Science.gov

Sample records for narrow emission band

  1. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  2. Narrow-band tunable terahertz emission from ferrimagnetic Mn3-xGa thin films

    NASA Astrophysics Data System (ADS)

    Awari, N.; Kovalev, S.; Fowley, C.; Rode, K.; Gallardo, R. A.; Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Green, B.; Yildirim, O.; Lindner, J.; Fassbender, J.; Coey, J. M. D.; Deac, A. M.; Gensch, M.

    2016-07-01

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn3-xGa Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20-0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  3. Correlated pulsations in auroral light intensity and narrow band VLF emissions

    NASA Astrophysics Data System (ADS)

    Hansen, H. J.; Scourfield, M. W. J.; Rash, J. P. S.

    Observations at Sanae, Antarctica of pulsating aurora with a low light level TV system have been combined with simultaneous records of narrow band VLF emissions. Both auroral light and VLF intensities display a significant peak at 1.3±0.3 Hz in the power spectrum. The peaks in the auroral light intensity variations lead those in the VLF by times between zero and 200 ms, as revealed by cross-spectral analysis. Furthermore the 4 kHz VLF component leads the 3.5 kHz component by zero to 100 ms. These results are explained in terms of cyclotron resonance between the auroral electrons and VLF in a region displaced 8000 km from the equatorial plane.

  4. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    nm (r2 = 0.88, RMSE = 7.54 x 107). When perfect retrievals were assumed (0% noise), retrievals remained good in the low emission regions on either side of the peaks-- those associated with the H alpha line at 655 nm (r2 = 0.83, RMSE =8.87 x 107) and the far-NIR wavelengths recently utilized for satellite retrievals: a K line at 770 nm (r2 = 0.85, RMSE = 8.36 x 107) and the 750-770 nm interval (r2 = 0.88, RMSE = 6.92 x 107). However, the atmosphere and satellite observations are expected to add noise to retrievals. Adding 5% random error to these relationships did not seriously impair the retrieval successes in the red and far-red peaks (r2 ~ 0.85, RMSEs = 6.31 x 107). A greater impact occurred (reducing retrieval success by ~10%) when adding 5% noise for the far-NIR narrow band at 770 nm (r2 ~ 0.70, RMSE ~ 8.5 x 107). When a 10% random error was added, the retrieval successes fell to ~68 ± 7% for all retrieval wavebands, and RMSEs increased by a factor of 10. This laboratory approach will be critical to calibrate space borne retrievals, but additional information across plant species is needed. Furthermore, this experiment indicates that ChlF retrievals from space should include information from the red and far-red peak emission regions, since the true total fluorescence signal is the desired parameter for Earth carbon and energy budgets.

  5. Enhanced tunable narrow-band THz emission from laser-modulated electron beams

    SciTech Connect

    Xiang, D.; Stupakov, G.; /SLAC

    2009-06-19

    We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers and dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.

  6. Quantitative Method for the Optimal Subtraction of Continuum Emission from Narrow-band Images: Skewness Transition Analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Calzetti, Daniela; Dickinson, Mark

    2014-01-01

    We present an objective method to remove the stellar continuum emission from narrow-band images to derive emission-line images. The method is based on the skewness of the pixel histogram of the residual images. Specifically, we exploit a transition in the skewness of the signal in the continuum-subtracted image, which appears when the image changes from being undersubtracted to oversubtracted. Tests on one-dimensional artificial images demonstrate that the transition identifies the optimal scaling factor μ to be used on the broad-band image IB in order to produce the optimal line-emission image IE, i.e., IE = IN-μIB, with IN the original (unsubtracted) narrow-band image. The advantage of this method is that it uses all information-bearing pixels in the final image, and not just a subset of those pixels (the latter being common in many traditional approaches to stellar continuum removal from narrow-band images). We apply our method to actual images, both from ground-based and space facilities, in particular to WFPC2 and ACS images from the Hubble Space Telescope, and we show that it is successful irrespective of the nature of the sources (point-like or extended). We also discuss the impact on the accuracy of the method of nonoptimal images, such as those containing saturated sources or nonuniform background, and present workarounds for those problems.

  7. Emission red shift and unusual band narrowing of Mn2+ in NaCaPO4 phosphor.

    PubMed

    Shi, Liang; Huang, Yanlin; Seo, Hyo Jin

    2010-07-01

    Concentration dependence of Mn(2+) luminescence in NaCaPO(4)/Mn(2+) is investigated by structural analyses and optical and laser excitation spectroscopies in the temperature range 19-300 K. NaCaPO(4)/Mn(2+) forms solid solution over the Mn(2+) concentration range 1.0-22 mol %. We observe the red shift and unusual band narrowing of Mn(2+) emission by increasing Mn(2+) concentration in NaCaPO(4). The lifetime of Mn(2+) emission lengthens unexpectedly for higher Mn(2+) concentration. The results are discussed in relation with crystal structure, photon reabsorption, exchange interaction, and energy transfer and energy migration in NaCaPO(4)/Mn(2+).

  8. Narrow Red Emission Band Fluoride Phosphor KNaSiF6:Mn(4+) for Warm White Light-Emitting Diodes.

    PubMed

    Jin, Ye; Fang, Mu-Huai; Grinberg, Marek; Mahlik, Sebastian; Lesniewski, Tadeusz; Brik, M G; Luo, Guan-Yu; Lin, Jauyn Grace; Liu, Ru-Shi

    2016-05-11

    Red phosphors AMF6:Mn(4+) (A = Na, K, Cs, Ba, Rb; M = Si, Ti, Ge) have been widely studied due to the narrow red emission bands around 630 nm. The different emission of the zero-phonon line (ZPL) may affect the color rendering index of white light-emitting diodes (WLED). The primary reason behind the emergence and intensity of ZPL, taking KNaSiF6:Mn(4+) as an example, was investigated here. The effects of pressure on crystal structure and luminescence were determined experimentally and theoretically. The increase of band gap, red shift of emission spectrum and blue shift of excitation spectrum were observed with higher applied pressure. The angles of ∠FMnF and ∠FMF(M = Si, Ti, Ge) were found clearly distorted from 180° in MF6(2-) octahedron with strong ZPL intensity. The larger distorted SiF6(2-) octahedron, the stronger ZPL intensity. This research provides a new perspective to address the ZPL intensity problem of the hexafluorosilicate phosphors caused by crystal distortion and pressure-dependence of the luminescence. The efficacy of the device featuring from Y3Al5O12:Ce(3+) (YAG) and KNaSiF6:Mn(4+) phosphor was 118 lm/W with the color temperature of 3455 K. These results reveal that KNaSiF6:Mn(4+) presents good luminescent properties and could be a potential candidate material for application in back-lighting systems.

  9. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  10. A 1.1-1.9 GHz SETI Survey of the Kepler Field. I. A Search for Narrow-band Emission from Select Targets

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill

    2013-04-01

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T eq > 230 K, stars with five or more detected candidates or stars with a super-Earth (R p < 3 R ⊕) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 × 1021 erg s-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be {<}10^{-6}\\ M^{-1}_\\odot. Here we describe our observations, data reduction procedures and results.

  11. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    SciTech Connect

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan; Cobb, Jeff; Lebofsky, Matt; Marcy, Geoffrey W.; Demorest, Paul; Maddalena, Ron J.; Langston, Glen; Howard, Andrew W.; Tarter, Jill

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.

  12. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  13. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  14. Photosensized Controlling Benzyl Methacrylate-Based Matrix Enhanced Eu3+ Narrow-Band Emission for Fluorescence Applications

    PubMed Central

    Lee, Jiann-Fong; Chen, Hsuen-Li; Lee, Geneh-Siang; Tseng, Shao-Chin; Lin, Mei-Hsiang; Liau, Wen-Bin

    2012-01-01

    This study synthesized a europium (Eu3+) complex Eu(DBM)3Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl)-1-methyl-1H-imidazo[4,5-f][1,10]phenanthroline) dispersed in a benzyl methacrylate (BMA) monomer and treated with ultraviolet (UV) light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu3+ energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π–π interactions between the ligands and the Eu3+-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA) matrix. The underlying mechanism of the effective enhancement of the pure Eu3+ emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material. PMID:22489178

  15. Narrow-band nonlinear sea waves

    NASA Technical Reports Server (NTRS)

    Tayfun, M. A.

    1980-01-01

    Probabilistic description of nonlinear waves with a narrow-band spectrum is simplified to a form in which each realization of the surface displacement becomes an amplitude-modulated Stokes wave with a mean frequency and random phase. Under appropriate conditions this simplification provides a convenient yet rigorous means of describing nonlinear effects on sea surface properties in a semiclosed or closed form. In particular, it is shown that surface displacements are non-Gaussian and skewed, as was previously predicted by the Gram-Charlier approximation; that wave heights are Rayleigh distributed, just as in the linear case; and that crests are non-Rayleigh.

  16. Diluted magnetic semiconductors with narrow band gaps

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Maekawa, Sadamichi

    2016-10-01

    We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.

  17. Synchrotron studies of narrow band materials

    SciTech Connect

    Allen, J.W.

    1993-01-01

    Objective was to determine the single-particle electronic structure of selected narrow band materials in order to understand the relation between their electronic structures and novel low energy properties, such as mixed valence, heavy Fermions, Kondo effect, insulator-metal transitions, non-Fermi liquid behavior, and high-temperature superconductivity. This program supports photoemission spectroscopy (PES) at various synchrotrons. The progress is reported under the following section titles: ZSA (Zaanen-Sawatzky-Allen) systematics and I-M transitions in 3d transition metal oxides, insulator-metal transitions in superconducting cuprates, Fermi liquid and non-Fermi liquid behavior in angular resolved PES lineshapes, heavy-Fermion and non-Fermi liquid 5f electron systems, and Kondo insulators.

  18. Tissue characterization by using narrow band imaging

    NASA Astrophysics Data System (ADS)

    Gono, Kazuhiro

    2010-02-01

    NBI (Narrow Band Imaging) was first introduced in the market in 2005 as a technique enabling to enhance image contrast of capillaries on a mucosal surface(1). It is classified as an Optical-Digital Method for Image-Enhanced Endoscopy(2). To date, the application has widely spread not only to gastrointestinal fields such as esophagus, stomach and colon but also the organs such as bronchus and bladder. The main target tissue of NBI enhancement is capillaries. However, findings of many clinical studies conducted by endoscopy physicians have revealed that NBI observation enables to enhance more other structures in addition to capillaries. There is a close relationship between those enhanced structures and histological microstructure of a tissue. This report introduces the tissue microstructures enhanced by NBI and discusses the possibility of optimized illumination wavelength in observing living tissues.

  19. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    SciTech Connect

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-12-31

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized.

  20. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGES

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; Ong, Shyue Ping

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit goodmore » chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  1. The Narrow-Band Model and Semi-Conductor Theory

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1976-01-01

    Applies the narrow-band model to the instruction of intrinsic and extrinsic semiconductors along with the phenomenon of compensation. Advocates the model for undergraduate instruction due to its intuitive appeal and mathematical simplicity. (CP)

  2. Ultrafast Narrow Band Modulation of VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.

  3. The electronic structure of heavy fermions: Narrow temperature independent bands

    SciTech Connect

    Arko, A.J.; Joyce, J.J.; Smith, J.L.; Andrews, A.B.

    1996-08-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.

  4. On narrow-band representation of ocean waves: 1. Theory

    NASA Astrophysics Data System (ADS)

    Tayfun, M. Aziz

    1986-06-01

    The description of linear random waves in the form of an amplitude-modulated carrier wave is known as narrow-band representation. Herewith, the theoretical basis of such a representation is examined in terms of integral properties of surface spectra and criteria governing the statistical and kinematic characteristics of the carrier wave. These considerations are then extended systematically to derive two narrow-band type representations for nonlinear waves. The nature of these representations and their statistical properties are discussed and compared with other models such as those proposed earlier by Tayfun (1980) and Huang et al. (1983).

  5. Narrow-Band WGM Optical Filters With Tunable FSRs

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Strekalov, Dmitry

    2007-01-01

    Optical resonators of the whispering-gallery-mode (WGM) type featuring DC-tunable free spectral ranges (FSRs) have been demonstrated. By making the FSR tunable, one makes it possible to adjust, during operation, the frequency of a microwave signal generated by an optoelectronic oscillator in which an WGM optical resonator is utilized as a narrow-band filter.

  6. A narrow band pattern-matching model of vowel perception

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.; Houde, Robert A.

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  7. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity

    SciTech Connect

    Albrecht, Roland; Bommer, Alexander; Becher, Christoph; Pauly, Christoph; Mücklich, Frank; Schell, Andreas W.; Engel, Philip; Benson, Oliver; Schröder, Tim; Reichel, Jakob

    2014-08-18

    We report the realization of a device based on a single Nitrogen-Vacancy (NV) center in diamond coupled to a fiber-cavity for use as single photon source (SPS). The device consists of two concave mirrors each directly fabricated on the facets of two optical fibers and a preselected nanodiamond containing a single NV center deposited onto one of these mirrors. Both, cavity in- and out-put are directly fiber-coupled, and the emission wavelength is easily tunable by variation of the separation of the two mirrors with a piezo-electric crystal. By coupling to the cavity, we achieve an increase of the spectral photon rate density by two orders of magnitude compared to free-space emission of the NV center. With this work, we establish a simple all-fiber based SPS with promising prospects for the integration into photonic quantum networks.

  8. Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Lang, K. R.; Willson, R. F.

    1986-01-01

    Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.

  9. Latitude dependence of narrow bipolar pulse emissions

    NASA Astrophysics Data System (ADS)

    Ahmad, M. R.; Esa, M. R. M.; Cooray, V.; Baharudin, Z. A.; Hettiarachchi, P.

    2015-06-01

    In this paper, we present a comparative study on the occurrence of narrow bipolar pulses (NBPs) and other forms of lightning flashes across various geographical areas ranging from northern regions to the tropics. As the latitude decreased from Uppsala, Sweden (59.8°N) to South Malaysia (1.5°N), the percentage of NBP emissions relative to the total number of lightning flashes increased significantly from 0.13% to 12%. Occurrences of positive NBPs were more common than negative NBPs at all observed latitudes. However, as latitudes decreased, the negative NBP emissions increased significantly from 20% (Uppsala, Sweden) to 45% (South Malaysia). Factors involving mixed-phase region elevations and vertical extents of thundercloud tops are invoked to explain the observed results. These factors are fundamentally latitude dependent. Our results suggest that the NBP emission rate is not a useful measure to monitor thunderstorm severity because regular tropical thunderstorms, where relatively high NBP emissions occur, lack suitable conditions to become severe (i.e., there is modest convective available potential energy and a lack of baroclinity in such regions). Observations of significantly high negative NBP occurrences together with very rare occurrences of positive cloud-to-ground flashes and isolated breakdown pulses in tropical thunderstorms are indicative of a stronger negative screening layer magnitude and weaker lower positive charge region magnitude than those in northern regions.

  10. Lasers without inversion (LWI) in Space: A possible explanation for intense, narrow-band, emissions that dominate the visible and/or far-UV (FUV) spectra of certain astronomical objects

    NASA Astrophysics Data System (ADS)

    Sorokin, P. P.; Glownia, J. H.

    2002-03-01

    The optical or far-UV (FUV) spectra of certain objects in Space are completely dominated by one or two spectrally narrow emission lines, strongly suggesting that laser action of some kind occurs in these objects. However, the electronic level structures of the atoms/ions producing these emissions preclude the possibility of maintaining population inversions on the electronic transitions involved. In lasers, gain is normally produced on an optical transition that is inverted, i.e. one that has more atoms maintained in the upper than in the lower state, so that stimulated emission can exceed stimulated absorption. However, as a result of discoveries made in quantum electronics over the past 30 years or so, one now knows that there are several ways to make stimulated emission occur on a transition that is not inverted, i.e. to realize a ``laser without inversion (LWI)''. This requires first making the atoms non-absorbing at the lasing frequency, i.e. setting up a condition of ``electromagnetically induced transparency (EIT)''. Some recently developed EIT techniques for three-level atoms are first reviewed. A simple model for a space LWI based upon a gas of two-level atoms is then proposed. In this model, transparency results from a form of EIT induced by the presence of an intense, monochromatic, continuous-wave, laser beam tuned to the frequency omega _o of the two-level-atom transition. Amplification of light at this same frequency occurs via resonant stimulated hyper-Raman scattering (SHRS) and four-wave mixing (FWM), with pumping energy provided by continuum starlight spectrally overlapping the two outer absorption sidebands (``Mollow bands'') induced by the presence of the beam at omega _o. Two specific examples of superintense line emission from Space are here considered. These are (a) the H(alpha ) emission line appearing as a dominant singularity in certain reddened, early-type stars, and (b) the powerful O VI (1032 Å, 1038 Å) emission doublet that dominates

  11. Limits on neutrino oscillations in the Fermilab narrow band beam

    SciTech Connect

    Brucker, E.B.; Jacques, P.F.; Kalelkar, M.; Koller, E.L.; Plano, R.J.; Stamer, P.E.; Baker, N.J.; Connolly, P.L.; Kahn, S.A.; Murtagh, M.J.

    1986-01-01

    A search for neutrino oscillations was made using the Fermilab narrow-band neutrino beam and the 15 ft. bubble chamber. No positive signal for neutrino oscillations was observed. Limits were obtained for mixing angles and neutrino mass differences for nu/sub ..mu../ ..-->.. nu/sub e/, nu/sub ..mu../ ..-->.. nu/sub tau/, nu/sub e/ ..-->.. nu/sub e/. 5 refs.

  12. CdS colloidal nanocrystals with narrow green emission

    NASA Astrophysics Data System (ADS)

    Ghamsari, Morteza Sasani; Sasani Ghamsari, Amir Hossein

    2016-04-01

    Cadmium sulfide (CdS) colloidal nanocrystals have been synthesized by a chemical reaction route. Polyvinyl alcohol was employed to modify the surface of CdS nanocrystals and improved their optical properties. The prepared nanoparticles were characterized using techniques such as x-ray powder diffraction, UV-VIS absorption, and photoluminescence spectroscopy. The prepared sample displays a strong and narrow green emission peak centered at 519 nm that has not been reported before and it is longer than the onset of absorption of ˜512 nm for bulk CdS. Several weak emission peaks appeared at wavelengths 490, 506, 521, and 543 nm, too. These two important characteristics of the prepared sample are due to the strong band-edge emission of CdS nanocrystals. The obtained results confirm that the prepared CdS nanocrystals have potential for opto-electronic applications.

  13. Spectral narrowing of solid state lasers by narrow-band PTR Bragg mirrors

    NASA Astrophysics Data System (ADS)

    Chung, T.; Rapaport, A.; Chen, Y.; Smirnov, V.; Hemmer, M.; Glebov, L. B.; Richardson, M. C.; Bass, M.

    2006-05-01

    Dramatic spectral narrowing of normally broad band lasers, Ti:Sapphire,Cr:LiSAF, and alexandrite was achieved by simply replacing the output mirror with a reflective, volumetric Bragg grating recorded in photo thermal refractive (PTR) glass. The output power of each laser was changed very slightly from that obtained using dielectric coated output mirrors with the same output coupling as the Bragg grating while spectral brightness increased by about three orders of magnitude.

  14. Noise measurement on thermal systems with narrow band

    NASA Astrophysics Data System (ADS)

    Burks, Stephen D.; Haefner, David P.; Doe, Joshua M.

    2016-05-01

    Thermal systems with a narrow spectral bandpass and mid-wave thermal imagers are useful for a variety of imaging applications. Additionally, the sensitivity for these classes of systems is increasing along with an increase in performance requirements when evaluated in a lab. Unfortunately, the uncertainty in the blackbody temperature along with the temporal instability of the blackbody could lead to uncontrolled laboratory environmental effects which could increase the measured noise. If the temporal uncertainty and accuracy of a particular blackbody is known, then confidence intervals could be adjusted for source accuracy and instability. Additionally, because thermal currents may be a large source of temporal noise in narrow band systems, a means to mitigate them is presented and results are discussed.

  15. Narrow-band tunable alexandrite laser with passive Q switching

    SciTech Connect

    Tyryshkin, I S; Ivanov, N A; Khulugurov, V M

    1998-06-30

    An alexandrite laser with a self-injection of narrow-band radiation into its cavity was developed. A Fabry - Perot interferometer and a diffraction grating were used as dispersive components in an additional cavity. The cavity was switched by an LiF crystal with F{sub 3}{sup -} colour centres. The laser generated a single pulse of {approx} 180 ns duration and of 1.5 mJ energy, and with a spectrum 5 x 10{sup -3} cm{sup -1} wide. The laser emitted in the spectral range 720 - 780 nm. (lasers, active media)

  16. Fatigue failure of materials under narrow band random vibrations. I.

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Hubbard, R. B.; Lanz, R. W.

    1971-01-01

    A novel approach for the study of fatigue failure of materials under the multifactor influence of narrow band random vibrations is developed. The approach involves the conduction of an experiment in conjunction with various statistical techniques. Three factors including two statistical properties of the excitation or response are considered and varied simultaneously. A minimum of 6 tests for 3 variables is possible for a fractional f actorial design. The four coefficients of the predicting equation can be independently estimated. A look at 3 predicting equations shows the predominant effect of the root mean square stress of the first order equation.

  17. Narrow band imaging: clinical applications in oral and oropharyngeal cancer.

    PubMed

    Vu, A; Farah, C S

    2016-07-01

    Narrow Band Imaging (NBI) is an endoscopic optical imaging enhancement technology that improves the contrast of mucosal surface texture, and enhances visualisation of mucosal and submucosal vasculature. White light is filtered to emit two 30-nm narrow bands of blue (415 nm) and green light (540 nm) light simultaneously, the former corresponding to the main peak absorption spectrum of haemoglobin, and the latter allowing visualisation of blood vessels in the deeper mucosal and submucosal layers. NBI has been used to better assess oral potentially malignant disorders (OPMD), identify oral and oropharyngeal squamous cell carcinoma (SCC), and to define surgical margins of head and neck malignancies. NBI shows great potential in improving detection rates of OPMD, facilitating better assessment of oral and oropharyngeal SCC, and reducing the risk of recurrence for oral SCC. Although further research is required to better understand and define intrapapillary capillary loop (IPCL) patterns and to relate these with clinical, histopathological and molecular parameters especially for early mucosal changes, there is building evidence to recommend its use as the new gold standard for endoscopic assessment in head and neck oncology. PMID:26713751

  18. Role of Narrow Band Imaging in Management of Urothelial Carcinoma.

    PubMed

    Altobelli, Emanuela; Zlatev, Dimitar V; Liao, Joseph C

    2015-08-01

    Urothelial carcinoma of the bladder and upper tract is primarily diagnosed by white light endoscopy, which has well-known limitations that contribute to the increased risk of tumor recurrence and progression. Narrow band imaging (NBI) is an optical imaging technology that facilitates detection of tumor vasculature and differentiation of benign urothelium from neoplastic tissue. For urothelial carcinoma, NBI may be utilized in a variety of clinical settings, including office cystoscopy for initial identification and surveillance, transurethral resection for pathological diagnosis, and ureteroscopic management of upper tract lesions. Early evidence suggests that NBI increases the detection of urothelial carcinoma in the bladder and upper tract, including flat high-grade lesions such as carcinoma-in-situ that are a diagnostic challenge under white light. NBI also appears to improve the quality of transurethral resection and thereby reduce the frequency of tumor recurrence.

  19. Precisely tunable, narrow-band pulsed dye laser

    SciTech Connect

    Bhatia, P.S.; Keto, J.W.

    1996-07-01

    A narrow-band, precisely tunable dye laser pumped by an injection-seeded YAG laser is described. The laser achieves an output of 100 mJ/pulse and 40{percent} efficiency when one uses Rhodamine 6G dyes. The output pulse is Gaussian both in time and spatial profile. The laser oscillator employs an intracavity {acute e}talon that is repetitively pressure scanned over one free spectral range while the grating successively steps to consecutive {acute e}talon modes. We pressure scanned the {acute e}talon under computer control using a bellows. Methods are described for calibrating the tuning elements for absolute precision. We demonstrated that the laser has an absolute precision of {plus_minus}0.4 pm over a 1.0-nm scan. This accuracy is achievable over the wavelength range of a dye. {copyright} {ital 1996 Optical Society of America.}

  20. Narrow band 3 × 3 Mueller polarimetric endoscopy

    PubMed Central

    Qi, Ji; Ye, Menglong; Singh, Mohan; Clancy, Neil T.; Elson, Daniel S.

    2013-01-01

    Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information. PMID:24298405

  1. Narrow Band Imaging: Technology Basis and Research and Development History.

    PubMed

    Gono, Kazuhiro

    2015-11-01

    The first launch of narrow band imaging (NBI) was in 2005. Since then, in most countries where gastrointestinal endoscopies are performed, NBI is the most commonly used optical digital method of performing image-enhanced endoscopy. Thanks to the outstanding efforts of many endoscopists, many clinical studies have been performed and clinical evidence has been gathered. In Japan, since 2010, NBI has been reimbursed under the Japanese national health insurance system. This is owing to the establishment of clinical evidence by physicians. However, even though endoscope systems with NBI function have been widely used outside of Japan, dissemination of knowledge on how to use NBI is insufficient. In this review paper, the technology basis of NBI and its research and development history are described. I hope this information will be helpful for updating physicians' knowledge of NBI.

  2. NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM

    SciTech Connect

    Colón, Knicole D.; Gaidos, Eric

    2013-10-10

    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.

  3. PAU, a fully depleted mosaic imager with narrow band filters

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Casas, R.; Castander, F. J.; Serrano, S.

    2014-03-01

    The PAU Survey studies the existence and properties of dark energy from the observations of redshift space distortions and weak lensing magnification from galaxy cross-correlations as main cosmological probes. The PAU Team is building an instrument, PAUCam, equipped with fully depleted CCD detectors, designed to be mounted at the prime focus of the 4.2 m diameter William Herschel Telescope (WHT) in La Palma. Simulations indicate that PAUCam at the WHT will be able to image about 2 square degrees per night in 40 narrow-band filters plus six wide-band filters to an AB magnitude depth of i ~ 22.5, providing low-resolution (R ~ 50) photometric spectra for around 30,000 galaxies, 5,000 stars and 1,000 quasars per square degree. Accurate photometric calibration of the PAU data is vital to achieve the survey science goals. This calibration is challenging due to the large and unusual filter set. We outline the data management pipelines being developed for the survey, both for nightly data reduction and co-addition of multiple epochs, with emphasis on the photometric calibration strategies. We also describe the main tests and results in the characterization of our Hamamatsu fully depleted detectors.

  4. Narrow band gap conjugated polymers for emergent optoelectronic technologies

    NASA Astrophysics Data System (ADS)

    Azoulay, Jason D.; Zhang, Benjamin A.; London, Alexander E.

    2015-09-01

    Conjugated organic molecules effectively produce and harvest visible light and find utility in a variety of emergent optoelectronic technologies. There is currently interest in expanding the scope of these materials to extend functionality into the infrared (IR) spectral regions and endow functionality relevant in emergent technologies. Developing an understanding of the interplay between chemical and electronic structure in these systems will require control of the frontier orbital energetics (separation, position, and alignment), ground state electronic configurations, interchain arrangements, solid-state properties, and many other molecular features with synthetic precision that has yet to be demonstrated. Bridgehead imine substituted 4H-cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) structural units, in combination with strong acceptors with progressively delocalized π-systems, afford modular donor-acceptor copolymers with broad and long wavelength absorption that spans technologically relevant wavelength (λ) ranges from 0.7 < λ < 3.2 μm.1 Here we demonstrate that electronic and structural manipulation play a major role in influencing the energetics of these systems and ultimately controlling the band gap of the materials. These results bear implication in the development of very narrow band gap systems where precise control will be necessary for achieving desired properties such as interactions with longer wavelength light.

  5. Monaural envelope correlation perception for bands narrower or wider than a critical band

    PubMed Central

    Buss, Emily; Hall, Joseph W.; Grose, John H.

    2013-01-01

    Monaural envelope correlation perception concerns the ability of listeners to discriminate stimuli based on the degree of correlation between the temporal envelopes of two or more frequency-separated bands of noise [Richards, J. Acoust. Soc. Am. 82, 1621–1630 (1987)]. Previous work has examined this ability for relatively narrow bandwidths, generally 100 Hz or less. The present experiment explored a wide range of bandwidths, from 25 to 1600 Hz, which included bands narrower and wider than a critical bandwidth. Stimuli were pairs of noise bands separated by a 500-Hz-wide spectral gap centered on 2250 Hz. The magnitude spectra of the pair of comodulated bands were either identical or reflected around the midpoint of the band, and performance was assessed with and without a low-pass noise masker. Although discrimination was best for intermediate bandwidths, mean performance was above chance for all bandwidths tested. Data were similar for stimuli with identical and reflected magnitude spectra, and for stimuli with and without the low-pass masker. The one exception was particularly good performance for intermediate-bandwidth stimuli with identical spectra, for which some listeners reported hearing a tonal cue. Results indicate that listeners are flexible in selecting spectral regions upon which to base across-frequency comparisons. PMID:23297912

  6. Narrow-Band Emitting Solid Fluorescence Reference Standard with Certified Intensity Pattern.

    PubMed

    Hoffmann, Katrin; Spieles, Monika; Bremser, Wolfram; Resch-Genger, Ute

    2015-07-21

    The development of a lanthanum-phosphate glass doped with several rare-earth-ions for use as solid fluorescence standard is described. The cuvette-shaped reference material which shows a characteristic emission intensity pattern upon excitation at 365 nm consisting of a multitude of relatively narrow emission bands in the wavelength region between 450 and 700 nm is intended for the day-to-day performance validation of fluorescence measuring devices. Evaluation of the fluorescent glass includes the determination of all properties which can affect its relative emission intensity profile or contribute to the uncertainty of the certified values like absorption spectra, fluorescence anisotropy, excitation wavelength, and temperature dependence of the spectroscopic features, homogeneity of fluorophore distribution, and photo- and long-term stability. Moreover, a certification procedure was developed including the normalization of the intensity profile consisting of several narrow emission bands and the calculation of wavelength-dependent uncertainties. Criteria for the design, characterization, and working principle of the new reference material BAM-F012 are presented, and possible applications of this ready-to-use fluorescence standard are discussed. PMID:26077510

  7. Narrow band imaging and bladder cancer: when and how.

    PubMed

    Naselli, Angelo; Puppo, Paolo

    2015-10-01

    Narrow band imaging (NBI) is an optical enhancement technology for endoscopy. NBI works filtering the standard white light in two bandwidths of illumination of 415 nm, blue, and 540 nm, green. As a result, capillaries on mucosal surface appear brown and veins in connective subepithelial layer cyan, enhancing the contrast among epithelial, subepithelial tissue and its vascularisation. Given that it is a filter, it is safe, does not need any kind of instillation and the vision modality can be switched from NBI to white light and vice versa without any limitations of time. NBI-assisted cystoscopy increases the detection rate of urothelial lesions and enhances visibility of tumour margins with respect to standard white light modality, although it does not need a particular learning curve. NBI exploration of the bladder should be avoided during active bleeding because the light absorption would be excessive impeding an optimal vision. Moreover, it should always be employed in combination with standard white light modality to avoid an excess of false-positive findings, particularly during or immediately after topic treatments. It can be used in office to anticipate bladder recurrences and in the operating theatre to perform a complete tumour resection. As a matter of fact, it is able to reduce the recurrence rate and ameliorate bladder cancer management by identifying high-grade cancerous tissue, especially Cis, undetected by the standard white light modality. PMID:26481715

  8. On narrow-band representation of ocean waves: 2. Simulations

    NASA Astrophysics Data System (ADS)

    Tayfun, M. Aziz

    1986-06-01

    In paper 1 (Tayfun, this issue) we derived two narrow-band type representations for nonlinear waves and obtained theoretical expressions for the key statistics of the corresponding surface elevations, namely, the variance, skewness, and kurtosis. The nature of these statistics and the underlying probability structure were examined qualitatively with particular emphasis on the effects of the spectrum bandwidth. In this paper we explore the reliability of these results quantitatively. Proceeding via the Monte Carlo approach and finite Fourier transform techniques, we generate extensive samples of surface time history with preassigned spectral and statistical properties. Each sample is synthesized from a systematic superposition of the first-order linear field and the second-order corrections, consisting of shortwave and long-wave modulations, respectively. This approach enables us to demonstrate explicitly the individual as well as combined effects of second-order nonlinearities on the probability distribution and statistics of the surface elevation. In the final analysis we find that the simulated results compare favorably with the theoretical predictions and confirm the validity of various qualitative arguments put forward in paper 1.

  9. Narrow-band ELF events observed from South Pole Station

    NASA Astrophysics Data System (ADS)

    Heavisides, J.; Weaver, C.; Lessard, M.; Weatherwax, A. T.

    2012-12-01

    Extremely Low Frequency (ELF) waves are typically in the range of 3 Hz - 3 kHz and can play a role in acceleration and pitch-angle scattering of energetic particles in the radiation belts. Observations of a not uncommon, but not well studied ELF phenomenon are presented with ground-based data from South Pole Station. The narrow-band waves last approximately one or two minutes maintaining bandwidth over the course of the event, begin around 100 Hz, decrease to about 70 Hz, and typically show a higher frequency harmonic. The waves have only been documented at four locations - Heacock, 1974 (Alaska); Sentman and Ehring, 1994 (California); Wang et al, 2005 and Wang et al, 2011 (Taiwan); and Kim et al, 2006 (South Pole). The waves observed at the South Pole are not detected when the Sun drops below a 10 degree elevation angle, which is not true for the other locations. We extend the study of Kim et al, 2006, and explore possible generation mechanisms including sunlit ionosphere and ion cyclotron wave modes, as well as correspondence with energetic particle precipitation.

