bonetti, Maria Fernanda; Wiens, John J

    2014-11-22

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits

    PubMed Central

    Wang, Meirong; Liu, Fei; Lin, Pengcheng; Yang, Shaorong; Liu, Huanzhang

    2015-01-01

    In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus,R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism. PMID:25691981

  9. Climatic niche evolution is faster in sympatric than allopatric lineages of the butterfly genus Pyrgus

    PubMed Central

    Pitteloud, Camille; Arrigo, Nils; Suchan, Tomasz; Mastretta-Yanes, Alicia; Dincă, Vlad; Hernández-Roldán, Juan; Brockmann, Ernst; Chittaro, Yannick; Kleckova, Irena; Fumagalli, Luca; Buerki, Sven; Pellissier, Loïc

    2017-01-01

    Understanding how speciation relates to ecological divergence has long fascinated biologists. It is assumed that ecological divergence is essential to sympatric speciation, as a mechanism to avoid competition and eventually lead to reproductive isolation, while divergence in allopatry is not necessarily associated with niche differentiation. The impact of the spatial context of divergence on the evolutionary rates of abiotic dimensions of the ecological niche has rarely been explored for an entire clade. Here, we compare the magnitude of climatic niche shifts between sympatric versus allopatric divergence of lineages in butterflies. By combining next-generation sequencing, parametric biogeography and ecological niche analyses applied to a genus-wide phylogeny of Palaearctic Pyrgus butterflies, we compare evolutionary rates along eight climatic dimensions across sister lineages that diverged in large-scale sympatry versus allopatry. In order to examine the possible effects of the spatial scale at which sympatry is defined, we considered three sets of biogeographic assignments, ranging from narrow to broad definition. Our findings suggest higher rates of niche evolution along all climatic dimensions for sister lineages that diverge in sympatry, when using a narrow delineation of biogeographic areas. This result contrasts with significantly lower rates of climatic niche evolution found in cases of allopatric speciation, despite the biogeographic regions defined here being characterized by significantly different climates. Higher rates in allopatry are retrieved when biogeographic areas are too widely defined—in such a case allopatric events may be recorded as sympatric. Our results reveal the macro-evolutionary significance of abiotic niche differentiation involved in speciation processes within biogeographic regions, and illustrate the importance of the spatial scale chosen to define areas when applying parametric biogeographic analyses. PMID:28404781

  10. INVASIVE SPECIES: PREDICTING GEOGRAPHIC DISTRIBUTIONS USING ECOLOGICAL NICHE MODELING

    EPA Science Inventory

    Present approaches to species invasions are reactive in nature. This scenario results in management that perpetually lags behind the most recent invasion and makes control much more difficult. In contrast, spatially explicit ecological niche modeling provides an effective solut...

  11. Ecological divergence and conservatism: spatiotemporal patterns of niche evolution in a genus of livebearing fishes (Poeciliidae: Xiphophorus).

    PubMed

    Culumber, Zachary W; Tobler, Michael

    2016-02-19

    Ecological factors often have a strong impact on spatiotemporal patterns of biodiversity. The integration of spatial ecology and phylogenetics allows for rigorous tests of whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence. We address this question in a genus of livebearing fishes for which the role of sexual selection in speciation has long been studied, but in which the potential role of ecological divergence during speciation has not been tested. By combining reconstruction of ancestral climate tolerances and disparity indices, we show that the earliest evolutionary split in Xiphophorus was associated with significant divergence for temperature variables. Niche evolution and present day niches were most closely associated with each species' geographic distribution relative to a biogeographic barrier, the Trans-Mexican Volcanic Belt. Tests for similarity of the environmental backgrounds of closely related species suggested that the relative importance of niche conservatism and divergence during speciation varied among the primary clades of Xiphophorus. Closely related species in the two swordtail clades exhibited higher levels of niche overlap than expected given environmental background similarity indicative of niche conservatism. In contrast, almost all species of platyfish had significantly divergent niches compared to environmental backgrounds, which is indicative of niche divergence. The results suggest that the relative importance of niche conservatism and divergence differed among the clades of Xiphophorus and that traits associated with niche evolution may be more evolutionarily labile in the platyfishes. Our results ultimately suggest that the taxonomic scale of tests for conservatism and divergence could greatly influence inferences of their relative importance in the speciation process.

  12. Ecologic Niche Modeling and Spatial Patterns of Disease Transmission

    PubMed Central

    2006-01-01

    Ecologic niche modeling (ENM) is a growing field with many potential applications to questions regarding the geography and ecology of disease transmission. Specifically, ENM has the potential to inform investigations concerned with the geography, or potential geography, of vectors, hosts, pathogens, or human cases, and it can achieve fine spatial resolution without the loss of information inherent in many other techniques. Potential applications and current frontiers and challenges are reviewed. PMID:17326931

  13. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization.

    PubMed

    Nielsen, Kirsten; De Obaldia, Anna L; Heitman, Joseph

    2007-06-01

    The ecological niche that a species can occupy is determined by its resource requirements and the physical conditions necessary for survival. The niche to which an organism is most highly adapted is the realized niche, whereas the complete range of habitats that an organism can occupy represents the fundamental niche. The growth and development of Cryptococcus neoformans and Cryptococcus gattii on pigeon guano were examined to determine whether these two species occupy the same or different ecological niches. C. neoformans is a cosmopolitan pathogenic yeast that infects predominantly immunocompromised individuals, exists in two varieties (grubii [serotype A] and neoformans [serotype D]), and is commonly isolated from pigeon guano worldwide. By contrast, C. gattii often infects immunocompetent individuals and is associated with geographically restricted environments, most notably, eucalyptus trees. Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced. C. neoformans exhibited prolific mating on pigeon guano, whereas C. gattii did not. The observations that C. neoformans completes the life cycle on pigeon guano but that C. gattii does not indicates that pigeon guano could represent the realized ecological niche for C. neoformans. Because C. gattii grows on pigeon guano but cannot sexually reproduce, pigeon guano represents a fundamental but not a realized niche for C. gattii. Based on these studies, we hypothesize that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe.

  14. Cryptococcus neoformans Mates on Pigeon Guano: Implications for the Realized Ecological Niche and Globalization▿

    PubMed Central

    Nielsen, Kirsten; De Obaldia, Anna L.; Heitman, Joseph

    2007-01-01

    The ecological niche that a species can occupy is determined by its resource requirements and the physical conditions necessary for survival. The niche to which an organism is most highly adapted is the realized niche, whereas the complete range of habitats that an organism can occupy represents the fundamental niche. The growth and development of Cryptococcus neoformans and Cryptococcus gattii on pigeon guano were examined to determine whether these two species occupy the same or different ecological niches. C. neoformans is a cosmopolitan pathogenic yeast that infects predominantly immunocompromised individuals, exists in two varieties (grubii [serotype A] and neoformans [serotype D]), and is commonly isolated from pigeon guano worldwide. By contrast, C. gattii often infects immunocompetent individuals and is associated with geographically restricted environments, most notably, eucalyptus trees. Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced. C. neoformans exhibited prolific mating on pigeon guano, whereas C. gattii did not. The observations that C. neoformans completes the life cycle on pigeon guano but that C. gattii does not indicates that pigeon guano could represent the realized ecological niche for C. neoformans. Because C. gattii grows on pigeon guano but cannot sexually reproduce, pigeon guano represents a fundamental but not a realized niche for C. gattii. Based on these studies, we hypothesize that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe. PMID:17449657

  15. Population genetics and ecological niche of invasive Aedes albopictus in Mexico.

    PubMed

    Pech-May, Angélica; Moo-Llanes, David A; Puerto-Avila, María Belem; Casas, Mauricio; Danis-Lozano, Rogelio; Ponce, Gustavo; Tun-Ku, Ezequiel; Pinto-Castillo, José Francisco; Villegas, Alejandro; Ibáñez-Piñon, Clemente R; González, Cassandra; Ramsey, Janine M

    2016-05-01

    The Asian tiger mosquito Aedes albopictus (Skuse), is one of the most invasive mosquito species worldwide. In Mexico it is now recorded in 12 states and represents a serious public health problem, given the recent introduction of Chikungunya on the southern border. The aim of this study was to analyze the population genetics of A. albopictus from all major recorded foci, and model its ecological niche. Niche similarity with that from its autochthonous distribution in Asia and other invaded countries were analyzed and its potential future expansion and potential human exposure in climate change scenarios measured. We analyzed 125 sequences of a 317 bp fragment of the cyt b gene from seven A. albopictus populations across Mexico. The samples belong to 25 haplotypes with moderate population structuring (Fst=0.081, p<0.02) and population expansion. The most prevalent haplotype, found in all principal sites, was shared with the USA, Brazil, France, Madagascar, and Reunion Island. The ecological niche model using Mexican occurrence records covers 79.7% of the country, and has an 83% overlap with the Asian niche projected to Mexico. Both Neotropical and Nearctic regions are included in the Mexican niche model. Currently in Mexico, 38.6 million inhabitants are exposed to A. albopictus, which is expected to increase to 45.6 million by 2070. Genetic evidence supports collection information that A. albopictus was introduced to Mexico principally by land from the USA and Central and South America. Prevalent haplotypes from Mexico are shared with most invasive regions across the world, just as there was high niche similarity with both natural and invaded regions. The important overlap with the Asian niche model suggests a high potential for the species to disperse to sylvatic regions in Mexico. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Niche and interspecific association of the dominant fish in the south coastal waters of Wenzhou, China].

    PubMed

    Dong, Jing Rui; Shui, Bo Nian; Hu, Cheng Ye; Shui, Yu Yue; DU, Xiao; Tian, Kuo

    2017-05-18

    The studies about the niche and interspecific association in China were mainly focused on the plants, birds and marine animals, and seldom on fish. Based on the fishery resources survey in spring (May) and autumn (September) in 2015, the associations among major fish species in south coastal waters of Wenzhou were investigated. The methods including niche breadth, niche overlap, variance ratio (VR), Χ 2 -test, association coefficient (AC), percentage of co-occurrence (PC) and point correlation coefficients (Ф) were used. The results showed that 47 fish species were identified, including 9 orders, 27 families and 41 genera. Four species were dominant species and 9 were important species, which together accounted for 17%. The niche breadth cluster analysis demonstrated two clearly identifiable ecological niches. The first one referred to wide niche that included Harpodon nehereus, Collichthys lucidus, Engraulis japonicas, Pampus echinogaster, Argyrosomus argentatus, Polynemus sextarius, Decapterus maruadsi and Trichiurus haumela, and the second one was narrow niche that included Muraenesox cinereus, Amblychaeturichthys hexanema, Cunoglossus robustus, Pseudosciaena polyactis and Ilisha elongate. The niche overlap value of the main fish was 0-0.90, indicating that there was difference in the resource utilization among the species. The ecological niche widths of C. robustus and M. cinereus were narrow, and the overlap values were high. This indicated that there was competition between these two species. The VR analysis revealed significant positive correlation among the main fish species. In view of the advantages of Ф value, which could reduce the impact of the analysis results of Χ 2 -test, AC and PC to the interspecific association, the Ф value method was selected in this study, and the association of 63 couples were positive. Both the interspecific association and ecological niche had different degrees of correlation with the stability of community structure

  17. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances.

    PubMed

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  18. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    PubMed Central

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  19. The ecological niche of Dermacentor marginatus in Germany.

    PubMed

    Walter, Melanie; Brugger, Katharina; Rubel, Franz

    2016-06-01

    The ixodid tick Dermacentor marginatus (Sulzer, 1776) is endemic throughout southern Europe in the range of 33-51 (°) N latitude. In Germany, however, D. marginatus was exclusively reported in the Rhine valley and adjacent areas. Its northern distribution limit near Giessen is located at the coordinates 8.32 (°) E/50.65 (°) N. Particularly with regard to the causative agents of rickettsioses, tularemia, and Q fever, the observed locations as well as the potential distribution of the vector D. marginatus in Germany are of special interest. Applying a dataset of 118 georeferenced tick locations, the ecological niche for D. marginatus was calculated. It is described by six climate parameters based on temperature and relative humidity and another six environmental parameters including land cover classes and altitude. The final ecological niche is determined by the frequency distributions of these 12 parameters at the tick locations. Main parameters are the mean annual temperature (frequency distribution characterized by the minimum, median, and maximum of 6.1, 9.9, and 12.2 (°)C), the mean annual relative humidity (73.7, 76.7, and 80.9 %), as well as the altitude (87, 240, 1108 m). The climate and environmental niche is used to estimate the habitat suitability of D. marginatus in Germany by applying the BIOCLIM model. Finally, the potential spatial distribution of D. marginatus was calculated and mapped by determining an optimal threshold value of the suitability index, i.e., the maximum of sensitivity and specificity (Youden index). The model performance is expressed by AUC = 0.91.

  20. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon

    PubMed Central

    2009-01-01

    Background Suitability of environmental conditions determines a species distribution in space and time. Understanding and modelling the ecological niche of mosquito disease vectors can, therefore, be a powerful predictor of the risk of exposure to the pathogens they transmit. In Africa, five anophelines are responsible for over 95% of total malaria transmission. However, detailed knowledge of the geographic distribution and ecological requirements of these species is to date still inadequate. Methods Indoor-resting mosquitoes were sampled from 386 villages covering the full range of ecological settings available in Cameroon, Central Africa. Using a predictive species distribution modeling approach based only on presence records, habitat suitability maps were constructed for the five major malaria vectors Anopheles gambiae, Anopheles funestus, Anopheles arabiensis, Anopheles nili and Anopheles moucheti. The influence of 17 climatic, topographic, and land use variables on mosquito geographic distribution was assessed by multivariate regression and ordination techniques. Results Twenty-four anopheline species were collected, of which 17 are known to transmit malaria in Africa. Ecological Niche Factor Analysis, Habitat Suitability modeling and Canonical Correspondence Analysis revealed marked differences among the five major malaria vector species, both in terms of ecological requirements and niche breadth. Eco-geographical variables (EGVs) related to human activity had the highest impact on habitat suitability for the five major malaria vectors, with areas of low population density being of marginal or unsuitable habitat quality. Sunlight exposure, rainfall, evapo-transpiration, relative humidity, and wind speed were among the most discriminative EGVs separating "forest" from "savanna" species. Conclusions The distribution of major malaria vectors in Cameroon is strongly affected by the impact of humans on the environment, with variables related to proximity to human

  1. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon.

    PubMed

    Ayala, Diego; Costantini, Carlo; Ose, Kenji; Kamdem, Guy C; Antonio-Nkondjio, Christophe; Agbor, Jean-Pierre; Awono-Ambene, Parfait; Fontenille, Didier; Simard, Frédéric

    2009-12-23

    Suitability of environmental conditions determines a species distribution in space and time. Understanding and modelling the ecological niche of mosquito disease vectors can, therefore, be a powerful predictor of the risk of exposure to the pathogens they transmit. In Africa, five anophelines are responsible for over 95% of total malaria transmission. However, detailed knowledge of the geographic distribution and ecological requirements of these species is to date still inadequate. Indoor-resting mosquitoes were sampled from 386 villages covering the full range of ecological settings available in Cameroon, Central Africa. Using a predictive species distribution modeling approach based only on presence records, habitat suitability maps were constructed for the five major malaria vectors Anopheles gambiae, Anopheles funestus, Anopheles arabiensis, Anopheles nili and Anopheles moucheti. The influence of 17 climatic, topographic, and land use variables on mosquito geographic distribution was assessed by multivariate regression and ordination techniques. Twenty-four anopheline species were collected, of which 17 are known to transmit malaria in Africa. Ecological Niche Factor Analysis, Habitat Suitability modeling and Canonical Correspondence Analysis revealed marked differences among the five major malaria vector species, both in terms of ecological requirements and niche breadth. Eco-geographical variables (EGVs) related to human activity had the highest impact on habitat suitability for the five major malaria vectors, with areas of low population density being of marginal or unsuitable habitat quality. Sunlight exposure, rainfall, evapo-transpiration, relative humidity, and wind speed were among the most discriminative EGVs separating "forest" from "savanna" species. The distribution of major malaria vectors in Cameroon is strongly affected by the impact of humans on the environment, with variables related to proximity to human settings being among the best

  2. [Application of land economic ecological niche in landscape pattern analysis at county level: A case study of Jinghe County in Xinjiang, China].

    PubMed

    Yu, Hai-yang; Zhang, Fei; Wang, Juan; Zhou, Mei

    2015-12-01

    The theory of land economic ecological niche was used to analyze the regional landscape pattern in this article, with an aim to provide a new method for the characterization and representation of landscape pattern. The Jinghe County region, which is ecologically fragile, was selected as an example for the study, and the Landsat images of 1990, 1998, 2011 and 2013 were selected as remote sensing data. The land economic ecological niche of land use types calculated by ecostate-ecorole theory, combined with landscape ecology theory, was discussed in application of land economic ecological niche in county landscape pattern analysis. The results showed that, during the study period, the correlations between land economic ecological niche of farmland, construction land, and grassland with the parameters, including landscape patch number (NP), aggregated index (AI), fragmented index (FN) and fractal dimension (FD), were significant. Regional landscape was driven by the changes of land economic ecological niche, and the trend of economic development could be represented by land economic ecological niche change in Jinghe County. Land economic ecological niche was closely related with the land use types which could yield direct economic benefits, which could well explain the landscape pattern characteristics in Jinghe County when combined with the landscape indices.

  3. Exploring the Realized Niche: Simulated Ecological Mapping with a Microcomputer.

    ERIC Educational Resources Information Center

    Kent, J. W.

    1983-01-01

    Describes a computer program based upon field observations of littoral zonation modified by a small stream. The program employs user-defined color graphic characters to display simulated ecological maps representing the patterning of organisms in response to local values of niche limiting factors. (Author/JN)

  4. Niche construction through phenological plasticity: life history dynamics and ecological consequences.

    PubMed

    Donohue, Kathleen

    2005-04-01

    The ability of an organism to alter the environment that it experiences has been termed 'niche construction'. Plants have several ways whereby they can determine the environment to which they are exposed at different life stages. This paper discusses three of these: plasticity in dispersal, flowering timing and germination timing. It reviews pathways through which niche construction alters evolutionary and ecological trajectories by altering the selective environment to which organisms are exposed, the phenotypic expression of plastic characters, and the expression of genetic variation. It provides examples whereby niche construction creates positive or negative feedbacks between phenotypes and environments, which in turn cause novel evolutionary constraints and novel life-history expression. Copyright New Phytologist (2005).

  5. Commodifying snow, taming the waters. Socio-ecological niche construction in an Alpine village.

    PubMed

    Gross, Robert; Winiwarter, Verena

    White belts of snow clad mountains all over the world each winter. Even if there is no snow, the tourism industry is able to produce the white finery at the push of the button, thereby consuming large amounts of water. Studying Damüls, a well-known ski resort in Austria's westernmost province Vorarlberg, we can show that the development of a service sector within agro-pastoral landscapes was connected with novel water uses and massive interventions into Alpine landscapes. Human niche construction theory offers a unique avenue for studying the development of Alpine communities, but also highlights side effects accompanying the change from agrarian to tourism livelihoods. One aim of this paper is to broaden the scope of human niche construction theory. Inceptive, counteractive and relocational niche construction activities were coupled to the differentiation of actor groups. To incorporate social dynamics, indispensable for studies in environmental history, we propose the concept of socio-ecological niche construction. The paper investigates how villagers balanced resource limitations typical for an agrarian society with the differentiation of sub-niches, mediating selective forces on the population. When the valleys were industrialized, Damüls was almost given up as a permanent settlement. Then, tourists entered the stage, by and by turning the wheel of local development into a different direction. A tourism niche based on natural snow evolved from the 1930s onwards. While the socio-ecological niches of agriculture and tourism coexisted in the interwar years, this changed when ski lifts were built, embedded into a debt-based economy that made the tourism niche vulnerable to snow availability. Snow-dependency became a powerful selective force. It was mediated by the ski lift companies through a range of niche construction activities that turned water into an important resource of snowmaking systems.

  6. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: inferring from a case study of Korea.

    PubMed

    Lee, Jin-Won; Noh, Hee-Jin; Lee, Yunkyoung; Kwon, Young-Soo; Kim, Chang-Hoe; Yoo, Jeong-Chil

    2014-09-01

    Since obligate avian brood parasites depend completely on the effort of other host species for rearing their progeny, the availability of hosts will be a critical resource for their life history. Circumstantial evidence suggests that intense competition for host species may exist not only within but also between species. So far, however, few studies have demonstrated whether the interspecific competition really occurs in the system of avian brood parasitism and how the nature of brood parasitism is related to their niche evolution. Using the occurrence data of five avian brood parasites from two sources of nationwide bird surveys in South Korea and publically available environmental/climatic data, we identified their distribution patterns and ecological niches, and applied species distribution modeling to infer the effect of interspecific competition on their spatial distribution. We found that the distribution patterns of five avian brood parasites could be characterized by altitude and climatic conditions, but overall their spatial ranges and ecological niches extensively overlapped with each other. We also found that the predicted distribution areas of each species were generally comparable to the realized distribution areas, and the numbers of individuals in areas where multiple species were predicted to coexist showed positive relationships among species. In conclusion, despite following different coevolutionary trajectories to adapt to their respect host species, five species of avian brood parasites breeding in South Korea occupied broadly similar ecological niches, implying that they tend to conserve ancestral preferences for ecological conditions. Furthermore, our results indicated that contrary to expectation interspecific competition for host availability between avian brood parasites seemed to be trivial, and thus, play little role in shaping their spatial distributions and ecological niches. Future studies, including the complete ranges of avian brood

  7. Vacated niches, competitive release and the community ecology of pathogen eradication

    PubMed Central

    Lloyd-Smith, James O.

    2013-01-01

    A recurring theme in the epidemiological literature on disease eradication is that each pathogen occupies an ecological niche, and eradication of one pathogen leaves a vacant niche that favours the emergence of new pathogens to replace it. However, eminent figures have rejected this view unequivocally, stating that there is no basis to fear pathogen replacement and even that pathogen niches do not exist. After exploring the roots of this controversy, I propose resolutions to disputed issues by drawing on broader ecological theory, and advance a new consensus based on robust mechanistic principles. I argue that pathogen eradication (and cessation of vaccination) leads to a ‘vacated niche’, which could be re-invaded by the original pathogen if introduced. Consequences for other pathogens will vary, with the crucial mechanisms being competitive release, whereby the decline of one species allows its competitors to perform better, and evolutionary adaptation. Hence, eradication can cause a quantitative rise in the incidence of another infection, but whether this leads to emergence as an endemic pathogen depends on additional factors. I focus on the case study of human monkeypox and its rise following smallpox eradication, but also survey how these ideas apply to other pathogens and discuss implications for eradication policy. PMID:23798698

  8. Niche divergence builds the case for ecological speciation in skinks of the Plestiodon skiltonianus species complex

    USGS Publications Warehouse

    Wogan, Guinevere O.U.; Richmond, Jonathan Q.

    2015-01-01

    Adaptation to different thermal environments has the potential to cause evolutionary changes that are sufficient to drive ecological speciation. Here, we examine whether climate-based niche divergence in lizards of the Plestiodon skiltonianus species complex is consistent with the outcomes of such a process. Previous work on this group shows that a mechanical sexual barrier has evolved between species that differ mainly in body size and that the barrier may be a by-product of selection for increased body size in lineages that have invaded xeric environments; however, baseline information on niche divergence among members of the group is lacking. We quantified the climatic niche using mechanistic physiological and correlative niche models and then estimated niche differences among species using ordination techniques and tests of niche overlap and equivalency. Our results show that the thermal niches of size-divergent, reproductively isolated morphospecies are significantly differentiated and that precipitation may have been as important as temperature in causing increased shifts in body size in xeric habitats. While these findings alone do not demonstrate thermal adaptation or identify the cause of speciation, their integration with earlier genetic and behavioral studies provides a useful test of phenotype–environment associations that further support the case for ecological speciation in these lizards.

  9. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs.

    PubMed

    Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin

    2011-10-01

    Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Ecological niches of three teuthophageous odontocetes in the northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Praca, E.; Gannier, A.

    2008-02-01

    In the northwestern Mediterranean Sea, sperm whales, pilot whales and Risso's dolphins prey exclusively or preferentially on cephalopods. In order to evaluate their competition, we modelled their habitat suitability with the Ecological Niche Factor Analysis (ENFA) and compared their ecological niches using a discriminant analysis. We used a long term (1995-2005) small boat data set, with visual and acoustic (sperm whale) detections. Risso's dolphin had the shallowest and the more spatially restricted principal habitat, mainly located on the upper part of the continental slope (640 m mean depth). With a wider principal habitat, at 1750 m depth in average, the sperm whale used a deeper part of the slope as well as the closest offshore waters. Finally, the pilot whale has the most oceanic habitat (2500 m mean depth) mainly located in the central Ligurian Sea and Provençal basin. Therefore, potential competition for food between these species may be reduced by the differentiation of their habitats.

  11. Interpreting the Process behind Endemism in China by Integrating the Phylogeography and Ecological Niche Models of the Stachyridopsis ruficeps

    PubMed Central

    Liu, Huatao; Wang, Wenjuan; Song, Gang; Qu, Yanhua; Li, Shou-Hsien; Fjeldså, Jon; Lei, Fumin

    2012-01-01

    An area of endemism (AOE) is a complex expression of the ecological and evolutionary history of a species. Here we aim to address the principal drivers of avian diversification in shaping patterns of endemism in China by integrating genetic, ecological, and distributional data on the Red-headed Tree Babbler (Stachyridopsis ruficeps), which is distributed across the eastern Himalayas and south China. We sequenced two mtDNA markers from 182 individuals representing all three of the primary AOEs in China. Phylogenetic inferences were used to reconstruct intraspecific phylogenetic relationships. Divergence time and population demography were estimated to gain insight into the evolutionary history of the species. We used Ecological niche modeling to predict species’ distributions during the Last Glacial Maximum (LGM) and in the present. Finally, we also used two quantitative tests, an identity test and background test to assess the similarity of ecological niche preferences between adjacent lineages. We found five primary reciprocally monophyletic clades, typically separated approximately 0.2–2.27 MYA, of which three were deeply isolated endemic lineages located in the three AOEs. All phylogroups were detected to have undergone population expansion during the past 0.3 MY. Niche models showed discontinuous habitats, and there were three barriers of less suitable habitat during the LGM and in modern times. Ecoclimatic niches may diverge significantly even over recent timescales, as each phylogroup had a unique distribution, and unique niche characteristics. Vicariant events associated with geographical and ecological barriers, glacial refuges and ecological differentiation may be the main drivers forming the pattern of endemism in China. PMID:23056441

  12. Campylobacter in poultry: filling an ecological niche.

    PubMed

    Lee, Margie D; Newell, Diane G

    2006-03-01

    Epidemiological studies indicate that Campylobacter species may be responsible for the majority of cases of sporadic gastroenteritis in humans. These studies also suggest that poultry may be one of the most common sources of the bacteria for humans. Campylobacter and related genera in the family Campylobacteraceae are oral and intestinal commensals of vertebrates and some nonvertebrates, a characteristic that complicates rational approaches to controlling Campylobacter contamination of poultry. This review will discuss the phylogeny, genomics, and physiology of campylobacters with the intention of revealing how these organisms have evolved to fill their intestinal ecological niche in poultry and how their physiology must be understood in order to enact effective control strategies.

  13. Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation.

    PubMed

    Ford, Antonia G P; Rüber, Lukas; Newton, Jason; Dasmahapatra, Kanchon K; Balarin, John D; Bruun, Kristoffer; Day, Julia J

    2016-12-01

    Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large-scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  14. Division within the North American boreal forest: Ecological niche divergence between the Bicknell's Thrush (Catharus bicknelli) and Gray-cheeked Thrush (C. minimus).

    PubMed

    FitzGerald, Alyssa M

    2017-07-01

    Sister species that diverged in allopatry in similar environments are expected to exhibit niche conservatism. Using ecological niche modeling and a multivariate analysis of climate and habitat data, I test the hypothesis that the Bicknell's Thrush ( Catharus bicknelli ) and Gray-cheeked Thrush ( C. mimimus ), sister species that breed in the North American boreal forest, show niche conservatism. Three tree species that are important components of breeding territories of both thrush species were combined with climatic variables to create niche models consisting of abiotic and biotic components. Abiotic-only, abiotic+biotic, and biotic-only models were evaluated using the area under the curve (AUC) criterion. Abiotic+biotic models had higher AUC scores and did not over-project thrush distributions compared to abiotic-only or biotic-only models. From the abiotic+biotic models, I tested for niche conservatism or divergence by accounting for the differences in the availability of niche components by calculating (1) niche overlap from ecological niche models and (2) mean niche differences of environmental values at occurrence points. Niche background similarity tests revealed significant niche divergence in 10 of 12 comparisons, and multivariate tests revealed niche divergence along 2 of 3 niche axes. The Bicknell's Thrush breeds in warmer and wetter regions with a high abundance of balsam fir ( Abies balsamea ), whereas Gray-cheeked Thrush often co-occurs with black spruce ( Picea mariana ). Niche divergence, rather than conservatism, was the predominant pattern for these species, suggesting that ecological divergence has played a role in the speciation of the Bicknell's Thrush and Gray-cheeked Thrush. Furthermore, because niche models were improved by the incorporation of biotic variables, this study validates the inclusion of relevant biotic factors in ecological niche modeling to increase model accuracy.

  15. Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America.

    PubMed

    DE LA Vega, G J; Schilman, P E

    2018-03-01

    In order to assess how triatomines (Hemiptera, Reduviidae), Chagas disease vectors, are distributed through Latin America, we analysed the relationship between the ecological niche and the limits of the physiological thermal niche in seven species of triatomines. We combined two methodological approaches: species distribution models, and physiological tolerances. First, we modelled the ecological niche and identified the most important abiotic factor for their distribution. Then, thermal tolerance limits were analysed by measuring maximum and minimum critical temperatures, upper lethal temperature, and 'chill-coma recovery time'. Finally, we used phylogenetic independent contrasts to analyse the link between limiting factors and the thermal tolerance range for the assessment of ecological hypotheses that provide a different outlook for the geo-epidemiology of Chagas disease. In triatomines, thermo-tolerance range increases with increasing latitude mainly due to better cold tolerances, suggesting an effect of thermal selection. In turn, physiological analyses show that species reaching southernmost areas have a higher thermo-tolerance than those with tropical distributions, denoting that thermo-tolerance is limiting the southern distribution. Understanding the latitudinal range along its physiological limits of disease vectors may prove useful to test ecological hypotheses and improve strategies and efficiency of vector control at the local and regional levels. © 2017 The Royal Entomological Society.

  16. Shifts in the ecological niche of Lutzomyia peruensis under climate change scenarios in Peru.

    PubMed

    Moo-Llanes, D A; Arque-Chunga, W; Carmona-Castro, O; Yañez-Arenas, C; Yañez-Trujillano, H H; Cheverría-Pacheco, L; Baak-Baak, C M; Cáceres, A G

    2017-06-01

    The Peruvian Andes presents a climate suitable for many species of sandfly that are known vectors of leishmaniasis or bartonellosis, including Lutzomyia peruensis (Diptera: Psychodidae), among others. In the present study, occurrences data for Lu. peruensis were compiled from several items in the scientific literature from Peru published between 1927 and 2015. Based on these data, ecological niche models were constructed to predict spatial distributions using three algorithms [Support vector machine (SVM), the Genetic Algorithm for Rule-set Prediction (GARP) and Maximum Entropy (MaxEnt)]. In addition, the environmental requirements of Lu. peruensis and three niche characteristics were modelled in the context of future climate change scenarios: (a) potential changes in niche breadth; (b) shifts in the direction and magnitude of niche centroids, and (c) shifts in elevation range. The model identified areas that included environments suitable for Lu. peruensis in most regions of Peru (45.77%) and an average altitude of 3289 m a.s.l. Under climate change scenarios, a decrease in the distribution areas of Lu. peruensis was observed for all representative concentration pathways. However, the centroid of the species' ecological niche showed a northwest direction in all climate change scenarios. The information generated in this study may help health authorities responsible for the supervision of strategies to control leishmaniasis to coordinate, plan and implement appropriate strategies for each area of risk, taking into account the geographic distribution and potential dispersal of Lu. peruensis. © 2017 The Royal Entomological Society.

  17. Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of Senecio carniolicus (syn. Jacobaea carniolica, Asteraceae).

    PubMed

    Hülber, Karl; Sonnleitner, Michaela; Suda, Jan; Krejčíková, Jana; Schönswetter, Peter; Schneeweiss, Gerald M; Winkler, Manuela

    2015-03-01

    Areas of immediate contact of different cytotypes offer a unique opportunity to study evolutionary dynamics within heteroploid species and to assess isolation mechanisms governing coexistence of cytotypes of different ploidy. The degree of reproductive isolation of cytotypes, that is, the frequency of heteroploid crosses and subsequent formation of viable and (partly) fertile hybrids, plays a crucial role for the long-term integrity of lineages in contact zones. Here, we assessed fine-scale distribution, spatial clustering, and ecological niches as well as patterns of gene flow in parental and hybrid cytotypes in zones of immediate contact of di-, tetra-, and hexaploid Senecio carniolicus (Asteraceae) in the Eastern Alps. Cytotypes were spatially separated also at the investigated microscale; the strongest spatial separation was observed for the fully interfertile tetra- and hexaploids. The three main cytotypes showed highly significant niche differences, which were, however, weaker than across their entire distribution ranges in the Eastern Alps. Individuals with intermediate ploidy levels were found neither in the diploid/tetraploid nor in the diploid/hexaploid contact zones indicating strong reproductive barriers. In contrast, pentaploid individuals were frequent in the tetraploid/hexaploid contact zone, albeit limited to a narrow strip in the immediate contact zone of their parental cytotypes. AFLP fingerprinting data revealed introgressive gene flow mediated by pentaploid hybrids from tetra- to hexaploid individuals, but not vice versa. The ecological niche of pentaploids differed significantly from that of tetraploids but not from hexaploids.

  18. Ecological niche differentiation of polyploidization is not supported by environmental differences among species in a cosmopolitan grass genus.

    PubMed

    Visser, Vernon; Molofsky, Jane

    2015-01-01

    • Polyploidization frequently results in the creation of new plant species, the establishment of which is thought to often be facilitated by ecological niche differentiation from the diploid species. We tested this hypothesis using the cosmopolitan grass genus Phalaris (Poaceae), consisting of 19 species that range from diploid to tetraploid to hexaploid. Specifically, we tested whether (1) polyploids occupy more extreme environments and/or (2) have broader niche breadths and/or (3) whether the polyploid species' distributions indicate a niche shift from diploid species.• We employed a bootstrapping approach using distribution data for each species and eight environmental variables to investigate differences between species in the means, extremes, and breadths of each environmental variable. We used a kernel smoothing technique to quantify niche overlap between species.• Although we found some support for the three hypotheses for a few diploid-polyploid pairs and for specific environmental variables, none of these hypotheses were generally supported.• Our results suggest that these commonly held hypotheses about the effects of polyploidization on ecological distributions are not universally applicable. Correlative biogeographic studies like ours provide a necessary first step for suggesting specific hypotheses that require experimental verification. A combination of genetic, physiological, and ecological studies will be required to achieve a better understanding of the role of polyploidization in niche evolution. © 2015 Botanical Society of America, Inc.

  19. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds.

    PubMed

    Pigot, Alex L; Trisos, Christopher H; Tobias, Joseph A

    2016-01-13

    Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. © 2016 The Author(s).

  20. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds

    PubMed Central

    Pigot, Alex L.; Trisos, Christopher H.; Tobias, Joseph A.

    2016-01-01

    Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. PMID:26740616

  1. Evolution of niche preference in Sphagnum peat mosses.

    PubMed

    Johnson, Matthew G; Granath, Gustaf; Tahvanainen, Teemu; Pouliot, Remy; Stenøien, Hans K; Rochefort, Line; Rydin, Håkan; Shaw, A Jonathan

    2015-01-01

    Peat mosses (Sphagnum) are ecosystem engineers-species in boreal peatlands simultaneously create and inhabit narrow habitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock-hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum. Using a dataset of 39 species of Sphagnum, with an 18-locus DNA alignment and an ecological dataset encompassing three large published studies, we tested for phylogenetic signal and within-genus changes in evolutionary rate of eight niche descriptors and two multivariate niche gradients. We find little to no evidence for phylogenetic signal in most component descriptors of the ionic gradient, but interspecific variation along the hummock-hollow gradient shows considerable phylogenetic signal. We find support for a change in the rate of niche evolution within the genus-the hummock-forming subgenus Acutifolia has evolved along the multivariate hummock-hollow gradient faster than the hollow-inhabiting subgenus Cuspidata. Because peat mosses themselves create some of the ecological gradients constituting their own habitats, the classic microtopography of Sphagnum-dominated peatlands is maintained by evolutionary constraints and the biological properties of related Sphagnum species. The patterns of phylogenetic signal observed here will instruct future study on the role of functional traits in peatland growth and reconstruction. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. Morphological and niche divergence of pinyon pines.

    PubMed

    Ortiz-Medrano, Alejandra; Scantlebury, Daniel Patrick; Vázquez-Lobo, Alejandra; Mastretta-Yanes, Alicia; Piñero, Daniel

    2016-05-01

    The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation.

  3. Habitat suitability and ecological niches of different plankton functional types in the global ocean

    NASA Astrophysics Data System (ADS)

    Vogt, Meike; Brun, Philipp; Payne, Mark R.; O'Brien, Colleen J.; Bednaršek, Nina; Buitenhuis, Erik T.; Doney, Scott C.; Leblanc, Karine; Le Quéré, Corinne; Luo, Yawei; Moriarty, Róisín; O'Brien, Todd D.; Schiebel, Ralf; Swan, Chantal

    2013-04-01

    Marine plankton play a central role in the biogeochemical cycling of important elements such as carbon, nitrogen, and sulphur. While our knowledge about marine ecosystem structure and functioning is still scarce and episodic, several recent observational studies confirm that marine ecosystems have been changing due to recent climate change, overfishing, and coastal eutrophication. In order to better understand marine ecosystem dynamics, the MAREDAT initiative has recently collected abundance and biomass data for 5 autotrophic (diatoms, Phaeocystis, coccolithophores, nitrogen fixers, picophytoplankton), and 6 heterotrophic plankton functional types (PFTs; bacteria, micro-, meso- and macrozooplankton, foraminifera and pteropods). Species distribution models (SDMs) are statistical tools that can be used to derive information about species habitats in space and time. They have been used extensively for a wide range of ecological applications in terrestrial ecosystems, but here we present the first global application in the marine realm, which was made possible by the MAREDAT data synthesis effort. We use a maximum entropy SDM to simulate global habitat suitability, habitat extent and ecological niches for different PFTs in the modern ocean. Present habitat suitability is derived from presence-only MAREDAT data and the observed annual and monthly mean levels of physiologically relevant variables such as SST, nutrient concentration or photosynthetic active radiation received in the mixed layer. This information can then be used to derive ecological niches for different species or taxa within each PFT, and to compare the ecological niches of different PFTs. While these results still need verification because data was not available for all ocean regions for all PFTs, they can give a first indication what present and future plankton habitats may look like, and what consequences we may have to expect for future marine ecosystem functioning and service provision in a warmer

  4. An introduction to niche construction theory.

    PubMed

    Laland, Kevin; Matthews, Blake; Feldman, Marcus W

    Niche construction refers to the modification of selective environments by organisms. Theoretical and empirical studies of niche construction are increasing in importance as foci in evolutionary ecology. This special edition presents theoretical and empirical research that illustrates the significance of niche construction to the field. Here we set the scene for the following papers by (1) discussing the history of niche construction research, (2) providing clear definitions that distinguish niche construction from related concepts such as ecosystem engineering and the extended phenotype, (3) providing a brief summary of the findings of niche construction research, (4) discussing the contribution of niche construction and ecological inheritance to (a) expanded notions of inheritance, and (b) the extended evolutionary synthesis, and (5) briefly touching on some of the issues that underlie the controversies over niche construction.

  5. Feeding ecology and niche overlap of Lake Ontario offshore forage fish assessed with stable isotopes

    USGS Publications Warehouse

    Mumby, James; Johson, Timothy; Stewart, Thomas; Halfyard, Edward; Walsh, Maureen; Weidel, Brian C.; Lantry, Jana; Fisk, Aarron

    2017-01-01

    The forage fish communities of the Laurentian Great Lakes continue to experience changes that have altered ecosystem structure, yet little is known about how they partition resources. Seasonal, spatial and body size variation in δ13C and δ15N was used to assess isotopic niche overlap and resource and habitat partitioning among the five common offshore Lake Ontario forage fish species (n = 2037) [Alewife (Alosa pseudoharengus), Rainbow Smelt (Osmerus mordax), Round Goby (Neogobius melanostomus), and Deepwater (Myoxocephalus thompsonii) and Slimy (Cottus cognatus) Sculpin]. Round Goby had the largest isotopic niche (6.1‰2, standard ellipse area (SEAC)), followed by Alewife (3.4‰2) while Rainbow Smelt, Slimy Sculpin and Deepwater Sculpin had the smallest and similar niche size (1.7-1.8‰2), with only the Sculpin species showing significant isotopic niche overlap (>63%). Stable isotopes in Alewife, Round Goby and Rainbow Smelt varied with location, season and size, but did not in the Sculpin spp. Lake Ontario forage fish species have partitioned food and habitat resources, and non-native Alewife and Round Goby have the largest isotopic niche, suggestive of a boarder ecological niche, and may contribute to their current high abundance.

  6. Comparative analysis of remotely-sensed data products via ecological niche modeling of avian influenza case occurrences in Middle Eastern poultry.

    PubMed

    Bodbyl-Roels, Sarah; Peterson, A Townsend; Xiao, Xiangming

    2011-03-28

    Ecological niche modeling integrates known sites of occurrence of species or phenomena with data on environmental variation across landscapes to infer environmental spaces potentially inhabited (i.e., the ecological niche) to generate predictive maps of potential distributions in geographic space. Key inputs to this process include raster data layers characterizing spatial variation in environmental parameters, such as vegetation indices from remotely sensed satellite imagery. The extent to which ecological niche models reflect real-world distributions depends on a number of factors, but an obvious concern is the quality and content of the environmental data layers. We assessed ecological niche model predictions of H5N1 avian flu presence quantitatively within and among four geographic regions, based on models incorporating two means of summarizing three vegetation indices derived from the MODIS satellite. We evaluated our models for predictive ability using partial ROC analysis and GLM ANOVA to compare performance among indices and regions. We found correlations between vegetation indices to be high, such that they contain information that overlaps broadly. Neither the type of vegetation index used nor method of summary affected model performance significantly. However, the degree to which model predictions had to be transferred (i.e., projected onto landscapes and conditions not represented on the landscape of training) impacted predictive strength greatly (within-region model predictions far out-performed models projected among regions). Our results provide the first quantitative tests of most appropriate uses of different remotely sensed data sets in ecological niche modeling applications. While our testing did not result in a decisive "best" index product or means of summarizing indices, it emphasizes the need for careful evaluation of products used in modeling (e.g. matching temporal dimensions and spatial resolution) for optimum performance, instead of

  7. The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz

    PubMed Central

    Yañez-Arenas, Carlos; Peterson, A. Townsend; Mokondoko, Pierre; Rojas-Soto, Octavio; Martínez-Meyer, Enrique

    2014-01-01

    Background Many authors have claimed that snakebite risk is associated with human population density, human activities, and snake behavior. Here we analyzed whether environmental suitability of vipers can be used as an indicator of snakebite risk. We tested several hypotheses to explain snakebite incidence, through the construction of models incorporating both environmental suitability and socioeconomic variables in Veracruz, Mexico. Methodology/Principal Findings Ecological niche modeling (ENM) was used to estimate potential geographic and ecological distributions of nine viper species' in Veracruz. We calculated the distance to the species' niche centroid (DNC); this distance may be associated with a prediction of abundance. We found significant inverse relationships between snakebites and DNCs of common vipers (Crotalus simus and Bothrops asper), explaining respectively 15% and almost 35% of variation in snakebite incidence. Additionally, DNCs for these two vipers, in combination with marginalization of human populations, accounted for 76% of variation in incidence. Conclusions/Significance Our results suggest that niche modeling and niche-centroid distance approaches can be used to mapping distributions of environmental suitability for venomous snakes; combining this ecological information with socioeconomic factors may help with inferring potential risk areas for snakebites, since hospital data are often biased (especially when incidences are low). PMID:24963989

  8. Modeling the Ecological Niche of Bacillus anthracis to Map Anthrax Risk in Kyrgyzstan

    PubMed Central

    Blackburn, Jason K.; Matakarimov, Saitbek; Kozhokeeva, Sabira; Tagaeva, Zhyldyz; Bell, Lindsay K.; Kracalik, Ian T.; Zhunushov, Asankadyr

    2017-01-01

    Anthrax, caused by the environmental bacterium Bacillus anthracis, is an important zoonosis nearly worldwide. In Central Asia, anthrax represents a major veterinary and public health concern. In the Republic of Kyrgyzstan, ongoing anthrax outbreaks have been reported in humans associated with handling infected livestock and contaminated animal by-products such as meat or hides. The current anthrax situation has prompted calls for improved insights into the epidemiology, ecology, and spatial distribution of the disease in Kyrgyzstan to better inform control and surveillance. Disease control for both humans and livestock relies on annual livestock vaccination ahead of outbreaks. Toward this, we used a historic database of livestock anthrax reported from 1932 to 2006 mapped at high resolution to develop an ecological niche model–based prediction of B. anthracis across Kyrgyzstan and identified spatial clusters of livestock anthrax using a cluster morphology statistic. We also defined the seasonality of outbreaks in livestock. Cattle were the most frequently reported across the time period, with the greatest number of cases in late summer months. Our niche models defined four areas as suitable to support pathogen persistence, the plateaus near Talas and Bishkek, the valleys of western Kyrgyzstan along the Fergana Valley, and the low-lying areas along the shore of Lake Isyk-Kul. These areas should be considered “at risk” for livestock anthrax and subsequent human cases. Areas defined by the niche models can be used to prioritize anthrax surveillance and inform efforts to target livestock vaccination campaigns. PMID:28115677

  9. Modeling the Ecological Niche of Bacillus anthracis to Map Anthrax Risk in Kyrgyzstan.

    PubMed

    Blackburn, Jason K; Matakarimov, Saitbek; Kozhokeeva, Sabira; Tagaeva, Zhyldyz; Bell, Lindsay K; Kracalik, Ian T; Zhunushov, Asankadyr

    2017-03-01

    AbstractAnthrax, caused by the environmental bacterium Bacillus anthracis , is an important zoonosis nearly worldwide. In Central Asia, anthrax represents a major veterinary and public health concern. In the Republic of Kyrgyzstan, ongoing anthrax outbreaks have been reported in humans associated with handling infected livestock and contaminated animal by-products such as meat or hides. The current anthrax situation has prompted calls for improved insights into the epidemiology, ecology, and spatial distribution of the disease in Kyrgyzstan to better inform control and surveillance. Disease control for both humans and livestock relies on annual livestock vaccination ahead of outbreaks. Toward this, we used a historic database of livestock anthrax reported from 1932 to 2006 mapped at high resolution to develop an ecological niche model-based prediction of B. anthracis across Kyrgyzstan and identified spatial clusters of livestock anthrax using a cluster morphology statistic. We also defined the seasonality of outbreaks in livestock. Cattle were the most frequently reported across the time period, with the greatest number of cases in late summer months. Our niche models defined four areas as suitable to support pathogen persistence, the plateaus near Talas and Bishkek, the valleys of western Kyrgyzstan along the Fergana Valley, and the low-lying areas along the shore of Lake Isyk-Kul. These areas should be considered "at risk" for livestock anthrax and subsequent human cases. Areas defined by the niche models can be used to prioritize anthrax surveillance and inform efforts to target livestock vaccination campaigns.

  10. Niche conservatism as an emerging principle in ecology and conservation biology.

    PubMed

    Wiens, John J; Ackerly, David D; Allen, Andrew P; Anacker, Brian L; Buckley, Lauren B; Cornell, Howard V; Damschen, Ellen I; Jonathan Davies, T; Grytnes, John-Arvid; Harrison, Susan P; Hawkins, Bradford A; Holt, Robert D; McCain, Christy M; Stephens, Patrick R

    2010-10-01

    The diversity of life is ultimately generated by evolution, and much attention has focused on the rapid evolution of ecological traits. Yet, the tendency for many ecological traits to instead remain similar over time [niche conservatism (NC)] has many consequences for the fundamental patterns and processes studied in ecology and conservation biology. Here, we describe the mounting evidence for the importance of NC to major topics in ecology (e.g. species richness, ecosystem function) and conservation (e.g. climate change, invasive species). We also review other areas where it may be important but has generally been overlooked, in both ecology (e.g. food webs, disease ecology, mutualistic interactions) and conservation (e.g. habitat modification). We summarize methods for testing for NC, and suggest that a commonly used and advocated method (involving a test for phylogenetic signal) is potentially problematic, and describe alternative approaches. We suggest that considering NC: (1) focuses attention on the within-species processes that cause traits to be conserved over time, (2) emphasizes connections between questions and research areas that are not obviously related (e.g. invasives, global warming, tropical richness), and (3) suggests new areas for research (e.g. why are some clades largely nocturnal? why do related species share diseases?). 2010 Blackwell Publishing Ltd/CNRS.

  11. [Current and future ecological niche of Leishmaniasis (Kinetoplastida: Trypanosomatidae) in the Neotropical region].

    PubMed

    Moo-Llanes, David A

    2016-09-01

    The leishmaniasis is a complex disease system, caused by the protozoan parasite Leishmania and transmitted to humans by the vector Lutzomyia spp. Since it is listed as a neglected disease according to the World Health Organization, the aim of this study was to determine the current and future niche of cutaneous and visceral leishmaniasis in the Neotropical region. We built the ecological niche model (ENM) of cutaneous (N= 2 910 occurrences) and visceral (N= 851 occurrences) leishmaniasis using MaxEnt algorithm. Nine bioclimatic variables (BIO1, BIO4, BIO5, BIO6, BIO7, BIO12, BIO13, BIO14, BIO15 (downloaded from the Worldclim) and disease occurrences data were used for the construction of ENM for three periods (current, 2050 and 2070) and four climate change scenarios (RCP 2.6, 4.5, 6.0 y 8.5). We analyzed the number of pixels occupied, identity niche, modified niche (stable, loss, and gain) and seasonality. Our analyses indicated the expansion for cutaneous leishmaniasis (CL), a comparison for visceral leishmaniasis (VL). We rejected the null hypothesis of niche identity between CL and VL with Hellinger’s index = 0.91 (0.92-0.98) and Schoener’s Index = 0.67 (0.85-1.00) but with an overlap niche of 56.3 %. The differences between the two leishmaniasis types were detected in relation to RCP scenarios and niche shifts (area gained / loss). Seasonality was more important for CL. We provided a current picture of CL and VL distributions and the predicted distributional changes associated to different climate change scenarios for the Neotropical region. We can anticipate that increasing range is likely although it will depend locally on the future trends in weather seasonality.

  12. Functional traits, convergent evolution, and periodic tables of niches.

    PubMed

    Winemiller, Kirk O; Fitzgerald, Daniel B; Bower, Luke M; Pianka, Eric R

    2015-08-01

    Ecology is often said to lack general theories sufficiently predictive for applications. Here, we examine the concept of a periodic table of niches and feasibility of niche classification schemes from functional trait and performance data. Niche differences and their influence on ecological patterns and processes could be revealed effectively by first performing data reduction/ordination analyses separately on matrices of trait and performance data compiled according to logical associations with five basic niche 'dimensions', or aspects: habitat, life history, trophic, defence and metabolic. Resultant patterns then are integrated to produce interpretable niche gradients, ordinations and classifications. Degree of scheme periodicity would depend on degrees of niche conservatism and convergence causing species clustering across multiple niche dimensions. We analysed a sample data set containing trait and performance data to contrast two approaches for producing niche schemes: species ordination within niche gradient space, and niche categorisation according to trait-value thresholds. Creation of niche schemes useful for advancing ecological knowledge and its applications will depend on research that produces functional trait and performance datasets directly related to niche dimensions along with criteria for data standardisation and quality. As larger databases are compiled, opportunities will emerge to explore new methods for data reduction, ordination and classification. © 2015 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  13. Inferring the Ecological Niche of Toxoplasma gondii and Bartonella spp. in Wild Felids.

    PubMed

    Escobar, Luis E; Carver, Scott; Romero-Alvarez, Daniel; VandeWoude, Sue; Crooks, Kevin R; Lappin, Michael R; Craft, Meggan E

    2017-01-01

    Traditional epidemiological studies of disease in animal populations often focus on directly transmitted pathogens. One reason pathogens with complex lifecycles are understudied could be due to challenges associated with detection in vectors and the environment. Ecological niche modeling (ENM) is a methodological approach that overcomes some of the detection challenges often seen with vector or environmentally dependent pathogens. We test this approach using a unique dataset of two pathogens in wild felids across North America: Toxoplasma gondii and Bartonella spp. in bobcats ( Lynx rufus ) and puma ( Puma concolor ). We found three main patterns. First, T. gondii showed a broader use of environmental conditions than did Bartonella spp. Also, ecological niche models, and Normalized Difference Vegetation Index satellite imagery, were useful even when applied to wide-ranging hosts. Finally, ENM results from one region could be applied to other regions, thus transferring information across different landscapes. With this research, we detail the uncertainty of epidemiological risk models across novel environments, thereby advancing tools available for epidemiological decision-making. We propose that ENM could be a valuable tool for enabling understanding of transmission risk, contributing to more focused prevention and control options for infectious diseases.

  14. Niche-tracking migrants and niche-switching residents: evolution of climatic niches in New World warblers (Parulidae)

    PubMed Central

    Gómez, Camila; Tenorio, Elkin A.; Montoya, Paola; Cadena, Carlos Daniel

    2016-01-01

    Differences in life-history traits between tropical and temperate lineages are often attributed to differences in their climatic niche dynamics. For example, the more frequent appearance of migratory behaviour in temperate-breeding species than in species originally breeding in the tropics is believed to have resulted partly from tropical climatic stability and niche conservatism constraining tropical species from shifting their ranges. However, little is known about the patterns and processes underlying climatic niche evolution in migrant and resident animals. We evaluated the evolution of overlap in climatic niches between seasons and its relationship to migratory behaviour in the Parulidae, a family of New World passerine birds. We used ordination methods to measure seasonal niche overlap and niche breadth of 54 resident and 49 migrant species and used phylogenetic comparative methods to assess patterns of climatic niche evolution. We found that despite travelling thousands of kilometres, migrants tracked climatic conditions across the year to a greater extent than tropical residents. Migrant species had wider niches than resident species, although residents as a group occupied a wider climatic space and niches of migrants and residents overlapped extensively. Neither breeding latitude nor migratory distance explained variation among species in climatic niche overlap between seasons. Our findings support the notion that tropical species have narrower niches than temperate-breeders, but does not necessarily constrain their ability to shift or expand their geographical ranges and become migratory. Overall, the tropics may have been historically less likely to experience the suite of components that generate strong selection pressures for the evolution of migratory behaviour. PMID:26865303

  15. The niche, biogeography and species interactions

    PubMed Central

    Wiens, John J.

    2011-01-01

    In this paper, I review the relevance of the niche to biogeography, and what biogeography may tell us about the niche. The niche is defined as the combination of abiotic and biotic conditions where a species can persist. I argue that most biogeographic patterns are created by niche differences over space, and that even ‘geographic barriers’ must have an ecological basis. However, we know little about specific ecological factors underlying most biogeographic patterns. Some evidence supports the importance of abiotic factors, whereas few examples exist of large-scale patterns created by biotic interactions. I also show how incorporating biogeography may offer new perspectives on resource-related niches and species interactions. Several examples demonstrate that even after a major evolutionary radiation within a region, the region can still be invaded by ecologically similar species from another clade, countering the long-standing idea that communities and regions are generally ‘saturated’ with species. I also describe the somewhat paradoxical situation where competition seems to limit trait evolution in a group, but does not prevent co-occurrence of species with similar values for that trait (called here the ‘competition–divergence–co-occurrence conundrum’). In general, the interface of biogeography and ecology could be a major area for research in both fields. PMID:21768150

  16. Ecological Niche Modeling for the Prediction of the Geographic Distribution of Cutaneous Leishmaniasis in Tunisia

    PubMed Central

    Chalghaf, Bilel; Chlif, Sadok; Mayala, Benjamin; Ghawar, Wissem; Bettaieb, Jihène; Harrabi, Myriam; Benie, Goze Bertin; Michael, Edwin; Salah, Afif Ben

    2016-01-01

    Cutaneous leishmaniasis is a very complex disease involving multiple factors that limit its emergence and spatial distribution. Prediction of cutaneous leishmaniasis epidemics in Tunisia remains difficult because most of the epidemiological tools used so far are descriptive in nature and mainly focus on a time dimension. The purpose of this work is to predict the potential geographic distribution of Phlebotomus papatasi and zoonotic cutaneous leishmaniasis caused by Leishmania major in Tunisia using Grinnellian ecological niche modeling. We attempted to assess the importance of environmental factors influencing the potential distribution of P. papatasi and cutaneous leishmaniasis caused by L. major. Vectors were trapped in central Tunisia during the transmission season using CDC light traps (John W. Hock Co., Gainesville, FL). A global positioning system was used to record the geographical coordinates of vector occurrence points and households tested positive for cutaneous leishmaniasis caused by L. major. Nine environmental layers were used as predictor variables to model the P. papatasi geographical distribution and five variables were used to model the L. major potential distribution. Ecological niche modeling was used to relate known species' occurrence points to values of environmental factors for these same points to predict the presence of the species in unsampled regions based on the value of the predictor variables. Rainfall and temperature contributed the most as predictors for sand flies and human case distributions. Ecological niche modeling anticipated the current distribution of P. papatasi with the highest suitability for species occurrence in the central and southeastern part of Tunisian. Furthermore, our study demonstrated that governorates of Gafsa, Sidi Bouzid, and Kairouan are at highest epidemic risk. PMID:26856914

  17. Ecological Niche Modeling for the Prediction of the Geographic Distribution of Cutaneous Leishmaniasis in Tunisia.

    PubMed

    Chalghaf, Bilel; Chlif, Sadok; Mayala, Benjamin; Ghawar, Wissem; Bettaieb, Jihène; Harrabi, Myriam; Benie, Goze Bertin; Michael, Edwin; Salah, Afif Ben

    2016-04-01

    Cutaneous leishmaniasis is a very complex disease involving multiple factors that limit its emergence and spatial distribution. Prediction of cutaneous leishmaniasis epidemics in Tunisia remains difficult because most of the epidemiological tools used so far are descriptive in nature and mainly focus on a time dimension. The purpose of this work is to predict the potential geographic distribution of Phlebotomus papatasi and zoonotic cutaneous leishmaniasis caused by Leishmania major in Tunisia using Grinnellian ecological niche modeling. We attempted to assess the importance of environmental factors influencing the potential distribution of P. papatasi and cutaneous leishmaniasis caused by L. major. Vectors were trapped in central Tunisia during the transmission season using CDC light traps (John W. Hock Co., Gainesville, FL). A global positioning system was used to record the geographical coordinates of vector occurrence points and households tested positive for cutaneous leishmaniasis caused by L. major. Nine environmental layers were used as predictor variables to model the P. papatasi geographical distribution and five variables were used to model the L. major potential distribution. Ecological niche modeling was used to relate known species' occurrence points to values of environmental factors for these same points to predict the presence of the species in unsampled regions based on the value of the predictor variables. Rainfall and temperature contributed the most as predictors for sand flies and human case distributions. Ecological niche modeling anticipated the current distribution of P. papatasi with the highest suitability for species occurrence in the central and southeastern part of Tunisian. Furthermore, our study demonstrated that governorates of Gafsa, Sidi Bouzid, and Kairouan are at highest epidemic risk. © The American Society of Tropical Medicine and Hygiene.

  18. Doctoral Education in a Successful Ecological Niche: A Qualitative Exploratory Case Study of the Relationship between the Microclimate and Doctoral Students' Learning to Become a Researcher

    ERIC Educational Resources Information Center

    Christensen, Mette K.; Lund, Ole

    2014-01-01

    Scholarly communities are dependent on and often measured by their ability to attract and develop doctoral students. Recent literature suggests that most scholarly communities entail ecological niches in which the doctoral students learn the codes and practices of research. In this article, we explore the microclimate in an ecological niche of…

  19. Niche construction theory: a practical guide for ecologists.

    PubMed

    Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N

    2013-03-01

    Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.

  20. Climatic niche conservatism and ecological opportunity in the explosive radiation of arvicoline rodents (Arvicolinae, Cricetidae).

    PubMed

    Lv, Xue; Xia, Lin; Ge, Deyan; Wu, Yongjie; Yang, Qisen

    2016-05-01

    Climatic niche conservatism shapes patterns of diversity in many taxonomic groups, while ecological opportunity (EO) can trigger rapid speciation that is less constrained by the amount of time a lineage has occupied a given habitat. These two processes are well studied, but limited research has considered their joint and relative roles in shaping diversity patterns. We characterized climatic and biogeographic variables for 102 species of arvicoline rodents (Arvicolinae, Cricetidae), testing the effects of climatic niche conservatism and EO on arvicoline diversification as lineages transitioned between biogeographic regions. We found that the amount of time a lineage has occupied a precipitation niche is positively correlated with diversity along a precipitation gradient, suggesting climatic niche conservatism. In contrast, shift in diversification rate explained diversity patterns along a temperature gradient. Our results suggest that an indirect relationship exists between temperature and diversification that is associated with EO as arvicoline rodents colonized warm Palearctic environments. Climatic niche conservatism alone did not fully explain diversity patterns under density-dependence, highlighting the additional importance of EO-related processes in promoting the explosive radiation in arvicoline rodents and shaping diversity pattern among biogeographic regions and along climatic gradients. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  1. Major challenges for correlational ecological niche model projections to future climate conditions.

    PubMed

    Peterson, A Townsend; Cobos, Marlon E; Jiménez-García, Daniel

    2018-06-20

    Species-level forecasts of distributional potential and likely distributional shifts, in the face of changing climates, have become popular in the literature in the past 20 years. Many refinements have been made to the methodology over the years, and the result has been an approach that considers multiple sources of variation in geographic predictions, and how that variation translates into both specific predictions and uncertainty in those predictions. Although numerous previous reviews and overviews of this field have pointed out a series of assumptions and caveats associated with the methodology, three aspects of the methodology have important impacts but have not been treated previously in detail. Here, we assess those three aspects: (1) effects of niche truncation on model transfers to future climate conditions, (2) effects of model selection procedures on future-climate transfers of ecological niche models, and (3) relative contributions of several factors (replicate samples of point data, general circulation models, representative concentration pathways, and alternative model parameterizations) to overall variance in model outcomes. Overall, the view is one of caution: although resulting predictions are fascinating and attractive, this paradigm has pitfalls that may bias and limit confidence in niche model outputs as regards the implications of climate change for species' geographic distributions. © 2018 New York Academy of Sciences.

  2. The ecological niche and reciprocal prediction of the disjunct distribution of an invasive species: the example of Ailanthus altissima

    Treesearch

    Thomas P. Albright; Hao Chen; Lijun Chen; Qinfeng Guo

    2010-01-01

    Knowledge of the ecological niches of invasive species in native and introduced ranges can inform management as well as ecological and evolutionary theory. Here, we identified and compared factors associated with the distribution of an invasive tree, Ailanthus altissima, in both its native Chinese and introduced US ranges and predicted potential US...

  3. Isotopic niches support the resource breadth hypothesis.

    PubMed

    Rader, Jonathan A; Newsome, Seth D; Sabat, Pablo; Chesser, R Terry; Dillon, Michael E; Martínez Del Rio, Carlos

    2017-03-01

    Because a broad spectrum of resource use allows species to persist in a wide range of habitat types, and thus permits them to occupy large geographical areas, and because broadly distributed species have access to more diverse resource bases, the resource breadth hypothesis posits that the diversity of resources used by organisms should be positively related with the extent of their geographic ranges. We investigated isotopic niche width in a small radiation of South American birds in the genus Cinclodes. We analysed feathers of 12 species of Cinclodes to test the isotopic version of the resource breadth hypothesis and to examine the correlation between isotopic niche breadth and morphology. We found a positive correlation between the widths of hydrogen and oxygen isotopic niches (which estimate breadth of elevational range) and widths of the carbon and nitrogen isotopic niches (which estimates the diversity of resources consumed, and hence of habitats used). We also found a positive correlation between broad isotopic niches and wing morphology. Our study not only supports the resource breadth hypothesis but it also highlights the usefulness of stable isotope analyses as tools in the exploration of ecological niches. It is an example of a macroecological application of stable isotopes. It also illustrates the importance of scientific collections in ecological studies. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  4. Potential Distribution of Chagas Disease Vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, Based on Ecological Niche Modeling

    PubMed Central

    Suárez-Escudero, Laura C.; González-Caro, Sebastián

    2016-01-01

    Ecological niche modeling of Triatominae bugs allow us to establish the local risk of transmission of the parasite Trypanosoma cruzi, which causes Chagas disease. This information could help to guide health authority recommendations on infection monitoring, prevention, and control. In this study, we estimated the geographic distribution of triatomine species in Colombia and identified the relationship between landscape structure and climatic factors influencing their occurrence. A total of 2451 records of 4 triatomine species (Panstrongylus geniculatus, Rhodnius pallescens, R. prolixus, and Triatoma maculata) were analyzed. The variables that provided more information to explain the ecologic niche of these vectors were related to precipitation, altitude, and temperature. We found that the species with the broadest potential geographic distribution were P. geniculatus, R. pallescens, and R. prolixus. In general, the models predicted the highest occurrence probability of these vectors in the eastern slope of the Eastern Cordillera, the southern region of the Magdalena valley, and the Sierra Nevada of Santa Marta. PMID:28115946

  5. Potential Distribution of Chagas Disease Vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, Based on Ecological Niche Modeling.

    PubMed

    Parra-Henao, Gabriel; Suárez-Escudero, Laura C; González-Caro, Sebastián

    2016-01-01

    Ecological niche modeling of Triatominae bugs allow us to establish the local risk of transmission of the parasite Trypanosoma cruzi, which causes Chagas disease. This information could help to guide health authority recommendations on infection monitoring, prevention, and control. In this study, we estimated the geographic distribution of triatomine species in Colombia and identified the relationship between landscape structure and climatic factors influencing their occurrence. A total of 2451 records of 4 triatomine species ( Panstrongylus geniculatus , Rhodnius pallescens , R. prolixus , and Triatoma maculata ) were analyzed. The variables that provided more information to explain the ecologic niche of these vectors were related to precipitation, altitude, and temperature. We found that the species with the broadest potential geographic distribution were P. geniculatus , R. pallescens , and R. prolixus . In general, the models predicted the highest occurrence probability of these vectors in the eastern slope of the Eastern Cordillera, the southern region of the Magdalena valley, and the Sierra Nevada of Santa Marta.

  6. Individual and species-specific traits explain niche size and functional role in spiders as generalist predators.

    PubMed

    Sanders, Dirk; Vogel, Esther; Knop, Eva

    2015-01-01

    The function of a predator within a community is greatly based on its trophic niche, that is the number and the strength of feeding links. In generalist predators, which feed on a wide range of prey, the size and position of the trophic niche is likely determined by traits such as hunting mode, the stratum they occur in, their body size and age. We used stable isotope analyses ((13)C and (15)N) to measure the trophic niche size of nine spider species within a forest hedge community and tested for species traits and individual traits that influence stable isotope enrichment, niche size and resource use. The spiders Enoplognatha, Philodromus, Floronia, and Heliophanus had large isotopic niches, which correspond to a more generalistic feeding behaviour. In contrast, Araneus, Metellina and Agelena, as top predators in the system, had rather narrow niches. We found a negative correlation between trophic position and niche size. Differences in trophic position in spiders were explained by body size, hunting modes and stratum, while niche size was influenced by hunting mode. In Philodromus, the size of the trophic niche increased significantly with age. Fitting spiders to functional groups according to their mean body size, hunting mode and their habitat domain resulted in largely separated niches, which indicates that these traits are meaningful for separating functional entities in spiders. Functional groups based on habitat domain (stratum) caught the essential functional differences between the species with species higher up in the vegetation feeding on flying insects and herb and ground species also preying on forest floor decomposers. Interestingly, we found a gradient from large species using a higher habitat domain and having a smaller niche to smaller species foraging closer to the ground and having a larger niche. This shows that even within generalist predators, such as spiders, there is a gradient of specialism that can be predicted by functional traits.

  7. Ecological niche models reveal the importance of climate variability for the biogeography of protosteloid amoebae

    PubMed Central

    Aguilar, María; Lado, Carlos

    2012-01-01

    Habitat availability and environmental preferences of species are among the most important factors in determining the success of dispersal processes and therefore in shaping the distribution of protists. We explored the differences in fundamental niches and potential distributions of an ecological guild of slime moulds—protosteloid amoebae—in the Iberian Peninsula. A large set of samples collected in a north-east to south-west transect of approximately 1000 km along the peninsula was used to test the hypothesis that, together with the existence of suitable microhabitats, climate conditions may determine the probability of survival of species. Although protosteloid amoebae share similar morphologies and life history strategies, canonical correspondence analyses showed that they have varied ecological optima, and that climate conditions have an important effect in niche differentiation. Maxent environmental niche models provided consistent predictions of the probability of presence of the species based on climate data, and they were used to generate maps of potential distribution in an ‘everything is everywhere' scenario. The most important climatic factors were, in both analyses, variables that measure changes in conditions throughout the year, confirming that the alternation of fruiting bodies, cysts and amoeboid stages in the life cycles of protosteloid amoebae constitutes an advantage for surviving in a changing environment. Microhabitat affinity seems to be influenced by climatic conditions, which suggests that the micro-environment may vary at a local scale and change together with the external climate at a larger scale. PMID:22402402

  8. Ecological niche models reveal the importance of climate variability for the biogeography of protosteloid amoebae.

    PubMed

    Aguilar, María; Lado, Carlos

    2012-08-01

    Habitat availability and environmental preferences of species are among the most important factors in determining the success of dispersal processes and therefore in shaping the distribution of protists. We explored the differences in fundamental niches and potential distributions of an ecological guild of slime moulds-protosteloid amoebae-in the Iberian Peninsula. A large set of samples collected in a north-east to south-west transect of approximately 1000 km along the peninsula was used to test the hypothesis that, together with the existence of suitable microhabitats, climate conditions may determine the probability of survival of species. Although protosteloid amoebae share similar morphologies and life history strategies, canonical correspondence analyses showed that they have varied ecological optima, and that climate conditions have an important effect in niche differentiation. Maxent environmental niche models provided consistent predictions of the probability of presence of the species based on climate data, and they were used to generate maps of potential distribution in an 'everything is everywhere' scenario. The most important climatic factors were, in both analyses, variables that measure changes in conditions throughout the year, confirming that the alternation of fruiting bodies, cysts and amoeboid stages in the life cycles of protosteloid amoebae constitutes an advantage for surviving in a changing environment. Microhabitat affinity seems to be influenced by climatic conditions, which suggests that the micro-environment may vary at a local scale and change together with the external climate at a larger scale.

  9. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage

    PubMed Central

    Pearman, Peter B; Lavergne, Sébastien; Roquet, Cristina; Wüest, Rafael; Zimmermann, Niklaus E; Thuiller, Wilfried

    2014-01-01

    Aim The origins of ecological diversity in continental species assemblages have long intrigued biogeographers. We apply phylogenetic comparative analyses to disentangle the evolutionary patterns of ecological niches in an assemblage of European birds. We compare phylogenetic patterns in trophic, habitat and climatic niche components. Location Europe. Methods From polygon range maps and handbook data we inferred the realized climatic, habitat and trophic niches of 405 species of breeding birds in Europe. We fitted Pagel's lambda and kappa statistics, and conducted analyses of disparity through time to compare temporal patterns of ecological diversification on all niche axes together. All observed patterns were compared with expectations based on neutral (Brownian) models of niche divergence. Results In this assemblage, patterns of phylogenetic signal (lambda) suggest that related species resemble each other less in regard to their climatic and habitat niches than they do in their trophic niche. Kappa estimates show that ecological divergence does not gradually increase with divergence time, and that this punctualism is stronger in climatic niches than in habitat and trophic niches. Observed niche disparity markedly exceeds levels expected from a Brownian model of ecological diversification, thus providing no evidence for past phylogenetic niche conservatism in these multivariate niches. Levels of multivariate disparity are greatest for the climatic niche, followed by disparity of the habitat and the trophic niches. Main conclusions Phylogenetic patterns in the three niche components differ within this avian assemblage. Variation in evolutionary rates (degree of gradualism, constancy through the tree) and/or non-random macroecological sampling probably lead here to differences in the phylogenetic structure of niche components. Testing hypotheses on the origin of these patterns requires more complete phylogenetic trees of the birds, and extended ecological data on

  10. Widespread correlations between climatic niche evolution and species diversification in birds.

    PubMed

    Cooney, Christopher R; Seddon, Nathalie; Tobias, Joseph A

    2016-07-01

    The adaptability of species' climatic niches can influence the dynamics of colonization and gene flow across climatic gradients, potentially increasing the likelihood of speciation or reducing extinction in the face of environmental change. However, previous comparative studies have tested these ideas using geographically, taxonomically and ecologically restricted samples, yielding mixed results, and thus the processes linking climatic niche evolution with diversification remain poorly understood. Focusing on birds, the largest and most widespread class of terrestrial vertebrates, we test whether variation in species diversification among clades is correlated with rates of climatic niche evolution and the extent to which these patterns are modified by underlying gradients in biogeography and species' ecology. We quantified climatic niches, latitudinal distribution and ecological traits for 7657 (˜75%) bird species based on geographical range polygons and then used Bayesian phylogenetic analyses to test whether niche evolution was related to species richness and rates of diversification across genus- and family-level clades. We found that the rate of climatic niche evolution has a positive linear relationship with both species richness and diversification rate at two different taxonomic levels (genus and family). Furthermore, this positive association between labile climatic niches and diversification was detected regardless of variation in clade latitude or key ecological traits. Our findings suggest either that rapid adaptation to unoccupied areas of climatic niche space promotes avian diversification, or that diversification promotes adaptation. Either way, we propose that climatic niche evolution is a fundamental process regulating the link between climate and biodiversity at global scales, irrespective of the geographical and ecological context of speciation and extinction. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  11. Saccharomyces cerevisiae: a nomadic yeast with no niche?

    PubMed

    Goddard, Matthew R; Greig, Duncan

    2015-05-01

    Different species are usually thought to have specific adaptations, which allow them to occupy different ecological niches. But recent neutral ecology theory suggests that species diversity can simply be the result of random sampling, due to finite population sizes and limited dispersal. Neutral models predict that species are not necessarily adapted to specific niches, but are functionally equivalent across a range of habitats. Here, we evaluate the ecology of Saccharomyces cerevisiae, one of the most important microbial species in human history. The artificial collection, concentration and fermentation of large volumes of fruit for alcohol production produce an environment in which S. cerevisiae thrives, and therefore it is assumed that fruit is the ecological niche that S. cerevisiae inhabits and has adapted to. We find very little direct evidence that S. cerevisiae is adapted to fruit, or indeed to any other specific niche. We propose instead a neutral nomad model for S. cerevisiae, which we believe should be used as the starting hypothesis in attempting to unravel the ecology of this important microbe. © FEMS 2015.

  12. Niches of dominant fish in the waters surrounding the Taishan Islands, China

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Chen, Jie; Yang, Shengyun; Zhong, Huiqi; Ju, Peilong; Yang, Shunliang; Sun, Qinqin; Chen, Mingru

    2016-07-01

    An index of relative importance (IRI) was employed to screen for dominant fish in the waters surrounding the Taishan Islands, China, using data from four seasonal trawl surveys undertaken between 2012 and 2013. Niche breadth and niche overlap were measured using the Feinsinger and Morisita-Horn indices, respectively, and the characteristics and seasonal variations in the niches of dominant fish were assessed via non-metric multidimensional scaling (NMDS) and cluster analysis. A total of 80 fish species, including 16 dominant species, were recorded. Only Amblychaeturichthys hexanema was dominant in all seasons. According to niche breadth values and NMDS, the 16 dominant species were grouped into the following three types: (1) wide niche breadth species, including Cynoglossus macrolepidotus, A. hexanema, and Trypauchen vagina, among others; (2) medium niche breadth species, including Setipinna taty and Johnius belangerii; and (3) narrow niche breadth species, including Atrobucca nibe and Coilia mystus. Most species with a wider niche breadth were demersal fish with a lower swimming capability and even distribution. The niche breadth of migrating fish was narrower than that of settled fish. At a given spatial scale, fish with stronger swimming capabilities had a narrower niche breadth. Niche overlap, which is associated with niche specialization, ranged from 0.000 to 0.886 and had an annual mean value of 0.314. In summer and autumn, niche overlap was relatively high within species of the Sciaenidae family and within species of the Gobiidae in autumn. Differences in thermophily, feeding habits, food organism abundance/distribution and predator-prey relationships affected the niche overlap of fish in this area. Cluster analysis revealed that species with the narrowest niche breadth and lowest niche overlap values usually displayed lower aggregation and greater distribution differences compared with other species.

  13. Biomechanics meets the ecological niche: the importance of temporal data resolution.

    PubMed

    Kearney, Michael R; Matzelle, Allison; Helmuth, Brian

    2012-03-15

    The emerging field of mechanistic niche modelling aims to link the functional traits of organisms to their environments to predict survival, reproduction, distribution and abundance. This approach has great potential to increase our understanding of the impacts of environmental change on individuals, populations and communities by providing functional connections between physiological and ecological response to increasingly available spatial environmental data. By their nature, such mechanistic models are more data intensive in comparison with the more widely applied correlative approaches but can potentially provide more spatially and temporally explicit predictions, which are often needed by decision makers. A poorly explored issue in this context is the appropriate level of temporal resolution of input data required for these models, and specifically the error in predictions that can be incurred through the use of temporally averaged data. Here, we review how biomechanical principles from heat-transfer and metabolic theory are currently being used as foundations for mechanistic niche models and consider the consequences of different temporal resolutions of environmental data for modelling the niche of a behaviourally thermoregulating terrestrial lizard. We show that fine-scale temporal resolution (daily) data can be crucial for unbiased inference of climatic impacts on survival, growth and reproduction. This is especially so for species with little capacity for behavioural buffering, because of behavioural or habitat constraints, and for detecting temporal trends. However, coarser-resolution data (long-term monthly averages) can be appropriate for mechanistic studies of climatic constraints on distribution and abundance limits in thermoregulating species at broad spatial scales.

  14. Which Factors Determine Spatial Segregation in the South American Opossums (Didelphis aurita and D. albiventris)? An Ecological Niche Modelling and Geometric Morphometrics Approach

    PubMed Central

    Cáceres, Nilton Carlos; de Moraes Weber, Marcelo; Melo, Geruza Leal; Meloro, Carlo; Sponchiado, Jonas; Carvalho, Renan dos Santos; Bubadué, Jamile de Moura

    2016-01-01

    Didelphis albiventris and D. aurita are Neotropical marsupials that share a unique evolutionary history and both are largely distributed throughout South America, being primarily allopatric throughout their ranges. In the Araucaria moist forest of Southern Brazil these species are sympatric and they might potentially compete having similar ecology. For this reason, they are ideal biological models to address questions about ecological character displacement and how closely related species might share their geographic space. Little is known about how two morphologically similar species of marsupials may affect each other through competition, if by competitive exclusion and competitive release. We combined ecological niche modeling and geometric morphometrics to explore the possible effects of competition on their distributional ranges and skull morphology. Ecological niche modeling was used to predict their potential distribution and this method enabled us to identify a case of biotic exclusion where the habit generalist D. albiventris is excluded by the presence of the specialist D. aurita. The morphometric analyses show that a degree of shape discrimination occurs between the species, strengthened by allometric differences, which possibly allowed them to occupy marginally different feeding niches supplemented by behavioral shift in contact areas. Overlap in skull morphology is shown between sympatric and allopatric specimens and a significant, but weak, shift in shape occurs only in D. aurita in sympatric areas. This could be a residual evidence of a higher past competition between both species, when contact zones were possibly larger than today. Therefore, the specialist D. aurita acts a biotic barrier to D. albiventris when niche diversity is not available for coexistence. On the other hand, when there is niche diversification (e.g. habitat mosaic), both species are capable to coexist with a minimal competitive effect on the morphology of D. aurita. PMID

  15. Human niche construction in interdisciplinary focus

    PubMed Central

    Kendal, Jeremy; Tehrani, Jamshid J.; Odling-Smee, John

    2011-01-01

    Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. Human niche construction modifies selection pressures in environments in ways that affect both human evolution, and the evolution of other species. Human ecological inheritance is exceptionally potent because it includes the social transmission and inheritance of cultural knowledge, and material culture. Human genetic inheritance in combination with human cultural inheritance thus provides a basis for gene–culture coevolution, and multivariate dynamics in cultural evolution. Niche construction theory potentially integrates the biological and social aspects of the human sciences. We elaborate on these processes, and provide brief introductions to each of the papers published in this theme issue. PMID:21320894

  16. Distinct Ecological Niche of Anal, Oral, and Cervical Mucosal Microbiomes in Adolescent Women.

    PubMed

    Smith, Benjamin C; Zolnik, Christine P; Usyk, Mykhaylo; Chen, Zigui; Kaiser, Katherine; Nucci-Sack, Anne; Peake, Ken; Diaz, Angela; Viswanathan, Shankar; Strickler, Howard D; Schlecht, Nicolas F; Burk, Robert D

    2016-09-01

    Human body sites represent ecological niches for microorganisms, each providing variations in microbial exposure, nutrient availability, microbial competition, and host immunological responses. In this study, we investigated the oral, anal, and cervical microbiomes from the same 20 sexually active adolescent females, using culture-independent, next-generation sequencing. DNA from each sample was amplified for the bacterial 16S rRNA gene and sequenced on an Illumina platform using paired-end reads. Across the three anatomical niches, we found significant differences in bacterial community composition and diversity. Overall anal samples were dominated with Prevotella and Bacteriodes , oral samples with Streptococcus and Prevotella , and cervical samples with Lactobacillus . The microbiomes of a few cervical samples clustered with anal samples in weighted principal coordinate analyses, due in part to a higher proportion of Prevotella in those samples. Additionally, cervical samples had the lowest alpha diversity. Our results demonstrate the occurrence of distinct microbial communities across body sites within the same individual.

  17. Niche construction drives social dependence in hermit crabs.

    PubMed

    Laidre, Mark E

    2012-10-23

    Organisms can receive not only a genetic inheritance from their ancestors but also an ecological inheritance, involving modifications their ancestors made to the environment through niche construction. Ecological inheritances may persist as a legacy, potentially generating selection pressures that favor sociality. Yet, most proposed cases of sociality being impacted by an ecological inheritance come from organisms that live among close kin and were highly social before their niche construction began. Here, I show that in terrestrial hermit crabs (Coenobita compressus)--organisms that do not live with kin and reside alone, each in its own shell--niche-construction drives social dependence, such that individuals can only survive in remodeled shells handed down from conspecifics. These results suggest that niche construction can be an important initiator of evolutionary pressures to socialize, even among unrelated and otherwise asocial organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    PubMed

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-02-09

    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  19. Ecological Niche Modelling and nDNA Sequencing Support a New, Morphologically Cryptic Beetle Species Unveiled by DNA Barcoding

    PubMed Central

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-01-01

    Background DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. Methodology/Principal Findings The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. Conclusion/Significance In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species. PMID:21347370

  20. High invasion potential of Hydrilla verticillata in the Americas predicted using ecological niche modeling combined with genetic data.

    PubMed

    Zhu, Jinning; Xu, Xuan; Tao, Qing; Yi, Panpan; Yu, Dan; Xu, Xinwei

    2017-07-01

    Ecological niche modeling is an effective tool to characterize the spatial distribution of suitable areas for species, and it is especially useful for predicting the potential distribution of invasive species. The widespread submerged plant Hydrilla verticillata (hydrilla) has an obvious phylogeographical pattern: Four genetic lineages occupy distinct regions in native range, and only one lineage invades the Americas. Here, we aimed to evaluate climatic niche conservatism of hydrilla in North America at the intraspecific level and explore its invasion potential in the Americas by comparing climatic niches in a phylogenetic context. Niche shift was found in the invasion process of hydrilla in North America, which is probably mainly attributed to high levels of somatic mutation. Dramatic changes in range expansion in the Americas were predicted in the situation of all four genetic lineages invading the Americas or future climatic changes, especially in South America; this suggests that there is a high invasion potential of hydrilla in the Americas. Our findings provide useful information for the management of hydrilla in the Americas and give an example of exploring intraspecific climatic niche to better understand species invasion.

  1. THE NICHE CONSTRUCTION PERSPECTIVE: A CRITICAL APPRAISAL*

    PubMed Central

    Scott-Phillips, Thomas C; Laland, Kevin N; Shuker, David M; Dickins, Thomas E; West, Stuart A

    2014-01-01

    Niche construction refers to the activities of organisms that bring about changes in their environments, many of which are evolutionarily and ecologically consequential. Advocates of niche construction theory (NCT) believe that standard evolutionary theory fails to recognize the full importance of niche construction, and consequently propose a novel view of evolution, in which niche construction and its legacy over time (ecological inheritance) are described as evolutionary processes, equivalent in importance to natural selection. Here, we subject NCT to critical evaluation, in the form of a collaboration between one prominent advocate of NCT, and a team of skeptics. We discuss whether niche construction is an evolutionary process, whether NCT obscures or clarifies how natural selection leads to organismal adaptation, and whether niche construction and natural selection are of equivalent explanatory importance. We also consider whether the literature that promotes NCT overstates the significance of niche construction, whether it is internally coherent, and whether it accurately portrays standard evolutionary theory. Our disagreements reflect a wider dispute within evolutionary theory over whether the neo-Darwinian synthesis is in need of reformulation, as well as different usages of some key terms (e.g., evolutionary process). PMID:24325256

  2. Using remote sensing, ecological niche modeling, and Geographic Information Systems for Rift Valley fever risk assessment in the United States

    NASA Astrophysics Data System (ADS)

    Tedrow, Christine Atkins

    The primary goal in this study was to explore remote sensing, ecological niche modeling, and Geographic Information Systems (GIS) as aids in predicting candidate Rift Valley fever (RVF) competent vector abundance and distribution in Virginia, and as means of estimating where risk of establishment in mosquitoes and risk of transmission to human populations would be greatest in Virginia. A second goal in this study was to determine whether the remotely-sensed Normalized Difference Vegetation Index (NDVI) can be used as a proxy variable of local conditions for the development of mosquitoes to predict mosquito species distribution and abundance in Virginia. As part of this study, a mosquito surveillance database was compiled to archive the historical patterns of mosquito species abundance in Virginia. In addition, linkages between mosquito density and local environmental and climatic patterns were spatially and temporally examined. The present study affirms the potential role of remote sensing imagery for species distribution prediction, and it demonstrates that ecological niche modeling is a valuable predictive tool to analyze the distributions of populations. The MaxEnt ecological niche modeling program was used to model predicted ranges for potential RVF competent vectors in Virginia. The MaxEnt model was shown to be robust, and the candidate RVF competent vector predicted distribution map is presented. The Normalized Difference Vegetation Index (NDVI) was found to be the most useful environmental-climatic variable to predict mosquito species distribution and abundance in Virginia. However, these results indicate that a more robust prediction is obtained by including other environmental-climatic factors correlated to mosquito densities (e.g., temperature, precipitation, elevation) with NDVI. The present study demonstrates that remote sensing and GIS can be used with ecological niche and risk modeling methods to estimate risk of virus establishment in mosquitoes and

  3. Correlations of Genotype with Climate Parameters Suggest Caenorhabditis elegans Niche Adaptations

    PubMed Central

    Evans, Kathryn S.; Zhao, Yuehui; Brady, Shannon C.; Long, Lijiang; McGrath, Patrick T.; Andersen, Erik C.

    2016-01-01

    Species inhabit a variety of environmental niches, and the adaptation to a particular niche is often controlled by genetic factors, including gene-by-environment interactions. The genes that vary in order to regulate the ability to colonize a niche are often difficult to identify, especially in the context of complex ecological systems and in experimentally uncontrolled natural environments. Quantitative genetic approaches provide an opportunity to investigate correlations between genetic factors and environmental parameters that might define a niche. Previously, we have shown how a collection of 208 whole-genome sequenced wild Caenorhabditis elegans can facilitate association mapping approaches. To correlate climate parameters with the variation found in this collection of wild strains, we used geographic data to exhaustively curate daily weather measurements in short-term (3 month), middle-term (one year), and long-term (three year) durations surrounding the date of strain isolation. These climate parameters were used as quantitative traits in association mapping approaches, where we identified 11 quantitative trait loci (QTL) for three climatic variables: elevation, relative humidity, and average temperature. We then narrowed the genomic interval of interest to identify gene candidates with variants potentially underlying phenotypic differences. Additionally, we performed two-strain competition assays at high and low temperatures to validate a QTL that could underlie adaptation to temperature and found suggestive evidence supporting that hypothesis. PMID:27866149

  4. Niche conservatism and the invasive potential of the wild boar.

    PubMed

    Sales, Lilian Patrícia; Ribeiro, Bruno R; Hayward, Matt Warrington; Paglia, Adriano; Passamani, Marcelo; Loyola, Rafael

    2017-09-01

    Niche conservatism, i.e. the retention of a species' fundamental niche through evolutionary time, is cornerstone for biological invasion assessments. The fact that species tend to maintain their original climate niche allows predictive maps of invasion risk to anticipate potential invadable areas. Unravelling the mechanisms driving niche shifts can shed light on the management of invasive species. Here, we assessed niche shifts in one of the world's worst invasive species: the wild boar Sus scrofa. We also predicted potential invadable areas based on an ensemble of three ecological niche modelling methods, and evaluated the performance of models calibrated with native vs. pooled (native plus invaded) species records. By disentangling the drivers of change on the exotic wild boar population's niches, we found strong evidence for niche conservatism during biological invasion. Ecological niche models calibrated with both native and pooled range records predicted convergent areas. Also, observed niche shifts are mostly explained by niche unfilling, i.e. there are unoccupied areas in the exotic range where climate is analogous to the native range. Niche unfilling is expected as result of recent colonization and ongoing dispersal, and was potentially stronger for the Neotropics, where a recent wave of introductions for pig-farming and game-hunting has led to high wild boar population growth rates. The invasive potential of wild boar in the Neotropics is probably higher than in other regions, which has profound management implications if we are to prevent their invasion into species-rich areas, such as Amazonia, coupled with expansion of African swine fever and possibly great economic losses. Although the originally Eurasian-wide distribution suggests a pre-adaptation to a wide array of climates, the wild boar world-wide invasion does not exhibit evidence of niche evolution. The invasive potential of the wild boar therefore probably lies on the reproductive, dietary and

  5. Toward a Periodic Table of Niches, or Exploring the Lizard Niche Hypervolume.

    PubMed

    Pianka, Eric R; Vitt, Laurie J; Pelegrin, Nicolás; Fitzgerald, Daniel B; Winemiller, Kirk O

    2017-11-01

    Widespread niche convergence suggests that species can be organized according to functional trait combinations to create a framework analogous to a periodic table. We compiled ecological data for lizards to examine patterns of global and regional niche diversification, and we used multivariate statistical approaches to develop the beginnings for a periodic table of niches. Data (50+ variables) for five major niche dimensions (habitat, diet, life history, metabolism, defense) were compiled for 134 species of lizards representing 24 of the 38 extant families. Principal coordinates analyses were performed on niche dimensional data sets, and species scores for the first three axes were used as input for a principal components analysis to ordinate species in continuous niche space and for a regression tree analysis to separate species into discrete niche categories. Three-dimensional models facilitate exploration of species positions in relation to major gradients within the niche hypervolume. The first gradient loads on body size, foraging mode, and clutch size. The second was influenced by metabolism and terrestrial versus arboreal microhabitat. The third was influenced by activity time, life history, and diet. Natural dichotomies are activity time, foraging mode, parity mode, and habitat. Regression tree analysis identified 103 cases of extreme niche conservatism within clades and 100 convergences between clades. Extending this approach to other taxa should lead to a wider understanding of niche evolution.

  6. Niche conservatism above the species level.

    PubMed

    Hadly, Elizabeth A; Spaeth, Paula A; Li, Cheng

    2009-11-17

    Traits that enable species to persist in ecological environments are often maintained over time, a phenomenon known as niche conservatism. Here we argue that ecological niches function at levels above species, notably at the level of genus for mammals, and that niche conservatism is also evident above the species level. Using the proxy of geographic range size, we explore changes in the realized niche of North American mammalian genera and families across the major climatic transition represented by the last glacial-interglacial transition. We calculate the mean and variance of range size for extant mammalian genera and families, rank them by range size, and estimate the change in range size and rank during the late Pleistocene and late Holocene. We demonstrate that range size at the genus and family levels was surprisingly constant over this period despite range shifts and extinctions of species within the clades. We suggest that underlying controls on niche conservatism may be different at these higher taxonomic levels than at the species level. Niche conservatism at higher levels seems primarily controlled by intrinsic life history traits, whereas niche conservatism at the species level may reflect underlying environmental controls. These results highlight the critical importance of conserving the biodiversity of mammals at the genus level and of maintaining an adequate species pool within genera.

  7. Local-scale models reveal ecological niche variability in amphibian and reptile communities from two contrasting biogeographic regions

    PubMed Central

    Santos, Xavier; Felicísimo, Ángel M.

    2016-01-01

    Ecological Niche Models (ENMs) are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models). Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude) were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species) and taxonomy (amphibians and reptiles). Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural parks. PMID

  8. Niche similarities among introduced and native mountain ungulates.

    PubMed

    Lowrey, B; Garrott, R A; McWhirter, D E; White, P J; DeCesare, N J; Stewart, S T

    2018-03-24

    The niche concept provides a strong foundation for theoretical and applied research among a broad range of disciplines. When two ecologically similar species are sympatric, theory predicts they will occupy distinct ecological niches to reduce competition. Capitalizing on the increasing availability of spatial data, we built from single species habitat suitability models to a multispecies evaluation of the niche partitioning hypothesis with sympatric mountain ungulates: native bighorn sheep (BHS; Ovis canadensis) and introduced mountain goats (MTG; Oreamnos americanus) in the northeast Greater Yellowstone Area. We characterized seasonal niches using two-stage resource selection functions with a used-available design and descriptive summaries of the niche attributes associated with used GPS locations. We evaluated seasonal similarity in niche space according to confidence interval overlap of model coefficients and similarity in geographic space by comparing model predicted values with Schoener's D metric. Our sample contained 37,962 summer locations from 53 individuals (BHS = 31, MTG = 22), and 79,984 winter locations from 57 individuals (BHS = 35, MTG = 22). Slope was the most influential niche component for both species and seasons, and showed the strongest evidence of niche partitioning. Bighorn sheep occurred on steeper slopes than mountain goats in summer and mountain goats occurred on steeper slopes in winter. The pattern of differential selection among species was less prevalent for the remaining covariates, indicating similarity in niche space. Model predictions in geographic space showed broad seasonal similarity (summer D = 0.88, winter D = 0.87), as did niche characterizations from used GPS locations. The striking similarities in seasonal niches suggest that introduced mountain goats will continue to increase their spatial overlap with native bighorn. Our results suggest that reducing densities of mountain goats in hunted areas where they are

  9. The niche construction perspective: a critical appraisal.

    PubMed

    Scott-Phillips, Thomas C; Laland, Kevin N; Shuker, David M; Dickins, Thomas E; West, Stuart A

    2014-05-01

    Niche construction refers to the activities of organisms that bring about changes in their environments, many of which are evolutionarily and ecologically consequential. Advocates of niche construction theory (NCT) believe that standard evolutionary theory fails to recognize the full importance of niche construction, and consequently propose a novel view of evolution, in which niche construction and its legacy over time (ecological inheritance) are described as evolutionary processes, equivalent in importance to natural selection. Here, we subject NCT to critical evaluation, in the form of a collaboration between one prominent advocate of NCT, and a team of skeptics. We discuss whether niche construction is an evolutionary process, whether NCT obscures or clarifies how natural selection leads to organismal adaptation, and whether niche construction and natural selection are of equivalent explanatory importance. We also consider whether the literature that promotes NCT overstates the significance of niche construction, whether it is internally coherent, and whether it accurately portrays standard evolutionary theory. Our disagreements reflect a wider dispute within evolutionary theory over whether the neo-Darwinian synthesis is in need of reformulation, as well as different usages of some key terms (e.g., evolutionary process). © 2013 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  10. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models

    PubMed Central

    2012-01-01

    Background If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. Results We first delimit a ca. 54,000 km2 area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. Conclusion The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and

  11. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models.

    PubMed

    Wielstra, Ben; Arntzen, Jan W

    2012-08-30

    If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. We first delimit a ca. 54,000 km(2) area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from

  12. Ecological networks are more sensitive to plant than to animal extinction under climate change.

    PubMed

    Schleuning, Matthias; Fründ, Jochen; Schweiger, Oliver; Welk, Erik; Albrecht, Jörg; Albrecht, Matthias; Beil, Marion; Benadi, Gita; Blüthgen, Nico; Bruelheide, Helge; Böhning-Gaese, Katrin; Dehling, D Matthias; Dormann, Carsten F; Exeler, Nina; Farwig, Nina; Harpke, Alexander; Hickler, Thomas; Kratochwil, Anselm; Kuhlmann, Michael; Kühn, Ingolf; Michez, Denis; Mudri-Stojnić, Sonja; Plein, Michaela; Rasmont, Pierre; Schwabe, Angelika; Settele, Josef; Vujić, Ante; Weiner, Christiane N; Wiemers, Martin; Hof, Christian

    2016-12-23

    Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks.

  13. Pliocene-Pleistocene ecological niche evolution shapes the phylogeography of a Mediterranean plant group.

    PubMed

    Benítez-Benítez, C; Escudero, M; Rodríguez-Sánchez, F; Martín-Bravo, S; Jiménez-Mejías, P

    2018-04-01

    Estimating species ability to adapt to environmental changes is crucial to understand their past and future response to climate change. The Mediterranean Basin has experienced remarkable climatic changes since the Miocene, which have greatly influenced the evolution of the Mediterranean flora. Here, we examine the evolutionary history and biogeographic patterns of two sedge sister species (Carex, Cyperaceae) restricted to the western Mediterranean Basin, but with Pliocene fossil record in central Europe. In particular, we estimated the evolution of climatic niches through time and its influence in lineage differentiation. We carried out a dated phylogenetic-phylogeographic study based on seven DNA regions (nDNA and ptDNA) and fingerprinting data (AFLPs), and modelled ecological niches and species distributions for the Pliocene, Pleistocene and present. Phylogenetic and divergence time analyses revealed that both species form a monophyletic lineage originated in the late Pliocene-early Pleistocene. We detected clear genetic differentiation between both species with distinct genetic clusters in disjunct areas, indicating the predominant role of geographic barriers limiting gene flow. We found a remarkable shift in the climatic requirements between Pliocene and extant populations, although the niche seems to have been relatively conserved since the Pleistocene split of both species. This study highlights how an integrative approach combining different data sources and analyses, including fossils, allows solid and robust inferences about the evolutionary history of a plant group since the Pliocene. © 2018 John Wiley & Sons Ltd.

  14. Niche versus neutrality: a dynamical analysis

    Treesearch

    Michael Kalyuzhny; Efrat Seri; Rachel Chocron; Curtis H. Flather; Ronen Kadmon; Nadav M. Shnerb

    2014-01-01

    Understanding the forces shaping ecological communities is of crucial importance for basic science and conservation. After 50 years in which ecological theory has focused on either stable communities driven by niche-based forces or nonstable “neutral” communities driven by demographic stochasticity, contemporary theories suggest that ecological communities are driven...

  15. Species diversity of sand flies and ecological niche model of Phlebotomus papatasi in central Iran.

    PubMed

    Abedi-Astaneh, Fatemeh; Akhavan, Amir Ahmad; Shirzadi, Mohammd Reza; Rassi, Yavar; Yaghoobi-Ershadi, Mohammad Reza; Hanafi-Bojd, Ahmad Ali; Akbarzadeh, Kamran; Nafar-Shalamzari, Reza; Parsi, Sohbat; Abbasi, Ali; Raufi, Hedayatollah

    2015-09-01

    Cutaneous leishmaniasis (CL) is the most important vector-borne disease in Iran. Qom Province is a very important area in the case of CL transmission, because of high traffic population from other parts of the country, or even other countries, as well as existence of confirmed foci of the disease. The aim of this study was to determine the ecology of sand flies in two different climates of this province and model the distribution of the main vector. Sand flies were collected monthly during April 2013-April 2014, at 22 urban/rural collection sites. Site selection was constrained by the geographical distribution of CL cases in recent years. Shannon-Weiner and Evenness indices were used to compare diversity in two studied climates. ArcGIS and MaxEnt were used to map and predict the appropriate ecological niches for sand flies. Totally, 5389 sand flies were collected and 12 species were identified. The most abundant species were Sergentomyia sintoni, P. papatasi, P. sergenti s.l. and Phlebotomus alexandri. Two peaks of activity were found in May and August in lowlands; while in mountainous areas they were observed in June and September. Species diversity in mountainous areas was found to be higher than in lowlands. The environmental variable with the highest gain in MaxEnt model was the monthly mean of (max temp-min temp). A big part of the lowland areas provides good ecological niches for P. papatasi and therefore higher transmission potential. These findings can be used in stratification of potential for CL transmission in Qom province. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Isotopic niches support the resource breadth hypothesis

    USGS Publications Warehouse

    Rader, Jonathan A.; Newsome, Seth D.; Sabat, Pablo; Chesser, R. Terry; Dillon, Michael E.; Martinez del Rio, Carlos

    2017-01-01

    Because a broad spectrum of resource use allows species to persist in a wide range of habitat types, and thus permits them to occupy large geographical areas, and because broadly distributed species have access to more diverse resource bases, the resource breadth hypothesis posits that the diversity of resources used by organisms should be positively related with the extent of their geographic ranges.We investigated isotopic niche width in a small radiation of South American birds in the genus Cinclodes. We analysed feathers of 12 species of Cinclodes to test the isotopic version of the resource breadth hypothesis and to examine the correlation between isotopic niche breadth and morphology.We found a positive correlation between the widths of hydrogen and oxygen isotopic niches (which estimate breadth of elevational range) and widths of the carbon and nitrogen isotopic niches (which estimates the diversity of resources consumed, and hence of habitats used). We also found a positive correlation between broad isotopic niches and wing morphology.Our study not only supports the resource breadth hypothesis but it also highlights the usefulness of stable isotope analyses as tools in the exploration of ecological niches. It is an example of a macroecological application of stable isotopes. It also illustrates the importance of scientific collections in ecological studies.

  17. Ecological networks are more sensitive to plant than to animal extinction under climate change

    PubMed Central

    Schleuning, Matthias; Fründ, Jochen; Schweiger, Oliver; Welk, Erik; Albrecht, Jörg; Albrecht, Matthias; Beil, Marion; Benadi, Gita; Blüthgen, Nico; Bruelheide, Helge; Böhning-Gaese, Katrin; Dehling, D. Matthias; Dormann, Carsten F.; Exeler, Nina; Farwig, Nina; Harpke, Alexander; Hickler, Thomas; Kratochwil, Anselm; Kuhlmann, Michael; Kühn, Ingolf; Michez, Denis; Mudri-Stojnić, Sonja; Plein, Michaela; Rasmont, Pierre; Schwabe, Angelika; Settele, Josef; Vujić, Ante; Weiner, Christiane N.; Wiemers, Martin; Hof, Christian

    2016-01-01

    Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks. PMID:28008919

  18. Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15,000 y ago

    PubMed Central

    Weissbrod, Lior; Marshall, Fiona B.; Valla, François R.; Khalaily, Hamoudi; Bar-Oz, Guy; Auffray, Jean-Christophe; Vigne, Jean-Denis; Cucchi, Thomas

    2017-01-01

    Reductions in hunter-gatherer mobility during the Late Pleistocene influenced settlement ecologies, altered human relations with animal communities, and played a pivotal role in domestication. The influence of variability in human mobility on selection dynamics and ecological interactions in human settlements has not been extensively explored, however. This study of mice in modern African villages and changing mice molar shapes in a 200,000-y-long sequence from the Levant demonstrates competitive advantages for commensal mice in long-term settlements. Mice from African pastoral households provide a referential model for habitat partitioning among mice taxa in settlements of varying durations. The data reveal the earliest known commensal niche for house mice in long-term forager settlements 15,000 y ago. Competitive dynamics and the presence and abundance of mice continued to fluctuate with human mobility through the terminal Pleistocene. At the Natufian site of Ain Mallaha, house mice displaced less commensal wild mice during periods of heavy occupational pressure but were outcompeted when mobility increased. Changing food webs and ecological dynamics in long-term settlements allowed house mice to establish durable commensal populations that expanded with human societies. This study demonstrates the changing magnitude of cultural niche construction with varying human mobility and the extent of environmental influence before the advent of farming. PMID:28348225

  19. Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15,000 y ago.

    PubMed

    Weissbrod, Lior; Marshall, Fiona B; Valla, François R; Khalaily, Hamoudi; Bar-Oz, Guy; Auffray, Jean-Christophe; Vigne, Jean-Denis; Cucchi, Thomas

    2017-04-18

    Reductions in hunter-gatherer mobility during the Late Pleistocene influenced settlement ecologies, altered human relations with animal communities, and played a pivotal role in domestication. The influence of variability in human mobility on selection dynamics and ecological interactions in human settlements has not been extensively explored, however. This study of mice in modern African villages and changing mice molar shapes in a 200,000-y-long sequence from the Levant demonstrates competitive advantages for commensal mice in long-term settlements. Mice from African pastoral households provide a referential model for habitat partitioning among mice taxa in settlements of varying durations. The data reveal the earliest known commensal niche for house mice in long-term forager settlements 15,000 y ago. Competitive dynamics and the presence and abundance of mice continued to fluctuate with human mobility through the terminal Pleistocene. At the Natufian site of Ain Mallaha, house mice displaced less commensal wild mice during periods of heavy occupational pressure but were outcompeted when mobility increased. Changing food webs and ecological dynamics in long-term settlements allowed house mice to establish durable commensal populations that expanded with human societies. This study demonstrates the changing magnitude of cultural niche construction with varying human mobility and the extent of environmental influence before the advent of farming.

  20. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America.

    PubMed

    McIntyre, Shannon; Rangel, Elizabeth F; Ready, Paul D; Carvalho, Bruno M

    2017-03-24

    Before 1996 the phlebotomine sand fly Lutzomyia neivai was usually treated as a synonym of the morphologically similar Lutzomyia intermedia, which has long been considered a vector of Leishmania braziliensis, the causative agent of much cutaneous leishmaniasis in South America. This report investigates the likely range changes of both sand fly species in response to a stabilisation climate change scenario (RCP4.5) and a high greenhouse gas emissions one (RCP8.5). Ecological niche modelling was used to identify areas of South America with climates currently suitable for each species, and then the future distributions of these climates were predicted based on climate change scenarios. Compared with the previous ecological niche model of L. intermedia (sensu lato) produced using the GARP algorithm in 2003, the current investigation modelled the two species separately, making use of verified presence records and additional records after 2001. Also, the new ensemble approach employed ecological niche modelling algorithms (including Maximum Entropy, Random Forests and Support Vector Machines) that have been widely adopted since 2003 and perform better than GARP, as well as using a more recent climate change model (HadGEM2) considered to have better performance at higher resolution than the earlier one (HadCM2). Lutzomyia intermedia was shown to be the more tropical of the two species, with its climatic niche defined by higher annual mean temperatures and lower temperature seasonality, in contrast to the more subtropical L. neivai. These different latitudinal ranges explain the two species' predicted responses to climate change by 2050, with L. intermedia mostly contracting its range (except perhaps in northeast Brazil) and L. neivai mostly shifting its range southwards in Brazil and Argentina. This contradicts the findings of the 2003 report, which predicted more range expansion. The different findings can be explained by the improved data sets and modelling methods. Our

  1. Social niche specialization under constraints: personality, social interactions and environmental heterogeneity

    PubMed Central

    Montiglio, Pierre-Olivier; Ferrari, Caterina; Réale, Denis

    2013-01-01

    Several personality traits are mainly expressed in a social context, and others, which are not restricted to a social context, can be affected by the social interactions with conspecifics. In this paper, we focus on the recently proposed hypothesis that social niche specialization (i.e. individuals in a population occupy different social roles) can explain the maintenance of individual differences in personality. We first present ecological and social niche specialization hypotheses. In particular, we show how niche specialization can be quantified and highlight the link between personality differences and social niche specialization. We then review some ecological factors (e.g. competition and environmental heterogeneity) and the social mechanisms (e.g. frequency-dependent, state-dependent and social awareness) that may be associated with the evolution of social niche specialization and personality differences. Finally, we present a conceptual model and methods to quantify the contribution of ecological factors and social mechanisms to the dynamics between personality and social roles. In doing so, we suggest a series of research objectives to help empirical advances in this research area. Throughout this paper, we highlight empirical studies of social niche specialization in mammals, where available. PMID:23569291

  2. Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, Lampropeltis getula.

    PubMed

    Alexander Pyron, R; Burbrink, Frank T

    2009-08-01

    Niche conservatism and niche divergence are both important ecological mechanisms associated with promoting allopatric speciation across geographical barriers. However, the potential for variable responses in widely distributed organisms has not been fully investigated. For allopatric sister lineages, three patterns for the interaction of ecological niche preference and geographical barriers are possible: (i) niche conservatism at a physical barrier; (ii) niche divergence at a physical barrier; and (iii) niche divergence in the absence of a physical barrier. We test for the presence of these patterns in a transcontinentally distributed snake species, the common kingsnake (Lampropeltis getula), to determine the relative frequency of niche conservatism or divergence in a single species complex inhabiting multiple distinct ecoregions. We infer the phylogeographic structure of the kingsnake using a range-wide data set sampled for the mitochondrial gene cytochrome b. We use coalescent simulation methods to test for the presence of structured lineage formation vs. fragmentation of a widespread ancestor. Finally, we use statistical techniques for creating and evaluating ecological niche models to test for conservatism of ecological niche preferences. Significant geographical structure is present in the kingsnake, for which coalescent tests indicate structured population division. Surprisingly, we find evidence for all three patterns of conservatism and divergence. This suggests that ecological niche preferences may be labile on recent phylogenetic timescales, and that lineage formation in widespread species can result from an interaction between inertial tendencies of niche conservatism and natural selection on populations in ecologically divergent habitats.

  3. Niche construction, sources of selection and trait coevolution.

    PubMed

    Laland, Kevin; Odling-Smee, John; Endler, John

    2017-10-06

    Organisms modify and choose components of their local environments. This 'niche construction' can alter ecological processes, modify natural selection and contribute to inheritance through ecological legacies. Here, we propose that niche construction initiates and modifies the selection directly affecting the constructor, and on other species, in an orderly, directed and sustained manner. By dependably generating specific environmental states, niche construction co-directs adaptive evolution by imposing a consistent statistical bias on selection. We illustrate how niche construction can generate this evolutionary bias by comparing it with artificial selection. We suggest that it occupies the middle ground between artificial and natural selection. We show how the perspective leads to testable predictions related to: (i) reduced variance in measures of responses to natural selection in the wild; (ii) multiple trait coevolution, including the evolution of sequences of traits and patterns of parallel evolution; and (iii) a positive association between niche construction and biodiversity. More generally, we submit that evolutionary biology would benefit from greater attention to the diverse properties of all sources of selection.

  4. Ecologic Niche Modeling and Potential Reservoirs for Chagas Disease, Mexico.

    PubMed Central

    Sánchez-Cordero, Victor; Ben Beard, C.; Ramsey, Janine M.

    2002-01-01

    Ecologic niche modeling may improve our understanding of epidemiologically relevant vector and parasite-reservoir distributions. We used this tool to identify host relationships of Triatoma species implicated in transmission of Chagas disease. Associations have been documented between the protracta complex (Triatoma: Triatominae: Reduviidae) with packrat species (Neotoma spp.), providing an excellent case study for the broader challenge of developing hypotheses of association. Species pairs that were identified coincided exactly with those in previous studies, suggesting that local interactions between Triatoma and Neotoma species and subspecies have implications at a geographic level. Nothing is known about sylvatic associates of T. barberi, which are considered the primary Chagas vector in Mexico; its geographic distribution coincided closely with that of N. mexicana, suggesting interaction. The presence of the species was confirmed in two regions where it had been predicted but not previously collected. This approach may help in identifying Chagas disease risk areas, planning vector-control strategies, and exploring parasite-reservoir associations for other emerging diseases. PMID:12095431

  5. Wild populations of Triatoma infestans: Compilation of positive sites and comparison of their ecological niche with domestic population niche.

    PubMed

    Brenière, Simone Frédérique; Buitrago, Rosio; Waleckx, Etienne; Depickère, Stéphanie; Sosa, Victor; Barnabé, Christian; Gorla, David

    2017-12-01

    For several years, the wild populations of Triatoma infestans, main vector of Trypanosoma cruzi causing Chagas disease, have been considered or suspected of being a source of reinfestation of villages. The number of sites reported for the presence of wild T. infestans, often close to human habitats, has greatly increased, but these data are scattered in several publications, and others obtained by our team in Bolivia have not been published yet. Herein is compiled the largest number of wild sites explored for the presence of T. infestans collected with two methods The standardized methods aimed to determine the relationship between wild T. infestans and the ecoregion, and the directed method help to confirm the presence/absence of triatomines in the ecoregions. Entomological indices were compared between ecoregions and an environmental niche modelling approach, based on bioclimatic variables, was applied. The active search for wild T. infestans in Bolivia suggests a discontinuous distribution from the Andean valleys to the lowlands (Chaco), while the models used suggest a continuous distribution between the two regions and very large areas where wild populations remain to be discovered. The results compile the description of different habitats where these populations were found, and we demonstrate that the environmental niches of wild and domestic populations, defined by climatic variables, are similar but not equivalent, showing that during domestication, T. infestans has conquered new spaces with wider ranges of temperature and precipitation. The great diversity of wild T. infestans habitats and the comparison of their ecological niches with that of domestic populations confirm the behavioural plasticity of the species that increase the possibility of contact with humans. The result of the geographical distribution model of the wild populations calls for more entomological vigilance in the corresponding areas in the Southern Cone countries and in Bolivia. The

  6. Ecological niche comparison and molecular phylogeny segregate the invasive moss species Campylopus introflexus (Leucobryaceae, Bryophyta) from its closest relatives.

    PubMed

    Gama, Renato; Aguirre-Gutiérrez, Jesús; Stech, Michael

    2017-10-01

    The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer , has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus . Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer . Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross-section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer , which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re-analysis of published and newly generated plastid atpB-rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus , C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).

  7. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    USGS Publications Warehouse

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  8. Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models.

    PubMed

    Sen, Sandeep; Gode, Ameya; Ramanujam, Srirama; Ravikanth, G; Aravind, N A

    2016-11-01

    The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.

  9. Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen.