  10. IP-based narrow-band videophone system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengbing; Zhu, Dongmei; Xue, Liang; Zhu, Guangxi

    2005-02-01

    Architecture of an IP-based narrow-band videophone system is proposed in this paper for convenient videophone calls between any two computers even if being placed in two different LANs within network agents. The bandwidth need of each call is less than 256 kbps. The system consists of two kinds of entities: Videophone Terminals (VPT) and a Video Call Server (VCS). A VPT is actually a microcomputer program, composed of 4 primary parts, an audio codec, a video codec, a media deliverer/receiver and a call controller. The basic functions of the VCS include videophone number generation and management, access admission and address resolution. The VCS with a public IP address plays an important role in the system especially when a video call has to penetrate through network agents. Each VPT in the system gets its own external transport address from the VCS through registration process. A calling VPT would receive the external transport address of the called VPT from the VCS through address resolution. The proposed system works and is helpful to accelerate the realization of people's videophone dream over IP networks.

  11. Narrow band noise response of a Belleville spring resonator.

    PubMed

    Lyon, Richard H

    2013-09-01

    This study of nonlinear dynamics includes (i) an identification of quasi-steady states of response using equivalent linearization, (ii) the temporal simulation of the system using Heun's time step procedure on time domain analytic signals, and (iii) a laboratory experiment. An attempt has been made to select material and measurement parameters so that nearly the same systems are used and analyzed for all three parts of the study. This study illustrates important features of nonlinear response to narrow band excitation: (a) states of response that the system can acquire with transitions of the system between those states, (b) the interaction between the noise source and the vibrating load in which the source transmits energy to or draws energy from the load as transitions occur; (c) the lag or lead of the system response relative to the source as transitions occur that causes the average frequencies of source and response to differ; and (d) the determination of the state of response (mass or stiffness controlled) by observation of the instantaneous phase of the influence function. These analyses take advantage of the use of time domain analytic signals that have a complementary role to functions that are analytic in the frequency domain.

  12. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    SciTech Connect

    Nong, Hanond Markmann, Sergej; Hekmat, Negar; Jukam, Nathan; Pal, Shovon; Mohandas, Reshma A.; Dean, Paul; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Wieck, Andreas D.

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunes the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.

  13. Biological effects of narrow-band (311 nm TL01) UVB irradiation: a review.

    PubMed

    el-Ghorr, A A; Norval, M

    1997-04-01

    The narrow-band UVB (TL01) lamp (311 nm emission) was developed for use in phototherapy, as an alternative to a broad-band UVB source and to photochemotherapy, both of which have significant side effects and carry a risk of carcinogenesis. This new lamp has proved to be particularly effective at clearing psoriasis. It is now acknowledged that the TL01 lamp is probably 2-3 times more carcinogenic per minimum erythema dose than broad-band UVB, but the cumulative dose required in therapy is considerably less than when using broad-band UVB sources. In terms of irradiation dose, the TL01 lamp is about 5-10-fold less potent than broad-band UVB for erythema induction, hyperplasia, oedema, sunburn cell formation and Langerhans cell depletion from skin. However, the broad-band UVB to TL01 potency ratio for cis-urocanic acid formation in the skin is approximately unity. In addition, the TL01 lamp, as used in phototherapy, has relatively more suppressive effects than broad-band UVB on systemic immune responses as judged by natural killer cell activity, lymphoproliferation and cytokine responses. However, the TL01 lamp is less effective at reducing epidermal antigen presentation, inducing dendritic cell migration to lymph nodes draining irradiated sites and suppressing contact hypersensitivity at the doses tested. Therefore the use of the TL01 lamp in phototherapy should be considered carefully after weighing up its diverse effects on the skin and immune system.

  14. Narrow-band erbium-doped fibre linear–ring laser

    SciTech Connect

    Kolegov, A A; Sofienko, G S; Minashina, L A; Bochkov, A V

    2014-01-31

    We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)

  15. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the

  16. Observation of Narrow-Band Terahertz Coherent Cherenkov Radiation from a Cylindrical Dielectric-Lined Waveguide

    NASA Astrophysics Data System (ADS)

    Cook, A. M.; Tikhoplav, R.; Tochitsky, S. Y.; Travish, G.; Williams, O. B.; Rosenzweig, J. B.

    2009-08-01

    We report experimental observation of narrow-band coherent Cherenkov radiation driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. For an appropriate choice of dielectric wall thickness, a short-pulse beam current profile excites only the fundamental mode of the structure, producing energetic pulses in the terahertz range. We present detailed measurements showing a narrow emission spectrum peaked at 367±3GHz from a 1 cm long fused silica capillary tube with submillimeter transverse dimensions, closely matching predictions. We demonstrate a 100 GHz shift in the emitted central frequency when the tube wall thickness is changed by 50μm. Calibrated measurements of the radiated energy indicate up to 10μJ per 60 ps pulse for an incident beam charge of 200 pC, corresponding to a peak power of approximately 150 kW.

  17. Vascular contrast in narrow-band and white light imaging.

    PubMed

    Du Le, V N; Wang, Quanzeng; Gould, Taylor; Ramella-Roman, Jessica C; Pfefer, T Joshua

    2014-06-20

    Narrow-band imaging (NBI) is a spectrally selective reflectance imaging technique that is used clinically for enhancing visualization of superficial vasculature and has shown promise for applications such as early endoscopic detection of gastrointestinal neoplasia. We have studied the effect of vessel geometry and illumination wavelength on vascular contrast using idealized geometries in order to more quantitatively understand NBI and broadband or white light imaging of mucosal tissue. Simulations were performed using a three-dimensional, voxel-based Monte Carlo model incorporating discrete vessels. In all cases, either 415 or 540 nm illumination produced higher contrast than white light, yet white light did not always produce the lowest contrast. White light produced the lowest contrast for small vessels and intermediate contrast for large vessels (diameter≥100  μm) at deep regions (vessel depth≥200  μm). The results show that 415 nm illuminations provided superior contrast for smaller vessels at shallow depths while 540 nm provided superior contrast for larger vessels in deep regions. Besides 540 nm, our studies also indicate the potential of other wavelengths to achieve high contrast of large vessels at deep regions. Simulation results indicate the importance of three key mechanisms in determining spectral variations in contrast: intravascular hemoglobin (Hb) absorption in the vessel of interest, diffuse Hb absorption from collateral vasculature, and bulk tissue scattering. Measurements of NBI contrast in turbid phantoms incorporating 0.1-mm-diameter hemoglobin-filled capillary tubes indicated good agreement with modeling results. These results provide quantitative insights into light-tissue interactions and the effect of device and tissue properties on NBI performance.

  18. Comparison of the efficacy of narrow band ultraviolet B and narrow band ultraviolet B plus topical catalase-superoxide dismutase treatment in vitiligo patients.

    PubMed

    Yuksel, Esra Pancar; Aydin, Fatma; Senturk, Nilgun; Canturk, Tayyar; Turanli, Ahmet Yasar

    2009-01-01

    Accumulation of free radicals in the epidermis and the role of oxidative stress have been demonstrated in the pathogenesis of vitiligo. So, new treatment modalities that support antioxidant systems may be a choice for treatment. We sought to determine the clinical efficacy of narrow band ultraviolet B plus topical formulation including Cucumis melo superoxide dismutase and catalase (Vitix), over the narrow band ultraviolet B treatment alone. Thirty vitiligo patients (18 female, 12 male; mean age 34 +/- 13 years) were included in this study. 15 patients in Group 1 were treated only with narrow band ultraviolet B whereas 15 patients in Group 2 were treated with narrow band ultraviolet B plus topical Vitix for 6 months. Areas of 21 lesions from each group were measured by point counting methods at the beginning and at the end of the treatment. Efficacy of treatment was graded as perfect, good, moderate and poor according to healing percentages of measured areas and both groups were compared statistically. In Group 1 two moderate; in Group 2 one perfect, four moderate healings were observed at the end of the treatment. There was no statistically significant difference according to healing percentages between the two groups (p > 0.05). No adverse effect was reported in either group. The superiority of narrow band ultraviolet B plus topical Vitix treatment over narrow band ultraviolet B treatment could not be demonstrated statistically. There is a need for further studies involving large case series to clarify the results of our preliminary study. PMID:19467974

  19. Narrow-band ultraviolet-B stimulates proliferation and migration of cultured melanocytes.

    PubMed

    Wu, Ching-Shuang; Yu, Chia-Li; Wu, Chieh-Shan; Lan, Cheng-Che E; Yu, Hsin-Su

    2004-12-01

    Narrow-band ultraviolet-B (UVB) radiation is an effective treatment for vitiligo vulgaris. However, the mechanisms of narrow-band UVB in inducing repigmentation of vitiligo lesions are not thoroughly clarified. The purpose of our study was to investigate the effects of narrow-band UVB irradiation on melanocyte proliferation and migration in vitro. Our results showed that the cell counts as well as [3H]thymidine uptake of melanocytes were significantly enhanced by narrow-band UVB-irradiated keratinocyte supernatants. In these supernatants, a significant increase in basic fibroblast growth factor (bFGF) and in endothelin-1 (ET-1) release was observed. bFGF is a natural mitogen for melanocytes, whereas ET-1 can stimulate DNA synthesis in melanocytes. This stimulatory effect of melanocyte proliferation by supernatants derived from narrow-band UVB-irradiated keratinocytes was significantly reduced by a selective endothelin-B (ET-B) receptor antagonist (BQ788), suggesting an essential role of ET-1 on melanocyte proliferation. Our results of time-lapse microphotography revealed a stimulatory effect of narrow-band UVB irradiation on melanocyte migration. Focal adhesion kinase (FAK) plays a pivotal role in cell migration. Phosphorylated FAK (p125(FAK)) expression on melanocyte was enhanced by narrow-band UVB irradiation. In this study, narrow-band UVB irradiation stimulated a significant increase in matrix metalloproteinase-2 (MMP-2) activity in melanocyte supernatants. Narrow-band UVB-irradiation-induced migration of melanocytes was significantly annihilated by the addition of p125(FAK) inhibitor (herbimycin-A) or MMP-2 inhibitor (GM6001). These results suggest that p125(FAK) and MMP-2 activity play important roles in narrow-band UVB-induced migration of melanocytes. Our results provide a theoretical basis for the effectiveness of narrow-band UVB irradiation in treating vitiligo.

  20. Narrow band imaging and long slit spectroscopy of UGC 5101

    NASA Technical Reports Server (NTRS)

    Stanga, R. M.; Mannucci, F.; Rodriguezespinosa, J. M.

    1993-01-01

    UGC 5101 (z = 0.04; D is approximately equal to 240 Mpc) is one of the so called Ultraluminous IRAS sources. Two important properties of the members of this group are their L(sub IR) is greater than or equal to 10(exp 12) solar luminosity, and their space density in the universe up to z is less than 0.1 is equal or even larger than the space density of the quasars. Further noteworthy features of the Ultraluminous IRAS sources are their being morphologically peculiar and the fact that they all seem to host active nuclei in their center. We have observed UGC 5101 in an effort to study the interplay between the gas ionized by the central active nucleus and that gas ionized by other processes which may hold important clues to the understanding of the entire picture of this object. In particular these other ionizing processes could well be massive stars formed recently after the galactic encounter and shocks possibly also related to the galaxy collision. The data that we discuss were obtained between Dec. 1989 and Jan. 1992 with the WHT 4.2 m telescope using the two-arm spectrograph ISIS. Several spectral frames were obtained at three different position angles: PA 84--along the tail of the galaxy; PA 32--along the dust lane; and PA 110. The blue spectra are centered on the H beta line, while the red spectra are centered on the H alpha line. In the configuration we used for the long slit spectra, the spectral scale was 0.74 A per pixel, and the spatial scale was .37 arcsec per pixel; we also observed the H alpha region with a spectral scale of .37 A per pixel, at position angle 84. The narrow band images were obtained at the auxiliary port of ISIS, with a scale of .2 arcsec per pixel, and were centered at the H alpha wavelength, and on the adjacent continuum. The H alpha images and the spectra support the following model. UGC 5101 hosts an active nucleus; the NLR extends up to about 1.5 kpc and shows a complex velocity field, superimposed on the rotation curve of the

  1. 47 CFR 80.1159 - Narrow-band direct-printing (NB-DP).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Narrow-band direct-printing (NB-DP). 80.1159... Narrow-band direct-printing (NB-DP). NB-DP is a form of telegraphy for the transmission and receipt of direct printing public correspondence. Ships must use NB-DP techniques only with authorized public...

  2. Frequency band broadening of magnetospheric VLF emissions near the equator

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Lin, C. S.

    1981-01-01

    The broadening of the whistler mode VLF emission band has frequently been observed by the equatorially orbiting S3-A (Explorer 45) satellite outside the midnight sector of the plasmasphere, during periods of geomagnetic disturbance. Prior to the broadening, the band of this emission is narrow with a sharp gap at the half electron gyrofrequency. The gradual broadening of the emission band on the low-frequency side is associated with the simultaneously observed spreading of the anisotropy of the ring current electrons to higher and wider energy ranges. Using the modeled distribution function, the linear growth rates of the cyclotron instability are calculated numerically. The results suggest that broadening of the VLF emission band near the plasmasphere can be caused by spreading of the ring current electron anisotropy toward higher energies.

  3. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  4. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  5. Narrow-band photography of Jupiter and Saturn.

    NASA Technical Reports Server (NTRS)

    Fountain, J. W.

    1973-01-01

    An IR-sensitive vidicon was used in the 1 to 2 mu region, with narrow-bandwidth filters, for Jupiter photographs taken in April, 1971, and Saturn photographs taken in December, 1970. The changes in limb darkening and surface details observed at different wavelengths are discussed. The 37 Jupiter photographs and the 38 Saturn photographs are included.

  6. High-power narrow-vertical-divergence photonic band crystal laser diodes with optimized epitaxial structure

    SciTech Connect

    Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi

    2014-12-08

    900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.

  7. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  8. Ultrafast optical control of group delay of narrow-band terahertz waves

    PubMed Central

    Miyamaru, Fumiaki; Morita, Hiroki; Nishiyama, Yohei; Nishida, Tsubasa; Nakanishi, Toshihiro; Kitano, Masao; Takeda, Mitsuo W.

    2014-01-01

    We experimentally demonstrate control over the group delay of narrow-band (quasi continuous wave) terahertz (THz) pulses with constant amplitude based on optical switching of a metasurface characteristic. The near-field coupling between resonant modes of a complementary split ring resonator pair and a rectangular slit show an electromagnetically induced transparency-like (EIT-like) spectral shape in the reflection spectrum of a metasurface. This coupling induces group delay of a narrow-band THz pulse around the resonant frequency of the EIT-like spectrum. By irradiating the metasurface with an optical excitation pulse, the metasurface becomes mirror-like and thus the incident narrow-band THz pulse is reflected without a delay. Remarkably, if we select the appropriate excitation power, only the group delay of the narrow-band THz pulse can be switched while the amplitude is maintained before and after optical excitation. PMID:24614514

  9. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  10. NICMOS Narrow-band Images of OMC-1

    NASA Technical Reports Server (NTRS)

    Schultz, Angela S. B.; Colgan, Sean W. J.; Erickson, E. F.; Kaufman, M. J.; Hollenbach, D. J.; O'Dell, C. R.; Young, E. T.; Chen, H.

    1998-01-01

    We present images of a 90in. x 90in. field centered on BN in OMC-1, taken with the Near-Infrared Camera and MultiObject Spectrograph (NICMOS) aboard the Hubble Space Telescope. The observed lines are H2 1-0 S(l), Pa, [FeII] 1.64 pm, and the adjacent continua. The region is rich in interesting structures. The most remarkable are the streamers or "fingers" of H2 emission which extend from 15in. to 50in. from IRc2, seen here in unprecedented detail. Unlike the northern H2 fingers, the inner fingers do not exhibit significant [FeII] emission at theirdips, which we suggest is due to lower excitation. These observations also show that the general morphology of the Pa and [FeII] emission (both imaged for the first time in this region) bears a striking resemblance to that of the Ha and [SII] emission previously observed with WFPC2. This implies that these IR and optical lines are produced by radiative excitation on the surface of the molecular cloud. The Pa morphology of HH 202 is also very similar to its H a and [OIII] emission, again suggesting that the Pa in this object is photo-excited by the Trapezium, as has been suggested for the optical emission. We find evidence of shock-excited [FeII] in HH 208, where it again closely follows the morphology of [SII]. There is also H2 coincident with the [SII] and [FeII] emission, which may be associated with HH 208. Finally, we note some interesting continuum features: diffuse "tails" trailing from IRc3 and IRc4, more extensive observations of the "crescent" found by Stolovy, et al. (1998), and new observations of a similar oval object nearby. We also find a "V"-shaped region which may be the boundary of a cavity being cleared by IRc2.

  11. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  12. Searching for Narrow Emission Lines in X-ray Spectra: Computation and Methods

    NASA Astrophysics Data System (ADS)

    Park, Taeyoung; van Dyk, David A.; Siemiginowska, Aneta

    2008-12-01

    The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task. The Poisson nature of the photon counts leads to local random fluctuations in the observed spectrum that often result in excess emission in a narrow band of energy resembling a weak narrow line. From a formal statistical perspective, this leads to a (sometimes highly) multimodal likelihood. Many standard statistical procedures are based on (asymptotic) Gaussian approximations to the likelihood and simply cannot be used in such settings. Bayesian methods offer a more direct paradigm for accounting for such complicated likelihood functions, but even here multimodal likelihoods pose significant computational challenges. The new Markov chain Monte Carlo (MCMC) methods developed in 2008 by van Dyk and Park, however, are able to fully explore the complex posterior distribution of the location of a narrow line, and thus provide valid statistical inference. Even with these computational tools, standard statistical quantities such as means and standard deviations cannot adequately summarize inference and standard testing procedures cannot be used to test for emission lines. In this paper, we use new efficient MCMC algorithms to fit the location of narrow emission lines, we develop new statistical strategies for summarizing highly multimodal distributions and quantifying valid statistical inference, and we extend the method of posterior predictive p-values proposed by Protassov and coworkers to test for the presence of narrow emission lines in X-ray spectra. We illustrate and validate our methods using simulation studies and apply them to the Chandra observations of the high-redshift quasar PG 1634+706.

  13. Pilot-aided modulation for narrow-band satellite communications

    NASA Technical Reports Server (NTRS)

    Saulnier, Gary J.; Rafferty, William

    1988-01-01

    This paper discusses a number of tone-aided modulation techniques which have been studied as part of the Mobile Satellite Experiment (MSAT-X) Program. In all instances tone(s) are inserted into data-free portions of the transmit spectrum and used by the receiver to sense the amplitude and frequency/phase distortions introduced by the channel. The receiver then uses this information in a feedforward manner to lessen the effect of the distortions on the data detection performance. Particular techniques discussed are the Tone Calibration Technique (TCT), the Dual Tone Calibrated Technique (DTCT), Transparent Tone-In-Band (TTIB), and Dual-Tone Single Sideband (DTSSB).

  14. Large Format Narrow-Band, Multi-Band, and Broad-Band LWIR QWIP Focal Planes for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2004-01-01

    A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.

  15. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials

    NASA Astrophysics Data System (ADS)

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-08-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  16. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.

    PubMed

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-12-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  17. HIGH DEFINITION ENDOSCOPY AND "NARROW BAND IMAGING" IN THE DIAGNOSIS OF GASTROESOPHAGEAL REFLUX DISEASE

    PubMed Central

    ASSIRATI, Frederico Salvador; HASHIMOTO, Cláudio Lyoiti; DIB, Ricardo Anuar; FONTES, Luiz Henrique Souza; NAVARRO-RODRIGUEZ, Tomás

    2014-01-01

    Introduction The gastroesophageal reflux disease is a common condition in the western world but less than half of patients present endoscopic abnormalities, making a standard procedure unsuitable for diagnosis. High definition endoscopy coupled with narrow band imaging has shown potential for differentiation of lesions and possible biopsy, allowing early diagnosis and treatment. Methods This review describes the principles of biotic and their influence in obtaining images with better definition of the vessels in the mucosa, through the narrow band imaging. Selected papers using it in patients with reflux disease and Barrett's esophagus are analyzed in several ways, highlighting the findings and limitations. Conclusion The meaning of the narrow band imaging in the endoscopic diagnosis of reflux disease will be defined by large scale studies, with different categories of patients, including assessment of symptoms and response to treatment. PMID:24676302

  18. Narrow-band imaging for the head and neck region and the upper gastrointestinal tract.

    PubMed

    Kikuchi, Osamu; Ezoe, Yasumasa; Morita, Shuko; Horimatsu, Takahiro; Muto, Manabu

    2013-05-01

    Endoscopy is essential for the diagnosis and treatment of cancers derived from the gastrointestinal tract. However, a conventional white-light image has technical limitations in detecting small or superficial lesions. Narrow-band imaging, especially with magnification, allows visualization of microstructure patterns and microvascular patterns on the mucosal surface. These technical breakthroughs enable endoscopists to easily detect small pre-neoplastic and neoplastic lesions and to make a differential diagnosis of these lesions. Appropriate diagnosis with narrow-band imaging contributes to minimally invasive endoscopic resection.

  19. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  20. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation. PMID:27421066

  1. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites.

    PubMed

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-Kwang

    2016-08-01

    The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.

  2. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites.

    PubMed

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-Kwang

    2016-08-01

    The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014

  3. Hydrogen-saturated saline protects intensive narrow band noise-induced hearing loss in guinea pigs through an antioxidant effect.

    PubMed

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5-3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316

  4. Hydrogen-saturated saline protects intensive narrow band noise-induced hearing loss in guinea pigs through an antioxidant effect.

    PubMed

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5-3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect.

  5. Differential versus limiter-discriminator detection of narrow-band FM

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Wang, C. C.

    1983-01-01

    The error probability performance of differential detection of narrow-band FM is determined and compared with the analogous results for limiter-discriminator detection of the same modulation. It is shown that over a large class of benign and hostile environments, e.g., Gaussian IF filter, AWGN, partial-band noise jamming, the differential detector offers no theoretical performance advantage over the limiter-discriminator receiver with integrate-and-dump postdetection filtering.

  6. Analysis of Discrimination Techniques for Low-Cost Narrow-Band Spectrofluorometers

    PubMed Central

    Aymerich, Ismael F.; Sánchez, Albert-Miquel; Pérez, Sergio; Piera, Jaume

    2015-01-01

    The need for covering large areas in oceanographic measurement campaigns and the general interest in reducing the observational costs open the necessity to develop new strategies towards this objective, fundamental to deal with current and future research projects. In this respect, the development of low-cost instruments becomes a key factor, but optimal signal-processing techniques must be used to balance their measurements with those obtained from accurate but expensive instruments. In this paper, a complete signal-processing chain to process the fluorescence spectra of marine organisms for taxonomic discrimination is proposed. It has been designed to deal with noisy, narrow-band and low-resolution data obtained from low-cost sensors or instruments and to optimize its computational cost, and it consists of four separated blocks that denoise, normalize, transform and classify the samples. For each block, several techniques are tested and compared to find the best combination that optimizes the classification of the samples. The signal processing has been focused on the Chlorophyll-a fluorescence peak, since it presents the highest emission levels and it can be measured with sensors presenting poor sensitivity and signal-to-noise ratios. The whole methodology has been successfully validated by means of the fluorescence spectra emitted by five different cultures. PMID:25558997

  7. Design of narrow-band Compton scattering sources for nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Albert, F.; Anderson, S. G.; Gibson, D. J.; Marsh, R. A.; Wu, S. S.; Siders, C. W.; Barty, C. P. J.; Hartemann, F. V.

    2011-05-01

    The design of narrow-band Compton scattering sources for specific applications using nuclear resonance fluorescence (NRF) is presented. NRF lines are extremely narrow (ΔE/Ẽ10-6) and require spectrally narrow sources to be excited selectively and efficiently. This paper focuses on the theory of spectral broadening mechanisms involved during Compton scattering of laser photons from relativistic electron beams. It is shown that in addition to the electron beam emittance, energy spread, and the laser parameters, nonlinear processes during the laser-electron interaction can have a detrimental effect on the gamma-ray source bandwidth, including a newly identified weakly nonlinear phase shift accumulated over the effective interaction duration. Finally, a design taking these mechanisms into consideration is outlined.

  8. Stopping Narrow-Band X-Ray Pulses in Nuclear Media.

    PubMed

    Kong, Xiangjin; Pálffy, Adriana

    2016-05-13

    A control mechanism for stopping x-ray pulses in resonant nuclear media is investigated theoretically. We show that narrow-band x-ray pulses can be mapped and stored as nuclear coherence in a thin-film planar x-ray cavity with an embedded ^{57}Fe nuclear layer. The pulse is nearly resonant to the 14.4 keV Mössbauer transition in the ^{57}Fe nuclei. The role of the control field is played here by a hyperfine magnetic field which induces interference effects reminiscent of electromagnetically induced transparency. We show that, by switching off the control magnetic field, a narrow-band x-ray pulse can be completely stored in the cavity for approximately 100 ns. Additional manipulation of the external magnetic field can lead to both group velocity and phase control of the pulse in the x-ray cavity sample.

  9. Stopping Narrow-Band X-Ray Pulses in Nuclear Media

    NASA Astrophysics Data System (ADS)

    Kong, Xiangjin; Pálffy, Adriana

    2016-05-01

    A control mechanism for stopping x-ray pulses in resonant nuclear media is investigated theoretically. We show that narrow-band x-ray pulses can be mapped and stored as nuclear coherence in a thin-film planar x-ray cavity with an embedded 57Fe nuclear layer. The pulse is nearly resonant to the 14.4 keV Mössbauer transition in the 57Fe nuclei. The role of the control field is played here by a hyperfine magnetic field which induces interference effects reminiscent of electromagnetically induced transparency. We show that, by switching off the control magnetic field, a narrow-band x-ray pulse can be completely stored in the cavity for approximately 100 ns. Additional manipulation of the external magnetic field can lead to both group velocity and phase control of the pulse in the x-ray cavity sample.

  10. [Narrow band multi-region level set method for remote sensing image].

    PubMed

    Fang, Jiang-Xiong; Tu, En-Mei; Yang, Jie; Jia, Zhen-Hong; Nikola, Kasabov

    2011-11-01

    Massive redundant contours happen when the classical Chan-Vese (C-V) model is used to segment remote sensing images, which have interlaced edges. What's more, this model can't segment homogeneous objects with multiple regions. In order to overcome this limitation of C-V model, narrow band multiple level set method is proposed. The use of N-1 curves is required for the segmentation of N regions and each curve represents one region. First, the level set model to establish an independent multi-region region can eliminate the redundant contours and avoids the problems of vacuum and overlap. Then, narrow band approach to level set method can reduce the computational cost. Experimental results of remote image verify that our model is efficient and accurate.

  11. Narrow-band radiation wavelength measurement by processing digital photographs in RAW format

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2012-12-31

    The technique of measuring the mean wavelength of narrow-band radiation in the 455 - 625-nm range using the image of the emitting surface is presented. The data from the camera array unprocessed by the built-in processor (RAW format) are used. The method is applied for determining the parameters of response of holographic sensors. Depending on the wavelength and brightness of the image fragment, the mean square deviation of the wavelength amounts to 0.3 - 3 nm. (experimental techniques)

  12. On resolving 2M - 1 narrow-band signals with an M sensor uniform linear array

    NASA Technical Reports Server (NTRS)

    Williams, Douglas B.; Johnson, Don H.

    1992-01-01

    Length 2M real signal vectors are used to address the problem of determining the maximum number of narrow-band signals whose parameters can be estimated with a linear array of M equally spaced sensors. It is shown that 2M of these real vectors are linearly independent with probability one, and, thus in the presence of additive white noise, the parameters of 2M - 1 signals can be estimated. An algorithm for determining directions and amplitudes is presented.

  13. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  14. UNIDENTIFIED INFRARED EMISSION BANDS: PAHs or MAONs?

    SciTech Connect

    Sun Kwok; Yong Zhang

    2013-07-01

    We suggest that the carrier of the unidentified infrared emission (UIE) bands is an amorphous carbonaceous solid with mixed aromatic/aliphatic structures, rather than free-flying polycyclic aromatic hydrocarbon molecules. Through spectral fittings of the astronomical spectra of the UIE bands, we show that a significant amount of the energy is emitted by the aliphatic component, implying that aliphatic groups are an essential part of the chemical structure. Arguments in favor of an amorphous, solid-state structure rather than a gas-phase molecule as a carrier of the UIE are also presented.

  15. Decomposing a signal into short-time narrow-banded modes

    NASA Astrophysics Data System (ADS)

    McNeill, S. I.

    2016-07-01

    An algorithm for nonparametric decomposition of a signal into the sum of short-time narrow-banded modes (components) is introduced. Specifically, the signal data is augmented with its Hilbert transform to obtain the analytic signal. Then the set of constituent amplitude and frequency modulated (AM-FM) analytic sinusoids, each with slowly varying amplitude and frequency, is sought. The method for obtaining the short-time narrow-banded modes is derived by minimizing an objective function comprised of three criteria: smoothness of the instantaneous amplitude envelope, smoothness of the instantaneous frequency and complete reconstruction of the signal data. A minimum of the objective function is approached using a sequence of suboptimal updates of amplitude and phase. The updates are intuitive, efficient and simple to implement. For a given mode, the amplitude and phase are extracted from the band-pass filtered residual (signal after the other modes are removed), where the band-pass filter is applied about the previous modal instantaneous frequency estimate. The method is demonstrated by application to random output-only vibration data and order tracking data. It is demonstrated that vibration modal responses can be estimated from single channel data and order tracking can be performed without measured tachometer data.

  16. High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts

    NASA Astrophysics Data System (ADS)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2016-02-01

    Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high

  17. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Serafinelli, R.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  18. Narrow-Band Search of Continuous Gravitational-Wave Signals from Crab and Vela Pulsars in Virgo VSR4 Data

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Camp, J. B.; Gehrels, N.

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  19. Diffuse Interstellar Band Emission in the Galaxy

    NASA Astrophysics Data System (ADS)

    Burton Williams, Theodore; Sarre, Peter; Marshall, Charlotte; Spekkens, Kristine; Kuzio de Naray, Rachel

    2015-08-01

    The longest-standing problem in astronomical spectroscopy is the identification of the carriers of the diffuse interstellar absorption bands (DIBs), the first examples of which were discovered on photographic plates almost 100 years ago. Most researchers consider a population of large carbon-based molecules to be responsible for the DIBs. Identification of the carriers would open a new probe of interstellar conditions and processes in interstellar clouds and could have implications far beyond - including the role of such molecules in star and planet formation and even for the origins of life. Only one clear-cut example exists where complementary emission (from a subset) of DIBs is seen - in the Red Rectangle nebula - where the emission is excited by radiation from the central star HD 44179.Recent Fabry-Perot observations towards galaxy NGC 1325 with the Southern African Large Telescope led to the serendipitous discovery of an emission feature centered at 6613 Å arising from material in the ISM of our Galaxy; this emission feature lies at the wavelength of one of the sharper and stronger diffuse bands normally seen in absorption, and it is one of the most prominent of the Red Rectangle emission bands. The flux of the feature is 4.2 ± 0.5 x 10-18 e/s/cm2 /arc-sec2. It appears that this is the first observation of emission from a diffuse band carrier in the ISM, excited in this case by the interstellar radiation field. Unlike the Red Rectangle, the emission from the ISM is expected to have a very low molecular rotational temperature, potentially as low as 3 K. Spectra of this nature will assist greatly in spectroscopic analysis and in refining the nature of the molecules responsible for the DIB spectrum.We present the discovery spectra and follow-up measurements for the expected strong DIB features at 6613, 5797, 5850 and 5418 Å, in fields near NGC 1325, near the Red Rectangle, and near Rho Ophiuchi.

  20. Numerical investigation of the instability and nonlinear evolution of narrow-band directional ocean waves.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2010-07-01

    The instability and nonlinear evolution of directional ocean waves is investigated numerically by means of simulations of the governing kinetic equation for narrow-band surface waves. Our simulation results reveal the onset of the modulational instability for long-crested wave trains, which agrees well with recent large-scale experiments in wave basins, where it was found that narrower directional spectra lead to self-focusing of ocean waves and an enhanced probability of extreme events. We find that the modulational instability is nonlinearly saturated by a broadening of the wave spectrum, which leads to the stabilization of the water-wave system. Applications of our results to other fields of physics, such as nonlinear optics and plasma physics, are discussed.

  1. Narrow band absorber based on a dielectric nanodisk array on silver film

    NASA Astrophysics Data System (ADS)

    Callewaert, F.; Chen, S.; Butun, S.; Aydin, K.

    2016-07-01

    The simulations of normally incident visible light absorption in a periodic array of dielectric nanodisks on the top of a silver film are presented. Electromagnetic simulations indicate narrow resonances with absorption intensities as large as 95%. The absorption enhancement due to the periodic array can be as high as a factor of 30 compared to an equivalent dielectric film on top of a silver mirror. A parametric study shows that the resonance characteristics and the number of modes can be easily tuned and controlled by the refractive index and the geometric parameters of the nanodisks. In particular, the structure can be tuned to have either a single or two absorption peaks. The characteristics of the two main resonance peaks are described in detail using the simulated electric field profiles and the dispersion relation. Proposed narrowband absorber design utilizing continuous metal films and nanostructured dielectric arrays could be used for narrow-band absorption filters, refractive-index based biosensing applications and thermal emitters.