    PubMed

    Naito, Yuichi I; Chikaraishi, Yoshito; Drucker, Dorothée G; Ohkouchi, Naohiko; Semal, Patrick; Wißing, Christoph; Bocherens, Hervé

    2016-04-01

    This study provides a refined view on the diet and ecological niche of Neanderthals. The traditional view is that Neanderthals obtained most of their dietary protein from terrestrial animals, especially from large herbivores that roamed the open landscapes. Evidence based on the conventional carbon and nitrogen isotopic composition of bulk collagen has supported this view, although recent findings based on plant remains in the tooth calculus, microwear analyses, and small game and marine animal remains from archaeological sites have raised some questions regarding this assumption. However, the lack of a protein source other than meat in the Neanderthal diet may be due to methodological difficulties in defining the isotopic composition of plants. Based on the nitrogen isotopic composition of glutamic acid and phenylalanine in collagen for Neanderthals from Spy Cave (Belgium), we show that i) there was an inter-individual dietary heterogeneity even within one archaeological site that has not been evident in bulk collagen isotopic compositions, ii) they occupied an ecological niche different from those of hyenas, and iii) they could rely on plants for up to ∼20% of their protein source. These results are consistent with the evidence found of plant consumption by the Spy Neanderthals, suggesting a broader subsistence strategy than previously considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Geographic Distribution of Chagas Disease Vectors in Brazil Based on Ecological Niche Modeling

    PubMed Central

    Gurgel-Gonçalves, Rodrigo; Galvão, Cléber; Costa, Jane; Peterson, A. Townsend

    2012-01-01

    Although Brazil was declared free from Chagas disease transmission by the domestic vector Triatoma infestans, human acute cases are still being registered based on transmission by native triatomine species. For a better understanding of transmission risk, the geographic distribution of Brazilian triatomines was analyzed. Sixteen out of 62 Brazilian species that both occur in >20 municipalities and present synanthropic tendencies were modeled based on their ecological niches. Panstrongylus geniculatus and P. megistus showed broad ecological ranges, but most of the species sort out by the biome in which they are distributed: Rhodnius pictipes and R. robustus in the Amazon; R. neglectus, Triatoma sordida, and T. costalimai in the Cerrado; R. nasutus, P. lutzi, T. brasiliensis, T. pseudomaculata, T. melanocephala, and T. petrocchiae in the Caatinga; T. rubrovaria in the southern pampas; T. tibiamaculata and T. vitticeps in the Atlantic Forest. Although most occurrences were recorded in open areas (Cerrado and Caatinga), our results show that all environmental conditions in the country are favorable to one or more of the species analyzed, such that almost nowhere is Chagas transmission risk negligible. PMID:22523500

  11. Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau.

    PubMed

    Hu, Junhua; Broennimann, Olivier; Guisan, Antoine; Wang, Bin; Huang, Yan; Jiang, Jianping

    2016-09-07

    The role of ecological niche in lineage diversification has been the subject of long-standing interest of ecologists and evolutionary biologists. Gynandropaa frogs diversified into three independent clades endemic to the southeastern Qinghai-Tibetan Plateau. Here, we address the question whether these clades kept the same niche after separation, and what it tells us about possible diversification processes. We applied predictions in geographical (G)-space and tests of niche conservatism in environmental (E)-space. Niche models in G-space indicate separate regions with high suitability for the different clades, with some potential areas of sympatry. While the pair of central and eastern clades displayed the largest niche overlap for most variables, and strict niche equivalency was rejected for all clade-pairs, we found no strong evidence for niche divergence, but rather the signature of niche conservatism compared to null models in E-space. These results suggest a common ancestral ecological niche, and as such give good support to divergence through allopatric speciation, but alternative explanations are also possible. Our findings illustrate how testing for niche conservatism in lineage diversification can provide insights into underlying speciation processes, and how this information may guide further research and conservation practices, as illustrated here for amphibians on the Qinghai-Tibetan Plateau.

  12. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions

    PubMed Central

    Iriki, Atsushi; Taoka, Miki

    2012-01-01

    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language—the site of such integration seems to be the parietal and extending opercular cortices. PMID:22106423

  13. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions.

    PubMed

    Iriki, Atsushi; Taoka, Miki

    2012-01-12

    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language--the site of such integration seems to be the parietal and extending opercular cortices.

  14. Dietary niche variation and its relationship to lizard population density.

    PubMed

    Novosolov, Maria; Rodda, Gordon H; Gainsbury, Alison M; Meiri, Shai

    2018-01-01

    Insular species are predicted to broaden their niches, in response to having fewer competitors. They can thus exploit a greater proportion of the resource spectrum. In turn, broader niches are hypothesized to facilitate (or be a consequence of) increased population densities. We tested whether insular lizards have broader dietary niches than mainland species, how it relates to competitor and predator richness, and the nature of the relationship between population density and dietary niche breadth. We collected population density and dietary niche breadth data for 36 insular and 59 mainland lizard species, and estimated competitor and predator richness at the localities where diet data were collected. We estimated dietary niche shift by comparing island species to their mainland relatives. We controlled for phylogenetic relatedness, body mass and the size of the plots over which densities were estimated. We found that island and mainland species had similar niche breadths. Dietary niche breadth was unrelated to competitor and predator richness, on both islands and the mainland. Population density was unrelated to dietary niche breadth across island and mainland populations. Our results indicate that dietary generalism is not an effective way of increasing population density nor is it result of lower competitive pressure. A lower variety of resources on islands may prevent insular animals from increasing their niche breadths even in the face of few competitors. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  15. Molecular data and ecological niche modelling reveal the phylogeographic pattern of Cotinus coggygria (Anacardiaceae) in China's warm-temperate zone.

    PubMed

    Wang, W; Tian, C Y; Li, Y H; Li, Y

    2014-11-01

    The phylogeography of common and widespread species helps to elucidate the history of local flora and vegetation. In this study, we selected Cotinus coggygria, a species widely distributed in China's warm-temperate zone. One chloroplast DNA (cpDNA) region and ecological niche modelling were used to examine the phylogeographic pattern of C. coggygria. The cpDNA data revealed two phylogeographic groups (Southern and Northern) corresponding to the geographic regions. Divergence time analyses revealed that divergence of the two groups occurred at approximately 147,000 years before the present (BP), which coincided with the formation of the downstream area of the Yellow River, indicating that the Yellow River was a weak phylogeographic divide for C. coggygria. The molecular data and ecological niche modelling also indicated that C. coggyria did not experience population expansion after glaciations. This study thus supports the fact that Pleistocene glacial cycles only slightly affected C. coggygria, which survived in situ and occupied multiple localised glacial refugia during glaciations. This finding is contrary to the hypothesis of large-scale range habitat contraction and retreat into a few main refugia. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Step back! Niche dynamics in cave-dwelling predators

    NASA Astrophysics Data System (ADS)

    Mammola, Stefano; Piano, Elena; Isaia, Marco

    2016-08-01

    The geometry of the Hutchinson's hypervolume derives from multiple selective pressures defined, on one hand, by the physiological tolerance of the species, and on the other, by intra- and interspecific competition. The quantification of these evolutionary forces is essential for the understanding of the coexistence of predators in light of competitive exclusion dynamics. We address this topic by investigating the ecological niche of two medium-sized troglophile spiders (Meta menardi and Pimoa graphitica). Over one year, we surveyed several populations in four subterranean sites in the Western Italian Alps, monitoring monthly their spatial and temporal dynamics and the associated physical and ecological variables. We assessed competition between the two species by means of multi regression techniques and by evaluating the intersection between their multidimensional hypervolumes. We detected a remarkable overlap between the microclimatic and trophic niche of M. menardi and P. graphitica, however, the former -being larger in size- resulted the best competitor in proximity of the cave entrance, causing the latter to readjust its spatial niche towards the inner part, where prey availability is scarcer ("step back effect"). In parallel to the slight variations in the subterranean microclimatic condition, the niche of the two species was also found to be seasonal dependent, varying over the year. With this work, we aim at providing new insights about the relationships among predators, demonstrating that energy-poor environments such as caves maintain the potential for diversification of predators via niche differentiation and serve as useful models for theoretical ecological studies.

  17. Niche construction game cancer cells play

    NASA Astrophysics Data System (ADS)

    Bergman, Aviv; Gligorijevic, Bojana

    2015-10-01

    Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

  18. Niche construction game cancer cells play.

    PubMed

    Bergman, Aviv; Gligorijevic, Bojana

    2015-10-01

    Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

  19. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams

    PubMed Central

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches. PMID:26934113

  20. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams.

    PubMed

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.

  1. Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China

    PubMed Central

    Xu, Min; Cao, Chunxiang; Li, Qun; Jia, Peng; Zhao, Jian

    2016-01-01

    China was attacked by a serious influenza A (H7N9) virus in 2013. The first human infection case was confirmed in Shanghai City and soon spread across most of eastern China. Using the methods of Geographic Information Systems (GIS) and ecological niche modeling (ENM), this research quantitatively analyzed the relationships between the H7N9 occurrence and the main environmental factors, including meteorological variables, human population density, bird migratory routes, wetland distribution, and live poultry farms, markets, and processing factories. Based on these relationships the probability of the presence of H7N9 was predicted. Results indicated that the distribution of live poultry processing factories, farms, and human population density were the top three most important determinants of the H7N9 human infection. The relative contributions to the model of live poultry processing factories, farms and human population density were 39.9%, 17.7% and 17.7%, respectively, while the maximum temperature of the warmest month and mean relative humidity had nearly no contribution to the model. The paper has developed an ecological niche model (ENM) that predicts the spatial distribution of H7N9 cases in China using environmental variables. The area under the curve (AUC) values of the model were greater than 0.9 (0.992 for the training samples and 0.961 for the test data). The findings indicated that most of the high risk areas were distributed in the Yangtze River Delta. These findings have important significance for the Chinese government to enhance the environmental surveillance at multiple human poultry interfaces in the high risk area. PMID:27322296

  2. Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China.

    PubMed

    Xu, Min; Cao, Chunxiang; Li, Qun; Jia, Peng; Zhao, Jian

    2016-06-16

    China was attacked by a serious influenza A (H7N9) virus in 2013. The first human infection case was confirmed in Shanghai City and soon spread across most of eastern China. Using the methods of Geographic Information Systems (GIS) and ecological niche modeling (ENM), this research quantitatively analyzed the relationships between the H7N9 occurrence and the main environmental factors, including meteorological variables, human population density, bird migratory routes, wetland distribution, and live poultry farms, markets, and processing factories. Based on these relationships the probability of the presence of H7N9 was predicted. Results indicated that the distribution of live poultry processing factories, farms, and human population density were the top three most important determinants of the H7N9 human infection. The relative contributions to the model of live poultry processing factories, farms and human population density were 39.9%, 17.7% and 17.7%, respectively, while the maximum temperature of the warmest month and mean relative humidity had nearly no contribution to the model. The paper has developed an ecological niche model (ENM) that predicts the spatial distribution of H7N9 cases in China using environmental variables. The area under the curve (AUC) values of the model were greater than 0.9 (0.992 for the training samples and 0.961 for the test data). The findings indicated that most of the high risk areas were distributed in the Yangtze River Delta. These findings have important significance for the Chinese government to enhance the environmental surveillance at multiple human poultry interfaces in the high risk area.

  3. Tracking niche variation over millennial timescales in sympatric killer whale lineages

    PubMed Central

    Foote, Andrew D.; Newton, Jason; Ávila-Arcos, María C.; Kampmann, Marie-Louise; Samaniego, Jose A.; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S.; Gilbert, M. Thomas P.

    2013-01-01

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish. PMID:23945688

  4. Tracking niche variation over millennial timescales in sympatric killer whale lineages.

    PubMed

    Foote, Andrew D; Newton, Jason; Ávila-Arcos, María C; Kampmann, Marie-Louise; Samaniego, Jose A; Post, Klaas; Rosing-Asvid, Aqqalu; Sinding, Mikkel-Holger S; Gilbert, M Thomas P

    2013-10-07

    Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.

  5. Niche dimensions in fishes: an integrative view.

    PubMed

    Pörtner, H O; Schulte, P M; Wood, C M; Schiemer, F

    2010-01-01

    Current shifts in ecosystem composition and function emphasize the need for an understanding of the links between environmental factors and organism fitness and tolerance. The examples discussed here illustrate how recent progress in the field of comparative physiology may provide a better mechanistic understanding of the ecological concepts of the fundamental and realized niches and thus provide insights into the impacts of anthropogenic disturbance. Here we argue that, as a link between physiological and ecological indicators of organismal performance, the mechanisms shaping aerobic scope and passive tolerance set the dimensions of an animal's niche, here defined as its capacity to survive, grow, behave, and interact with other species. We demonstrate how comparative studies of cod or killifish populations in a latitudinal cline have unraveled mitochondrial mechanisms involved in establishing a species' niche, performance, and energy budget. Riverine fish exemplify how the performance windows of various developmental stages follow the dynamic regimes of both seasonal temperatures and river hydrodynamics, as synergistic challenges. Finally, studies of species in extreme environments, such as the tilapia of Lake Magadi, illustrate how on evolutionary timescales functional and morphological shifts can occur, associated with new specializations. We conclude that research on the processes and time course of adaptations suitable to overcome current niche limits is urgently needed to assess the resilience of species and ecosystems to human impact, including the challenges of global climate change.

  6. Niche evolution and thermal adaptation in the temperate species Drosophila americana.

    PubMed

    Sillero, N; Reis, M; Vieira, C P; Vieira, J; Morales-Hojas, R

    2014-08-01

    The study of ecological niche evolution is fundamental for understanding how the environment influences species' geographical distributions and their adaptation to divergent environments. Here, we present a study of the ecological niche, demographic history and thermal performance (locomotor activity, developmental time and fertility/viability) of the temperate species Drosophila americana and its two chromosomal forms. Temperature is the environmental factor that contributes most to the species' and chromosomal forms' ecological niches, although precipitation is also important in the model of the southern populations. The past distribution model of the species predicts a drastic reduction in the suitable area for the distribution of the species during the last glacial maximum (LGM), suggesting a strong bottleneck. However, DNA analyses did not detect a bottleneck signature during the LGM. These contrasting results could indicate that D. americana niche preference evolves with environmental change, and thus, there is no evidence to support niche conservatism in this species. Thermal performance experiments show no difference in the locomotor activity across a temperature range of 15 to 38 °C between flies from the north and the south of its distribution. However, we found significant differences in developmental time and fertility/viability between the two chromosomal forms at the model's optimal temperatures for the two forms. However, results do not indicate that they perform better for the traits studied here in their respective optimal niche temperatures. This suggests that behaviour plays an important role in thermoregulation, supporting the capacity of this species to adapt to different climatic conditions across its latitudinal distribution. © 2014 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  7. Evidence of niche shift and invasion potential of Lithobates catesbeianus in the habitat of Mexican endemic frogs

    PubMed Central

    Becerra López, Jorge Luis; Romero Méndez, Ulises; Sigala Rodríguez, José Jesús; Mayer Goyenechea, Irene Goyenechea; Castillo Cerón, Jesús Martín

    2017-01-01

    Invasive alien species are one of most severe threats to biodiversity and natural resources. These biological invasions have been studied from the niche conservatism and niche shifts perspective. Niche differentiation may result from changes in fundamental niche or realized niche or both; in biological invasions, niche differences between native and non-native ranges can appear through niche expansion, niche unfilling and niche stability. The American bullfrog Lithobates catesbeianus is an invasive species that can have negative impacts on native amphibian populations. This research examines the climate niche shifts of this frog, its potential range of expansion in Mexico and the risk of invasion by bullfrog in the habitats of 82 frog species endemic to Mexico, that based on their climatic niche similarity were divided in four ecological groups. The results indicate that species in two ecological groups were the most vulnerable to invasion by bullfrog. However, the climate niche shifts of L. catesbeianus may allow it to adapt to new environmental conditions, so species from the two remaining groups cannot be dismissed as not vulnerable. This information is valuable for decision making in prioritizing areas for conservation of Mexican endemic frogs. PMID:28953907

  8. Evidence of niche shift and invasion potential of Lithobates catesbeianus in the habitat of Mexican endemic frogs.

    PubMed

    Becerra López, Jorge Luis; Esparza Estrada, Citlalli Edith; Romero Méndez, Ulises; Sigala Rodríguez, José Jesús; Mayer Goyenechea, Irene Goyenechea; Castillo Cerón, Jesús Martín

    2017-01-01

    Invasive alien species are one of most severe threats to biodiversity and natural resources. These biological invasions have been studied from the niche conservatism and niche shifts perspective. Niche differentiation may result from changes in fundamental niche or realized niche or both; in biological invasions, niche differences between native and non-native ranges can appear through niche expansion, niche unfilling and niche stability. The American bullfrog Lithobates catesbeianus is an invasive species that can have negative impacts on native amphibian populations. This research examines the climate niche shifts of this frog, its potential range of expansion in Mexico and the risk of invasion by bullfrog in the habitats of 82 frog species endemic to Mexico, that based on their climatic niche similarity were divided in four ecological groups. The results indicate that species in two ecological groups were the most vulnerable to invasion by bullfrog. However, the climate niche shifts of L. catesbeianus may allow it to adapt to new environmental conditions, so species from the two remaining groups cannot be dismissed as not vulnerable. This information is valuable for decision making in prioritizing areas for conservation of Mexican endemic frogs.

  9. Horizontal Transfers and Gene Losses in the Phospholipid Pathway of Bartonella Reveal Clues about Early Ecological Niches

    PubMed Central

    Zhu, Qiyun; Kosoy, Michael; Olival, Kevin J.; Dittmar, Katharina

    2014-01-01

    Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution. PMID:25106622

  10. Untangling the fungal niche: the trait-based approach.

    PubMed

    Crowther, Thomas W; Maynard, Daniel S; Crowther, Terence R; Peccia, Jordan; Smith, Jeffrey R; Bradford, Mark A

    2014-01-01

    Fungi are prominent components of most terrestrial ecosystems, both in terms of biomass and ecosystem functioning, but the hyper-diverse nature of most communities has obscured the search for unifying principles governing community organization. In particular, unlike plants and animals, observational studies provide little evidence for the existence of niche processes in structuring fungal communities at broad spatial scales. This limits our capacity to predict how communities, and their functioning, vary across landscapes. We outline how a shift in focus, from taxonomy toward functional traits, might prove to be valuable in the search for general patterns in fungal ecology. We build on theoretical advances in plant and animal ecology to provide an empirical framework for a trait-based approach in fungal community ecology. Drawing upon specific characteristics of the fungal system, we highlight the significance of drought stress and combat in structuring free-living fungal communities. We propose a conceptual model to formalize how trade-offs between stress-tolerance and combative dominance are likely to organize communities across environmental gradients. Given that the survival of a fungus in a given environment is contingent on its ability to tolerate antagonistic competitors, measuring variation in combat trait expression along environmental gradients provides a means of elucidating realized, from fundamental niche spaces. We conclude that, using a trait-based understanding of how niche processes structure fungal communities across time and space, we can ultimately link communities with ecosystem functioning. Our trait-based framework highlights fundamental uncertainties that require testing in the fungal system, given their potential to uncover general mechanisms in fungal ecology.

  11. Phylogeographic analysis and environmental niche modeling of the plain-bellied watersnake (Nerodia erythrogaster) reveals low levels of genetic and ecological differentiation

    PubMed Central

    Makowsky, Robert; Marshall, John C.; McVay, John; Chippindale, Paul T.; Rissler, Leslie J.

    2012-01-01

    Species that exhibit geographically defined phenotypic variation traditionally have been divided into subspecies. Subspecies based on phenotypic features may not comprise monophyletic groups due to selection, gene flow, and/or convergent evolution. In many taxonomic groups the number of species once designated as widespread is dwindling rapidly, and many workers reject the concept of subspecies altogether. We tested whether currently recognized subspecies in the plain-bellied watersnake Nerodia erythrogaster are concordant with relationships based on mitochondrial markers, and whether it represents a single widespread species. The range of this taxon spans multiple potential biogeographic barriers (especially the Mississippi and Apalachicola Rivers) that correspond with lineage breaks in many species, including other snakes. We sequenced three mitochondrialgenes (NADH-II, Cyt-b, Cox-I) from 156 geo-referenced specimens and developed ecological niche models using Maxent and spatially-explicit climate data to examine historical and ecological factors affecting variation in N. erythrogaster across its range. Overall, we found little support for the recognized subspecies as either independent evolutionary lineages or geographically circumscribed units and conclude that although some genetic and niche differentiation has occurred, most populations assigned to N. erythrogaster appear to represent a single, widespread species. However, additional sampling and application of nuclear markers are necessary to clarify the status of the easternmost populations. PMID:20302955

  12. PSA-NCAM expression in the teleost optic tectum is related to ecological niche and use of vision in finding food.

    PubMed

    Labak, I; Pavić, V; Zjalić, M; Blažetić, S; Viljetić, B; Merdić, E; Heffer, M

    2017-08-01

    In this study, tangential migration and neuronal connectivity organization were analysed in the optic tectum of seven different teleosts through the expression of polysialylated neural cell adhesion molecule (PSA-NCAM) in response to ecological niche and use of vision. Reduced PSA-NCAM expression in rainbow trout Oncorhynchus mykiss optic tectum occurred in efferent layers, while in pike Esox lucius and zebrafish Danio rerio it occurred in afferent and efferent layers. Zander Sander lucioperca and European eel Anguilla anguilla had very low PSA-NCAM expression in all tectal layers except in the stratum marginale. Common carp Cyprinus carpio and wels catfish Silurus glanis had the same intensity of PSA-NCAM expression in all tectal layers. The optic tectum of all studied fishes was also a site of tangential migration with sustained PSA-NCAM and c-series ganglioside expression. Anti-c-series ganglioside immunoreactivity was observed in all tectal layers of all analysed fishes, even in layers where PSA-NCAM expression was reduced. Since the optic tectum is indispensable for visually guided prey capture, stabilization of synaptic contact and decrease of neurogenesis and tangential migration in the visual map are an expected adjustment to ecological niche. The authors hypothesize that this stabilization would probably be achieved by down-regulation of PSA-NCAM rather than c-series of ganglioside. © 2017 The Fisheries Society of the British Isles.

  13. The Home/School Connection and Its Role in Narrowing the Academic Achievement Gap: An Ecological Systems Theoretical Perspective

    ERIC Educational Resources Information Center

    Blandin, Allyson

    2017-01-01

    This literature review seeks to evaluate previous studies on the topic of the home/school connection and its role in enhancing students' academic achievement and narrowing the academic achievement gap. The ecological systems theory framework will facilitate the discussion of the importance of the home/school connection phenomenon. Perspectives…

  14. Affordances and Landscapes: Overcoming the Nature-Culture Dichotomy through Niche Construction Theory.

    PubMed

    Heras-Escribano, Manuel; De Pinedo-García, Manuel

    2017-01-01

    In this paper we reject the nature-culture dichotomy by means of the idea of affordance or possibility for action, which has important implications for landscape theory. Our hypothesis is that, just as the idea of affordance can serve to overcome the subjective-objective dichotomy, the ideas of landscape and ecological niche, properly defined, would allow us to also transcend the nature-culture dichotomy. First, we introduce an overview of landscape theory, emphasizing processual landscape theory as the most suitable approach for satisfying both cultural and naturalist approaches. After that, we introduce the idea of affordance and we analyze a tension between sociocultural and transcultural affordances (affordances that depend on cultural conventions and affordances that depend on lawful information and bodily aspects of agents). This tension has various implications for landscape theory and ecological niches. Our proposal is that sociocultural and transcultural aspects of affordances could be systematically accommodated if we apply niche construction theory (the theory that explains the process by which organisms modify their selective environments) as a methodological framework for explaining the emergence of ecological niches. This approach will lead us to an integrative account of landscapes as the products of the interaction between human and environmental elements, making it a clear example of a concept that transcends the nature-culture dichotomy.

  15. The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa.

    PubMed

    Johnson, Steven D; Raguso, Robert A

    2016-01-01

    Unrelated organisms that share similar niches often exhibit patterns of convergent evolution in functional traits. Based on bimodal distributions of hawkmoth tongue lengths and tubular white flowers in Africa, this study hypothesized that long-tongued hawkmoths comprise a pollination niche (ecological opportunity) that is distinct from that of shorter-tongued hawkmoths. Field observations, light trapping, camera surveillance and pollen load analysis were used to identify pollinators of plant species with very long-tubed (>8 cm) flowers. The nectar properties and spectral reflectance of these flowers were also measured. The frequency distributions of proboscis length for all captured hawkmoths and floral tube length for a representative sample of night-blooming plant species were determined. The geographical distributions of both native and introduced plant species with very long floral tubes were mapped. The convolvulus hawkmoth Agrius convolvuli is identified as the most important pollinator of African plants with very long-tubed flowers. Plants pollinated by this hawkmoth species tend to have a very long (approx. 10 cm) and narrow flower tube or spur, white flowers and large volumes of dilute nectar. It is estimated that >70 grassland and savanna plant species in Africa belong to the Agrius pollination guild. In South Africa, at least 23 native species have very long floral tubes, and pollination by A. convolvuli or, rarely, by the closely related hawkmoth Coelonia fulvinotata, has been confirmed for 11 of these species. The guild is strikingly absent from the species-rich Cape floral region and now includes at least four non-native invasive species with long-tubed flowers that are pre-adapted for pollination by A. convolvuli. This study highlights the value of a niche perspective on pollination, which provides a framework for making predictions about the ecological importance of keystone pollinators, and for understanding patterns of convergent evolution and

  16. The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa

    PubMed Central

    Johnson, Steven D.; Raguso, Robert A.

    2016-01-01

    Background and Aims Unrelated organisms that share similar niches often exhibit patterns of convergent evolution in functional traits. Based on bimodal distributions of hawkmoth tongue lengths and tubular white flowers in Africa, this study hypothesized that long-tongued hawkmoths comprise a pollination niche (ecological opportunity) that is distinct from that of shorter-tongued hawkmoths. Methods Field observations, light trapping, camera surveillance and pollen load analysis were used to identify pollinators of plant species with very long-tubed (>8 cm) flowers. The nectar properties and spectral reflectance of these flowers were also measured. The frequency distributions of proboscis length for all captured hawkmoths and floral tube length for a representative sample of night-blooming plant species were determined. The geographical distributions of both native and introduced plant species with very long floral tubes were mapped. Key Results The convolvulus hawkmoth Agrius convolvuli is identified as the most important pollinator of African plants with very long-tubed flowers. Plants pollinated by this hawkmoth species tend to have a very long (approx. 10 cm) and narrow flower tube or spur, white flowers and large volumes of dilute nectar. It is estimated that >70 grassland and savanna plant species in Africa belong to the Agrius pollination guild. In South Africa, at least 23 native species have very long floral tubes, and pollination by A. convolvuli or, rarely, by the closely related hawkmoth Coelonia fulvinotata, has been confirmed for 11 of these species. The guild is strikingly absent from the species-rich Cape floral region and now includes at least four non-native invasive species with long-tubed flowers that are pre-adapted for pollination by A. convolvuli. Conclusions This study highlights the value of a niche perspective on pollination, which provides a framework for making predictions about the ecological importance of keystone pollinators, and

  17. Current and Future Niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change Scenarios

    PubMed Central

    Moo-Llanes, David; Ibarra-Cerdeña, Carlos N.; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M.

    2013-01-01

    Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases. PMID:24069478

  18. Current and future niche of North and Central American sand flies (Diptera: psychodidae) in climate change scenarios.

    PubMed

    Moo-Llanes, David; Ibarra-Cerdeña, Carlos N; Rebollar-Téllez, Eduardo A; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M

    2013-01-01

    Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases.

  19. Environmental filtering drives the shape and breadth of the seed germination niche in coastal plant communities

    PubMed Central

    Pérez-Arcoiza, Adrián; Prieto, José Alberto; Díaz, Tomás E.

    2017-01-01

    Abstract Background and Aims A phylogenetic comparative analysis of the seed germination niche was conducted in coastal plant communities of western Europe. Two hypotheses were tested, that (1) the germination niche shape (i.e. the preference for a set of germination cues as opposed to another) would differ between beaches and cliffs to prevent seedling emergence in the less favourable season (winter and summer, respectively); and (2) the germination niche breadth (i.e. the amplitude of germination cues) would be narrower in the seawards communities, where environmental filtering is stronger. Methods Seeds of 30 specialist species of coastal plant communities were collected in natural populations of northern Spain. Their germination was measured in six laboratory treatments based on field temperatures. Germination niche shape was estimated as the best germination temperature. Germination niche breadth was calculated using Pielou’s evenness index. Differences between plant communities in their germination niche shape and breadth were tested using phylogenetic generalized least squares regression (PGLS). Key Results Germination niche shape differed between communities, being warm-cued in beaches (best germination temperature = 20 °C) and cold-cued in cliffs (14 °C). Germination niche was narrowest in seawards beaches (Pielou’s index = 0·89) and broadest in landwards beaches (0·99). Cliffs had an intermediate germination niche breadth (0·95). The relationship between niche and plant community had a positive phylogenetic signal for shape (Pagel’s λ = 0·64) and a negative one for breadth (Pagel’s λ = −1·71). Conclusion Environmental filters shape the germination niche to prevent emergence in the season of highest threat for seedling establishment. The germination niche breadth is narrower in the communities with stronger environmental filters, but only in beaches. This study provides empirical support to a community-level generalization of

  20. Ecological opportunity and the adaptive diversification of lineages

    PubMed Central

    Wellborn, Gary A; Langerhans, R Brian

    2015-01-01

    The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche-related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species-rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity – but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying

  1. Ecological opportunity and the adaptive diversification of lineages.

    PubMed

    Wellborn, Gary A; Langerhans, R Brian

    2015-01-01

    The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche-related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species-rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity - but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying

  2. Toward Gleasonian landscape ecology: From communities to species, from patches to pixels

    Treesearch

    Samuel A. Cushman; Jeffrey S. Evans; Kevin McGarigal; Joseph M. Kiesecker

    2010-01-01

    The fusion of individualistic community ecology with the Hutchinsonian niche concept enabled a broad integration of ecological theory, spanning all the way from the niche characteristics of individual species, to the composition, structure, and dynamics of ecological communities. Landscape ecology has been variously described as the study of the structure, function,...

  3. Can you sequence ecology? Metagenomics of adaptive diversification.

    PubMed

    Marx, Christopher J

    2013-01-01

    Few areas of science have benefited more from the expansion in sequencing capability than the study of microbial communities. Can sequence data, besides providing hypotheses of the functions the members possess, detect the evolutionary and ecological processes that are occurring? For example, can we determine if a species is adapting to one niche, or if it is diversifying into multiple specialists that inhabit distinct niches? Fortunately, adaptation of populations in the laboratory can serve as a model to test our ability to make such inferences about evolution and ecology from sequencing. Even adaptation to a single niche can give rise to complex temporal dynamics due to the transient presence of multiple competing lineages. If there are multiple niches, this complexity is augmented by segmentation of the population into multiple specialists that can each continue to evolve within their own niche. For a known example of parallel diversification that occurred in the laboratory, sequencing data gave surprisingly few obvious, unambiguous signs of the ecological complexity present. Whereas experimental systems are open to direct experimentation to test hypotheses of selection or ecological interaction, the difficulty in "seeing ecology" from sequencing for even such a simple system suggests translation to communities like the human microbiome will be quite challenging. This will require both improved empirical methods to enhance the depth and time resolution for the relevant polymorphisms and novel statistical approaches to rigorously examine time-series data for signs of various evolutionary and ecological phenomena within and between species.

  4. Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model

    PubMed Central

    Cao, Chunxiang; Xu, Min; Pandit, Shreejana

    2018-01-01

    Both the number of cases of dengue fever and the areas of outbreaks within Nepal have increased significantly in recent years. Further expansion and range shift is expected in the future due to global climate change and other associated factors. However, due to limited spatially-explicit research in Nepal, there is poor understanding about the present spatial distribution patterns of dengue risk areas and the potential range shift due to future climate change. In this context, it is crucial to assess and map dengue fever risk areas in Nepal. Here, we used reported dengue cases and a set of bioclimatic variables on the MaxEnt ecological niche modeling approach to model the climatic niche and map present and future (2050s and 2070s) climatically suitable areas under different representative concentration pathways (RCP2.6, RCP6.0 and RCP8.5). Simulation-based estimates suggest that climatically suitable areas for dengue fever are presently distributed throughout the lowland Tarai from east to west and in river valleys at lower elevations. Under the different climate change scenarios, these areas will be slightly shifted towards higher elevation with varied magnitude and spatial patterns. Population exposed to climatically suitable areas of dengue fever in Nepal is anticipated to further increase in both 2050s and 2070s on all the assumed emission scenarios. These findings could be instrumental to plan and execute the strategic interventions for controlling dengue fever in Nepal. PMID:29360797

  5. Affordances and Landscapes: Overcoming the Nature–Culture Dichotomy through Niche Construction Theory

    PubMed Central

    Heras-Escribano, Manuel; De Pinedo-García, Manuel

    2018-01-01

    In this paper we reject the nature–culture dichotomy by means of the idea of affordance or possibility for action, which has important implications for landscape theory. Our hypothesis is that, just as the idea of affordance can serve to overcome the subjective–objective dichotomy, the ideas of landscape and ecological niche, properly defined, would allow us to also transcend the nature–culture dichotomy. First, we introduce an overview of landscape theory, emphasizing processual landscape theory as the most suitable approach for satisfying both cultural and naturalist approaches. After that, we introduce the idea of affordance and we analyze a tension between sociocultural and transcultural affordances (affordances that depend on cultural conventions and affordances that depend on lawful information and bodily aspects of agents). This tension has various implications for landscape theory and ecological niches. Our proposal is that sociocultural and transcultural aspects of affordances could be systematically accommodated if we apply niche construction theory (the theory that explains the process by which organisms modify their selective environments) as a methodological framework for explaining the emergence of ecological niches. This approach will lead us to an integrative account of landscapes as the products of the interaction between human and environmental elements, making it a clear example of a concept that transcends the nature–culture dichotomy. PMID:29375426

  6. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases.

    PubMed

    Peterson, A Townsend; Martínez-Campos, Carmen; Nakazawa, Yoshinori; Martínez-Meyer, Enrique

    2005-09-01

    Numerous human diseases-malaria, dengue, yellow fever and leishmaniasis, to name a few-are transmitted by insect vectors with brief life cycles and biting activity that varies in both space and time. Although the general geographic distributions of these epidemiologically important species are known, the spatiotemporal variation in their emergence and activity remains poorly understood. We used ecological niche modeling via a genetic algorithm to produce time-specific predictive models of monthly distributions of Aedes aegypti in Mexico in 1995. Significant predictions of monthly mosquito activity and distributions indicate that predicting spatiotemporal dynamics of disease vector species is feasible; significant coincidence with human cases of dengue indicate that these dynamics probably translate directly into transmission of dengue virus to humans. This approach provides new potential for optimizing use of resources for disease prevention and remediation via automated forecasting of disease transmission risk.

  7. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling

    PubMed Central

    Boavida, Joana; Assis, Jorge; Silva, Inga; Serrão, Ester A.

    2016-01-01

    Factors shaping the distribution of mesophotic octocorals (30–200 m depth) remain poorly understood, potentially leaving overlooked coral areas, particularly near their bathymetric and geographic distributional limits. Yet, detailed knowledge about habitat requirements is crucial for conservation of sensitive gorgonians. Here we use Ecological Niche Modelling (ENM) relating thirteen environmental predictors and a highly comprehensive presence dataset, enhanced by SCUBA diving surveys, to investigate the suitable habitat of an important structuring species, Paramuricea clavata, throughout its distribution (Mediterranean and adjacent Atlantic). Models showed that temperature (11.5–25.5 °C) and slope are the most important predictors carving the niche of P. clavata. Prediction throughout the full distribution (TSS 0.9) included known locations of P. clavata alongside with previously unknown or unreported sites along the coast of Portugal and Africa, including seamounts. These predictions increase the understanding of the potential distribution for the northern Mediterranean and indicate suitable hard bottom areas down to >150 m depth. Poorly sampled habitats with predicted presence along Algeria, Alboran Sea and adjacent Atlantic coasts encourage further investigation. We propose that surveys of target areas from the predicted distribution map, together with local expert knowledge, may lead to discoveries of new P. clavata sites and identify priority conservation areas. PMID:27841263

  8. Growth of Coccolithophores Controlled by Internal Nutrient Stores in Light- and Nutrient-Limited Batch Reactors: Relevance for the BIOSOPE Deep Ecological Niche of Coccolithophores.

    NASA Astrophysics Data System (ADS)

    Laura, P.; Probert, I.; Langer, G.; Aloisi, G.

    2016-02-01

    Coccolithophores are unicellular, calcifying marine algae that play a fundamental role in the oceanic carbon cycle. Recent research has focused on investigating the effect of ocean acidification on cellular calcification. However, the success of this important phytoplankton group in the future ocean will depend on how cellular growth reacts to changes in a combination of environmental variables. We carried out batch culture experiments in conditions of light- and nutrient- (nitrate and phosphate) limitation that reproduce the in situ conditions of a deep ecological niche of coccolithophores in the South Pacific Gyre (BIOSOPE cruise, 2004). We modelled nutrient acquisition and cellular growth in our batch experiments using a Droop internal-stores model. We show that nutrient acquisition and growth are decoupled in coccolithophores; this ability may be key in making life possible in oligotrophic conditions such as the deep BIOSOPE biological niche. Combining the results of our culture experiments with those of Langer et al. (2013), we used the model to obtain estimates of fundamental physiological parameters such as the Monod constant for nutrient uptake, the maximum growth rate and the minimum cellular nutrient quota. These parameters are characteristic of different phytoplankton groups and are needed to simulate phytoplankton growth in biogeochemical models. Our results suggest that growth of coccolithophores in the BIOSOPE deep ecological niche is light-limited rather than nutrient-limited. Our work also shows that simple batch experiments and straightforward numerical modelling are capable of providing estimates of physiological parameters usually obtained in more costly and complicated chemostat experiments.

  9. Tempo and mode of climatic niche evolution in Primates.

    PubMed

    Duran, Andressa; Pie, Marcio R

    2015-09-01

    Climatic niches have increasingly become a nexus in our understanding of a variety of ecological and evolutionary phenomena, from species distributions to latitudinal diversity gradients. Despite the increasing availability of comprehensive datasets on species ranges, phylogenetic histories, and georeferenced environmental conditions, studies on the evolution of climate niches have only begun to understand how niches evolve over evolutionary timescales. Here, using primates as a model system, we integrate recently developed phylogenetic comparative methods, species distribution patterns, and climatic data to explore primate climatic niche evolution, both among clades and over time. In general, we found that simple, constant-rate models provide a poor representation of how climatic niches evolve. For instance, there have been shifts in the rate of climatic niche evolution in several independent clades, particularly in response to the increasingly cooler climates of the past 10 My. Interestingly, rate accelerations greatly outnumbered rate decelerations. These results highlight the importance of considering more realistic evolutionary models that allow for the detection of heterogeneity in the tempo and mode of climatic niche evolution, as well as to infer possible constraining factors for species distributions in geographical space. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  10. Towards the Integration of Niche and Network Theories.

    PubMed

    Godoy, Oscar; Bartomeus, Ignasi; Rohr, Rudolf P; Saavedra, Serguei

    2018-04-01

    The quest for understanding how species interactions modulate diversity has progressed by theoretical and empirical advances following niche and network theories. Yet, niche studies have been limited to describe coexistence within tropic levels despite incorporating information about multi-trophic interactions. Network approaches could address this limitation, but they have ignored the structure of species interactions within trophic levels. Here we call for the integration of niche and network theories to reach new frontiers of knowledge exploring how interactions within and across trophic levels promote species coexistence. This integration is possible due to the strong parallelisms in the historical development, ecological concepts, and associated mathematical tools of both theories. We provide a guideline to integrate this framework with observational and experimental studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Rooting Theories of Plant Community Ecology in Microbial Interactions

    PubMed Central

    Bever, James D.; Dickie, Ian A.; Facelli, Evelina; Facelli, Jose M.; Klironomos, John; Moora, Mari; Rillig, Matthias C.; Stock, William D.; Tibbett, Mark; Zobel, Martin

    2010-01-01

    Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and suggest these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance, and invasion ecology. PMID:20557974

  12. Niche conservatism and phylogenetic clustering in a tribe of arid-adapted marsupial mice, the Sminthopsini.

    PubMed

    García-Navas, Vicente; Westerman, Michael

    2018-05-28

    The progressive expansion of the Australian arid zone during the last 20 Ma appears to have spurred the diversification of several families of plants, vertebrates and invertebrates, yet such taxonomic groups appear to show limited niche radiation. Here, we test whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence in a tribe of marsupial mice (Sminthopsini; 23 taxa) that includes the most speciose genus of living dasyurids, the sminthopsins. To that end, we integrated phylogenetic data with ecological niche modelling, to enable us to reconstruct the evolution of climatic suitability within Sminthopsini. Niche overlap among species was low-moderate (but generally higher than expected given environmental background similarity), and the degree of phylogenetic clustering increased with aridity. Climatic niche reconstruction illustrates that there has been little apparent evolution of climatic tolerance within clades. Accordingly, climatic disparity tends to be accumulated among clades, suggesting considerable niche conservatism. Our results also indicate that evolution of climatic tolerances has been heterogeneous across different dimensions of climate (temperature vs. precipitation) and across phylogenetic clusters (Sminthopsis murina group vs. other groups). Although some results point to the existence of shifts in climatic niches during the speciation of sminthopsins, our study provides evidence for substantial phylogenetic niche conservatism in the group. We conclude that niche diversification had a low impact on the speciation of this tribe of small, but highly mobile marsupials. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  13. Modelling the climatic niche of turtles: a deep-time perspective

    PubMed Central

    Schmidt, Daniela N.; Valdes, Paul J.; Holroyd, Patricia A.; Farnsworth, Alexander

    2016-01-01

    Ectotherms have close physiological ties with the thermal environment; consequently, the impact of future climate change on their biogeographic distributions is of major interest. Here, we use the modern and deep-time fossil record of testudines (turtles, tortoises, and terrapins) to provide the first test of climate on the niche limits of both extant and extinct (Late Cretaceous, Maastrichtian) taxa. Ecological niche models are used to assess niche overlap in model projections for key testudine ecotypes and families. An ordination framework is applied to quantify metrics of niche change (stability, expansion, and unfilling) between the Maastrichtian and present day. Results indicate that niche stability over evolutionary timescales varies between testudine clades. Groups that originated in the Early Cretaceous show climatic niche stability, whereas those diversifying towards the end of the Cretaceous display larger niche expansion towards the modern. Temperature is the dominant driver of modern and past distributions, whereas precipitation is important for freshwater turtle ranges. Our findings demonstrate that testudines were able to occupy warmer climates than present day in the geological record. However, the projected rate and magnitude of future environmental change, in concert with other conservation threats, presents challenges for acclimation or adaptation. PMID:27655766

  14. Within outlying mean indexes: refining the OMI analysis for the realized niche decomposition.

    PubMed

    Karasiewicz, Stéphane; Dolédec, Sylvain; Lefebvre, Sébastien

    2017-01-01

    The ecological niche concept has regained interest under environmental change (e.g., climate change, eutrophication, and habitat destruction), especially to study the impacts on niche shift and conservatism. Here, we propose the within outlying mean indexes (WitOMI), which refine the outlying mean index (OMI) analysis by using its properties in combination with the K -select analysis species marginality decomposition. The purpose is to decompose the ecological niche into subniches associated with the experimental design, i.e., taking into account temporal and/or spatial subsets. WitOMI emphasize the habitat conditions that contribute (1) to the definition of species' niches using all available conditions and, at the same time, (2) to the delineation of species' subniches according to given subsets of dates or sites. The latter aspect allows addressing niche dynamics by highlighting the influence of atypical habitat conditions on species at a given time and/or space. Then, (3) the biological constraint exerted on the species subniche becomes observable within Euclidean space as the difference between the existing fundamental subniche and the realized subniche. We illustrate the decomposition of published OMI analyses, using spatial and temporal examples. The species assemblage's subniches are comparable to the same environmental gradient, producing a more accurate and precise description of the assemblage niche distribution under environmental change. The WitOMI calculations are available in the open-access R package "subniche."

  15. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub

    PubMed Central

    Delerue, Florian; Gonzalez, Maya; Michalet, Richard; Pellerin, Sylvain; Augusto, Laurent

    2015-01-01

    The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat). PMID:26098877

  16. Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae).

    PubMed

    Seeholzer, Glenn F; Claramunt, Santiago; Brumfield, Robb T

    2017-03-01

    Rapid diversification may be caused by ecological adaptive radiation via niche divergence. In this model, speciation is coupled with niche divergence and lineage diversification is predicted to be correlated with rates of niche evolution. Studies of the role of niche evolution in diversification have generally focused on ecomorphological diversification but climatic-niche evolution may also be important. We tested these alternatives using a phylogeny of 298 species of ovenbirds (Aves: Furnariidae). We found that within Furnariidae, variation in species richness and diversification rates of subclades were best predicted by rate of climatic-niche evolution than ecomorphological evolution. Although both are clearly important, univariate regression and multivariate model averaging more consistently supported the climatic-niche as the best predictor of lineage diversification. Our study adds to the growing body of evidence, suggesting that climatic-niche divergence may be an important driver of rapid diversification in addition to ecomorphological evolution. However, this pattern may depend on the phylogenetic scale at which rate heterogeneity is examined. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. Modeling the ecologic niche of plague in sylvan and domestic animal hosts to delineate sources of human exposure in the western United States

    PubMed Central

    Haseeb, MA

    2015-01-01

    Plague has been established in the western United States (US) since 1900 following the West Coast introduction of commensal rodents infected with Yersinia pestis via early industrial shipping. Over the last century, plague ecology has transitioned through cycles of widespread human transmission, urban domestic transmission among commensal rodents, and ultimately settled into the predominantly sylvan foci that remain today where it is maintained alternatively by enzootic and epizootic transmission. While zoonotic transmission to humans is much less common in modern times, significant plague risk remains in parts of the western US. Moreover, risk to some threatened species that are part of the epizootic cycle can be quite substantive. This investigation attempted to predict the risk of plague across the western US by modeling the ecologic niche of plague in sylvan and domestic animals identified between 2000 and 2015. A Maxent machine learning algorithm was used to predict this niche based on climate, altitude, land cover, and the presence of an important enzootic species, Peromyscus maniculatus. This model demonstrated good predictive ability (AUC = 86%) and identified areas of high risk in central Colorado, north-central New Mexico, and southwestern and northeastern California. The presence of P. maniculatus, altitude, precipitation during the driest and wettest quarters, and distance to artificial surfaces, all contributed substantively to maximizing the gain function. These findings add to the known landscape epidemiology and infection ecology of plague in the western US and may suggest locations of particular risk to be targeted for wild and domestic animal intervention. PMID:26713244

  18. Modeling the ecologic niche of plague in sylvan and domestic animal hosts to delineate sources of human exposure in the western United States.

    PubMed

    Walsh, Michael; Haseeb, M A

    2015-01-01

    Plague has been established in the western United States (US) since 1900 following the West Coast introduction of commensal rodents infected with Yersinia pestis via early industrial shipping. Over the last century, plague ecology has transitioned through cycles of widespread human transmission, urban domestic transmission among commensal rodents, and ultimately settled into the predominantly sylvan foci that remain today where it is maintained alternatively by enzootic and epizootic transmission. While zoonotic transmission to humans is much less common in modern times, significant plague risk remains in parts of the western US. Moreover, risk to some threatened species that are part of the epizootic cycle can be quite substantive. This investigation attempted to predict the risk of plague across the western US by modeling the ecologic niche of plague in sylvan and domestic animals identified between 2000 and 2015. A Maxent machine learning algorithm was used to predict this niche based on climate, altitude, land cover, and the presence of an important enzootic species, Peromyscus maniculatus. This model demonstrated good predictive ability (AUC = 86%) and identified areas of high risk in central Colorado, north-central New Mexico, and southwestern and northeastern California. The presence of P. maniculatus, altitude, precipitation during the driest and wettest quarters, and distance to artificial surfaces, all contributed substantively to maximizing the gain function. These findings add to the known landscape epidemiology and infection ecology of plague in the western US and may suggest locations of particular risk to be targeted for wild and domestic animal intervention.

  19. Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives

    PubMed Central

    Matthews, Thomas J; Whittaker, Robert J

    2014-01-01

    Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche-based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral- and niche-based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research. PMID:25360266

  20. Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives.

    PubMed

    Matthews, Thomas J; Whittaker, Robert J

    2014-06-01

    Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche-based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral- and niche-based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research.

  1. Early detection of emerging forest disease using dispersal estimation and ecological niche modeling.

    PubMed

    Meentemeyer, Ross K; Anacker, Brian L; Mark, Walter; Rizzo, David M

    2008-03-01

    Distinguishing the manner in which dispersal limitation and niche requirements control the spread of invasive pathogens is important for prediction and early detection of disease outbreaks. Here, we use niche modeling augmented by dispersal estimation to examine the degree to which local habitat conditions vs. force of infection predict invasion of Phytophthora ramorum, the causal agent of the emerging infectious tree disease sudden oak death. We sampled 890 field plots for the presence of P. ramorum over a three-year period (2003-2005) across a range of host and abiotic conditions with variable proximities to known infections in California, USA. We developed and validated generalized linear models of invasion probability to analyze the relative predictive power of 12 niche variables and a negative exponential dispersal kernel estimated by likelihood profiling. Models were developed incrementally each year (2003, 2003-2004, 2003-2005) to examine annual variability in model parameters and to create realistic scenarios for using models to predict future infections and to guide early-detection sampling. Overall, 78 new infections were observed up to 33.5 km from the nearest known site of infection, with slightly increasing rates of prevalence across time windows (2003, 6.5%; 2003-2004, 7.1%; 2003-2005, 9.6%). The pathogen was not detected in many field plots that contained susceptible host vegetation. The generalized linear modeling indicated that the probability of invasion is limited by both dispersal and niche constraints. Probability of invasion was positively related to precipitation and temperature in the wet season and the presence of the inoculum-producing foliar host Umbellularia californica and decreased exponentially with distance to inoculum sources. Models that incorporated niche and dispersal parameters best predicted the locations of new infections, with accuracies ranging from 0.86 to 0.90, suggesting that the modeling approach can be used to forecast

  2. High intraspecific variability in the functional niche of a predator is associated with ontogenetic shift and individual specialization

    PubMed Central

    Zhao, Tian; Villéger, Sébastien; Lek, Sovan; Cucherousset, Julien

    2014-01-01

    Investigations on the functional niche of organisms have primarily focused on differences among species and tended to neglect the potential effects of intraspecific variability despite the fact that its potential ecological and evolutionary importance is now widely recognized. In this study, we measured the distribution of functional traits in an entire population of largemouth bass (Micropterus salmoides) to quantify the magnitude of intraspecific variability in functional traits and niche (size, position, and overlap) between age classes. Stable isotope analyses (δ13C and δ15N) were also used to determine the association between individual trophic ecology and intraspecific functional trait variability. We observed that functional traits were highly variable within the population (mean coefficient variation: 15.62% ± 1.78% SE) and predominantly different between age classes. In addition, functional and trophic niche overlap between age classes was extremely low. Differences in functional niche between age classes were associated with strong changes in trophic niche occurring during ontogeny while, within age classes, differences among individuals were likely driven by trophic specialization. Each age class filled only a small portion of the total functional niche of the population and age classes occupied distinct portions in the functional space, indicating the existence of ontogenetic specialists with different functional roles within the population. The high amplitude of intraspecific variability in functional traits and differences in functional niche position among individuals reported here supports the recent claims for an individual-based approach in functional ecology. PMID:25558359

  3. [GROWTH OF MICROMYCETES FROM DIFFERENT ECOLOGICAL NICHES ON AGAR NUTRIENT MEDIA].

    PubMed

    Kurchenko, I M; Yurieva, E M; Voychuk, S I

    2015-01-01

    Radial growth rate of (K(r)) 153 strains 6 species of micromycetes from different ecological niches was studied on 7 agar media: three standard (malt extract agar, potato-dextrose agar, Czapek's agar), and on agar media with plant polymers (carboxymethylcellulose, xylan, soluble starch and apple pectin). Endophytic and plant pathogenic strains (biotrophs) of all studied species did not differ significantly in their ability to grow on nutrient media of different composition--average values of K(r) for these two groups were the same (0,200 and 0,199 mm/h, respectively). Soil micromycetes (saprophytes) characterized by the lowest average growth rate (0,169 mm/h) and significantly differed from the endophytic and plant pathogenic ones. Average of the radial growth rates of studied microscopic fungi were higher on standard nutrient media than with plant polymers ones. Growth parameters of endophytes and plant pathogens of all studied species on various agar media differed from the soil strains. High growth rate of endophytic and plant pathogenic strains of Fusarium poae, Alternaria alternata and Ceratocystis sp. provides them the rapid colonization of plants. Penicillium funiculosum strains equally can exist as saprophytes in soil and as endophytic plant symbionts. A wide range of K(r) variation of endophytic dark pigmented Mycelia sterilia indicates the presence in this group of different species of micromycetes, which have no sporulation.

  4. Do deposit-feeders compete? Isotopic niche analysis of an invasion in a species-poor system

    PubMed Central

    Karlson, Agnes M. L.; Gorokhova, Elena; Elmgren, Ragnar

    2015-01-01

    Successful establishment of invasive species is often related to the existence of vacant niches. Competition occurs when invaders use the same limiting resources as members of the recipient community, which will be reflected in some overlap of their trophic niches. The concept of isotopic niche has been used to study trophic niche partitioning among species. Here, we present a two-year field study comparing isotopic niches of the deposit-feeding community in a naturally species-poor system. The isotopic niche analyses showed no overlap between a recent polychaete invader and any of the native species suggesting that it has occupied a vacant niche. Its narrow isotopic niche suggests specialized feeding, however, the high δ15N values compared to natives are most likely due to isotope fractionation effects related to nitrogen recycling and a mismatch between biological stoichiometry of the polychaete and the sediment nitrogen content. Notably, highly overlapping isotopic niches were inferred for the native species, which is surprising in a food-limited system. Therefore, our results demonstrate that invaders may broaden the community trophic diversity and enhance resource utilization, but also raise questions about the congruence between trophic and isotopic niche concepts and call for careful examination of assumptions underlying isotopic niche interpretation. PMID:25988260

  5. Conclusions about Niche Expansion in Introduced Impatiens walleriana Populations Depend on Method of Analysis

    PubMed Central

    Mandle, Lisa; Warren, Dan L.; Hoffmann, Matthias H.; Peterson, A. Townsend; Schmitt, Johanna; von Wettberg, Eric J.

    2010-01-01

    Determining the degree to which climate niches are conserved across plant species' native and introduced ranges is valuable to developing successful strategies to limit the introduction and spread of invasive plants, and also has important ecological and evolutionary implications. Here, we test whether climate niches differ between native and introduced populations of Impatiens walleriana, globally one of the most popular horticultural species. We use approaches based on both raw climate data associated with occurrence points and ecological niche models (ENMs) developed with Maxent. We include comparisons of climate niche breadth in both geographic and environmental spaces, taking into account differences in available habitats between the distributional areas. We find significant differences in climate envelopes between native and introduced populations when comparing raw climate variables, with introduced populations appearing to expand into wetter and cooler climates. However, analyses controlling for differences in available habitat in each region do not indicate expansion of climate niches. We therefore cannot reject the hypothesis that observed differences in climate envelopes reflect only the limited environments available within the species' native range in East Africa. Our results suggest that models built from only native range occurrence data will not provide an accurate prediction of the potential for invasiveness if applied to areas containing a greater range of environmental combinations, and that tests of niche expansion may overestimate shifts in climate niches if they do not control carefully for environmental differences between distributional areas. PMID:21206912

  6. Modeling of the ecological niches of the anopheles spp in Ecuador by the use of geo-informatic tools.

    PubMed

    Padilla, Oswaldo; Rosas, Pablo; Moreno, Wilson; Toulkeridis, Theofilos

    2017-06-01

    Ecuador in the northwestern edge of South America is struggling by vector-borne diseases with an endemic-epidemic behavior leading to an enormous public health problem. Malaria, which has a cyclicality in its dynamics, is closely related to climatic, ecological and socio-economic phenomena. The main objective of this research has been to compare three different prediction species models, the so-called Maxent, logistic regression and multi criteria evaluation with fuzzy logic, in order to determine the model which best describes the ecological niche of the Anopheles spp species, which transmits malaria within Ecuador. After performing a detailed data collection and data processing, we applied the mentioned models and validated them with a statistical analysis in order to discover that the Maxent model has been the model that best defines the distribution of Anopheles spp within the territory. The determined sites, which are of high strategic value and important for the increasing national development, will now be able to initiate preventive countermeasures based on this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Environmental niche divergence among three dune shrub sister species with parapatric distributions

    PubMed Central

    Chefaoui, Rosa M.; Correia, Otília; Bonal, Raúl; Hortal, Joaquín

    2017-01-01

    Abstract Background and Aims The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus, which have a parapatric distribution in the Iberian Peninsula. Methods Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. Key Results The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides–spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii, the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. Conclusions: The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in

  8. Environmental niche conservatism explains the accumulation of species richness in Mediterranean-hotspot plant genera.

    PubMed

    Skeels, Alexander; Cardillo, Marcel

    2017-03-01

    The causes of exceptionally high plant diversity in Mediterranean-climate biodiversity hotspots are not fully understood. We asked whether a mechanism similar to the tropical niche conservatism hypothesis could explain the diversity of four large genera (Protea, Moraea, Banksia, and Hakea) with distributions within and adjacent to the Greater Cape Floristic Region (South Africa) or the Southwest Floristic Region (Australia). Using phylogenetic and spatial data we estimated the environmental niche of each species, and reconstructed the mode and dynamics of niche evolution, and the geographic history, of each genus. For three genera, there were strong positive relationships between the diversity of clades within a region and their inferred length of occupation of that region. Within genera, there was evidence for strong evolutionary constraint on niche axes associated with climatic seasonality and aridity, with different niche optima for hotspot and nonhotspot clades. Evolutionary transitions away from hotspots were associated with increases in niche breadth and elevated rates of niche evolution. Our results point to a process of "hotspot niche conservatism" whereby the accumulation of plant diversity in Mediterranean-type ecosystems results from longer time for speciation, with dispersal away from hotspots limited by narrow and phylogenetically conserved environmental niches. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. Science Galls Me: What Is a Niche Anyway?

    ERIC Educational Resources Information Center

    Halverson, Kristy Lynn; Lankford, Deanna Marie

    2009-01-01

    The authors have developed a lesson to investigate basic principles of ecology, more specifically niche partitioning, while using a jigsaw activity that explores galling insects' interactions with goldenrods. Not only does this lesson capture secondary students' interest and keeps them engaged in hands-on activities, the content addresses two…

  10. Linking niche theory to ecological impacts of successful invaders: insights from resource fluctuation-specialist herbivore interactions.

    PubMed

    Gidoin, Cindy; Roques, Lionel; Boivin, Thomas

    2015-03-01

    Theories of species coexistence and invasion ecology are fundamentally connected and provide a common theoretical framework for studying the mechanisms underlying successful invasions and their ecological impacts. Temporal fluctuations in resource availability and differences in life-history traits between invasive and resident species are considered as likely drivers of the dynamics of invaded communities. Current critical issues in invasion ecology thus relate to the extent to which such mechanisms influence coexistence between invasive and resident species and to the ability of resident species to persist in an invasive-dominated ecosystem. We tested how a fluctuating resource, and species trait differences may explain and help predict long-term impacts of biological invasions in forest specialist insect communities. We used a simple invasion system comprising closely related invasive and resident seed-specialized wasps (Hymenoptera: Torymidae) competing for a well-known fluctuating resource and displaying divergent diapause, reproductive and phenological traits. Based on extensive long-term field observations (1977-2010), we developed a combination of mechanistic and statistical models aiming to (i) obtain a realistic description of the population dynamics of these interacting species over time, and (ii) clarify the respective contributions of fluctuation-dependent and fluctuation-independent mechanisms to long-term impact of invasion on the population dynamics of the resident wasp species. We showed that a fluctuation-dependent mechanism was unable to promote coexistence of the resident and invasive species. Earlier phenology of the invasive species was the main driver of invasion success, enabling the invader to exploit an empty niche. Phenology also had the greatest power to explain the long-term negative impact of the invasive on the resident species, through resource pre-emption. This study provides strong support for the critical role of species

  11. Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North America

    PubMed Central

    Escobar, Luis E.; Qiao, Huijie; Phelps, Nicholas B. D.; Wagner, Carli K.; Larkin, Daniel J.

    2016-01-01

    Nitellopsis obtusa (starry stonewort) is a dioecious green alga native to Europe and Asia that has emerged as an aquatic invasive species in North America. Nitellopsis obtusa is rare across large portions of its native range, but has spread rapidly in northern-tier lakes in the United States, where it can interfere with recreation and may displace native species. Little is known about the invasion ecology of N. obtusa, making it difficult to forecast future expansion. Using ecological niche modeling we investigated environmental variables associated with invasion risk. We used species records, climate data, and remotely sensed environmental variables to characterize the species’ multidimensional distribution. We found that N. obtusa is exploiting novel ecological niche space in its introduced range, which may help explain its invasiveness. While the fundamental niche of N. obtusa may be stable, there appears to have been a shift in its realized niche associated with invasion in North America. Large portions of the United States are predicted to constitute highly suitable habitat for N. obtusa. Our results can inform early detection and rapid response efforts targeting N. obtusa and provide testable estimates of the physiological tolerances of this species as a baseline for future empirical research. PMID:27363541

  12. Ecological niche modeling for a cultivated plant species: a case study on taro (Colocasia esculenta) in Hawaii.

    PubMed

    Kodis, Mali'o; Galante, Peter; Sterling, Eleanor J; Blair, Mary E

    2018-04-26

    Under the threat of ongoing and projected climate change, communities in the Pacific Islands face challenges of adapting culture and lifestyle to accommodate a changing landscape. Few models can effectively predict how biocultural livelihoods might be impacted. Here, we examine how environmental and anthropogenic factors influence an ecological niche model (ENM) for the realized niche of cultivated taro (Colocasia esculenta) in Hawaii. We created and tuned two sets of ENMs: one using only environmental variables, and one using both environmental and cultural characteristics of Hawaii. These models were projected under two different Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) for 2070. Models were selected and evaluated using average omission rate and area under the receiver operating characteristic curve (AUC). We compared optimal model predictions by comparing the percentage of taro plots predicted present and measured ENM overlap using Schoener's D statistic. The model including only environmental variables consisted of 19 Worldclim bioclimatic variables, in addition to slope, altitude, distance to perennial streams, soil evaporation, and soil moisture. The optimal model with environmental variables plus anthropogenic features also included a road density variable (which we assumed as a proxy for urbanization) and a variable indicating agricultural lands of importance to the state of Hawaii. The model including anthropogenic features performed better than the environment-only model based on omission rate, AUC, and review of spatial projections. The two models also differed in spatial projections for taro under anticipated future climate change. Our results demonstrate how ENMs including anthropogenic features can predict which areas might be best suited to plant cultivated species in the future, and how these areas could change under various climate projections. These predictions might inform biocultural

  13. Are species' responses to global change predicted by past niche evolution?

    PubMed Central

    Lavergne, Sébastien; Evans, Margaret E. K.; Burfield, Ian J.; Jiguet, Frederic; Thuiller, Wilfried

    2013-01-01

    Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day life-history and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change. PMID:23209172

  14. Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies.

    PubMed

    Tran, Thi Nhat Quyen; Jackson, Michelle C; Sheath, Danny; Verreycken, Hugo; Britton, J Robert

    2015-07-01

    Ecological theory attempts to predict how impacts for native species arise from biological invasions. A fundamental question centres on the feeding interactions of invasive and native species: whether invasion will result in increased interspecific competition, which would result in negative consequences for the competing species, or trophic niche divergence, which would facilitate the invader's integration into the community and their coexistence with native species. Here, the feeding interactions of a highly invasive fish, topmouth gudgeon Pseudorasbora parva, with three native and functionally similar fishes were studied to determine whether patterns of either niche overlap or divergence detected in mesocosm experiments were apparent between the species at larger spatial scales. Using stable isotope analysis, their feeding relationships were assessed initially in the mesocosms (1000 L) and then in small ponds (<400 m(2) ) and large ponds (>600 m(2) ). In the mesocosms, a consistent pattern of trophic niche divergence was evident between the sympatric fishes, with niches shifting further apart in isotopic space than suggested in allopatry, revealing that sharing of food resources was limited. Sympatric P. parva also had a smaller niche than their allopatric populations. In eight small ponds where P. parva had coexisted for several years with at least one of the fish species used in the mesocosms, strong patterns of niche differentiation were also apparent, with P. parva always at a lower trophic position than the other fishes, as also occurred in the mesocosms. Where these fishes were sympatric within more complex fish communities in the large ponds, similar patterns were also apparent, with strong evidence of trophic niche differentiation. Aspects of the ecological impacts of P. parva invasion for native communities in larger ponds were consistent with those in the mesocosm experiments. Their invasion resulted in divergence in trophic niches, partly due

  15. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use

    PubMed Central

    Liao, Jingqiu; Zhao, Lei; Cao, Xiaofeng; Sun, Jinhua; Gao, Zhe; Wang, Jie; Jiang, Dalin; Fan, Hao; Huang, Yi

    2016-01-01

    Plateau lakes are important ecosystems with diverse ecological functions. Cyanobacteria play a key role in plateau lakes as primary producers. However, they are threatening when dense blooms occur. Identifying cyanobacteiral biogeography and the mechanism of assembly processes shaping the distribution of cyanobacteria in plateau lakes is critical for understanding cyanobacterial ecology and applying it to lake management. In the present study, the biogeographic pattern and importance of neutral and niche processes in assembly of cyanobacteria in 21 lakes on Yungui Plateau, China were examined. Results showed that cyanobacteria exhibit unique biogeographic pattern, and most of them have a narrow habitat preference in plateau lakes. They were assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use, which explained 62.4% of the biological variation. Neutral processes were not at play. Water physicochemical property (key variables - dissolved oxygen, salinity, trophic status and pH) was the most dominant driver shaping its unique biogeographic pattern. Watershed land-use especially urban land, water body and agricultural land also exhibited a strong impact on cyanobacterial distribution, followed by lake morphology. As most of the cyanobacteiral genus detected in these plateau lakes were potential toxin-producers, this study indicated that in order to protect waters from toxic-bloom in the future, reducing nutrient loading and land-use practices are two practical approaches in plateau lake management. PMID:27819304

  16. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use

    NASA Astrophysics Data System (ADS)

    Liao, Jingqiu; Zhao, Lei; Cao, Xiaofeng; Sun, Jinhua; Gao, Zhe; Wang, Jie; Jiang, Dalin; Fan, Hao; Huang, Yi

    2016-11-01

    Plateau lakes are important ecosystems with diverse ecological functions. Cyanobacteria play a key role in plateau lakes as primary producers. However, they are threatening when dense blooms occur. Identifying cyanobacteiral biogeography and the mechanism of assembly processes shaping the distribution of cyanobacteria in plateau lakes is critical for understanding cyanobacterial ecology and applying it to lake management. In the present study, the biogeographic pattern and importance of neutral and niche processes in assembly of cyanobacteria in 21 lakes on Yungui Plateau, China were examined. Results showed that cyanobacteria exhibit unique biogeographic pattern, and most of them have a narrow habitat preference in plateau lakes. They were assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use, which explained 62.4% of the biological variation. Neutral processes were not at play. Water physicochemical property (key variables - dissolved oxygen, salinity, trophic status and pH) was the most dominant driver shaping its unique biogeographic pattern. Watershed land-use especially urban land, water body and agricultural land also exhibited a strong impact on cyanobacterial distribution, followed by lake morphology. As most of the cyanobacteiral genus detected in these plateau lakes were potential toxin-producers, this study indicated that in order to protect waters from toxic-bloom in the future, reducing nutrient loading and land-use practices are two practical approaches in plateau lake management.

  17. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use.

    PubMed

    Liao, Jingqiu; Zhao, Lei; Cao, Xiaofeng; Sun, Jinhua; Gao, Zhe; Wang, Jie; Jiang, Dalin; Fan, Hao; Huang, Yi

    2016-11-07

    Plateau lakes are important ecosystems with diverse ecological functions. Cyanobacteria play a key role in plateau lakes as primary producers. However, they are threatening when dense blooms occur. Identifying cyanobacteiral biogeography and the mechanism of assembly processes shaping the distribution of cyanobacteria in plateau lakes is critical for understanding cyanobacterial ecology and applying it to lake management. In the present study, the biogeographic pattern and importance of neutral and niche processes in assembly of cyanobacteria in 21 lakes on Yungui Plateau, China were examined. Results showed that cyanobacteria exhibit unique biogeographic pattern, and most of them have a narrow habitat preference in plateau lakes. They were assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use, which explained 62.4% of the biological variation. Neutral processes were not at play. Water physicochemical property (key variables - dissolved oxygen, salinity, trophic status and pH) was the most dominant driver shaping its unique biogeographic pattern. Watershed land-use especially urban land, water body and agricultural land also exhibited a strong impact on cyanobacterial distribution, followed by lake morphology. As most of the cyanobacteiral genus detected in these plateau lakes were potential toxin-producers, this study indicated that in order to protect waters from toxic-bloom in the future, reducing nutrient loading and land-use practices are two practical approaches in plateau lake management.

  18. Batrachochytrium dendrobatidis Shows High Genetic Diversity and Ecological Niche Specificity among Haplotypes in the Maya Mountains of Belize

    PubMed Central

    Kaiser, Kristine; Pollinger, John

    2012-01-01

    The amphibian pathogen Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines around the globe. Although it has been found in most countries in Central America, its presence has never been assessed in Belize. We set out to determine the range, prevalence, and diversity of Bd using quantitative PCR (qPCR) and sequencing of a portion of the 5.8 s and ITS1-2 regions. Swabs were collected from 524 amphibians of at least 26 species in the protected areas of the Maya Mountains of Belize. We sequenced a subset of 72 samples that had tested positive for Bd by qPCR at least once; 30 samples were verified as Bd. Eight unique Bd haplotypes were identified in the Maya Mountains, five of which were previously undescribed. We identified unique ecological niches for the two most broadly distributed haplotypes. Combined with data showing differing virulence shown in different strains in other studies, the 5.8 s - ITS1-2 region diversity found in this study suggests that there may be substantial differences among populations or haplotypes. Future work should focus on whether specific haplotypes for other genomic regions and possibly pathogenicity can be associated with haplotypes at this locus, as well as the integration of molecular tools with other ecological tools to elucidate the ecology and pathogenicity of Bd. PMID:22389681

  19. Diet and feeding ecology of the wintering shorebird assemblage in the Bijagós archipelago, Guinea-Bissau

    NASA Astrophysics Data System (ADS)

    Lourenço, Pedro M.; Catry, Teresa; Granadeiro, José P.

    2017-10-01

    Detailed data on shorebird feeding ecology is mostly lacking for tropical wintering sites, limiting our understanding of trophic interactions among shorebird species and their prey. Using dropping analysis and video recordings we compared the diet of eight shorebird species wintering in the Bijagós archipelago, Guinea-Bissau, one of the most important but also least known coastal sites for shorebirds in Africa. We also calculated niche width and foraging niche overlap among these eight species. Whimbrel, grey plover and redshank fed mainly on fiddler crabs, confirming previous observations made in the Bijagós. A large proportion of the diet of bar-tailed godwit, curlew sandpiper, sanderling and ringed plover was composed of polychaetes, particularly Nereis and Glycera, and also Marphysa in the case of larger shorebirds. Red knots fed mainly on the bivalve Dosinia isocardia. All species showed narrow trophic niches, but particularly so whimbrel, red knot, grey plover and redshank. Niche overlap among shorebird species was mostly insignificant, with the exception of species that fed mainly on fiddler crab. Low levels of niche overlap suggest that shorebirds are able to partition the available food resources in the Bijagós despite the reported low macrobenthic densities in the area. In fact, observational data for bar-tailed godwit suggests resource partitioning even occurs within species, with dietary differences among sexes.

  20. Ecological niche modelling of potential West Nile virus vector mosquito species and their geographical association with equine epizootics in Italy.

    PubMed

    Mughini-Gras, Lapo; Mulatti, Paolo; Severini, Francesco; Boccolini, Daniela; Romi, Roberto; Bongiorno, Gioia; Khoury, Cristina; Bianchi, Riccardo; Montarsi, Fabrizio; Patregnani, Tommaso; Bonfanti, Lebana; Rezza, Giovanni; Capelli, Gioia; Busani, Luca

    2014-01-01

    In Italy, West Nile virus (WNV) equine outbreaks have occurred annually since 2008. Characterizing WNV vector habitat requirements allows for the identification of areas at risk of viral amplification and transmission. Maxent-based ecological niche models were developed using literature records of 13 potential WNV Italian vector mosquito species to predict their habitat suitability range and to investigate possible geographical associations with WNV equine outbreak occurrence in Italy from 2008 to 2010. The contribution of different environmental variables to the niche models was also assessed. Suitable habitats for Culex pipiens, Aedes albopictus, and Anopheles maculipennis were widely distributed; Culex modestus, Ochlerotatus geniculatus, Ochlerotatus caspius, Coquillettidia richiardii, Aedes vexans, and Anopheles plumbeus were concentrated in north-central Italy; Aedes cinereus, Culex theileri, Ochlerotatus dorsalis, and Culiseta longiareolata were restricted to coastal/southern areas. Elevation, temperature, and precipitation variables showed the highest predictive power. Host population and landscape variables provided minor contributions. WNV equine outbreaks had a significantly higher probability to occur in habitats suitable for Cx. modestus and Cx. pipiens, providing circumstantial evidence that the potential distribution of these two species coincides geographically with the observed distribution of the disease in equines.

  1. Using Geographic Information System-based Ecologic Niche Models to Forecast the Risk of Hantavirus Infection in Shandong Province, China

    PubMed Central

    Wei, Lan; Qian, Quan; Wang, Zhi-Qiang; Glass, Gregory E.; Song, Shao-Xia; Zhang, Wen-Yi; Li, Xiu-Jun; Yang, Hong; Wang, Xian-Jun; Fang, Li-Qun; Cao, Wu-Chun

    2011-01-01

    Hemorrhagic fever with renal syndrome (HFRS) is an important public health problem in Shandong Province, China. In this study, we combined ecologic niche modeling with geographic information systems (GIS) and remote sensing techniques to identify the risk factors and affected areas of hantavirus infections in rodent hosts. Land cover and elevation were found to be closely associated with the presence of hantavirus-infected rodent hosts. The averaged area under the receiver operating characteristic curve was 0.864, implying good performance. The predicted risk maps based on the model were validated both by the hantavirus-infected rodents' distribution and HFRS human case localities with a good fit. These findings have the applications for targeting control and prevention efforts. PMID:21363991

  2. Cognitive niches: an ecological model of strategy selection.

    PubMed

    Marewski, Julian N; Schooler, Lael J

    2011-07-01

    How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each strategy a cognitive niche, that is, a limited number of situations in which the strategy can be applied, simplifying strategy selection. To illustrate our proposal, we consider selection in the context of 2 theories: the simple heuristics framework and the ACT-R (adaptive control of thought-rational) architecture of cognition. From the heuristics framework, we adopt the thesis that people make decisions by selecting from a repertoire of simple decision strategies that exploit regularities in the environment and draw on cognitive capacities, such as memory and time perception. ACT-R provides a quantitative theory of how these capacities adapt to the environment. In 14 simulations and 10 experiments, we consider the choice between strategies that operate on the accessibility of memories and those that depend on elaborate knowledge about the world. Based on Internet statistics, our model quantitatively predicts people's familiarity with and knowledge of real-world objects, the distributional characteristics of the associated speed of memory retrieval, and the cognitive niches of classic decision strategies, including those of the fluency, recognition, integration, lexicographic, and sequential-sampling heuristics. In doing so, the model specifies when people will be able to apply different strategies and how accurate, fast, and effortless people's decisions will be.

  3. Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial

    PubMed Central

    Riede, Felix

    2011-01-01

    The niche construction model postulates that human bio-social evolution is composed of three inheritance domains, genetic, cultural and ecological, linked by feedback selection. This paper argues that many kinds of archaeological data can serve as proxies for human niche construction processes, and presents a method for investigating specific niche construction hypotheses. To illustrate this method, the repeated emergence of specialized reindeer (Rangifer tarandus) hunting/herding economies during the Late Palaeolithic (ca 14.7–11.5 kyr BP) in southern Scandinavia is analysed from a niche construction/triple-inheritance perspective. This economic relationship resulted in the eventual domestication of Rangifer. The hypothesis of whether domestication was achieved as early as the Late Palaeolithic, and whether this required the use of domesticated dogs (Canis familiaris) as hunting, herding or transport aids, is tested via a comparative analysis using material culture-based phylogenies and ecological datasets in relation to demographic/genetic proxies. Only weak evidence for sustained niche construction behaviours by prehistoric hunter–gatherer in southern Scandinavia is found, but this study nonetheless provides interesting insights into the likely processes of dog and reindeer domestication, and into processes of adaptation in Late Glacial foragers. PMID:21320895

  4. Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial.

    PubMed

    Riede, Felix

    2011-03-27

    The niche construction model postulates that human bio-social evolution is composed of three inheritance domains, genetic, cultural and ecological, linked by feedback selection. This paper argues that many kinds of archaeological data can serve as proxies for human niche construction processes, and presents a method for investigating specific niche construction hypotheses. To illustrate this method, the repeated emergence of specialized reindeer (Rangifer tarandus) hunting/herding economies during the Late Palaeolithic (ca 14.7-11.5 kyr BP) in southern Scandinavia is analysed from a niche construction/triple-inheritance perspective. This economic relationship resulted in the eventual domestication of Rangifer. The hypothesis of whether domestication was achieved as early as the Late Palaeolithic, and whether this required the use of domesticated dogs (Canis familiaris) as hunting, herding or transport aids, is tested via a comparative analysis using material culture-based phylogenies and ecological datasets in relation to demographic/genetic proxies. Only weak evidence for sustained niche construction behaviours by prehistoric hunter-gatherer in southern Scandinavia is found, but this study nonetheless provides interesting insights into the likely processes of dog and reindeer domestication, and into processes of adaptation in Late Glacial foragers.

  5. Spatial and ecological population genetic structures within two island-endemic Aeonium species of different niche width.

    PubMed

    Harter, David E V; Thiv, Mike; Weig, Alfons; Jentsch, Anke; Beierkuhnlein, Carl

    2015-10-01

    The Crassulacean genus Aeonium is a well-known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra-island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island-endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci-environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.

  6. Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.

    PubMed

    Moen, Daniel S; Wiens, John J

    2017-07-01

    A major goal of ecology and evolutionary biology is to explain patterns of species richness among clades. Differences in rates of net diversification (speciation minus extinction over time) may often explain these patterns, but the factors that drive variation in diversification rates remain uncertain. Three important candidates are climatic niche position (e.g., whether clades are primarily temperate or tropical), rates of climatic niche change among species within clades, and microhabitat (e.g., aquatic, terrestrial, arboreal). The first two factors have been tested separately in several studies, but the relative importance of all three is largely unknown. Here we explore the correlates of diversification among families of frogs, which collectively represent ∼88% of amphibian species. We assemble and analyze data on phylogeny, climate, and microhabitat for thousands of species. We find that the best-fitting phylogenetic multiple regression model includes all three types of variables: microhabitat, rates of climatic niche change, and climatic niche position. This model explains 67% of the variation in diversification rates among frog families, with arboreal microhabitat explaining ∼31%, niche rates ∼25%, and climatic niche position ∼11%. Surprisingly, we show that microhabitat can have a much stronger influence on diversification than climatic niche position or rates of climatic niche change.

  7. The thermal niche of Neotropical nectar-feeding bats: Its evolution and application to predict responses to global warming.

    PubMed

    Ortega-García, Stephanie; Guevara, Lázaro; Arroyo-Cabrales, Joaquín; Lindig-Cisneros, Roberto; Martínez-Meyer, Enrique; Vega, Ernesto; Schondube, Jorge E

    2017-09-01

    The thermal niche of a species is one of the main determinants of its ecology and biogeography. In this study, we determined the thermal niche of 23 species of Neotropical nectar-feeding bats of the subfamily Glossophaginae (Chiroptera, Phyllostomidae). We calculated their thermal niches using temperature data obtained from collection records, by generating a distribution curve of the maximum and minimum temperatures per locality, and using the inflection points of the temperature distributions to estimate the species optimal (STZ) and suboptimal (SRZ) zones of the thermal niche. Additionally, by mapping the values of the STZ and SRZ on a phylogeny of the group, we generated a hypothesis of the evolution of the thermal niches of this clade of nectar-feeding bats. Finally, we used the characteristics of their thermal niches to predict the responses of these organisms to climate change. We found a large variation in the width and limits of the thermal niches of nectar-feeding bats. Additionally, while the upper limits of the thermal niches varied little among species, their lower limits differ wildly. The ancestral reconstruction of the thermal niche indicated that this group of Neotropical bats evolved under cooler temperatures. The two clades inside the Glossophaginae differ in the evolution of their thermal niches, with most members of the clade Choeronycterines evolving "colder" thermal niches, while the majority of the species in the clade Glossophagines evolving "warmer" thermal niches. By comparing thermal niches with climate change models, we found that all species could be affected by an increase of 1°C in temperature at the end of this century. This suggests that even nocturnal species could suffer important physiological costs from global warming. Our study highlights the value of scientific collections to obtain ecologically significant physiological data for a large number of species.

  8. Towards Defining the Ecological Niches of Novel Coastal Gulf of Mexico Bacterial Isolates

    NASA Astrophysics Data System (ADS)

    Henson, M. W.; Thrash, C.; Nall, E.

    2016-02-01

    The study of microbial contributions to biogeochemistry is critical to understanding the cycles of fundamental compounds and gain predictive capabilities in a changing environment. Such study requires observation of microbial communities and genetics in nature, coupled with experimental testing of hypotheses both in situ and in laboratory settings. This study combines dilution-to-extinction based high-throughput culturing (HTC) with cultivation-independent and geochemical measurements to define potential ecological niches of novel bacterial isolates from the coastal northern Gulf of Mexico (cnGOM). Here we report findings from the first of a three-year project. In total, 43 cultures from seven HTC experiments were capable of being repeatedly transferred. Sanger sequencing of the 16S rRNA gene identified these isolates as belonging to the phyla Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Betaproteobacteria. Eight are being genome sequenced, with two selected for further physiological characterization due to their phylogenic novelty and potential ecological significance. Strain LSUCC101 likely represents a novel family of Gammaproteobacteria (best blast hit to a cultured representative showed 91% sequence identity) and strain LSUCC96 belongs to the OM252 clade, with the Hawaiian isolate HIMB30 as its closest relative. Both are small (0.3-0.5 µm) cocci. The environmental importance of both LSUCC101 and LSUCC96 was illustrated by their presence within the top 30 OTU0.03 of cnGOM 16S rRNA gene datasets as well as within clone libraries from coastal regions around the world. Ongoing work is determining growth efficiencies, substrate utilization profiles, and metabolic potential to elucidate the roles of these organisms in the cnGOM. Comparative genomics will examine the evolutionary divergence of these organisms from their closest neighbors, and metagenomic recruitment to genomes will help identify strain-based variation from different coastal regions.

  9. Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile.

    PubMed

    Castillo, Andrea G; Alò, Dominique; González, Benito A; Samaniego, Horacio

    2018-01-01

    The main goal of this contribution was to define the ecological niche of the guanaco ( Lama guanicoe ), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species ( L.g. cacsilensis and L.g. guanicoe ). We used maximum entropy to model lineage's climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important

  10. Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile

    PubMed Central

    Castillo, Andrea G.; González, Benito A.

    2018-01-01

    Background The main goal of this contribution was to define the ecological niche of the guanaco (Lama guanicoe), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species (L.g. cacsilensis and L.g. guanicoe). Methods We used maximum entropy to model lineage’s climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. Results We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Discussion Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is

  11. Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences.

    PubMed

    Godoy, Oscar; Stouffer, Daniel B; Kraft, Nathan J B; Levine, Jonathan M

    2017-05-01

    Intransitive competition is often projected to be a widespread mechanism of species coexistence in ecological communities. However, it is unknown how much of the coexistence we observe in nature results from this mechanism when species interactions are also stabilized by pairwise niche differences. We combined field-parameterized models of competition among 18 annual plant species with tools from network theory to quantify the prevalence of intransitive competitive relationships. We then analyzed the predicted outcome of competitive interactions with and without pairwise niche differences. Intransitive competition was found for just 15-19% of the 816 possible triplets, and this mechanism was never sufficient to stabilize the coexistence of the triplet when the pair-wise niche differences between competitors were removed. Of the transitive and intransitive triplets, only four were predicted to coexist and these were more similar in multidimensional trait space defined by 11 functional traits than non-coexisting triplets. Our results argue that intransitive competition may be less frequent than recently posed, and that even when it does operate, pairwise niche differences may be key to possible coexistence. © 2017 by the Ecological Society of America.

  12. Corresponding Mitochondrial DNA and Niche Divergence for Crested Newt Candidate Species

    PubMed Central

    Wielstra, Ben; Beukema, Wouter; Arntzen, Jan W.; Skidmore, Andrew K.; Toxopeus, Albertus G.; Raes, Niels

    2012-01-01

    Genetic divergence of mitochondrial DNA does not necessarily correspond to reproductive isolation. However, if mitochondrial DNA lineages occupy separate segments of environmental space, this supports the notion of their evolutionary independence. We explore niche differentiation among three candidate species of crested newt (characterized by distinct mitochondrial DNA lineages) and interpret the results in the light of differences observed for recognized crested newt species. We quantify niche differences among all crested newt (candidate) species and test hypotheses regarding niche evolution, employing two ordination techniques (PCA-env and ENFA). Niche equivalency is rejected: all (candidate) species are found to occupy significantly different segments of environmental space. Furthermore, niche overlap values for the three candidate species are not significantly higher than those for the recognized species. As the three candidate crested newt species are, not only in terms of mitochondrial DNA genetic divergence, but also ecologically speaking, as diverged as the recognized crested newt species, our findings are in line with the hypothesis that they represent cryptic species. We address potential pitfalls of our methodology. PMID:23029564

  13. Morphological similarity and ecological overlap in two rotifer species.

    PubMed

    Gabaldón, Carmen; Montero-Pau, Javier; Serra, Manuel; Carmona, María José

    2013-01-01

    Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology-some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on

  14. Morphological Similarity and Ecological Overlap in Two Rotifer Species

    PubMed Central

    Gabaldón, Carmen; Montero-Pau, Javier; Serra, Manuel; Carmona, María José

    2013-01-01

    Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology—some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on

  15. Ecological release in lizard assemblages of neotropical savannas.

    PubMed

    Mesquita, Daniel Oliveira; Colli, Guarino Rinaldi; Vitt, Laurie J

    2007-08-01

    We compare lizard assemblages of Cerrado and Amazonian savannas to test the ecological release hypothesis, which predicts that niche dimensions and abundance should be greater in species inhabiting isolated habitat patches with low species richness (Amazonian savannas and isolated Cerrado patches) when compared with nonisolated areas in central Cerrado with greater species richness. We calculated microhabitat and diet niche breadths with data from 14 isolated Cerrado patches and Amazon savanna areas and six central Cerrado populations. Morphological data were compared using average Euclidean distances, and lizard abundance was estimated using the number of lizards captured in pitfall traps over an extended time period. We found no evidence of ecological release with respect to microhabitat use, suggesting that historical factors are better microhabitat predictors than ecological factors. However, data from individual stomachs indicate that ecological release occurs in these areas for one species (Tropidurus) but not others (Ameiva ameiva, Anolis, Cnemidophorus, and Micrablepharus), suggesting that evolutionary lineages respond differently to environmental pressures, with tropidurids being more affected by ecological factors than polychrotids, teiids, and gymnophthalmids. We found no evidence that ecological release occurs in these areas using morphological data. Based on abundance data, our results indicate that the ecological release (density compensation) hypothesis is not supported: lizard species are not more abundant in isolated areas than in nonisolated areas. The ecology of species is highly conservative, varying little from assemblage to assemblage. Nevertheless, increases in niche breadth for some species indicate that ecological release occurs as well.

  16. Environmental niche divergence among three dune shrub sister species with parapatric distributions.

    PubMed

    Chozas, Sergio; Chefaoui, Rosa M; Correia, Otília; Bonal, Raúl; Hortal, Joaquín

    2017-05-01

    The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus , which have a parapatric distribution in the Iberian Peninsula. Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides-spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii , the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. : The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in this work allows integration of the biogeographical

  17. Niche partitioning of feeding microhabitats produces a unique function for herbivorous rabbitfishes (Perciformes, Siganidae) on coral reefs

    NASA Astrophysics Data System (ADS)

    Fox, R. J.; Bellwood, D. R.

    2013-03-01

    Niche theory predicts that coexisting species minimise competition by evolving morphological or behavioural specialisations that allow them to spread out along resource axes such as space, diet and temporal activity. These specialisations define how a species interacts with its environment and, by extension, determine its functional role. Here, we examine the feeding niche of three species of coral reef-dwelling rabbitfishes (Siganidae, Siganus). By comparing aspects of their feeding behaviour (bite location, bite rate, foraging distance) with that of representative species from two other abundant herbivorous fish families, the parrotfishes (Labridae, Scarus) and surgeonfishes (Acanthuridae, Acanthurus), we examine whether rabbitfishes have a feeding niche distinct from other members of the herbivore guild. Measurements of the penetration of the fishes' snouts and bodies into reef concavities when feeding revealed that rabbitfish fed to a greater degree from reef crevices and interstices than other herbivores. There was just a 40 % overlap in the penetration-depth niche between rabbitfish and surgeonfish and a 45 % overlap between rabbitfish and parrotfish, compared with the almost complete niche overlap (95 %) recorded for parrotfish and surgeonfish along this spatial niche axis. Aspects of the morphology of rabbitfish which may contribute to this niche segregation include a comparatively longer, narrower snout and narrower head. Our results suggest that sympatric coexistence of rabbitfish and other reef herbivores is facilitated by segregation along a spatial (and potentially dietary) axis. This segregation results in a unique functional role for rabbitfishes among roving herbivores that of "crevice-browser": a group that specifically feeds on crevice-dwelling algal or benthic organisms. This functional trait may have implications for reef ecosystem processes in terms of controlling the successional development of crevice-based algal communities, reducing their

  18. Life history, cognition and the evolution of complex foraging niches.

    PubMed

    Schuppli, Caroline; Graber, Sereina M; Isler, Karin; van Schaik, Carel P

    2016-03-01

    Animal species that live in complex foraging niches have, in general, improved access to energy-rich and seasonally stable food sources. Because human food procurement is uniquely complex, we ask here which conditions may have allowed species to evolve into such complex foraging niches, and also how niche complexity is related to relative brain size. To do so, we divided niche complexity into a knowledge-learning and a motor-learning dimension. Using a sample of 78 primate and 65 carnivoran species, we found that two life-history features are consistently correlated with complex niches: slow, conservative development or provisioning of offspring over extended periods of time. Both act to buffer low energy yields during periods of learning, and may thus act as limiting factors for the evolution of complex niches. Our results further showed that the knowledge and motor dimensions of niche complexity were correlated with pace of development in primates only, and with the length of provisioning in only carnivorans. Accordingly, in primates, but not carnivorans, living in a complex foraging niche requires enhanced cognitive abilities, i.e., a large brain. The patterns in these two groups of mammals show that selection favors evolution into complex niches (in either the knowledge or motor dimension) in species that either develop more slowly or provision their young for an extended period of time. These findings help to explain how humans constructed by far the most complex niche: our ancestors managed to combine slow development (as in other primates) with systematic provisioning of immatures and even adults (as in carnivorans). This study also provides strong support for the importance of ecological factors in brain size evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Niche filling slows the diversification of Himalayan songbirds.

    PubMed

    Price, Trevor D; Hooper, Daniel M; Buchanan, Caitlyn D; Johansson, Ulf S; Tietze, D Thomas; Alström, Per; Olsson, Urban; Ghosh-Harihar, Mousumi; Ishtiaq, Farah; Gupta, Sandeep K; Martens, Jochen; Harr, Bettina; Singh, Pratap; Mohan, Dhananjai

    2014-05-08

    Speciation generally involves a three-step process--range expansion, range fragmentation and the development of reproductive isolation between spatially separated populations. Speciation relies on cycling through these three steps and each may limit the rate at which new species form. We estimate phylogenetic relationships among all Himalayan songbirds to ask whether the development of reproductive isolation and ecological competition, both factors that limit range expansions, set an ultimate limit on speciation. Based on a phylogeny for all 358 species distributed along the eastern elevational gradient, here we show that body size and shape differences evolved early in the radiation, with the elevational band occupied by a species evolving later. These results are consistent with competition for niche space limiting species accumulation. Even the elevation dimension seems to be approaching ecological saturation, because the closest relatives both inside the assemblage and elsewhere in the Himalayas are on average separated by more than five million years, which is longer than it generally takes for reproductive isolation to be completed; also, elevational distributions are well explained by resource availability, notably the abundance of arthropods, and not by differences in diversification rates in different elevational zones. Our results imply that speciation rate is ultimately set by niche filling (that is, ecological competition for resources), rather than by the rate of acquisition of reproductive isolation.

  20. Picturing thermal niches and biomass of hydrothermal vent species

    NASA Astrophysics Data System (ADS)

    Husson, Bérengère; Sarradin, Pierre-Marie; Zeppilli, Daniela; Sarrazin, Jozée

    2017-03-01

    In community ecology, niche analysis is a classic tool for investigating species' distribution and dynamics. Components of a species' niche include biotic and abiotic factors. In the hydrothermal vent ecosystem, although composition and temporal variation have been investigated since these deep-sea habitats were discovered nearly 40 years ago, the roles and the factors behind the success of the dominant species of these ecosystems have yet to be fully elucidated. In the Lucky Strike vent field on the Mid-Atlantic Ridge (MAR), the dominant species is the mussel Bathymodiolus azoricus. Data on this species and its associated community were collected during four oceanographic cruises on the Eiffel Tower edifice and integrated in a novel statistical framework for niche analysis. We assessed the thermal range, density, biomass and niche similarities of B. azoricus and its associated fauna. Habitat similarities grouped mussels into three size categories: mussels with lengths ranging from 0.5 to 1.5 cm, from 1.5 to 6 cm, and mussels longer than 6 cm. These size categories were consistent with those found in previous studies based on video imagery. The three size categories featured different associated fauna. The thermal range of mussels was shown to change with organism size, with intermediate sizes having a broader thermal niche than small or large mussels. Temperature maxima seem to drive their distribution along the mixing gradient between warm hydrothermal fluids and cold seawater. B. azoricus constitutes nearly 90% of the biomass (in g dry weight /m2) of the ecosystem. Mean individual weights were calculated for 39 of the 79 known taxa on Eiffel Tower and thermal ranges were obtained for all the inventoried species of this edifice. The analysis showed that temperature is a suitable variable to describe density variations among samples for 71 taxa. However, thermal conditions do not suffice to explain biomass variability. Our results provide valuable insights into

  1. Behavioural manipulation of insect hosts by Baculoviridae as a process of niche construction.

    PubMed

    Hamblin, Steven; Tanaka, Mark M

    2013-08-16

    Niche construction has received increasing attention in recent years as a vital force in evolution and examples of niche construction have been identified in a wide variety of taxa, but viruses are conspicuously absent. In this study we explore how niche construction can lead to viruses engineering their hosts (including behavioural manipulation) with feedback on selective pressures for viral transmission and virulence. To illustrate this concept we focus on Baculoviridae, a family of invertebrate viruses that have evolved to modify the feeding behaviour of their lepidopteran hosts and liquefy their cadavers as part of the course of infection. We present a mathematical model showing how niche construction leads to feedback from the behavioural manipulation to the liquefaction of the host, linking the evolution of both of these traits, and show how this association arises from the action of niche construction. Model results show that niche construction is plausible in this system and delineates the conditions under which niche construction will occur. Niche construction in this system is also shown to be sensitive to parameter values that reflect ecological forces. Our model demonstrates that niche construction can be a potent force in viral evolution and can lead to the acquisition and maintenance of the behavioural manipulation and liquefaction traits in Baculoviridae via the niche constructing effects on the host. These results show the potential for niche construction theory to provide new insights into viral evolution.

  2. Behavioural manipulation of insect hosts by Baculoviridae as a process of niche construction

    PubMed Central

    2013-01-01

    Background Niche construction has received increasing attention in recent years as a vital force in evolution and examples of niche construction have been identified in a wide variety of taxa, but viruses are conspicuously absent. In this study we explore how niche construction can lead to viruses engineering their hosts (including behavioural manipulation) with feedback on selective pressures for viral transmission and virulence. To illustrate this concept we focus on Baculoviridae, a family of invertebrate viruses that have evolved to modify the feeding behaviour of their lepidopteran hosts and liquefy their cadavers as part of the course of infection. Results We present a mathematical model showing how niche construction leads to feedback from the behavioural manipulation to the liquefaction of the host, linking the evolution of both of these traits, and show how this association arises from the action of niche construction. Model results show that niche construction is plausible in this system and delineates the conditions under which niche construction will occur. Niche construction in this system is also shown to be sensitive to parameter values that reflect ecological forces. Conclusions Our model demonstrates that niche construction can be a potent force in viral evolution and can lead to the acquisition and maintenance of the behavioural manipulation and liquefaction traits in Baculoviridae via the niche constructing effects on the host. These results show the potential for niche construction theory to provide new insights into viral evolution. PMID:23953199

  3. Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant.

    PubMed

    Kirchheimer, Bernhard; Wessely, Johannes; Gattringer, Andreas; Hülber, Karl; Moser, Dietmar; Schinkel, Christoph C F; Appelhans, Marc; Klatt, Simone; Caccianiga, Marco; Dellinger, Agnes; Guisan, Antoine; Kuttner, Michael; Lenoir, Jonathan; Maiorano, Luigi; Nieto-Lugilde, Diego; Plutzar, Christoph; Svenning, Jens-Christian; Willner, Wolfgang; Hörandl, Elvira; Dullinger, Stefan

    2018-03-01

    Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affected by Pleistocene glaciations. The reasons given for this 'geographical parthenogenesis' are contentious, with expansion of the ecological niche or colonisation advantages of uniparental reproduction assumed most important in case of plants. Here, we parameterized a spread model for the alpine buttercup Ranunculus kuepferi and reconstructed the joint Holocene range expansion of its sexual and apomictic cytotype across the European Alps under different simulation settings. We found that, rather than niche broadening or a higher migration rate, a shift of the apomict's niche towards colder conditions per se was crucial as it facilitated overcoming of topographical barriers, a factor likely relevant for many alpine apomicts. More generally, our simulations suggest potentially strong interacting effects of niche differentiation and reproductive modes on range formation of related sexual and asexual taxa arising from their differential sensitivity to minority cytotype disadvantage. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  4. Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes.

    PubMed

    Culumber, Zachary W; Tobler, Michael

    2018-05-01

    The role of ecology in phenotypic and species diversification is widely documented. Nonetheless, numerous nonadaptive processes can shape realized niches and phenotypic variation in natural populations, complicating inferences about adaptive evolution at macroevolutionary scales. We tested for evolved differences in thermal tolerances and their association with the realized thermal niche (including metrics describing diurnal and seasonal patterns of temperature extremes and variability) across a genus of tropical freshwater fishes reared in a standardized environment. There was limited evolution along the thermal niche axis associated with variation in maximum temperature and in upper thermal limits. In contrast, there was considerable diversification along the first major axis of the thermal niche associated with minimum temperatures and in lower thermal limits. Across our adaptive landscape analyses, 70% of species exhibited evidence of divergence in thermal niches. Most importantly, the first two major axes of thermal niche variation were significantly correlated with variation in lower thermal limits. Our results indicate adaptation to divergent thermal niches and adaptive evolution of related functional traits, and highlight the importance of divergence in lower thermal limits for the evolution of tropical biodiversity. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  5. Beyond the continuum: a multi-dimensional phase space for neutral-niche community assembly.

    PubMed

    Latombe, Guillaume; Hui, Cang; McGeoch, Melodie A

    2015-12-22

    Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral-niche community dynamics. The neutral-niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. © 2015 The Author(s).

  6. Beyond the continuum: a multi-dimensional phase space for neutral–niche community assembly

    PubMed Central

    Latombe, Guillaume; McGeoch, Melodie A.

    2015-01-01

    Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. PMID:26702047

  7. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.

    PubMed

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2017-02-23

    The plant microbiome represents one of the key determinants of plant health and productivity by providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens, and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the bacterial microbiome present in different plant microenvironments and especially the relationship between below-ground and above-ground communities has remained elusive. In this work, we addressed hypotheses regarding microbiome niche differentiation and structural stability of the bacterial communities within different ecological plant niches. We sampled the rhizosphere soil, root, stem, and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) and applied 16S rRNA amplicon pyrosequencing to unravel the bacterial communities associated with the different plant habitats. We found that the structural variability of rhizosphere microbiomes in field-grown poplar trees (P. tremula × P. alba) is much lower than that of the endosphere microbiomes. Furthermore, our data not only confirm microbiome niche differentiation reports at the rhizosphere soil-root interface but also clearly show additional fine-tuning and adaptation of the endosphere microbiome in the stem and leaf compartment. Each plant compartment represents an unique ecological niche for the bacterial communities. Finally, we identified the core bacterial microbiome associated with the different ecological niches of Populus. Understanding the complex host-microbe interactions of Populus could provide the basis for the exploitation of the eukaryote-prokaryote associations in phytoremediation applications, sustainable crop production (bio-energy efficiency), and/or the production of secondary metabolites.

  8. Niche restriction and conservatism in a neotropical psittacine: the case of the Puerto Rican parrot

    USGS Publications Warehouse

    White, Thomas H.; Collazo, Jaime A.; Dinsmore, Stephen J.; Llerandi-Roman, I. C.

    2014-01-01

    The factors which govern species‘ distribution and abundance are myriad, and together constitute the ecological niche of a given species. Because abiotic factors are arguably the most profound of the factors influencing niche boundaries and thus, species distributions, substantial changes in either climatic or habitat-related parameters can be expected to produce interrelated and profound niche shifts. Habitat loss and degradation can also effectively induce a de facto climate change by forcing populations to relocate to environmentally suboptimal habitats. Populations experiencing niche shifts due to range restrictions and geographic isolation become subject to a suite of factors that may act synergistically to amplify deleterious ecological effects of habitat loss. These factors tend to exert a greater influence on populations of rare or endemic species with inherently restricted ranges. The Puerto Rican parrot (Amazona vittata) is an example of a tropical, insular, endemic and critically-endangered species that has suffered from extensive habitat loss and degradation over the past century, resulting in a single relict wild population restricted for more than 70 years to the montane rainforest of the Luquillo Mountains in northeastern Puerto Rico. In this chapter, we examine the current ecological situation of this geographically and demographically isolated parrot population by reviewing the history of landscape-level changes in and around the Luquillo Mountains, and concurrent biotic and abiotic limiting factors in relation to both historical population trajectory and current prognosis for species recovery. We used a decade (2000-2009) of empirical data on parrot fledgling survival together with long-term climatological data to model effects of local climate on fledgling survival and gain insights into its influence on population growth. We also modeled hypothetical survival of parrot fledglings in the lowlands surrounding the Luquillo Mountains, areas

  9. Ecology and geography of transmission of two bat-borne rabies lineages in Chile.

    PubMed

    Escobar, Luis E; Peterson, A Townsend; Favi, Myriam; Yung, Verónica; Pons, Daniel J; Medina-Vogel, Gonzalo

    2013-01-01

    Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985-2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances.

  10. Ecology and Geography of Transmission of Two Bat-Borne Rabies Lineages in Chile

    PubMed Central

    Escobar, Luis E.; Peterson, A. Townsend; Favi, Myriam; Yung, Verónica; Pons, Daniel J.; Medina-Vogel, Gonzalo

    2013-01-01

    Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances. PMID:24349592

  11. Analysis of the U.S. forest tolerance patterns depending on current and future temperature and precipitation

    Treesearch

    Jean Lienard; John Harrison; Nikolay Strigul

    2015-01-01

    Forested ecosystems are shaped by climate, soil and biotic interactions, resulting in constrained spatial distribution of species and biomes. Tolerance traits of species determine their fundamental ecological niche, while biotic interactions narrow tree distributions to the realized niche. In particular, shade, drought and waterlogging tolerances have been well-...

  12. Molecular data and ecological niche modeling reveal population dynamics of widespread shrub Forsythia suspensa (Oleaceae) in China’s warm-temperate zone in response to climate change during the Pleistocene

    PubMed Central

    2014-01-01

    Background Despite its high number of endemic deciduous broad-leaved species in China’s warm-temperate zone, far less attention has been paid to phylogeographic studies in this region. In this work, the phylogeographic history of Forsythia suspensa endemic to China’s warm-temperate zone was investigated to explore the effect of climate change during the Pleistocene on the distribution of this deciduous broad-leaved species in China. Results The cpDNA data revealed seven phylogeographical groups corresponding to geographical regions. By contrast, the nrDNA data supported the samples clustered into three groups, which was inconsistent with separate geographical regions supported by cpDNA data. Ecological niche modeling showed that the climatically suitable area during the cold period was larger than that during the warm period. Conclusions Both molecular data and ecological niche modeling indicated that F. suspensa expanded to nearby low-elevation plains in the glacial periods, and retreated to mountaintops during interglacial warmer stages. This study thus supported that F. suspensa persisted in situ during the glacial of the Pleistocene with enlarged distribution area, contrary to the hypothesis of long distance southward migration or large-scale range contraction. PMID:24885704

  13. Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores

    NASA Astrophysics Data System (ADS)

    Perrin, Laura; Probert, Ian; Langer, Gerald; Aloisi, Giovanni

    2016-11-01

    Coccolithophores are unicellular calcifying marine algae that play an important role in the oceanic carbon cycle via their cellular processes of photosynthesis (a CO2 sink) and calcification (a CO2 source). In contrast to the well-studied, surface-water coccolithophore blooms visible from satellites, the lower photic zone is a poorly known but potentially important ecological niche for coccolithophores in terms of primary production and carbon export to the deep ocean. In this study, the physiological responses of an Emiliania huxleyi strain to conditions simulating the deep niche in the oligotrophic gyres along the BIOSOPE transect in the South Pacific Gyre were investigated. We carried out batch culture experiments with an E. huxleyi strain isolated from the BIOSOPE transect, reproducing the in situ conditions of light and nutrient (nitrate and phosphate) limitation. By simulating coccolithophore growth using an internal stores (Droop) model, we were able to constrain fundamental physiological parameters for this E. huxleyi strain. We show that simple batch experiments, in conjunction with physiological modelling, can provide reliable estimates of fundamental physiological parameters for E. huxleyi that are usually obtained experimentally in more time-consuming and costly chemostat experiments. The combination of culture experiments, physiological modelling and in situ data from the BIOSOPE cruise show that E. huxleyi growth in the deep BIOSOPE niche is limited by availability of light and nitrate. This study contributes more widely to the understanding of E. huxleyi physiology and behaviour in a low-light and oligotrophic environment of the ocean.

  14. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    DOE PAGES

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; ...

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  15. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promotermore » of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  16. Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models.

    PubMed

    Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T

    2009-07-09

    Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.

  17. Size, shape, and the thermal niche of endotherms

    PubMed Central

    Porter, Warren P.; Kearney, Michael

    2009-01-01

    A key challenge in ecology is to define species' niches on the basis of functional traits. Size and shape are important determinants of a species' niche but their causal role is often difficult to interpret. For endotherms, size and shape define the thermal niche through their interaction with core temperature, insulation, and environmental conditions, determining the thermoneutral zone (TNZ) where energy and water costs are minimized. Laboratory measures of metabolic rate used to describe TNZs cannot be generalized to infer the capacity for terrestrial animals to find their TNZ in complex natural environments. Here, we derive an analytical model of the thermal niche of an ellipsoid furred endotherm that accurately predicts field and laboratory data. We use the model to illustrate the relative importance of size and shape on the location of the TNZ under different environmental conditions. The interaction between body shape and posture strongly influences the location of the TNZ and the expected scaling of metabolic rate with size at constant temperature. We demonstrate that the latter relationship has a slope of approximately ½ rather than the commonly expected surface area/volume scaling of ⅔. We show how such functional traits models can be integrated with spatial environmental datasets to calculate null expectations for body size clines from a thermal perspective, aiding mechanistic interpretation of empirical clines such as Bergmann's Rule. The combination of spatially explicit data with biophysical models of heat exchange provides a powerful means for studying the thermal niches of endotherms across climatic gradients. PMID:19846790

  18. Spatial Niche Segregation of Sympatric Stone Marten and Pine Marten--Avoidance of Competition or Selection of Optimal Habitat?

    PubMed

    Wereszczuk, Anna; Zalewski, Andrzej

    2015-01-01

    Coexistence of ecologically similar species relies on differences in one or more dimensions of their ecological niches, such as space, time and resources in diel and/or seasonal scales. However, niche differentiation may result from other mechanisms such as avoidance of high predation pressure, different adaptations or requirements of ecologically similar species. Stone marten (Martes foina) and pine marten (Martes martes) occur sympatrically over a large area in Central Europe and utilize similar habitats and food, therefore it is expected that their coexistence requires differentiation in at least one of their niche dimensions or the mechanisms through which these dimensions are used. To test this hypothesis, we used differences in the species activity patterns and habitat selection, estimated with a resource selection function (RSF), to predict the relative probability of occurrence of the two species within a large forest complex in the northern geographic range of the stone marten. Stone martens were significantly heavier, have a longer body and a better body condition than pine martens. We found weak evidence for temporal niche segregation between the species. Stone and pine martens were both primarily nocturnal, but pine martens were active more frequently during the day and significantly reduced the duration of activity during autumn-winter. Stone and pine martens utilized different habitats and almost completely separated their habitat niches. Stone marten strongly preferred developed areas and avoided meadows and coniferous or deciduous forests. Pine marten preferred deciduous forest and small patches covered by trees, and avoided developed areas and meadows. We conclude that complete habitat segregation of the two marten species facilitates sympatric coexistence in this area. However, spatial niche segregation between these species was more likely due to differences in adaptation to cold climate, avoidance of high predator pressure and/or food

  19. Exploring the effect of asymmetric mitochondrial DNA introgression on estimating niche divergence in morphologically cryptic species.

    PubMed

    Wielstra, Ben; Arntzen, Jan W

    2014-01-01

    If potential morphologically cryptic species, identified based on differentiated mitochondrial DNA, express ecological divergence, this increases support for their treatment as distinct species. However, mitochondrial DNA introgression hampers the correct estimation of ecological divergence. We test the hypothesis that estimated niche divergence differs when considering nuclear DNA composition or mitochondrial DNA type as representing the true species range. We use empirical data of two crested newt species (Amphibia: Triturus) which possess introgressed mitochondrial DNA from a third species in part of their ranges. We analyze the data in environmental space by determining Fisher distances in a principal component analysis and in geographical space by determining geographical overlap of species distribution models. We find that under mtDNA guidance in one of the two study cases niche divergence is overestimated, whereas in the other it is underestimated. In the light of our results we discuss the role of estimated niche divergence in species delineation.

  20. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.

    PubMed

    Carvalho, B M; Rangel, E F; Vale, M M

    2017-08-01

    Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.

  1. Niche evolution and adaptive radiation: Testing the order of trait divergence

    USGS Publications Warehouse

    Ackerly, D.D.; Schwilk, D.W.; Webb, C.O.

    2006-01-01

    In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (?? niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (?? niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This ?? niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (?? niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the ?? niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of ?? niche traits might be a common feature of niche evolution in

  2. Ecological limitations to the resilience of coral reefs

    NASA Astrophysics Data System (ADS)

    Mora, Camilo; Graham, Nicholas A. J.; Nyström, Magnus

    2016-12-01

    The decline of coral reefs has been broadly attributed to human stressors being too strong and pervasive, whereas biological processes that may render coral reefs fragile have been sparsely considered. Here we review several ecological factors that can limit the ability of coral reefs to withstand disturbance. These include: (1) Many species lack the adaptive capacity to cope with the unprecedented disturbances they currently face; (2) human disturbances impact vulnerable life history stages, reducing reproductive output and the supply of recruits essential for recovery; (3) reefs can be vulnerable to the loss of few species, as niche specialization or temporal and spatial segregation makes each species unique (i.e., narrow ecological redundancy); in addition, many foundation species have similar sensitivity to disturbances, suggesting that entire functions can be lost to single disturbances; and (4) feedback loops and extinction vortices may stabilize degraded states or accelerate collapses even if stressors are removed. This review suggests that the degradation of coral reefs is due to not only the severity of human stressors but also the "fragility" of coral reefs. As such, appropriate governance is essential to manage stressors while being inclusive of ecological process and human uses across transnational scales. This is a considerable but necessary upgrade in current management if the integrity, and delivery of goods and services, of coral reefs is to be preserved.

  3. Projections of contemporary and future climate niche for Wyoming big sagebrush (Artemisia tridentate subsp. wyomingensis): A guide for restoration

    Treesearch

    Shannon M. Still; Bryce A. Richardson

    2015-01-01

    Big sagebrush (Artemisia tridentata) is one of the most widespread and abundant plant species in the intermountain regions of western North America. This species occupies an extremely wide ecological niche ranging from the semi-arid basins to the subalpine. Within this large niche, three widespread subspecies are recognized. Montane ecoregions are occupied by...

  4. Termite Assemblage Pattern and Niche Partitioning in a Tropical Forest Ecosystem.

    PubMed

    Li, Hou-Feng; Lan, Yen-Chiu; Fujisaki, Ikuko; Kanzaki, Natsumi; Lee, How-Jing; Su, Nan-Yao

    2015-06-01

    Termites are major plant decomposers in tropical forest ecosystems, but their cryptic nature poses an obstacle for studying their ecological roles in depth. In the current study, we quantified climatic and geographic information of 137 termite collection sites in the Kenting National Park, Taiwan, and described the ecological niches and assemblage patterns of 13 termite species of three families. Three major assemblage patterns are reported. First, the three termite families were found in most landcovering types with similar number of species, which indicated that each family played a unique role in the ecosystem. Second, average numbers of termite species were not different among collection sites, but the total number of termite species found in each landcovering type was different, which indicated that termite niche capacity in each small area was the same but some landcovering types were composed of diverse microhabitats to host more termite species. Third, termite species of every family showed distinct moisture preferences in their habitat choices. In addition to the three assemblage patterns, we found that niche size of the advanced termite family, Termitidae, was larger than that of the primitive termite families, Rhinotermitidae or Kalotermitidae. The broader choices of cellulosic materials as food sources may allow Termitidae to adapt to more diverse environments than exclusive wood feeders. Termite niche quantification could further be used to study termite pest adaption in urban areas, interspecific competition between native and invasive species, and plant decomposition processes. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Chemical ecology of fungi.

    PubMed

    Spiteller, Peter

    2015-07-01

    Fungi are widespread in nature and have conquered nearly every ecological niche. Fungi occur not only in terrestrial but also in freshwater and marine environments. Moreover, fungi are known as a rich source of secondary metabolites. Despite these facts, the ecological role of many of these metabolites is still unknown and the chemical ecology of fungi has not been investigated systematically so far. This review intends to present examples of the various chemical interactions of fungi with other fungi, plants, bacteria and animals and to give an overview of the current knowledge of fungal chemical ecology.

  6. Niche analysis and conservation of the orchids of east Macedonia (NE Greece)

    NASA Astrophysics Data System (ADS)

    Tsiftsis, Spyros; Tsiripidis, Ioannis; Karagiannakidou, Vassiliki; Alifragis, Dimitrios

    2008-01-01

    The orchid family is one of the largest in the flowering plant kingdom and includes a lot of rare, threatened or endangered species. The determination of plant species niche is considered fundamental for their conservation. Two parameters closely related with species niche are niche marginality and breadth. The first parameter is a measure of how typical or atypical a species niche is within an area, while the second is a measure of species tolerance. This study deals with niche analysis of the orchids of east Macedonia (NE Greece). Factors that are known to determine species distribution on a regional scale, such as altitude, aspect, habitat type, bedrock type and soil properties (acidity, organic matter, and phosphorus content) were used as explanatory variables. Geographical coordinates were also employed in order to explore spatial patterns in orchid distribution. Niche analysis was carried out using the Outlying Mean Index (OMI) analysis. Out of the total data of 55 taxa that were analyzed, 41 had a significant marginal niche compared with the average niche of the study area. Altitude, soil acidity and certain habitat types were found to be the most important factors in determining orchid distribution. Five different species groups were distinguished on the basis of their ecological preferences and niche breadth. Species niche marginality and breadth, the amplitude of their geographical distribution, the size of their populations and the rareness and conservation status of their habitats were taken into account in order to set conservation priorities for the orchids in the study area. The above characteristics combined with intuitive criteria (e.g. geographical distribution, endemicity) for the species with a small number of occurrences could form a sound basis for setting conservation priorities.