  2. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-06-01

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.

  3. Flow-radiation coupling for atmospheric entries using a Hybrid Statistical Narrow Band model

    NASA Astrophysics Data System (ADS)

    Soucasse, Laurent; Scoggins, James B.; Rivière, Philippe; Magin, Thierry E.; Soufiani, Anouar

    2016-09-01

    In this study, a Hybrid Statistical Narrow Band (HSNB) model is implemented to make fast and accurate predictions of radiative transfer effects on hypersonic entry flows. The HSNB model combines a Statistical Narrow Band (SNB) model for optically thick molecular systems, a box model for optically thin molecular systems and continua, and a Line-By-Line (LBL) description of atomic radiation. Radiative transfer calculations are coupled to a 1D stagnation-line flow model under thermal and chemical nonequilibrium. Earth entry conditions corresponding to the FIRE 2 experiment, as well as Titan entry conditions corresponding to the Huygens probe, are considered in this work. Thermal nonequilibrium is described by a two temperature model, although non-Boltzmann distributions of electronic levels provided by a Quasi-Steady State model are also considered for radiative transfer. For all the studied configurations, radiative transfer effects on the flow, the plasma chemistry and the total heat flux at the wall are analyzed in detail. The HSNB model is shown to reproduce LBL results with an accuracy better than 5% and a speed up of the computational time around two orders of magnitude. Concerning molecular radiation, the HSNB model provides a significant improvement in accuracy compared to the Smeared-Rotational-Band model, especially for Titan entries dominated by optically thick CN radiation.

  4. EVOLUTION OF [O III] {lambda}5007 EMISSION-LINE PROFILES IN NARROW EMISSION-LINE GALAXIES

    SciTech Connect

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] {lambda}5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  5. Compressed Sensing/Sparse-Recovery Approach for Improved Range Resolution in Narrow-Band Radar.

    PubMed

    Costanzo, Sandra

    2016-01-01

    A compressed sensing/sparse-recovery procedure is adopted to obtain enhanced range resolution capability from the processing of data acquired with narrow-band SFCW radars. A mathematical formulation for the proposed approach is reported and validity limitations are fully discussed, by demonstrating the ability to identify a great number of targets, up to 20, in the range direction. Both numerical and experimental validations are presented, by assuming also noise conditions. The proposed method can be usefully applied for the accurate detection of parameters with very small variations, such as those involved in the monitoring of soil deformations or biological objects.

  6. Compressed Sensing/Sparse-Recovery Approach for Improved Range Resolution in Narrow-Band Radar

    PubMed Central

    Costanzo, Sandra

    2016-01-01

    A compressed sensing/sparse-recovery procedure is adopted to obtain enhanced range resolution capability from the processing of data acquired with narrow-band SFCW radars. A mathematical formulation for the proposed approach is reported and validity limitations are fully discussed, by demonstrating the ability to identify a great number of targets, up to 20, in the range direction. Both numerical and experimental validations are presented, by assuming also noise conditions. The proposed method can be usefully applied for the accurate detection of parameters with very small variations, such as those involved in the monitoring of soil deformations or biological objects. PMID:27022617

  7. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2010-09-10

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)

  8. Narrow-bandpass filters with broad rejection band for single-mode waveguides.

    PubMed

    Bittebierre, J; Lazaridνs, B

    2001-01-01

    Fabry-Perot bandpass filters made of mirrors with both high- and low-Dn (refractive-index modulation) have simultaneously a broad rejection band and a narrow passband. The higher Dn's are obtained with multilayer mirrors and the lower with Bragg gratings (BG's). Implementation of a sampling calculation technique based on the characteristic matrix formalism used for interference coatings allows for simulation of hybrid filters constructed from multilayer mirrors and BG's. The possible defects of hybrid filters are extensively analyzed. Bandpass filters made purely of both high- and low-Dn BG's are also simulated. All these filters are useful for wavelength division multiplexing applications.

  9. A simplified scheme for generating narrow-band mid-ultraviolet laser radiation

    SciTech Connect

    Almog, G.; Scholz, M. Weber, W.; Leisching, P.; Kaenders, W.; Udem, Th.

    2015-03-15

    We report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6{sup 1}S{sub 0} → 6{sup 3}P{sub 1} intercombination line at 253.7 nm. We could perform Doppler-free saturation spectroscopy on this line and were able to lock our laser to the transition frequency on long time scales.

  10. A case of generalized lichen nitidus successfully treated with narrow-band ultraviolet B treatment.

    PubMed

    Bilgili, Serap Gunes; Karadag, Ayse Serap; Calka, Omer; Ozdemir, Serhat; Kosem, Mustafa

    2013-08-01

    Lichen nitidus (LN) is a rare skin disorder presenting with multiple, small and bright papules located on the chest, abdomen, penis glans and upper extremities. It usually presents with limited involvement; however, it can present as generalized involvement. There is no consensus on treatment. Corticosteroid, astemizole, phototherapy has been used; however, the results are controversial. A 15-year-old male with clinical and histopathological diagnosis of LN was treated with narrow-band ultraviolet B (NB-UVB). The lesions completely regressed with post-inflammatory hypopigmentation on the second month of the therapy (25 sessions). We believe that NB-UVB is an effective treatment on generalized LN. PMID:23815355

  11. Construction of narrow-band regenerative amplifier for momentum imaging spectroscopy of lithium dimer

    SciTech Connect

    Matsuoka, Leo; Hashimoto, Masashi; Yokoyama, Keiichi

    2012-07-11

    We constructed a Ti:Sapphire narrow-band regenerative amplifier as the probe laser of the experiment of momentum imaging spectroscopy of lithium dimer. The spectral profile of the regenerative cavity was designed by three birefringent filters and a plate of etalon. With 1.1-mJ pumping by the second harmonics of Nd:YLF laser, mode-locked seed pulses were amplified to {approx}25 {mu}J at 1-kHz repetition, with the bandwidth of {approx}0.7 cm{sup -1}.

  12. A case of generalized lichen nitidus successfully treated with narrow-band ultraviolet B treatment.

    PubMed

    Bilgili, Serap Gunes; Karadag, Ayse Serap; Calka, Omer; Ozdemir, Serhat; Kosem, Mustafa

    2013-08-01

    Lichen nitidus (LN) is a rare skin disorder presenting with multiple, small and bright papules located on the chest, abdomen, penis glans and upper extremities. It usually presents with limited involvement; however, it can present as generalized involvement. There is no consensus on treatment. Corticosteroid, astemizole, phototherapy has been used; however, the results are controversial. A 15-year-old male with clinical and histopathological diagnosis of LN was treated with narrow-band ultraviolet B (NB-UVB). The lesions completely regressed with post-inflammatory hypopigmentation on the second month of the therapy (25 sessions). We believe that NB-UVB is an effective treatment on generalized LN.

  13. A search for narrow band signals with SERENDIP II: a progress report

    NASA Technical Reports Server (NTRS)

    Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  14. A search for narrow band signals with SERENDIP II: a progress report.

    PubMed

    Werthimer, D; Brady, R; Berezin, A; Bowyer, S

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  15. Narrow band wavelength selective filter using grating assisted single ring resonator

    SciTech Connect

    Prabhathan, P. Murukeshan, V. M.

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  16. Novel schemes for the optimization of the SPARC narrow band THz source

    SciTech Connect

    Marchetti, B. Zagorodnov, I.; Bacci, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Spataro, B.; Cianchi, A.; Mostacci, A.; Ronsivalle, C.

    2015-07-15

    A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-band and acting as a longitudinal phase space linearizer.

  17. VIIRS emissive band radiometric performance trending

    NASA Astrophysics Data System (ADS)

    Johnson, Eric; Ranshaw, Courtney

    2012-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. This paper summarizes the radiometric performance measured in the 7 VIIRS thermal emissive bands (3.7 to 12.5 μm), covering both pre-launch thermal-vacuum testing and early on-orbit characterizations. Radiometric characteristics trended include radiometric response and radiometric sensitivity (SNR/NEdT).

  18. An accurate cluster selection function for the J-PAS narrow-band wide-field survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Benítez, N.; Dupke, R.; Cypriano, E.; Lima-Neto, G.; López-Sanjuan, C.; Varela, J.; Alcaniz, J. S.; Broadhurst, T.; Cenarro, A. J.; Devi, N. Chandrachani; Díaz-García, L. A.; Fernandes, C. A. C.; Hernández-Monteagudo, C.; Mei, S.; Mendes de Oliveira, C.; Molino, A.; Oteo, I.; Schoenell, W.; Sodré, L.; Viironen, K.; Marín-Franch, A.

    2016-03-01

    The impending Javalambre Physics of the accelerating Universe Astrophysical Survey (J-PAS) will be the first wide-field survey of ≳ 8500 deg2 to reach the `stage IV' category. Because of the redshift resolution afforded by 54 narrow-band filters, J-PAS is particularly suitable for cluster detection in the range z<1. The photometric redshift dispersion is estimated to be only ˜0.003 with few outliers ≲4 per cent for galaxies brighter than i ˜ 23 AB, because of the sensitivity of narrow band imaging to absorption and emission lines. Here, we evaluate the cluster selection function for J-PAS using N-body+semi-analytical realistic mock catalogues. We optimally detect clusters from this simulation with the Bayesian Cluster Finder, and we assess the completeness and purity of cluster detection against the mock data. The minimum halo mass threshold we find for detections of galaxy clusters and groups with both >80 per cent completeness and purity is Mh ˜ 5 × 1013 M⊙ up to z ˜ 0.7. We also model the optical observable, M^{*}_CL-halo mass relation, finding a non-evolution with redshift and main scatter of σ _{M^{*}_CL | M_h}˜ 0.14 dex down to a factor 2 lower in mass than other planned broad-band stage IV surveys, at least. For the Mh ˜ 1 × 1014 M⊙ Planck mass limit, J-PAS will arrive up to z ˜ 0.85 with a σ _{M^{*}_CL | M_h}˜ 0.12 dex. Therefore, J-PAS will provide the largest sample of clusters and groups up to z ˜ 0.8 with a mass calibration accuracy comparable to X-ray data.

  19. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  20. Narrow band gap and enhanced thermoelectricity in FeSb2.

    PubMed

    Sun, Peijie; Oeschler, Niels; Johnsen, Simon; Iversen, Bo B; Steglich, Frank

    2010-01-28

    FeSb(2) was recently identified as a narrow-gap semiconductor with indications of strong electron-electron correlations. In this manuscript, we report on systematic thermoelectric investigation of a number of FeSb(2) single crystals with varying carrier concentrations, together with two isoelectronically substituted FeSb(2-x)As(x) samples (x = 0.01 and 0.03) and two reference compounds FeAs(2) and RuSb(2). Typical behaviour associated with narrow bands and narrow gaps is only confirmed for the FeSb(2) and the FeSb(2-x)As(x) samples. The maximum absolute thermopower of FeSb(2) spans from 10 to 45 mV/K at around 10 K, greatly exceeding that of both FeAs(2) and RuSb(2). The relation between the carrier concentration and the maximum thermopower value is in approximate agreement with theoretical predictions of the electron-diffusion contribution which, however, requires an enhancement factor larger than 30. The isoelectronic substitution leads to a reduction of the thermal conductivity, but the charge-carrier mobility is also largely reduced due to doping-induced crystallographic defects or impurities. In combination with the high charge-carrier mobility and the enhanced thermoelectricity, FeSb(2) represents a promising candidate for thermoelectric cooling applications at cryogenic temperatures. PMID:20066185

  1. Nature of the narrow optical band in H*-aggregates: Dozy-chaos-exciton coupling

    NASA Astrophysics Data System (ADS)

    Egorov, Vladimir V.

    2014-07-01

    Dozy chaos emerges as a combined effect of the collective chaotic motion of electrons and nuclei, and their chaotic electromagnetic interactions in the transient state of molecules experiencing quantum transitions. Following earlier discussions of the well-known Brönsted relations for proton-transfer reactions; the temperature-dependent electron transfer in Langmuir-Blodgett films; the shape of the optical bands of polymethine dye monomers, their dimers, and J-aggregates, this paper reports one more application of the dozy-chaos theory of molecular quantum transitions. The qualitative and quantitative explanations for shape of a narrow and blue-shifted optical absorption band in H*-aggregates is given on the basis of the dozy-chaos theory by taking into account the dozy-chaos-exciton coupling effect. It is emphasized that in the H*-aggregate chromophore (dimer of cyclic bis-thiacarbocyanines) there is a competition between two Frenkel exciton transitions through the chaotic reorganization motion of nuclear environment. As a result, the highly organized quantum transition to the upper exciton state becomes an exciton-induced source of dozy chaos for the low organized transition to the lower exciton state. This manifests itself in appearing the narrow peak and broad wing in the optical spectrum pattern of H*-aggregates. A similar enhancement in the H*-effect caused by the strengthening of the exciton coupling in H*-dimers, which could be achieved by synthesizing tertiary and quarternary thiacarbocyanine monomers, is predicted.

  2. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Bahk, Je-Hyeong; Shakouri, Ali

    2016-04-01

    We present detailed theoretical predictions on the enhancement of the thermoelectric figure of merit by minority carrier blocking with heterostructure barriers in bulk narrow-band-gap semiconductors. Bipolar carrier transport, which is often significant in a narrow-band-gap material, is detrimental to the thermoelectric energy conversion efficiency as it suppresses the Seebeck coefficient and increases the thermal conductivity. When the minority carriers are selectively prevented from participating in conduction while the transport of majority carriers is relatively unaffected by one-sided heterobarriers, the thermoelectric figure of merit can be drastically enhanced. Thermoelectric transport properties such as Seebeck coefficient, electrical conductivity, and electronic thermal conductivity including the bipolar term are calculated with and without the barriers based on the near-equilibrium Boltzmann transport equations under the relaxation time approximation to investigate the effects of minority carrier barriers on the thermoelectric figure of merit. For this, we provide details of carrier transport modeling and fitting results of experimental data for three important material systems, B i2T e3 -based alloys, M g2S i1 -xS nx , and S i1 -xG ex , that represent, respectively, near-room-temperature (300 K-500 K), midtemperature (600 K-900 K), and high-temperature (>1000 K ) applications. Theoretical maximum enhancement of thermoelectric figure of merit that can be achieved by minority carrier blocking is quantified and discussed for each of these semiconductors.

  3. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications.

    PubMed

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10(-4) × (λres/n)(3). Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  4. Progress in the Search for Ultra-Narrow Band Extraterrestrial Artificial

    NASA Astrophysics Data System (ADS)

    Lemarchand, Guillermo

    Project META II (Megachannel Extra Terrestrial Assay), a full-sky survey for artificial ultra-narrow-band signals, has been conducted in Argentina, since October 1990, from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomia (IAR). The search was performed near the 1.4 GHz line of neutral hydrogen, using an 8.4 times 10^6 channel Fourier spectrometer of 0.05 Hz spectral resolution and 400 kHz of instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. In 1996, with the economical sponsorship of The Planetary Society, an up-grade of the original META data acquisition system was made. New hardware was installed and new software was developed allowing a more comprehensive data analysis of the detected signals. The search was expanded to the 1.667 and 3.3 GHz observing frequencies. A description of the new system's characteristics as well

  5. Near-infrared narrow-band imaging of gold/silica nanoshells in tumors.

    PubMed

    Puvanakrishnan, Priyaveena; Park, Jaesook; Diagaradjane, Parmeswaran; Schwartz, Jon A; Coleman, Chris L; Gill-Sharp, Kelly L; Sang, Kristina L; Payne, J Donald; Krishnan, Sunil; Tunnell, James W

    2009-01-01

    Gold nanoshells (GNS) are a new class of nanoparticles that can be optically tuned to scatter or absorb light from the near-ultraviolet to near-infrared (NIR) region by varying the core (dielectric silica)/shell (gold) ratio. In addition to spectral tunability, GNS are inert and bioconjugatable, making them potential labels for in vivo imaging and therapy of tumors. We report the use of GNS as exogenous contrast agents for enhanced visualization of tumors using narrow-band imaging (NBI). NBI takes advantage of the strong NIR absorption of GNS to distinguish between blood and nanoshells in the tumor by imaging in narrow wavelength bands in the visible and NIR, respectively. Using tissue-simulating phantoms, we determined the optimum wavelengths to enhance contrast between blood and GNS. We then used the optimum wavelengths for ex vivo imaging of tumors extracted from human colon cancer xenograft bearing mice injected with GNS. Systemically delivered GNS accumulated passively in tumor xenografts by the enhanced permeability and retention (EPR) effect. Ex vivo NBI of tumor xenografts demonstrated heterogeneous distribution of GNS with a clear distinction from the tumor vasculature. The results of this study demonstrate the feasibility of using GNS as contrast agents to visualize tumors using NBI. PMID:19405772

  6. Lateralization of narrow-band noise by blind and sighted listeners.

    PubMed

    Simon, Helen J; Divenyi, Pierre L; Lotze, Al

    2002-01-01

    The effects of varying interaural time delay (ITD) and interaural intensity difference (IID) were measured in normal-hearing sighted and congenitally blind subjects as a function of eleven frequencies and at sound pressure levels of 70 and 90 dB, and at a sensation level of 25 dB (sensation level refers to the pressure level of the sound above its threshold for the individual subject). Using an 'acoustic' pointing paradigm, the subject varied the IID of a 500 Hz narrow-band (100 Hz) noise (the 'pointer') to coincide with the apparent lateral position of a 'target' ITD stimulus. ITDs of 0, +/-200, and +/-400 micros were obtained through total waveform delays of narrow-band noise, including envelope and fine structure. For both groups, the results of this experiment confirm the traditional view of binaural hearing for like stimuli: non-zero ITDs produce little perceived lateral displacement away from 0 IID at frequencies above 1250 Hz. To the extent that greater magnitude of lateralization for a given ITD, presentation level, and center frequency can be equated with superior localization abilities, blind listeners appear at least comparable and even somewhat better than sighted subjects, especially when attending to signals in the periphery. The present findings suggest that blind listeners are fully able to utilize the cues for spatial hearing, and that vision is not a mandatory prerequisite for the calibration of human spatial hearing. PMID:12206532

  7. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution.

    PubMed

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6](3-) precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance.

  8. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Chen, Deyuan; Zhang, Gang; Wang, Juebin; Tao, Shangbin

    2016-03-01

    In this paper, a novel structure of super narrow band filter based on two-dimensional square lattice photonic crystals of silicon rods in air for 1.5 um communication is proposed and studied. COMSOL Multiphysics4.3b software is used to simulate the optical behavior of the filter. The filter consists of one point-defect-based resonator and two line-defect-based reflectors. The resonance frequency, transmission coefficient and quality factor are investigated by varying the parameters of the structure. In design, a silicon rod is removed to form the resonator; for the rows of rods above and below the resonator, a part of the rods are removed to form the reflectors. By optimizing the parameters of the filter, the quality factor and transmission coefficient of the filter at the resonance frequency of 2e14 Hz can reach 1330 and 0.953, respectively. The super narrow band filter can be integrated into optical circuit for its micron size. Also, it can be used for wavelength selection and noise filtering of optical amplifier in future communication application.

  9. The effects of narrow-band middle infrared radiation in enhancing the antitumor activity of paclitaxel.

    PubMed

    Tsai, Shang-Ru; Sheu, Bor-Ching; Huang, Pei-Shen; Lee, Si-Chen

    2016-01-01

    Paclitaxel is used as an adjuvant to enhance the effectiveness of ionization radiation therapy; however, high-energy radiation often damages the healthy cells surrounding cancer cells. Low-energy, middle-infrared radiation (MIR) has been shown to prevent tissue damage, and recent studies have begun combining MIR with paclitaxel. However, the cytotoxic effects of this treatment combination remain unclear, and the mechanism underlying its effects on HeLa cells has yet to be elucidated. This study investigated the effectiveness of treating HeLa human cervical cancer cells with a combination of paclitaxel for 48 h in conjunction with narrow-band MIR from 3.0 to 5.0 μm. This combined treatment significantly inhibited the growth of HeLa cells. Specifically, results from Annexin V-FITC/PI apoptosis detection and cell mitochondrial membrane potential analyses revealed an increase in apoptotic cell death and a collapse of mitochondrial membrane potential. One possible mechanism underlying cellular apoptosis is an increase in oxidative stress. These preliminary findings provide evidence to support the combination of narrow-band MIR with paclitaxel as an alternative approach in the treatment of human cervical cancer.

  10. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    PubMed Central

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  11. Narrow-band N-resonance formed in thin rubidium atomic layers

    SciTech Connect

    Sargsyan, A.; Mirzoyan, R.; Sarkisyan, D.

    2012-11-15

    The narrow-band N-resonance formed in a {Lambda} system of D{sub 1}-line rubidium atoms is studied in the presence of a buffer gas (neon) and the radiations of two continuous narrow-band diode lasers. Special-purpose cells are used to investigate the dependence of the process on vapor column thickness L in millimeter, micrometer, and nanometer ranges. A comparison of the dependences of the N-resonance and the electromagnetically induced transparency (EIT) resonance on L demonstrates that the minimum (record) thickness at which the N-resonance can be detected is L = 50 {mu}m and that a high-contrast EIT resonance can easily be formed even at L Almost-Equal-To 800 nm. The N-resonance in a magnetic field for {sup 85}Rb atoms is shown to split into five or six components depending on the magnetic field and laser radiation directions. The results obtained indicate that levels F{sub g} = 2, 3 are initial and final in the N-resonance formation. The dependence of the N-resonance on the angle between the laser beams is analyzed, and practical applications are noted.

  12. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution

    PubMed Central

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I.; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6]3− precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance. PMID:27025784

  13. Narrow band imaging endoscopy of the nasopharynx is not more useful than white light endoscopy for suspected nasopharyngeal carcinoma.

    PubMed

    Vlantis, Alexander C; Woo, John K S; Tong, Michael C F; King, Ann D; Goggins, William; van Hasselt, C Andrew

    2016-10-01

    Endoscopy is often used to screen for nasopharyngeal carcinoma. A normal nasopharynx on white light endoscopy may yet harbor subclinical or occult malignancy. This study assessed whether the vascular pattern seen on narrow band imaging endoscopy could indicate this and thus be useful for detecting suspected nasopharyngeal carcinoma. The nasopharynx of 156 patients who failed serological screening for or presented with symptoms of nasopharyngeal carcinoma was graded under white light and narrow band imaging endoscopy and a biopsy taken. The accuracy of assessing the nasopharynx as being probably or definitely malignant on white light endoscopy was high (area under the curve = 0.924), as it was of being normal on narrow band imaging endoscopy (=0.799). The sensitivity and specificity of white light and narrow band imaging endoscopy for nasopharyngeal carcinoma was 93 and 22 %, and 92 and 98 %, respectively. Significantly associated with nasopharyngeal carcinoma was a high index of suspicion or definitely malignant grade on white light endoscopy (p < 0.0005, odds 58.978) and vascular tufts on narrow band imaging endoscopy (p = 0.020, odds 41.210). Narrow band imaging endoscopy of vasculature alone for suspected nasopharyngeal carcinoma is not more useful than white light endoscopy of nasopharyngeal morphology, nor does it add to or surpass the diagnostic accuracy of white light endoscopy in this regard.

  14. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    SciTech Connect

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V; Yakubovich, S D

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  15. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding

    PubMed Central

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-01-01

    AIM: To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. METHODS: A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. RESULTS: Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. CONCLUSION: Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both

  16. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding

    PubMed Central

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-01-01

    AIM: To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. METHODS: A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. RESULTS: Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. CONCLUSION: Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both

  17. Two-dimensional grating for narrow-band filtering with large angular tolerances.

    PubMed

    Popov, Evgeny; Fehrembach, Anne-Laure; Brûlé, Yoann; Demésy, Guillaume; Boyer, Philippe

    2016-06-27

    A two-dimensional periodic sub-wavelength array of vertical dielectric cylinders on a glass substrate is studied numerically using three different electromagnetic approaches. It is shown that such structure can present a narrow-band spectral resonance characterized by large angular tolerances and 100% maximum in reflection. In particular, in a two-nanometer spectral bandwidth the reflectivity stays above 90% within angles of incidence exceeding 10 degrees for unpolarized light. Bloch modal analysis shows that these properties are due to the excitation of a hybrid mode that is created in the structure by a guided-like mode and a localized cavity mode. The first one is due to the collective effect of the array, while the second one comes from the mode(s) of a single step-index fiber. PMID:27410648

  18. Band gap narrowing in zinc oxide-based semiconductor thin films

    SciTech Connect

    Kumar, Jitendra E-mail: akrsri@gmail.com; Kumar Srivastava, Amit E-mail: akrsri@gmail.com

    2014-04-07

    A simple expression is proposed for the band gap narrowing (or shrinkage) in semiconductors using optical absorption measurements of spin coated 1 at. % Ga-doped ZnO (with additional 0–1.5 at. % zinc species) thin films as ΔE{sub BGN} = Bn{sup 1/3} [1 − (n{sub c}/n){sup 1/3}], where B is the fitting parameter, n is carrier concentration, and n{sub c} is the critical density required for shrinkage onset. Its uniqueness lies in not only describing variation of ΔE{sub BGN} correctly but also allowing deduction of n{sub c} automatically for several M-doped ZnO (M: Ga, Al, In, B, Mo) systems. The physical significance of the term [1 − (n{sub c}/n){sup 1/3}] is discussed in terms of carrier separation.

  19. A proposed interim improvement to the Tevatron beam position monitors with narrow band crystal filters

    SciTech Connect

    Cheng-Yang Tan

    2003-08-25

    Since the start of Run II, we have found that we are unable to reliably and accurately measure the beam position with the present BPM system during high energy physics (HEP). This problem can be traced back to the analogue frontend called the AM/PM module which has trouble handling coalesced beam, but works well with uncoalesced beam. In this paper, we propose a simple fix to the AM/PM module so that we can measure the beam position during HEP. The idea is to use narrow band crystal filters which ring when pinged by coalesced beam so that the AM/PM module is tricked into thinking that it is measuring uncoalesced beam.

  20. Synchrotron studies of narrow band materials. Progress report, July 1, 1990--June 30, 1993

    SciTech Connect

    Allen, J.W.

    1993-02-01

    Objective was to determine the single-particle electronic structure of selected narrow band materials in order to understand the relation between their electronic structures and novel low energy properties, such as mixed valence, heavy Fermions, Kondo effect, insulator-metal transitions, non-Fermi liquid behavior, and high-temperature superconductivity. This program supports photoemission spectroscopy (PES) at various synchrotrons. The progress is reported under the following section titles: ZSA (Zaanen-Sawatzky-Allen) systematics and I-M transitions in 3d transition metal oxides, insulator-metal transitions in superconducting cuprates, Fermi liquid and non-Fermi liquid behavior in angular resolved PES lineshapes, heavy-Fermion and non-Fermi liquid 5f electron systems, and Kondo insulators.

  1. Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques

    NASA Technical Reports Server (NTRS)

    Gridley, D.

    1982-01-01

    A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.

  2. Generation of Intense Narrow-Band Tunable Terahertz Radiation from Highly Bunched Electron Pulse Train

    NASA Astrophysics Data System (ADS)

    Li, Heting; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-07-01

    We present the analysis and start-to-end simulation of an intense narrow-band terahertz (THz) source with a broad tuning range of radiation frequency, using a single-pass free electron laser (FEL) driven by a THz-pulse-train photoinjector. The fundamental radiation frequency, corresponding to the spacing between the electron microbunches, can be easily tuned by varying the spacing time between the laser micropulses. Since the prebunched electron beam is highly bunched at the first several harmonics, with the harmonic generation technique, the radiation frequency range can be further enlarged by several times. The start-to-end simulation results show that this FEL is capable of generating a few tens megawatts power, several tens micro-joules pulse energy, and a few percent bandwidth at the frequencies of 0.5-5 THz. In addition, several practical issues are considered.

  3. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 2. Overview).

    SciTech Connect

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  4. The method of narrow-band audio classification based on universal noise background model

    NASA Astrophysics Data System (ADS)

    Rui, Rui; Bao, Chang-chun

    2013-03-01

    Audio classification is the basis of content-based audio analysis and retrieval. The conventional classification methods mainly depend on feature extraction of audio clip, which certainly increase the time requirement for classification. An approach for classifying the narrow-band audio stream based on feature extraction of audio frame-level is presented in this paper. The audio signals are divided into speech, instrumental music, song with accompaniment and noise using the Gaussian mixture model (GMM). In order to satisfy the demand of actual environment changing, a universal noise background model (UNBM) for white noise, street noise, factory noise and car interior noise is built. In addition, three feature schemes are considered to optimize feature selection. The experimental results show that the proposed algorithm achieves a high accuracy for audio classification, especially under each noise background we used and keep the classification time less than one second.

  5. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

    SciTech Connect

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodgriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  6. A center frequency adjustable narrow band filter for the detection of weak single frequency signal.

    PubMed

    Xin, Yunhong; Xiang, ZhenMing; Dong, LeMing; Zhu, Bing; Cao, Hui; Fang, Yu

    2014-04-01

    We describe and implement a center frequency adjustable narrow band filter based on the crystal filter for the detection of weak single frequency signal. It is formed by a multiplier, a direct digital frequency synthesizer, a multi-stage crystal bandpass filter, and a micro control unit which is used to set the center frequency of the filter. A theoretical study is proposed and experimentally validated. The test results show that the 3 db and 20 db bandwidths are 0.84 Hz and 2.73 Hz, respectively, and the filter system can effectively detect the signal with amplitude below 1 μV and a frequency which ranges from 10 Hz to the frequency that is mainly limited by the components applied.

  7. H-tailored surface conductivity in narrow band gap In(AsN)

    SciTech Connect

    Velichko, A. V. E-mail: anton.velychko@nottingham.ac.uk; Patanè, A. E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O.; Capizzi, M.; Polimeni, A.; Sandall, I. C.; Tan, C. H.; Giubertoni, D.; Krier, A.; Zhuang, Q.

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  8. [Nursing care management in dermatological patient on phototherapy narrow band UVB].

    PubMed

    de Argila Fernández-Durán, Nuria; Blasco Maldonado, Celeste; Martín Gómez, Mónica

    2013-01-01

    Phototherapy with narrow band ultraviolet B is a treatment used in some dermatology units, and is the first choice in some dermatological diseases due to being comfortable and cheap. The aim of this paper is to describe the management and nursing care by grouping more specific diagnoses, following NANDA-NIC/NOC taxonomy, such as the methodology from application, technique, material, and personnel to space-related aspects, with the aim of avoiding the clinical variability and the possible associated risks for the patients, and for the nurses who administer the treatment. The continuity of the same nurse in the follow-up sessions stimulates the relationship between medical personnel and patients, key points for loyalty and therapeutic adherence. This paper examines a consensus procedure with the Dermatology Unit Team and accredited by the Hospital Quality Unit.

  9. Nature of the narrow optical band in H*-aggregates: Dozy-chaos–exciton coupling

    SciTech Connect

    Egorov, Vladimir V.

    2014-07-15

    Dozy chaos emerges as a combined effect of the collective chaotic motion of electrons and nuclei, and their chaotic electromagnetic interactions in the transient state of molecules experiencing quantum transitions. Following earlier discussions of the well-known Brönsted relations for proton-transfer reactions; the temperature-dependent electron transfer in Langmuir–Blodgett films; the shape of the optical bands of polymethine dye monomers, their dimers, and J-aggregates, this paper reports one more application of the dozy-chaos theory of molecular quantum transitions. The qualitative and quantitative explanations for shape of a narrow and blue-shifted optical absorption band in H{sup *}-aggregates is given on the basis of the dozy-chaos theory by taking into account the dozy-chaos–exciton coupling effect. It is emphasized that in the H{sup *}-aggregate chromophore (dimer of cyclic bis-thiacarbocyanines) there is a competition between two Frenkel exciton transitions through the chaotic reorganization motion of nuclear environment. As a result, the highly organized quantum transition to the upper exciton state becomes an exciton-induced source of dozy chaos for the low organized transition to the lower exciton state. This manifests itself in appearing the narrow peak and broad wing in the optical spectrum pattern of H{sup *}-aggregates. A similar enhancement in the H{sup *}-effect caused by the strengthening of the exciton coupling in H{sup *}-dimers, which could be achieved by synthesizing tertiary and quarternary thiacarbocyanine monomers, is predicted.

  10. Five years of comet narrow band photometry and imaging with TRAPPIST

    NASA Astrophysics Data System (ADS)

    Opitom, Cyrielle; Jehin, Emmanuel; Manfroid, Jean; Hutsemékers, Damien; Gillon, Michaël; Magain, Pierre

    2015-11-01

    TRAPPIST is a 60-cm robotic telescope in La Silla Observatory [1] mainly dedicated to the study of exoplanets and comets. The telescope is equipped with a set of narrow band cometary filters designed by the NASA for the Hale-Bopp observing campaign [2]. Since its installation in 2010, we gathered a high quality and homogeneous data set of more than 30 bright comets observed with narrow band filters. Some comets were only observed for a few days but others have been observed weekly during several months on both sides of perihelion. From the images, we derived OH, NH, CN, C2, and C3 production rates using a Haser [3] model in addition to the Afρ parameter as a proxy for the dust production. We computed production rates ratios and the dust color for each comet to study their composition and followed the evolution of these ratios and colors with the heliocentric distance.The TRAPPIST data set, rich of more than 10000 images obtained and reduced in an homogeneous way, allows us to address several fundamental questions such as the pristine or evolutionary origin of composition differences among comets. The evolution of comet activity with the heliocentric distance, the differences between species, and from comet to comet, will be discussed. Finally, the first results about the one year campaign on comet C/2013 US10 (Catalina) and our recent work on the re-determination of Haser scalelengths will be presented.[1] Jehin et al., The Messenger, 145, 2-6, 2011[2] Farnham et al., Icarus, 147, 180-204, 2000[3] Haser, Bulletin de l’Académie Royal des Sciences de Belgique,63, 739, 1957

  11. Narrow band pass filter using birefringence film and quarter-wave film

    NASA Astrophysics Data System (ADS)

    Lee, Dong-kun; Song, Jang-Kun

    2016-03-01

    While a pixel in a color image has three colorimetric information of RGB, that in a spectral image contains full spectral information, several tens times more information compared to the color image. Hence, the spectral image is widely applicable in biology, material science, and environmental science. Although several methods for spectral image acquisition have been suggested to date, those methods are expensive, bulky, or slow in actual device. In this work, we designed a novel type of tunable narrow band-pass filter using rotatable polarizer, quarter-wave plate, and birefringence films. Different from the conventional Lyot-Ohman type filter, we do not use a liquid crystal layer. The selection of wavelength is made by rotating the polarizer in our filter set, and adopted a piezoelectric rotational actuator for that. We simulated to find the optimal conditions of the filter set, and finally, fabricated a filter module. The minimum band width was 5 nm, which is suitable for usual spectral imaging and can be reduced further if necessary, and the wavelength of light passing through the filter set was continuously selectable. After setting the filter in a microscope, we obtained a spectral image set for a bio sample that contained full spectrum information in each pixel. Using image processing, we could demonstrate to read out the spectral information for any selected position.

  12. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  13. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period

    PubMed Central

    2012-01-01

    Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. PMID

  14. The cuprate superconductors: Narrow correlated-electron bands and interlayer pairing via plane-chain charge transfer

    NASA Astrophysics Data System (ADS)

    Ashkenazi, J.; Kuper, C. G.

    1989-12-01

    The cuprate superconductors are modelled by two metallic CuO 2planes, separated by insulating layers, in an extended Hubbard Hamiltonian. Hybridization of O(2 p) and Cu( d) orbitals splits the wide bands of LDA theory, yielding a narrow conduction band of antibonding holes. Holes on the two CuO 2 planes are correlated via interplane hopping, giving a non-magnetic normal Fermi liquid. Charge exchange between the planes and the intervening layers generates attraction and a BCS condensation.

  15. Effects of Narrow Band UVB (311 nm) Irradiation on Epidermal Cells

    PubMed Central

    Reich, Adam; Mędrek, Karolina

    2013-01-01

    Ultraviolet radiation (UVR) is known to be one of the most important environmental hazards acting on the skin. It was revealed that chronic exposure to UVR accelerates skin aging, induces immunosuppression and may lead to the development of skin cancers. On the other hand, UVR has been shown to be effective in the treatment of numerous skin diseases and thus, various phototherapy modalities have been developed to date. Narrow-band ultraviolet B (NB-UVB) emitting a light with a peak around 311 nm has been demonstrated to be effective in the treatment of various skin disorders; currently it is one of the most commonly used phototherapy devices. Despite NB-UVB has been developed more than 30 years ago, the exact mechanism of its therapeutic action remains poorly understood. To date, most of NB-UVB effects were attributed to its influence on immune cells; however, nearly 90% of NB-UVB irradiation is absorbed by epidermis and keratinocytes seem to be important players in mediating NB-UVB biological activity. Here, we have reviewed the current data about the influence of NB-UVB on epidermal cells, with a special emphasis on cell proliferation and death. PMID:23594996

  16. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  17. Clinicopathologic characteristics and management of minute esophageal lesions diagnosed by narrow-band imaging endoscopy

    PubMed Central

    Kumamoto, Takashi; Sentani, Kazuhiro; Oka, Shiro; Tanaka, Shinji; Yasui, Wataru

    2016-01-01

    Background and study aims: Magnifying narrow-band imaging (NBI) endoscopy enables the diagnosis of minute esophageal neoplasia. We aimed to evaluate clinicopathological diagnosis of minute esophageal neoplasia by using magnifying NBI endoscopy and biopsy. Patients and methods: In total, 309 patients (127 men and 182 women) with minute esophageal lesions of intrapapillary capillary loop (IPCL) type IV were enrolled. Of these patients, 249 underwent biopsy for histologic diagnosis and also for treatment. Of the 249 patients, 123 underwent follow-up with endoscopy. We analyzed the clinicopathologic characteristics and prognosis of these lesions after biopsy. Results: Of the 249 biopsied lesions, we histologically diagnosed 11 as high-grade intraepithelial neoplasia (HGIN), 41 as low-grade intraepithelial neoplasia (LGIN), and 197 as non-neoplasia (Non-N) including inflammation. Six of the 11 HGINs and 11 of the 41 LGINs showed slight elevation. Background coloration was observed in 9 of 11 HGINs, 34 of 41 LGINs, and 33 of 197 Non-Ns. Of the 249 biopsied lesions, 147 were microscopically measurable. The average diameter was 1.4 mm for HGINs and 0.8 mm for LGINs. Of the 123 patients who underwent post-biopsy follow-up, 93 (76 %) showed no lesions at the biopsied sites during the NBI examinations and were suspected to have undergone complete resection by biopsy. Conclusions: Biopsy was useful for diagnosis and treatment of minute esophageal lesions, diagnosed as IPCL type IV by magnifying NBI endoscopy. PMID:27652295

  18. Narrow-band imaging with magnifying endoscopy for the evaluation of gastrointestinal lesions

    PubMed Central

    Boeriu, Alina; Boeriu, Cristian; Drasovean, Silvia; Pascarenco, Ofelia; Mocan, Simona; Stoian, Mircea; Dobru, Daniela

    2015-01-01

    Narrow band imaging (NBI) endoscopy is an optical image enhancing technology that allows a detailed inspection of vascular and mucosal patterns, providing the ability to predict histology during real-time endoscopy. By combining NBI with magnification endoscopy (NBI-ME), the accurate assessment of lesions in the gastrointestinal tract can be achieved, as well as the early detection of neoplasia by emphasizing neovascularization. Promising results of the method in the diagnosis of premalignant and malignant lesions of gastrointestinal tract have been reported in clinical studies. The usefulness of NBI-ME as an adjunct to endoscopic therapy in clinical practice, the potential to improve diagnostic accuracy, surveillance strategies and cost-saving strategies based on this method are summarized in this review. Various classification systems of mucosal and vascular patterns used to differentiate preneoplastic and neoplastic lesions have been reviewed. We concluded that the clinical applicability of NBI-ME has increased, but standardization of endoscopic criteria and classification systems, validation in randomized multicenter trials and training programs to improve the diagnostic performance are all needed before the widespread acceptance of the method in routine practice. However, published data regarding the usefulness of NBI endoscopy are relevant in order to recommend the method as a reliable tool in diagnostic and therapy, even for less experienced endoscopists. PMID:25685267

  19. Narrow-band imaging observation of colorectal lesions using NICE classification to avoid discarding significant lesions

    PubMed Central

    Hattori, Santa; Iwatate, Mineo; Sano, Wataru; Hasuike, Noriaki; Kosaka, Hidekazu; Ikumoto, Taro; Kotaka, Masahito; Ichiyanagi, Akihiro; Ebisutani, Chikara; Hisano, Yasuko; Fujimori, Takahiro; Sano, Yasushi

    2014-01-01

    AIM: To assess the risk of failing to detect diminutive and small colorectal cancers with the “resect and discard” policy. METHODS: Patients who received colonoscopy and polypectomy were recruited in the retrospective study. Probable histology of the polyps was predicted by six colonoscopists by the use of NICE classification. The incidence of diminutive and small colorectal cancers and their endoscopic features were assessed. RESULTS: In total, we found 681 cases of diminutive (1-5 mm) lesions in 402 patients and 197 cases of small (6-9 mm) lesions in 151 patients. Based on pathology of the diminutive and small polyps, 105 and 18 were non-neoplastic polyps, 557 and 154 were low-grade adenomas, 18 and 24 were high-grade adenomas or intramucosal/submucosal (SM) scanty invasive carcinomas, 1 and 1 were SM-d carcinoma, respectively. The endoscopic features of invasive cancer were classified as NICE type 3 endoscopically. CONCLUSION: The risk of failing to detect diminutive and small colorectal invasive cancer with the “resect and discard” strategy might be avoided through the use of narrow-band imaging observation with the NICE classification scheme and magnifying endoscopy. PMID:25512769

  20. Visualization of mucosal vasculature with narrow band imaging: a theoretical study

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Le, Du; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-03-01

    Narrow band imaging (NBI) is a spectrally-selective reflectance imaging technique that is used as an adjunctive approach to endoscopic detection of mucosal abnormalities such as neoplastic lesions. While numerous clinical studies in tissue sites such as the esophagus, oral cavity and lung indicate the efficacy of this approach, it is not well theoretically understood. In this study, we performed Monte Carlo simulations to elucidate the factors that affect NBI device performance. The model geometry involved a two-layer turbid medium based on mucosal tissue optical properties and embedded cylindrical, blood-filled vessels at varying diameters and depths. Specifically, we studied the effect of bandpass filters (415+/-15 nm, 540+/-10 nm versus white light), blood vessel diameter (20-400 μm) and depth (30 - 450 μm), wavelength, and bandwidth on vessel contrast. Our results provide a quantitative evaluation of the two mechanisms that are commonly believed to be the primary components of NBI: (i) the increased contrast provided by high hemoglobin absorption and (ii) increase in the penetration depth produced by the decrease in scattering with increasing wavelength. Our MC model can provide novel, quantitative insight into NBI, may lead to improvements in its performance.

  1. Clinicopathologic characteristics and management of minute esophageal lesions diagnosed by narrow-band imaging endoscopy

    PubMed Central

    Kumamoto, Takashi; Sentani, Kazuhiro; Oka, Shiro; Tanaka, Shinji; Yasui, Wataru

    2016-01-01

    Background and study aims: Magnifying narrow-band imaging (NBI) endoscopy enables the diagnosis of minute esophageal neoplasia. We aimed to evaluate clinicopathological diagnosis of minute esophageal neoplasia by using magnifying NBI endoscopy and biopsy. Patients and methods: In total, 309 patients (127 men and 182 women) with minute esophageal lesions of intrapapillary capillary loop (IPCL) type IV were enrolled. Of these patients, 249 underwent biopsy for histologic diagnosis and also for treatment. Of the 249 patients, 123 underwent follow-up with endoscopy. We analyzed the clinicopathologic characteristics and prognosis of these lesions after biopsy. Results: Of the 249 biopsied lesions, we histologically diagnosed 11 as high-grade intraepithelial neoplasia (HGIN), 41 as low-grade intraepithelial neoplasia (LGIN), and 197 as non-neoplasia (Non-N) including inflammation. Six of the 11 HGINs and 11 of the 41 LGINs showed slight elevation. Background coloration was observed in 9 of 11 HGINs, 34 of 41 LGINs, and 33 of 197 Non-Ns. Of the 249 biopsied lesions, 147 were microscopically measurable. The average diameter was 1.4 mm for HGINs and 0.8 mm for LGINs. Of the 123 patients who underwent post-biopsy follow-up, 93 (76 %) showed no lesions at the biopsied sites during the NBI examinations and were suspected to have undergone complete resection by biopsy. Conclusions: Biopsy was useful for diagnosis and treatment of minute esophageal lesions, diagnosed as IPCL type IV by magnifying NBI endoscopy.

  2. Light-Emitting Diode-Assisted Narrow Band Imaging Video Endoscopy System in Head and Neck Cancer

    PubMed Central

    Chang, Hsin-Jen; Wang, Wen-Hung; Chang, Yen-Liang; Jeng, Tzuan-Ren; Wu, Chun-Te; Angot, Ludovic; Lee, Chun-Hsing

    2015-01-01

    Background/Aims To validate the effectiveness of a newly developed light-emitting diode (LED)-narrow band imaging (NBI) system for detecting early malignant tumors in the oral cavity. Methods Six men (mean age, 51.5 years) with early oral mucosa lesions were screened using both the conventional white light and LED-NBI systems. Results Small elevated or ulcerative lesions were found under the white light view, and typical scattered brown spots were identified after shifting to the LED-NBI view for all six patients. Histopathological examination confirmed squamous cell carcinoma. The clinical stage was early malignant lesions (T1), and the patients underwent wide excision for primary cancer. This is the pilot study documenting the utility of a new LED-NBI system as an adjunctive technique to detect early oral cancer using the diagnostic criterion of the presence of typical scattered brown spots in six high-risk patients. Conclusions Although large-scale screening programs should be established to further verify the accuracy of this technology, its lower power consumption, lower heat emission, and higher luminous efficiency appear promising for future clinical applications. PMID:25844342

  3. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990---December 31, 2002

    SciTech Connect

    Allen, J. W.

    2003-05-13

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties.

  4. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination. PMID:23278497

  5. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination.

  6. Radio jet emission from GeV-emitting narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Fuhrmann, L.; Marchili, N.; Foschini, L.; Myserlis, I.; Karamanavis, V.; Komossa, S.; Blinov, D.; Krichbaum, T. P.; Sievers, A.; Ungerechts, H.; Zensus, J. A.

    2015-03-01

    Context. With the current study we aim at understanding the properties of radio emission and the assumed jet from four radio-loud and γ-ray-loud narrow-line Seyfert 1 galaxies that have been detected by Fermi. These are Seyfert 1 galaxies with emission lines at the low end of the FWHM distribution. Aims: The ultimate goal is twofold: first we investigate whether a relativistic jet is operating at the source producing the radio output, and second, we quantify the jet characteristics to understand possible similarities with and differences from the jets found in typical blazars. Methods: We relied on the most systematic monitoring of radio-loud and γ-ray-detected narrow-line Seyfert 1 galaxies in the cm and mm radio bands conducted with the Effelsberg 100 m and IRAM 30 m telescopes. It covers the longest time-baselines and the most radio frequencies to date. This dataset of multi-wavelength, long-term radio light-curves was analysed from several perspectives. We developed a novel algorithm to extract sensible variability parameters (mainly amplitudes and time scales) that were then used to compute variability brightness temperatures and the corresponding Doppler factors. The jet powers were computed from the light curves to estimate the energy output and compare it with that of typical blazars. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. Results: The length of the available light curves for three of the four sources in the sample allowed a firm understanding of the general behaviour of the sources. They all display intensive variability that appears to be occurring at a pace rather faster than what is commonly seen in blazars. The flaring events become progressively more prominent as the frequency increases and show intensive spectral evolution that is indicative of shock evolution. The variability brightness temperatures and the associated Doppler factors are moderate, implying a mildly

  7. Development of inexpensive optical broad- and narrow-band sensors for ecosystem research

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Cuntz, Thomas; Bumberger, Jan

    2014-05-01

    The observation and monitoring of ecosystem processes are great challenges in environmental science, due to the dynamic and complexity of such procedures. To describe and understand biotic and abiotic processes and their interaction it is necessary to acquire multiple parameters, which are influencing the natural regime. Essential issues are: the detection of spatial heterogeneities and scale overlapping procedures in the environment. To overcome these problems an adequate monitoring system should cover a representative area as well as have a sufficient resolution in time and space. Hence, the needed quantity of sensors (depending on the observed parameters or processes) can be enormous. According to these issues, there is a high demand on low-cost sensor technologies (with adequate performances) to realize a delicate monitoring platform. In the case of vegetation processes, one key feature is to characterize photosynthetic activity of the plants in detail. Common investigation methods are based on optical measurements. Here photosynthetically active radiation (PAR) sensors and hyperspectral sensors are in major use. Photosynthetically active radiation (solar radiation from 400 to 700 nanometers) designates the spectral range that photosynthetic organisms are able to use in the process of photosynthesis. PAR sensors enable the detection of the reflected solar light of the vegetation in whole the PAR wave band. The amount of absorption indicates photosynthetic activity of the plant. Hyperspectral sensors observe specific parts of the solar light spectrum and facilitate the determination of the main pigment classes (Chlorophyll, Carotenoid and Anthocyanin). Due to absorption of pigments they producing a specific spectral signature in the visible part of the electromagnetic spectrum (narrow-band peaks). If vegetation is affected by water or nutritional deficience the proportion of light-absorbing pigments is reduced which finally results in an overall reduced light

  8. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  9. Therapeutic or spontaneous Helicobacter pylori eradication can obscure magnifying narrow-band imaging of gastric tumors

    PubMed Central

    Kobayashi, Masaaki; Hashimoto, Satoru; Mizuno, Ken-ichi; Takeuchi, Manabu; Sato, Yuichi; Watanabe, Gen; Ajioka, Yoichi; Azumi, Motoi; Akazawa, Kouhei; Terai, Shuji

    2016-01-01

    Background and study aims: We previously reported that narrow-band imaging with magnifying endoscopy (NBI-ME) revealed a unique “gastritis-like” appearance in approximately 40 % of early gastric cancers after Helicobacter pylori eradication. Because rates of gastric cancer are increasing in patients with non-persistent infection of H. pylori, we aimed to clarify contribution factors to obscure tumors after therapeutic or spontaneous eradication. Patients and methods: NBI-ME findings were examined retrospectively in 194 differentiated-type adenocarcinomas from H. pylori-negative patients with prior eradication therapy (83 patients) or without prior eradication therapy (72 patients). A gastritis-like appearance under NBI-ME was defined as an orderly microsurface structure and/or loss of clear demarcation with resemblance to the adjacent, non-cancerous mucosa. The correlation of this phenomenon with the degree of atrophic gastritis, determined both histologically in the adjacent mucosa and endoscopically, was evaluated. Results: The tumor-obscuring gastritis-like appearance was observed in 42 % and 23 % of the patients in the H. pylori eradication and non-eradication groups, respectively. The development of this appearance was affected by the histological grade of atrophy (P = 0.003) and intestinal metaplasia (P < 0.001) on univariate analysis. Multivariate analysis revealed an odds ratio of 0.25 (95 % confidence interval 0.10 – 0.61, P = 0.002) for an endoscopically severe extent of atrophy, independently of eradication therapy. Conclusions: An endoscopically mild or moderate extent of atrophy is associated with a gastritis-like appearance under NBI-ME in currently H. pylori-negative gastric cancers. Surveillance endoscopy should be performed carefully after successful eradication or spontaneous elimination of H. pylori, particularly in patients with non-severe atrophic background mucosa. PMID:27556076

  10. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author. PMID:23913054

  11. Magnifying narrow-band imaging of surface patterns for diagnosing colorectal cancer.

    PubMed

    Misawa, Masashi; Kudo, Shin-Ei; Wada, Yoshiki; Nakamura, Hiroki; Toyoshima, Naoya; Hayashi, Seiko; Mori, Yuichi; Kudo, Toyoki; Hayashi, Takemasa; Wakamura, Kunihiko; Miyachi, Hideyuki; Yamamura, Fuyuhiko; Hamatani, Shigeharu

    2013-07-01

    Narrow-band imaging (NBI) of surface microvessels of colorectal lesions is useful for differentiating neoplasms from non-neoplasms and for predicting histopathological diagnosis. Furthermore, NBI of surface microstructure, or 'surface pattern', is valuable for predicting histopathology in colorectal cancer. The aim of the present study was to investigate whether surface patterns could be used to predict invasion depth in colorectal cancer, and to compare the accuracy of surface pattern diagnosis in each macroscopic type. Between January 2010 and March 2011, a series of 357 consecutive patients with 378 early colorectal cancers were observed by magnifying NBI and the surface pattern was prospectively evaluated. Surface pattern was classified into 3 types: type I, microstructure was clearly recognised with uniform arrangement and form; type II, microstructure was obscured with heterogeneous arrangement and form; and type III, microstructure was invisible. We also classified the macroscopic type into 3 categories: depressed, protruded and flat elevated. Assuming that type III was an index of massively invasive lesions in the submucosal layer (SMm), the sensitivity, specificity and accuracy were 56.9, 91.7 and 85.7%, respectively. The sensitivity, specificity and accuracy of type III for the diagnosis of SMm in each macroscopic type were: depressed, 88.9, 40.0 and 63.2%, respectively; protruded: 34.8, 96.4 and 90.0%, respectively; and flat elevated, 54.2, 92.7 and 85.0%, respectively. These results suggest that the diagnostic accuracy of surface pattern was insufficient and particularly poor for depressed-type lesions.

  12. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  13. Narrow-band Imager for Multi-Application Solar Telescope (MAST) at Udaipur Solar Observatory

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, A.; Mathew, Shibu K.; Venkatakrishnan, Parameswaran; Srivastava, Nandita

    2013-04-01

    Multi-Application Solar Telescope (MAST) is an off-axis Gregorian solar telescope of 50 cm clear aperture installed at the lake site of Udaipur solar observatory (USO). A narrow band imager is being developed for near simultaneous observations of the solar atmosphere at different heights. The heart of the system is two Fabry-Perot (FP) etalons working in tandem. The substrate of the etalons is made of Lithium Niobate electro-optic crystal. The filter is tuned by changing the refractive index of the crystal with the application of the voltage. It is important to know the voltage required per unit wavelength shift to tune the system for different wavelength regions for near simultaneous observations. A littrow spectrograph was set up to calibrate the FP etalons. The achieved spectral resolution with the spectrograph at 6173 Å is 35 mÅ. Calibration is carried-out for the Fe I 6173 Å, H-alpha 6563 Å and Ca K 8542 Å. Free spectral range (FSR) obtained for FP1 and FP2 in tandem for 6173 Å is 6.7Å and 150 mÅ respectively. Voltage range of the system allows us to scan the entire line profile of 6173 in the range of ±220 mÅ with a sampling of 20 mÅ. We also performed temperature tuning and voltage tuning of the system. Similar exercise is performed for other two wavelengths. Here we present the details of the calibration set-up and obtained parameters and first-light results of the system.

  14. Narrow-band imaging for the computer assisted diagnosis in patients with Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Kage, Andreas; Raithel, Martin; Zopf, Steffen; Wittenberg, Thomas; Münzenmayer, Christian

    2009-02-01

    Cancer of the esophagus has the worst prediction of all known cancers in Germany. The early detection of suspicious changes in the esophagus allows therapies that can prevent the cancer. Barrett's esophagus is a premalignant change of the esophagus that is a strong indication for cancer. Therefore there is a big interest to detect Barrett's esophagus as early as possible. The standard examination is done with a videoscope where the physician checks the esophagus for suspicious regions. Once a suspicious region is found, the physician takes a biopsy of that region to get a histological result of it. Besides the traditional white light for the illumination there is a new technology: the so called narrow-band Imaging (NBI). This technology uses a smaller spectrum of the visible light to highlight the scene captured by the videoscope. Medical studies indicate that the use of NBI instead of white light can increase the rate of correct diagnoses of a physician. In the future, Computer-Assisted Diagnosis (CAD) which is well known in the area of mammography might be used to support the physician in the diagnosis of different lesions in the esophagus. A knowledge-based system which uses a database is a possible solution for this task. For our work we have collected NBI images containing 326 Regions of Interest (ROI) of three typical classes: epithelium, cardia mucosa and Barrett's esophagus. We then used standard texture analysis features like those proposed by Haralick, Chen, Gabor and Unser to extract features from every ROI. The performance of the classification was evaluated with a classifier using the leaving-one-out sampling. The best result that was achieved is an accuracy of 92% for all classes and an accuracy of 76% for Barrett's esophagus. These results show that the NBI technology can provide a good diagnosis support when used in a CAD system.

  15. NaCd excimer emission bands

    NASA Astrophysics Data System (ADS)

    Pichler, G.; Veža, D.; Fijan, D.

    1988-06-01

    The analysis of the visible spectrum of a high pressure sodium lamp filled with sodium, cadium and xenon revealed the existence of NaCd excimer spectral features. These are four red satellite bands at 691, 697, 709 and 726.5 nm and diffuse bands peaking at 479.1 and 484.3 nm. Both spectral phenomena are related to those found earlier for the NaHg system. An interpretation of the red satellite bands origin is given in terms of a qualitative model for the four lowest potential curves of the NaCd excimer. In this model the essential feature is the avoided crossing between B 2∑ 1/2 and A 2∏ 1/2 electronic states, which causes a complex structure of the satellite bands in the very far red wing of the sodium D lines broadened by cadmium.

  16. A high fraction of double-peaked narrow emission lines in powerful active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lyu, Yang; Liu, Xin

    2016-11-01

    1 per cent of redshift z ˜ 0.1 active galactic nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harbouring a supermassive black hole (SMBH), and/or galactic-scale disc rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III] λ5007 emission-line luminosity L_[O III]. We combine the sample of Liu et al. at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L_[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow-up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  17. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  18. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    NASA Astrophysics Data System (ADS)

    Feng, Liefeng; Yang, Xiufang; Li, Yang; Li, Ding; Wang, Cunda; Yao, Dongsheng; Hu, Xiaodong; Li, Hongru

    2015-04-01

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by Ithl and Ithu, as shown in Fig. 2; Ithl is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; Ithu is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (Vj) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at Ithl and Ithu. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  19. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    SciTech Connect

    Feng, Liefeng E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng; Li, Yang; Li, Ding; Hu, Xiaodong; Li, Hongru E-mail: lihongru@nankai.edu.cn

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  20. Narrow-band imaging with magnifying endoscopy is accurate for detecting gastric intestinal metaplasia

    PubMed Central

    Savarino, Edoardo; Corbo, Marina; Dulbecco, Pietro; Gemignani, Lorenzo; Giambruno, Elisa; Mastracci, Luca; Grillo, Federica; Savarino, Vincenzo

    2013-01-01

    AIM: To investigate the predictive value of narrow-band imaging with magnifying endoscopy (NBI-ME) for identifying gastric intestinal metaplasia (GIM) in unselected patients. METHODS: We prospectively evaluated consecutive patients undergoing upper endoscopy for various indications, such as epigastric discomfort/pain, anaemia, gastro-oesophageal reflux disease, suspicion of peptic ulcer disease, or chronic liver diseases. Patients underwent NBI-ME, which was performed by three blinded, experienced endoscopists. In addition, five biopsies (2 antrum, 1 angulus, and 2 corpus) were taken and examined by two pathologists unaware of the endoscopic findings to determine the presence or absence of GIM. The correlation between light blue crest (LBC) appearance and histology was measured. Moreover, we quantified the degree of LBC appearance as less than 20% (+), 20%-80% (++) and more than 80% (+++) of an image field, and the semiquantitative evaluation of LBC appearance was correlated with IM percentage from the histological findings. RESULTS: We enrolled 100 (58 F/42 M) patients who were mainly referred for gastro-esophageal reflux disease/dyspepsia (46%), cancer screening/anaemia (34%), chronic liver disease (9%), and suspected celiac disease (6%); the remaining patients were referred for other indications. The prevalence of Helicobacter pylori (H. pylori) infection detected from the biopsies was 31%, while 67% of the patients used proton pump inhibitors. LBCs were found in the antrum of 33 patients (33%); 20 of the cases were classified as LBC+, 9 as LBC++, and 4 as LBC+++. LBCs were found in the gastric body of 6 patients (6%), with 5 of them also having LBCs in the antrum. The correlation between the appearance of LBCs and histological GIM was good, with a sensitivity of 80% (95%CI: 67-92), a specificity of 96% (95%CI: 93-99), a positive predictive value of 84% (95%CI: 73-96), a negative predictive value of 95% (95%CI: 92-98), and an accuracy of 93% (95%CI: 90-97). The

  1. Predictions of narrow-band acoustic time reversal in the shallow ocean

    NASA Astrophysics Data System (ADS)

    Dungan, Michael Robert

    2000-10-01

    A time-reversing array (TRA) can retrofocus acoustic energy, in both time and space, to the original sound- source location without any environmental information. This unique capability may be degraded in time-dependent, lossy, or noisy acoustic environments. A broad computational and analytical investigation into narrow- band acoustic time reversal in the shallow ocean has been undertaken. This includes investigating (1)variability in the water column due to dynamic linear internal waves, (2)roughness in the ocean bottom, and (3)limiting orientations of TRAs. TRA retrofocusing performance predictions are primarily determined via monochromatic propagation simulations using the wide-angle parabolic equation code RAM (Collins 1993, 1994, and 1998). Results for the influence of source-array range, source depth, channel depth, acoustic frequency, bottom absorption, bottom roughness, internal wave strength, roundtrip time delay, and array orientation and spacing are presented. For a fixed channel geometry, higher frequencies, deeper sources, and lower bottom absorption improve TRA performance and allow retrofocusing at longer ranges. After several minutes in a dynamic shallow-water channel containing a random superposition of linear internal waves, there is significant TRA retrofocus amplitude decay, and the decay rate increases with increasing internal wave activity and acoustic frequency. Randomness in the environment, either from bottom roughness or random linear internal waves, reduces the predicted azimuthal angular width of the vertical-TRA retrofocus to as little as a fraction of a degree (compared to 360° for uniform environments) for source-array ranges from 2.5 to 20 km at frequencies from 250 Hz to 2 kHz. In a sound channel with bottom roughness, the azimuthal size of the retrofocus is predicted to be proportional to the roughness correlation length divided by the wavenumber, source-array range, and roughness RMS-height all raised to the three-halves power

  2. Analysis of microvascular density in early gastric carcinoma using magnifying endoscopy with narrow-band imaging

    PubMed Central

    Kawamura, Masashi; Naganuma, Hiroshi; Shibuya, Rie; Kikuchi, Tatsuya; Sakai, Yoshitaka; Nagasaki, Futoshi; Nomura, Eiki; Suzuki, Noriaki; Saito, Eri

    2016-01-01

    Background and study aims: Intramucosal vascular density differs between differentiated and undifferentiated type gastric carcinomas. This study aimed to evaluate the microvascular density characteristics of these two types of carcinoma using magnifying endoscopy with narrow-band imaging (ME-NBI). Patients and methods: In total, 42 differentiated and 10 undifferentiated types were evaluated. The microvessels observed using ME-NBI were extracted from stored still images and the microvascular density in the two carcinoma types was analyzed. Histological vascular density in resected specimens was also evaluated using CD34 immunostaining. Results: There were significant differences between the microvascular density in the differentiated and undifferentiated types of carcinoma (10.02 ± 4.72 % vs 4.02 ± 0.40 %; P < 0.001) using ME-NBI. Vascular density assessed histologically also differed significantly between differentiated and undifferentiated types in both the whole mucosal (5.81 ± 3.17 % vs 3.25 ± 1.21 %) and the superficial mucosal layers (0 – 100 μm) (6.38 ± 3.73 % vs 3.66 ± 1.46 %). However, the vascular density in the surrounding non-carcinomatous mucosa assessed using ME-NBI and histologically, was significantly lower in the differentiated than in the undifferentiated types (P < 0.001). There was good agreement between ME-NBI and histologically assessed microvascular density in both the whole (r = 0.740; P < 0.001) and superficial mucosal layers (r = 0.764; P < 0.001). White opaque substance (WOS) was seen in eight patients who had the differentiated type carcinoma. In almost all cases with WOS, the appearance of the carcinoma was discolored. Conclusions: There was a close relationship between ME-NBI assessed microvascular density and histologically assessed vascular density in the mucosal layer. Microvascular density differed significantly between the differentiated and undifferentiated

  3. First-principles study of direct and narrow band gap semiconducting β -CuGaO2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. Inmore » conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  4. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.

  5. A narrow band-pass filter type Wilkinson power divider for I-Q demodulator in microwave interferometer system

    NASA Astrophysics Data System (ADS)

    Wang, X.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Ikezoe, R.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Ma, Z.; Sakagami, I.; Mase, A.

    2015-11-01

    I-Q (In-phase Quadrature) demodulator is one of key components in microwave interferometer system application. Normally, I-Q demodulator consists of amplifiers, mixers, 90 degree phase shifter, power divider and band-pass filters, and it is widely used in various microwave communication systems and measurement systems. In this paper, power divider and band-pass filters are newly designed as one single passive component, therefore, I-Q demodulator topology becomes simplified. The novel narrow band-pass filter type Wilkinson power divider not only provides extremely miniaturized circuit size, but also maintains the band-pass filter performance and power division function as well. One experimental circuit shows good agreement with the theoretical simulation.

  6. Minimal erythema dose (MED) in normal canine skin by irradiation of narrow-band ultraviolet B (NB-UVB).

    PubMed

    Mochizuki, Takako; Iwasaki, Toshiroh

    2013-01-31

    Narrow-band UVB (NB-UVB) is light over a very narrow band of wavelengths (around 311 nm) that is concentrated in the therapeutic range and minimally in the sunburn range. It has therefore become the phototherapy treatment of choice for skin diseases. The minimal erythema dose (MED) on canine skin for standardizing dosage schedules in NB-UVB treatment and histopathological analyses were performed in these dogs. In all 32 dogs tested, the MED ranged from 432 to 864 mJ/cm(2). There were no significant differences in MED among breeds, sex and age groups. Histopathology obtained from areas irradiated by MED showed only mild vascular dilatation. These findings might be valuable for the application of NB-UVB phototherapy to canine skin diseases.