  7. Predicting suitable habitat of the Chinese monal (Lophophorus lhuysii) using ecological niche modeling in the Qionglai Mountains, China.

    PubMed

    Wang, Bin; Xu, Yu; Ran, Jianghong

    2017-01-01

    Understanding the distribution and the extent of suitable habitats is crucial for wildlife conservation and management. Knowledge is limited regarding the natural habitats of the Chinese monal ( Lophophorus lhuysii ), which is a vulnerable Galliform species endemic to the high-montane areas of southwest China and a good candidate for being an umbrella species in the Qionglai Mountains. Using ecological niche modeling, we predicted current potential suitable habitats for the Chinese monal in the Qionglai Mountains with 64 presence points collected between 2005 and 2015. Suitable habitats of the Chinese monal were associated with about 31 mm precipitation of the driest quarter, about 15 °C of maximum temperature of the warmest month, and far from the nearest human residential locations (>5,000 m). The predicted suitable habitats of the Chinese monal covered an area of 2,490 km 2 , approximately 9.48% of the Qionglai Mountains, and was highly fragmented. 54.78% of the suitable habitats were under the protection of existing nature reserves and two conservation gaps were found. Based on these results, we provide four suggestions for the conservation management of the Chinese monal: (1) ad hoc surveys targeting potential suitable habitats to determine species occurrence, (2) more ecological studies regarding its dispersal capacity, (3) establishment of more corridors and green bridges across roads for facilitating species movement or dispersal, and (4) minimization of local disturbances.

  8. Different Ecological Niches for Ticks of Public Health Significance in Canada

    PubMed Central

    Gabriele-Rivet, Vanessa; Arsenault, Julie; Badcock, Jacqueline; Cheng, Angela; Edsall, Jim; Goltz, Jim; Kennedy, Joe; Lindsay, L. Robbin; Pelcat, Yann; Ogden, Nicholas H.

    2015-01-01

    Tick-borne diseases are a growing public health concern as their incidence and range have increased in recent decades. Lyme disease is an emerging infectious disease in Canada due to northward expansion of the geographic range of Ixodes scapularis, the principal tick vector for the Lyme disease agent Borrelia burgdorferi, into central and eastern Canada. In this study the geographical distributions of Ixodid ticks, including I. scapularis, and environmental factors associated with their occurrence were investigated in New Brunswick, Canada, where few I. scapularis populations have been found to date. Density of host-seeking ticks was evaluated by drag sampling of woodland habitats in a total of 159 sites. Ixodes scapularis ticks (n = 5) were found on four sites, Ixodes muris (n = 1) on one site and Haemaphysalis leporispalustris (n = 243) on 41 sites. One of four adult I. scapularis ticks collected was PCR-positive for B. burgdorferi. No environmental variables were significantly associated with the presence of I. scapularis although comparisons with surveillance data in neighbouring provinces (Québec and Nova Scotia) suggested that temperature conditions may be too cold for I. scapularis (< 2800 annual degree days above 0°C [DD > 0°C]) across much of New Brunswick. In contrast, the presence of H. leporispalustris, which is a competent vector of tularaemia, was significantly (P < 0.05) associated with specific ranges of mean DD > 0°C, mean annual precipitation, percentage of clay in site soil, elevation and season in a multivariable logistic regression model. With the exception of some localized areas, temperature conditions and deer density may be too low for the establishment of I. scapularis and Lyme disease risk areas in New Brunswick, while environmental conditions were suitable for H. leporispalustris at many sites. These findings indicate differing ecological niches for two tick species of public health significance. PMID:26131550

  9. Different Ecological Niches for Ticks of Public Health Significance in Canada.

    PubMed

    Gabriele-Rivet, Vanessa; Arsenault, Julie; Badcock, Jacqueline; Cheng, Angela; Edsall, Jim; Goltz, Jim; Kennedy, Joe; Lindsay, L Robbin; Pelcat, Yann; Ogden, Nicholas H

    2015-01-01

    Tick-borne diseases are a growing public health concern as their incidence and range have increased in recent decades. Lyme disease is an emerging infectious disease in Canada due to northward expansion of the geographic range of Ixodes scapularis, the principal tick vector for the Lyme disease agent Borrelia burgdorferi, into central and eastern Canada. In this study the geographical distributions of Ixodid ticks, including I. scapularis, and environmental factors associated with their occurrence were investigated in New Brunswick, Canada, where few I. scapularis populations have been found to date. Density of host-seeking ticks was evaluated by drag sampling of woodland habitats in a total of 159 sites. Ixodes scapularis ticks (n = 5) were found on four sites, Ixodes muris (n = 1) on one site and Haemaphysalis leporispalustris (n = 243) on 41 sites. One of four adult I. scapularis ticks collected was PCR-positive for B. burgdorferi. No environmental variables were significantly associated with the presence of I. scapularis although comparisons with surveillance data in neighbouring provinces (Québec and Nova Scotia) suggested that temperature conditions may be too cold for I. scapularis (< 2800 annual degree days above 0°C [DD > 0°C]) across much of New Brunswick. In contrast, the presence of H. leporispalustris, which is a competent vector of tularaemia, was significantly (P < 0.05) associated with specific ranges of mean DD > 0°C, mean annual precipitation, percentage of clay in site soil, elevation and season in a multivariable logistic regression model. With the exception of some localized areas, temperature conditions and deer density may be too low for the establishment of I. scapularis and Lyme disease risk areas in New Brunswick, while environmental conditions were suitable for H. leporispalustris at many sites. These findings indicate differing ecological niches for two tick species of public health significance.

  10. Ecological differentiation of diploid and polyploid cytotypes of Senecio carniolicus sensu lato (Asteraceae) is stronger in areas of sympatry.

    PubMed

    Sonnleitner, Michaela; Hülber, Karl; Flatscher, Ruth; Escobar García, Pedro; Winkler, Manuela; Suda, Jan; Schönswetter, Peter; Schneeweiss, Gerald M

    2016-02-01

    Ecological differentiation is recognized as an important factor for polyploid speciation, but little is known regarding whether the ecological niches of cytotypes differ between areas of sympatry and areas where single cytotypes occur (i.e. niche displacement). Ecological niches of four groups of Senecio carniolicus sensu lato (s.l.) (western and eastern diploid lineages, tetraploids and hexaploids) were characterized via Landolt indicator values of the accompanying vascular plant species and tested using multivariate and univariate statistics. The four groups of S. carniolicus s.l. were ecologically differentiated mainly with respect to temperature, light and soil (humus content, nutrients, moisture variability). Niche breadths did not differ significantly. In areas of sympatry hexaploids shifted towards sites with higher temperature, less light and higher soil humus content as compared with homoploid sites, whereas diploids and tetraploids shifted in the opposite direction. In heteroploid sites of tetraploids and the western diploid lineage the latter shifted towards sites with lower humus content but higher aeration. Niche displacement can facilitate the formation of stable contact zones upon secondary contact of polyploids and their lower-ploid ancestors and/or lead to convergence of the cytotypes' niches after they have attained non-overlapping ranges. Niche displacement is essential for understanding ecological consequences of polyploidy. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. An Adaptive Niching Genetic Algorithm using a niche size equalization mechanism

    NASA Astrophysics Data System (ADS)

    Nagata, Yuichi

    Niching GAs have been widely investigated to apply genetic algorithms (GAs) to multimodal function optimization problems. In this paper, we suggest a new niching GA that attempts to form niches, each consisting of an equal number of individuals. The proposed GA can be applied also to combinatorial optimization problems by defining a distance metric in the search space. We apply the proposed GA to the job-shop scheduling problem (JSP) and demonstrate that the proposed niching method enhances the ability to maintain niches and improve the performance of GAs.

  12. The nutritional nexus: linking niche, habitat variability and prey composition in a generalist marine predator.

    PubMed

    Machovsky-Capuska, Gabriel E; Miller, Mark G R; Silva, Fabiola R O; Amiot, Christophe; Stockin, Karen A; Senior, Alistair M; Schuckard, Rob; Melville, David; Raubenheimer, David

    2018-06-05

    1.Our understanding of the niche concept will remain limited while the quantity and range of different food types eaten remains a dominant proxy for niche breadth, as this does not account for the broad ecological context that governs diet. Linking nutrition, physiology and behaviour are critical to predict the extent to which a species adjusts its nutritional niche breadth at the levels of prey ("prey composition niche", defined as the range of prey compositions eaten), and diet ("realized nutritional niche" is the range of diets composed through feeding on the prey). 2.Here we studied adult-chick rearing Australasian gannets (Morus serrator) to propose an integrative approach using sea surface temperature anomalies (SSTa), geographic location and bathymetry over different years, to explore their relationship with the nutritional composition of prey and diets (i.e., prey composition and nutritional niche breadth), habitat use and foraging behavior. 3.We found that gannets feed on prey that varied widely in their nutritional composition (have a broad prey composition niche), and composed diets from these prey that likewise varied in composition (have a broad realized nutritional niche), suggesting generalism at two levels of macronutrient selection. 4.Across seasons, we established "nutritional landscapes" (hereafter nutriscapes), linking the nutritional content of prey (wet mass protein to-lipid ratio -P:L-) to the most likely geographic area of capture and bathymetry. Nutriscapes varied in their P:L from 6.06 to 15.28, over time, space and bathymetry (0 to 150 m). 5.During warm water events (strong positive SSTa), gannets expanded their foraging habitat, increased their foraging trip duration and consumed prey and diets with low macronutrient content (wet mass proportions of P and L). They were also constrained to the smallest prey composition and realized nutritional niche breadths. 6.Our findings are consistent with previous suggestions that dietary generalism

  13. Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany.

    PubMed

    Bose, Anushika; Dürr, Tobias; Klenke, Reinhard A; Henle, Klaus

    2018-02-28

    Biodiversity-related impacts at wind energy facilities have increasingly become a cause of conservation concern, central issue being the collision of birds. Utilizing spatial information of their carcass detections at wind turbines (WTs), we quantified the detections in relation to the metric distances of the respective turbines to different land-use types. We used ecological niche factor analysis (ENFA) to identify combinations of land-use distances with respect to the spatial allocation of WTs that led to higher proportions of collisions among the worst affected bird-groups: Buntings, Crows, Larks, Pigeons and Raptors. We also assessed their respective similarities to the collision phenomenon by checking for overlaps amongst their distance combinations. Crows and Larks showed the narrowest "collision sensitive niche"; a part of ecological niche under higher risk of collisions with turbines, followed by that of Buntings and Pigeons. Raptors had the broadest niche showing significant overlaps with the collision sensitive niches of the other groups. This can probably be attributed to their larger home range combined with their hunting affinities to open landscapes. Identification of collision sensitive niches could be a powerful tool for landscape planning; helping avoid regions with higher risks of collisions for turbine allocations and thus protecting sensitive bird populations.

  14. The influence of climatic niche preferences on the population genetic structure of a mistletoe species complex.

    PubMed

    Ramírez-Barahona, Santiago; González, Clementina; González-Rodríguez, Antonio; Ornelas, Juan Francisco

    2017-06-01

    The prevalent view on genetic structuring in parasitic plants is that host-race formation is caused by varying degrees of host specificity. However, the relative importance of ecological niche divergence and host specificity to population differentiation remains poorly understood. We evaluated the factors associated with population differentiation in mistletoes of the Psittacanthus schiedeanus complex (Loranthaceae) in Mexico. We used genetic data from chloroplast sequences and nuclear microsatellites to study population genetic structure and tested its association with host preferences and climatic niche variables. Pairwise genetic differentiation was associated with environmental and host preferences, independent of geography. However, environmental predictors appeared to be more important than host preferences to explain genetic structure, supporting the hypothesis that the occurrence of the parasite is largely determined by its own climatic niche and, to a lesser degree, by host specificity. Genetic structure is significant within this mistletoe species complex, but the processes associated with this structure appear to be more complex than previously thought. Although host specificity was not supported as the major determinant of population differentiation, we consider this to be part of a more comprehensive ecological model of mistletoe host-race formation that incorporates the effects of climatic niche evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition

    PubMed Central

    Stutz, Aaron J.

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323

  16. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition.

    PubMed

    Stutz, Aaron J

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  17. Human expansion precipitates niche expansion for an opportunistic apex predator (Puma concolor).

    PubMed

    Moss, Wynne E; Alldredge, Mathew W; Logan, Kenneth A; Pauli, Jonathan N

    2016-12-23

    There is growing recognition that developed landscapes are important systems in which to promote ecological complexity and conservation. Yet, little is known about processes regulating these novel ecosystems, or behaviours employed by species adapting to them. We evaluated the isotopic niche of an apex carnivore, the cougar (Puma concolor), over broad spatiotemporal scales and in a region characterized by rapid landscape change. We detected a shift in resource use, from near complete specialization on native herbivores in wildlands to greater use of exotic and invasive species by cougars in contemporary urban interfaces. We show that 25 years ago, cougars inhabiting these same urban interfaces possessed diets that were intermediate. Thus, niche expansion followed human expansion over both time and space, indicating that an important top predator is interacting with prey in novel ways. Thus, though human-dominated landscapes can provide sufficient resources for apex carnivores, they do not necessarily preserve their ecological relationships.

  18. Trophic niche partitioning of littoral fish species from the rocky intertidal of Helgoland, Germany

    NASA Astrophysics Data System (ADS)

    Hielscher, N. N.; Malzahn, A. M.; Diekmann, R.; Aberle, N.

    2015-12-01

    During a 3-year field study, interspecific and interannual differences in the trophic ecology of littoral fish species were investigated in the rocky intertidal of Helgoland island (North Sea). We investigated trophic niche partitioning of common coexisting littoral fish species based on a multi-tracer approach using stable isotope and fatty acids in order to show differences and similarities in resource use and feeding modes. The results of the dual-tracer approach showed clear trophic niche partitioning of the five target fish species, the goldsinny wrasse Ctenolabrus rupestris, the sand goby Pomatoschistus minutus, the painted goby Pomatoschistus pictus, the short-spined sea scorpion Myoxocephalus scorpius and the long-spined sea scorpion Taurulus bubalis. Both stable isotopes and fatty acids showed distinct differences in the trophic ecology of the studied fish species. However, the combined use of the two techniques added an additional resolution on the interannual scale. The sand goby P. minutus showed the largest trophic plasticity with a pronounced variability between years. The present data analysis provides valuable information on trophic niche partitioning of fish species in the littoral zones of Helgoland and on complex benthic food webs in general.

  19. Isotopic niche partitioning between two apex predators over time.

    PubMed

    Drago, Massimiliano; Cardona, Luis; Franco-Trecu, Valentina; Crespo, Enrique A; Vales, Damián G; Borella, Florencia; Zenteno, Lisette; Gonzáles, Enrique M; Inchausti, Pablo

    2017-07-01

    Stable isotope analyses have become an important tool in reconstructing diets, analysing resource use patterns, elucidating trophic relations among predators and understanding the structure of food webs. Here, we use stable carbon and nitrogen isotope ratios in bone collagen to reconstruct and compare the isotopic niches of adult South American fur seals (Arctocephalus australis; n = 86) and sea lions (Otaria flavescens; n = 49) - two otariid species with marked morphological differences - in the Río de la Plata estuary (Argentina - Uruguay) and the adjacent Atlantic Ocean during the second half of the 20th century and the beginning of the 21st century. Samples from the middle Holocene (n = 7 fur seals and n = 5 sea lions) are also included in order to provide a reference point for characterizing resource partitioning before major anthropogenic modifications of the environment. We found that the South American fur seals and South American sea lions had distinct isotopic niches during the middle Holocene. Isotopic niche segregation was similar at the beginning of the second half of the 20th century, but has diminished over time. The progressive convergence of the isotopic niches of these two otariids during the second half of the 20th century and the beginning of the 21st century is most likely due to the increased reliance of South American fur seals on demersal prey. This recent dietary change in South American fur seals can be explained by at least two non-mutually exclusive mechanisms: (i) the decrease in the abundance of sympatric South American sea lions as a consequence of small colony size and high pup mortality resulting from commercial sealing; and (ii) the decrease in the average size of demersal fishes due to intense fishing of the larger class sizes, which may have increased their accessibility to those eared seals with a smaller mouth gape, that is, South American fur seals of both sexes and female South American sea lions. © 2017 The Authors

  20. First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche

    PubMed Central

    White, Stuart C; Balisi, Mairin; Biewer, Jacob; Sankey, Julia; Garber, Dennis; Tseng, Z Jack

    2018-01-01

    Borophagine canids have long been hypothesized to be North American ecological ‘avatars’ of living hyenas in Africa and Asia, but direct fossil evidence of hyena-like bone consumption is hitherto unknown. We report rare coprolites (fossilized feces) of Borophagus parvus from the late Miocene of California and, for the first time, describe unambiguous evidence that these predatory canids ingested large amounts of bone. Surface morphology, micro-CT analyses, and contextual information reveal (1) droppings in concentrations signifying scent-marking behavior, similar to latrines used by living social carnivorans; (2) routine consumption of skeletons; (3) undissolved bones inside coprolites indicating gastrointestinal similarity to modern striped and brown hyenas; (4) B. parvus body weight of ~24 kg, reaching sizes of obligatory large-prey hunters; and (5) prey size ranging ~35–100 kg. This combination of traits suggests that bone-crushing Borophagus potentially hunted in collaborative social groups and occupied a niche no longer present in North American ecosystems. PMID:29785931

  1. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center

    PubMed Central

    Zhu, Geng-Ping; Li, Hui-Qi; Zhao, Li; Man, Liang; Liu, Qiang

    2016-01-01

    Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value. PMID:27199260

  2. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center.

    PubMed

    Zhu, Geng-Ping; Li, Hui-Qi; Zhao, Li; Man, Liang; Liu, Qiang

    2016-05-20

    Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value.

  3. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time

    NASA Astrophysics Data System (ADS)

    Vessella, Federico; Simeone, Marco Cosimo; Schirone, Bartolomeo

    2015-07-01

    Ecological Niche Modelling (ENM) is widely used to depict species potential occurrence according to environmental variables under different climatic scenarios. We tested the ENM approach to infer past range dynamics of cork oak, a keystone species of the Mediterranean Biome, from 130 ka to the present time. Hindcasting implications would deal with a better species risk assessment and conservation management for the future. We modelled present and past occurrence of cork oak using seven ENM algorithms, starting from 63,733 spatially unique presence points at 30 arc-second resolution. Fourteen environmental variables were used and four time slices were considered (Last Interglacial, Last Glacial Maximum, mid-Holocene and present time). A threshold-independent evaluation of the goodness-of-fit of the models was evaluated by means of ROC curve and fossil or historical evidences were used to validate the results. Four weighted average maps depicted the dynamics of area suitability for cork oak in the last 130 ka. The derived species autoecology allowed its long-term occurrence in the Mediterranean without striking range reduction or shifting. Fossil and historical post-processing validation support the modelled past spatial extension and a neglected species presence at Levantine until the recent time. Despite the severe climatic oscillation since the Last Glacial Maximum, cork oak potential distribution area experienced limited range changes, confirming its strong link with the Mediterranean Basin. The ecological amplitude of Quercus suber could be therefore adopted as a reference to trace the Mediterranean bioclimate area. A better knowledge of the past events of Mediterranean vegetation, a wider range of study species and environmental determinants are essential to inform us about its current state, its sensitivity to human impact and the potential responses to future changes.

  4. [Allelopathic effects of Artemisia sacrorum population in typical steppe based on niche theory].

    PubMed

    Wang, Hui; Xie, Yong-Sheng; Cheng, Ji-Min; She, Xiao-Yan

    2012-03-01

    By using modified Levins niche width index and Pianka niche overlap index, this paper analyzed the ecological competition between constructive and dominant species in a typical steppe. The stem- and leaf extracts from the constructive species (Artemisia sacrorum) were utilized to study their allelopathic potential on the seed germination and plant growth of the dominant species (Stipa bungeana, Thymus mongolicus, S. grandis, and Leymus secalinus), and the ecological position of A. sacrorum in the steppe succession. In the steppe, S. bungeana had the widest niche width (0.99), followed by T. mongolicus (0.94), A. sacrorum (0.82), S. grandis (0.76), and L. secalinus (0.73). The niche overlap value between A. sacrorum and S. bungeana, S. bungeana and T. mongolicus, T. mongolicus and S. grandis, and A. sacrorum and T. mongolicus was 0.90, 0.95, 0.94, and 0.86, respectively. The allelopathic effects of A. sacrorum extracts varied with their concentration. For the seed germination, root growth, and shoot growth of the dominant species, A. sacrorum extracts showed a trend of promoting at low concentrations and inhibiting at high concentrations. The extracts of A. sacrorum had a stronger promotion effect on the root growth of S. bungeana than on that of T. mongolicus, but a stronger inhibition effect on the shoot growth of T. mongolicus than on that of S. bungeana. Methanol extracts had stronger allelopathic effects than aqueous extracts. The high niche overlap between A. sacrorum and S. bungeana, and T. mongolicus and S. grandis indicated that the steppe community would continue succession to S. bungeana, while A. sacrorum population was only an important transitional stage during the succession. The allelopathic effect of A. sacrorum played a driving role in the succession process.

  5. Rates of ecological divergence and body size evolution are correlated with species diversification in scaly tree ferns

    PubMed Central

    Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E.

    2016-01-01

    Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this ‘ancient’ fern lineage across the tropics. PMID:27412279

  6. Rates of ecological divergence and body size evolution are correlated with species diversification in scaly tree ferns.

    PubMed

    Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E

    2016-07-13

    Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this 'ancient' fern lineage across the tropics. © 2016 The Author(s).

  7. Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm.

    PubMed

    Vidal-García, Francisca; Serio-Silva, Juan Carlos

    2011-07-01

    We developed a potential distribution model for the tropical rain forest species of primates of southern Mexico: the black howler monkey (Alouatta pigra), the mantled howler monkey (Alouatta palliata), and the spider monkey (Ateles geoffroyi). To do so, we applied the maximum entropy algorithm from the ecological niche modeling program MaxEnt. For each species, we used occurrence records from scientific collections, and published and unpublished sources, and we also used the 19 environmental coverage variables related to precipitation and temperature from WorldClim to develop the models. The predicted distribution of A. pigra was strongly associated with the mean temperature of the warmest quarter (23.6%), whereas the potential distributions of A. palliata and A. geoffroyi were strongly associated with precipitation during the coldest quarter (52.2 and 34.3% respectively). The potential distribution of A. geoffroyi is broader than that of the Alouatta spp. The areas with the greatest probability of presence of A. pigra and A. palliata are strongly associated with riparian vegetation, whereas the presence of A. geoffroyi is more strongly associated with the presence of rain forest. Our most significant contribution is the identification of areas with a high probability of the presence of these primate species, which is information that can be applied to planning future studies and then establishing criteria for the creation of areas to primate conservation in Mexico.

  8. Genomic Analysis of Demographic History and Ecological Niche Modeling in the Endangered Sumatran Rhinoceros Dicerorhinus sumatrensis.

    PubMed

    Mays, Herman L; Hung, Chih-Ming; Shaner, Pei-Jen; Denvir, James; Justice, Megan; Yang, Shang-Fang; Roth, Terri L; Oehler, David A; Fan, Jun; Rekulapally, Swanthana; Primerano, Donald A

    2018-01-08

    The vertebrate extinction rate over the past century is approximately 22-100 times greater than background extinction rates [1], and large mammals are particularly at risk [2, 3]. Quaternary megafaunal extinctions have been attributed to climate change [4], overexploitation [5], or a combination of the two [6]. Rhinoceroses (Family: Rhinocerotidae) have a rich fossil history replete with iconic examples of climate-induced extinctions [7], but current pressures threaten to eliminate this group entirely. The Sumatran rhinoceros (Dicerorhinus sumatrensis) is among the most imperiled mammals on earth. The 2011 population was estimated at ≤216 wild individuals [8], and currently the species is extirpated, or nearly so, throughout the majority of its former range [8-12]. Understanding demographic history is important in placing current population status into a broader ecological and evolutionary context. Analysis of the Sumatran rhinoceros genome reveals extreme changes in effective population size throughout the Pleistocene. Population expansion during the early to middle Pleistocene was followed by decline. Ecological niche modeling indicated that changing climate most likely played a role in the decline of the Sumatran rhinoceros, as less suitable habitat on an emergent Sundaland corridor isolated Sumatran rhinoceros populations. By the end of the Pleistocene, the Sundaland corridor was submerged, and populations were fragmented and consequently reduced to low Holocene levels from which they would never recover. Past events denuded the Sumatran rhinoceros of genetic diversity through population decline, fragmentation, or some combination of the two and most likely made the species even more susceptible to later exploitation and habitat loss. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches

    PubMed Central

    Argôlo-Filho, Ronaldo Costa; Loguercio, Leandro Lopes

    2013-01-01

    Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt’s pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains. PMID:26462580

  10. Effects of simulated acid rain on soil fauna community composition and their ecological niches.

    PubMed

    Wei, Hui; Liu, Wen; Zhang, Jiaen; Qin, Zhong

    2017-01-01

    Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO 2 ], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tracking a Medically Important Spider: Climate Change, Ecological Niche Modeling, and the Brown Recluse (Loxosceles reclusa)

    PubMed Central

    Saupe, Erin E.; Papes, Monica; Selden, Paul A.; Vetter, Richard S.

    2011-01-01

    Most spiders use venom to paralyze their prey and are commonly feared for their potential to cause injury to humans. In North America, one species in particular, Loxosceles reclusa (brown recluse spider, Sicariidae), causes the majority of necrotic wounds induced by the Araneae. However, its distributional limitations are poorly understood and, as a result, medical professionals routinely misdiagnose brown recluse bites outside endemic areas, confusing putative spider bites for other serious conditions. To address the issue of brown recluse distribution, we employ ecological niche modeling to investigate the present and future distributional potential of this species. We delineate range boundaries and demonstrate that under future climate change scenarios, the spider's distribution may expand northward, invading previously unaffected regions of the USA. At present, the spider's range is centered in the USA, from Kansas east to Kentucky and from southern Iowa south to Louisiana. Newly influenced areas may include parts of Nebraska, Minnesota, Wisconsin, Michigan, South Dakota, Ohio, and Pennsylvania. These results illustrate a potential negative consequence of climate change on humans and will aid medical professionals in proper bite identification/treatment, potentially reducing bite misdiagnoses. PMID:21464985

  12. Assessing niche width of endothermic fish from genes to ecosystem

    PubMed Central

    Madigan, Daniel J.; Carlisle, Aaron B.; Gardner, Luke D.; Jayasundara, Nishad; Micheli, Fiorenza; Schaefer, Kurt M.; Fuller, Daniel W.; Block, Barbara A.

    2015-01-01

    Endothermy in vertebrates has been postulated to confer physiological and ecological advantages. In endothermic fish, niche expansion into cooler waters is correlated with specific physiological traits and is hypothesized to lead to greater foraging success and increased fitness. Using the seasonal co-occurrence of three tuna species in the eastern Pacific Ocean as a model system, we used cardiac gene expression data (as a proxy for thermal tolerance to low temperatures), archival tag data, and diet analyses to examine the vertical niche expansion hypothesis for endothermy in situ. Yellowfin, albacore, and Pacific bluefin tuna (PBFT) in the California Current system used more surface, mesopelagic, and deep waters, respectively. Expression of cardiac genes for calcium cycling increased in PBFT and coincided with broader vertical and thermal niche utilization. However, the PBFT diet was less diverse and focused on energy-rich forage fishes but did not show the greatest energy gains. Ecosystem-based management strategies for tunas should thus consider species-specific differences in physiology and foraging specialization. PMID:26100889

  13. Extracellular Fibrils of Pathogenic Yeast Cryptococcus gattii Are Important for Ecological Niche, Murine Virulence and Human Neutrophil Interactions

    PubMed Central

    Springer, Deborah J.; Ren, Ping; Raina, Ramesh; Dong, Yimin; Behr, Melissa J.; McEwen, Bruce F.; Bowser, Samuel S.; Samsonoff, William A.; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2010-01-01

    Cryptococcus gattii, an emerging fungal pathogen of humans and animals, is found on a variety of trees in tropical and temperate regions. The ecological niche and virulence of this yeast remain poorly defined. We used Arabidopsis thaliana plants and plant-derived substrates to model C. gattii in its natural habitat. Yeast cells readily colonized scratch-wounded plant leaves and formed distinctive extracellular fibrils (40–100 nm diameter ×500–3000 nm length). Extracellular fibrils were observed on live plants and plant-derived substrates by scanning electron microscopy (SEM) and by high voltage- EM (HVEM). Only encapsulated yeast cells formed extracellular fibrils as a capsule-deficient C. gattii mutant completely lacked fibrils. Cells deficient in environmental sensing only formed disorganized extracellular fibrils as apparent from experiments with a C. gattii STE12α mutant. C. gattii cells with extracellular fibrils were more virulent in murine model of pulmonary and systemic cryptococcosis than cells lacking fibrils. C. gattii cells with extracellular fibrils were also significantly more resistant to killing by human polymorphonuclear neutrophils (PMN) in vitro even though these PMN produced elaborate neutrophil extracellular traps (NETs). These observations suggest that extracellular fibril formation could be a structural adaptation of C. gattii for cell-to-cell, cell-to-substrate and/or cell-to- phagocyte communications. Such ecological adaptation of C. gattii could play roles in enhanced virulence in mammalian hosts at least initially via inhibition of host PMN– mediated killing. PMID:20539754

  14. [Trophic niche partitioning of pelagic sharks in Central Eastern Pacific inferred from stable isotope analysis.

    PubMed

    Li, Yun Kai; Gao, Xiao di; Wang, Lin Yu; Fang, Lin

    2018-01-01

    As the apex predators of the open ocean ecosystems, pelagic sharks play important roles in stabilizing the marine food web through top-down control. Stable isotope analysis is a powerful tool to investigate the feeding ecology. The carbon and nitrogen isotope ratios can be used to trace food source and evaluate the trophic position of marine organisms. In this study, the isotope values of 130 pelagic sharks from 8 species in Central Eastern Pacific were analyzed and their trophic position and niche were calculated to compare the intra/inter-specific resource partitioning in the Central Eastern Pacific ecosystem. The results exhibited significant differences in both carbon and nitrogen isotope values among the shark species. The trophic levels ranged from 4.3 to 5.4 in the Central Eastern Pacific shark community. The trophic niche of blue sharks and shortfin mako sharks showed no overlap with the other shark species, exhibiting unique ecological roles in the open ocean food web. These data highlighted the diverse roles among pelagic sharks, supporting previous findings that this species is not trophically redundant and the trophic niche of pelagic sharks can not be simply replaced by those of other top predator species.

  15. Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal

    NASA Astrophysics Data System (ADS)

    Kernaléguen, L.; Arnould, J. P. Y.; Guinet, C.; Cazelles, B.; Richard, P.; Cherel, Y.

    2016-09-01

    Investigating the ontogeny of niche differentiation enables to determine at which life-stages sexual segregation arises, providing insights into the main factors driving resource partitioning. We investigated the ontogeny of foraging ecology in Antarctic fur seals (Arctocephalus gazella), a highly dimorphic species with contrasting breeding strategies between sexes. Sequential δ13C and δ15N values of whiskers provided a longitudinal proxy of the foraging niche throughout the whole life of seals, from weaning, when size dimorphism is minimal to the age of 5. Females exhibited an early-life ontogenetic shift, from a total segregation during their first year at-sea, to a similar isotopic niche as breeding females as early as age 2. In contrast, males showed a progressive change in isotopic niche throughout their development such that 5-year-old males did not share the same niche as territorial bulls. Interestingly, males and females segregated straight after weaning with males appearing to feed in more southerly habitats than females. This spatial segregation was of similar amplitude as observed in breeding adults and was maintained throughout development. Such early-life niche differentiation is an unusual pattern and indicates size dimorphism and breeding constraints do not directly drive sexual segregation contrary to what has been assumed in otariid seals.

  16. Pro-social behaviour of ants depends on their ecological niche-Rescue actions in species from tropical and temperate regions.

    PubMed

    Miler, Krzysztof; Yahya, Bakhtiar Effendi; Czarnoleski, Marcin

    2017-11-01

    Some ants display rescue behaviour, which is performed by nearby nestmates and directed at individuals in danger. Here, using several ant species, we demonstrate that rescue behaviour expression matches predicted occurrences based on certain aspects of species' ecological niches. Rescue occurred in sand-dwelling ants exposed both to co-occurring antlion larvae, representing the threat of being captured by a predator, and to nest cave-ins, representing the threat of being trapped in a collapsed nest chamber. Rescue also occurred in forest groundcover ants exposed to certain entrapment situations. However, rescue never occurred in species associated with open plains, which nest in hardened soils and forage largely on herbaceous plants, or in ants living in close mutualistic relationships with their host plants. In addition, because we tested each species in two types of tests, antlion larva capture tests and artificial entrapment tests, we highlight the importance of accounting for test context in studying rescue behaviour expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ecologies of ideologies: Explaining party entry and exit in West-European parliaments, 1945-2013.

    PubMed

    van de Wardt, Marc; Berkhout, Joost; Vermeulen, Floris

    2017-06-01

    This study introduces a population-ecological approach to the entry and exit of political parties. A primary proposition of population ecology is that organizational entry and exit depends on the number of organizations already present: that is, density. We propose that political parties mainly experience competition from parties in the same ideological niche (left, centre, right). Pooled time-series analyses of 410 parties, 263 elections and 18 West-European countries largely support our expectations. We find that political parties are more likely to exit when density within their niche increases. Also there is competition between adjacent ideological niches, i.e. between centrist and right-wing niches. In contrast to our expectations, neither density nor institutional rules impact party entry. This raises important questions about the rationale of prospective entrants.

  18. Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila.

    PubMed

    Morales-Hojas, Ramiro; Vieira, Jorge

    2012-01-01

    Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. Members of the subgenus Drosophila are distributed across the globe and show a large diversity of ecological niches. Furthermore, taxonomic classification of Drosophila includes the rank radiation, which refers to closely related species groups. Nevertheless, it has never been tested if these taxonomic radiations correspond to evolutionary radiations. Here we present a study of the patterns of diversification of Drosophila to test for increased diversification rates in relation to the geographic and ecological diversification processes. For this, we have estimated and dated a phylogeny of 218 species belonging to the major species groups of the subgenus. The obtained phylogenies are largely consistent with previous studies and indicate that the major groups appeared during the Oligocene/Miocene transition or early Miocene, characterized by a trend of climate warming with brief periods of glaciation. Ancestral reconstruction of geographic ranges and ecological resource use suggest at least two dispersals to the Neotropics from the ancestral Asiatic tropical disribution, and several transitions to specialized ecological resource use (mycophagous and cactophilic). Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. However, diversification analyses show no significant support for adaptive radiations as a result of geographic dispersal or ecological resource shift. Also, cactophily has not resulted in an increase in the diversification rate of the repleta and related groups. It is thus concluded that the taxonomic radiations do not correspond to adaptive radiations.

  19. Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia).

    PubMed

    Klarner, Bernhard; Winkelmann, Helge; Krashevska, Valentyna; Maraun, Mark; Widyastuti, Rahayu; Scheu, Stefan

    2017-01-01

    Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world's hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change.

  20. Trophic niches, diversity and community composition of invertebrate top predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra (Indonesia)

    PubMed Central

    Winkelmann, Helge; Krashevska, Valentyna; Maraun, Mark; Widyastuti, Rahayu; Scheu, Stefan

    2017-01-01

    Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world’s hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change. PMID:28763453

  1. Language and other artifacts: socio-cultural dynamics of niche construction

    PubMed Central

    Sinha, Chris

    2015-01-01

    Niche construction theory is a relatively new approach in evolutionary biology that seeks to integrate an ecological dimension into the Darwinian theory of evolution by natural selection. It is regarded by many evolutionary biologists as providing a significant revision of the Neo-Darwinian modern synthesis that unified Darwin’s theory of natural and sexual selection with 20th century population genetics. Niche construction theory has been invoked as a processual mediator of social cognitive evolution and of the emergence and evolution of language. I argue that language itself can be considered as a biocultural niche and evolutionary artifact. I provide both a general analysis of the cognitive and semiotic status of artifacts, and a formal analysis of language as a social and semiotic institution, based upon a distinction between the fundamental semiotic relations of “counting as” and “standing for.” I explore the consequences for theories of language and language learning of viewing language as a biocultural niche. I suggest that not only do niches mediate organism-organism interactions, but also that organisms mediate niche-niche interactions in ways that affect evolutionary processes, with the evolution of human infancy and childhood as a key example. I argue that language as a social and semiotic system is not only grounded in embodied engagements with the material and social-interactional world, but also grounds a sub-class of artifacts of particular significance in the cultural history of human cognition. Symbolic cognitive artifacts materially and semiotically mediate human cognition, and are not merely informational repositories, but co-agentively constitutive of culturally and historically emergent cognitive domains. I provide examples of the constitutive cognitive role of symbolic cognitive artifacts drawn from my research with my colleagues on cultural and linguistic conceptualizations of time, and their cultural variability. I conclude by

  2. Unveiling current Guanaco distribution in chile based upon niche structure of phylogeographic lineages: Andean puna to subpolar forests.

    PubMed

    González, Benito A; Samaniego, Horacio; Marín, Juan Carlos; Estades, Cristián F

    2013-01-01

    Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm), we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m) and precipitation seasonality (mean = 161 mm), hybrid lineage by annual precipitation (mean = 139 mm), and Southern subspecies by annual precipitation (mean = 553 mm), precipitation seasonality (mean = 21 mm) and grass cover (mean = 8.2%). Among lineages, we detected low levels of niche overlap: I (Similarity Index) = 0.06 and D (Schoener's Similarity Index) = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage ( I = 0.32-0.10 and D = 0.12-0.03, respectively). This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km(2)) with lineages-level (65,321 km(2)). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description provides

  3. The Shared Preference Niche of Sympatric Asiatic Black Bears and Sun Bears in a Tropical Forest Mosaic

    PubMed Central

    Steinmetz, Robert; Garshelis, David L.; Chutipong, Wanlop; Seuaturien, Naret

    2011-01-01

    Background Ecologically similar species often coexist by partitioning use of habitats or resources. Such partitioning can occur through divergent or shared niches. We investigated overlap in habitat use and spatial co-occurrence by sympatric Asiatic black bears and sun bears in three habitats in Thailand, and thereby assessed which niche model best accounts for their coexistence. Methods/Principal Findings We used density of species-specific signs to assess habitat use. Signs of both bear species occurred in all three habitats, and on >60% of sampling transects. Both species fed mostly on fruit; insect feeding signs were uncommon, and were mostly from sun bears. Significant differences in habitat use occurred only in montane forest, the habitat in which fruit was most abundant; incidence of black bear sign there was six times higher than that of sun bears. Habitat use was similar between the two species in the other habitats, which comprised 85% of the area. Of 10 habitat attributes examined, fruiting tree density was the best predictor of occurrence for both species. Models that included interspecific competition (fresh foraging activity of the other species) were less supported than the top models without competition. Conclusions/Significance Bear species co-occurrence at both coarse and fine spatial scales and use of the same resources (fruit trees) indicated common niche preferences. However, their habitat use differed in ways expected from their physical differences: larger black bears dominated in the most fruit-rich habitat, and smaller sun bears used less-preferred insects. These results indicate broadly overlapping fundamental niches combined with asymmetric competition—features consistent with the concept of shared preference niches. This model of the niche has received little attention in ecology, but appears to be relatively common in nature. PMID:21283792

  4. Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant.

    PubMed

    González-Mula, Almudena; Lang, Julien; Grandclément, Catherine; Naquin, Delphine; Ahmar, Mohammed; Soulère, Laurent; Queneau, Yves; Dessaux, Yves; Faure, Denis

    2018-07-01

    Agrobacterium tumefaciens constructs an ecological niche in its host plant by transferring the T-DNA from its Ti plasmid into the host genome and by diverting the host metabolism. We combined transcriptomics and genetics for understanding the A. tumefaciens lifestyle when it colonizes Arabidopsis thaliana tumors. Transcriptomics highlighted: a transition from a motile to sessile behavior that mobilizes some master regulators (Hfq, CtrA, DivK and PleD); a remodeling of some cell surface components (O-antigen, succinoglucan, curdlan, att genes, putative fasciclin) and functions associated with plant defense (Ef-Tu and flagellin pathogen-associated molecular pattern-response and glycerol-3-phosphate and nitric oxide signaling); and an exploitation of a wide variety of host resources, including opines, amino acids, sugars, organic acids, phosphate, phosphorylated compounds, and iron. In addition, construction of transgenic A. thaliana lines expressing a lactonase enzyme showed that Ti plasmid transfer could escape host-mediated quorum-quenching. Finally, construction of knock-out mutants in A. tumefaciens showed that expression of some At plasmid genes seemed more costly than the selective advantage they would have conferred in tumor colonization. We provide the first overview of A. tumefaciens lifestyle in a plant tumor and reveal novel signaling and trophic interplays for investigating host-pathogen interactions. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  5. Ecologies of ideologies: Explaining party entry and exit in West-European parliaments, 1945–2013

    PubMed Central

    Berkhout, Joost; Vermeulen, Floris

    2016-01-01

    This study introduces a population-ecological approach to the entry and exit of political parties. A primary proposition of population ecology is that organizational entry and exit depends on the number of organizations already present: that is, density. We propose that political parties mainly experience competition from parties in the same ideological niche (left, centre, right). Pooled time-series analyses of 410 parties, 263 elections and 18 West-European countries largely support our expectations. We find that political parties are more likely to exit when density within their niche increases. Also there is competition between adjacent ideological niches, i.e. between centrist and right-wing niches. In contrast to our expectations, neither density nor institutional rules impact party entry. This raises important questions about the rationale of prospective entrants. PMID:29046613

  6. Biogeochemical and Ecomorphological Niche Segregation of Mediterranean Woody Species along a Local Gradient.

    PubMed

    de la Riva, Enrique G; Marañón, Teodoro; Violle, Cyrille; Villar, Rafael; Pérez-Ramos, Ignacio M

    2017-01-01

    According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical) associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous) and growth (tree, shrub, and arborescent-shrub). To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition) in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain) growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees) species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning would underlie the

  7. Interactions between Genetic and Ecological Effects on the Evolution of Life Cycles.

    PubMed

    Rescan, Marie; Lenormand, Thomas; Roze, Denis

    2016-01-01

    Sexual reproduction leads to an alternation between haploid and diploid phases, whose relative length varies widely across taxa. Previous genetical models showed that diploid or haploid life cycles may be favored, depending on dominance interactions and on effective recombination rates. By contrast, niche differentiation between haploids and diploids may favor biphasic life cycles, in which development occurs in both phases. In this article, we explore the interplay between genetical and ecological factors, assuming that deleterious mutations affect the competitivity of individuals within their ecological niche and allowing different effects of mutations in haploids and diploids (including antagonistic selection). We show that selection on a modifier gene affecting the relative length of both phases can be decomposed into a direct selection term favoring the phase with the highest mean fitness (due to either ecological differences or differential effects of mutations) and an indirect selection term favoring the phase in which selection is more efficient. When deleterious alleles occur at many loci and in the presence of ecological differentiation between haploids and diploids, evolutionary branching often occurs and leads to the stable coexistence of alleles coding for haploid and diploid cycles, while temporal variations in niche sizes may stabilize biphasic cycles.

  8. Habitat suitability of the Atlantic bluefin tuna by size class: An ecological niche approach

    NASA Astrophysics Data System (ADS)

    Druon, Jean-Noël; Fromentin, Jean-Marc; Hanke, Alex R.; Arrizabalaga, Haritz; Damalas, Dimitrios; Tičina, Vjekoslav; Quílez-Badia, Gemma; Ramirez, Karina; Arregui, Igor; Tserpes, George; Reglero, Patricia; Deflorio, Michele; Oray, Isik; Saadet Karakulak, F.; Megalofonou, Persefoni; Ceyhan, Tevfik; Grubišić, Leon; MacKenzie, Brian R.; Lamkin, John; Afonso, Pedro; Addis, Piero

    2016-03-01

    An ecological niche modelling (ENM) approach was used to predict the potential feeding and spawning habitats of small (5-25 kg, only feeding) and large (>25 kg) Atlantic bluefin tuna (ABFT), Thunnus thynnus, in the Mediterranean Sea, the North Atlantic and the Gulf of Mexico. The ENM was built bridging knowledge on ecological traits of ABFT (e.g. temperature tolerance, mobility, feeding and spawning strategy) with patterns of selected environmental variables (chlorophyll-a fronts and concentration, sea surface current and temperature, sea surface height anomaly) that were identified using an extensive set of precisely geo-located presence data. The results highlight a wider temperature tolerance for larger fish allowing them to feed in the northern - high chlorophyll levels - latitudes up to the Norwegian Sea in the eastern Atlantic and to the Gulf of Saint Lawrence in the western basin. Permanent suitable feeding habitat for small ABFT was predicted to be mostly located in temperate latitudes in the North Atlantic and in the Mediterranean Sea, as well as in subtropical waters off north-west Africa, while summer potential habitat in the Gulf of Mexico was found to be unsuitable for both small and large ABFTs. Potential spawning grounds were found to occur in the Gulf of Mexico from March-April in the south-east to April-May in the north, while favourable conditions evolve in the Mediterranean Sea from mid-May in the eastern to mid-July in the western basin. Other secondary potential spawning grounds not supported by observations were predicted in the Azores area and off Morocco to Senegal during July and August when extrapolating the model settings from the Gulf of Mexico into the North Atlantic. The presence of large ABFT off Florida and the Bahamas in spring was not explained by the model as is, however the environmental variables other than the sea surface height anomaly appeared to be favourable for spawning in part of this area. Defining key spatial and

  9. Assessing the likely effectiveness of multispecies management for imperiled desert fishes with niche overlap analysis

    USGS Publications Warehouse

    Laub, P; Budy, Phaedra

    2015-01-01

    A critical decision in species conservation is whether to target individual species or a complex of ecologically similar species. Management of multispecies complexes is likely to be most effective when species share similar distributions, threats, and response to threats. We used niche overlap analysis to assess ecological similarity of 3 sensitive desert fish species currently managed as an ecological complex. We measured the amount of shared distribution of multiple habitat and life history parameters between each pair of species. Habitat use and multiple life history parameters, including maximum body length, spawning temperature, and longevity, differed significantly among the 3 species. The differences in habitat use and life history parameters among the species suggest they are likely to respond differently to similar threats and that most management actions will not benefit all 3 species equally. Habitat restoration, frequency of stream dewatering, non-native species control, and management efforts in tributaries versus main stem rivers are all likely to impact each of the species differently. Our results demonstrate that niche overlap analysis provides a powerful tool for assessing the likely effectiveness of multispecies versus single-species conservation plans.

  10. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae

    PubMed Central

    Costantini, Carlo; Ayala, Diego; Guelbeogo, Wamdaogo M; Pombi, Marco; Some, Corentin Y; Bassole, Imael HN; Ose, Kenji; Fotsing, Jean-Marie; Sagnon, N'Falé; Fontenille, Didier; Besansky, Nora J; Simard, Frédéric

    2009-01-01

    Background Ongoing lineage splitting within the African malaria mosquito Anopheles gambiae is compatible with ecological speciation, the evolution of reproductive isolation by divergent natural selection acting on two populations exploiting alternative resources. Divergence between two molecular forms (M and S) identified by fixed differences in rDNA, and characterized by marked, although incomplete, reproductive isolation is occurring in West and Central Africa. To elucidate the role that ecology and geography play in speciation, we carried out a countrywide analysis of An. gambiae M and S habitat requirements, and that of their chromosomal variants, across Burkina Faso. Results Maps of relative abundance by geostatistical interpolators produced a distinct pattern of distribution: the M-form dominated in the northernmost arid zones, the S-form in the more humid southern regions. Maps of habitat suitability, quantified by Ecological Niche Factor Analysis based on 15 eco-geographical variables revealed less contrast among forms. M was peculiar as it occurred proportionally more in habitat of marginal quality. Measures of ecological niche breadth and overlap confirmed the mismatch between the fundamental and realized patterns of habitat occupation: forms segregated more than expected from the extent of divergence of their environmental envelope – a signature of niche expansion. Classification of chromosomal arm 2R karyotypes by multilocus genetic clustering identified two clusters loosely corresponding to molecular forms, with 'mismatches' representing admixed individuals due to shared ancestral polymorphism and/or residual hybridization. In multivariate ordination space, these karyotypes plotted in habitat of more marginal quality compared to non-admixed, 'typical', karyotypes. The distribution of 'typical' karyotypes along the main eco-climatic gradient followed a consistent pattern within and between forms, indicating an adaptive role of inversions at this

  11. Why developmental niche construction is not selective niche construction: and why it matters.

    PubMed

    Stotz, Karola

    2017-10-06

    In the last decade, niche construction has been heralded as the neglected process in evolution. But niche construction is just one way in which the organism's interaction with and construction of the environment can have potential evolutionary significance. The constructed environment does not just select for , it also produces new variation. Nearly 3 decades ago, and in parallel with Odling-Smee's article 'Niche-constructing phenotypes', West and King introduced the 'ontogenetic niche' to give the phenomena of exo genetic inheritance a formal name. Since then, a range of fields in the life sciences and medicine has amassed evidence that parents influence their offspring by means other than DNA (parental effects), and proposed mechanisms for how heritable variation can be environmentally induced and developmentally regulated. The concept of 'developmental niche construction' (DNC) elucidates how a diverse range of mechanisms contributes to the transgenerational transfer of developmental resources. My most central of claims is that whereas the selective niche of niche construction theory is primarily used to explain the active role of the organism in its selective environment, DNC is meant to indicate the active role of the organism in its developmental environment. The paper highlights the differences between the construction of the selective and the developmental niche, and explores the overall significance of DNC for evolutionary theory.

  12. Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis.

    PubMed

    Winck, Gisele R; Hatano, Fabio; Vrcibradic, Davor; VAN Sluys, Monique; Rocha, Carlos F D

    2016-01-01

    Communities are structured by interactions of historical and ecological factors, which influence the use of different resources in time and space. We acquired data on time of activity, microhabitat use and diet of a lizard assemblage from a sand dune habitat in a coastal area, southeastern Brazil (Restinga de Jurubatiba). We analyzed the data of niche overlap among species in these three axes (temporal, spatial and trophic) using null models. We found a significant overlap within the trophic niche, whereas the overlap for the other axes did not differ from the expected. Based on this result, we discuss the factors acting on the structure of the local lizard community.

  13. Specialized specialists and the narrow niche fallacy: a tale of scale-feeding fishes.

    PubMed

    Kolmann, Matthew A; Huie, Jonathan M; Evans, Kory; Summers, Adam P

    2018-01-01

    Although rare within the context of 30 000 species of extant fishes, scale-feeding as an ecological strategy has evolved repeatedly across the teleost tree of life. Scale-feeding (lepidophagous) fishes are diverse in terms of their ecology, behaviour, and specialized morphologies for grazing on scales and mucus of sympatric species. Despite this diversity, the underlying ontogenetic changes in functional and biomechanical properties of associated feeding morphologies in lepidophagous fishes are less understood. We examined the ontogeny of feeding mechanics in two evolutionary lineages of scale-feeding fishes: Roeboides , a characin, and Catoprion , a piranha. We compare these two scale-feeding taxa with their nearest, non-lepidophagous taxa to identify traits held in common among scale-feeding fishes. We use a combination of micro-computed tomography scanning and iodine staining to measure biomechanical predictors of feeding behaviour such as tooth shape, jaw lever mechanics and jaw musculature. We recover a stark contrast between the feeding morphology of scale-feeding and non-scale-feeding taxa, with lepidophagous fishes displaying some paedomorphic characters through to adulthood. Few traits are shared between lepidophagous characins and piranhas, except for their highly-modified, stout dentition. Given such variability in development, morphology and behaviour, ecological diversity within lepidophagous fishes has been underestimated.

  14. Isotopic niches of fishes in coastal, neritic and oceanic waters off Adélie land, Antarctica

    NASA Astrophysics Data System (ADS)

    Cherel, Yves; Koubbi, Philippe; Giraldo, Carolina; Penot, Florian; Tavernier, Eric; Moteki, Masato; Ozouf-Costaz, Catherine; Causse, Romain; Chartier, Amélie; Hosie, Graham

    2011-08-01

    We used the stable isotope method to investigate the ecological niches of Antarctic fishes, with δ 13C and δ 15N as proxies of fish habitats and dietary habits, respectively. Muscle isotopic signature was measured for each of 237 delipidated tissue samples from 27 fish species collected offshore Adélie Land, East Antarctica. Overall, δ 13C values ranged from -25.3‰ to -18.2‰, thus allowing characterizing of the fish habitats, with inshore/benthic species having more positive δ 13C signatures than offshore/pelagic ones. No clear difference in the δ 13C values of pelagic fishes was found between species living in neritic and oceanic waters. Overall, the δ 15N signatures of neritic pelagic and epibenthic fishes encompassed ˜1.0 trophic level (3.1‰), a higher difference than that (1.4‰) found within the oceanic assemblage. Fishes with the lowest and highest δ 15N values are primarily invertebrate- and fish-eaters, respectively. The isotopic niches of fishes illustrate the different mechanisms allowing coexistence, with most fishes segregating at least by one of the two niche axes (δ 13C and δ 15N). Muscle isotopic values also document interindividual foraging specialization over the long-term in coastal benthic fishes, but not in more offshore pelagic species. Finally, the δ 15N signatures of fishes overlap with those of penguins and seals, indicating that seabirds and marine mammals share the upper levels of the Antarctic pelagic ecosystem with some large fish species. In conclusion, the concept of isotopic niche is a powerful tool to investigate various aspects of the ecological niche of Antarctic fishes, thus complementing the use of other conventional and non-conventional approaches.

  15. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives

    PubMed Central

    Konowalik, Kamil

    2017-01-01

    In the present study we investigate the concept of phylogenetic niche conservatism (PNC) within the American species of angraecoid orchids (Campylocentrum and Dendrophylax) and their closest relatives in the Old World (Angraecum) using ecological niche modelling (ENM). The predicted niche occupancy profiles were matched with the outcomes of previous phylogenetic studies to reconstruct the evolution of climatic suitability within the orchid group studied and evaluate the role of niche differentiation in the speciation of Angraecinae. No correlation between preferred niches and taxonomic relationships within the orchid group studied was revealed. The climatic suitability of the majority of the species overlapped each other, either fully or partially. This pattern is also present in the species of other orchid genera. Our research confirms a significant level of PNC in Orchidaceae, even within taxa exhibiting a transatlantic disjunction. The analysis of the evolution of climatic suitability indicated that the adaptation to various climatic conditions is not a factor that has driven speciation within orchids studied. PMID:28533976

  16. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives.

    PubMed

    Kolanowska, Marta; Grochocka, Elżbieta; Konowalik, Kamil

    2017-01-01

    In the present study we investigate the concept of phylogenetic niche conservatism (PNC) within the American species of angraecoid orchids ( Campylocentrum and Dendrophylax ) and their closest relatives in the Old World ( Angraecum ) using ecological niche modelling (ENM). The predicted niche occupancy profiles were matched with the outcomes of previous phylogenetic studies to reconstruct the evolution of climatic suitability within the orchid group studied and evaluate the role of niche differentiation in the speciation of Angraecinae. No correlation between preferred niches and taxonomic relationships within the orchid group studied was revealed. The climatic suitability of the majority of the species overlapped each other, either fully or partially. This pattern is also present in the species of other orchid genera. Our research confirms a significant level of PNC in Orchidaceae, even within taxa exhibiting a transatlantic disjunction. The analysis of the evolution of climatic suitability indicated that the adaptation to various climatic conditions is not a factor that has driven speciation within orchids studied.

  17. Leapfrogging into new territory: How Mascarene ridged frogs diversified across Africa and Madagascar to maintain their ecological niche.

    PubMed

    Zimkus, Breda M; Lawson, Lucinda P; Barej, Michael F; Barratt, Christopher D; Channing, Alan; Dash, Katrina M; Dehling, J Maximilian; Du Preez, Louis; Gehring, Philip-Sebastian; Greenbaum, Eli; Gvoždík, Václav; Harvey, James; Kielgast, Jos; Kusamba, Chifundera; Nagy, Zoltán T; Pabijan, Maciej; Penner, Johannes; Rödel, Mark-Oliver; Vences, Miguel; Lötters, Stefan

    2017-01-01

    The Mascarene ridged frog, Ptychadena mascareniensis, is a species complex that includes numerous lineages occurring mostly in humid savannas and open forests of mainland Africa, Madagascar, the Seychelles, and the Mascarene Islands. Sampling across this broad distribution presents an opportunity to examine the genetic differentiation within this complex and to investigate how the evolution of bioclimatic niches may have shaped current biogeographic patterns. Using model-based phylogenetic methods and molecular-clock dating, we constructed a time-calibrated molecular phylogenetic hypothesis for the group based on mitochondrial 16S rRNA and cytochrome b (cytb) genes and the nuclear RAG1 gene from 173 individuals. Haplotype networks were reconstructed and species boundaries were investigated using three species-delimitation approaches: Bayesian generalized mixed Yule-coalescent model (bGMYC), the Poisson Tree Process model (PTP) and a cluster algorithm (SpeciesIdentifier). Estimates of similarity in bioclimatic niche were calculated from species-distribution models (maxent) and multivariate statistics (Principal Component Analysis, Discriminant Function Analysis). Ancestral-area reconstructions were performed on the phylogeny using probabilistic approaches implemented in BioGeoBEARS. We detected high levels of genetic differentiation yielding ten distinct lineages or operational taxonomic units, and Central Africa was found to be a diversity hotspot for these frogs. Most speciation events took place throughout the Miocene, including "out-of-Africa" overseas dispersal events to Madagascar in the East and to São Tomé in the West. Bioclimatic niche was remarkably well conserved, with most species tolerating similar temperature and rainfall conditions common to the Central African region. The P. mascareniensis complex provides insights into how bioclimatic niche shaped the current biogeographic patterns with niche conservatism being exhibited by the Central African

  18. Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.)