  7. Narrow-band GeV photons generated from an x-ray free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Hajima, Ryoichi; Fujiwara, Mamoru

    2016-02-01

    We propose a scheme to generate narrow-band GeV photons, γ -rays, via Compton scattering of hard x-ray photons in an x-ray free-electron laser oscillator. Generated γ -rays show a narrow-band spectrum with a sharp peak, ˜0.1 % (FWHM), due to large momentum transfer from electrons to photons. The γ -ray beam has a spectral density of ˜102 ph /(MeV s ) with a typical set of parameters based on a 7-GeV electron beam operated at 3-MHz repetition, Such γ -rays will be a unique probe for studying hadron physics. Features of the γ -ray source, flux, spectrum, polarization, tunability and energy resolution are discussed.

  8. Substantial band-gap narrowing of α-Si 3N 4 induced by heavy Al doping

    NASA Astrophysics Data System (ADS)

    Xiao, W.; Geng, W. T.

    2011-07-01

    Our first-principles study on the structural and electronic properties of Al-doped α-Si 3N 4 predict a significant band-gap narrowing, which makes this material a more efficient phosphor. Strong attraction of substitutional and interstitial Al atoms leads to the formation of stable (3+1) complexes that behave as isoelectronic traps. The near-mid-gap states of the interstitials reduce nearly half of the band-gap of α-Si 3N 4. Such a new nitride-based semiconductor could be a promising photocatalyst with high reactivity in solar irradiation or interior lighting in visible spectrum.

  9. Subsurface banding poultry litter impacts greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...

  10. Narrow-band UVB radiation promotes dendrite formation by activating Rac1 in B16 melanoma cells.

    PubMed

    Wang, Wu-Qing; Wu, Jin-Feng; Xiao, Xiao-Qing; Xiao, Qin; Wang, Jing; Zuo, Fu-Guo

    2013-09-01

    Melanocytes are found scattered throughout the basal layer of the epidermis. Following hormone or ultraviolet (UV) light stimulation, the melanin pigments contained in melanocytes are transferred through the dendrites to the surrounding keratinocytes to protect against UV light damage or carcinogenesis. This has been considered as a morphological indicator of melanocytes and melanoma cells. Small GTPases of the Rho family have been implicated in the regulation of actin reorganization underlying dendrite formation in melanocytes and melanoma cells. It has been proven that ultraviolet light plays a pivotal role in melanocyte dendrite formation; however, the molecular mechanism underlying this process has not been fully elucidated. The effect of small GTPases, such as Rac1 and RhoA, on the morphology of B16 melanoma cells treated with narrow-band UVB radiation was investigated. The morphological changes were observed under a phase contrast microscope and the F-actin microfilament of the cytoskeleton was observed under a laser scanning confocal microscope. The pull-down assay was performed to detect the activity of the small GTPases Rac1 and RhoA. The morphological changes were evident, with globular cell bodies and increased numbers of tree branch-like dendrites. The cytoskeletal F-actin appeared disassembled following narrow-band UVB irradiation of B16 melanoma cells. Treatment of B16 melanoma cells with narrow-band UVB radiation resulted in the activation of Rac1 in a time-dependent manner. In conclusion, the present study may provide a novel method through which narrow-band UVB radiation may be used to promote dendrite formation by activating the Rac1 signaling pathway, resulting in F-actin rearrangement in B16 melanoma cells. PMID:24649261

  11. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-01

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized. PMID:27403812

  12. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-01

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  13. Diagnosis of gastric intraepithelial neoplasia by narrow-band imaging and confocal laser endomicroscopy

    PubMed Central

    Wang, Shu-Fang; Yang, Yun-Sheng; Wei, Li-Xin; Lu, Zhong-Sheng; Guo, Ming-Zhou; Huang, Jin; Peng, Li-Hua; Sun, Gang; Ling-Hu, En-Qiang; Meng, Jiang-Yun

    2012-01-01

    AIM: To evaluate the diagnosis of different differentiated gastric intraepithelial neoplasia (IN) by magnification endoscopy combined with narrow-band imaging (ME-NBI) and confocal laser endomicroscopy (CLE). METHODS: Eligible patients with suspected gastric IN lesions previously diagnosed by endoscopy in secondary hospitals and scheduled for further diagnosis and treatment were recruited for this study. Excluded from the study were patients who had liver cirrhosis, impaired renal function, acute gastrointestinal (GI) bleeding, coagulopathy, esophageal varices, jaundice, and GI post-surgery. Also excluded were those who were pregnant, breastfeeding, were younger than 18 years old, or were unable to provide informed consent. All patients had all mucus and bile cleared from their stomachs. They then received upper GI endoscopy. When a mucosal lesion is found during observation with white-light imaging, the lesion is visualized using maximal magnification, employing gradual movement of the tip of the endoscope to bring the image into focus. Saved images are analyzed. Confocal images were evaluated by two endoscopists (Huang J and Li MY), who were familiar with CLE, blinded to the related information about the lesions, and asked to classify each lesion as either a low grade dysplasia (LGD) or high grade dysplasia (HGD) according to given criteria. The results were compared with the final histopathologic diagnosis. ME-NBI images were evaluated by two endoscopists (Lu ZS and Ling-Hu EQ) who were familiar with NBI, blinded to the related information about the lesions and CLE images, and were asked to classify each lesion as a LGD or HGD according to the “microvascular pattern and surface pattern” classification system. The results were compared with the final histopathologic diagnosis. RESULTS: The study included 32 pathology-proven low grade gastric IN and 26 pathology-proven high grade gastric IN that were detected with any of the modalities. CLE and ME-NBI enabled

  14. On the narrow emission line components of the LMC novae 2004 (YY Doradus) and 2009a

    NASA Astrophysics Data System (ADS)

    Mason, Elena; Munari, Ulisse

    2014-09-01

    We present early decline spectra of the two Large Magellanic Cloud novae: LMC 2004 (YY Dor) and LMC 2009a and discuss their spectral an line profile evolution with special emphasis on the existence and appearance of a sharp component. We show that the narrow component that characterizes the emission lines in the maximum spectra of nova LMC 2004 originates in the ejecta. The He ii 4686 Å narrow emission which appears at the onset of the nebular phase in both novae is somewhat controversial. Our observations suggest that the corresponding line forming region is physically separated from the rest of the ejecta (the broad line region) and environmentally different. However, the lack of late time observations covering the super-soft source (SSS) phase, the post-SSS phase and the quiescence state does not allow to securely establish any non-ejecta origin/contribution as, instead, in the case of U Sco and KT Eri.

  15. Crystal growth and characterization of the narrow-band-gap semiconductors OsPn₂ (Pn = P, As, Sb).

    PubMed

    Bugaris, Daniel E; Malliakas, Christos D; Shoemaker, Daniel P; Do, Dat T; Chung, Duck Young; Mahanti, Subhendra D; Kanatzidis, Mercouri G

    2014-09-15

    Using metal fluxes, crystals of the binary osmium dipnictides OsPn2 (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn6 octahedra, as well as [Pn2(4-)] anions. Raman spectroscopy shows the presence of P-P single bonds, consistent with the presence of [Pn2(-4)] anions and formally Os(4+) cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2 and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn2 dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a Pn-Pn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment.

  16. Flexible metamaterial narrow-band-pass filter based on magnetic resonance coupling between ultra-thin bilayer frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyuan; Zhang, Qing; Ju, Yongfeng; Tao, Guiju; Jiang, Xiongwei; Kang, Ning; Liu, Chengpu; Zhang, Long

    2016-02-01

    A novel flexible metamaterial narrow-band-pass filter is designed and proved to be reliable by both numerical simulations and experimental measurements. The unit cell of the designed structure consists of circle ring resonators on top of a thin dielectric layer backed by a metallic mesh. The investigations on the distribution of the surface current and magnetic field as well as the analysis of the equivalent circuit model reveal that the magnetic resonance response between layers induced by the reverse surface current contributes to the high quality factor band-pass property. Importantly, it is a flexible design with a tunable resonance frequency by just changing the radius of the circle rings and can also be easily extended to have the multi-band-pass property. Moreover, this simplified structure with low duty cycle and ultra-thin thickness is also a symmetric design which is insensitive to the polarization and incident angles. Therefore, such a metamaterial narrow-band-pass filter is of great importance in the practical applications such as filtering and radar stealth, and especially for the conformal structure applications in the infrared and optical window area.

  17. Crystal growth and characterization of the narrow-band-gap semiconductors OsPn₂ (Pn = P, As, Sb).

    PubMed

    Bugaris, Daniel E; Malliakas, Christos D; Shoemaker, Daniel P; Do, Dat T; Chung, Duck Young; Mahanti, Subhendra D; Kanatzidis, Mercouri G

    2014-09-15

    Using metal fluxes, crystals of the binary osmium dipnictides OsPn2 (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn6 octahedra, as well as [Pn2(4-)] anions. Raman spectroscopy shows the presence of P-P single bonds, consistent with the presence of [Pn2(-4)] anions and formally Os(4+) cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2 and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn2 dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a Pn-Pn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment. PMID:25162930

  18. Band limited emission with central frequency around 2 Hz accompanying powerful cyclones

    NASA Technical Reports Server (NTRS)

    Troitskaia, V. A.; Shepetnov, K. S.; Dvobnia, B. D.

    1992-01-01

    It has been found that powerful cyclones are proceeded, accompanied and followed by narrow band electromagnetic emission with central frequency around 2 Hz. It is shown that the signal from this emission is unique and clearly distinguishable from known types of magnetic pulsations, spectra of local thunderstorms, and signals from industrial sources. This emission was first observed during an unusually powerful cyclone with tornadoes in the western European part of the Soviet Union, which passed by the observatory of Borok from south to north-east. The emission has been confirmed by analysis of similar events in Antarctica. The phenomenon described presents a new aspect of interactions of processes in the lower atmosphere and the ionosphere.

  19. Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy.

    PubMed

    Kliner, D A; Koplow, J P; Goldberg, L

    1997-09-15

    Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated. PMID:18188256

  20. Usefulness of chromoendoscopy and magnifying narrow band imaging endoscopy for diagnosis of demarcation of adenocarcinoma in Barrett's esophagus.

    PubMed

    Yamashina, Takeshi; Uedo, Noriya; Matsui, Fumi; Ishihara, Ryu; Tomita, Yasuhiko

    2013-05-01

    It is often difficult to accurately delineate the borders and extent of early-stage esophageal adenocarcinoma in patients with Barrett's esophagus using conventional white light endoscopy. Chromoendoscopy enhances the characteristics of the mucosa and improves detection and delineation of small or flat lesions difficult to identify by conventional endoscopy. Magnifying endoscopy with narrow-band imaging (NBI) is a novel endoscopic imaging technology that contrasts the vascular architecture and surface structure of the superficial mucosa. As magnifying NBI can view only a narrow area of the mucosa, this method cannot determine the circumference of the lesion and evaluate its complete extent. Indigocarmine chromoendoscopy is useful for delineating the extent of Barrett's adenocarcinoma. Chromoendoscopy and magnifying NBI are complementary methods, with both being required for the accurate diagnosis of tumor extent in patients with superficial Barrett's esophageal adenocarcinoma.

  1. New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films.

    PubMed

    Saw, K G; Aznan, N M; Yam, F K; Ng, S S; Pung, S Y

    2015-01-01

    The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants. PMID:26517364

  2. New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films.

    PubMed

    Saw, K G; Aznan, N M; Yam, F K; Ng, S S; Pung, S Y

    2015-01-01

    The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants.

  3. New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films

    PubMed Central

    Saw, K. G.; Aznan, N. M.; Yam, F. K.; Ng, S. S.; Pung, S. Y.

    2015-01-01

    The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants. PMID:26517364

  4. ALEXIS (Array of Low-Energy X-Ray Imaging Sensors): A narrow-band survey/monitor of the ultrasoft x-ray sky

    SciTech Connect

    Priedhorsky, W.C.; Bloch, J.J.; Cordova, F.; Smith, B.W.; Ulibarri, M.; Chavez, J.; Evans, E.; Seigmund, O.H.W.; Marshall, H.; Vallerga, J.

    1989-01-01

    Los Alamos and Sandia National Laboratories are building an ultrasoft X-ray monitor experiment. This experiment, called ALEXIS (Array of Low-Energy X-Ray Imaging Sensors), consists of six compact normal-incidence telescopes. ALEXIS will operate in the range 70--110 eV. The ultrasoft X-ray/EUV band is nearly uncharted territory for astrophysics. ALEXIS, with its wide fields-of-view and well-defined wavelength bands, will complement the upcoming NASA Extreme Ultraviolet Explorer and ROSAT EUV Wide Field Camera, which are sensitive broad-band survey experiments. The program objectives of ALEXIS are to (1) demonstrate the feasibility of a wide field-of-view, normal incidence ultrasoft X-ray telescope system and (2) to determine ultrasoft X-ray backgrounds in the space environment. As a dividend, ALEXIS will pursue the following scientific objectives: (1) to map the diffuse background, with unprecedented angular resolution, in several emission-line bands, (2) to perform a narrow-band survey of point sources, (3) to search for transient phenomena in the ultrasoft X-ray band, and (4) to provide synoptic monitoring of variable ultrasoft X-ray sources such as cataclysmic variables and flare stars. ALEXIS is designed to be flown on a small autonomous payload carrier (a minisat) that could be launched from any expendable launch vehicle. The experiment weighs 100 pounds, draws 40 watts, and produces 10 kbps of data. It can be flown in any low earth orbit. Onboard data storage allows operation and tracking from a single ground station at Los Alamos. 57 refs., 12 figs.

  5. Optical Observations of the Nearby Galaxy IC342 with Narrow Band [SII] and H_alpha Filters. I

    NASA Astrophysics Data System (ADS)

    Vucetic, M. M.; Arbutina, B.; Urosevic, D.; Dobardzic, A.; Pavlovic, M. Z.; Pannuti, T. G.; Petrov, N.

    2013-12-01

    We present observations of a portion of the nearby spiral galaxy IC342 using narrow band [SII] and Hα filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, Hα and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 5 times higher than previously known in these two parts of the galaxy.

  6. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    SciTech Connect

    Piot, P.; Sun, Y. -E; Maxwell, T. J.; Ruan, J.; Lumpkin, A. H.; Rihaoui, M. M.; Thurman-Keup, R.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  7. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source.

    PubMed

    Liu, Wei; Ma, Pengfei; Lv, Haibin; Xu, Jiangming; Zhou, Pu; Jiang, Zongfu

    2016-04-18

    In this paper the stimulated Raman scattering (SRS) effect in high-power fiber amplifiers seeded by the narrow-band filtered superfluorescent source (SFS) is firstly analyzed both theoretically and experimentally. Spectral models for the formation of the SFS and the spectral evolution in high-power fiber amplifiers seeded by filtered SFS are proposed. It is found that the SRS effect in high-power fiber amplifiers depends on the spectral width of the filtered SFS seed. The theoretical predictions are in qualitative agreements with the experimental results. PMID:27137305

  8. SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam

    SciTech Connect

    Paley, J.; Djurcic, Z.; Harris, D.; Tesarek, R.; Feldman, G.; Corwin, L.; Messier, M.D.; Mayer, N.; Musser, J.; Paley, J.; Tayloe, R.; /Indiana U. /Iowa State U. /Minnesota U. /South Carolina U. /Wichita State U. /William-Mary Coll.

    2010-10-15

    We propose to construct and deploy a fine-grained detector in the Fermilab NOvA 2 GeV narrow-band neutrino beam. In this beam, the detector can make unique contributions to the measurement of quasi-elastic scattering, neutral-current elastic scattering, neutral-current {pi}{sup 0} production, and enhance the NOvA measurements of electron neutrino appearance. To minimize cost and risks, the proposed detector is a copy of the SciBar detector originally built for the K2K long baseline experiment and used recently in the SciBooNE experiment.

  9. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source.

    PubMed

    Liu, Wei; Ma, Pengfei; Lv, Haibin; Xu, Jiangming; Zhou, Pu; Jiang, Zongfu

    2016-04-18

    In this paper the stimulated Raman scattering (SRS) effect in high-power fiber amplifiers seeded by the narrow-band filtered superfluorescent source (SFS) is firstly analyzed both theoretically and experimentally. Spectral models for the formation of the SFS and the spectral evolution in high-power fiber amplifiers seeded by filtered SFS are proposed. It is found that the SRS effect in high-power fiber amplifiers depends on the spectral width of the filtered SFS seed. The theoretical predictions are in qualitative agreements with the experimental results.

  10. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.

    PubMed

    Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn

    2002-03-01

    We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.

  11. Pansharpening on the Narrow Vnir and SWIR Spectral Bands of SENTINEL-2

    NASA Astrophysics Data System (ADS)

    Vaiopoulos, A. D.; Karantzalos, K.

    2016-06-01

    In this paper results from the evaluation of several state-of-the-art pansharpening techniques are presented for the VNIR and SWIR bands of Sentinel-2. A procedure for the pansharpening is also proposed which aims at respecting the closest spectral similarities between the higher and lower resolution bands. The evaluation included 21 different fusion algorithms and three evaluation frameworks based both on standard quantitative image similarity indexes and qualitative evaluation from remote sensing experts. The overall analysis of the evaluation results indicated that remote sensing experts disagreed with the outcomes and method ranking from the quantitative assessment. The employed image quality similarity indexes and quantitative evaluation framework based on both high and reduced resolution data from the literature didn't manage to highlight/evaluate mainly the spatial information that was injected to the lower resolution images. Regarding the SWIR bands none of the methods managed to deliver significantly better results than a standard bicubic interpolation on the original low resolution bands.

  12. The infrared emission bands. III. Southern IRAS sources.

    PubMed

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features. PMID:11542167

  13. The infrared emission bands. III. Southern IRAS sources.

    PubMed

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features.

  14. Forward-bias capacitance and current measurements for determining lifetimes and band narrowing in p-n junction solar cells

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Chen, P. J.; Pao, S. C.; Lindholm, F. A.

    1978-01-01

    A new method is described and illustrated for determining the minority-carrier diffusion length and lifetime in the base region of p-n junction solar cells. The method requires only capacitance measurements at the device terminals and its accuracy is estimated to be + or - 5%. It is applied to a set of silicon p-n junction devices and the values of the diffusion lengths agree with those obtained using the current response to X-ray excitation but disagree with those obtained by the OCVD method. The reasons for the relative inaccuracy of OCVD applied to silicon devices are discussed. The capacitance method includes corrections for a two-dimensional fringing effects which occur in small area devices. For a device having highly-doped base region and surface (emitter) layer, the method can be extended to enable the determination of material properties of the degenerately doped surface layer. These material properties include the phenomenological emitter lifetime and a measure of the energy band-gap narrowing in the emitter. An alternate method for determining the energy band-gap narrowing from temperature dependence of emitter current is discussed and demonstrated.

  15. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  16. Underwater audiogram of a Pacific walrus (Odobenus rosmarus divergens) measured with narrow-band frequency-modulated signals.

    PubMed

    Kastelein, R A; Mosterd, P; van Santen, B; Hagedoorn, M; de Haan, D

    2002-11-01

    The underwater hearing sensitivity of an 18-year-old male Pacific walrus was measured in a pool by using a go/no-go response paradigm and the up-down staircase method. Auditory sensitivity was measured using narrow-band, frequency-modulated signals (1500 ms duration) with center frequencies ranging from 0.125 to 15 kHz. The resulting underwater audiogram (50% detection thresholds) for this individual walrus shows the typical mammalian U-shape. Maximum sensitivity (67 dB re 1 microPa) occurred at 12 kHz. The range of best hearing (10 dB from the maximum sensitivity) was from 1 to 12 kHz. Sensitivity fell gradually below 1 kHz and dropped off sharply above 12 kHz. The animal showed a peculiar insensitivity for 2 kHz signals. His much higher sensitivity for 1.5- and 3-kHz signals indicated that this is a narrow-band phenomenon. Walrus hearing is relatively sensitive to low frequency sound, thus the species is likely to be susceptible to anthropogenic noise. The thresholds found during a small test with four frequencies with signal durations of 300 ms did not differ significantly from those obtained with signal durations of 1500 ms.

  17. A polynomial chaos approach to narrow band modeling of radiative heat transfer in non-uniform gaseous media

    NASA Astrophysics Data System (ADS)

    André, Frédéric

    2016-05-01

    An accurate treatment of non-uniformities is required in many applications involving radiative heat transfer in gaseous media. Usual techniques to handle path non-uniformities rely on simplifying assumptions, such as scaling or correlation of gas spectra. Those approximations are usually accurate but may also fail to provide accurate results, especially when large temperature gradients are considered. The objective of the present work is to show that this problem can be treated rigorously. The proposed method can be applied to any arbitrary narrow band model. It is based on some results from Polynomial Chaos' framework and copulas theory. Although the mathematical derivation may appear sophisticated, applying the method is straightforward. It is shown that adding only one coefficient to any uniform narrow band model (for a simple case involving a non-uniform column discretized into two uniform sub-paths) allows to achieve almost LBL accuracy for radiative heat transfer calculations. The technique is described and applied to some "severe" test cases from the literature.

  18. Metal-dielectric-metal based narrow band absorber for sensing applications.

    PubMed

    Lu, Xiaoyuan; Wan, Rengang; Zhang, Tongyi

    2015-11-16

    We have investigated numerically the narrowband absorption property of a metal-dielectric-metal based structure which includes a top metallic nanoring arrays, a metal backed plate, and a middle dielectric spacer. Its absorption is up to 90% with linewidth narrower than 10 nm. This can be explained in terms of surface lattice resonance of the periodic structure. The spectrum with the sharp absorption dip, i.e. the lattice resonance, strongly depends on the refractive index of media surrounding the nanorings. This feature can be explored to devise a refractive index sensor, of which the bulk sensitivity factor is one order larger than that based on gap resonance mode, while the surface sensitivity factor can be two times larger. The proposed narrowband absorber has potential in applications of plasmonic biosensors. PMID:26698467

  19. Emergent dimensional reduction of the spin sector in a model for narrow-band manganites

    SciTech Connect

    Liang, Shuhua; Daghofer, Maria; Dong, Shuai; Sen, Cengiz; Dagotto, Elbio R

    2011-01-01

    The widely used double-exchange model for manganites is shown to support various striped phases at filling fractions 1/n (n = 3, 4, 5, . . .), in the previously unexplored regime of narrow bandwidth and small Jahn-Teller coupling. Working in two dimensions, our main result is that these stripes can be individually spin flipped without a physically relevant change in the energy, i.e., we find a large ground-state manifold with nearly degenerate energies. The two-dimensional spin system thus displays an unexpected dynamically generated dimensional reduction into decoupled one-dimensional stripes, even though the electronic states remain two dimensional. Relations of our results with recent literature addressing compass models in quantum computing are discussed.

  20. Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy.

    PubMed

    Koplow, J P; Kliner, D A; Goldberg, L

    1998-06-20

    A compact, lightweight, low-power-consumption source of tunable, narrow-bandwidth blue and UV radiation is described. In this source, a single-longitudinal-mode diode laser seeds a pulsed, GaAlAs tapered amplifier whose ~860-nm output is frequency quadrupled by two stages of single-pass frequency doubling. Performance of the laser system is characterized over a wide range of amplifier duty cycles (0.1-1.0), pulse durations (50 ns-1.0 mus), peak currents (

  1. Band-gap narrowing in Mn-doped GaAs probed by room-temperature photoluminescence

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Gao, K.; Skorupa, I.; Rebohle, L.; Vines, L.; Schmidt, H.; Khalid, M.; Wang, Y.; Weschke, E.; Skorupa, W.; Grenzer, J.; Hübner, R.; Helm, M.; Zhou, S.

    2015-12-01

    The electronic band structure of the (Ga,Mn)As system has been one of the most intriguing problems in solid state physics over the past two decades. Determination of the band structure evolution with increasing Mn concentration is a key issue to understand the origin of ferromagnetism. Here, we present room-temperature photoluminescence and ellipsometry measurements of G a100 %-xM nxAs alloy. The upshift of the valence band is proven by the redshift of the room temperature near band-gap emission from the G a100 %-xM nxAs alloy with increasing Mn content. It is shown that even a doping by 0.02% of Mn affects the valence-band edge, and it merges with the impurity band for a Mn concentration as low as 0.6%. Both x-ray diffraction pattern and high-resolution cross-sectional transmission electron microscopy images confirmed full recrystallization of the implanted layer and GaMnAs alloy formation.

  2. Anisotropy of BN and Be x-ray-emission bands

    NASA Astrophysics Data System (ADS)

    Mansour, A.; Schnatterly, S. E.

    1987-12-01

    We present measurements of the K emission spectra of hexagonal Be and BN (h-Be and h-BN). The anisotropy of the emission allows us to separate the bands into their σ and π components, enabling us to demonstrate the unambiguous π character of the B core exciton. We find that the exciton presents a double-peaked structure which we attribute to phonon ringing. For the first time we are able to separate into π and σ components the doubly ionized K emission bands of B and N in h-BN and of Be in h-Be, revealing the effect of the spectator core hole on the shape of the density of states. Such an effect is in qualitative agreement with the final-state rule, although the local p density of states is distorted more than has previously been reported.

  3. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  4. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  5. Effects of laser source parameters on the generation of narrow band and directed laser ultrasound

    NASA Technical Reports Server (NTRS)

    Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.

    1992-01-01

    Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.

  6. Reflectivity and Emissivity of Sea Foam at L-band

    NASA Astrophysics Data System (ADS)

    Anguelova, M. D.; Burrage, D. M.; Bettenhausen, M. H.

    2015-12-01

    The ubiquitous use of the Global Positioning System (GPS) for navigation is well known. GPS operates at L-band frequencies of 1-2 GHz. Because these low microwave frequencies penetrate clouds and rain, GPS signals can detect the specular reflection and diffuse scattering from flat and rough surfaces. This makes the GPS signals useful for geophysical measurements in all weather conditions. Aircraft and satellite-borne GPS reflectometers have been shown to successfully sense ocean surface wind. L-band reflectometry measures changes in ocean surface reflectivity due to changes of ocean surface roughness as wind increases. The use of GPS, together with other Global Navigation Satellite Systems, will soon provide hundreds of L-band transmitters in space and thus high temporal resolution for geophysical measurements. With its all weather capability and high temporal resolution, GPS reflectometry can provide wind speed data in hurricane conditions. Such capabilities enable the new Cyclone Global Navigation Satellite System (CYGNSS) project which aims to improve the skill of hurricane intensity forecasts. However, wave breaking under high winds produces sea foam (whitecaps) and sea spray, which complicate processes acting at the air-sea interface. Whitecaps and sea spray have high emissivity at L-band and will thus reduce the ocean reflectivity needed for wind speed retrieval. A combination of L-band reflectometry and L-band radiometry can thus help to better understand and model the physical mechanisms governing the L-band sensor responses. We use a radiative transfer model formulated in terms of foam layer thickness and void fraction to evaluate both the reflectivity and emissivity of a foam-covered sea surface. We report on the attenuation of L-band radiation in foam layers, and the corresponding foam reflectivity, for layers with varying thicknesses and void fractions. The reflected GPS signal sensitivity to wind speed variations in the presence of foam is assessed.

  7. The Narrow Band AOTF Based Hyperspectral Microscopic Imaging on the Rat Skin Stratum Configuration

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wang, H.; Huang, J.; Gao, Q.

    2014-08-01

    A noncollinear acousto-optic tunable filter (AOTF) was designed with a comprehensive treatment of the properties of TeO2 as an acoustooptic (A-O) material. The results of optical testing validated that it predicted the performance of the designed AOTF. The bandwidth of the AOTF was very narrow in the visible light range. The high spectral resolution of AOTF was useful in practical applications to the hyperspectral imaging. The experimentally observed spectral pattern of the diffracted light was nearly the same as the theoretical result. The measured tuning relationship between the diffracted central optical wavelength and acoustic frequency was in accordance with the theoretical prediction. It demonstrates the accuracy of our design theory. Furthermore, by selecting the AOTF as the spectroscopic element, a hyperspectral microscopic imaging system was designed. The hyperspectral microscopic images of the rat skin tissue under the different optical center wavelength were acquired. The experimental results indicated that the imaging performance was satisfactory. The stratums of the rat skin can be clearly distinguished. The inner details of the epidermis and the corium can be shown on the hyperspectral microscopic images. Some differences also can be found by the comparison of the hyperspectal images under the different optical wavelengths. The study indicated the applicability and the advantage of our system on biomedicine area.

  8. Use of narrow-band spectra to estimate the fraction of absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Huemmrich, Karl F.; Goward, Samuel N.

    1990-01-01

    A novel approach is proposed for using high-spectral resolution imagers to estimate the fraction of photosynthetically active radiation adsorbed, f(apar), by vegetated land surfaces. In comparison to approaches using broad-band vegetation indices, the proposed method appears to be relatively insensitive to the reflectance of nonphotosynthetically active material beneath the canopy, such as leaf litter or soil. The method is based on a relationship between the second derivative of the reflectance vs wavelength function for terrestrial vegetation and f(apar). The relationship can be defined by the second derivatives in either of two windows, one in the visible region centered at 0.69 micron, another in the near-infrared region centered at 0.74 micron.

  9. A search for narrow band signals with Serendip II - A progress report

    NASA Astrophysics Data System (ADS)

    Werthimer, D.; Buhse, R.; Berezin, A.; Bowyer, S.

    1986-10-01

    Commensal programs for SETI, carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. An automated commensal system, Serendip II, searches for 0.49-Hz signals in sequential 64,700 Hz bands of the IF of a radio telescope being used for an astronomical observation. Upon detection of a signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85-ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64-m telescope.

  10. Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping

    NASA Astrophysics Data System (ADS)

    Berger, Christoph; Lesnik, Andreas; Zettler, Thomas; Schmidt, Gordon; Veit, Peter; Dadgar, Armin; Bläsing, Jürgen; Christen, Jürgen; Strittmatter, André

    2016-04-01

    We report on metalorganic vapor phase epitaxy (MOVPE) of distributed Bragg reflectors (DBR) applying a periodic modulation of the GaN doping concentration only. The doping modulation changes the refractive index of GaN via the Burstein-Moss-effect. MOVPE growth of highly doped GaN:Ge and modulation of the dopant concentration by at least two orders of magnitude within few nanometers is required to achieve a refractive index contrast of 2-3%. Such modulation characteristic is achieved despite the presence of Ge memory effects and incorporation delay. We realized DBRs with up to 100 layer pairs by combining GaN:Ge with a nominal doping concentration of 1.6×1020 cm-3 as low-refractive index material with unintentionally doped GaN as high-refractive index layer. Scanning transmission electron microscope images reveal DBR structures with abrupt interfaces and homogenous layer thicknesses in lateral and vertical direction. Reflectance measurements of DBRs designed for the blue and near UV-spectral region show a narrow stopband with a maximum reflectivity of 85% at 418 nm and even 95% at 370 nm. InGaN/GaN multi-quantum well structures grown on top of such DBRs exhibit narrow emission spectra with linewidths below 3 nm and significantly increased emission intensity.

  11. 500 days of Stromgren b, y and narrow-band [OIII], H α photometric evolution of gamma-ray Nova Del 2013 (=V339 Del)

    NASA Astrophysics Data System (ADS)

    Munari, Ulisse; Maitan, Alessandro; Moretti, Stefano; Tomaselli, Salvatore

    2015-10-01

    We present and discuss highly accurate photometry obtained through medium Stromgren y, b bands and narrow [OIII], Hα bands covering 500 days of the evolution of Nova Del 2013 since its maximum brightness. This is by far the most complete study of any nova observed in such photometric systems. The nova behavior in these photometric bands is very different from that observed with the more conventional broad bands like UBVRC IC or u‧g‧r‧i‧z‧ , providing unique information about extent and ionization of the ejecta, the onset of critical phases like the transition between optically thick and thin conditions, and re-ionization by the central super-soft X-ray source. The actual transmission profiles of the y, b , [OIII] and Hα photometric filters have been accurately measured at different epochs and different illumination angles, to evaluate in detail their performance under exact operating conditions. The extreme smoothness of both the Hα and [OIII] lightcurves argues for absence of large and abrupt discontinuities in the ejecta of Nova Del 2013. Should they exist, glitches in the lightcurves would have appeared when the ionization and/or recombination fronts overtook them. During the period of recorded very large variability (up to 100× over a single day) in the super-soft X-ray emission (from day +69 to +86 past V maximum), no glitch in excess of 1% was observed in the optical photometry, either in the continuum (Stromgren y) or in the lines ([OIII] and Hα filters), or in a combination of the two (Stromgren b, Johnson B and V). Considering that the recombination time scale in the ejecta was one week at that time, this excludes global changes of the white dwarf as the source of the X-ray variability and supports instead clumpy ejecta passing through the line of sight to us as its origin.

  12. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  13. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  14. Barrett's esophageal cancer in which magnifying narrow-band imaging was useful for diagnosing extension under the squamous epithelium.

    PubMed

    Koike, Tomoyuki; Endo, Hiroyuki; Nakagawa, Kenichiro; Iijima, Katsunori; Shimosegawa, Tooru

    2013-05-01

    A 36-year-old man complained of heartburn. Gastrointestinal endoscopies showed a reddish and slightly depressed lesion in the right-anterior wall of the esophagogastric junction. With white light imaging, the area of the adenocarcinoma under the squamous epithelium was difficult to detect, but a slightly flat, elevated lesion appeared in the area of adenocarcinoma under the squamous epithelium. With narrow-band imaging (NBI) in the area of the Barrett's esophageal cancer under the squamous epithelium, a slight, brownish change could be observed. In addition, with the magnifying technique, irregular mesh-like vessels were observed, suggesting the presence of differentiated adenocarcinoma under the squamous epithelium. The lesion was resected en bloc by endoscopic submucosal dissection, and Barrett's esophageal cancer under the squamous epithelium was histologically confirmed. In this case, NBI with magnifying endoscopy was very useful to diagnose the extension of Barrett's esophageal cancer under the squamous epithelium.

  15. Strong Narrow-Band Luminescence from Silicon-Vacancy Color Centers in Spatially Localized Sub-10 nm Nanodiamond

    PubMed Central

    Catledge, Shane A.; Singh, Sonal

    2011-01-01

    Discrete nanodiamond particles of 500 nm and 6 nm average size were seeded onto silicon substrates and plasma treated using chemical vapor deposition to create silicon-vacancy color centers. The resulting narrow-band room temperature photoluminescence is intense, and readily observed even for weakly agglomerated sub-10 nm size diamond. This is in contrast to the well-studied nitrogen-vacancy center in diamond which has luminescence properties that are strongly dependant on particle size, with low probability for incorporation of centers in sub-10 nm crystals. We suggest the silicon-vacancy center to be a viable alternative to nitrogen-vacancy defects for use as a biomarker in the clinically-relevant sub-10 nm size regime, for which nitrogen defect-related luminescent activity and stability is reportedly poor. PMID:21603120

  16. Using narrow-band J-PAS photometry to assess the properties of the stellar population in galaxies

    NASA Astrophysics Data System (ADS)

    Bruzual, Gustavo; Mejia-Narvaez, Alfredo; Magris C., Gladis

    2015-08-01

    We study the uncertainties and biases on the properties of the stellar population content of galaxies retrieved from narrow-band (J-PAS) photometry using the non-parametric method of spectral fitting dubbed DynBaS. We construct a star formation history library à la Chen et al. (2012), and then SED-fit a selection of synthetic spectra with observational properties similar to SDSS galaxies. We confront the results obtained from the photometric fits to those obtained from spectroscopic data for synthetic and real galaxies at various redshift ranges. Since no assumption on the star formation history is made, the so called template mismatch biases are naturally overcome. We find that biases in our estimations are the consequence of the several degeneracies between mass, age, metallicity, and internal dust extinction present in galaxy properties.

  17. Doppler sidebands in the cross-spectral density of narrow-band reverberation from a dynamic sea surface.

    PubMed

    Gragg, Robert F

    2003-09-01

    Analytic methods are used to formulate the impact of a random dynamic sea surface on the space-frequency characteristics of bistatic reverberation. A narrow-band point source is positioned beneath the time-dependent surface of a range-independent ocean. The small-waveheight perturbative approximation is invoked, and attention is focused on the Doppler sideband contributions to the reverberation cross-spectral density for an arbitrarily placed receiver pair. The new expression that results is identified as an active scattering generalization of the van Cittert-Zernike theorem from classical partial coherence theory. This work is the first to explicitly predict the sideband structure in the cross-spectral density of the field scattered from a realistic moving sea surface. A numerical example is presented for a shallow source and shallow receivers in a homogeneous ocean.

  18. Prediction of corridor effect from the launching of the satellite power system. [air pollutant concentration into narrow band of latitude

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Woodward, H. T.; Capone, L. A.; Riegel, C. A.

    1982-01-01

    A diagnostic model is developed to define the parameters which control the corridor effect of contaminants deposited in a narrow latitudinal band of the earth's atmosphere by numerous launches of the STS and heavy lift launch vehicles for construction of satellite solar power systems. Identified factors included the pollution injection rate, the ambient background levels of the pollutant species, and the transport properties related to the dilution rate of the chemicals. If the chemical life of the pollutant was shorter or the same length of time as the transport time, alterations in the chemical production and loss rates were found to be parameters necessarily added to the model. A comparison with NASA Ames Research Center two-dimensional model results indicate that the corridor effect was possile with operations above 60 km in the case of H2O, H2, and NO production.

  19. The impact of mismatch on the performance of coded narrow-band FM with limiter/discriminator detection

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1983-01-01

    An examination of the impact of mismatch on the performance of convolutionally encoded/Viterbi decoded narrow-band FM with limiter/discriminator detection is presented. Attention was given to the potential gain available by the combination of this type of system in terms of hard and soft decision decoding. Soft decision decoding was demonstrated to offer only approximately 0.3 dB better performance than hard decision coding. It was also shown, through a technique involving the number of clicks occurring in each detection interval, that both soft and hard decision decoding bit error probability performance could be improved. It is concluded that the mismatch between the coding channel and the decoding metric of the Viterbi algorithm is responsible for reducing the difference between hard and soft decoding metrics.

  20. An analysis of the information dependence between MODIS emissive bands

    NASA Astrophysics Data System (ADS)

    Gottipati, Srikanth; Gladkova, Irina; Grossberg, Michael

    2008-08-01

    Multispectral, hyperspectral and ultraspectral imagers and sounders are increasingly important for atmospheric science and weather forecasting. The recent advent of multipsectral and hyperspectral sensors measuring radiances in the emissive IR are providing valuable new information. This is due to the presence of spectral channels (in some cases micro-channels) which are carefully positioned in and out of absorption lines of CO2, ozone, and water vapor. These spectral bands are used for measuring surface/cloud temperature, atmospheric temperature, Cirrus clouds water vapor, cloud properties/ozone, and cloud top altidude etc. The complexity of the spectral structure wherein the emissive bands have been selected presents challenges for lossless data compression; these are qualitatively different than the challenges offered by the reflective bands. For a hyperspectral sounder such as AIRS, the large number of channels is the principal contributor to data size. We have shown that methods combining clustering and linear models in the spectral channels can be effective for lossless data compression. However, when the number of emissive channels is relatively small compared to the spatial resolution, such as with the 17 emissive channels of MODIS, such techniques are not effective. In previous work the CCNY-NOAA compression group has reported an algorithm which addresses this case by sequential prediction of the spatial image. While that algorithm demonstrated an improved compression ratio over pure JPEG2000 compression, it underperformed optimal compression ratios estimated from entropy. In order to effectively exploit the redundant information in a progressive prediction scheme we must, determine a sequence of bands in which each band has sufficient mutual information with the next band, so that it predicts it well. We will provide a covariance and mutual information based analysis of the pairwise dependence between the bands and compare this with the qualitative

  1. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  2. Spectrally-Narrowed Emissions from Organic Crystals Having a One-Dimensional Grating on Their Surface.

    PubMed

    Yamamoto, Hiroyuki; Obara, Keiji; Higashihara, Shohei; Obama, Yuki; Yamao, Takeshi; Hotta, Shu

    2016-04-01

    We have succeeded in directly engraving one-dimensional diffraction gratings on the surface of organic semiconducting oligomer crystals by using focused ion beam (FIB) lithography and laser ablation (LA) methods. The FIB method enabled us to shape the gratings with varying periods down to ~150 nm. With the LA method a large-area grating with a ~500-nm period was readily accessible. All the above crystals indicated spectrally-narrowed emission (SNE) lines even in the case of shallow groove depths ~2-4 nm. In particular, we definitively observed the SNE pertinent to the first-order diffraction with the crystal having the diffraction grating of a 148.3-nm average period. The present results indicate utility of the built-in gratings that can directly be fabricated on the surface of the crystals.

  3. Spectrally-Narrowed Emissions from Organic Crystals Having a One-Dimensional Grating on Their Surface.

    PubMed

    Yamamoto, Hiroyuki; Obara, Keiji; Higashihara, Shohei; Obama, Yuki; Yamao, Takeshi; Hotta, Shu

    2016-04-01

    We have succeeded in directly engraving one-dimensional diffraction gratings on the surface of organic semiconducting oligomer crystals by using focused ion beam (FIB) lithography and laser ablation (LA) methods. The FIB method enabled us to shape the gratings with varying periods down to ~150 nm. With the LA method a large-area grating with a ~500-nm period was readily accessible. All the above crystals indicated spectrally-narrowed emission (SNE) lines even in the case of shallow groove depths ~2-4 nm. In particular, we definitively observed the SNE pertinent to the first-order diffraction with the crystal having the diffraction grating of a 148.3-nm average period. The present results indicate utility of the built-in gratings that can directly be fabricated on the surface of the crystals. PMID:27451623

  4. Methane Band and Continuum Band Imaging of Titan's Atmosphere Using Cassini ISS Narrow Angle Camera Pictures from the CURE/Cassini Imaging Project

    NASA Astrophysics Data System (ADS)

    Shitanishi, Jennifer; Gillam, S. D.

    2009-05-01

    The study of Titan's atmosphere, which bears resemblance to early Earth's, may help us understand more of our own. Constructing a Monte Carlo model of Titan's atmosphere is helpful to achieve this goal. Methane (MT) and continuum band (CB) images of Titan taken by the CURE/Cassini Imaging Project, using the Cassini Narrow Angle Camera (NAC) were analyzed. They were scheduled by Cassini Optical Navigation. Images were obtained at phase 53°, 112°, 161°, and 165°. They include 22 total MT1(center wavelength at 619nm), MT2(727nm), MT3(889nm), CB1(635nm), CB2(751nm), and CB3(938nm) images. They were reduced with previously written scripts using the National Optical Astronomy Observatory Image Reduction and Analysis Facility scientific analysis suite. Correction for horizontal and vertical banding and cosmic ray hits were made. The MT images were registered with corresponding CB images to ensure that subsequently measured fluxes ratios came from the same parts of the atmosphere. Preliminary DN limb-to-limb scans and loci of the haze layers will be presented. Accurate estimates of the sub-spacecraft points on each picture will be presented. Flux ratios (FMT/FCB=Q0) along the scans and total absorption coefficients along the lines of sight from the spacecraft through the pixels (and into Titan) will also be presented.

  5. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    NASA Astrophysics Data System (ADS)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4–300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  6. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure.

    PubMed

    Naumov, P; Barkalov, O; Mirhosseini, H; Felser, C; Medvedev, S A

    2016-09-28

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4-300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range. PMID:27439023

  7. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    NASA Astrophysics Data System (ADS)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4-300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  8. Empirical determination of the energy band gap narrowing in p{sup +} silicon heavily doped with boron

    SciTech Connect

    Yan, Di Cuevas, Andres

    2014-11-21

    In the analysis of highly doped silicon, energy band gap narrowing (BGN) and degeneracy effects may be accounted for separately, as a net BGN in conjunction with Fermi-Dirac statistics, or lumped together in an apparent BGN used with Boltzmann statistics. This paper presents an experimental study of silicon highly doped with boron, with the aim of evaluating the applicability of previously reported BGN models. Different boron diffusions covering a broad range of dopant densities were prepared, and their characteristic recombination current parameters J{sub 0} were measured using a contactless photoconductance technique. The BGN was subsequently extracted by matching theoretical simulations of carrier transport and recombination in each of the boron diffused regions and the measured J{sub 0} values. An evaluation of two different minority carrier mobility models indicates that their impact on the extraction of the BGN is relatively small. After considering possible uncertainties, it can be concluded that the BGN is slightly larger in p{sup +} silicon than in n{sup +} silicon, in qualitative agreement with theoretical predictions by Schenk. Nevertheless, in quantitative terms that theoretical model is found to slightly underestimate the BGN in p{sup +} silicon. With the two different parameterizations derived in this paper for the BGN in p{sup +} silicon, both statistical approaches, Boltzmann and Fermi-Dirac, provide a good agreement with the experimental data.

  9. GATA3 expression is decreased in psoriasis and during epidermal regeneration; induction by narrow-band UVB and IL-4.

    PubMed

    Rácz, Emoke; Kurek, Dorota; Kant, Marius; Baerveldt, Ewout M; Florencia, Edwin; Mourits, Sabine; de Ridder, Dick; Laman, Jon D; van der Fits, Leslie; Prens, Errol P

    2011-01-01

    Psoriasis is characterized by hyperproliferation of keratinocytes and by infiltration of activated Th1 and Th17 cells in the (epi)dermis. By expression microarray, we previously found the GATA3 transcription factor significantly downregulated in lesional psoriatic skin. Since GATA3 serves as a key switch in both epidermal and T helper cell differentiation, we investigated its function in psoriasis. Because psoriatic skin inflammation shares many characteristics of epidermal regeneration during wound healing, we also studied GATA3 expression under such conditions.Psoriatic lesional skin showed decreased GATA3 mRNA and protein expression compared to non-lesional skin. GATA3 expression was also markedly decreased in inflamed skin of mice with a psoriasiform dermatitis induced with imiquimod. Tape-stripping of non-lesional skin of patients with psoriasis, a standardized psoriasis-triggering and skin regeneration-inducing technique, reduced the expression of GATA3. In wounded skin of mice, low GATA3 mRNA and protein expression was detected. Taken together, GATA3 expression is downregulated under regenerative and inflammatory hyperproliferative skin conditions. GATA3 expression could be re-induced by successful narrow-band UVB treatment of both human psoriasis and imiquimod-induced psoriasiform dermatitis in mice. The prototypic Th2 cytokine IL-4 was the only cytokine capable of inducing GATA3 in skin explants from healthy donors. Based on these findings we argue that GATA3 serves as a key regulator in psoriatic inflammation, keratinocyte hyperproliferation and skin barrier dysfunction.

  10. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors.

    PubMed

    Goldstein, Nathaniel B; Koster, Maranke I; Hoaglin, Laura G; Spoelstra, Nicole S; Kechris, Katerina J; Robinson, Steven E; Robinson, William A; Roop, Dennis R; Norris, David A; Birlea, Stanca A

    2015-08-01

    In vitiligo, the autoimmune destruction of epidermal melanocytes produces white spots that can be repigmented by melanocyte precursors from the hair follicles, following stimulation with UV light. We examined by immunofluorescence the distribution of melanocyte markers (C-KIT, DCT, PAX3, and TYR) coupled with markers of proliferation (KI-67) and migration (MCAM) in precursors and mature melanocytes from the hair follicle and the epidermis of untreated and narrow band UVB (NBUVB)-treated human vitiligo skin. NBUVB was associated with a significant increase in the number of melanocytes in the infundibulum and with restoration of the normal melanocyte population in the epidermis, which was lacking in the untreated vitiligo. We identified several precursor populations (melanocyte stem cells, melanoblasts, and other immature phenotypes), and progressively differentiating melanocytes, some with putative migratory and/or proliferative abilities. The primary melanocyte germ was present in the untreated and treated hair follicle bulge, whereas a possible secondary melanocyte germ composed of C-KIT+ melanocytes was found in the infundibulum and interfollicular epidermis of UV-treated vitiligo. This is an exceptional model for studying the mobilization of melanocyte stem cells in human skin. Improved understanding of this process is essential for designing better treatments for vitiligo, ultimately based on melanocyte stem cell activation and mobilization. PMID:25822579

  11. Correlation between Reversal of DNA Methylation and Clinical Symptoms in Psoriatic Epidermis Following Narrow-Band UVB Phototherapy.

    PubMed

    Gu, Xiaolian; Nylander, Elisabet; Coates, Philip J; Fahraeus, Robin; Nylander, Karin

    2015-08-01

    Epigenetic modifications by DNA methylation are associated with a wide range of diseases. Previous studies in psoriasis have concentrated on epigenetic changes in immune cells or in total skin biopsies that include stromal-associated changes. In order to improve our understanding of the role of DNA methylation in psoriasis, we sought to obtain a comprehensive DNA methylation signature specific for the epidermal component of psoriasis and to analyze methylation changes during therapy. Genome-wide DNA methylation profiling of epidermal cells from 12 patients undergoing narrow-band UVB phototherapy and 12 corresponding healthy controls revealed a distinct DNA methylation pattern in psoriasis compared with controls. A total of 3,665 methylation variable positions (MVPs) were identified with an overall hypomethylation in psoriasis patient samples. DNA methylation pattern was reversed at the end of phototherapy in patients showing excellent clinical improvement. Only 7% of phototherapy-affected MVPs (150 out of 2,108) correlate with nearby gene expression. Enrichment of MVPs in enhancers indicates tissue-specific modulation of the transcriptional regulatory machinery in psoriasis. Our study identified key epigenetic events associated with psoriasis pathogenesis and helps understand the dynamic DNA methylation landscape in the human genome.

  12. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors.

    PubMed

    Goldstein, Nathaniel B; Koster, Maranke I; Hoaglin, Laura G; Spoelstra, Nicole S; Kechris, Katerina J; Robinson, Steven E; Robinson, William A; Roop, Dennis R; Norris, David A; Birlea, Stanca A

    2015-08-01

    In vitiligo, the autoimmune destruction of epidermal melanocytes produces white spots that can be repigmented by melanocyte precursors from the hair follicles, following stimulation with UV light. We examined by immunofluorescence the distribution of melanocyte markers (C-KIT, DCT, PAX3, and TYR) coupled with markers of proliferation (KI-67) and migration (MCAM) in precursors and mature melanocytes from the hair follicle and the epidermis of untreated and narrow band UVB (NBUVB)-treated human vitiligo skin. NBUVB was associated with a significant increase in the number of melanocytes in the infundibulum and with restoration of the normal melanocyte population in the epidermis, which was lacking in the untreated vitiligo. We identified several precursor populations (melanocyte stem cells, melanoblasts, and other immature phenotypes), and progressively differentiating melanocytes, some with putative migratory and/or proliferative abilities. The primary melanocyte germ was present in the untreated and treated hair follicle bulge, whereas a possible secondary melanocyte germ composed of C-KIT+ melanocytes was found in the infundibulum and interfollicular epidermis of UV-treated vitiligo. This is an exceptional model for studying the mobilization of melanocyte stem cells in human skin. Improved understanding of this process is essential for designing better treatments for vitiligo, ultimately based on melanocyte stem cell activation and mobilization.

  13. Effects of Narrow-band IR-A and of Water-Filtered Infrared A on Fibroblasts.

    PubMed

    Knels, Lilla; Valtink, Monika; Piazena, Helmut; de la Vega Marin, Jamlec; Gommel, Kerstin; Lupp, Amelie; Roehlecke, Cora; Mehner, Mirko; Funk, Richard H W

    2016-05-01

    Exposures of the skin with electromagnetic radiation of wavelengths between 670 nm and 1400 nm are often used as a general treatment to improve wound healing and reduce pain, for example, in chronic diabetic skin lesions. We investigated the effects of water-filtered infrared A (wIRA) and of narrow-band IR-A provided by a light-emitting diode LED (LED-IR-A) irradiation in vitro on 3T3 fibroblast cultures under defined conditions with and without glyoxal administration. Glyoxal triggers the formation of advanced glycation end products, thereby mimicking a diabetic metabolic state. Cell viability and apoptotic changes were determined by flow cytometry after vital staining with Annexin V, YO-PRO-1 and propidium iodide (PI), and by SubG1 assay. Mitochondrial function and oxidative stress were examined by vital staining for radical production, mitochondrial membrane potential (MMP) and the ratio of reduced-to-oxidized glutathione (GSH/GSSG). The metabolic state was monitored by a resazurin conversion assay. The numbers of apoptotic cells were reduced in cultures irradiated with wIRA or LED-IR-A. More mitochondria showed a well-polarized MMP after wIRA irradiation in glyoxal damaged cells. LED-IR-A treatment specifically restored the GSH/GSSG ratio. The immediate positive effects of wIRA and LED-IR-A observed in living cells, particularly on mitochondria, reflect the therapeutic benefits of wIRA and LED-IR-A.

  14. Magnifying endoscopy with narrow-band imaging findings in the diagnosis of Barrett's esophageal adenocarcinoma spreading below squamous epithelium.

    PubMed

    Omae, Masami; Fujisaki, Junko; Shimizu, Tomoki; Igarashi, Masahiro; Yamamoto, Noriko

    2013-05-01

    It has been described that most cases of Barrett's esophageal adenocarcinoma in Japan are cases of Barrett's esophageal adenocarcinoma on a background of short-segment Barrett's esophagus, frequently occurring rostrad to Barrett's epithelium, adjacent to the squamous epithelium of the right wall of the esophagogastric junction. Barrett's esophageal adenocarcinoma may spread below the squamous epithelium when the tumor is situated adjacent to the squamocolumnar junction, so that it is usually difficult to diagnose its presence and extent by conventional endoscopy alone. We have noted that the spread of Barrett's esophageal adenocarcinoma below the squamous epithelium is recognizable as annular vascular formations (AVF) by magnifying endoscopy with narrow-band imaging (ME-NBI), and have verified it by 3-D stereo-reconstruction using serial sections from a specimen of the same lesion. When horizontal cross-sections of the tissue were viewed from the surface, AVF emerged at a depth of approximately 100 μm from the surface and disappeared at a depth of approximately 300 μm. Therefore, it would be presumed to be difficult to visualize the characteristic structural features by ME-NBI if the carcinomatous glandular ducts were situated deeper than approximately 300 μm underneath a thick layer of squamous epithelium. Thickness of the overlying squamous epithelium may be a limiting factor for whether or not the characteristic structural features can be detected.

  15. C-reactive protein serum level in patients with psoriasis before and after treatment with narrow-band ultraviolet B*

    PubMed Central

    Farshchian, Mahmoud; Ansar, Akram; Sobhan, Mohammadreza; Hoseinpoor, Valiollah

    2016-01-01

    Background C-reactive protein is an inflammatory biomarker and its level increases in the serum of psoriatic patients. Its level is also associated with Psoriasis Area and Severity Index score. Objective The aim of this study was to assess the decrement of serum C-reactive protein level with narrow-band ultraviolet B (NB-UVB) therapy. Methods C-reactive protein serum levels in psoriasis patients were measured before and after treatment with NB-UVB and the data were analyzed in relation to the Psoriasis Area and Severity Index score improvement. Results Baseline C-reactive protein levels among psoriatic patients were higher than normal. These levels decreased significantly after treatment (P<0.001). At the beginning of the study, patients with higher levels of C-reactive protein also had more extensive and severe skin involvement. The highest decrease in C-reactive protein was observed in patients who responded better to the treatment and achieved a higher Psoriasis Area and Severity Index 75%. There was an association between baseline Psoriasis Area and Severity Index scores and C-reactive protein levels. Conclusion Patients with moderate to severe plaque-type psoriasis had active systemic inflammation, which was demonstrated by increased levels of C-reactive protein. Furthermore, skin disease severity was correlated with C-reactive protein levels. Phototherapy healed the psoriatic skin lesions and reduced inflammation, while decreasing C-reactive protein levels.

  16. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  17. Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search

    SciTech Connect

    Astone, Pia; Borkowski, Kazimierz M.; Jaranowski, Piotr; Pietka, Maciej; Krolak, Andrzej

    2010-07-15

    We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the F-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the F-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform in calculation of the F-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the F-statistic into Fourier transforms so that the fast Fourier transform algorithm can be applied in their evaluation. We have implemented our methods and algorithms into computer codes and we present results of the Monte Carlo simulations performed to test these codes.

  18. Ultrafast spectroscopic measurement of the optical and electronic properties of narrow-band-gap semiconductor laser materials

    NASA Astrophysics Data System (ADS)

    Anson, Scott Allen

    1999-12-01

    Semiconductor lasers operating in the mid-infrared region of the spectrum (2-5 μm) are of interest for a variety of potential applications and therefore are currently the focus of intense research and development. One of the main impediments to the development of these lasers is a non-radiative loss process know as Auger recombination. It is this loss mechanism that leads to the relatively low temperature operation of these lasers. In addition to Auger recombination, there is an interest in suppressing laser which can lead to the degradation and catastrophic failure of devices at high output powers. The tendency for filament formation is suppressed in materials with small linewidth enhancement factors. To improve the performance of these semiconductor lasers, band structure engineering techniques have been employed to the design of narrow band-gap III-V semiconductor active regions based on GaInSb/InAs superlattices. These superlattice structures are designed to have favorable material properties that allow for the suppression of Auger recombination and a reduction of the linewidth enhancement factor. In addition to Auger recombination and the linewidth enhancement factor, a number of other optical and electronic properties in these superlattice structures are also of interest, including the differential gain, differential index, Shockley-Read-Hall recombination, and in-plane carrier diffusion. In this dissertation measurements of the optical and electronic properties in these structures conducted using two ultrafast spectroscopic techniques, time-resolved differential transmission and photogenerated transient grating is discussed. These ultrafast spectroscopic measurements are performed using 140 fs pump pulses from a mode-locked Ti:sapphire laser operating at 840 nm and 170 fs probe pulses from a synchronously-pumped optical parametric oscillator which is tunable between 2.65 to 4.4 μm. The measurements show that these superlattices have favorable material

  19. High-resolution spectra of distant compact narrow emission line galaxies: Progrenitors of spheroidal galaxies

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Guzman, Rafael; Faber, S. M.; Illingworth, Garth D.; Bershady, Matthew A.; Kron, Richard G.; Takamiya, Marianne

    1995-01-01

    Emission-line velocity widths have been determined for 17 faint (B approximately 20-23) very blue, compact galaxies whose redshifts range from z = 0.095 to 0.66. The spectra have a resolution of 8 Km/s and were taken with the HIRES echelle spectrograph of the Keck 10 m telescope. The galaxies are luminous with all but two within 1 mag of M(sub B) approximately -21. Yet they exhibit narrow velocity widths between sigma = 28-157 km/s, more consistent with typical values of extreme star-forming galaxies than with those of nearby spiral galaxies of similar luminosity. In particular, objects with sigma is less than or equal to 65 km/s follow the same correlations between sigma and both blue and H beta luminosities as those of nearby H II galaxies. These results strengthen the identification of H II glaxies as thier local counterparts. The blue colors and strong emission lines suggest these compact galaxies are undergoing a recent, strong burst of star formation. Like those which characterize some H II galaxies, this burst could be a nuclear star-forming event within a much larger, older stellar population. If the burst is instead a major episode in the total star-forming history, these distant galaxies could fade enough to match the low luminosities and surface brightnesses typical of nearby spheroidals like NGC 185 or NGC 205. Together with evidence for recent star formation, exponential light profiles, and subsolar metallicities, the postfading correlations between luminosity and velocity width and bewtween luminosity and surface brightness suggest that among the low-sigma galaxies, we may be witnessing, in situ, the progenitors of today's spheroidal galaxies.

  20. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  1. Narrow-band Imagery with the Goddard Fabry-Perot: Probing the Epoch of Active Accretion for PMS Stars

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.; Grady, C.; Endres, M.; Williger, G.

    2006-01-01

    The STIS coronagraphic imaging sample of I'MS stars was surveyed with the Goddard Fabry-Perot (GFP) interferometer to determine what fraction of the stars drive jets, whether there is any difference in behavior for a group of intermediate-mass stars as compared with T Tauri stars, and to search for evolutionary effects. Compared to broad band imaging, the FGP achieves an emission-line nebulosity-to-star contrast gain of between 500 and 3000. To date, we have detected jets associated with classical T Tauri stars spanning a factor of 280 in mass accretion rate in approximately 50% of the STIS coronagraphic imaging sample. We also detected jets or Herbig-HARO knots associated with 5 Herbig Ae stars, all younger than 8 Myr, for a detection fraction which is smaller than the T Tauri survey.

  2. Comparison of narrow-band imaging and conventional nasopharyngoscopy for the screening of unaffected members of families with nasopharyngeal carcinoma.

    PubMed

    Ho, Ching-Yin; Chan, Kee-Tak; Chu, Pen-Yuan

    2013-09-01

    Familial aggregation of nasopharyngeal carcinoma (NPC) has been widely reported. The excess risk is about 4-8-fold among first-degree relatives of NPC patients compared with those without a family history of the disease. We used nasopharyngoscopy and a narrow-band image system (NBI) to screen NPC high-risk patients and identify a good tool for the early detection of NPC in these high-risk groups. We recruited all available, affected blood relations of the patients. When NPC patients were more distant relatives, such as cousins, we recruited their shared second-degree relatives, such as unaffected aunts and uncles, to genetically connect the NPC cases. We performed transnasal endoscopy, first in white-light mode, then under the NBI system. There were two NBI patterns in NPC: microvascular proliferation and engorged blood vessels. The NBI pattern in normal nasopharyngeal mucosa was a regular cobblestone pattern. A prospective study included 211 asymptomatic members from 154 NPC families. We found four cases of NPC, all with a tumor stage of T1. In one patient (1/4), MRI revealed a 2-cm-diameter neck lymphadenopathy (N1). The correlation between conventional nasopharyngoscopy and NBI was very high (κ = 0.798, P = 0.000). In conclusions, NBI is not superior to conventional nasopharyngoscopy for the early detection of NPC in unaffected members of families with NPC history. The long-term follow-up is necessary in high-risk NPC patients. Further studies will be needed to determine which screening tool-conventional nasopharyngoscopy, NBI, or EB virus titer-is most effective.

  3. Visuospatial Working Memory in Toddlers with a History of Periventricular Leukomalacia: An EEG Narrow-Band Power Analysis

    PubMed Central

    García-Gomar, María Luisa; Santiago-Rodríguez, Efraín; Rodríguez-Camacho, Mario; Harmony, Thalía

    2013-01-01

    Background Periventricular Leukomalacia (PVL) affects white matter, but grey matter injuries have also been reported, particularly in the dorsomedial nucleus and the cortex. Both structures have been related to working memory (WM) processes. The aim of this study was to compare behavioral performances and EEG power spectra during a visuospatial working memory task (VSWMT) of toddlers with a history of PVL and healthy toddlers. Methodology/Principal Findings A prospective, comparative study of WM was conducted in toddlers with a history of PVL and healthy toddlers. The task responses and the EEG narrow-band power spectra during a VSWMT were compared in both groups. The EEG absolute power was analyzed during the following three conditions: baseline, attention and WM retention. The number of correct responses was higher in the healthy group (20.5±5.0) compared to the PVL group (16.1±3.9) (p = 0.04). The healthy group had absolute power EEG increases (p≤0.05) during WM compared to the attention condition in the bilateral frontal and right temporal, parietal and occipital regions in frequencies ranging from 1.17 to 2.34 Hz and in the right temporal, parietal and occipital regions in frequencies ranging from 14.06 to 15.23 Hz. In contrast, the PVL group had absolute power increases (p≤0.05) in the bilateral fronto-parietal, left central and occipital regions in frequencies that ranged from 1.17 to 3.52 Hz and in the bilateral frontal and right temporal regions in frequencies ranging from 9.37 to 19.14 Hz. Conclusions/Significance This study provides evidence that PVL toddlers have visuospatial WM deficits and a very different pattern of absolute power increases compared to a healthy group of toddlers, with greater absolute power in the low frequency range and widespread neuronal networks in the WM retention phase. PMID:23922816

  4. Value of Magnifying Endoscopy With Narrow-Band Imaging and Confocal Laser Endomicroscopy in Detecting Gastric Cancerous Lesions

    PubMed Central

    Gong, Shuai; Xue, Han-Bing; Ge, Zhi-Zheng; Dai, Jun; Li, Xiao-Bo; Zhao, Yun-Jia; Zhang, Yao; Gao, Yun-Jie; Song, Yan

    2015-01-01

    Abstract Although the respective potentials of magnifying endoscopy with narrow-band imaging (ME-NBI) and confocal laser endomicroscopy (CLE) in predicting gastric cancer has been well documented, there is a lack of studies in comparing the value and diagnostic strategy of these 2 modalities. Our primary aim is to investigate whether CLE is superior to ME-NBI for differentiation between gastric cancerous and noncancerous lesions. A secondary aim is to propose an applicable clinical strategy. We conducted a diagnostic accuracy study involving patients with suspected gastric superficial cancerous lesions. White light endoscopy, ME-NBI, and CLE were performed diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value between ME-NBI and CLE were assessed, as well as agreements between ME-NBI/CLE and histopathology. This study involved 86 gastric lesions in 82 consecutive patients who underwent white light endoscopy, ME-NBI, and CLE before biopsy. The accuracy, sensitivity, and specificity for ME-NBI were 93.75%, 91.67%, and 95.45%, compared with 91.86%, 90%, and 93.48%, respectively, for CLE, for discrimination cancerous/noncancerous lesion (all P > 0.05). For undifferentiated/differentiated adenocarcinoma, CLE had a numerically but not statistically significantly higher accuracy than ME-NBI (81.25% vs 73.33%, P = 0.46). Agreements between ME-NBI/CLE and histopathology were near perfect (ME-NBI, κ = 0.87; CLE, κ = 0.84). CLE is not superior to ME-NBI for discriminating gastric cancerous from noncancerous lesions. Endoscopist could make an optimal choice according to the specific indication and advantages of ME-NBI and CLE in daily practices. PMID:26554797

  5. Endoscopic findings using narrow-band imaging to distinguish between basal cell hyperplasia and carcinoma of the pharynx.

    PubMed

    Yagishita, Atsushi; Fujii, Satoshi; Yano, Tomonori; Kaneko, Kazuhiro

    2014-07-01

    Narrow-band imaging (NBI) has been reported to be useful for detecting superficial-type esophageal or head and neck squamous cell carcinoma (SCC), and in the present study we have used NBI to detect non-carcinomatous lesions, such as basal cell hyperplasia (BCH) accompanied by microvascular irregularities; these non-carcinomatous lesions were pathologically discriminated from squamous cell carcinoma of the pharynx. The aim of the present study was to clarify the endoscopic characteristics of BCH that contribute to the discrimination of superficial-type head and neck SCC (HNSCC). We examined the key endoscopic findings capable of distinguishing BCH from SCC using 26 BCH and 37 superficial-type SCC of the pharynx that had been pathologically diagnosed at our institution between January 2008 and July 2012. The clinicopathological factors were also compared. The size of the BCH lesions was significantly smaller (P < 0.001), and their intervascular transparency was more clearly observed (P < 0.001). Intra-epithelial papillary capillary loop (IPCL) shapes were less variable and monotonous (P < 0.001), and the distribution of the IPCL was more regular with an interval comparable to that of SCC (P < 0.001), although no significant differences in the sharpness of the lesion border, dilatation of IPCL and tortuosity of the IPCL were seen between the BCH and SCC lesions. This study revealed that BCH was an independent entity in terms of not only pathological findings, but also endoscopic findings observed using NBI, such as the regular distribution of IPCL and the preserved intervascular transparency.