    PubMed Central

    Aradhya, Mallikarjuna; Ibrahimov, Zakir; Toktoraliev, Biimyrza; Maghradze, David; Musayev, Mirza; Bobokashvili, Zviadi; Preece, John E.

    2017-01-01

    The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21–18 kyr BP) and LIG (130–116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps

  19. Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.).

    PubMed

    Aradhya, Mallikarjuna; Velasco, Dianne; Ibrahimov, Zakir; Toktoraliev, Biimyrza; Maghradze, David; Musayev, Mirza; Bobokashvili, Zviadi; Preece, John E

    2017-01-01

    The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21-18 kyr BP) and LIG (130-116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps

  20. Phylogeny and Niche Conservatism in North and Central American Triatomine Bugs (Hemiptera: Reduviidae: Triatominae), Vectors of Chagas' Disease

    PubMed Central

    Ibarra-Cerdeña, Carlos N.; Zaldívar-Riverón, Alejandro; Peterson, A. Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M.

    2014-01-01

    The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios. PMID:25356550

  1. Phylogeny and niche conservatism in North and Central American triatomine bugs (Hemiptera: Reduviidae: Triatominae), vectors of Chagas' disease.

    PubMed

    Ibarra-Cerdeña, Carlos N; Zaldívar-Riverón, Alejandro; Peterson, A Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M

    2014-10-01

    The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios.

  2. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    PubMed Central

    Boivin, Nicole L.; Zeder, Melinda A.; Fuller, Dorian Q.; Crowther, Alison; Larson, Greger; Erlandson, Jon M.; Denham, Tim; Petraglia, Michael D.

    2016-01-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  3. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions.

    PubMed

    Boivin, Nicole L; Zeder, Melinda A; Fuller, Dorian Q; Crowther, Alison; Larson, Greger; Erlandson, Jon M; Denham, Tim; Petraglia, Michael D

    2016-06-07

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.

  4. Evolution is a cooperative process: the biodiversity-related niches differentiation theory (BNDT) can explain why.

    PubMed

    Gatti, Roberto Cazzolla

    2011-01-01

    A. McFayden and G.E. Hutchinson defined a niche as a multidimensional space or hypervolume within the environment that allows an individual or a species to survive, we consider niches as a fundamental ecological variable that regulate species' composition and relation in ecosystems. Successively the niche concept has been associated to the genetic term "phenotype" by MacArthurstressing the importance on what a species or a genome can show outside, either in the environmental functions or in body characteristics. Several indexes have been developed to evaluate the grade of overlapping and similarities of species' niches, even utilizing the theory of information. However, which are the factors that determine the number of species that can coexist in a determinate environment and why a generalist species do not compete until the exclusion of the remaining species to maximize its fitness, is still quite unknown. Moreover, there are few studies and theories that clearly explain why the number of niches is so variable through ecosystems and how can several species live in the same basal niche, intended in a comprehensive sense as the range of basic conditions (temperature, humidity, food-guild, etc.). Here I show that the number of niches in an ecosystem depends on the number of species present in a particular moment and that the species themselves allow the enhancement of niches in terms of space and number. I found that using a three-dimensional model as hypervolume and testing the theory on a Mediterranean, temperate and tropical forest ecosystem it is possible to demonstrate that each species plays a fundamental role in facilitating the colonization by other species by simply modifying the environment and exponentially increasing the available niches' space and number. I resumed these hypothesis, after some preliminary empiric tests, in the Biodiversity-related Niches Differentiation Theory (BNDT), stressing with these definition that the process of niches

  5. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the button mushroom forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose,more » pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.« less

  6. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    PubMed Central

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagye, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hildén, Kristiina; Kües, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wösten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-01-01

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics. PMID:23045686

  7. Unveiling Current Guanaco Distribution in Chile Based upon Niche Structure of Phylogeographic Lineages: Andean Puna to Subpolar Forests

    PubMed Central

    González, Benito A.; Samaniego, Horacio; Marín, Juan Carlos; Estades, Cristián F.

    2013-01-01

    Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm), we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m) and precipitation seasonality (mean = 161 mm), hybrid lineage by annual precipitation (mean = 139 mm), and Southern subspecies by annual precipitation (mean = 553 mm), precipitation seasonality (mean = 21 mm) and grass cover (mean = 8.2%). Among lineages, we detected low levels of niche overlap: I (Similarity Index) = 0.06 and D (Schoener’s Similarity Index) = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage (I = 0.32-0.10 and D = 0.12-0.03, respectively). This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km2) with lineages-level (65,321 km2). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos

  8. Sexual selection and conflict as engines of ecological diversification.

    PubMed

    Bonduriansky, Russell

    2011-12-01

    Ecological diversification presents an enduring puzzle: how do novel ecological strategies evolve in organisms that are already adapted to their ecological niche? Most attempts to answer this question posit a primary role for genetic drift, which could carry populations through or around fitness "valleys" representing maladaptive intermediate phenotypes between alternative niches. Sexual selection and conflict are thought to play an ancillary role by initiating reproductive isolation and thereby facilitating divergence in ecological traits through genetic drift or local adaptation. Here, I synthesize theory and evidence suggesting that sexual selection and conflict could play a more central role in the evolution and diversification of ecological strategies through the co-optation of sexual traits for viability-related functions. This hypothesis rests on three main premises, all of which are supported by theory and consistent with the available evidence. First, sexual selection and conflict often act at cross-purposes to viability selection, thereby displacing populations from the local viability optimum. Second, sexual traits can serve as preadaptations for novel viability-related functions. Third, ancestrally sex-limited sexual traits can be transferred between sexes. Consequently, by allowing populations to explore a broad phenotypic space around the current viability optimum, sexual selection and conflict could act as powerful drivers of ecological adaptation and diversification.

  9. Mechanistic species distribution modeling reveals a niche shift during invasion.

    PubMed

    Chapman, Daniel S; Scalone, Romain; Štefanić, Edita; Bullock, James M

    2017-06-01

    Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual

  10. Phylogeography and Ecological Niche Modeling of the Desert Iguana (Dipsosaurus dorsalis, Baird & Girard 1852) in the Baja California Peninsula.

    PubMed

    Valdivia-Carrillo, Tania; García-De León, Francisco J; Blázquez, Ma Carmen; Gutiérrez-Flores, Carina; González Zamorano, Patricia

    2017-09-01

    Understanding the factors that explain the patterns of genetic structure or phylogeographic breaks at an intraspecific level is key to inferring the mechanisms of population differentiation in its early stages. These topics have been well studied in the Baja California region, with vicariance and the dispersal ability of individuals being the prevailing hypothesis for phylogeographic breaks. In this study, we evaluated the phylogeographic patterns in the desert iguana (Dipsosaurus dorsalis), a species with a recent history in the region and spatial variation in life history traits. We analyzed a total of 307 individuals collected throughout 19 localities across the Baja California Peninsula with 15 microsatellite DNA markers. Our data reveal the existence of 3 geographically discrete genetic populations with moderate gene flow and an isolation-by-distance pattern presumably produced by the occurrence of a refugium in the Cape region during the Pleistocene Last Glacial Maximum. Bayesian methods and ecological niche modeling were used to assess the relationship between population genetic structure and present and past climatic preferences of the desert iguana. We found that the present climatic heterogeneity of the Baja California Peninsula has a marked influence on the population genetic structure of the species, suggesting that there are alternative explanations besides vicariance. The information obtained in this study provides data allowing a better understanding of how historical population processes in the Baja California Peninsula can be understood from an ecological perspective. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Environmental limits to growth: physiological niche boundaries of corals along turbidity-light gradients.

    PubMed

    Anthony, Kenneth R N; Connolly, Sean R

    2004-11-01

    The physiological responses of organisms to resources and environmental conditions are important determinants of niche boundaries. In previous work, functional relationships between organism energetics and environment have been limited to energy intakes. However, energetic costs of maintenance may also depend on the supply of resources. In many mixotrophic organisms, two such resource types are light and particle concentration (turbidity). Using two coral species with contrasting abundances along light and turbidity gradients (Acropora valida and Turbinaria mesenterina), we incorporate the dual resource-stressor roles of these variables by calibrating functional responses of energy costs (respiration and loss of organic carbon) as well as energy intake (photosynthesis and particle feeding). This allows us to characterize physiological niche boundaries along light and turbidity gradients, identify species-specific differences in these boundaries, and assess the sensitivity of these differences to interspecific differences in particular functional response parameters. The turbidity-light niche of T. mesenterina was substantially larger than that of A. valida, consistent with its broader ecological distribution. As expected, the responses of photosynthesis, heterotrophic capacity, respiration, and organic carbon loss to light and turbidity varied between species. Niche boundaries were highly sensitive to the functional responses of energy costs to light and turbidity. Moreover, the study species' niche differences were almost entirely attributable to species-specific differences in one functional response: that of respiration to turbidity. These results demonstrate that functional responses of energy-loss processes are important determinants of species-specific physiological limits to growth, and thereby of niche differences in reef corals. Given that many resources can stress organisms when supply rates are high, we propose that the functional responses of energy

  12. Diversification in North American arid lands: niche conservatism, divergence and expansion of habitat explain speciation in the genus Ephedra.

    PubMed

    Loera, Israel; Sosa, Victoria; Ickert-Bond, Stefanie M

    2012-11-01

    A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The putative niche requirements and landscape dynamics of Microstegium vimineum: an invasive Asian grass

    Treesearch

    Robert J. II Warren; Justin P. Wright; Mark A. Bradford

    2010-01-01

    The theoretical foundations of population and community ecology stress the importance of identifying crucial niche requirements and life history stages of invasive species and, in doing so, give insight into research and management. We focus on Microstegium vimineum, an invasive grass which is causing marked changes in the structure and function of US forests. We...

  14. Ecological genomics of adaptation and speciation in fungi.

    PubMed

    Leducq, Jean-Baptiste

    2014-01-01

    Fungi play a central role in both ecosystems and human societies. This is in part because they have adopted a large diversity of life history traits to conquer a wide variety of ecological niches. Here, I review recent fungal genomics studies that explored the molecular origins and the adaptive significance of this diversity. First, macro-ecological genomics studies revealed that fungal genomes were highly remodelled during their evolution. This remodelling, in terms of genome organization and size, occurred through the proliferation of non-coding elements, gene compaction, gene loss and the expansion of large families of adaptive genes. These features vary greatly among fungal clades, and are correlated with different life history traits such as multicellularity, pathogenicity, symbiosis, and sexual reproduction. Second, micro-ecological genomics studies, based on population genomics, experimental evolution and quantitative trait loci approaches, have allowed a deeper exploration of early evolutionary steps of the above adaptations. Fungi, and especially budding yeasts, were used intensively to characterize early mutations and chromosomal rearrangements that underlie the acquisition of new adaptive traits allowing them to conquer new ecological niches and potentially leading to speciation. By uncovering the ecological factors and genomic modifications that underline adaptation, these studies showed that Fungi are powerful models for ecological genomics (eco-genomics), and that this approach, so far mainly developed in a few model species, should be expanded to the whole kingdom.

  15. Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling.

    PubMed

    You, Jianling; Qin, Xiaoping; Ranjitkar, Sailesh; Lougheed, Stephen C; Wang, Mingcheng; Zhou, Wen; Ouyang, Dongxin; Zhou, Yin; Xu, Jianchu; Zhang, Wenju; Wang, Yuguo; Yang, Ji; Song, Zhiping

    2018-04-12

    Climate change profoundly influences species distributions. These effects are evident in poleward latitudinal range shifts for many taxa, and upward altitudinal range shifts for alpine species, that resulted from increased annual global temperatures since the Last Glacial Maximum (LGM, ca. 22,000 BP). For the latter, the ultimate consequence of upward shifts may be extinction as species in the highest alpine ecosystems can migrate no further, a phenomenon often characterized as "nowhere to go". To predict responses to climate change of the alpine plants on the Qinghai-Tibetan Plateau (QTP), we used ecological niche modelling (ENM) to estimate the range shifts of 14 Rhodiola species, beginning with the Last Interglacial (ca. 120,000-140,000 BP) through to 2050. Distributions of Rhodiola species appear to be shaped by temperature-related variables. The southeastern QTP, and especially the Hengduan Mountains, were the origin and center of distribution for Rhodiola, and also served as refugia during the LGM. Under future climate scenario in 2050, Rhodiola species might have to migrate upward and northward, but many species would expand their ranges contra the prediction of the "nowhere to go" hypothesis, caused by the appearance of additional potential habitat concomitant with the reduction of permafrost with climate warming.

  16. Why developmental niche construction is not selective niche construction: and why it matters

    PubMed Central

    2017-01-01

    In the last decade, niche construction has been heralded as the neglected process in evolution. But niche construction is just one way in which the organism's interaction with and construction of the environment can have potential evolutionary significance. The constructed environment does not just select for, it also produces new variation. Nearly 3 decades ago, and in parallel with Odling-Smee's article ‘Niche-constructing phenotypes', West and King introduced the ‘ontogenetic niche’ to give the phenomena of exogenetic inheritance a formal name. Since then, a range of fields in the life sciences and medicine has amassed evidence that parents influence their offspring by means other than DNA (parental effects), and proposed mechanisms for how heritable variation can be environmentally induced and developmentally regulated. The concept of ‘developmental niche construction’ (DNC) elucidates how a diverse range of mechanisms contributes to the transgenerational transfer of developmental resources. My most central of claims is that whereas the selective niche of niche construction theory is primarily used to explain the active role of the organism in its selective environment, DNC is meant to indicate the active role of the organism in its developmental environment. The paper highlights the differences between the construction of the selective and the developmental niche, and explores the overall significance of DNC for evolutionary theory. PMID:28839923

  17. Why do niches develop in Caesarean uterine scars? Hypotheses on the aetiology of niche development.

    PubMed

    Vervoort, A J M W; Uittenbogaard, L B; Hehenkamp, W J K; Brölmann, H A M; Mol, B W J; Huirne, J A F

    2015-12-01

    Caesarean section (CS) results in the occurrence of the phenomenon 'niche'. A 'niche' describes the presence of a hypoechoic area within the myometrium of the lower uterine segment, reflecting a discontinuation of the myometrium at the site of a previous CS. Using gel or saline instillation sonohysterography, a niche is identified in the scar in more than half of the women who had had a CS, most with the uterus closed in one single layer, without closure of the peritoneum. An incompletely healed scar is a long-term complication of the CS and is associated with more gynaecological symptoms than is commonly acknowledged. Approximately 30% of women with a niche report spotting at 6-12 months after their CS. Other reported symptoms in women with a niche are dysmenorrhoea, chronic pelvic pain and dyspareunia. Given the association between a niche and gynaecological symptoms, obstetric complications and potentially with subfertility, it is important to elucidate the aetiology of niche development after CS in order to develop preventive strategies. Based on current published data and our observations during sonographic, hysteroscopic and laparoscopic evaluations of niches we postulate some hypotheses on niche development. Possible factors that could play a role in niche development include a very low incision through cervical tissue, inadequate suturing technique during closure of the uterine scar, surgical interventions that increase adhesion formation or patient-related factors that impair wound healing or increase inflammation or adhesion formation. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  18. Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use

    PubMed Central

    Brandl, Simon J.; Robbins, William D.; Bellwood, David R.

    2015-01-01

    Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant–pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats. PMID:26354935

  19. Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use.

    PubMed

    Brandl, Simon J; Robbins, William D; Bellwood, David R

    2015-09-22

    Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant-pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats. © 2015 The Author(s).

  20. Language, embodiment, and the cognitive niche.

    PubMed

    Clark, Andy

    2006-08-01

    Embodied agents use bodily actions and environmental interventions to make the world a better place to think in. Where does language fit into this emerging picture of the embodied, ecologically efficient agent? One useful way to approach this question is to consider language itself as a cognition-enhancing animal-built structure. To take this perspective is to view language as a kind of self-constructed cognitive niche: a persisting but never stationary material scaffolding whose crucial role in promoting thought and reason remains surprisingly poorly understood. It is the very materiality of this linguistic scaffolding, I suggest, that gives it some key benefits. By materializing thought in words, we create structures that are themselves proper objects of perception, manipulation, and (further) thought.

  1. Lifespan Development of Neuromodulation of Adaptive Control and Motivation as an Ontogenetic Mechanism for Developmental Niche Construction

    ERIC Educational Resources Information Center

    Li, Shu-Chen

    2013-01-01

    Instead of viewing organisms and individuals as passive recipients of their biological, ecological, and cultural inheritances, the developmental niche construction theory and the biocultural co-construction framework both emphasize that the individual's agency plays a key role in regulating how environmental and sociocontextual influences may…

  2. The niche reduction approach: an opportunity for optimal control of infectious diseases in low-income countries?

    PubMed

    Roche, Benjamin; Broutin, Hélène; Choisy, Marc; Godreuil, Sylvain; de Magny, Guillaume Constantin; Chevaleyre, Yann; Zucker, Jean-Daniel; Breban, Romulus; Cazelles, Bernard; Simard, Frédéric

    2014-07-25

    During the last century, WHO led public health interventions that resulted in spectacular achievements such as the worldwide eradication of smallpox and the elimination of malaria from the Western world. However, besides major successes achieved worldwide in infectious diseases control, most elimination/control programs remain frustrating in many tropical countries where specific biological and socio-economical features prevented implementation of disease control over broad spatial and temporal scales. Emblematic examples include malaria, yellow fever, measles and HIV. There is consequently an urgent need to develop affordable and sustainable disease control strategies that can target the core of infectious diseases transmission in highly endemic areas. Meanwhile, although most pathogens appear so difficult to eradicate, it is surprising to realize that human activities are major drivers of the current high rate of extinction among upper organisms through alteration of their ecology and evolution, i.e., their "niche". During the last decades, the accumulation of ecological and evolutionary studies focused on infectious diseases has shown that the niche of a pathogen holds more dimensions than just the immune system targeted by vaccination and treatment. Indeed, it is situated at various intra- and inter- host levels involved on very different spatial and temporal scales. After developing a precise definition of the niche of a pathogen, we detail how major advances in the field of ecology and evolutionary biology of infectious diseases can enlighten the planning and implementation of infectious diseases control in tropical countries with challenging economic constraints. We develop how the approach could translate into applied cases, explore its expected benefits and constraints, and we conclude on the necessity of such approach for pathogen control in low-income countries.

  3. When does it pay to invest in a patch? The evolution of intentional niche construction.

    PubMed

    Mohlenhoff, Kathryn A; Codding, Brian F

    2017-09-01

    Humans modify their environments in ways that significantly transform the earth's ecosystems. Recent research suggests that such niche-constructing behaviors are not passive human responses to environmental variation, but instead should be seen as active and intentional management of the environment. Although such research is useful in highlighting the interactive dynamics between humans and their natural world, the niche-construction framework, as currently applied, fails to explain why people would decide to modify their environments in the first place. To help resolve this problem, we use a model of technological intensification to analyze the cost-benefit trade-offs associated with niche construction as a form of patch investment. We use this model to assess the costs and benefits of three paradigmatic cases of intentional niche construction in Western North America: the application of fire in acorn groves, the manufacture of fishing weirs, and the adoption of maize agriculture. Intensification models predict that investing in patch modification (niche construction) only provides a net benefit when the amount of resources needed crosses a critical threshold that makes the initial investment worthwhile. From this, it follows that low-cost investments, such as burning in oak groves, should be quite common, while more costly investments, such as maize agriculture, should be less common and depend on the alternatives available in the local environment. We examine how patterns of mobility, risk management, territoriality, and private property also co-evolve with the costs and benefits of niche construction. This approach illustrates that explaining niche-constructing behavior requires understanding the economic trade-offs involved in patch investment. Integrating concepts from niche construction and technological intensification models within a behavioral ecological framework provides insights into the coevolution and active feedback between adaptive behaviors and

  4. Runaway cultural niche construction

    PubMed Central

    Rendell, Luke; Fogarty, Laurel; Laland, Kevin N.

    2011-01-01

    Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture. PMID:21320897

  5. Individual diet variation in a marine fish assemblage: Optimal Foraging Theory, Niche Variation Hypothesis and functional identity

    NASA Astrophysics Data System (ADS)

    Cachera, M.; Ernande, B.; Villanueva, M. C.; Lefebvre, S.

    2017-02-01

    Individual diet variation (i.e. diet variation among individuals) impacts intra- and inter-specific interactions. Investigating its sources and relationship with species trophic niche organization is important for understanding community structure and dynamics. Individual diet variation may increase with intra-specific phenotypic (or "individual state") variation and habitat variability, according to Optimal Foraging Theory (OFT), and with species trophic niche width, according to the Niche Variation Hypothesis (NVH). OFT proposes "proximate sources" of individual diet variation such as variations in habitat or size whereas NVH relies on "ultimate sources" related to the competitive balance between intra- and inter-specific competitions. The latter implies as a corollary that species trophic niche overlap, taken as inter-specific competition measure, decreases as species niche width and individual niche variation increase. We tested the complementary predictions of OFT and NVH in a marine fish assemblage using stomach content data and associated trophic niche metrics. The NVH predictions were tested between species of the assemblage and decomposed into a between- and a within-functional group component to assess the potential influence of species' ecological function. For most species, individual diet variation and niche overlap were consistently larger than expected. Individual diet variation increased with intra-specific variability in individual state and habitat, as expected from OFT. It also increased with species niche width but in compliance with the null expectation, thus not supporting the NVH. In contrast, species niche overlap increased significantly less than null expectation with both species niche width and individual diet variation, supporting NVH corollary. The between- and within-functional group components of the NVH relationships were consistent with those between species at the assemblage level. Changing the number of prey categories used to

  6. Microbial Ecological Niche Partitioning Affects N2 gas Production in the Largest Marine Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Fuchsman, C. A.; Penn, J. L.; Devol, A.; Palevsky, H. I.; Deutsch, C. A.; Keil, R.; Ward, B. B.; Rocap, G.

    2016-02-01

    Up to half of oceanic N2 production occurs in oxygen minimum zones (OMZs). In the Eastern Tropical North Pacific OMZ in April 2012, we measured a nine station coast to open ocean transect of N2 gas in the heart of the ETNP OMZ. Depth profiles of excess N2 gas had dual maxima located at the top of the OMZ and at 300m. An ecosystem biogeochemical model of the ETNP was also found to produce dual maxima at stations with a shallow OMZ. The model indicated that high N2 production rates caused the upper N2 maxima while long water residence time caused the deeper maxima. At a low productivity open ocean station where dual N2 maxima were observed, we obtained a depth profile of metagenomic sequences from both free living and >30 μm fractions to determine which N2 producing microbes were living in these three ecological niches. We use a phylogenetically-aware approach to identify metagenomic sequences by placing them on reference trees, which allows us to utilize them in a semi-quantitative manner. Overall, genes for denitrification (napA, nirS, nirK, qnor, nosZ) were enriched on particles while anammox was free-living. However, separation of genes into phylotypes indicated that the system is more complicated. For example, 4 out of 5 N2O reductase denitrifier phylotypes were actually free-living, while the fifth, most abundant phylotype was particle-attached. In the water column, denitrifier and anammox genes were spatially separated with depth with denitrifiers focused on the top section of the OMZ and with anammox becoming abundant slightly deeper and being more dominant at the deep N2 maxima. Interestingly, different phylotypes of denitrifiers have different depth profiles, implying individual adaptations and niches. The presence of measurable ammonia (>200 nM) at the top 20m of the OMZ along with the very low numbers of anammox bacteria is consistent with recent shoaling of the OMZ at the time of sampling. Thus the spatial separation of denitrifiers and anammox at the

  7. Predicting fundamental and realized distributions based on thermal niche: A case study of a freshwater turtle

    NASA Astrophysics Data System (ADS)

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco; Ribeiro, Bruno R.

    2018-04-01

    Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.

  8. Predicted Distribution of Visceral Leishmaniasis Vectors (Diptera: Psychodidae; Phlebotominae) in Iran: A Niche Model Study.

    PubMed

    Hanafi-Bojd, A A; Rassi, Y; Yaghoobi-Ershadi, M R; Haghdoost, A A; Akhavan, A A; Charrahy, Z; Karimi, A

    2015-12-01

    Visceral leishmaniasis (VL) is an important vector-borne disease in Iran. Till now, Leishmania infantum has been detected from five species of sand flies in the country including Phlebotomus kandelakii, Phlebotomus major s.l., Phlebotomus perfiliewi, Phlebotomus alexandri and Phlebotomus tobbi. Also, Phlebotomus keshishiani was found to be infected with Leishmania parasites. This study aimed at predicting the probable niches and distribution of vectors of visceral leishmaniasis in Iran. Data on spatial distribution studies of sand flies were obtained from Iranian database on sand flies. Sample points were included in data from faunistic studies on sand flies conducted during 1995-2013. MaxEnt software was used to predict the appropriate ecological niches for given species, using climatic and topographical data. Distribution maps were prepared and classified in ArcGIS to find main ecological niches of the vectors and hot spots for VL transmission in Iran. Phlebotomus kandelakii, Ph. major s.l. and Ph. alexandri seem to have played a more important role in VL transmission in Iran, so this study focuses on them. Representations of MaxEnt model for probability of distribution of the studied sand flies showed high contribution of climatological and topographical variables to predict the potential distribution of three vector species. Isothermality was found to be an environmental variable with the highest gain when used in isolation for Ph. kandelakii and Ph. major s.l., while for Ph. alexandri, the most effective variable was precipitation of the coldest quarter. The results of this study present the first prediction on distribution of sand fly vectors of VL in Iran. The predicted distributions were matched with the disease-endemic areas in the country, while it was found that there were some unaffected areas with the potential transmission. More comprehensive studies are recommended on the ecology and vector competence of VL vectors in the country. © 2015 Blackwell

  9. Niche separation and reproduction of Clausocalanus species (Copepoda, Calanoida) in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Peralba, Àurea; Mazzocchi, Maria Grazia; Harris, Roger P.

    2017-11-01

    The distribution and reproductive traits of copepods of the genus Clausocalanus were investigated during the Atlantic Meridional Transect cruise AMT-15, in September-October 2004 to estimate their ecological niches and secondary production in the epipelagic layer along a latitudinal cline (48°N-40°S). The distribution patterns of selected environmental parameters, i.e., temperature, salinity and chlorophyll a concentration, enabled eco-provinces to be identified as described by Longhurst (2006). Clausocalanus represented on average 34% of total copepod abundance, with a large predominance of adult females and copepodites over males. Among the eleven Clausocalanus species found during the survey, eight species showed a wide distributional range, i.e.,C. paululus, C. pergens, C. furcatus, C. arcuicornis, C. jobei, C. parapergens, C. lividus, and C. mastigophorus, while C. ingens, C. brevipes, and C. laticeps were recorded only in the South Atlantic. The smallest C. furcatus, C. paululus, and C. pergens together accounted for 85% of total Clausocalanus adult abundance. The ecological niches were clearly separated among congeners of similar size and largely overlapped in congeners whose size differed. The small- and medium-sized species, which are egg-sac-spawners, had smaller clutch size and lower egg-production rate than the larger broadcaster congeners. Nevertheless, embryo viability was lower in broadcasters, which may explain their low abundance in terms of lower recruitment. A sex ratio largely skewed toward females in all Clausocalanus species and the observation of viable eggs in successive clutches from isolated females seem to indicate that re-mating is not necessary in this genus. Broadcast-spawners showed the highest weight-specific fecundity rates in the genus but similar secondary production to sac-spawners despite the fact that they never occurred at high abundance. In light of their abundant occurrence in oceanic waters and well-defined ecological

  10. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference.

    PubMed

    Escobar, Luis E; Lira-Noriega, Andrés; Medina-Vogel, Gonzalo; Townsend Peterson, A

    2014-11-01

    Emerging infectious diseases can present serious threats to wildlife, even to the point of causing extinction. Whitenose fungus (Pseudogymnoascus destructans) is causing an epizootic in bats that is expanding rapidly, both geographically and taxonomically. Little is known of the ecology and distributional potential of this intercontinental pathogen. We address this gap via ecological niche models that characterise coarse resolution niche differences between fungus populations on different continents, identifying areas potentially vulnerable to infection in South America. Here we explore a novel approach to identifying areas of potential distribution across novel geographic regions that avoids perilious extrapolation into novel environments. European and North American fungus populations show differential use of environmental space, but rather than niche differentiation, we find that changes are best attributed to climatic differences between the two continents. Suitable areas for spread of the pathogen were identified across southern South America; however caution should be taken to avoid underestimating the potential for spread of this pathogen in South America.

  11. Niche separation in flycatcher-like species in the lowland rainforests of Malaysia.

    PubMed

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-07-01

    Niche theory suggests that sympatric species reduce interspecific competition through segregation of shared resources by adopting different attack manoeuvres. However, the fact that flycatcher-like bird species exclusively use the sally manoeuvre may thus challenge this view. We studied the foraging ecology of three flycatcher-like species (i.e. Paradise-flycatcher Terpsiphone sp., Black-naped Monarch Hypothymis azurea, and Rufous-winged Philentoma Philentoma pyrhoptera) in the Krau Wildlife Reserve in central Peninsular Malaysia. We investigated foraging preferences of each bird species and the potential niche partitioning via spatial or behavioural segregation. Foraging substrate was important parameter that effectively divided paradise-flycatcher from Black-naped Monarch and Rufous-winged Philentoma, where monarch and philentoma foraged mainly on live green leaves, while paradise-flycatcher foraged on the air. They also exhibited different foraging height preferences. Paradise-flycatcher, for instance, preferred the highest studied strata, while Black-naped Monarch foraged mostly in lower strata, and Rufous-winged Philentoma made use of the lowest strata. This study indicates that niche segregation occurs among sympatric species through foraging substrate and attack manoeuvres selection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.

    PubMed

    Hayden, Brian; Harrod, Chris; Kahilaineni, Kimmo K

    2014-02-01

    Climate change is increasing ambient temperatures in Arctic and subarctic regions, facilitating latitudinal range expansions of freshwater fishes adapted to warmer water temperatures. The relative roles of resource availability and interspecific interactions between resident and invading species in determining the outcomes of such expansions has not been adequately evaluated. Ecological interactions between a cool-water adapted fish, the perch (Perca fluviatilis), and the cold-water adapted European whitefish (Coregonus lavaretus), were studied in both shallow and deep lakes with fish communities dominated by (1) monomorphic whitefish, (2) monomorphic whitefish and perch, and (3) polymorphic whitefish and perch. A combination of stomach content, stable-isotope, and invertebrate prey availability data were used to identify resource use and niche overlap among perch, the trophic generalist large sparsely rakered (LSR) whitefish morph, and the pelagic specialist densely rakered (DR) whitefish morph in 10 subarctic lakes at the contemporary distribution limit of perch in northern Scandinavia. Perch utilized its putative preferred littoral niche in all lakes. LSR whitefish utilized both littoral and pelagic resources in monomorphic whitefish-dominated lakes. When found in sympatry with perch, LSR whitefish exclusively utilized pelagic prey in deep lakes, but displayed niche overlap with perch in shallow littoral lakes. DR whitefish was a specialist zooplanktivore, relegating LSR whitefish from pelagic habitats, leading to an increase in niche overlap between LSR whitefish and perch in deep lakes. Our results highlight how resource availability (lake depth and fish community) governs ecological interactions between native and invading species, leading to different outcomes even at the same latitudes. These findings suggest that lake morphometry and fish community structure data should be included in bioclimate envelope-based models of species distribution shifts

  13. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen's hypothesis.

    PubMed

    Hua, Xia

    2016-07-27

    Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data. © 2016 The Author(s).

  14. Human and ecological determinants of the spatial structure of local breed diversity.

    PubMed

    Colino-Rabanal, Victor J; Rodríguez-Díaz, Roberto; Blanco-Villegas, María José; Peris, Salvador J; Lizana, Miguel

    2018-04-24

    Since domestication, a large number of livestock breeds adapted to local conditions have been created by natural and artificial selection, representing one of the most powerful ways in which human groups have constructed niches to meet their need. Although many authors have described local breeds as the result of culturally and environmentally mediated processes, this study, located in mainland Spain, is the first aimed at identifying and quantifying the environmental and human contributions to the spatial structure of local breed diversity, which we refer to as livestock niche. We found that the more similar two provinces were in terms of human population, ecological characteristics, historical ties, and geographic distance, the more similar the composition of local breeds in their territories. Isolation by human population distance showed the strongest effect, followed by isolation by the environment, thus supporting the view of livestock niche as a socio-cultural product adapted to the local environment, in whose construction humans make good use of their ecological and cultural inheritances. These findings provide a useful framework to understand and to envisage the effects of climate change and globalization on local breeds and their livestock niches.

  15. Foraging niche segregation in Malaysian babblers (Family: Timaliidae)

    PubMed Central

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause’ law of competitive exclusion, which states two species occupying the same niche will not stably coexist. PMID:28253284

  16. Foraging niche segregation in Malaysian babblers (Family: Timaliidae).

    PubMed

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.

  17. Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids.

    PubMed

    Aagesen, Lone; Biganzoli, Fernando; Bena, Julia; Godoy-Bürki, Ana C; Reinheimer, Renata; Zuloaga, Fernando O

    2016-01-01

    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.

  18. Why do niches develop in Caesarean uterine scars? Hypotheses on the aetiology of niche development

    PubMed Central

    Vervoort, A.J.M.W.; Uittenbogaard, L.B.; Hehenkamp, W.J.K.; Brölmann, H.A.M.; Mol, B.W.J.; Huirne, J.A.F.

    2015-01-01

    Caesarean section (CS) results in the occurrence of the phenomenon ‘niche’. A ‘niche’ describes the presence of a hypoechoic area within the myometrium of the lower uterine segment, reflecting a discontinuation of the myometrium at the site of a previous CS. Using gel or saline instillation sonohysterography, a niche is identified in the scar in more than half of the women who had had a CS, most with the uterus closed in one single layer, without closure of the peritoneum. An incompletely healed scar is a long-term complication of the CS and is associated with more gynaecological symptoms than is commonly acknowledged. Approximately 30% of women with a niche report spotting at 6–12 months after their CS. Other reported symptoms in women with a niche are dysmenorrhoea, chronic pelvic pain and dyspareunia. Given the association between a niche and gynaecological symptoms, obstetric complications and potentially with subfertility, it is important to elucidate the aetiology of niche development after CS in order to develop preventive strategies. Based on current published data and our observations during sonographic, hysteroscopic and laparoscopic evaluations of niches we postulate some hypotheses on niche development. Possible factors that could play a role in niche development include a very low incision through cervical tissue, inadequate suturing technique during closure of the uterine scar, surgical interventions that increase adhesion formation or patient-related factors that impair wound healing or increase inflammation or adhesion formation. PMID:26409016

  19. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms.

    PubMed

    Ashton, Isabel W; Miller, Amy E; Bowman, William D; Suding, Katharine N

    2010-11-01

    Niche complementarity, in which coexisting species use different forms of a resource, has been widely invoked to explain some of the most debated patterns in ecology, including maintenance of diversity and relationships between diversity and ecosystem function. However, classical models assume resource specialization in the form of distinct niches, which does not obviously apply to the broadly overlapping resource use in plant communities. Here we utilize an experimental framework based on competition theory to test whether plants partition resources via classical niche differentiation or via plasticity in resource use. We explore two alternatives: niche preemption, in which individuals respond to a superior competitor by switching to an alternative, less-used resource, and dominant plasticity, in which superior competitors exhibit high resource use plasticity and shift resource use depending on the competitive environment. We determined competitive ability by measuring growth responses with and without neighbors over a growing season and then used 15N tracer techniques to measure uptake of different nitrogen (N) forms in a field setting. We show that four alpine plant species of differing competitive abilities have statistically indistinguishable uptake patterns (nitrate > ammonium > glycine) in their fundamental niche (without competitors) but differ in whether they shift these uptake patterns in their realized niche (with competitors). Competitively superior species increased their uptake of the most available N form, ammonium, when in competition with the rarer, competitively inferior species. In contrast, the competitively inferior species did not alter its N uptake pattern in competition. The existence of plasticity in resource use among the dominant species provides a mechanism that helps to explain the manner by which plant species with broadly overlapping resource use might coexist.

  20. The Ecology of Minority Languages in Melbourne

    ERIC Educational Resources Information Center

    Bradshaw, Julie

    2013-01-01

    Melbourne's linguistic and cultural diversity has continually changed in response to global economic forces and shifting patterns of war and conflict. Immigrant and refugee communities have arrived with different skills, educational and professional profiles, and cultural and religious values. The ecological niches of three contrasting linguistic…

  1. Metabolic Flexibility as a Major Predictor of Spatial Distribution in Microbial Communities

    PubMed Central

    Carbonero, Franck; Oakley, Brian B.; Purdy, Kevin J.

    2014-01-01

    A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a

  2. Exploring ecological careers – A new Frontiers series

    USDA-ARS?s Scientific Manuscript database

    This article provides an the introduction to a series describing non-academic careers in ecology. The world offers many niches for ecologists and the myriad and complex environmental challenges facing us continue to create new career opportunities. Historically, graduate students have interacted cl...

  3. Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality.

    PubMed

    Hill, Anna M; Sinars, Damon M; Lodge, David M

    1993-06-01

    We are exploring mechanisms of an invasion that contradicts the oft-cited generalization that species invade vacant niches. In northern Wisconsin lakes, the introduced crayfish Orconectes rusticus is replacing two ecologically similar resident congeners, O. virilis and O. propinquus. In laboratory experiments, we compared growth and mortality of individually maintained crayfish offered one of five ad libitum diets: invertebrates, macrophytes, dentritus, periphyton or all items combined. Mortality was highest for O. virilis and lowest for O. rusticus. Macrophyte diets yielded the highest mortality. All three species grew best on invertebrate and combination diets but grew little or not at all on diets of periphyton, detritus or macrophytes. O. rusticus and O. virilis grew more than O. propinquus. O. rusticus grew more quickly and/or was better able to survive overall than its congeners. Therefore, O. rusticus would probably have advantages over O. virilis and O. propinquus in competitive interactions, reproductive success and avoiding size-selective fish predation. Subtle interspecific differences may interact strongly with other ecological factors and contribute to the displacement of resident species from a well-occupied niche.

  4. Tracking of climatic niche boundaries under recent climate change.

    PubMed

    La Sorte, Frank A; Jetz, Walter

    2012-07-01

    1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation

  5. Host specialist clownfishes are environmental niche generalists.

    PubMed

    Litsios, Glenn; Kostikova, Anna; Salamin, Nicolas

    2014-11-22

    Why generalist and specialist species coexist in nature is a question that has interested evolutionary biologists for a long time. While the coexistence of specialists and generalists exploiting resources on a single ecological dimension has been theoretically and empirically explored, biological systems with multiple resource dimensions (e.g. trophic, ecological) are less well understood. Yet, such systems may provide an alternative to the classical theory of stable evolutionary coexistence of generalist and specialist species on a single resource dimension. We explore such systems and the potential trade-offs between different resource dimensions in clownfishes. All species of this iconic clade are obligate mutualists with sea anemones yet show interspecific variation in anemone host specificity. Moreover, clownfishes developed variable environmental specialization across their distribution. In this study, we test for the existence of a relationship between host-specificity (number of anemones associated with a clownfish species) and environmental-specificity (expressed as the size of the ecological niche breadth across climatic gradients). We find a negative correlation between host range and environmental specificities in temperature, salinity and pH, probably indicating a trade-off between both types of specialization forcing species to specialize only in a single direction. Trade-offs in a multi-dimensional resource space could be a novel way of explaining the coexistence of generalist and specialists. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Host specialist clownfishes are environmental niche generalists

    PubMed Central

    Litsios, Glenn; Kostikova, Anna; Salamin, Nicolas

    2014-01-01

    Why generalist and specialist species coexist in nature is a question that has interested evolutionary biologists for a long time. While the coexistence of specialists and generalists exploiting resources on a single ecological dimension has been theoretically and empirically explored, biological systems with multiple resource dimensions (e.g. trophic, ecological) are less well understood. Yet, such systems may provide an alternative to the classical theory of stable evolutionary coexistence of generalist and specialist species on a single resource dimension. We explore such systems and the potential trade-offs between different resource dimensions in clownfishes. All species of this iconic clade are obligate mutualists with sea anemones yet show interspecific variation in anemone host specificity. Moreover, clownfishes developed variable environmental specialization across their distribution. In this study, we test for the existence of a relationship between host-specificity (number of anemones associated with a clownfish species) and environmental-specificity (expressed as the size of the ecological niche breadth across climatic gradients). We find a negative correlation between host range and environmental specificities in temperature, salinity and pH, probably indicating a trade-off between both types of specialization forcing species to specialize only in a single direction. Trade-offs in a multi-dimensional resource space could be a novel way of explaining the coexistence of generalist and specialists. PMID:25274370

  7. Niche players

    PubMed Central

    Seandel, Marco; Falciatori, Ilaria; Shmelkov, Sergey V.; Kim, Jiyeon; James, Daylon; Rafii, Shahin

    2010-01-01

    The undifferentiated spermatogonia of adult mouse testes are composed of both true stem cells and committed progenitors. It is unclear what normally prevents these adult germ cells from manifesting multipotency. The critical elements of the spermatogonial stem cell niche, while poorly understood, are thought to be composed of Sertoli cells with several other somatic cell types in close proximity. We recently discovered a novel orphan G-protein coupled receptor (GPR125) that is restricted to undifferentiated spermatogonia within the testis. GPR125 expression was maintained when the progenitor cells were extracted from the in vivo niche and propagated under growth conditions that recapitulate key elements of the niche. Such conditions preserved the ability of the cells to generate multipotent derivatives, known as multipotent adult spermatogonial derived progenitor cells (MASCs). Upon differentiation, the latter produced a variety tissues including functional endothelium, illustrating the potential applications of such cells. Thus, GPR125 represents a novel target for purifying adult stem and progenitors from tissues, with the goal of developing autologous multipotent cell lines. PMID:18256534

  8. How do habitat filtering and niche conservatism affect community composition at different taxonomic resolutions?

    PubMed

    Munoz, François; Ramesh, B R; Couteron, Pierre

    2014-08-01

    Understanding how local species assembly depends on the regional biogeographic and environmental context is a challenging task in community ecology. In spatially implicit neutral models, a single immigration parameter, I(k), represents the flux of immigrants from a regional pool that compete with local offspring for establishment in communities. This flux counterbalances the effect of local stochastic extinctions to maintain local species diversity. If some species within the regional pool are not adapted to the local environment (habitat filtering), the migrant flux is reduced beyond that of the neutral model, such that habitat filtering influences the value of I(k) in non-neutral situations. Here, we propose a novel model in which immigrants from the regional pool are filtered according to their habitat preferences and the local environment, while taxa potentially retain habitat preferences from their ancestors (niche conservatism). Using both analytical reasoning and simulations, we demonstrate that I(k) is expected to be constant when estimated based on the community composition at several taxonomic levels, not only under neutral assumptions, but also when habitat filtering occurs, unless there is substantial niche conservatism. In the latter case, I(k) is expected to decrease when estimated based on the composition at species to genus and family levels, thus allowing a signature of niche conservatism to be detected by simply comparing I(k) estimates across taxonomic levels. We applied this approach to three rain forest data sets from South India and Central America and found no significant signature of niche conservatism when I(k) was compared across taxonomic levels, except at the family level in South India. We further observed more limited immigration in South Indian forests, supporting the hypothesis of a greater impact of habitat filtering and heterogeneity there than in Central America. Our results highlight the relevance of studying variations of I

  9. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    PubMed

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  10. Adaptive Genetic Divergence along Narrow Environmental Gradients in Four Stream Insects

    PubMed Central

    Watanabe, Kozo; Kazama, So; Omura, Tatsuo; Monaghan, Michael T.

    2014-01-01

    A central question linking ecology with evolutionary biology is how environmental heterogeneity can drive adaptive genetic divergence among populations. We examined adaptive divergence of four stream insects from six adjacent catchments in Japan by combining field measures of habitat and resource components with genome scans of non-neutral Amplified Fragment Length Polymorphism (AFLP) loci. Neutral genetic variation was used to measure gene flow and non-neutral genetic variation was used to test for adaptive divergence. We identified the environmental characteristics contributing to divergence by comparing genetic distances at non-neutral loci between sites with Euclidean distances for each of 15 environmental variables. Comparisons were made using partial Mantel tests to control for geographic distance. In all four species, we found strong evidence for non-neutral divergence along environmental gradients at between 6 and 21 loci per species. The relative contribution of these environmental variables to each species' ecological niche was quantified as the specialization index, S, based on ecological data. In each species, the variable most significantly correlated with genetic distance at non-neutral loci was the same variable along which each species was most narrowly distributed (i.e., highest S). These were gradients of elevation (two species), chlorophyll-a, and ammonia-nitrogen. This adaptive divergence occurred in the face of ongoing gene flow (F st = 0.01–0.04), indicating that selection was strong enough to overcome homogenization at the landscape scale. Our results suggest that adaptive divergence is pronounced, occurs along different environmental gradients for different species, and may consistently occur along the narrowest components of species' niche. PMID:24681871

  11. Allometry and Ecology of the Bilaterian Gut Microbiome

    PubMed Central

    Sherrill-Mix, Scott; McCormick, Kevin; Lauder, Abigail; Bailey, Aubrey; Zimmerman, Laurie; Li, Yingying; Django, Jean-Bosco N.; Bertolani, Paco; Colin, Christelle; Hart, John A.; Hart, Terese B.; Georgiev, Alexander V.; Sanz, Crickette M.; Morgan, David B.; Atencia, Rebeca; Cox, Debby; Muller, Martin N.; Sommer, Volker; Piel, Alexander K.; Stewart, Fiona A.; Speede, Sheri; Roman, Joe; Wu, Gary; Taylor, Josh; Bohm, Rudolf; Rose, Heather M.; Carlson, John; Mjungu, Deus; Schmidt, Paul; Gaughan, Celeste; Bushman, Joyslin I.; Schmidt, Ella; Bittinger, Kyle; Collman, Ronald G.; Hahn, Beatrice H.

    2018-01-01

    ABSTRACT Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals (Bilateria) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction. PMID:29588401

  12. Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow

    PubMed Central

    De La Torre, Amanda R; Roberts, David R; Aitken, Sally N

    2014-01-01

    The maintenance of species boundaries despite interspecific gene flow has been a continuous source of interest in evolutionary biology. Many hybridizing species have porous genomes with regions impermeable to introgression, conferring reproductive barriers between species. We used ecological niche modelling to study the glacial and postglacial recolonization patterns between the widely hybridizing spruce species Picea glauca and P. engelmannii in western North America. Genome-wide estimates of admixture based on a panel of 311 candidate gene single nucleotide polymorphisms (SNP) from 290 genes were used to assess levels of admixture and introgression and to identify loci putatively involved in adaptive differences or reproductive barriers between species. Our palaeoclimatic modelling suggests that these two closely related species have a long history of hybridization and introgression, dating to at least 21 000 years ago, yet species integrity is maintained by a combination of strong environmental selection and reduced current interspecific gene flow. Twenty loci showed evidence of divergent selection, including six loci that were both Fst outliers and associated with climatic gradients, and fourteen loci that were either outliers or showed associations with climate. These included genes responsible for carbohydrate metabolism, signal transduction and transcription factors. PMID:24597663

  13. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas.

    PubMed

    Olson, R J; Young, J W; Ménard, F; Potier, M; Allain, V; Goñi, N; Logan, J M; Galván-Magaña, F

    Tunas are highly specialized predators that have evolved numerous adaptations for a lifestyle that requires large amounts of energy consumption. Here we review our understanding of the bioenergetics and feeding dynamics of tunas on a global scale, with an emphasis on yellowfin, bigeye, skipjack, albacore, and Atlantic bluefin tunas. Food consumption balances bioenergetics expenditures for respiration, growth (including gonad production), specific dynamic action, egestion, and excretion. Tunas feed across the micronekton and some large zooplankton. Some tunas appear to time their life history to take advantage of ephemeral aggregations of crustacean, fish, and molluscan prey. Ontogenetic and spatial diet differences are substantial, and significant interdecadal changes in prey composition have been observed. Diet shifts from larger to smaller prey taxa highlight ecosystem-wide changes in prey availability and diversity and provide implications for changing bioenergetics requirements into the future. Where tunas overlap, we show evidence of niche separation between them; resources are divided largely by differences in diet percentages and size ranges of prey taxa. The lack of long-term data limits the ability to predict impacts of climate change on tuna feeding behaviour. We note the need for systematic collection of feeding data as part of routine monitoring of these species, and we highlight the advantages of using biochemical techniques for broad-scale analyses of trophic relations. We support the continued development of ecosystem models, which all too often lack the regional-specific trophic data needed to adequately investigate climate and fishing impacts. © 2016 Elsevier Ltd. All rights reserved.

  14. Particularity "and" Integration: Understanding of Ecocultural Niches and Their Implication for Fostering Diversity within Christian Colleges and Universities

    ERIC Educational Resources Information Center

    Reyes, J. Roberto

    2013-01-01

    This paper takes a theoretical look at the relationship between ethnic identity formation, in-group ethnic affiliations, and academic achievement for students of color. To this end, the study examines the process of ethnic identity development and considers how human ecology theory, in particularly the concept of "ecocultural niches,"…

  15. Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model

    NASA Astrophysics Data System (ADS)

    Advani, Madhu; Bunin, Guy; Mehta, Pankaj

    2018-03-01

    A central question in ecology is to understand the ecological processes that shape community structure. Niche-based theories have emphasized the important role played by competition for maintaining species diversity. Many of these insights have been derived using MacArthur’s consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM has focused on small ecosystems with a few species and resources. However theoretical insights derived from small ecosystems many not scale up to large ecosystems with many resources and species because large systems with many interacting components often display new emergent behaviors that cannot be understood or deduced from analyzing smaller systems. To address these shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when both the number of species and the number of resources is large. Unlike previous work in this limit, our theory addresses resource dynamics and resource depletion and demonstrates that species generically and consistently perturb their environments and significantly modify available ecological niches. We show how our cavity approach naturally generalizes niche theory to large ecosystems by accounting for the effect of collective phenomena on species invasion and ecological stability. Our theory suggests that such phenomena are a generic feature of large, natural ecosystems and must be taken into account when analyzing and interpreting community structure. It also highlights the important role that statistical-physics inspired approaches can play in furthering our understanding of ecology.

  16. GIS-based niche modeling for mapping species' habitats

    USGS Publications Warehouse

    Rotenberry, J.T.; Preston, K.L.; Knick, S.

    2006-01-01

    Ecological a??niche modelinga?? using presence-only locality data and large-scale environmental variables provides a powerful tool for identifying and mapping suitable habitat for species over large spatial extents. We describe a niche modeling approach that identifies a minimum (rather than an optimum) set of basic habitat requirements for a species, based on the assumption that constant environmental relationships in a species' distribution (i.e., variables that maintain a consistent value where the species occurs) are most likely to be associated with limiting factors. Environmental variables that take on a wide range of values where a species occurs are less informative because they do not limit a species' distribution, at least over the range of variation sampled. This approach is operationalized by partitioning Mahalanobis D2 (standardized difference between values of a set of environmental variables for any point and mean values for those same variables calculated from all points at which a species was detected) into independent components. The smallest of these components represents the linear combination of variables with minimum variance; increasingly larger components represent larger variances and are increasingly less limiting. We illustrate this approach using the California Gnatcatcher (Polioptila californica Brewster) and provide SAS code to implement it.

  17. Deep history impacts present-day ecology and biodiversity

    PubMed Central

    Vitt, Laurie J.; Pianka, Eric R.

    2005-01-01

    Lizards and snakes putatively arose between the early Jurassic and late Triassic; they diversified worldwide and now occupy many different ecological niches, making them ideal for testing theories on the origin of ecological traits. We propose and test the “deep history hypothesis,” which claims that differences in ecological traits among species arose early in evolutionary history of major clades, and that present-day assemblages are structured largely because of ancient, preexisting differences. We combine phylogenetic data with ecological data collected over nearly 40 years to reconstruct the evolution of dietary shifts in squamate reptiles. Data on diets of 184 lizard species in 12 families from 4 continents reveal significant dietary shifts at 6 major divergence points, reducing variation by 79.8%. The most striking dietary divergence (27.6%) occurred in the late Triassic, when Iguania and Scleroglossa split. These two clades occupy different regions of dietary niche space. Acquisition of chemical prey discrimination, jaw prehension, and wide foraging provided scleroglossans access to sedentary and hidden prey that are unavailable to iguanians. This cladogenic event may have profoundly influenced subsequent evolutionary history and diversification. We suggest the hypothesis that ancient events in squamate cladogenesis, rather than present-day competition, caused dietary shifts in major clades such that some lizard clades gained access to new resources, which in turn led to much of the biodiversity observed today. PMID:15867150

  18. Metagenomic Approaches to Assess Bacteriophages in Various Environmental Niches

    PubMed Central

    Hayes, Stephen; Mahony, Jennifer; Nauta, Arjen; van Sinderen, Douwe

    2017-01-01

    Bacteriophages are ubiquitous and numerous parasites of bacteria and play a critical evolutionary role in virtually every ecosystem, yet our understanding of the extent of the diversity and role of phages remains inadequate for many ecological niches, particularly in cases in which the host is unculturable. During the past 15 years, the emergence of the field of viral metagenomics has drastically enhanced our ability to analyse the so-called viral ‘dark matter’ of the biosphere. Here, we review the evolution of viral metagenomic methodologies, as well as providing an overview of some of the most significant applications and findings in this field of research. PMID:28538703

  19. Ecological impact of the end-Cretaceous extinction on lamniform sharks.

    PubMed

    Belben, Rachel A; Underwood, Charlie J; Johanson, Zerina; Twitchett, Richard J

    2017-01-01

    Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those 'natural experiments' may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes.

  20. Ecological impact of the end-Cretaceous extinction on lamniform sharks

    PubMed Central

    Belben, Rachel A.; Underwood, Charlie J.; Johanson, Zerina; Twitchett, Richard J.

    2017-01-01

    Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those ‘natural experiments’ may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes. PMID:28591222

  1. Particles, environments, and possible ecologies in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Salpeter, E. E.

    1976-01-01

    The possible existence of indigenous Jovian organisms is investigated by characterizing the relevant physical environment of Jupiter, discussing the chromophores responsible for the observed coloration of the planet, and analyzing some permissible ecological niches of hypothetical organisms. Values of the eddy diffusion coefficent are estimated separately for the convective troposphere and the more stable mesosphere, and equilibrium condensation is studied for compounds containing Na, Cl, or both. The photoproduction of chromophores and nonequilibrium organic molecules is analyzed, and the motion of hypothetical organisms is examined along with the diffusion of metabolites and the consequent growth of organisms. Four kinds of organisms are considered: primary photosynthetic autotrophs ('sinkers'), larger autotrophs or heterotrophs that actively maintain their pressure level ('floaters'), organisms that seek out others ('hunters'), and organisms that live at almost pyrolytic depths ('scavengers'). It is concluded that ecological niches for sinkers, floaters, and hunters appear to exist in the Jovian atmosphere.

  2. Niche Overlap of Congeneric Invaders Supports a Single-Species Hypothesis and Provides Insight into Future Invasion Risk: Implications for Global Management of the Bactrocera dorsalis Complex

    PubMed Central

    Hill, Matthew P.; Terblanche, John S.

    2014-01-01

    Background The invasive fruit fly, Bactrocera invadens, has expanded its range rapidly over the past 10 years. Here we aimed to determine if the recent range expansion of Bactrocera invadens into southern Africa can be better understood through niche exploration tools, ecological niche models (ENMs), and through incorporating information about Bactrocera dorsalis s.s., a putative conspecific species from Asia. We test for niche overlap of environmental variables between Bactrocera invadens and Bactrocera dorsalis s.s. as well as two other putative conspecific species, Bactrocera philippinensis and B. papayae. We examine overlap and similarity in the geographical expression of each species’ realised niche through reciprocal distribution models between Africa and Asia. We explore different geographical backgrounds, environmental variables and model complexity with multiple and single Bactrocera species hypotheses in an attempt to predict the recent range expansion of B. invadens into northern parts of South Africa. Principal Findings Bactrocera invadens has a high degree of niche overlap with B. dorsalis s.s. (and B. philippinensis and B. papayae). Ecological niche models built for Bactrocera dorsalis s.s. have high transferability to describe the range of B. invadens, and B. invadens is able to project to the core range of B. dorsalis s.s. The ENMs of both Bactrocera dorsalis and B. dorsalis combined with B. philipenesis and B. papayae have significantly higher predictive ability to capture the distribution points in South Africa than for B. invadens alone. Conclusions/Significance Consistent with other studies proposing these Bactrocera species as conspecific, niche similarity and overlap between these species is high. Considering these other Bactrocera dorsalis complex species simultaneously better describes the range expansion and invasion potential of B. invadens in South Africa. We suggest that these species should be considered the same–at least

  3. Using Intact Iron Microbial Mats to Gain Insights Into Mat Ecology and Geochemical Niche at the Microbial Scale

    NASA Astrophysics Data System (ADS)

    Glazer, B. T.; Chan, C. S. Y.; Mcallister, S.; Leavitt, A.; Emerson, D.