  6. Narrow-band ultraviolet B treatment boosts serum 25-hydroxyvitamin D in patients with psoriasis on oral vitamin D supplementation.

    PubMed

    Ala-Houhala, Meri J; Karppinen, Toni; Vähävihu, Katja; Kautiainen, Hannu; Dombrowski, Yvonne; Snellman, Erna; Schauber, Jürgen; Reunala, Timo

    2014-03-01

    A course of treatment with narrow-band ultraviolet B (NB-UVB) improves psoriasis and increases serum 25-hydroxyvitamin D (25(OH)D). In this study 12 patients with psoriasis who were supplemented with oral cholecalciferol, 20 µg daily, were given a course of NB-UVB and their response measured. At baseline, serum 25(OH)D was 74.14 ± 22.9 nmol/l. At the 9th exposure to NB-UVB 25(OH)D had increased by 13.2 nmol/l (95% confidence interval (95% CI) 7.2-18.4) and at the 18th exposure by 49.4 nmol/l (95% CI 35.9-64.6) above baseline. Psoriasis Area Severity Index score improved from 8.7 ± 3.5 to 4.5 ± 2.0 (p < 0.001). At baseline, psoriasis lesions showed low vitamin D metabolizing enzyme (CYP27A1, CYP27B1) and high human β-defensin-2 mRNA expression levels compared with those of the healthy subjects. In conclusion, NB-UVB treatment significantly increases serum 25(OH)D in patients with psoriasis who are taking oral vitamin D supplementation, and the concentrations remain far from the toxicity level. Healing psoriasis lesions show similar mRNA expression of vitamin D metabolizing enzymes, but higher antimicrobial peptide levels than NB-UVB-treated skin in healthy subjects.

  7. THE DIFFERENCE IN NARROW Fe K{alpha} LINE EMISSION BETWEEN SEYFERT 1 AND SEYFERT 2 GALAXIES

    SciTech Connect

    Liu Teng; Wang Junxian E-mail: jxw@ustc.edu.c

    2010-12-20

    We compile a sample of 89 Seyfert galaxies with both [O IV] 25.89 {mu}m line luminosities observed by Spitzer IRS and X-ray spectra observed by XMM-Newton EPIC. Using [O IV] emission as a proxy for active galactic nucleus (AGN) intrinsic luminosity, we find that although type 2 AGNs have higher line equivalent widths, the narrow Fe K{alpha} lines in Compton-thin and Compton-thick Seyfert 2 galaxies are 2.9{sup +0.8}{sub -0.6} and 5.6{sup +1.9}{sub -1.4} times weaker in terms of luminosity than Seyfert 1 galaxies, respectively. This indicates that different correction factors need to be applied for various types of AGNs before the narrow Fe K{alpha} line luminosity could serve as an intrinsic AGN luminosity indicator. We also find that Seyfert 1 galaxies in our sample have on average marginally larger line widths and higher line centroid energies, suggesting contamination from highly ionized Fe line or broader line emission from much smaller radius, but this effect is too weak to explain the large difference in narrow Fe K{alpha} line luminosity between type 1 and type 2 AGNs. This is the first observational evidence showing that the narrow Fe K{alpha} line emission in AGNs is anisotropic. The observed difference is consistent with theoretical calculations assuming a smoothly distributed obscuring torus and could provide independent constraints on the clumpiness of the torus.

  8. HAWC+: A Detector, Polarimetry, and Narrow-Band Imaging Upgrade to SOFIA's Far-Infrared Facility Camera

    NASA Astrophysics Data System (ADS)

    Dowell, C. D.; Staguhn, J.; Harper, D. A.; Ames, T. J.; Benford, D. J.; Berthoud, M.; Chapman, N. L.; Chuss, D. T.; Dotson, J. L.; Irwin, K. D.; Jhabvala, C. A.; Kovacs, A.; Looney, L.; Novak, G.; Stacey, G. J.; Vaillancourt, J. E.; HAWC+ Science Collaboration

    2013-01-01

    HAWC, the High-resolution Airborne Widebandwidth Camera, is the facility far-infrared camera for SOFIA, providing continuum imaging from 50 to 250 microns wavelength. As a result of NASA selection as a SOFIA Second Generation Instruments upgrade investigation, HAWC will be upgraded with enhanced capability for addressing current problems in star formation and interstellar medium physics prior to commissioning in early 2015. We describe the capabilities of the upgraded HAWC+, as well as our initial science program. The mapping speed of HAWC is increased by a factor of 9, accomplished by using NASA/Goddard's Backshort-Under-Grid bolometer detectors in a 64x40 format. Two arrays are used in a dual-beam polarimeter format, and the full complement of 5120 transition-edge detectors is read using NIST SQUID multiplexers and U.B.C. Multi-Channel Electronics. A multi-band polarimeter is added to the HAWC opto-mechanical system, at the cryogenic pupil image, employing rotating quartz half-wave plates. Six new filters are added to HAWC+, bringing the full set to 53, 63, 89, 155, and 216 microns at R = 5 resolution and 52, 63, 88, 158, and 205 microns at R = 300 resolution. The latter filters are fixed-tuned to key fine-structure emission lines from [OIII], [OI], [CII], and [NII]. Polarimetry can be performed in any of the filter bands. The first-light science program with HAWC+ emphasizes polarimetry for the purpose of mapping magnetic fields in Galactic clouds. The strength and character of magnetic fields in molecular clouds before, during, and after the star formation phase are largely unknown, despite pioneering efforts on the KAO and ground-based telescopes. SOFIA and HAWC+ provide significant new capability: sensitivity to extended dust emission (to A_V ~ 1) which is unmatched, ~10 arcsec angular resolution combined with wide-field mapping which allows statistical estimates of magnetic field strength, and wavelength coverage spanning the peak of the far

  9. Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers

    SciTech Connect

    Ljunggren, Daniel; Tengner, Maria

    2005-12-15

    We present a theoretical and experimental investigation of the emission characteristics and the flux of photon pairs generated by spontaneous parametric downconversion in quasi-phase matched bulk crystals for the use in quantum communication sources. We show that, by careful design, one can attain well defined modes close to the fundamental mode of optical fibers and obtain high coupling efficiencies also for bulk crystals, these being more easily aligned than crystal waveguides. We distinguish between singles coupling, {gamma}{sub s} and {gamma}{sub i}, conditional coincidence, {mu}{sub i|s}, and pair coupling, {gamma}{sub c}, and show how each of these parameters can be maximized by varying the focusing of the pump mode and the fiber-matched modes using standard optical elements. Specifically we analyze a periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs at 810 nm and 1550 nm. Numerical calculations lead to coupling efficiencies above 93% at optimal focusing, which is found by the geometrical relation L/z{sub R} to be {approx_equal}1 to 2 for the pump mode and {approx_equal}2 to 3 for the fiber-modes, where L is the crystal length and z{sub R} is the Rayleigh-range of the mode-profile. These results are independent on L. By showing that the single-mode bandwidth decreases {proportional_to}1/L, we can therefore design the source to produce and couple narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means both less chromatic dispersion for long propagation distances in fibers, and that telecom Bragg gratings can be utilized to compensate for broadened photon packets--a vital problem for time-multiplexed qubits. Longer crystals also yield an increase in fiber photon flux {proportional_to}{radical}(L), and so, assuming correct focusing, we can only see advantages using long crystals.

  10. A Catalog of z=3.1 Lyman Alpha Emitting Galaxies Discovered in Narrow-band Imaging of MUSYC 1030+05

    NASA Astrophysics Data System (ADS)

    Christenson, Holly; Gangolli, Nakul; Raney, Catie Ann; Walker, Jean P.; Gawiser, Eric J.; MUSYC Collaboration

    2016-01-01

    We present a catalog of ~200 Lyman Alpha Emitting galaxies (LAEs) at redshift z=3.1 found in a 5015 Å narrow-band image of the MUSYC 1030+05 field. We reduced raw optical images taken with the MOSAIC II CCD camera at the CTIO 4m telescope with the IRAF MSCRED package. The reduction included the crucial steps of bias subtraction, flat-field correction, cosmic ray and satellite trail rejection, astrometric calibration, tangent plane projection, weighted stacking, and sky background removal. Our initial catalog of sources detected in the narrow-band filter contains ~20,000 sources. We used additional photometric measurements in the MUSYC broad-band filters to identify LAEs via their flux density excess in the narrow-band. This catalog of LAEs will undergo further analysis to characterize how the number density, clustering, colors, and star formation rates of LAEs vary with position and evolve with redshift.We gratefully acknowledge support from NSF grants AST-1055919 & PHY-1263280.

  11. Detailed features of palisade vessels as a marker of the esophageal mucosa revealed by magnifying endoscopy with narrow band imaging.

    PubMed

    Kumagai, Y; Yagi, M; Aida, J; Ishida, H; Suzuki, S; Hashimoto, T; Amanuma, Y; Kusano, M; Mukai, S; Yamazaki, S; Iida, M; Ochiai, T; Matsuura, M; Iwakiri, K; Kawano, T; Hoshihara, Y; Takubo, K

    2012-08-01

    The palisade vessels present at the distal end of the esophagus are considered to be a landmark of the esophagogastric junction and indispensable for diagnosis of columnar-lined esophagus on the basis of the Japanese criteria. Here we clarified the features of normal palisade vessels at the esophagogastric junction using magnifying endoscopy. We prospectively studied palisade vessels in 15 patients undergoing upper gastrointestinal endoscopy using a GIF-H260Z instrument (Olympus Medical Systems Co., Tokyo, Japan). All views of the palisade vessels were obtained at the maximum magnification power in the narrow band imaging mode. We divided the area in which palisade vessels were present into three sections: the area from the squamocolumnar junction (SCJ) to about 1 cm orad within the esophagus (Section 1); the area between sections 1 and 3 (Section 2); and the area from the upper limit of the palisade vessels to about 1 cm distal within the esophagus (Section 3). In each section, we analyzed the vessel density, caliber of the palisade vessels, and their branching pattern. The vessel density in Sections 1, 2, and 3 was 9.1 ± 2.1, 8.0 ± 2.6, and 3.3 ± 1.3 per high-power field (mean ± standard deviation [SD]), respectively, and the differences were significant between Sections 1 and 2 (P= 0.0086) and between Sections 2 and 3 (P < 0.0001). The palisade vessel caliber in Sections 1, 2, and 3 was 127.6 ± 52.4 µm, 149.6 ± 58.6 µm, and 199.5 ± 75.1 µm (mean ± SD), respectively, and the differences between Sections 1 and 2, and between Sections 2 and 3, were significant (P < 0.0001). With regard to branching form, the frequency of branching was highest in Section 1, and the 'normal Y' shape was observed more frequently than in Sections 2 and 3. Toward the oral side, the frequency of branching diminished, and the frequency of the 'upside down Y' shape increased. The differences in branching form were significant among the three sections (P < 0.0001). These results

  12. Terahertz emission upon the band-to-band excitation of Group-IV semiconductors at room temperature

    SciTech Connect

    Zakhar’in, A. O.; Bobylev, A. V.; Egorov, S. V.; Andrianov, A. V.

    2015-03-15

    Terahertz emission upon the band-to-band excitation of Group-IV semiconductors (Si:B and Ge:Ga) at room temperature by a semiconductor laser emitting in the visible range (660 nm) is observed and investigated. It is established that, as the crystal temperature is elevated above room temperature, the emission intensity increases considerably, while the emission spectrum shifts to higher frequencies. The terahertz-emission spectra of germanium and silicon are quite similar to each other. The pump-intensity dependence of the terahertz-emission intensity is nearly linear. The above features make it possible to attribute the observed terahertz emission to the effect of crystal heating by absorbed pump radiation.

  13. First-principles study of direct and narrow band gap semiconducting β -CuGaO2

    SciTech Connect

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.

  14. The Dust in Comet C/1999 S4 (LINEAR) during Its Disintegration: Narrow-Band Images, Color Maps, and Dynamical Models

    NASA Astrophysics Data System (ADS)

    Bonev, T.; Jockers, K.; Petrova, E.; Delva, M.; Borisov, G.; Ivanova, A.

    2002-12-01

    Comet C/1999 S4 was observed with the 2m-telescopes of the Bulgarian National Observatory and Pik Terskol Observatory, Northern Caucasus, Russia, at the time of its disintegration. Maps of the dust brightness and color were constructed from images obtained in red and blue continuum windows, free from cometary molecular emissions. We analyze the dust environment of Comet C/1999 S4 (LINEAR) taking into account the observed changes apparent in the brightness images and in plots of Afρ profiles as function of the projected distance ρ from the nucleus. We also make use of the syndyne-synchrone formalism and of a Monte Carlo model based on the Finson-Probstein theory of dusty comets. The brightness and color of individual dust particles, which is needed to derive theoretical brightness and color maps of the cometary dust coma from the Monte Carlo model, is determined from calculations of the light scattering properties of randomly oriented oblate spheroids. In general, the dust of Comet C/1999 S4 (LINEAR) is strongly reddened, with reddening values up to 30%/1000 Å in some locations. Often the reddening is higher in envelopes further away from the nucleus. We observed two outbursts of the comet with brightness peaks on July 14 and just before July 24, 2000, when the final disintegration of the comet started. During both outbursts an excess of small particles was released. Shortly after both outbursts the dust coma "turns blue." After the first outburst, the whole coma was affected; after the second one only a narrow band of reduced color close to the tail axis was formed. This difference is explained by different terminal ejection speeds, which were much lower than normal in case of the second outburst. In particular in the second, final outburst the excess small particles could originate from fragmentation of "fresh" larger particles.

  15. Evaluation of the degree of effectiveness of biobeam low level narrow band light on the treatment of skin ulcers and delayed postoperative wound healing.

    PubMed

    Iusim, M; Kimchy, J; Pillar, T; Mendes, D G

    1992-09-01

    Twenty-one patients with 31 postoperative delayed open wounds resistant to conventional therapy were randomly allocated to three groups. Group 1 was treated with red low level narrow band (LLNB) light (660 nm); group 2 was treated with infrared LLNB light (940 nm); and group 3 was treated with a placebo such as the Biobeam machine (no light irradiation). Group 1 showed a significant improvement compared to groups 2 and 3 (t-test).

  16. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields.

    PubMed

    Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P J; Mouritsen, Henrik

    2016-01-01

    Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth's magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356

  17. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  18. Fast Hearing-Threshold Estimation Using Multiple Auditory Steady-State Responses with Narrow-Band Chirps and Adaptive Stimulus Patterns

    PubMed Central

    Mühler, Roland; Mentzel, Katrin; Verhey, Jesko

    2012-01-01

    This paper describes the estimation of hearing thresholds in normal-hearing and hearing-impaired subjects on the basis of multiple-frequency auditory steady-state responses (ASSRs). The ASSR was measured using two new techniques: (i) adaptive stimulus patterns and (ii) narrow-band chirp stimuli. ASSR thresholds in 16 normal-hearing and 16 hearing-impaired adults were obtained simultaneously at both ears at 500, 1000, 2000, and 4000 Hz, using a multiple-frequency stimulus built up of four one-octave-wide narrow-band chirps with a repetition rate of 40 Hz. A statistical test in the frequency domain was used to detect the response. The recording of the steady-state responses was controlled in eight independent recording channels with an adaptive, semiautomatic algorithm. The average differences between the behavioural hearing thresholds and the ASSR threshold estimate were 10, 8, 13, and 15 dB for test frequencies of 500, 1000, 2000, and 4000 Hz, respectively. The average overall test duration of 18.6 minutes for the threshold estimations at the four frequencies and both ears demonstrates the benefit of an adaptive recording algorithm and the efficiency of optimised narrow-band chirp stimuli. PMID:22619622

  19. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields

    PubMed Central

    Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P. J.; Mouritsen, Henrik

    2016-01-01

    Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth’s magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356

  20. Observation of valence band electron emission from n-type silicon field emitter arrays

    NASA Astrophysics Data System (ADS)

    Ding, Meng; Kim, Han; Akinwande, Akintunde I.

    1999-08-01

    Electron emission from the valence band of n-type Si field emitter arrays is reported. High electrostatic field at the surface of Si was achieved by reducing the radius of the emitter tip. Using oxidation sharpening, 1 μm aperture polycrystalline Si gate, n-type Si field emitter arrays with small tip radius (˜10 nm) were fabricated. Three distinct emission regions were observed: conduction band emission at low gate voltages, saturated current emission from the conduction band at intermediate voltages, and valence band plus conduction band emission at high gate voltages. Emission currents at low and high voltages obey the Fowler-Nordheim theory. The ratio of the slopes of the corresponding Fowler-Nordheim fits for these two regions is 1.495 which is in close agreement with the theoretical value of 1.445.

  1. Detection of marine methane emissions with AVIRIS band ratios

    NASA Astrophysics Data System (ADS)

    Bradley, Eliza S.; Leifer, Ira; Roberts, Dar A.; Dennison, Philip E.; Washburn, Libe

    2011-05-01

    The relative source contributions of methane (CH4) have high uncertainty, creating a need for local-scale characterization in concert with global satellite measurements. However, efforts towards methane plume imaging have yet to provide convincing results for concentrated sources. Although atmospheric CH4 mapping did not motivate the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) design, recent studies suggest its potential for studying concentrated CH4 sources such as the Coal Oil Point (COP) seep field (˜0.015 Tg CH4 yr-1) offshore Santa Barbara, California. In this study, we developed a band ratio approach on high glint COP AVIRIS data and demonstrate the first successful local-scale remote sensing mapping of natural atmospheric CH4 plumes. Plume origins closely matched surface and sonar-derived seepage distributions, with plume characteristics consistent with wind advection. Imaging spectrometer data may also be useful for high spatial-resolution characterization of concentrated, globally-significant CH4 emissions from offshore platforms and cattle feedlots.

  2. MODIS on-orbit thermal emissive bands lifetime performance

    NASA Astrophysics Data System (ADS)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  3. Accretion disc-corona and jet emission from the radio-loud narrow-line Seyfert 1 galaxy RX J1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-08-01

    We perform X-ray/ultraviolet (UV) spectral and X-ray variability studies of the radio-loud narrow-line Seyfert 1 (NLS1) galaxy RX J1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultrasoft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power law due to the thermal Comptonization (Γ = 1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of 2 lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RX J1633.3+4719 is variable with fractional variability amplitude Fvar = 13.5 ± 1.0 per cent. In contrast to radio-quiet active galactic nuclei (AGN), X-ray emission from the source becomes harder with increasing flux. The fractional rms variability increases with energy and the rms spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anticorrelated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RX J1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  4. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    SciTech Connect

    Li, Jia; Zhang, Zhidong; Lu, Zunming; Xie, Hongxian; Fang, Wei; Li, Shaomin; Liang, Chunyong; Yin, Fuxing

    2015-11-15

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part of the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.

  5. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  6. Narrow He II emission in star-forming galaxies at low metallicity. Stellar wind emission from a population of very massive stars

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Vink, J. S.

    2015-06-01

    Context. In a recent study, star-forming galaxies with He ii λ1640 emission at moderate redshifts between 2 and 4.6 have been found to occur in two modes that are distinguished by the width of their He ii emission lines. Broad He ii emission has been attributed to stellar emission from a population of evolved Wolf-Rayet (WR) stars. The origin of narrow He ii emission is less clear but has been attributed to nebular emission excited by a population of very hot Pop III stars formed in pockets of pristine gas at moderate redshifts. Aims: We propose an alternative scenario for the origin of the narrow He ii emission, namely very massive stars (VMS) at low metallicity (Z), which form strong but slow WR-type stellar winds due to their proximity to the Eddington limit. Methods: We estimated the expected He ii line fluxes and equivalent widths based on wind models for VMS and Starburst99 population synthesis models and compared the results with recent observations of star-forming galaxies at moderate redshifts. Results: The observed He ii line strengths and equivalent widths are in line with what is expected for a population of VMS in one or more young super-clusters located within these galaxies. Conclusions: In our scenario the two observed modes of He ii emission originate from massive stellar populations in distinct evolutionary stages at low Z (~0.01 Z⊙). If this interpretation is correct, there is no need to postulate the existence of Pop III stars at moderate redshifts to explain the observed narrow He ii emission. An interesting possibility is the existence of self-enriched VMS with similar WR-type spectra at extremely low Z. Stellar He ii emission from such very early generations of VMS may be detectable in future studies of star-forming galaxies at high redshifts with the James Webb Space Telescope (JWST). The fact that the He ii emission of VMS is largely neglected in current population synthesis models will generally affect the interpretation of the

  7. DOUBLE-PEAKED NARROW EMISSION-LINE GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. I. SAMPLE AND BASIC PROPERTIES

    SciTech Connect

    Ge Junqiang; Hu Chen; Wang Jianmin; Zhang Shu; Bai Jinming

    2012-08-01

    Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we find that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.

  8. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  9. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  10. Nature of laser emission in narrow-gap hg1 - x Cdx Te

    NASA Astrophysics Data System (ADS)

    Herrmann, K. H.; Tomm, J. W.; Lindstaedt, M.

    1995-01-01

    An analysis of the nature of optical transitions in the (Hg, Cd) Te alloy system is presented. Free, bound and localized excitons are the origin of the main luminescence lines, whereas for very narrow gap material (fitting the 10 μm region) plasma transitions dominate. Special attention is paid to the luminescence at high excitation levels, where a distinction between plasma transitions and exciton-exciton scattering becomes possible for different samples. The results concerning the gain mechanisms are discussed together with experimental results obtained from injection luminescence.

  11. Hearing threshold estimation by auditory steady-state responses with narrow-band chirps and adaptive stimulus patterns: implementation in clinical routine.

    PubMed

    Seidel, David Ulrich; Flemming, Tobias Angelo; Park, Jonas Jae-Hyun; Remmert, Stephan

    2015-01-01

    Objective hearing threshold estimation by auditory steady-state responses (ASSR) can be accelerated by the use of narrow-band chirps and adaptive stimulus patterns. This modification has been examined in only a few clinical studies. In this study, clinical data is validated and extended, and the applicability of the method in audiological diagnostics routine is examined. In 60 patients (normal hearing and hearing impaired), ASSR and pure tone audiometry (PTA) thresholds were compared. ASSR were evoked by binaural multi-frequent narrow-band chirps with adaptive stimulus patterns. The precision and required testing time for hearing threshold estimation were determined. The average differences between ASSR and PTA thresholds were 18, 12, 17 and 19 dB for normal hearing (PTA ≤ 20 dB) and 5, 9, 9 and 11 dB for hearing impaired (PTA > 20 dB) at the frequencies of 500, 1,000, 2,000 and 4,000 Hz, respectively, and the differences were significant in all frequencies with the exception of 1 kHz. Correlation coefficients between ASSR and PTA thresholds were 0.36, 0.47, 0.54 and 0.51 for normal hearing and 0.73, 0.74, 0.72 and 0.71 for hearing impaired at 500, 1,000, 2,000 and 4,000 Hz, respectively. Mean ASSR testing time was 33 ± 8 min. In conclusion, auditory steady-state responses with narrow-band-chirps and adaptive stimulus patterns is an efficient method for objective frequency-specific hearing threshold estimation. Precision of threshold estimation is most limited for slighter hearing loss at 500 Hz. The required testing time is acceptable for the application in everyday clinical routine. PMID:24305781

  12. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized. PMID:26531849

  13. THE DIFFUSE INTERSTELLAR BANDS AND ANOMALOUS MICROWAVE EMISSION MAY ORIGINATE FROM THE SAME CARRIERS

    SciTech Connect

    Bernstein, L. S.; Cline, J. A.; Clark, F. O.; Lynch, D. K. E-mail: jcline@spectral.com E-mail: dave@thulescientific.com

    2015-11-10

    We argue that the observed spectroscopic and statistical properties of the diffuse interstellar band (DIB) carriers are those that are needed to produce the anomalous microwave emission (AME). We explore this idea using a carrier-impartial model for AME based on the observed DIB statistical properties. We show that an observed distribution of profile widths for narrow DIBs can be mapped into an AME spectrum. The mapping model is applied to width distributions observed for HD 204827 and HD 183143, selected because their spectroscopic and statistical properties bracket those for most other sight lines. The predicted AME spectra for these sight lines agree well with the range of spectral shapes, and peak frequencies, ∼23–31 GHz, typically observed for AME. We use the AME spectral profiles to derive a strong constraint between the average carrier size and its rotational temperature. The constraint is applied to a variety of postulated molecular carrier classes, including polycyclic aromatic hydrocarbons, fulleranes, hydrocarbon chains, and amorphous hydrocarbon clusters. The constraint favors small, cold carriers with average sizes of ∼8–15 carbon atoms, and average rotational temperatures of ∼3–10 K, depending on carrier type. We suggest new observations, analyses, and modeling efforts to help resolve the ambiguities with regard to carrier size and class, and to further clarify the DIB–AME relationship.

  14. Observations of an intense field-aligned thermal ion flow and associated intense narrow band electric field oscillations. [at auroral arc edge

    NASA Technical Reports Server (NTRS)

    Bering, E. A.; Kelley, M. C.; Mozer, F. S.

    1975-01-01

    An investigation is conducted concerning the conditions encountered during a Javelin sounding rocket experiment conducted on Apr. 3, 1970 at Fort Churchill, Canada. Evidence is presented that near the equatorward edge of the auroral arc an intense beam of cold plasma ions was flowing parallel to the earth's magnetic field. The beam was associated with intense narrow band electric field oscillations near the local ion gyrofrequency. The data support the hypothesis that intense electrostatic ion cyclotron waves were driven unstable by field-aligned currents.

  15. Holmium-161 produced using 11.6 MeV protons: A practical source of narrow-band X-rays.

    PubMed

    Stephens, Bryan J; Mendenhall, Marcus H

    2010-10-01

    We present a novel technique to produce narrow-band X-rays by preparing (161)Ho from the bombardment of dysprosium foil by 11.6 MeV protons. The activated foil produces predominantly 45-55 keV X-rays, which are suitable for activating iodinated radio-sensitizing agents (e.g. IUdR) for oncological therapy. We demonstrate that clinically useful quantities of the nuclide are easily produced with a medical cyclotron which is far from the current state of the art.

  16. Clinical application of magnification endoscopy and narrow-band imaging in the upper gastrointestinal tract: new imaging techniques for detecting and characterizing gastrointestinal neoplasia.

    PubMed

    Yao, Kenshi; Takaki, Yasuhiro; Matsui, Toshiyuki; Iwashita, Akinori; Anagnostopoulos, George K; Kaye, Philip; Ragunath, Krish

    2008-07-01

    This article introduces one of the most advanced endoscopy imaging techniques, magnification endoscopy with narrow-band imaging. This technique can clearly visualize the microvascular (MV) architecture and microsurface (MS) structure. The application of this technique is quite useful for characterizing the mucosal neoplasia in the hypopharynx, oropharynx, esophagus, and stomach. The key characteristic findings for early carcinomatous lesions are an irregular MV pattern or irregular MS pattern as visualized by this technique. Such a diagnostic system could be applied to the early detection of mucosal neoplasia throughout the upper gastrointestinal tract.

  17. A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2

    NASA Astrophysics Data System (ADS)

    Pons, E.; Watson, M. G.

    2016-10-01

    A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sources, we were able to rule out dust reddening and variability for most of them as an explanation of the absence of optical broad emission-lines. The main explanations remaining are the dilution of weak/very broad emission-lines by the host galaxy and the intrinsic absence of the broad-line region (BLR) due to low accretion rates (i.e. True Sy2). However, the number of True Sy2 strongly depends on the method used to verify the intrinsic lack of broad lines. Indeed using the optical continuum luminosity to predict the BLR properties gives a much larger fraction of True Sy2 (about 90% of the unobscured Sy2 sample) than the use of the X-ray 2 keV luminosity (about 20%). Nevertheless the number of AGN we securely detected as True Sy2 is at least three times larger that the previously confirmed number of True Sy2.

  18. Using Lunar Observations to Assess Terra MODIS Thermal Emissive Bands Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, Hongda

    2010-01-01

    MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues.

  19. Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands: Auto exhaust along the Milky Wayexclamation

    SciTech Connect

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1985-03-01

    We have attributed the unidentified infrared emission feature (UIR bands) to a collection of partially hydrogenated, positively charged polycyclic aromatic hydrocarbons (PAHs). This assignment is based on a spectrocopic analysis of the UIR bands. Comparison of the observed interstellar 6.2 and 7.7 ..mu..m bands with the laboratory measured Raman spectrum of a collection of carbon-based particulates (auto exhaust) shows a very good agreement, supporting this idenfication. The infrared-emission is due to relaxation from highly vibrationally and electronically excited states. The infrared emission is due to relaxation from highly vibrationally excited states. The excitation is probably caused by UV photon absorption.

  20. [Changes of T-SOD activity and MDA, GSH contents in blood of guinea pigs after exposure to narrow-band noise].

    PubMed

    Shi, X; Guo, F; Liang, Z; Zhu, Q; Yang, Y

    1998-08-01

    In order to evaluate the changes of lipid peroxide response induced by free radical after intense noise exposure, levels of T-SOD and MDA in serum and GSH in blood of guinea pigs were determined. Sixty male adult guinea pigs were used. The narrow band noise was centered at 1000Hz with 100Hz band width 126 dB SPL. It was found: 1) SOD activity in serum increased after 5d exposure (P > 0.05), but decreased after 10d exposure (P > 0. 05); 2) contents of MDA in serum increased (P < 0.05) and contents of GSH in blood decreased with increase of exposure time (P < 0.01). It shows that the lipid peroxide response induced by free radicals increased after intense noise exposure and it is possible to use free radical scavengers and/or antioxidant in prevention and treatment of noise induced damage.

  1. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  2. Configuration dependence of band-gap narrowing and localization in dilute GaAs1 -xBix alloys

    NASA Astrophysics Data System (ADS)

    Bannow, Lars C.; Rubel, Oleg; Badescu, Stefan C.; Rosenow, Phil; Hader, Jörg; Moloney, Jerome V.; Tonner, Ralf; Koch, Stephan W.

    2016-05-01

    Anion substitution with bismuth (Bi) in III-V semiconductors is an effective method for experimental engineering of the band gap Eg at low Bi concentrations (≤2 % ), in particular in gallium arsenide (GaAs). The inverse Bi-concentration dependence of Eg has been found to be linear at low concentrations x and dominated by a valence band defect level anticrossing between As and Bi occupied p levels. Predictive models for the valence band hybridization require a first-principle understanding which can be obtained by density functional theory with the main challenges being the proper description of Eg and the spin-orbit coupling. By using an efficient method to include these effects, it is shown here that at high concentrations Eg is modified mainly by a Bi-Bi p orbital interaction and by the large Bi atom-induced strain. In particular, we find that at high concentrations, the Bi-Bi interactions depend strongly on model periodic cluster configurations, which are not captured by tight-binding models. Averaging over various configurations supports the defect level broadening picture. This points to the role of different atomic configurations obtained by varying the experimental growth conditions in engineering arsenide band gaps, in particular for telecommunication laser technology.

  3. Iterative re-weighted approach to high-resolution optical coherence tomography with narrow-band sources.

    PubMed

    Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee Bowden, Audrey K

    2016-01-25

    Optical coherence tomography (OCT) is a non-invasive optical imaging modality capable of high resolution imaging of internal tissue structures. It is widely believed that the high axial resolution in OCT systems requires a wide-bandwidth light source. As a result, often the potential advantages of narrow-bandwidth sources (in terms of cost and/or imaging speed) are understood to come at the cost of significant reduction in imaging resolution. In this paper, we argue that this trade-off between resolution and speed is a shortcoming imposed by the-state-of-the-art A-scan reconstruction algorithm, Fast Fourier Transform, and can be circumvented through use of alternative processing methods. In particular, we investigate the shortcomings of the FFT as well as previously proposed alternatives and demonstrate the first application of an iterative regularized re-weighted l(2) norm method to improve the axial resolution of fast scan rate OCT systems in the narrow-bandwidth imaging conditions. We validate our claims via experimental results generated from a home-built OCT system used to image layered phantom and in vivo data. Our results rely on new, sophisticated signal processing algorithms to generate higher precision (i.e., higher resolution) OCT images at correspondingly fast scan rates. In other words, our work demonstrates the feasibility of simultaneously more reliable and more comfortable medical imaging systems for patients by reducing the overall scan time, without sacrificing image quality. PMID:26832556

  4. An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Sergeeva, Anna

    2009-01-01

    Unidirectional random waves generated by a wavemaker in a 300-m-long wave tank are investigated experimentally. Spatial evolution of numerous statistical wavefield parameters is studied. Three series of experiments are carried out for different values of the nonlinear parameter ɛ. It is found that the frequency spectrum of the wavefield undergoes significant variation in the course of the wavefield evolution along the tank. The initially narrow Gaussian spectrum becomes wider at the early stages of the evolution and then narrower again, although it still remains wider than the initial spectrum at the most distant measuring location. It is found that the values of all the statistical wave parameters are strongly related to the local spectral width. The deviations of various statistical parameters from the Gaussian statistics increase with the width of the spectrum so that the probability of extremely large (the so-called freak) waves is highest when the local spectral width attains maximum. The deviations from the Rayleigh distribution also become more pronounced when the nonlinearity parameter ɛ is higher. It is found that the Tayfun and Fedele 3rd order random wavefield model provides an appropriate description of the observed phenomena. An attempt is made to relate the spatial variations of the wavefield statistics reported here to the wavefield recurrence, as suggested recently.