    2015-12-01

    Microbial mats are formed by microorganisms working in coordinated symbiosis, often benefitting the community by controlling the local geochemical or physical environment. Thus, the ecology of the mat depends on the individual roles of microbes organized into niches within a larger architecture. Chemolithotrophic Fe-oxidizing bacteria (FeOB) form distinctive Fe oxyhydroxide biominerals which constitute the building blocks of the mat. However, the majority of our progress has been in understanding the overall community structure. Understanding the physical mat structure on the microbial scale is important to unraveling FeOB evolution, the biogeochemistry and ecology of Fe-rich habitats, and ultimately interpreting FeOB biosignatures in the rock record. Mats in freshwater and marine environments contain strikingly similar biomineral morphologies, yet they are formed by phylogenetically distinct microorganisms. This suggests that the overall architecture and underlying genetics of freshwater and marine mats has evolved to serve particular roles specific to Fe oxidation. Thus, we conducted a comparative study of Fe seep freshwater mats and marine hydrothermal mats. We have developed a new approach to sampling Fe mats in order to preserve the delicate structure for analysis by confocal and scanning electron microscopy. Our analyses of these intact mats show that freshwater and marine mats are similarly initiated by a single type of structure-former. These ecosystem engineers form either a hollow sheath or a twisted stalk biomineral during mat formation, with a highly directional structure. These microbes appear to be the vanguard organisms that anchor the community within oxygen/Fe(II) gradients, further allowing for community succession in the mat interior as evidenced by other mineralized morphologies. Patterns in biomineral thickness and directionality were indicative of redox gradients and temporal changes in the geochemical environment. These observations show that

  4. On the dangers of model complexity without ecological justification in species distribution modeling

    Treesearch

    David M. Bell; Daniel R. Schlaepfer

    2016-01-01

    Although biogeographic patterns are the product of complex ecological processes, the increasing com-plexity of correlative species distribution models (SDMs) is not always motivated by ecological theory,but by model fit. The validity of model projections, such as shifts in a species’ climatic niche, becomesquestionable particularly during extrapolations, such as for...

  5. Realized niche shift during a global biological invasion

    PubMed Central

    Tingley, Reid; Vallinoto, Marcelo; Sequeira, Fernando; Kearney, Michael R.

    2014-01-01

    Accurate forecasts of biological invasions are crucial for managing invasion risk but are hampered by niche shifts resulting from evolved environmental tolerances (fundamental niche shifts) or the presence of novel biotic and abiotic conditions in the invaded range (realized niche shifts). Distinguishing between these kinds of niche shifts is impossible with traditional, correlative approaches to invasion forecasts, which exclusively consider the realized niche. Here we overcome this challenge by combining a physiologically mechanistic model of the fundamental niche with correlative models based on the realized niche to study the global invasion of the cane toad Rhinella marina. We find strong evidence that the success of R. marina in Australia reflects a shift in the species’ realized niche, as opposed to evolutionary shifts in range-limiting traits. Our results demonstrate that R. marina does not fill its fundamental niche in its native South American range and that areas of niche unfilling coincide with the presence of a closely related species with which R. marina hybridizes. Conversely, in Australia, where coevolved taxa are absent, R. marina largely fills its fundamental niche in areas behind the invasion front. The general approach taken here of contrasting fundamental and realized niche models provides key insights into the role of biotic interactions in shaping range limits and can inform effective management strategies not only for invasive species but also for assisted colonization under climate change. PMID:24982155

  6. Macroevolutionary diversification with limited niche disparity in a species-rich lineage of cold-climate lizards.

    PubMed

    Reaney, Ashley M; Saldarriaga-Córdoba, Mónica; Pincheira-Donoso, Daniel

    2018-02-06

    Life diversifies via adaptive radiation when natural selection drives the evolution of ecologically distinct species mediated by their access to novel niche space, or via non-adaptive radiation when new species diversify while retaining ancestral niches. However, while cases of adaptive radiation are widely documented, examples of non-adaptively radiating lineages remain rarely observed. A prolific cold-climate lizard radiation from South America (Phymaturus), sister to a hyper-diverse adaptive radiation (Liolaemus), has extensively diversified phylogenetically and geographically, but with exceptionally minimal ecological and life-history diversification. This lineage, therefore, may offer unique opportunities to investigate the non-adaptive basis of diversification, and in combination with Liolaemus, to cover the whole spectrum of modes of diversification predicted by theory, from adaptive to non-adaptive. Using phylogenetic macroevolutionary modelling performed on a newly created 58-species molecular tree, we establish the tempo and mode of diversification in the Phymaturus radiation. Lineage accumulation in Phymaturus opposes a density-dependent (or 'niche-filling') process of diversification. Concurrently, we found that body size diversification is better described by an Ornstein-Uhlenbeck evolutionary model, suggesting stabilizing selection as the mechanism underlying niche conservatism (i.e., maintaining two fundamental size peaks), and which has predominantly evolved around two major adaptive peaks on a 'Simpsonian' adaptive landscape. Lineage diversification of the Phymaturus genus does not conform to an adaptive radiation, as it is characterised by a constant rate of species accumulation during the clade's history. Their strict habitat requirements (rocky outcrops), predominantly invariant herbivory, and especially the constant viviparous reproduction across species have likely limited their opportunities for adaptive diversifications throughout novel

  7. Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    PubMed Central

    Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian

    2014-01-01

    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252

  8. A variational approach to niche construction

    PubMed Central

    Ramstead, Maxwell J. D.; Veissière, Samuel P. L.; Campbell, John O.; Friston, Karl J.

    2018-01-01

    In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields. PMID:29643221

  9. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation.

    PubMed

    Ushiki, Norisuke; Jinno, Masaru; Fujitani, Hirotsugu; Suenaga, Toshikazu; Terada, Akihiko; Tsuneda, Satoshi

    2017-05-01

    Nitrite oxidation is an aerobic process of the nitrogen cycle in natural ecosystems, and is performed by nitrite-oxidizing bacteria (NOB). Also, nitrite oxidation is a rate-limiting step of nitrogen removal in wastewater treatment plants (WWTPs). Although Nitrospira is known as dominant NOB in WWTPs, information on their physiological properties and kinetic parameters is limited. Here, we report the kinetic parameters and inhibition of nitrite oxidation by free ammonia in pure cultures of Nitrospira sp. strain ND1 and Nitrospira japonica strain NJ1, which were previously isolated from activated sludge in a WWTP. The maximum nitrite uptake rate ( [Formula: see text] ) and the half-saturation constant for nitrite uptake ( [Formula: see text] ) of strains ND1 and NJ1 were 45 ± 7 and 31 ± 5 (μmol NO 2 - /mg protein/h), and 6 ± 1 and 10 ± 2 (μM NO 2 - ), respectively. The [Formula: see text] and [Formula: see text] of two strains indicated that they adapt to low-nitrite-concentration environments like activated sludge. The half-saturation constants for oxygen uptake ( [Formula: see text] ) of the two strains were 4.0±2.5 and 2.6±1.1 (μM O 2 ), respectively. The [Formula: see text] values of the two strains were lower than those of other NOB, suggesting that Nitrospira in activated sludge could oxidize nitrite in the hypoxic environments often found in the interiors of biofilms and flocs. The inhibition thresholds of the two strains by free ammonia were 0.85 and 4.3 (mg-NH 3 l -1 ), respectively. Comparing the physiological properties of the two strains, we suggest that tolerance for free ammonia determines competition and partitioning into ecological niches among Nitrospira populations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Allometry and Ecology of the Bilaterian Gut Microbiome.

    PubMed

    Sherrill-Mix, Scott; McCormick, Kevin; Lauder, Abigail; Bailey, Aubrey; Zimmerman, Laurie; Li, Yingying; Django, Jean-Bosco N; Bertolani, Paco; Colin, Christelle; Hart, John A; Hart, Terese B; Georgiev, Alexander V; Sanz, Crickette M; Morgan, David B; Atencia, Rebeca; Cox, Debby; Muller, Martin N; Sommer, Volker; Piel, Alexander K; Stewart, Fiona A; Speede, Sheri; Roman, Joe; Wu, Gary; Taylor, Josh; Bohm, Rudolf; Rose, Heather M; Carlson, John; Mjungu, Deus; Schmidt, Paul; Gaughan, Celeste; Bushman, Joyslin I; Schmidt, Ella; Bittinger, Kyle; Collman, Ronald G; Hahn, Beatrice H; Bushman, Frederic D

    2018-03-27

    Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals ( Bilateria ) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction. IMPORTANCE The intestinal microbiome of animals is essential for health, contributing to digestion of foods, proper immune development, inhibition of pathogen colonization, and catabolism of xenobiotic

  11. A variational approach to niche construction.

    PubMed

    Constant, Axel; Ramstead, Maxwell J D; Veissière, Samuel P L; Campbell, John O; Friston, Karl J

    2018-04-01

    In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields. © 2018 The Authors.

  12. Molecular data and ecological niche modelling reveal the Pleistocene history of a semi-aquatic bug (Microvelia douglasi douglasi) in East Asia.

    PubMed

    Ye, Zhen; Zhu, Gengping; Chen, Pingping; Zhang, Danli; Bu, Wenjun

    2014-06-01

    This study investigated the Pleistocene history of a semi-aquatic bug, Microvelia douglasi douglasi Scott, 1874 (Hemiptera: Veliidae) in East Asia. We used M. douglasi douglasi as a model species to explore the effects of historical climatic fluctuations on montane semi-aquatic invertebrate species. Two hypotheses were developed using ecological niche models (ENMs). First, we hypothesized that M. douglasi douglasi persisted in suitable habitats in southern Guizhou, southern Yunnan, Hainan, Taiwan and southeast China during the LIG. After that, the populations expanded (Hypothesis 1). As the spatial prediction in the LGM was significantly larger than in the LIG, we then hypothesized that the population expanded during the LIG to LGM transition (Hypothesis 2). We tested these hypotheses using mitochondrial data (COI+COII) and nuclear data (ITS1+5.8S+ITS2). Young lineages, relatively deep splits, lineage differentiation among mountain ranges in central, south and southwest China and high genetic diversities were observed in these suitable habitats. Evidence of mismatch distributions and neutrality tests indicate that a population expansion occurred in the late Pleistocene. The Bayesian skyline plot (BSP) revealed an unusual population expansion that likely happened during the cooling transition between LIG and LGM. The results of genetic data were mostly consistent with the spatial predictions from ENM, a finding that can profoundly improve phylogeographic research. The ecological requirements of M. douglasi douglasi, together with the geographical heterogeneity and climatic fluctuations of Pleistocene in East Asia, could have shaped this unusual demographic history. Our study contributes to our knowledge of semi-aquatic bug/invertebrate responses to Pleistocene climatic fluctuations in East Asia. © 2014 John Wiley & Sons Ltd.

  13. Complexity in models of cultural niche construction with selection and homophily.

    PubMed

    Creanza, Nicole; Feldman, Marcus W

    2014-07-22

    Niche construction is the process by which organisms can alter the ecological environment for themselves, their descendants, and other species. As a result of niche construction, differences in selection pressures may be inherited across generations. Homophily, the tendency of like phenotypes to mate or preferentially associate, influences the evolutionary dynamics of these systems. Here we develop a model that includes selection and homophily as independent culturally transmitted traits that influence the fitness and mate choice determined by another focal cultural trait. We study the joint dynamics of a focal set of beliefs, a behavior that can differentially influence the fitness of those with certain beliefs, and a preference for partnering based on similar beliefs. Cultural transmission, selection, and homophily interact to produce complex evolutionary dynamics, including oscillations, stable polymorphisms of all cultural phenotypes, and simultaneous stability of oscillation and fixation, which have not previously been observed in models of cultural evolution or gene-culture interactions. We discuss applications of this model to the interaction of beliefs and behaviors regarding education, contraception, and animal domestication.

  14. Ecological filtering by a dominant herb selects for shade tolerance in the tree seedling community of coastal dune forest.

    PubMed

    Tsvuura, Zivanai; Griffiths, Megan E; Gunton, Richard M; Franks, Peter J; Lawes, Michael J

    2010-12-01

    The regeneration niche is commonly partitioned along a gradient from shade-tolerant to shade-intolerant species to explain plant community assembly in forests. We examined the shade tolerance of tree seedlings in a subtropical coastal forest to determine whether the ecological filtering effect of a dominant, synchronously monocarpic herb (Isoglossa woodii) selects for species at either end of the light response continuum during the herb's vegetative and reproductive phases. Photosynthetic characteristics of seedlings of 20 common tree species and the herb were measured. Seedlings were grown in the greenhouse at 12-14% irradiance, and their light compensation points measured using an open-flow gas exchange system. The light compensation points for the tree species were low, falling within a narrow range from 2.1 ± 0.8 μmol m(-2) s(-1) in Celtis africana to 6.4 ± 0.7 μmol m(-2) s(-1) in Allophylus natalensis, indicating general shade tolerance, consistent with a high and narrow range of apparent quantum yield among species (0.078 ± 0.002 mol CO(2) mol(-1) photon). Rates of dark respiration were significantly lower in a generalist pioneer species (Acacia karroo) than in a forest pioneer (C. africana), or in late successional phase forest species. We argue that the general shade tolerance, and phenotypic clustering of shade tolerance, in many tree species from several families in this system, is a result of ecological filtering by the prevailing low light levels beneath the I. woodii understorey, which excludes most light-demanding species from the seedling community.

  15. Pathogen evolution and the immunological niche

    PubMed Central

    Cobey, Sarah

    2014-01-01

    Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible–infected–recovered (SIR) model. However, there is growing evidence that the complexity of many host–pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. PMID:25040161

  16. Intraspecific niche models for ponderosa pine (Pinus ponderosa) suggest potential variability in population-level response to climate change.

    PubMed

    Maguire, Kaitlin C; Shinneman, Douglas J; Potter, Kevin M; Hipkins, Valerie D

    2018-03-14

    Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently-available, geographically-widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently-devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results

  17. Intraspecific niche models for ponderosa pine (Pinus ponderosa) suggest potential variability in population-level response to climate change

    USGS Publications Warehouse

    Maguire, Kaitlin C.; Shinneman, Douglas; Potter, Kevin M.; Hipkins, Valerie D.

    2018-01-01

    Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently-available, geographically-widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently-devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results

  18. Plant colonization and survival along a hydrological gradient: demography and niche dynamics.

    PubMed

    Damgaard, Christian; Merlin, Amandine; Bonis, Anne

    2017-01-01

    Predicting the effect of a changing environment, e.g., caused by climate change, on realized niche dynamics, and consequently, biodiversity is a challenging scientific question that needs to be addressed. One promising approach is to use estimated demographic parameters for predicting plant abundance and occurrence probabilities. Using longitudinal pinpoint cover data sampled along a hydrological gradient in the Marais poitevin grasslands, France, the effect of the gradient on the demographic probabilities of colonization and survival was estimated. The estimated probabilities and calculated elasticities of survival and colonization covaried with the observed cover of the different species along the hydrological gradient. For example, the flooding tolerant grass A. stolonifera showed a positive response in both colonization and survival to flooding, and the hydrological gradient is clearly the most likely explanation for the occurrence pattern observed for A. stolonifera. The results suggest that knowledge on the processes of colonization and survival of the individual species along the hydrological gradient is sufficient for at least a qualitative understanding of species occurrences along the gradient. The results support the hypothesis that colonization has a predominant role for determining the ecological success along the hydrological gradient compared to survival. Importantly, the study suggests that it may be possible to predict the realized niche of different species from demographic studies. This is encouraging for the important endeavor of predicting realized niche dynamics.

  19. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).

    PubMed

    Schoville, Sean D; Slatyer, Rachel A; Bergdahl, James C; Valdez, Glenda A

    2015-07-01

    For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity. Copyright © 2015 Elsevier Ltd. All rights

  20. The United States pork niche market phenomenon.

    PubMed

    Honeyman, M S; Pirog, R S; Huber, G H; Lammers, P J; Hermann, J R

    2006-08-01

    After the broad industrialization of the US pork industry, there has been a development of niche markets for export and domestic pork; that is, there is a pork niche market phenomenon. The US pork niche market phenomenon is characterized, and 2 of the major markets are explained in detail. With the Midwest's tradition of a diversified family-based agriculture and record low hog prices of the late 1990s, the conditions were conducive for this phenomenon to develop. Pork niche markets utilize various sales methods including Internet sales, local abattoir sales, direct marketing, farmer networks, and targeting to organized groups. In 2003, there were approximately 35 to 40 active pork niche marketing efforts in Iowa. The Berkshire breed is an example of a swine breed that has had a recent resurgence because of niche markets. Berkshire pork is known for tenderness and excellent quality. Berkshire registrations have increased 4-fold in the last 10 yr. One of the larger niche marketers of "natural pork" is Niman Ranch Pork, which has more than 400 farmer-producers and processes about 2,500 pigs weekly. Many US consumers of pork are interested in issues concerning the environment, food safety, pig welfare, and pig farm ownership and structure. These consumers may be willing to pay more for pork from farmers who are also concerned about these issues. Small- and medium-sized swine farmers are active in pork niche markets. Niche markets claim product differentiation by superior or unique product quality and social attributes. Quality attributes include certain swine breeds, and meat quality, freshness, taste or flavor, and tenderness. Social or credence attributes often are claimed and include freedom from antibiotics and growth promotants; local family farm production; natural, organic, outdoor, or bedded rearing; humane rearing; known origin; environmentally friendly production; and the absence of animal by-products in the feed. Niche pork markets and alternative swine

  1. [Population aspects of sexual dimorphism in guild of the Mustelidae: Mustela lutreola, Neovison vison, Mustela putorius, Martes martes as an example].

    PubMed

    Korablev, M P; Korablev, N P; Korablev, P N

    2013-01-01

    Size sexual dimorphism was investigated on 695 skulls of four Mustelidae species. By extent of increasing of differences between sexes the species are placed in following order: European pine marten (Martes martes), European mink (Mustela lutreola), American mink (Neovison vison), and European polecat (Mustela putorius). Extent of the dimorphism characterizes ecological plasticity of the species and is population characteristic. It is shown that M. martes takes specific and relatively narrow ecological niche of forest ecosystems, entering into weak competitive relationships with smaller Mustelidae species. The level of sexual dimorphism of M. lutreola, N. vison and M. putorius reflects intensity of its interspecific relationships within study area. High level of sexual dimorphism of M. putorius is determined by further divergence of ecological niches of males and females, and also appears to be compensatory mechanism reducing consequences of hardened environmental requirements.

  2. Neutral biogeography and the evolution of climatic niches.

    PubMed

    Boucher, Florian C; Thuiller, Wilfried; Davies, T Jonathan; Lavergne, Sébastien

    2014-05-01

    Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than from adaptive scenarios. We developed a model inspired by neutral biodiversity theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sampled the climatic niches of species according to their geographic position and showed that even when species evolve independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time.

  3. Neutral biogeography and the evolution of climatic niches

    PubMed Central

    Boucher, Florian C.; Thuiller, Wilfried; Davies, T. Jonathan; Lavergne, Sébastien

    2014-01-01

    Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than adaptive scenarios. We develop a model inspired by Neutral Biodiversity Theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sample the climatic niches of species according to their geographic position and show that even when species evolved independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism, but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time. PMID:24739191

  4. Reconstructing the Mexican Tropical Dry Forests via an Autoecological Niche Approach: Reconsidering the Ecosystem Boundaries

    PubMed Central

    Prieto-Torres, David A.; Rojas-Soto, Octavio R.

    2016-01-01

    We used Ecological Niche Modeling (ENM) of individual species of two taxonomic groups (plants and birds) in order to reconstruct the climatic distribution of Tropical Dry Forests (TDFs) in Mexico and to analyze their boundaries with other terrestrial ecosystems. The reconstruction for TDFs’ distribution was analyzed considering the prediction and omission errors based upon the combination of species, obtained from the overlap of individual models (only plants, only birds, and all species combined). Two verifications were used: a primary vegetation map and 100 independent TDFs localities. We performed a Principal Component (PCA) and Discriminant Analysis (DA) to evaluate the variation in the environmental variables and ecological overlap among ecosystems. The modeling strategies showed differences in the ecological patterns and prediction areas, where the “all species combined” model (with a threshold of ≥10 species) was the best strategy to use in the TDFs reconstruction. We observed a concordance of 78% with the primary vegetation map and a prediction of 98% of independent locality records. Although PCA and DA tests explained 75.78% and 97.9% of variance observed, respectively, we observed an important overlap among the TDFs with other adjacent ecosystems, confirming the existence of transition zones among them. We successfully modeled the distribution of Mexican TDFs using a number of bioclimatic variables and co-distributed species. This autoecological niche approach suggests the necessity of rethinking the delimitations of ecosystems based on the recognition of transition zones among them in order to understand the real nature of communities and association patterns of species. PMID:26968031

  5. Plant stem cell niches.

    PubMed

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  6. Ecologic and Geographic Distribution of Filovirus Disease

    PubMed Central

    Bauer, John T.; Mills, James N.

    2004-01-01

    We used ecologic niche modeling of outbreaks and sporadic cases of filovirus-associated hemorrhagic fever (HF) to provide a large-scale perspective on the geographic and ecologic distributions of Ebola and Marburg viruses. We predicted that filovirus would occur across the Afrotropics: Ebola HF in the humid rain forests of central and western Africa, and Marburg HF in the drier and more open areas of central and eastern Africa. Most of the predicted geographic extent of Ebola HF has been observed; Marburg HF has the potential to occur farther south and east. Ecologic conditions appropriate for Ebola HF are also present in Southeast Asia and the Philippines, where Ebola Reston is hypothesized to be distributed. This first large-scale ecologic analysis provides a framework for a more informed search for taxa that could constitute the natural reservoir for this virus family. PMID:15078595

  7. Ecological opportunity and the evolution of habitat preferences in an arid-zone bird: implications for speciation in a climate-modified landscape

    PubMed Central

    Norman, Janette A.; Christidis, Les

    2016-01-01

    Bioclimatic models are widely used to investigate the impacts of climate change on species distributions. Range shifts are expected to occur as species track their current climate niche yet the potential for exploitation of new ecological opportunities that may arise as ecosystems and communities remodel is rarely considered. Here we show that grasswrens of the Amytornis textilis-modestus complex responded to new ecological opportunities in Australia’s arid biome through shifts in habitat preference following the development of chenopod shrublands during the late Plio-Pleistocene. We find evidence of spatially explicit responses to climatically driven landscape changes including changes in niche width and patterns of population growth. Conservation of structural and functional aspects of the ancestral niche appear to have facilitated recent habitat shifts, while demographic responses to late Pleistocene climate change provide evidence for the greater resilience of populations inhabiting the recently evolved chenopod shrubland communities. Similar responses could occur under future climate change in species exposed to novel ecological conditions, or those already occupying spatially heterogeneous landscapes. Mechanistic models that consider structural and functional aspects of the niche along with regional hydro-dynamics may be better predictors of future climate responses in Australia’s arid biome than bioclimatic models alone. PMID:26787111

  8. Aedes albopictus and Aedes japonicus - two invasive mosquito species with different temperature niches in Europe.

    PubMed

    Cunze, Sarah; Koch, Lisa K; Kochmann, Judith; Klimpel, Sven

    2016-11-04

    Aedes albopictus and Ae. japonicus are two of the most widespread invasive mosquito species that have recently become established in western Europe. Both species are associated with the transmission of a number of serious diseases and are projected to continue their spread in Europe. In the present study, we modelled the habitat suitability for both species under current and future climatic conditions by means of an Ensemble forecasting approach. We additionally compared the modelled MAXENT niches of Ae. albopictus and Ae. japonicus regarding temperature and precipitation requirements. Both species were modelled to find suitable habitat conditions in distinct areas within Europe: Ae. albopictus within the Mediterranean regions in southern Europe, Ae. japonicus within the more temperate regions of central Europe. Only in few regions, suitable habitat conditions were projected to overlap for both species. Whereas Ae. albopictus is projected to be generally promoted by climate change in Europe, the area modelled to be climatically suitable for Ae. japonicus is projected to decrease under climate change. This projection of range reduction under climate change relies on the assumption that Ae. japonicus is not able to adapt to warmer climatic conditions. The modelled MAXENT temperature niches of Ae. japonicus were found to be narrower with an optimum at lower temperatures compared to the niches of Ae. albopictus. Species distribution models identifying areas with high habitat suitability can help improving monitoring programmes for invasive species currently in place. However, as mosquito species are known to be able to adapt to new environmental conditions within the invasion range quickly, niche evolution of invasive mosquito species should be closely followed upon in future studies.

  9. The lepidoptera as predictable communities of herbivores: a test of niche assembly using the moth communities of Morgan-Monroe State Forest

    Treesearch

    Keith S. Summerville; Michael R. Saunders; Jamie L. Lane

    2013-01-01

    The response of forest insect communities to disturbances such as timber harvest likely will depend on the underlying ecological assembly rules that affect community structure. Two competing hypotheses are niche assembly, which seeks to demonstrate significant species-environment correlations, and dispersal-assembly, which seeks to demonstrate spatial autocorrelation...

  10. Hybridization at an ecotone: ecological and genetic barriers between three Iberian vipers.

    PubMed

    Tarroso, Pedro; Pereira, Ricardo J; Martínez-Freiría, Fernando; Godinho, Raquel; Brito, José C

    2014-03-01

    The formation of stable genetic boundaries between emerging species is often diagnosed by reduced hybrid fitness relative to parental taxa. This reduced fitness can arise from endogenous and/or exogenous barriers to gene flow. Although detecting exogenous barriers in nature is difficult, we can estimate the role of ecological divergence in driving species boundaries by integrating molecular and ecological niche modelling tools. Here, we focus on a three-way secondary contact zone between three viper species (Vipera aspis, V. latastei and V. seoanei) to test for the contribution of ecological divergence to the development of reproductive barriers at several species traits (morphology, nuclear DNA and mitochondrial DNA). Both the nuclear and mitochondrial data show that all taxa are genetically distinct and that the sister species V. aspis and V. latastei hybridize frequently and backcross over several generations. We find that the three taxa have diverged ecologically and meet at a hybrid zone coincident with a steep ecotone between the Atlantic and Mediterranean biogeographical provinces. Integrating landscape and genetic approaches, we show that hybridization is spatially restricted to habitats that are suboptimal for parental taxa. Together, these results suggest that niche separation and adaptation to an ecological gradient confer an important barrier to gene flow among taxa that have not achieved complete reproductive isolation. © 2014 John Wiley & Sons Ltd.

  11. A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis.

    PubMed

    Kirchheimer, Bernhard; Schinkel, Christoph C F; Dellinger, Agnes S; Klatt, Simone; Moser, Dietmar; Winkler, Manuela; Lenoir, Jonathan; Caccianiga, Marco; Guisan, Antoine; Nieto-Lugilde, Diego; Svenning, Jens-Christian; Thuiller, Wilfried; Vittoz, Pascal; Willner, Wolfgang; Zimmermann, Niklaus E; Hörandl, Elvira; Dullinger, Stefan

    2016-03-22

    Emerging polyploids may depend on environmental niche shifts for successful establishment. Using the alpine plant Ranunculus kuepferi as a model system, we explore the niche shift hypothesis at different spatial resolutions and in contrasting parts of the species range. European Alps. We sampled 12 individuals from each of 102 populations of R. kuepferi across the Alps, determined their ploidy levels, derived coarse-grain (100 × 100 m) environmental descriptors for all sampling sites by downscaling WorldClim maps, and calculated fine-scale environmental descriptors (2 × 2 m) from indicator values of the vegetation accompanying the sampled individuals. Both coarse and fine-scale variables were further computed for 8239 vegetation plots from across the Alps. Subsequently, we compared niche optima and breadths of diploid and tetraploid cytotypes by combining principal components analysis and kernel smoothing procedures. Comparisons were done separately for coarse and fine-grain data sets and for sympatric, allopatric and the total set of populations. All comparisons indicate that the niches of the two cytotypes differ in optima and/or breadths, but results vary in important details. The whole-range analysis suggests differentiation along the temperature gradient to be most important. However, sympatric comparisons indicate that this climatic shift was not a direct response to competition with diploid ancestors. Moreover, fine-grained analyses demonstrate niche contraction of tetraploids, especially in the sympatric range, that goes undetected with coarse-grained data. Although the niche optima of the two cytotypes differ, separation along ecological gradients was probably less decisive for polyploid establishment than a shift towards facultative apomixis, a particularly effective strategy to avoid minority cytotype exclusion. In addition, our results suggest that coarse-grained analyses overestimate niche breadths of widely distributed taxa. Niche comparison

  12. Assessing the Congruence of Thermal Niche Estimations Derived from Distribution and Physiological Data. A Test Using Diving Beetles

    PubMed Central

    Sánchez-Fernández, David; Aragón, Pedro; Bilton, David T.; Lobo, Jorge M.

    2012-01-01

    A basic aim of ecology is to understand the determinants of organismal distribution, the niche concept and species distribution models providing key frameworks to approach the problem. As temperature is one of the most important factors affecting species distribution, the estimation of thermal limits is crucially important for inferring range constraints. It is expectable that thermal physiology data derived from laboratory experiments and species' occurrences may express different aspects of the species' niche. However, there is no study systematically testing this prediction in a given taxonomic group while controlling by potential phylogenetic inertia. We estimate the thermal niches of twelve Palaearctic diving beetles species using physiological data derived from experimental analyses in order to examine the extent to which these coincided with those estimated from distribution models based on observed occurrences. We found that thermal niche estimates derived from both approaches lack general congruence, and these results were similar before and after controlling by phylogeny. The congruence between potential distributions obtained from the two different procedures was also explored, and we found again that the percentage of agreement were not very high (∼60%). We confirm that both thermal niche estimates derived from geographical and physiological data are likely to misrepresent the true range of climatic variation that these diving beetles are able to tolerate, and so these procedures could be considered as incomplete but complementary estimations of an inaccessible reality. PMID:23133560

  13. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change.

    PubMed

    Carvalho, Bruno M; Rangel, Elizabeth F; Ready, Paul D; Vale, Mariana M

    2015-01-01

    Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector's climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: "stabilization" and "high increase". Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and Venezuela

  14. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change

    PubMed Central

    Carvalho, Bruno M.; Ready, Paul D.

    2015-01-01

    Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector’s climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: “stabilization” and “high increase”. Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and

  15. Niche differences between two sympatric whiptail lizards (Cnemidophorus abaetensis and C. ocellifer, Teiidae) in the restinga habitat of northeastern Brazil.

    PubMed

    Dias, E J R; Rocha, C F D

    2007-02-01

    Differences among sympatric lizard species usually result from differences in the use of three resources: space, time and food or some combination of these three. However, differences in resource utilization among sympatric species may simply reflect their specific ecological needs rather than competitive pressures. In this study, we analyzed the temporal, spatial and food niche of two congeneric teiids (Cnemidophorus abaetensis and C. ocellifer) living sympatrically in the "restinga" habitat of Abaeté in the Salvador Municipality, Bahia State, Brazil to assess the degree of niche differentiation among them. The whiptail species overlapped considerably in an hourly activity (Ojk = 0.93), in microhabitat use (Ojk = 0.97) and in the prey items consumed (Ojk = 0.89). Differences in amount of vegetation in the microhabitats used by both lizard species may have contributed to differences in the activity period and in the distribution of the main prey eaten by these lizards which may, in turn, facilitate their coexistence in Abaeté. Although sympatric C. ocellifer and C. abaetensis in Abaeté differed only slightly in their use of microhabitats, period of activity and diet, the most important niche dimension segregating the two species seemed to be the food niche.

  16. Niche logging

    Treesearch

    Robert B. Rummer

    1997-01-01

    Logging is facing a world of change. A logger?s niche can be defined by terrain, climate, location, timber and product, local government, Federal government, landowners, and mills. The author offers strategies for survival and successful competition.

  17. The niche party concept and its measurement.

    PubMed

    Meyer, Thomas M; Miller, Bernhard

    2015-03-01

    The concept of the niche party has become increasingly popular in analyses of party competition. Yet, existing approaches vary in their definitions and their measurement approaches. We propose using a minimal definition that allows us to compare political parties in terms of their 'nicheness'. We argue that the conceptual core of the niche party concept is based on issue emphasis and that a niche party emphasizes policy areas neglected by its rivals. Based on this definition, we propose a continuous measure that allows for more fine-grained measurement of a party's 'nicheness' than the dominant, dichotomous approaches and thereby limits the risk of measurement error. Drawing on data collected by the Comparative Manifesto Project, we show that (1) our measure has high face validity and (2) exposes differences among parties that are not captured by alternative, static or dichotomous measures.

  18. Equivalency of Galápagos giant tortoises used as ecological replacement species to restore ecosystem functions.

    PubMed

    Hunter, Elizabeth A; Gibbs, James P; Cayot, Linda J; Tapia, Washington

    2013-08-01

    Loss of key plant-animal interactions (e.g., disturbance, seed dispersal, and herbivory) due to extinctions of large herbivores has diminished ecosystem functioning nearly worldwide. Mitigating for the ecological consequences of large herbivore losses through the use of ecological replacements to fill extinct species' niches and thereby replicate missing ecological functions has been proposed. It is unknown how different morphologically and ecologically a replacement can be from the extinct species and still provide similar functions. We studied niche equivalency between 2 phenotypes of Galápagos giant tortoises (domed and saddlebacked) that were translocated to Pinta Island in the Galápagos Archipelago as ecological replacements for the extinct saddlebacked giant tortoise (Chelonoidis abingdonii). Thirty-nine adult, nonreproductive tortoises were introduced to Pinta Island in May 2010, and we observed tortoise resource use in relation to phenotype during the first year following release. Domed tortoises settled in higher, moister elevations than saddlebacked tortoises, which favored lower elevation arid zones. The areas where the tortoises settled are consistent with the ecological conditions each phenotype occupies in its native range. Saddlebacked tortoises selected areas with high densities of the arboreal prickly pear cactus (Opuntia galapageia) and mostly foraged on the cactus, which likely relied on the extinct saddlebacked Pinta tortoise for seed dispersal. In contrast, domed tortoises did not select areas with cactus and therefore would not provide the same seed-dispersal functions for the cactus as the introduced or the original, now extinct, saddlebacked tortoises. Interchangeability of extant megaherbivores as replacements for extinct forms therefore should be scrutinized given the lack of equivalency we observed in closely related forms of giant tortoises. Our results also demonstrate the value of trial introductions of sterilized individuals to test

  19. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  20. Niche modelling of marsh plants based on occurrence and abundance data.

    PubMed

    Lou, Yanjing; Gao, Chuanyu; Pan, Yanwen; Xue, Zhenshan; Liu, Ying; Tang, Zhanhui; Jiang, Ming; Lu, Xianguo; Rydin, Håkan

    2018-03-01

    The information of species' response (optimum or critical limits along environmental gradients) is a key to understanding ecological questions and to design management plans. A large number of plots (762) from 70 transects of 13 wetland sites in Northeast China were sampled along flooding gradient from marsh to wet meadow. Species response (abundance and occurrence) to flooding were modelled with Generalized Additive Models for 21 dominant plant species. We found that 20 of 21 species showed a significant response to flooding for the occurrence and abundance models, and four types of response were found: monotonically increasing, monotonically decreasing, skewed unimodal and symmetric unimodal. The species with monotonically increasing response have the deepest flooding optimum and widest niche width, followed by those with unimodal curve, and the monotonically decreasing ones have the smallest values. The optima and niche width (whether based on occurrence or abundance models) both significantly correlated with the frequency, but not with mean abundance. Abundance models outperformed occurrence models based on goodness of fit. The abundance models predicted a rather sharp shift from dominance of helophytes (Carex pseudo-curaica and C. lasiocarpa) to wet meadow species (Calamagrostis angustifolia and Carex appendiculata) if water levels drop from about 10cm above soil surface to below the surface. The defined optima and niche width based on the abundance models can be applied to better instruct restoration management. Given the time required to collect abundance data, an efficient strategy could be to monitor occurrence in many plots and abundance in a subset of these. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evolution of pollination niches in a generalist plant clade.

    PubMed

    Gómez, José María; Perfectti, Francisco; Abdelaziz, Mohamed; Lorite, Juan; Muñoz-Pajares, Antonio Jesús; Valverde, Javier

    2015-01-01

    It is widely assumed that floral diversification occurs by adaptive shifts between pollination niches. In contrast to specialized flowers, identifying pollination niches of generalist flowers is a challenge. Consequently, how generalist pollination niches evolve is largely unknown. We apply tools from network theory and comparative methods to investigate the evolution of pollination niches among generalist species belonging to the genus Erysimum. These species have similar flowers. We found that the studied species may be grouped in several multidimensional niches separated not by a shift of pollinators, but instead by quantitative variation in the relative abundance of pollinator functional groups. These pollination niches did not vary in generalization degree; we did not find any evolutionary trend toward specialization within the studied clade. Furthermore, the evolution of pollination niche fitted to a Brownian motion model without phylogenetic signal, and was characterized by frequent events of niche convergences and divergences. We presume that the evolution of Erysimum pollination niches has occurred mostly by recurrent shifts between slightly different generalized pollinator assemblages varying spatially as a mosaic and without any change in specialization degree. Most changes in pollination niches do not prompt floral divergence, a reason why adaptation to pollinators is uncommon in generalist plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Species are not most abundant in the centre of their geographic range or climatic niche.

    PubMed

    Dallas, Tad; Decker, Robin R; Hastings, Alan

    2017-12-01

    The pervasive idea that species should be most abundant in the centre of their geographic range or centre of their climatic niche is a key assumption in many existing ecological hypotheses and has been declared a general macroecological rule. However, empirical support for decreasing population abundance with increasing distance from geographic range or climatic niche centre (distance-abundance relationships) remains fairly weak. We examine over 1400 bird, mammal, fish and tree species to provide a thorough test of distance-abundance relationships, and their associations with species traits and phylogenetic relationships. We failed to detect consistent distance-abundance relationships, and found no association between distance-abundance slope and species traits or phylogenetic relatedness. Together, our analyses suggest that distance-abundance relationships may be rare, difficult to detect, or are an oversimplification of the complex biogeographical forces that determine species spatial abundance patterns. © 2017 John Wiley & Sons Ltd/CNRS.

  3. The evolution of climatic niches in squamate reptiles.

    PubMed

    Pie, Marcio R; Campos, Leonardo L F; Meyer, Andreas L S; Duran, Andressa

    2017-07-12

    Despite the remarkable diversity found in squamate reptiles, most of their species tend to be found in warm/dry environments, suggesting that climatic requirements played a crucial role in their diversification, yet little is known about the evolution of their climatic niches. In this study, we integrate climatic information associated with the geographical distribution of 1882 squamate species and their phylogenetic relationships to investigate the tempo and mode of climatic niche evolution in squamates, both over time and among lineages. We found that changes in climatic niche dynamics were pronounced over their recent squamate evolutionary history, and we identified extensive evidence for rate heterogeneity in squamate climatic niche evolution. Most rate shifts involved accelerations, particularly over the past 50 Myr. Most squamates occupy similar regions of the climatic niche space, with only a few lineages diversifying into colder and humid climatic conditions. The changes from arid to mesic conditions in some regions of the globe may have provided opportunities for climatic niche evolution, although most lineages tended to remain near their ancestral niche. Variation in rates of climatic niche evolution seems common, particularly in response to the availability of new climatic conditions over evolutionary time. © 2017 The Author(s).

  4. Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine.

    PubMed

    Sugimura, Ryohichi

    2016-04-01

    The scope of this chapter is to introduce the current consensus of hematopoietic stem cell (HSC) niche biology to bioengineering field so that can apply to regenerative medicine. A decade of research has been addressing "what is HSC niche", then next step is "how it advances medicine". The demand to improve HSC transplantation has advanced the methodology to expand HSC in vitro. Still precise modeling of bone marrow (BM) is demanded by bioengineering HSC niche in vitro. Better understanding of HSC niche is essential toward this progress. Now it would be the time to apply the knowledge of HSC niche field to the venue of bioengineering, so that a promising new approach to regenerative medicine might appear. This chapter describes the current consensus of niche that endothelial cell and perivascular mesenchymal stromal cell maintain HSC, expansion of cord blood HSC by small molecules, bioengineering efforts to model HSC niche by microfluidics chip, organoids, and breakthroughs to induce HSC from heterologous types of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Can the concept of fundamental and realized niches be applied to the distribution of dominant phytoplankton in the global ocean?

    NASA Astrophysics Data System (ADS)

    Dowell, M.; Moore, T.; Follows, M.; Dutkiewicz, S.

    2006-12-01

    In recent years there has been significant progress both in the use of satellite ocean colour remote sensing and coupled hydrodynamic biological models for producing maps of different dominant phytoplankton groups in the global ocean. In parallel to these initiatives, there is ongoing research largely following on from Alan Longhurst's seminal work on defining a template of distinct ecological and biogeochemical provinces for the oceans based on their physical and biochemical characteristics. For these products and models to be of maximum use in their subsequent inclusion in re-analysis and climate scale models, there is a need to understand how the "observed" distributions of dominant phytoplankton (realized niche) coincide with of the environmental constraints in which they occur (fundamental niche). In the current paper, we base our analysis on the recently published results on the distribution of dominant phytoplankton species at global scale, resulting both from satellite and model analysis. Furthermore, we will present research in defining biogeochemical provinces using satellite and model data inputs and a fuzzy logic based approach. This will be compared with ongoing modelling efforts, which include competitive exclusion and therefore compatible with the definition of the realized ecological niche, to define the emergent distribution of dominant phytoplankton species. Ultimately we investigate the coherence of these two distinct approaches in studying phytoplankton distributions and propose the significance of this in the context of modelling and analysis at various scales.

  6. The HysNiche trial: hysteroscopic resection of uterine caesarean scar defect (niche) in patients with abnormal bleeding, a randomised controlled trial.

    PubMed

    Vervoort, A J M W; Van der Voet, L F; Witmer, M; Thurkow, A L; Radder, C M; van Kesteren, P J M; Quartero, H W P; Kuchenbecker, W K H; Bongers, M Y; Geomini, P M A J; de Vleeschouwer, L H M; van Hooff, M H A; van Vliet, H A A M; Veersema, S; Renes, W B; van Meurs, H S; Bosmans, J; Oude Rengerink, K; Brölmann, H A M; Mol, B W J; Huirne, J A F

    2015-11-12

    A caesarean section (CS) can cause a defect or disruption of the myometrium at the site of the uterine scar, called a niche. In recent years, an association between a niche and postmenstrual spotting after a CS has been demonstrated. Hysteroscopic resection of these niches is thought to reduce spotting and menstrual pain. However, there are no randomised trials assessing the effectiveness of a hysteroscopic niche resection. We planned a multicentre randomised trial comparing hysteroscopic niche resection to no intervention. We study women with postmenstrual spotting after a CS and a niche with a residual myometrium of at least 3 mm during sonohysterography. After informed consent is obtained, eligible women will be randomly allocated to hysteroscopic resection of the niche or expectant management for 6 months. The primary outcome is the number of days with postmenstrual spotting during one menstrual cycle 6 months after randomisation. Secondary outcomes are menstrual characteristics, menstruation related pain and experienced discomfort due to spotting or menstrual pain, quality of life, patient satisfaction, sexual function, urological symptoms, medical consultations, medication use, complications, lost productivity and medical costs. Measurements will be performed at baseline and at 3 and 6 months after randomisation. A cost-effectiveness analysis will be performed from a societal perspective at 6 months after randomisation. This trial will provide insight in the (cost)effectiveness of hysteroscopic resection of a niche versus expectant management in women who have postmenstrual spotting and a niche with sufficient residual myometrium to perform a hysteroscopic niche resection. Dutch Trial Register NTR3269 . Registered 1 February 2012. ZonMw Grant number 80-82305-97-12030.

  7. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae).

    PubMed

    Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong

    2012-10-01

    East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  8. Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis)

    PubMed Central

    Gorman, Kristen B.; Williams, Tony D.; Fraser, William R.

    2014-01-01

    Background Sexual segregation in vertebrate foraging niche is often associated with sexual size dimorphism (SSD), i.e., ecological sexual dimorphism. Although foraging behavior of male and female seabirds can vary markedly, differences in isotopic (carbon, δ13C and nitrogen, δ15N) foraging niche are generally more pronounced within sexually dimorphic species and during phases when competition for food is greater. We examined ecological sexual dimorphism among sympatric nesting Pygoscelis penguins asking whether environmental variability is associated with differences in male and female pre-breeding foraging niche. We predicted that all Pygoscelis species would forage sex-specifically, and that higher quality winter habitat, i.e., higher or lower sea ice coverage for a given species, would be associated with a more similar foraging niche among the sexes. Results P2/P8 primers reliably amplified DNA of all species. On average, male Pygoscelis penguins are structurally larger than female conspecifics. However, chinstrap penguins were more sexually dimorphic in culmen and flipper features than Adélie and gentoo penguins. Adélies and gentoos were more sexually dimorphic in body mass than chinstraps. Only male and female chinstraps and gentoos occupied separate δ15N foraging niches. Strong year effects in δ15N signatures were documented for all three species, however, only for Adélies, did yearly variation in δ15N signatures tightly correlate with winter sea ice conditions. There was no evidence that variation in sex-specific foraging niche interacted with yearly winter habitat quality. Conclusion Chinstraps were most sexually size dimorphic followed by gentoos and Adélies. Pre-breeding sex-specific foraging niche was associated with overall SSD indices across species; male chinstrap and gentoo penguins were enriched in δ15N relative to females. Our results highlight previously unknown trophic pathways that link Pygoscelis penguins with variation in Southern

  9. Ecological and Developmental Issues in the Practice of Educational Psychology

    ERIC Educational Resources Information Center

    Bowler, Josephine

    2005-01-01

    This conceptual article examines what is meant by the term "ecological-contextual" in relation to the assessment of children's needs. Revisiting the discipline of ethology, the article applies the construct of niche to the human species, including examples from children's experiences to validate the relevance of this link. Issues of…

  10. Niche engineering reveals complementary resource use

    USDA-ARS?s Scientific Manuscript database

    Greater resource use by diverse communities might result from species occupying different, complementary niches. Niche partitioning is difficult to directly demonstrate, however, because differences among species in the resources they use are often difficult to separate from other species-specific t...

  11. Neoplastic Bone Marrow Niche: Hematopoietic and Mesenchymal Stem Cells

    PubMed Central

    Saki, Najmaldin; Abroun, Saeid; Farshdousti Hagh, Majid; Asgharei, Farahnaz

    2011-01-01

    The neoplastic niche comprises complex interactions between multiple cell types and molecules requiring cell-cell signaling as well as local secretion. These niches are important for both the maintenance of cancer stem cells and the induction of neoplastic cells survival and proliferation. Each niche contains a population of tumor stem cells supported by a closely associated vascular bed comprising mesenchyme-derived cells and extracellular matrix. Targeting cancer stem cells and neoplastic niche may provide new therapies to eradicate tumors. Much progress has been very recently made in the understanding of the cellular and molecular interactions in the microenvironment of neoplastic niches. This review article provides an overview of the neoplastic niches in the bone marrow. In addition to highlighting recent advances in the field, we will also discuss components of the niche and their signaling pathways. PMID:23508881

  12. Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis

    PubMed Central

    Stefan, Laura M.; Gómez-Díaz, Elena; Elguero, Eric; Proctor, Heather C.; McCoy, Karen D.; González-Solís, Jacob

    2015-01-01

    structuring feather mite communities. They also illustrate that symbiotic infracommunities are excellent model systems to study trophic ecology, and can improve our understanding of mechanisms of niche differentiation and species coexistence. PMID:26650672

  13. Circumbinary habitability niches

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.

    2015-07-01

    Binaries could provide the best niches for life in the Galaxy. Although counterintuitive, this assertion follows directly from stellar tidal interaction theory and the evolution of lower mass stars. There is strong evidence that chromospheric activity of rapidly rotating young stars may be high enough to cause mass loss from atmospheres of potentially habitable planets. The removal of atmospheric water is most critical. Tidal breaking in binaries could help reduce magnetic dynamo action and thereby chromospheric activity in favour of life. We call this the Binary Habitability Mechanism (BHM) that we suggest allows for water retention at levels comparable to or better than the Earth. We discuss novel advantages that life may exploit, in these cases, and suggest that life may even thrive on some circumbinary planets. We find that while many binaries do not benefit from BHM, high-quality niches do exist for various combinations of stars between 0.55 and 1.0 solar masses. For a given pair of stellar masses, BHM operates only for certain combinations of period and eccentricity. Binaries having a solar-type primary seem to be quite well-suited niches having wide and distant habitable zones with plentiful water and sufficient light for photosynthetic life. We speculate that, as a direct result of BHM, conditions may be suitable for life on several planets and possibly even moons of giant planets orbiting some binaries. Lower mass combinations, while more restrictive in parameter space, provide niches lasting many billions of years and are rich suppliers of photosynthetic photons. We provide a publicly available web-site (http://bit.ly/BHM-calculator or http://bit.ly/BHM-calculator-mirror), which calculates the BHM effects presented in this paper.

  14. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands.

    PubMed

    Mittelbach, Moritz; Yurkov, Andrey M; Nocentini, Daniele; Nepi, Massimo; Weigend, Maximilian; Begerow, Dominik

    2015-02-01

    Studies on the diversity of yeasts in floral nectar were first carried out in the late 19th century. A narrow group of fermenting, osmophilous ascomycetes were regarded as exclusive specialists able to populate this unique and species poor environment. More recently, it became apparent that microorganisms might play an important role in the process of plant pollination. Despite the importance of these nectar dwelling yeasts, knowledge of the factors that drive their diversity and species composition is scarce. In this study, we linked the frequencies of yeast species in floral nectars from various host plants on the Canary Islands to nectar traits and flower visitors. We estimated the structuring impact of pollination syndromes (nectar volume, sugar concentration and sugar composition) on yeast diversity.The observed total yeast diversity was consistent with former studies, however, the present survey yielded additional basidiomycetous yeasts in unexpectedly high numbers. Our results show these basidiomycetes are significantly associated with ornithophilous flowers. Specialized ascomycetes inhabit sucrose-dominant nectars, but are surprisingly rare in nectar dominated by monosaccharides. There are two conclusions from this study: (i) a shift of floral visitors towards ornithophily alters the likelihood of yeast inoculation in flowers, and (ii) low concentrated hexose-dominant nectar promotes colonization of flowers by basidiomycetes. In the studied floral system, basidiomycete yeasts are acknowledged as regular members of nectar. This challenges the current understanding that nectar is an ecological niche solely occupied by ascomycetous yeasts.

  15. Assessing the potential for establishment of western cherry fruit fly using ecological niche modeling.

    PubMed

    Kumar, Sunil; Neven, Lisa G; Yee, Wee L

    2014-06-01

    Sweet cherries, Prunus avium (L.) L., grown in the western United States are exported to many countries around the world. Some of these countries have enforced strict quarantine rules and trade restrictions owing to concerns about the potential establishment and subsequent spread of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), a major quarantine pest of sweet cherry. We used 1) niche models (CLIMEX and MaxEnt) to map the climatic suitability, 2) North Carolina State University-Animal and Plant Health Inspection Service Plant Pest Forecasting System to examine chilling requirement, and 3) host distribution and availability to assess the potential for establishment of R. indifferens in areas of western North America where it currently does not exist and eight current or potential fresh sweet cherry markets: Colombia, India, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam. Results from niche models conformed well to the current distribution of R. indifferens in western North America. MaxEnt and CLIMEX models had high performance and predicted climatic suitability in some of the countries (e.g., Andean range in Colombia and Venezuela, northern and northeastern India, central Taiwan, and parts of Vietnam). However, our results showed no potential for establishment of R. indifferens in Colombia, Indonesia, Malaysia, Taiwan, Thailand, Venezuela, and Vietnam when the optimal chilling requirement to break diapause (minimum temperature < or = 3 degree C for at least 15 wk) was used as the criterion for whether establishment can occur. Furthermore, these countries have no host plant species available for R. indifferens. Our results can be used to make scientifically informed international trade decisions and negotiations by policy makers.

  16. Vital Affordances, Occupying Niches: An Ecological Approach to Disability and Performance

    ERIC Educational Resources Information Center

    Dokumaci, Arseli

    2017-01-01

    This article proposes a new conceptual approach to disability and performance through a contribution that comes entirely from outside the disciplines; a re-theorisation of Gibson's [1979. "The Ecological Approach to Visual Perception". Hillsdale: Lawrence Erlbaum Associates] theory of affordances. Drawing on three visual ethnographies…

  17. Modulating the stem cell niche for tissue regeneration

    PubMed Central

    Lane, Steven W; Williams, David A; Watt, Fiona M

    2015-01-01

    The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell–extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell–niche interactions. PMID:25093887

  18. Report on novel environmental niches for Cryptococcus neoformans and Cryptococcus gattii in Colombia: Tabebuia guayacan and Roystonea regia.

    PubMed

    Vélez, Norida; Escandón, Patricia

    2017-10-01

    Knowledge of the environmental distribution of C. neoformans/C. gattii is important in the epidemiology and ecology of the etiological agent, which causes cryptococcosis, a deadly disease worldwide. The aim of this report is to describe the presence of C. neoformans/C. gattii in new environmental niches in Colombia. A total of 837 environmental samples were collected from six different species of trees across four cities; molecular type was determined by PCR fingerprinting and RFLP. Molecular type VNI and VGIII were isolated from different species of trees, resulting in two novel niches for this pathogen: Tabebuia guayacan and Roystonea regia. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Anaerobic animals from an ancient, anoxic ecological niche.

    PubMed

    Mentel, Marek; Martin, William

    2010-04-06

    Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats.

  20. Anaerobic animals from an ancient, anoxic ecological niche

    PubMed Central

    2010-01-01

    Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats. PMID:20370917

  1. Vascular and perivascular niches, but not the osteoblastic niche, are numerically restored following allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia.

    PubMed

    Wu, Liangliang; Mo, Wenjian; Zhang, Yuping; Zhou, Ming; Li, Yumiao; Zhou, Ruiqing; Xu, Shiling; Pan, Shiyi; Deng, Hui; Mao, Ping; Wang, Shunqing

    2017-07-01

    Bone marrow (BM) niches, including the osteoblastic, vascular, and perivascular niches, are numerically impaired in patients with aplastic anemia (AA). It remains unclear whether these niches are numerically restored in AA patients after allogenic hematopoietic stem cell transplantation (allo-HSCT). To investigate changes in BM niches, we monitored 52 patients with AA who had undergone allo-HSCT and performed immunohistochemical studies of BM niches using antibodies against CD34, CD146, and osteopontin. After allo-HSCT, patients with AA exhibited a remarkable increase in the number of cellular elements in the BM niches, including the vascular and perivascular cells. However, no significant differences in endosteal cells were detected. We explored the cause of this restoration by analyzing the origin of BM mesenchymal stem cells (BM-MSCs) and the expression of cytokines in BM plasma. STR-PCR revealed that the BM-MSCs were derived from the host, not the donor. In addition, significantly elevated levels of vascular endothelial growth factor (VEGF) were found after allo-HSCT. Our data indicates that vascular and perivascular niches are numerically restored, but the endosteal niche remains numerically impaired in patients with AA after allo-HSCT, and that levels of VEGF, but not donor-derived BM-MSCs, may correlate with the restoration of BM niches.

  2. The niche of an invasive marine microbe in a subtropical freshwater impoundment

    PubMed Central

    David Hambright, K; Beyer, Jessica E; Easton, James D; Zamor, Richard M; Easton, Anne C; Hallidayschult, Thayer C

    2015-01-01

    Growing attention in aquatic ecology is focusing on biogeographic patterns in microorganisms and whether these potential patterns can be explained within the framework of general ecology. The long-standing microbiologist's credo ‘Everything is everywhere, but, the environment selects' suggests that dispersal is not limiting for microbes, but that the environment is the primary determining factor in microbial community composition. Advances in molecular techniques have provided new evidence that biogeographic patterns exist in microbes and that dispersal limitation may actually have an important role, yet more recent study using extremely deep sequencing predicts that indeed everything is everywhere. Using a long-term field study of the ‘invasive' marine haptophyte Prymnesium parvum, we characterize the environmental niche of P. parvum in a subtropical impoundment in the southern United States. Our analysis contributes to a growing body of evidence that indicates a primary role for environmental conditions, but not dispersal, in the lake-wide abundances and seasonal bloom patterns in this globally important microbe. PMID:24950108

  3. Intraspecific competition reduces niche width in experimental populations

    PubMed Central

    Parent, Christine E; Agashe, Deepa; Bolnick, Daniel I

    2014-01-01

    Intraspecific competition is believed to drive niche expansion, because otherwise suboptimal resources can provide a refuge from competition for preferred resources. Competitive niche expansion is well supported by empirical observations, experiments, and theory, and is often invoked to explain phenotypic diversification within populations, some forms of speciation, and adaptive radiation. However, some foraging models predict the opposite outcome, and it therefore remains unclear whether competition will promote or inhibit niche expansion. We conducted experiments to test whether competition changes the fitness landscape to favor niche expansion, and if competition indeed drives niche expansion as expected. Using Tribolium castaneum flour beetles fed either wheat (their ancestral resource), corn (a novel resource) or mixtures of both resources, we show that fitness is maximized on a mixed diet. Next, we show that at higher population density, the optimal diet shifts toward greater use of corn, favoring niche expansion. In stark contrast, when beetles were given a choice of resources, we found that competition caused niche contraction onto the ancestral resource. This presents a puzzling mismatch between how competition alters the fitness landscape, versus competition's effects on resource use. We discuss several explanations for this mismatch, highlighting potential reasons why optimality models might be misleading. PMID:25505525

  4. Modified niche optima and breadths explain the historical contingency of bacterial community responses to eutrophication in coastal sediments.

    PubMed

    Fodelianakis, S; Moustakas, A; Papageorgiou, N; Manoli, O; Tsikopoulou, I; Michoud, G; Daffonchio, D; Karakassis, I; Ladoukakis, E D

    2017-04-01

    Previous studies have shown that the response of bacterial communities to disturbances depends on their environmental history. Historically fluctuating habitats host communities that respond better to disturbance than communities of historically stable habitats. However, the exact ecological mechanism that drives this dependency remains unknown. Here, we experimentally demonstrate that modifications of niche optima and niche breadths of the community members are driving this dependency of bacterial responses to past environmental conditions. First, we develop a novel, simple method to calculate the niche optima and breadths of bacterial taxa regarding single environmental gradients. Then, we test this method on sediment bacterial communities of three habitats, one historically stable and less loaded and two historically more variable and more loaded habitats in terms of historical chlorophyll-α water concentration, that we subject to hypoxia via organic matter addition ex situ. We find that communities containing bacterial taxa differently adapted to hypoxia show different structural and functional responses, depending on the sediment's environmental history. Specifically, in the historically less fluctuating and loaded sediments where we find more taxa poorly adapted to hypoxic conditions, communities change a lot over time and organic matter is not degraded efficiently. The opposite is true for the historically more fluctuating and loaded sediments where we find more taxa well adapted to hypoxia. Based on the community responses observed here, we also propose an alternative calculation of community resistance that takes into account how rapidly the communities respond to disturbances and not just the initial and final states of the community. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  5. Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach

    PubMed Central

    Sindato, Calvin; Stevens, Kim B.; Karimuribo, Esron D.; Mboera, Leonard E. G.; Paweska, Janusz T.; Pfeiffer, Dirk U.

    2016-01-01

    Background Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Materials and Methods Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Principal Findings Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). Conclusion/Significance The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with

  6. Prevalence, Distribution, and Development of an Ecological Niche Model of Dermacentor variabilis Ticks Positive for Rickettsia montanensis.

    PubMed

    St John, Heidi K; Adams, Melissa L; Masuoka, Penny M; Flyer-Adams, Johanna G; Jiang, Ju; Rozmajzl, Patrick J; Stromdahl, Ellen Y; Richards, Allen L

    2016-04-01

    Rickettsia montanensis has long been considered a nonpathogenic member of the spotted fever group rickettsiae. However, the infection potential of R. montanensis is being revisited in light of its recent association with a case of human infection in the United States and the possibility that additional cases may have been misdiagnosed as Rocky Mountain spotted fever. To this end, DNA was extracted from American dog ticks (Dermacentor variabilis) removed from Department of Defense (DoD) personnel and their dependents at DoD medical treatment facilities (MTFs) during 2002-2012 (n = 4792). These 4792 samples were analyzed for the presence of R. montanensis (n =  36; 2.84%) and all vector DNA was confirmed to be of D. variabilis origin using a novel Dermacentor genus-specific quantitative real-time polymerase chain reaction procedure, Derm, and a novel Dermacentor species multilocus sequence typing assay. To assess the risk of R. montanensis infection, the positive and negative samples were geographically mapped utilizing MTF site locations. Tick localities were imported into a geographical information systems (GIS) program, ArcGIS, for mapping and analysis. The ecological niche modeling (ENM) program, Maxent, was used to estimate the probability of tick presence in eastern United States using locations of both R. montanensis-positive and -negative ticks, climate, and elevation data. The ENM for R. montanensis-positive D. variabilis estimated high probabilities of the positive ticks occurring in two main areas, including the northern Midwest and mid-Atlantic portions of the northeastern regions of United States, whereas the R. montanensis-negative D. variabilis tick model showed a wider estimated range. The results suggest that R. montanensis-positive and -negative D. variabilis have different ranges where humans may be at risk and are influenced by similar and different factors.

  7. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage.

    PubMed

    Benson, Roger B J; Campione, Nicolás E; Carrano, Matthew T; Mannion, Philip D; Sullivan, Corwin; Upchurch, Paul; Evans, David C

    2014-05-01

    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of

  8. Pathogen evolution and the immunological niche.

    PubMed

    Cobey, Sarah

    2014-07-01

    Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  9. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts.

    PubMed

    Socolar, Jacob B; Epanchin, Peter N; Beissinger, Steven R; Tingley, Morgan W

    2017-12-05

    Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenological and range shifts each present simultaneous opportunities for temperature and resource tracking, although the possible role for phenological shifts in thermal niche tracking has been widely overlooked. Using a canonical dataset of Californian bird surveys and a detectability-based approach for quantifying phenological signal, we show that Californian bird communities advanced their breeding phenology by 5-12 d over the last century. This phenological shift might track shifting resource peaks, but it also reduces average temperatures during nesting by over 1 °C, approximately the same magnitude that average temperatures have warmed over the same period. We further show that early-summer temperature anomalies are correlated with nest success in a continental-scale database of bird nests, suggesting avian thermal niches might be broadly limited by temperatures during nesting. These findings outline an adaptation surface where geographic range and breeding phenology respond jointly to constraints imposed by temperature and resource phenology. By stabilizing temperatures during nesting, phenological shifts might mitigate the need for range shifts. Global change ecology will benefit from further exploring phenological adjustment as a potential mechanism for thermal niche tracking and vice versa.

  10. An evolutionary ecology of individual differences

    PubMed Central

    Dall, Sasha R. X.; Bell, Alison M.; Bolnick, Daniel I.; Ratnieks, Francis L. W.

    2014-01-01

    Individuals often differ in what they do. This has been recognised since antiquity. Nevertheless, the ecological and evolutionary significance of such variation is attracting widespread interest, which is burgeoning to an extent that is fragmenting the literature. As a first attempt at synthesis, we focus on individual differences in behaviour within populations that exceed the day-to-day variation in individual behaviour (i.e. behavioural specialisation). Indeed, the factors promoting ecologically relevant behavioural specialisation within natural populations are likely to have far-reaching ecological and evolutionary consequences. We discuss such individual differences from three distinct perspectives: individual niche specialisations, the division of labour within insect societies and animal personality variation. In the process, while recognising that each area has its own unique motivations, we identify a number of opportunities for productive ‘crossfertilisation’ among the (largely independent) bodies of work. We conclude that a complete understanding of evolutionarily and ecologically relevant individual differences must specify how ecological interactions impact the basic biological process (e.g. Darwinian selection, development and information processing) that underpin the organismal features determining behavioural specialisations. Moreover, there is likely to be covariation amongst behavioural specialisations. Thus, we sketch the key elements of a general framework for studying the evolutionary ecology of individual differences. PMID:22897772

  11. Ecological generalism facilitates the evolution of sociality in snapping shrimps.

    PubMed

    Brooks, Katherine C; Maia, Rafael; Duffy, J Emmett; Hultgren, Kristin M; Rubenstein, Dustin R

    2017-12-01

    Evidence from insects and vertebrates suggests that cooperation may have enabled species to expand their niches, becoming ecological generalists and dominating the ecosystems in which they occur. Consistent with this idea, eusocial species of sponge-dwelling Synalpheus shrimps from Belize are ecological generalists with a broader host breadth and higher abundance than non-eusocial species. We evaluate whether sociality promotes ecological generalism (social conquest hypothesis) or whether ecological generalism facilitates the transition to sociality (social transition hypothesis) in 38 Synalpheus shrimp species. We find that sociality evolves primarily from host generalists, and almost exclusively so for transitions to eusociality. Additionally, sponge volume is more important for explaining social transitions towards communal breeding than to eusociality, suggesting that different ecological factors may influence the independent evolutionary origins of sociality in Synalpheus shrimps. Ultimately, our results are consistent with the social transition hypothesis and the idea that ecological generalism facilitates the transition to sociality. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (hippoboscoidea, nycterophiliinae).

    PubMed

    Morse, Solon F; Dick, Carl W; Patterson, Bruce D; Dittmar, Katharina

    2012-12-01

    We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships.

  13. Market niche analysis in the casino gaming industry.

    PubMed

    Dandurand, L

    1990-03-01

    This article discusses the nature of market niche analysis in the casino gaming industry. It presents four approaches for conducting market niche analysis. An an example of one approach, the Las Vegas Visitor Profile Study is used to identify a premium niche in the Las Vegas Slot Target Market. A detailed examination of the premium niche profile provides a description of the typical premium slot player. The description of the typical premium player leads to hypotheses regarding needs (the unique preference set) of the premium player. An analysis of the unique preference set suggests an appropriate enhanced marketing program.

  14. THE GERMLINE STEM CELL NICHE UNIT IN MAMMALIAN TESTES

    PubMed Central

    Oatley, Jon M.; Brinster, Ralph L.

    2014-01-01

    This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine. PMID:22535892

  15. Time-specific ecologic niche models forecast the risk of hemorrhagic fever with renal syndrome in Dongting Lake district, China, 2005-2010.

    PubMed

    Liu, Hai-Ning; Gao, Li-Dong; Chowell, Gerardo; Hu, Shi-Xiong; Lin, Xiao-Ling; Li, Xiu-Jun; Ma, Gui-Hua; Huang, Ru; Yang, Hui-Suo; Tian, Huaiyu; Xiao, Hong

    2014-01-01

    Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies. We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005-2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors. Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.

  16. Modeling dynamics of mutants in heterogeneous stem cell niche

    NASA Astrophysics Data System (ADS)

    Shahriyari, L.; Mahdipour-Shirayeh, A.

    2017-02-01

    Studying the stem cell (SC) niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. Recently, it has been observed that there are two groups of SCs in the SC niche collaborating with each other to maintain tissue homeostasis: border stem cells (BSCs), which are responsible in controlling the number of non-stem cells as well as stem cells, and central stem cells (CeSCs), which regulate the SC niche. Here, we develop a bi-compartmental stochastic model for the SC niche to study the spread of mutants within the niche. The analytic calculations and numeric simulations, which are in perfect agreement, reveal that in order to delay the spread of mutants in the SC niche, a small but non-zero number of SC proliferations must occur in the CeSC compartment. Moreover, the migration of BSCs to CeSCs delays the spread of mutants. Furthermore, the fixation probability of mutants in the SC niche is independent of types of SC division as long as all SCs do not divide fully asymmetrically. Additionally, the progeny of CeSCs have a much higher chance than the progeny of BSCs to take over the entire niche.

  17. The crosstalk between hematopoietic stem cells and their niches.

    PubMed

    Durand, Charles; Charbord, Pierre; Jaffredo, Thierry

    2018-07-01

    Hematopoietic stem cells (HSCs) reside in specific microenvironments also called niches that regulate HSC functions. Understanding the molecular and cellular mechanisms involved in the crosstalk between HSCs and niche cells is a major issue in stem cell biology and regenerative medicine. The purpose of this review is to discuss recent advances in this field with particular emphasis on the transcriptional landscape of HSC niche cells and the roles of extracellular vesicles (EVs) in the dialog between HSCs and their microenvironments. The development of high-throughput technologies combined with computational methods has considerably improved our knowledge on the molecular identity of HSC niche cells. Accumulating evidence strongly suggest that the dialog between HSCs and their niches is bidirectional and that EVs play an important role in this process. These advances bring a unique conceptual and methodological framework for understanding the molecular complexity of the HSC niche and identifying novel HSC regulators. They are also promising for exploring the reciprocal influence of HSCs on niche cells and delivering specific molecules to HSCs in regenerative medicine.

  18. Diversity in Morphology and Locomotory Behavior Is Associated with Niche Expansion in the Semi-aquatic Bugs.

    PubMed

    Crumière, Antonin J J; Santos, M Emilia; Sémon, Marie; Armisén, David; Moreira, Felipe F F; Khila, Abderrahman

    2016-12-19

    Acquisition of new ecological opportunities is a major driver of adaptation and species diversification [1-4]. However, how groups of organisms expand their habitat range is often unclear [3]. We study the Gerromorpha, a monophyletic group of heteropteran insects that occupy a large variety of water surface-associated niches, from small puddles to open oceans [5, 6]. Due to constraints related to fluid dynamics [7-9] and exposure to predation [5, 10], we hypothesize that selection will favor high speed of locomotion in the Gerromorpha that occupy water-air interface niches relative to the ancestral terrestrial life style. Through biomechanical assays and phylogenetic reconstruction, we show that only species that occupy water surface niches can generate high maximum speeds. Basally branching lineages with ancestral mode of locomotion, consisting of tripod gait, achieved increased speed on the water through increasing midleg length, stroke amplitude, and stroke frequency. Derived lineages evolved rowing as a novel mode of locomotion through simultaneous sculling motion almost exclusively of the midlegs. We demonstrate that this change in locomotory behavior significantly reduced the requirement for high stroke frequency and energy expenditure. Furthermore, we show how the evolution of rowing, by reducing stroke frequency, may have eliminated the constraint on body size, which may explain the evolution of larger Gerromorpha. This correlation between the diversity in locomotion behaviors and niche specialization suggests that changes in morphology and behavior may facilitate the invasion and diversification in novel environments. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Multi level ecological fitting: indirect life cycles are not a barrier to host switching and invasion.

    PubMed

    Malcicka, Miriama; Agosta, Salvatore J; Harvey, Jeffrey A

    2015-09-01

    Many invasive species are able to escape from coevolved enemies and thus enjoy a competitive advantage over native species. However, during the invasion phase, non-native species must overcome many ecological and/or physiological hurdles before they become established and spread in their new habitats. This may explain why most introduced species either fail to establish or remain as rare interstitials in their new ranges. Studies focusing on invasive species have been based on plants or animals where establishment requires the possession of preadapted traits from their native ranges that enables them to establish and spread in their new habitats. The possession of preadapted traits that facilitate the exploitation of novel resources or to colonize novel habitats is known as 'ecological fitting'. Some species have evolved traits and life histories that reflect highly intimate associations with very specific types of habitats or niches. For these species, their phenological windows are narrow, and thus the ability to colonize non-native habitats requires that a number of conditions need to be met in accordance with their more specialized life histories. Some of the strongest examples of more complex ecological fitting involve invasive parasites that require different animal hosts to complete their life cycles. For instance, the giant liver fluke, Fascioloides magna, is a major parasite of several species of ungulates in North America. The species exhibits a life cycle whereby newly hatched larvae must find suitable intermediate hosts (freshwater snails) and mature larvae, definitive hosts (ungulates). Intermediate and definitive host ranges of F. magna in its native range are low in number, yet this parasite has been successfully introduced into Europe where it has become a parasite of native European snails and deer. We discuss how the ability of these parasites to overcome multiple ecophysiological barriers represents an excellent example of 'multiple

  20. Intraspecies Competition for Niches in the Distal Gut Dictate Transmission during Persistent Salmonella Infection

    PubMed Central

    Lam, Lilian H.; Monack, Denise M.

    2014-01-01

    In order to be transmitted, a pathogen must first successfully colonize and multiply within a host. Ecological principles can be applied to study host-pathogen interactions to predict transmission dynamics. Little is known about the population biology of Salmonella during persistent infection. To define Salmonella enterica serovar Typhimurium population structure in this context, 129SvJ mice were oral gavaged with a mixture of eight wild-type isogenic tagged Salmonella (WITS) strains. Distinct subpopulations arose within intestinal and systemic tissues after 35 days, and clonal expansion of the cecal and colonic subpopulation was responsible for increases in Salmonella fecal shedding. A co-infection system utilizing differentially marked isogenic strains was developed in which each mouse received one strain orally and the other systemically by intraperitoneal (IP) injection. Co-infections demonstrated that the intestinal subpopulation exerted intraspecies priority effects by excluding systemic S. Typhimurium from colonizing an extracellular niche within the cecum and colon. Importantly, the systemic strain was excluded from these distal gut sites and was not transmitted to naïve hosts. In addition, S. Typhimurium required hydrogenase, an enzyme that mediates acquisition of hydrogen from the gut microbiota, during the first week of infection to exert priority effects in the gut. Thus, early inhibitory priority effects are facilitated by the acquisition of nutrients, which allow S. Typhimurium to successfully compete for a nutritional niche in the distal gut. We also show that intraspecies colonization resistance is maintained by Salmonella Pathogenicity Islands SPI1 and SPI2 during persistent distal gut infection. Thus, important virulence effectors not only modulate interactions with host cells, but are crucial for Salmonella colonization of an extracellular intestinal niche and thereby also shape intraspecies dynamics. We conclude that priority effects and

  1. Niche construction initiates the evolution of mutualistic interactions.

    PubMed

    Buser, Claudia C; Newcomb, Richard D; Gaskett, Anne C; Goddard, Matthew R

    2014-10-01

    Niche construction theory explains how organisms' niche modifications may feed back to affect their evolutionary trajectories. In theory, the evolution of other species accessing the same modified niche may also be affected. We propose that this niche construction may be a general mechanism driving the evolution of mutualisms. Drosophilid flies benefit from accessing yeast-infested fruits, but the consequences of this interaction for yeasts are unknown. We reveal high levels of variation among strains of Saccharomyces cerevisiae in their ability to modify fruits and attract Drosophila simulans. More attractive yeasts are dispersed more frequently, both in the lab and in the field, and flies associated with more attractive yeasts have higher fecundity. Although there may be multiple natural yeast and fly species interactions, our controlled assays in the lab and field provide evidence of a mutualistic interaction, facilitated by the yeast's niche modification. © 2014 John Wiley & Sons Ltd/CNRS.

  2. Differential niche dynamics among major marine invertebrate clades

    PubMed Central

    Hopkins, Melanie J; Simpson, Carl; Kiessling, Wolfgang

    2014-01-01

    The degree to which organisms retain their environmental preferences is of utmost importance in predicting their fate in a world of rapid climate change. Notably, marine invertebrates frequently show strong affinities for either carbonate or terrigenous clastic environments. This affinity is due to characteristics of the sediments as well as correlated environmental factors. We assessed the conservatism of substrate affinities of marine invertebrates over geological timescales, and found that niche conservatism is prevalent in the oceans, and largely determined by the strength of initial habitat preference. There is substantial variation in niche conservatism among major clades with corals and sponges being among the most conservative. Time-series analysis suggests that niche conservatism is enhanced during times of elevated nutrient flux, whereas niche evolution tends to occur after mass extinctions. Niche evolution is not necessarily elevated in genera exhibiting higher turnover in species composition. PMID:24313951

  3. Glioblastoma niches: from the concept to the phenotypical reality.

    PubMed

    Schiffer, Davide; Mellai, Marta; Bovio, Enrica; Bisogno, Ilaria; Casalone, Cristina; Annovazzi, Laura

    2018-05-08

    Recently, the concept of niches as sites of tumor progression, invasion, and angiogenesis in glioblastoma (GB) has been extensively debated. Niches, considered the sites in which glioblastoma stem cells (GSCs) reside, have been classified as perivascular, perinecrotic, and invasive. However, from a neuropathological point of view, it is not easy to establish when a tumor structure can be considered a niche. The relevant literature has been reviewed in the light of our recent experience on the subject. As for perinecrotic niches, the occurrence of GSCs around necrosis is interpreted as triggered by hypoxia through HIF-1α. Our alternative hypothesis is that, together with progenitors, they are the cell constituents of hyper-proliferative areas of GB, where perinecrotic niches have developed, and they would, therefore, represent the remnants of GSCs/progenitors spared by the developing necrosis. Perivascular structures originate from both transport vessels and exchange vessels, i.e., venules, arterioles, or the undefinable neo-formed small vessels, but only those in which a direct contact between GSCs/progenitors and endothelial cells occurs can be called niches. Both pericytes and microglia/macrophages play a role in niche function: Macrophages of blood origin invade GB only after the appearance of "mother vessels" with consequent blood-brain barrier disruption. Not all vessel/tumor cell structures can be considered niches, that is, crucial sites of tumor progression, invasion, and angiogenesis.

  4. Evidence of a specialized feeding niche in a Late Triassic ray-finned fish: evolution of multidenticulate teeth and benthic scraping in †Hemicalypterus.

    PubMed

    Gibson, Sarah Z

    2015-04-01

    Fishes have evolved to exploit multiple ecological niches. Extant fishes in both marine (e.g., rabbitfishes, surgeonfishes) and freshwater systems (e.g., haplochromine cichlids, characiforms) have evolved specialized, scoop-like, multidenticulate teeth for benthic scraping, feeding primarily on algae. Here, I report evidence of the oldest example of specialized multidenticulate dentition in a ray-finned fish, †Hemicalypterus weiri, from the Upper Triassic Chinle Formation of southeastern Utah (∼210-205 Ma), USA. †H. weiri is a lower actinopterygian species that is phylogenetically remote from modern fishes, and has evolved specialized teeth that converge with those of several living teleost fishes (e.g., characiforms, cichlids, acanthurids, siganids), with a likely function of these teeth being to scrape algae off a rock substrate. This finding contradicts previously held notions that fishes with multicuspid, scoop-like dentition were restricted to teleosts, and indicates that ray-finned fishes were diversifying into different trophic niches and exploring different modes of feeding earlier in their history than previously thought, fundamentally altering our perceptions of the ecological roles of fishes during the Mesozoic.

  5. Habitat niche breadth predicts invasiveness in solitary ascidians.

    PubMed

    Granot, Itai; Shenkar, Noa; Belmaker, Jonathan

    2017-10-01

    A major focus of invasion biology is understanding the traits associated with introduction success. Most studies assess these traits in the invaded region, while only few compare nonindigenous species to the pool of potential invaders in their native region. We focused on the niche breadth hypothesis , commonly evoked but seldom tested, which states that generalist species are more likely to become introduced as they are capable of thriving under a wide set of conditions. Based on the massive introduction of tropical species into the Mediterranean via the Suez Canal (Lessepsian migration), we defined ascidians in the Red Sea as the pool of potential invaders. We constructed unique settlement plates, each representing six different niches, to assess ascidian niche breadth, and deployed them in similar habitats in the native and invaded regions. For each species found on plates, we evaluated its abundance, relative abundance across successional stages, and niche breadth, and then compared (1) species in the Red Sea known to have been introduced into the Mediterranean (Lessepsian species) and those not known from the Mediterranean (non-Lessepsian); and (2) nonindigenous and indigenous species in the Mediterranean. Lessepsian species identified on plates in the Red Sea demonstrated wider niche breadth than non-Lessepsian species, supporting the niche breadth hypothesis within the native region. No differences were found between Lessepsian and non-Lessepsian species in species abundance and successional stages. In the Mediterranean, nonindigenous species numerically dominated the settlement plates. This precluded robust comparisons of niche breadth between nonindigenous and indigenous species in the invaded region. In conclusion, using Red Sea ascidians as the pool of potential invaders, we found clear evidence supporting the niche breadth hypothesis in the native region. We suggest that such patterns may often be obscured when conducting trait-based studies in the

  6. Foraging and farming as niche construction: stable and unstable adaptations

    PubMed Central

    Rowley-Conwy, Peter; Layton, Robert

    2011-01-01

    All forager (or hunter–gatherer) societies construct niches, many of them actively by the concentration of wild plants into useful stands, small-scale cultivation, burning of natural vegetation to encourage useful species, and various forms of hunting, collectively termed ‘low-level food production’. Many such niches are stable and can continue indefinitely, because forager populations are usually stable. Some are unstable, but these usually transform into other foraging niches, not geographically expansive farming niches. The Epipalaeolithic (final hunter–gatherer) niche in the Near East was complex but stable, with a relatively high population density, until destabilized by an abrupt climatic change. The niche was unintentionally transformed into an agricultural one, due to chance genetic and behavioural attributes of some wild plant and animal species. The agricultural niche could be exported with modifications over much of the Old World. This was driven by massive population increase and had huge impacts on local people, animals and plants wherever the farming niche was carried. Farming niches in some areas may temporarily come close to stability, but the history of the last 11 000 years does not suggest that agriculture is an effective strategy for achieving demographic and political stability in the world's farming populations. PMID:21320899

  7. Niche dynamics of shorebirds in Delaware Bay: Foraging behavior, habitat choice and migration timing

    NASA Astrophysics Data System (ADS)

    Novcic, Ivana

    2016-08-01

    Niche differentiation through resource partitioning is seen as one of the most important mechanisms of diversity maintenance contributing to stable coexistence of different species within communities. In this study, I examined whether four species of migrating shorebirds, dunlins (Calidris alpina), semipalmated sandpipers (Calidris pusilla), least sandpipers (Calidris minutilla) and short-billed dowitchers (Limnodromus griseus), segregate by time of passage, habitat use and foraging behavior at their major stopover in Delaware Bay during spring migration. I tested the prediction that most of the separation between morphologically similar species will be achieved by differential migration timing. Despite the high level of overlap along observed niche dimensions, this study demonstrates a certain level of ecological separation between migrating shorebirds. The results of analyses suggest that differential timing of spring migration might be the most important dimension along which shorebird species segregate while at stopover in Delaware Bay. Besides differences in time of passage, species exhibited differences in habitat use, particularly least sandpipers that foraged in vegetated areas of tidal marshes more frequently than other species, as well as short-billed dowitchers that foraged in deeper water more often than small sandpipers did. Partitioning along foraging techniques was less prominent than segregation along temporal or microhabitat dimensions. Such ranking of niche dimensions emphasizes significance of temporal segregation of migratory species - separation of species by time of passage may reduce the opportunity for interspecific aggressive encounters, which in turn can have positive effects on birds' time and energy budget during stopover period.

  8. Stem cell autotomy and niche interaction in different systems

    PubMed Central

    Dorn, David C; Dorn, August

    2015-01-01

    The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon

  9. Limiting similarity and niche theory for structured populations.

    PubMed

    Szilágyi, András; Meszéna, Géza

    2009-05-07

    We develop the theory of limiting similarity and niche for structured populations with finite number of individual states (i-state). In line with a previously published theory for unstructured populations, the niche of a species is specified by the impact and sensitivity niche vectors. They describe the population's impact on and sensitivity towards the variables involved in the population regulation. Robust coexistence requires sufficient segregation of the impact, as well as of the sensitivity niche vectors. Connection between the population-level impact and sensitivity and the impact/sensitivity of the specific i-states is developed. Each i-state contributes to the impact of the population proportional to its frequency in the population. Sensitivity of the population is composed of the sensitivity of the rates of demographic transitions, weighted by the frequency and by the reproductive value of the initial and final i-states of the transition, respectively. Coexistence in a multi-patch environment is studied. This analysis is interpreted as spatial niche segregation.

  10. Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches

    PubMed Central

    Filannino, Pasquale; Di Cagno, Raffaella; Crecchio, Carmine; De Virgilio, Caterina; De Angelis, Maria; Gobbetti, Marco

    2016-01-01

    Lactobacillus plantarum has been isolated from a large variety of ecological niches, thus highlighting its remarkable environmental adaptability as a generalist. Plant fermentation conditions markedly affect the functional features of L. plantarum strains. We investigated the plant niche-specific traits of L. plantarum through whole-transcriptome and phenotypic microarray profiles. Carrot (CJ) and pineapple (PJ) juices were chosen as model systems, and MRS broth was used as a control. A set of 3,122 genes was expressed, and 21 to 31% of genes were differentially expressed depending on the plant niche and cell physiological state. L. plantarum C2 seemed to specifically respond to plant media conditions. When L. plantarum was cultured in CJ, useful pathways were activated, which were aimed to sense the environment, save energy and adopt alternative routes for NAD+ regeneration. In PJ the acidic environment caused a transcriptional switching, which was network-linked to an acid tolerance response involving carbohydrate flow, amino acid and protein metabolism, pH homeostasis and membrane fluidity. The most prominent phenotypic dissimilarities observed in cells grown in CJ and PJ were related to carbon and nitrogen metabolism, respectively. Summarising, a snapshot of a carrot and pineapple sensing and adaptive regulation model for L. plantarum C2 was proposed. PMID:27273017

  11. Light and dark adaptation mechanisms in the compound eyes of Myrmecia ants that occupy discrete temporal niches.

    PubMed

    Narendra, Ajay; Greiner, Birgit; Ribi, Willi A; Zeil, Jochen

    2016-08-15

    Ants of the Australian genus Myrmecia partition their foraging niche temporally, allowing them to be sympatric with overlapping foraging requirements. We used histological techniques to study the light and dark adaptation mechanisms in the compound eyes of diurnal (Myrmecia croslandi), crepuscular (M. tarsata, M. nigriceps) and nocturnal ants (M. pyriformis). We found that, except in the day-active species, all ants have a variable primary pigment cell pupil that constricts the crystalline cone in bright light to control for light flux. We show for the nocturnal M. pyriformis that the constriction of the crystalline cone by the primary pigment cells is light dependent whereas the opening of the aperture is regulated by an endogenous rhythm. In addition, in the light-adapted eyes of all species, the retinular cell pigment granules radially migrate towards the rhabdom, a process that in both the day-active M. croslandi and the night-active M. pyriformis is driven by ambient light intensity. Visual system properties thus do not restrict crepuscular and night-active ants to their temporal foraging niche, while day-active ants require high light intensities to operate. We discuss the ecological significance of these adaptation mechanisms and their role in temporal niche partitioning. © 2016. Published by The Company of Biologists Ltd.

  12. Ants and antlions: The impact of ecology, coevolution and learning on an insect predator-prey relationship.

    PubMed

    Hollis, Karen L

    2017-06-01

    A behavioural ecological approach to the relationship between pit-digging larval antlions and their common prey, ants, provides yet another example of how the specific ecological niche that species inhabit imposes selection pressures leading to unique behavioural adaptations. Antlions rely on multiple strategies to capture prey with a minimal expenditure of energy and extraordinary efficiency while ants employ several different strategies for avoiding capture, including rescue of trapped nestmates. Importantly, both ants and antlions rely heavily on their capacity for learning, a tool that sometimes is overlooked in predator-prey relationships, leading to the implicit assumption that behavioural adaptations are the result of fixed, hard-wired responses. Nonetheless, like hard-wired responses, learned behaviour, too, is uniquely adapted to the ecological niche, a reminder that the expression of associative learning is species-specific. Beyond the study of ants and antlions, per se, this particular predator-prey relationship reveals the important role that the capacity to learn plays in coevolutionary arms races. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Consequences of packaging on bacterial growth. Meat is an ecological niche.

    PubMed

    Labadie, J

    1999-07-01

    Meat is a good support for bacterial growth and particularly for bacteria which are specific of meat and meat products. Little is known about the physiological and biochemical factors which could explain why some bacterial species are only isolated from meat. This review tentatively points out, from an ecological point of view, some of these factors in Gram negative and Gram positive micro-organisms influencing storage life.

  14. A 12,000 year record of changes in herbivore niche separation and palaeoclimate (Wonderwerk Cave, South Africa)

    NASA Astrophysics Data System (ADS)

    Ecker, Michaela; Brink, James; Horwitz, Liora Kolska; Scott, Louis; Lee-Thorp, Julia A.

    2018-01-01

    The large mammalian fauna of southern Africa is characterised by strong niche separation into grazer and browser species, with few falling into the intermediate mixed-feeder niche. Moreover, the modern fauna is reduced in species diversity compared to the Pleistocene, following the extinction of several specialized grazers in the late Pleistocene and early Holocene. How did this state develop, and how might it be connected to climatic change during the Holocene? To better understand this development, we obtained extensive carbon and oxygen stable light isotope data from herbivore tooth enamel samples from Wonderwerk Cave, South Africa, spanning about 12,000-500 cal. BP. This is a unique dataset since it is the only site in the southern Kalahari with a robust chronometric record and well-preserved faunal remains for the last 12,000 years without significant gaps. Combining the stable isotopes with pollen and micromammal data from Wonderwerk Cave, we have explored shifts in the proportions of C3 and C4 plants and moisture availability. Although climate remained generally semi-arid for much of this period, the results show significant hydrological and vegetation shifts in the sequence, particularly with the strengthening of summer rainfall in the mid-Holocene. The results for the sixteen herbivore species reveal a reinforcement of the grazer-browser niche partitioning through the Holocene and shows how niche specialization follows changes in local vegetation composition. In the light of this reconstruction of the local ecology we discuss grazer extinctions, human adaptations, and the drivers behind climatic changes in the summer rainfall zone of southern Africa.

  15. Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts.

    PubMed

    Ojeda Alayon, Dario I; Tsui, Clement K M; Feau, Nicolas; Capron, Arnaud; Dhillon, Braham; Zhang, Yiyuan; Massoumi Alamouti, Sepideh; Boone, Celia K; Carroll, Allan L; Cooke, Janice E K; Roe, Amanda D; Sperling, Felix A H; Hamelin, Richard C

    2017-04-01

    Bark beetles form multipartite symbiotic associations with blue stain fungi (Ophiostomatales, Ascomycota). These fungal symbionts play an important role during the beetle's life cycle by providing nutritional supplementation, overcoming tree defences and modifying host tissues to favour brood development. The maintenance of stable multipartite symbioses with seemingly less competitive symbionts in similar habitats is of fundamental interest to ecology and evolution. We tested the hypothesis that the coexistence of three fungal species associated with the mountain pine beetle is the result of niche partitioning and adaptive radiation using SNP genotyping coupled with genotype-environment association analysis and phenotypic characterization of growth rate under different temperatures. We found that genetic variation and population structure within each species is best explained by distinct spatial and environmental variables. We observed both common (temperature seasonality and the host species) and distinct (drought, cold stress, precipitation) environmental and spatial factors that shaped the genomes of these fungi resulting in contrasting outcomes. Phenotypic intraspecific variations in Grosmannia clavigera and Leptographium longiclavatum, together with high heritability, suggest potential for adaptive selection in these species. By contrast, Ophiostoma montium displayed narrower intraspecific variation but greater tolerance to extreme high temperatures. Our study highlights unique phenotypic and genotypic characteristics in these symbionts that are consistent with our hypothesis. By maintaining this multipartite relationship, the bark beetles have a greater likelihood of obtaining the benefits afforded by the fungi and reduce the risk of being left aposymbiotic. Complementarity among species could facilitate colonization of new habitats and survival under adverse conditions. © 2017 John Wiley & Sons Ltd.

  16. Diversification of the cold-adapted butterfly genus Oeneis related to Holarctic biogeography and climatic niche shifts.

    PubMed

    Kleckova, I; Cesanek, M; Fric, Z; Pellissier, L

    2015-11-01

    Both geographical and ecological speciation interact during the evolution of a clade, but the relative contribution of these processes is rarely assessed for cold-dwelling biota. Here, we investigate the role of biogeography and the evolution of ecological traits on the diversification of the Holarctic arcto-alpine butterfly genus Oeneis (Lepidoptera: Satyrinae). We reconstructed the molecular phylogeny of the genus based on one mitochondrial (COI) and three nuclear (GAPDH, RpS5, wingless) genes. We inferred the biogeographical scenario and the ancestral state reconstructions of climatic and habitat requirements. Within the genus, we detected five main species groups corresponding to the taxonomic division and further paraphyletic position of Neominois (syn. n.). Next, we transferred O. aktashi from the hora to the polixenes species group on the bases of molecular relationships. We found that the genus originated in the dry grasslands of the mountains of Central Asia and dispersed over the Beringian Land Bridges to North America several times independently. Holarctic mountains, in particular the Asian Altai Mts. and Sayan Mts., host the oldest lineages and most of the species diversity. Arctic species are more recent, with Pliocene or Pleistocene origin. We detected a strong phylogenetic signal for the climatic niche, where one lineage diversified towards colder conditions. Altogether, our results indicate that both dispersal across geographical areas and occupation of distinct climatic niches promoted the diversification of the Oeneis genus. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Time-Specific Ecologic Niche Models Forecast the Risk of Hemorrhagic Fever with Renal Syndrome in Dongting Lake District, China, 2005–2010

    PubMed Central

    Lin, Xiao-Ling; Li, Xiu-Jun; Ma, Gui-Hua; Huang, Ru; Yang, Hui-Suo; Tian, Huaiyu; Xiao, Hong

    2014-01-01

    Background Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies. Methodology/Principal Findings We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors. Conclusions/Significance Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS. PMID:25184252

  18. Differences in life-history and ecological traits between co-occurring Panulirus spiny lobsters (Decapoda, Palinuridae).

    PubMed

    Briones-Fourzán, Patricia

    2014-01-01

    Coexistence of closely related species may be promoted by niche differentiation or result from interspecific trade-offs in life history and ecological traits that influence relative fitness differences and contribute to competitive inequalities. Although insufficient to prove coexistence, trait comparisons provide a first step to identify functional differences between co-occurring congeneric species in relation to mechanisms of coexistence. Here, a comparative review on life history and ecological traits is presented for two pairs of co-occurring species of spiny lobsters in the genus Panulirus: Panulirusgracilis and Panulirusinflatus from the Eastern Central Pacific region, and Panulirusargus and Panulirusguttatus from the Caribbean region. Panulirusgracilis and Panulirusinflatus have similar larval, postlarval, and adult sizes and a similar diet, but differ in degree of habitat specialization, fecundity, and growth rate. However, little is known on behavioral traits of these two species that may influence their competitive abilities and susceptibility to predators. The more abundant information on Panulirusargus and Panulirusguttatus shows that these two species differ more broadly in degree of habitat specialization, larval, postlarval and adult sizes, diet, fecundity, growth rate, degree of sociality, defense mechanisms, susceptibility to predators, and chemical ecology, suggesting a greater degree of niche differentiation between Panulirusargus and Panulirusguttatus than between Panulirusgracilis and Panulirusinflatus. Whether the substantial niche differentiation and apparent interspecific trade-offs between Panulirusargus and Panulirusguttatus relative to Panulirusgracilis and Panulirusinflatus reflect an earlier divergence of the former pair of species in the evolution of the genus constitutes an intriguing hypothesis. However, whether or not post-divergence evolution of each species pair occurred in sympatry remains uncertain.

  19. Competition and niche construction in a model of cancer metastasis

    PubMed Central

    Akçay, Erol

    2018-01-01

    Niche construction theory states that not only does the environment act on populations to generate Darwinian selection, but organisms reciprocally modify the environment and the sources of natural selection. Cancer cells participate in niche construction as they alter their microenvironments and create pre-metastatic niches; in fact, metastasis is a product of niche construction. Here, we present a mathematical model of niche construction and metastasis. Our model contains producers, which pay a cost to contribute to niche construction that benefits all tumor cells, and cheaters, which reap the benefits without paying the cost. We derive expressions for the conditions necessary for metastasis, showing that the establishment of a mutant lineage that promotes metastasis depends on niche construction specificity and strength of interclonal competition. We identify a tension between the arrival and invasion of metastasis-promoting mutants, where tumors composed only of cheaters remain small but are susceptible to invasion whereas larger tumors containing producers may be unable to facilitate metastasis depending on the level of niche construction specificity. Our results indicate that even if metastatic subclones arise through mutation, metastasis may be hindered by interclonal competition, providing a potential explanation for recent surprising findings that most metastases are derived from early mutants in primary tumors. PMID:29813117

  20. Competition and niche construction in a model of cancer metastasis.

    PubMed

    Qian, Jimmy J; Akçay, Erol

    2018-01-01

    Niche construction theory states that not only does the environment act on populations to generate Darwinian selection, but organisms reciprocally modify the environment and the sources of natural selection. Cancer cells participate in niche construction as they alter their microenvironments and create pre-metastatic niches; in fact, metastasis is a product of niche construction. Here, we present a mathematical model of niche construction and metastasis. Our model contains producers, which pay a cost to contribute to niche construction that benefits all tumor cells, and cheaters, which reap the benefits without paying the cost. We derive expressions for the conditions necessary for metastasis, showing that the establishment of a mutant lineage that promotes metastasis depends on niche construction specificity and strength of interclonal competition. We identify a tension between the arrival and invasion of metastasis-promoting mutants, where tumors composed only of cheaters remain small but are susceptible to invasion whereas larger tumors containing producers may be unable to facilitate metastasis depending on the level of niche construction specificity. Our results indicate that even if metastatic subclones arise through mutation, metastasis may be hindered by interclonal competition, providing a potential explanation for recent surprising findings that most metastases are derived from early mutants in primary tumors.

  1. Target Article with Commentaries: Developmental Niche Construction

    ERIC Educational Resources Information Center

    Flynn, Emma G.; Laland, Kevin N.; Kendal, Rachel L.; Kendal, Jeremy R.

    2013-01-01

    Niche construction is the modification of components of the environment through an organism's activities. Humans modify their environments mainly through ontogenetic and cultural processes, and it is this reliance on learning, plasticity and culture that lends human niche construction a special potency. In this paper we aim to facilitate…

  2. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya.

    PubMed

    Samy, Abdallah M; Annajar, Badereddin B; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A Townsend

    2016-02-01

    Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country.

  3. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya

    PubMed Central

    Samy, Abdallah M.; Annajar, Badereddin B.; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A. Townsend

    2016-01-01

    Abstract Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country. PMID:26863317

  4. Detecting spatial ontogenetic niche shifts in complex dendritic ecological networks

    USGS Publications Warehouse

    Fields, William R.; Grant, Evan H. Campbell; Lowe, Winsor H.

    2017-01-01

    Ontogenetic niche shifts (ONS) are important drivers of population and community dynamics, but they can be difficult to identify for species with prolonged larval or juvenile stages, or for species that inhabit continuous habitats. Most studies of ONS focus on single transitions among discrete habitat patches at local scales. However, for species with long larval or juvenile periods, affinity for particular locations within connected habitat networks may differ among cohorts. The resulting spatial patterns of distribution can result from a combination of landscape-scale habitat structure, position of a habitat patch within a network, and local habitat characteristics—all of which may interact and change as individuals grow. We estimated such spatial ONS for spring salamanders (Gyrinophilus porphyriticus), which have a larval period that can last 4 years or more. Using mixture models to identify larval cohorts from size frequency data, we fit occupancy models for each age class using two measures of the branching structure of stream networks and three measures of stream network position. Larval salamander cohorts showed different preferences for the position of a site within the stream network, and the strength of these responses depended on the basin-wide spatial structure of the stream network. The isolation of a site had a stronger effect on occupancy in watersheds with more isolated headwater streams, while the catchment area, which is associated with gradients in stream habitat, had a stronger effect on occupancy in watersheds with more paired headwater streams. Our results show that considering the spatial structure of habitat networks can provide new insights on ONS in long-lived species.

  5. Profound Climatic Effects on Two East Asian Black-Throated Tits (Ave: Aegithalidae), Revealed by Ecological Niche Models and Phylogeographic Analysis

    PubMed Central

    Wang, Wenjuan; Lin, Congtian; Gao, Bin; Yang, Xiaojun; Zhang, Zhengwang; Lei, Fumin

    2011-01-01

    Although a number of studies have assessed the effects of geological and climatic changes on species distributions in East Asian, we still have limited knowledge of how these changes have impacted avian species in south-western and southern China. Here, we aim to study paleo-climatic effects on an East Asian bird, two subspecies of black-throated tit (A. c. talifuensis–concinnus) with the combined analysis of phylogeography and Ecological Niche Models (ENMs). We sequenced three mitochondrial DNA markers from 32 populations (203 individuals) and used phylogenetic inferences to reconstruct the intra-specific relationships among haplotypes. Population genetic analyses were undertaken to gain insight into the demographic history of these populations. We used ENMs to predict the distribution of target species during three periods; last inter-glacial (LIG), last glacial maximum (LGM) and present. We found three highly supported, monophyletic MtDNA lineages and different historical demography among lineages in A. c. talifuensis–concinnus. These lineages formed a narrowly circumscribed intra-specific contact zone. The estimated times of lineage divergences were about 2.4 Ma and 0.32 Ma respectively. ENMs predictions were similar between present and LGM but substantially reduced during LIG. ENMs reconstructions and molecular dating suggest that Pleistocene climate changes had triggered and shaped the genetic structure of black-throated tit. Interestingly, in contrast to profound impacts of other glacial cycles, ENMs and phylogeographic analysis suggest that LGM had limited effect on these two subspecies. ENMs also suggest that Pleistocene climatic oscillations enabled the formation of the contact zone and thus support the refuge theory. PMID:22195047

  6. Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas.

    PubMed

    Phillips, Matthew J; Bennett, Thomas H; Lee, Michael S Y

    2009-10-06

    The semiaquatic platypus and terrestrial echidnas (spiny anteaters) are the only living egg-laying mammals (monotremes). The fossil record has provided few clues as to their origins and the evolution of their ecological specializations; however, recent reassignment of the Early Cretaceous Teinolophos and Steropodon to the platypus lineage implies that platypuses and echidnas diverged >112.5 million years ago, reinforcing the notion of monotremes as living fossils. This placement is based primarily on characters related to a single feature, the enlarged mandibular canal, which supplies blood vessels and dense electrosensory receptors to the platypus bill. Our reevaluation of the morphological data instead groups platypus and echidnas to the exclusion of Teinolophos and Steropodon and suggests that an enlarged mandibular canal is ancestral for monotremes (partly reversed in echidnas, in association with general mandibular reduction). A multigene evaluation of the echidna-platypus divergence using both a relaxed molecular clock and direct fossil calibrations reveals a recent split of 19-48 million years ago. Platypus-like monotremes (Monotrematum) predate this divergence, indicating that echidnas had aquatically foraging ancestors that reinvaded terrestrial ecosystems. This ecological shift and the associated radiation of echidnas represent a recent expansion of niche space despite potential competition from marsupials. Monotremes might have survived the invasion of marsupials into Australasia by exploiting ecological niches in which marsupials are restricted by their reproductive mode. Morphology, ecology, and molecular biology together indicate that Teinolophos and Steropodon are basal monotremes rather than platypus relatives, and that living monotremes are a relatively recent radiation.

  7. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria

    PubMed Central

    Farrant, Gregory K.; Doré, Hugo; Cornejo-Castillo, Francisco M.; Partensky, Frédéric; Ratin, Morgane; Ostrowski, Martin; Pitt, Frances D.; Wincker, Patrick; Scanlan, David J.; Iudicone, Daniele; Acinas, Silvia G.; Garczarek, Laurence

    2016-01-01

    Prochlorococcus and Synechococcus are the two most abundant and widespread phytoplankton in the global ocean. To better understand the factors controlling their biogeography, a reference database of the high-resolution taxonomic marker petB, encoding cytochrome b6, was used to recruit reads out of 109 metagenomes from the Tara Oceans expedition. An unsuspected novel genetic diversity was unveiled within both genera, even for the most abundant and well-characterized clades, and 136 divergent petB sequences were successfully assembled from metagenomic reads, significantly enriching the reference database. We then defined Ecologically Significant Taxonomic Units (ESTUs)—that is, organisms belonging to the same clade and occupying a common oceanic niche. Three major ESTU assemblages were identified along the cruise transect for Prochlorococcus and eight for Synechococcus. Although Prochlorococcus HLIIIA and HLIVA ESTUs codominated in iron-depleted areas of the Pacific Ocean, CRD1 and the yet-to-be cultured EnvB were the prevalent Synechococcus clades in this area, with three different CRD1 and EnvB ESTUs occupying distinct ecological niches with regard to iron availability and temperature. Sharp community shifts were also observed over short geographic distances—for example, around the Marquesas Islands or between southern Indian and Atlantic Oceans—pointing to a tight correlation between ESTU assemblages and specific physico-chemical parameters. Together, this study demonstrates that there is a previously overlooked, ecologically meaningful, fine-scale diversity within some currently defined picocyanobacterial ecotypes, bringing novel insights into the ecology, diversity, and biology of the two most abundant phototrophs on Earth. PMID:27302952

  8. Evolution and ecology of retinal photoreception in early vertebrates.

    PubMed

    Collin, Shaun P

    2010-01-01

    Visual ecology or the relationship between the visual system of an animal and its environment has proven to be a crucial research field for establishing general concepts of adaptation, specialization and evolution. The visual neuroscientist is indeed confronted with a plethora of different visual characteristics, each seemingly optimised for each species' ecological niche, but often without a clear understanding of the evolutionary constraints at play. However, before we are able to fully understand the influence(s) of ecology and phylogeny on visual system design in vertebrates, it is first necessary to understand the basic bauplan of key representatives of each taxa. This review examines photoreception in hagfishes, lampreys, cartilaginous fishes and lungfishes with an eye to their ecology using a range of neurobiological methods including anatomy, microspectrophotometry and molecular genetics. These early vertebrates represent critical stages in evolution and surprisingly possess a level of visual complexity that is almost unrivalled in other vertebrates. 2010 S. Karger AG, Basel.

  9. [Review on the feeding ecology and migration patterns of sharks using stable isotopes].

    PubMed

    Li, Yun-Kai

    2014-09-01

    With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement to traditional methods for investigating the trophic ecology of animals. Sharks play a keystone role in marine food webs as the apex predators and are recently becoming the frontier topic of food web studies and marine conservation because of their unique characteristics of evolution. Recently, SIA has recently been applied to trophic ecology studies of shark species. Here, we reviewed the current applications of SIA in shark species, focusing on available tissues for analyzing, standardized analytical approaches, diet-tissue discrimination factors, diet shift investigation, migration patterns predictions and niche-width analyses, with the aim of getting better understanding of stable-isotope dynamics in shark biology and ecology research.

  10. Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad, Venezuela and New Zealand: poikilohydry in a light-limited but low evaporation ecological niche

    PubMed Central

    Proctor, Michael C. F.

    2012-01-01

    Background and Aims Hymenophyllaceae (filmy ferns) are typically plants of shady, constantly moist habitats. They attain greatest species diversity and biomass in humid tropical montane forests and temperate hyperoceanic climates. This paper presents ecophysiological data bearing on their worldwide ecological niche space and its limits. Methods Chlorophyll fluorescence was used to monitor recovery in desiccation experiments, and for measurements of 95 % saturating irradiance [photosynthetic photon flux density (PPFD95 %)] of photosynthetic electron flow and other parameters, in the New Zealand Hymenophyllum sanguinolentum, and three species each of Hymenophyllum and Trichomanes from forests in Trinidad and Venezuela. Key Results Hymenophyllum sanguinolentum was comparable in desiccation tolerance and light responses with the European species. The more common species in the two tropical forests showed PPFD95 % >100 µmol m−2 s−1, and withstood moderate desiccation (–40 MPa) for several days. The four most shade-adapted species had PPFD95 % ≤51 µmol m−2 s−1, and were sensitive to even mild and brief desiccation (–22 MPa for 3 d). Conclusions Light and desiccation responses of filmy ferns can be seen as an integrated package. At low light and windspeed in humid forests, net radiation and saturation deficit are low, and diffusion resistance high. Water loss is slow and can be supported by modest conduction from the sub-stratum. With higher irradiance, selection pressure for desiccation tolerance increases progressively. With low light and high humidity, the filmy fern pattern of adaptation is probably optimal, and the vascular plant leaf with mesophyll and stomata offers no advantage in light capture, water economy or CO2 uptake. Trade-offs between light adaptation and desiccation tolerance, and between stem conduction and water absorption through the leaf surface, underlie adaptive radiation and niche differentiation of species within the family

  11. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning.

    PubMed

    Dini-Andreote, Francisco; de Cássia Pereira e Silva, Michele; Triadó-Margarit, Xavier; Casamayor, Emilio O; van Elsas, Jan Dirk; Salles, Joana Falcão

    2014-10-01

    The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time.

  12. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning

    PubMed Central

    Dini-Andreote, Francisco; de Cássia Pereira e Silva, Michele; Triadó-Margarit, Xavier; Casamayor, Emilio O; van Elsas, Jan Dirk; Salles, Joana Falcão

    2014-01-01

    The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time. PMID:24739625

  13. Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage

    PubMed Central

    Benson, Roger B. J.; Campione, Nicolás E.; Carrano, Matthew T.; Mannion, Philip D.; Sullivan, Corwin; Upchurch, Paul; Evans, David C.

    2014-01-01

    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614–622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation

  14. Beyond the Niche: Tissue-Level Coordination of Stem Cell Dynamics

    PubMed Central

    O’Brien, Lucy Erin; Bilder, David

    2014-01-01

    Adult animals rely on populations of stem cells to ensure organ function throughout their lifetime. Stem cells are governed by signals from stem cell niches, and much is known about how single niches promote stemness and direct stem cell behavior. However, most organs contain a multitude of stem cell–niche units, which are often distributed across the entire expanse of the tissue. Beyond the biology of individual stem cell–niche interactions, the next challenge is to uncover the tissue-level processes that orchestrate spatial control of stem-based renewal, repair, and remodeling throughout a whole organ. Here we examine what is known about higher order mechanisms for interniche coordination in epithelial organs, whose simple geometry offers a promising entry point for understanding the regulation of niche number, distribution, and activity. We also consider the potential existence of stem cell territories and how tissue architecture may influence niche coordination. PMID:23937350

  15. Food-web dynamics and isotopic niches in deep-sea communities residing in a submarine canyon and on the adjacent open slopes

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; McClain-Counts, Jennifer; Ross, Steve W.; Brooke, Sandra; Mienis, Furu

    2017-01-01

    Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension feeders, consistent with consuming older, more refractory organic matter. In contrast, canyon suspension feeders had the largest and more distinct isotopic niche, indicating they consume an isotopically discrete food source, possibly fresher organic material. The wider isotopic niche observed for canyon consumers indicated the presence of feeding specialists and generalists. High dispersion in δ13C values for canyon consumers suggests that the isotopic composition of particulate organic matter changes, which is linked to depositional dynamics, resulting in discrete zones of organic matter accumulation or resuspension. Heterogeneity in habitat and food availability likely enhances trophic diversity in canyons. Given their abundance in the world's oceans, our results from Baltimore Canyon suggest that submarine canyons may represent important havens for trophic diversity.

  16. Chironomidae larvae (Diptera) of Neotropical floodplain: overlap niche in different habitats.

    PubMed

    Butakka, C M M; Ragonha, F H; Takeda, A M

    2014-05-01

    The niche overlap between trophic groups of Chironomidae larvae in different habitats was observed between trophic groups and between different environments in Neotropical floodplain. For the evaluation we used the index of niche overlap (CXY) and analysis of trophic networks, both from the types and amount of food items identified in the larval alimentary canal. In all environments, the larvae fed on mainly organic matter such as plants fragments and algae, but there were many omnivore larvae. Species that have high values of food items occurred in diverse environments as generalists with great overlap niche and those with a low amount of food items with less overlap niche were classified as specialists. The largest number of trophic niche overlap was observed among collector-gatherers in connected floodplain lakes. The lower values of index niche overlap were predators. The similarity in the diet of different taxa in the same niche does not necessarily imply competition between them, but coexistence when the food resource is not scarce in the environment even in partially overlapping niches.

  17. Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species.

    PubMed

    González, Camila; Wang, Ophelia; Strutz, Stavana E; González-Salazar, Constantino; Sánchez-Cordero, Víctor; Sarkar, Sahotra

    2010-01-19

    Climate change is increasingly being implicated in species' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis. The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an

  18. An Ecological Assessment of the Pandemic Threat of Zika Virus

    PubMed Central

    Getz, Wayne

    2016-01-01

    The current outbreak of Zika virus poses a severe threat to human health. While the range of the virus has been cataloged growing slowly over the last 50 years, the recent explosive expansion in the Americas indicates that the full potential distribution of Zika remains uncertain. Moreover, many studies rely on its similarity to dengue fever, a phylogenetically closely related disease of unknown ecological comparability. Here we compile a comprehensive spatially-explicit occurrence dataset from Zika viral surveillance and serological surveys based in its native range, and construct ecological niche models to test basic hypotheses about its spread and potential establishment. The hypothesis that the outbreak of cases in Mexico and North America are anomalous and outside the native ecological niche of the disease, and may be linked to either genetic shifts between strains, or El Nino or similar climatic events, remains plausible at this time. Comparison of the Zika niche against the known distribution of dengue fever suggests that Zika is more constrained by the seasonality of precipitation and diurnal temperature fluctuations, likely confining autochthonous non-sexual transmission to the tropics without significant evolutionary change. Projecting the range of the diseases in conjunction with three major vector species (Aedes africanus, Ae. aegypti, and Ae. albopictus) that transmit the pathogens, under climate change, suggests that Zika has potential for northward expansion; but, based on current knowledge, our models indicate Zika is unlikely to fill the full range its vectors occupy, and public fear of a vector-borne Zika epidemic in the mainland United States is potentially informed by biased or limited scientific knowledge. With recent sexual transmission of the virus globally, we caution that our results only apply to the vector-borne transmission route of the pathogen, and while the threat of a mosquito-carried Zika pandemic may be overstated in the media

  19. An Ecological Assessment of the Pandemic Threat of Zika Virus.

    PubMed

    Carlson, Colin J; Dougherty, Eric R; Getz, Wayne

    2016-08-01

    The current outbreak of Zika virus poses a severe threat to human health. While the range of the virus has been cataloged growing slowly over the last 50 years, the recent explosive expansion in the Americas indicates that the full potential distribution of Zika remains uncertain. Moreover, many studies rely on its similarity to dengue fever, a phylogenetically closely related disease of unknown ecological comparability. Here we compile a comprehensive spatially-explicit occurrence dataset from Zika viral surveillance and serological surveys based in its native range, and construct ecological niche models to test basic hypotheses about its spread and potential establishment. The hypothesis that the outbreak of cases in Mexico and North America are anomalous and outside the native ecological niche of the disease, and may be linked to either genetic shifts between strains, or El Nino or similar climatic events, remains plausible at this time. Comparison of the Zika niche against the known distribution of dengue fever suggests that Zika is more constrained by the seasonality of precipitation and diurnal temperature fluctuations, likely confining autochthonous non-sexual transmission to the tropics without significant evolutionary change. Projecting the range of the diseases in conjunction with three major vector species (Aedes africanus, Ae. aegypti, and Ae. albopictus) that transmit the pathogens, under climate change, suggests that Zika has potential for northward expansion; but, based on current knowledge, our models indicate Zika is unlikely to fill the full range its vectors occupy, and public fear of a vector-borne Zika epidemic in the mainland United States is potentially informed by biased or limited scientific knowledge. With recent sexual transmission of the virus globally, we caution that our results only apply to the vector-borne transmission route of the pathogen, and while the threat of a mosquito-carried Zika pandemic may be overstated in the media

  20. Microbial Ecology and Evolution in the Acid Mine Drainage Model System.

    PubMed

    Huang, Li-Nan; Kuang, Jia-Liang; Shu, Wen-Sheng

    2016-07-01

    Acid mine drainage (AMD) is a unique ecological niche for acid- and toxic-metals-adapted microorganisms. These low-complexity systems offer a special opportunity for the ecological and evolutionary analyses of natural microbial assemblages. The last decade has witnessed an unprecedented interest in the study of AMD communities using 16S rRNA high-throughput sequencing and community genomic and postgenomic methodologies, significantly advancing our understanding of microbial diversity, community function, and evolution in acidic environments. This review describes new data on AMD microbial ecology and evolution, especially dynamics of microbial diversity, community functions, and population genomes, and further identifies gaps in our current knowledge that future research, with integrated applications of meta-omics technologies, will fill. Copyright © 2016 Elsevier Ltd. All rights reserved.