  5. Three-photon-induced blue emission with narrow bandwidth from hot flower-like ZnO nanorods.

    PubMed

    Dai, Jun; Yuan, Mao-Hui; Zeng, Jian-Hua; Dai, Qiao-Feng; Lan, Sheng; Xiao, Chai; Tie, Shao-Long

    2015-11-01

    ZnO nanorods (NRs) self-organized into flowers were synthesized at different temperatures ranging from 100°C to 180°C by using the hydrothermal method. The existence of Zn interstitials (Zn(i)) was confirmed by X-ray photoelectron spectroscopy and a larger amount of Zn(i) was found in the ZnO NRs prepared at higher temperatures. A redshift of the emission peak of more than 15 nm was observed for the ZnO NRs under single photon excitation. The nonlinear optical properties of the flower-like ZnO NRs were characterized by using focused femtosecond laser light and strong three-photon-induced luminescence was observed at an excitation wavelength of ~750 nm. More interestingly, a large redshift of the emission peak was observed with increasing excitation intensity, resulting in efficient blue emission with a narrow bandwidth of ~30 nm. It was confirmed that the large redshift originates from the heating of the ZnO NRs to a temperature of more than 800°C and the closely packed ZnO NRs in the flowers play a crucial role in heat accumulation. The stable and efficient three-photon-induced blue emission from such ZnO NRs may find potential applications in the fields of optical display, high-temperature sensors and light therapy of tumors. PMID:26561193

  6. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  7. Preparation of Narrow Band-Gap Cu2Sn(S,Se)3 and Fabrication of Film by Non-Vacuum Process

    NASA Astrophysics Data System (ADS)

    Nomura, Takeshi; Maeda, Tsuyoshi; Wada, Takahiro

    2013-04-01

    We successfully prepared a Cu2Sn(S1-xSex)3 (CTSSe) solid solution with 0≤x≤1.0. CTSSe solid solution powders were synthesized by mixing the elemental powders and post-annealing at 600 °C. The crystal structure of Cu2SnS3 (CTS) was characterized by Rietveld refinement of the powder X-ray diffraction data and determined to be a monoclinic crystal system. The band gaps of CTSSe solid solution were determined by the diffuse reflectance spectra of the powder samples and the transmittance spectrum of the film fabricated by a non-vacuum thin-film fabrication process called printing and high-pressure sintering (PHS). The band gap (Eg) of CTS is 0.87 eV, which is in good agreement with the recently reported value of monoclinic CTS film. The band gap of the Cu2Sn(S1-xSex)3 solid solution linearly decreases from 0.87 eV (x = 0.0) to 0.67 eV (x = 0.6) with increasing Se content. The CTSSe solid solution has potential as a narrow band-gap absorber material for thin-film full spectrum solar cells.

  8. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb:YAG laser.

    PubMed

    Goldberg, Lew; Cole, Brian; McIntosh, Chris; King, Vernon; Hays, A D; Chinn, Stephen R

    2016-07-25

    We describe generation of 1.1 W of 257 nm emission by frequency quadrupling the 1030 nm emission from a compact passively Q-switched Yb:YAG laser. The laser utilized a volume Bragg grating to achieve a 0.1 nm linewidth required for UV-Raman spectroscopic applications, generated 100 kW peak power, 250 μJ pulses and 3.6 W of average power at 1030 nm. Fourth harmonic generation (FHG) was carried out using a 10 mm lithium triborate (LBO) crystal to generate 515 nm second harmonic with 70% conversion efficiency, followed by a 7 mm beta-barium borate (BBO) crystal to generate 257 nm fourth harmonic with 45% efficiency, resulting in an overall nonlinear conversion efficiency of 31%. Far-field and near-field of the FHG emission were characterized.

  9. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb:YAG laser.

    PubMed

    Goldberg, Lew; Cole, Brian; McIntosh, Chris; King, Vernon; Hays, A D; Chinn, Stephen R

    2016-07-25

    We describe generation of 1.1 W of 257 nm emission by frequency quadrupling the 1030 nm emission from a compact passively Q-switched Yb:YAG laser. The laser utilized a volume Bragg grating to achieve a 0.1 nm linewidth required for UV-Raman spectroscopic applications, generated 100 kW peak power, 250 μJ pulses and 3.6 W of average power at 1030 nm. Fourth harmonic generation (FHG) was carried out using a 10 mm lithium triborate (LBO) crystal to generate 515 nm second harmonic with 70% conversion efficiency, followed by a 7 mm beta-barium borate (BBO) crystal to generate 257 nm fourth harmonic with 45% efficiency, resulting in an overall nonlinear conversion efficiency of 31%. Far-field and near-field of the FHG emission were characterized. PMID:27464186

  10. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions.

    PubMed

    Chakraborty, Subrata; Vijay, Amrendra

    2016-04-14

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases. PMID:27083708

  11. Narrow band noise as a model of time-dependent accelerations - Study of the stability of a fluid surface in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Casademunt, Jaume; Zhang, Wenbin; Vinals, Jorge; Sekerka, Robert F.

    1993-01-01

    We introduce a stochastic model to analyze in quantitative detail the effect of the high frequency components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion. The residual acceleration field is modeled as a narrow band noise characterized by three independent parameters: its intensity G squared, a dominant frequency Omega, and a characteristic spectral width tau exp -1. The white noise limit corresponds to Omega tau goes to O, with G squared tau finite, and the limit of a periodic g-jitter (or deterministic limit) can be recovered for Omega tau goes to infinity, G squared finite. The analysis of the response of a fluid surface subjected to a fluctuating gravitational field leads to the stochastic Mathieu equation driven by both additive and multiplicative noise. We discuss the stability of the solutions of this equation in the two limits of white noise and deterministic forcing, and in the general case of narrow band noise. The results are then applied to typical microgravity conditions.

  12. Peculiarities of Forming Single-Frequency Generation in a Monopulse YAG:Nd-Laser with Transverse Diode Pumping and Injection of Narrow-Band Radiation

    NASA Astrophysics Data System (ADS)

    Bogdanovich, M. V.; Kalinov, V. S.; Kostik, O. E.; Lantsov, K. I.; Lepchenkov, K. V.; Mashko, V. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Teplyashin, L. L.

    2016-05-01

    The features of forming output radiation in a powerful monopulse single-frequency side diode-pumped laser operating in external narrow-band signal seeding mode were investigated. The monopulse single-frequency laser was fabricated of a YAG:Nd active element excited by three laser diode matrices. A compact continuous-wave YAG:Nd-laser with longitudinal diode pumping served as the seeding laser. It was shown experimentally that the transition of the monopulse laser from multimode to single-frequency lasing with a spectral line width of about 54 MHz (0.2 pm) occurs at seeding-laser radiation power P th ≈ 0.14 mW (radiation intensity of 1.8·10-2 W/cm2). Increasing the seeding-laser power over P th does not lead to a noticeable change of the output characteristics of the monopulse laser for a given pump level (above the threshold). If the pump power varies from 1.5 to 3.0 kW, the P th value is not changed but the energy of the output pulses of single-frequency monopulse generation increases to 40 MJ. The low level of the external narrow-band seeding signal allows us to consider the single-frequency low-power semiconductor laser as a promising source of the seeding signal.

  13. Efficacy of Biofeedback and Cognitive-behavioural Therapy in Psoriatic PatientsA Single-blind, Randomized and Controlled Study with Added Narrow-band Ultraviolet B Therapy.

    PubMed

    Piaserico, Stefano; Marinello, Elena; Dessi, Andrea; Linder, Michael Dennis; Coccarielli, Debora; Peserico, Andrea

    2016-08-23

    Increasing data suggests that there is a connection between stress and the appearance of psoriasis symptoms. We therefore performed a clinical trial enrolling 40 participants who were randomly allocated to either an 8-week cognitive-behavioural therapy (CBT) (treatment group) plus narrow-band UVB phototherapy or to an 8-week course of only narrow-band UVB phototherapy (control group). We evaluated the clinical severity of psoriasis (PASI), General Health Questionnaire (GHQ)-12, Skindex-29 and State-Trait Anxiety Inventory (STAI) at baseline and by the end of the study. Sixty-five percent of patients in the treatment group achieved PASI75 compared with 15% of standard UVB patients (p = 0.007). GHQ-12 cases were reduced from 45% to 10% in the treatment group and from 30% to 20% in the control group (p = 0.05). The Skindex-29 emotional domain showed a significant improvement in the CBT/biofeedback group compared with control patients (-2.8 points, p = 0.04). This study shows that an adjunctive 8-week intervention with CBT combined with biofeedback increases the beneficial effect of UVB therapy in the overall management of psoriasis, reduces the clinical severity of psoriasis, improving quality of life and decreases the number of minor psychiatric disorders. PMID:27283367

  14. Thermopower and specific heat of the organic molecular salt (TMTSF)(2)ClO(4): observation of the narrow band response.

    PubMed

    Sun, Cheng-Hai; Yang, Hong-Shun; Liu, Jian; Gao, Hui-Xian; Wang, Jian-Bin; Cheng, Lu; Cao, Lie-Zhao; Lasjaunias, J C

    2008-06-11

    Measurements of thermopower S(a)(T) along the highly conducting a axis and specific heat of the Bechgaard salts (TMTSF)(2)ClO(4) for various cooling rates through the anion ordering temperature T(a) = 24 K were carried out. Sign reversal in S(a)(T) is found below T(a) and it decreases with increasing cooling rate, which is attributed to the change of a narrow band filling level as the temperature and the cooling rates change. The crossover from 2D to 3D in S(a)(T) is observed around 15 K. The onset temperature of anion ordering in S(a)(T) decreases from 29.8 to 24.2 K as the cooling rate increases. Meanwhile, the electronic specific heat coefficient γ has a pronounced change within this temperature region, giving strong evidence for a narrow band contribution. The difference in the specific heat between the quenched and relaxed states follows a T-cubic law from 5 to 24 K, implying a lattice distortion by the ordered anion only. The entropy estimated from the specific heat peak between 28 and 15 K is Rln (4/3) lower than the value Rln2, consistent with the thermopower result that some anions have been ordered far above T(a) for the relaxed state. PMID:21694314

  15. Narrow-Band Imaging System for the Multi-application Solar Telescope at Udaipur Solar Observatory: Characterization of Lithium Niobate Etalons

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, A.; Mathew, Shibu K.; Venkatakrishnan, P.; Srivastava, N.

    2014-10-01

    Multi-application Solar Telescope is a 50 cm off-axis Gregorian telescope that has been installed at the lake site of Udaipur Solar Observatory. For quasi-simultaneous photospheric and chromospheric observations, a narrow-band imager has been developed as one of the back-end instruments for this telescope. Narrow-band imaging is achieved using two lithium niobate Fabry-Perot etalons working in tandem as a filter. This filter can be tuned to different wavelengths by changing either voltage, tilt or temperature of the etalons. To characterize the etalons, a Littrow spectrograph was set up, in conjunction with a 15 cm Carl Zeiss Coud\\'e solar telescope. The etalons were calibrated for the solar spectral lines FeI 6173 {\\AA}, and CaII 8542 {\\AA}. In this work, we discuss the characterization of the Fabry-Perot etalons, specifically the temperature and voltage tuning of the system for the spectral lines proposed for observations. We present the details of the calibration set-up and various tuning parameters. We also present solar images obtained using the system parameters. We also present solar images obtained using the system.

  16. Defect-Band Emission Photoluminescence Imaging on Multi-Crystalline Si Solar Cells

    SciTech Connect

    Yan, F.; Johnston, S.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-01-01

    Defect-band photoluminescence (PL) imaging with an InGaAs camera was applied to multicrystalline silicon (mc-Si) wafers, which were taken from different heights of different Si bricks. Neighboring wafers were picked at six different processing steps, from as-cut to post-metallization. By using different cut-off filters, we were able to separate the band-to-band emission images from the defect-band emission images. On the defect-band emission images, the bright regions that originate from the grain boundaries and defect clusters were extracted from the PL images. The area fraction percentage of these regions at various processing stages shows a correlation with the final cell electrical parameters.

  17. Defect-Band Emission Photoluminescence Imaging on Multi-Crystalline Si Solar Cells: Preprint

    SciTech Connect

    Yan, F.; Johnston, S.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-07-01

    Defect-band photoluminescence (PL) imaging with an InGaAs camera was applied to multicrystalline silicon (mc-Si) wafers, which were taken from different heights of different Si bricks. Neighboring wafers were picked at six different processing steps, from as-cut to post-metallization. By using different cut-off filters, we were able to separate the band-to-band emission images from the defect-band emission images. On the defect-band emission images, the bright regions that originate from the grain boundaries and defect clusters were extracted from the PL images. The area fraction percentage of these regions at various processing stages shows a correlation with the final cell electrical parameters.

  18. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  19. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    NASA Technical Reports Server (NTRS)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  20. THE SOFT X-RAY AND NARROW-LINE EMISSION OF Mrk 573 ON KILOPARSEC SCALES

    SciTech Connect

    Gonzalez-Martin, O.; Acosta-Pulido, J. A.; Garcia, A. M. Perez

    2010-11-10

    We present a study of the circumnuclear region of the nearby Seyfert galaxy Mrk 573 using Chandra, XMM-Newton, and Hubble Space Telescope (HST) data. We have studied the morphology of the soft (<2 keV) X-rays comparing it with the [O III] and H{alpha} HST images. The soft X-ray emission is resolved into a complex extended region. The X-ray morphology shows a biconical region extending up to 12 arcsec (4 kpc) in projection from the nucleus. A strong correlation between the X-rays and the highly ionized gas seen in the [O III]{lambda}5007 A image is reported. Moreover, we have studied the line intensities detected with the XMM-Newton Reflection Grating Spectrometer (RGS) and used them to fit the low-resolution EPIC/XMM-Newton and ACIS/Chandra spectra. The RGS/XMM-Newton spectrum is dominated by emission lines of C VI, O VII, O VIII, Fe XVII, and Ne IX, among other highly ionized species. A good fit is obtained using these emission lines found in the RGS/XMM-Newton spectrum as a template for Chandra spectra of the nucleus and extended emission, coincident with the cone-like structures seen in the [O III]/H{alpha} map. The photoionization model Cloudy provides a reasonable fit for both the nuclear region and the cone-like structures showing that the dominant excitation mechanism is photoionization. For the nucleus the emission is modeled using two phases: a high ionization [log (U) = 1.23] and a low ionization [log (U) = 0.13]. For the high-ionization phase the transmitted and reflected components are in a 1:2 ratio, whereas for the low ionization the reflected component dominates. For the extended emission, we successfully reproduced the emission with two phases. The first phase shows a higher ionization parameter for the northwest (log (U) = 0.9) than for the southeast cone (log (U) = 0.3). Moreover, this phase is transmission dominated for the southeast cone and reflection dominated for the northwest cone. The second phase shows a low-ionization parameter (log (U

  1. Anisotropy of the high-energy satellites of the K emission band in graphite

    NASA Astrophysics Data System (ADS)

    Mansour, A.; Schnatterly, S. E.; Carson, R. D.

    1985-05-01

    Two satellites on the high-energy side of the K emission band of graphite have been observed and found to be anisotropic. One of them is attributed to the radiative decay of double ionization of the K shell while the other is tentatively explained as resulting from electronic transitions from the conduction-band minimum into the K-shell vacancy.

  2. Si3N4 emissivity and the unidentified infrared bands

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Chatelain, M. A.; Hecht, James H.; Stephens, John R.

    1989-01-01

    Infrared spectroscopy of warm (about 150 to 750 K), dusty astronomical sources has revealed a structured emission spectrum which can be diagnostic of the composition, temperature, and in some cases, even size and shape of the grains giving rise to the observed emission. The identifications of silicate emission in oxygen rich objects and SiC in carbon rich object are two examples of this type of analysis. Cometary spectra at moderate resolution have similarly revealed silicate emission, tying together interstellar and interplanetary dust. However, Goebel has pointed out that some astronomical sources appear to contain a different type of dust which results in a qualitatively different spectral shape in the 8 to 13 micron region. The spectra shown make it appear unlikely that silicon nitride can be identified as the source of the 8 to 13 micron emission in either NGC 6572 or Nova Aql 1982. The similarity between the general wavelength and shape of the 10 micron emission from some silicates and that from the two forms of silicon nitride reported could allow a mix of cosmic grains which include some silicon nitride if only the 8 to 13 micron data are considered.

  3. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  4. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  5. Narrow-band Filter Observations of the Red-Line Corona at the 29 March 2006 Eclipse

    NASA Astrophysics Data System (ADS)

    Rust, David M.; Noble, M. W.; Pasachoff, J. M.; Babcock, B. A.; Bruck, M. A.; Wittenmyer, R. A.

    2006-06-01

    We report on observations of the corona above active region NOAA 10866, which was on the solar east limb at S 06 on 29 March 2006. Filtergrams were obtained at six 0.22 Å steps across the profile of the Fe X line at 6374.5 Å during the total solar eclipse, starting at about 1052 UT. The telescope was a 35-cm Schmidt-Cassegrain Meade RCX400 with the solar image relayed to a 512 x 512-pixel Andor Ixon DV887 CCD camera via telecentric optics and two narrow-bandpass filters: (1) a 2 Å thin-film Andover Corp. blocker and (2) a 0.16 Å tunable Fabry-Perot etalon, made by the CSIRO Australian Centre for Precision Optics. The F-P etalon is a Y-cut lithium niobate wafer of 0.200-mm thickness coated with reflective and conductive thin-film layers. Application of a voltage to the etalon produces a passband shift of 0.0011 Å/volt. Calibration at the eclipse site in Kastellorizo, Greece, was maintained by reference to a WSTech thermo-electrically stabilized diode laser tuned to 6375.16 Å. The profile and Doppler shifts of the Fe X line will be discussed.The expedition was supported by NSF (ATM-0552116), the Committee for Research and Exploration of the National Geographic Society, NASA's Planetary Astronomy Division for the CCD cameras (NNG04GE48G), Sigma Xi, and the Rob Spring Fund and the Ryan Patrick Gaishin Fund at Williams College.

  6. Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor

    NASA Astrophysics Data System (ADS)

    Oumar, Z.; Mutanga, O.; Ismail, R.

    2013-04-01

    Thaumastocoris peregrinus (T. peregrinus) is a sap sucking insect that feeds on Eucalyptus leaves. It poses a threat to the forest industry by reducing the photosynthetic ability of the tree, resulting in stunted growth and even death of severely infested trees. Remote sensing techniques offer the potential to detect and map T. peregrinus infestations in plantation forests using current operational hyperspectral scanners. This study resampled field spectral data measured from a field spectrometer to the band settings of the Hyperion sensor in order to assess its potential in predicting T. peregrinus damage. Normalized indices based on NDVI ratios were calculated using the resampled visible and near-infrared bands of the Hyperion sensor to assess its utility in predicting T. peregrinus damage using Partial Least Squares (PLS) regression. The top 20 normalized indices were based on specific biochemical absorption features that predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.63 on an independent test dataset. The top 20 indices were located in the near-infrared region between 803.3 nm and 894.9 nm. Twenty three previously published hyperspectral indices which have been used to assess stress in vegetation were also used to predict T. peregrinus damage and resulted in a mean bootstrapped R2 value of 0.59 on an independent test dataset. The datasets were combined to assess its collective strength in predicting T. peregrinus damage and significant indices were chosen based on variable importance scores (VIP) and were then entered into a PLS model. The indices chosen by VIP predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.71 on an independent test dataset. A greedy backward variable selection model was further tested on the VIP selected indices in order to find the best subset of indices with the best predictive accuracy. The greedy backward variable selection model identified 3 indices and performed the best by predicting damage

  7. EXTENDED NARROW-LINE EMISSION IN THE BRIGHT SEYFERT 1.5 GALAXY HE 2211-3903

    SciTech Connect

    Scharwaechter, J.; Dopita, M. A.; Zuther, J.; Fischer, S.; Eckart, A.; Komossa, S.

    2011-08-15

    Extended narrow-line regions (ENLRs) and extended emission-line regions have been the focus of integral field spectroscopy aiming at the inner kiloparsecs of nearby Seyfert galaxies as well as the larger environment of high-redshift QSOs. Based on observations with the Wide Field Spectrograph at the 2.3 m telescope of the Australian National University, we present spatially resolved emission-line diagnostics of the bright Seyfert 1.5 galaxy HE 2211-3903 which is drawn from a sample of the brightest Seyfert galaxies at z < 0.06 with luminosities around the classical Seyfert/QSO demarcation. In addition to the previously known spiral arms of HE 2211-3903, the emission-line maps reveal a large-scale ring with a radius of about 6 kpc which is connected to the active galactic nucleus (AGN) through a bar-like structure. The overall gas kinematics indicates a disk rotation pattern. The emission-line ratios show Seyfert-type, H II region-type, and composite classifications, while there is no strong evidence of LINER-type ratios. Shock ionization is likely to be negligible throughout the galaxy. The composite line ratios are explained via a mixing line between AGN and H II region photoionization. Composite line ratios are predominantly found in between the H II regions in the circum-nuclear region, the bar-like structure to the east of the nucleus, and the eastern half of the ring, suggesting AGN photoionization of the low-density interstellar medium in an ENLR on galaxy scales. The line ratios in the nucleus indicate N enrichment, which is discussed in terms of chemical enrichment by Wolf-Rayet and asymptotic giant branch stars during past and ongoing nuclear starburst activity.

  8. Techniques to minimize adjacent band emissions from Earth Exploration Satellites to protect the Space Research (Category B) Earth Stations in the 8400-8450 MHz band

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Sue, Miles K.; Manshadi, Farzin

    2004-01-01

    The Earth Exploration Satellites operating in the 8025-8400 MHz band can have strong adjacent band emissions on the8400-8450 MHz band which is allocated for Space Research (Category-B). The unwanted emission may exceed the protection criterion establish by the ITU-R for the protection of the Space Research (Category B) earth stations, i.e., deep-space earth stations. An SFCG Action Item (SF 23/14) was created during the 23rd SFCG meeting to explore technical and operational techniques to reduce the adjacent band emissions. In response to this action item, a study was conducted and results are presented in this document.

  9. Magnifying endoscopy with narrow-band imaging is more accurate for determination of horizontal extent of early gastric cancers than chromoendoscopy

    PubMed Central

    Asada-Hirayama, Itsuko; Kodashima, Shinya; Sakaguchi, Yoshiki; Ono, Satoshi; Niimi, Keiko; Mochizuki, Satoshi; Tsuji, Yosuke; Minatsuki, Chihiro; Shichijo, Satoki; Matsuzaka, Keisuke; Ushiku, Tetsuo; Fukayama, Masashi; Yamamichi, Nobutake; Fujishiro, Mitsuhiro; Koike, Kazuhiko

    2016-01-01

    Background and study aims: Although magnifying endoscopy with narrow-band imaging (ME-NBI) is reported to be useful for delineating the horizontal extent of early gastric cancers (EGCs), there are few reports which have objectively demonstrated the superiority of ME-NBI over chromoendoscopy with indigo carmine for this purpose. We conducted an exploratory comparison of the diagnostic accuracy of both modalities for the delineation of EGCs using prospectively collected data, and clarified the clinicopathological features related to inaccurate evaluation of the horizontal extent of EGCs. Patients and methods: EGCs were assigned to the oral narrow-band imaging (O-NBI) group or the oral chromoendoscopy (O-CE) group before endoscopic submucosal dissection (ESD). The oral border was observed according to assignment, and the anal border with the other modality. The horizontal extent of the tumor was evaluated by each modality and a marking dot was placed on the visible delineation line. After ESD, the marking dots were identified pathologically and defined as “accurate evaluation” if they were located within 1 mm of the pathological tumor border. We compared the rate of accurate evaluation of ME-NBI and chromoendoscopy, and analyzed the clinicopathological features related to inaccurate evaluation. Results: A total of 113 marking dots evaluated by ME-NBI and 116 evaluated by chromoendoscopy were analyzed. The rate of accurate evaluation by ME-NBI was significantly higher than that by chromoendoscopy (89.4 % vs 75.9 %, P = 0.0071). The EGCs with flat borders and large EGCs were significantly related to inaccurate evaluation using ME-NBI. There were no significant factors related to inaccurate evaluation with chromoendoscopy. Conclusions: The accurate evaluation rate of the horizontal extent of EGCs by ME-NBI is significantly higher than that by chromoendoscopy. Study registration: UMIN000007641 PMID:27556080

  10. Design and properties of intermediate-sized narrow band-gap conjugated molecules relevant to solution-processed organic solar cells.

    PubMed

    Liu, Xiaofeng; Sun, Yanming; Hsu, Ben B Y; Lorbach, Andreas; Qi, Li; Heeger, Alan J; Bazan, Guillermo C

    2014-04-16

    Increases in the molecular length of narrow band gap conjugated chromophores reveal potentially beneficial optical and electronic properties, thermal stabilities, and high power conversion efficiencies when integrated into optoelectronic devices, such as bulk heterojunction organic solar cells. With the objective of providing useful information for understanding the transition from small-sized molecules to polymers, as well as providing a general chemical design platform for extracting relationships between molecular structure and bulk properties, we set out to vary the electron affinity of the molecular backbone. Therefore, a series of donor (D)-acceptor (A) alternating narrow band gap conjugated chromophores were synthesized based on the general molecular frameworks: D(1)-A(1)-D(2)-A(2)-D(2)-A(1)-D(1) and D(1)-A(1)-D(2)-A(2)-D(2)-A(2)-D(2)-A(1)-D(1). When the central electron-accepting moiety (A(2)) was varied or modified, two classes of molecules could be compared. First, we showed that the alteration of one single electron-accepting group, while maintaining the shape of the molecular framework, can effectively impact the optical properties and energy levels of the molecules. DFT ground state structure optimizations show similar "U" shape conformations among these molecules. Second, we examined how the site-specific introduction of fluorine atom(s) modifies the thermal properties in the solid state, while maintaining relatively similar optical and electrochemical features of interest. Structure-property relationship of such molecular systems could be rationally evaluated in the aspects of thermal-responsive molecular organizations in the solid state and dipole moments both in the ground and excited states. The impact of molecular structure on charge carrier mobilities in field effect transistors and the performance of photovoltaic devices were also studied.

  11. Ortho-Rectification of Narrow Band Multi-Spectral Imagery Assisted by Dslr RGB Imagery Acquired by a Fixed-Wing Uas

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.

    2015-08-01

    Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at

  12. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking.

    PubMed

    Chen, Ou; Zhao, Jing; Chauhan, Vikash P; Cui, Jian; Wong, Cliff; Harris, Daniel K; Wei, He; Han, Hee-Sun; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G

    2013-05-01

    High particle uniformity, high photoluminescence quantum yields, narrow and symmetric emission spectral lineshapes and minimal single-dot emission intermittency (known as blinking) have been recognized as universal requirements for the successful use of colloidal quantum dots in nearly all optical applications. However, synthesizing samples that simultaneously meet all these four criteria has proven challenging. Here, we report the synthesis of such high-quality CdSe-CdS core-shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors. In contrast with previous observations, single-dot blinking is significantly suppressed with only a relatively thin shell. Furthermore, we demonstrate the elimination of the ensemble luminescence photodarkening that is an intrinsic consequence of quantum dot blinking statistical ageing. Furthermore, the small size and high photoluminescence quantum yields of these novel quantum dots render them superior in vivo imaging agents compared with conventional quantum dots. We anticipate these quantum dots will also result in significant improvement in the performance of quantum dots in other applications such as solid-state lighting and illumination.

  13. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking

    NASA Astrophysics Data System (ADS)

    Chen, Ou; Zhao, Jing; Chauhan, Vikash P.; Cui, Jian; Wong, Cliff; Harris, Daniel K.; Wei, He; Han, Hee-Sun; Fukumura, Dai; Jain, Rakesh K.; Bawendi, Moungi G.

    2013-05-01

    High particle uniformity, high photoluminescence quantum yields, narrow and symmetric emission spectral lineshapes and minimal single-dot emission intermittency (known as blinking) have been recognized as universal requirements for the successful use of colloidal quantum dots in nearly all optical applications. However, synthesizing samples that simultaneously meet all these four criteria has proven challenging. Here, we report the synthesis of such high-quality CdSe-CdS core-shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors. In contrast with previous observations, single-dot blinking is significantly suppressed with only a relatively thin shell. Furthermore, we demonstrate the elimination of the ensemble luminescence photodarkening that is an intrinsic consequence of quantum dot blinking statistical ageing. Furthermore, the small size and high photoluminescence quantum yields of these novel quantum dots render them superior in vivo imaging agents compared with conventional quantum dots. We anticipate these quantum dots will also result in significant improvement in the performance of quantum dots in other applications such as solid-state lighting and illumination.

  14. Origin of multi-band emission from the microquasar Cygnus X-1

    SciTech Connect

    Zhang, Jianfu; Lu, Jufu; Xu, Bing

    2014-06-20

    We study the origin of non-thermal emissions from the Galactic black hole X-ray binary Cygnus X-1, which is a confirmed high-mass microquasar. By analogy with the methods used in studies of active galactic nuclei, we propose a two-dimensional, time-dependent radiation model from the microquasar Cygnus X-1. In this model, the evolution equation for relativistic electrons in a conical jet are numerically solved by including escape, adiabatic, and various radiative losses. The radiative processes involved are synchrotron emission, its self-Compton scattering, and inverse Compton scatterings of an accretion disk and its surrounding stellar companion. This model also includes an electromagnetic cascade process of an anisotropic γ-γ interaction. We study the spectral properties of electron evolution and its emission spectral characteristic at different heights of the emission region located in the jet. We find that radio data from Cygnus X-1 are reproduced by the synchrotron emission, the Fermi Large Area Telescope measurements by the synchrotron emission and Comptonization of photons of the stellar companion, and the TeV band emission fluxes by the Comptonization of the stellar photons. Our results show the following. (1) The radio emission region extends from the binary system scales to the termination of the jet. (2) The GeV band emissions should originate from the distance close to the binary system scales. (3) The TeV band emissions could be inside the binary system, and these emissions could be probed by the upcoming Cherenkov Telescope Array. (4) The MeV tail emissions, which produce a strongly linearly polarized signal, are emitted inside the binary system. The location of the emissions is very close to the inner region of the jet.

  15. Discovery of SiO Band Emission from Galactic B[e] Supergiants

    NASA Astrophysics Data System (ADS)

    Kraus, M.; Oksala, M. E.; Cidale, L. S.; Arias, M. L.; Torres, A. F.; Borges Fernandes, M.

    2015-02-01

    B[e] supergiants (B[e]SGs) are evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulate in a circumstellar disk-like structure. The expelled material is typically dense and cool, providing the cradle for molecule and dust condensation and for a rich, ongoing chemistry. Very little is known about the chemical composition of these disks, beyond the emission from dust and CO revolving around the star on Keplerian orbits. As massive stars preserve an oxygen-rich surface composition throughout their life, other oxygen-based molecules can be expected to form. As SiO is the second most stable oxygen compound, we initiated an observing campaign to search for first-overtone SiO emission bands. We obtained high-resolution near-infrared L-band spectra for a sample of Galactic B[e]SGs with reported CO band emission. We clearly detect emission from the SiO first-overtone bands in CPD-52 9243 and indications for faint emission in HD 62623, HD 327083, and CPD-57 2874. From model fits, we find that in all these stars the SiO bands are rotationally broadened with a velocity lower than observed in the CO band forming regions, suggesting that SiO forms at larger distances from the star. Hence, searching for and analyzing these bands is crucial for studying the structure and kinematics of circumstellar disks, because they trace complementary regions to the CO band formation zone. Moreover, since SiO molecules are the building blocks for silicate dust, their study might provide insight in the early stage of dust formation. Based on observations collected with the ESO VLT Paranal Observatory under program 093.D-0248(A).

  16. CO Cameron band and CO2+ UV doublet emissions in the dayglow of Venus: Role of CO in the Cameron band production

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Jain, Sonal Kumar

    2013-06-01

    The present study deals with the model calculations of CO Cameron band and CO2+ ultraviolet doublet emissions in the dayglow of Venus. The overhead and limb intensities of CO Cameron band and CO2+ UV doublet emissions are calculated for low, moderate, and high solar activity conditions. Using updated cross sections, the impact of different e-CO cross sections for Cameron band production is estimated. The electron impact on CO is the major source mechanism of Cameron band, followed by electron and photon impact dissociation of CO2. The overhead intensities of CO Cameron band and CO2+UV doublet emissions are about a factor of 2 higher in solar maximum than those in solar minimum condition. The effect of solar EUV flux models on the emission intensity is ˜30-40% in solar minimum condition and ˜2-10% in solar maximum condition. At the altitude of emission peak (˜135 km), the model predicted limb intensity of CO Cameron band and CO2+ UV doublet emissions in moderate (F10.7=130) solar activity condition is about 2400 and 300 kR, respectively, which is in agreement with the very recently published SPICAV/Venus Express observation. The model limb intensity profiles of CO Cameron band and CO2+UV doublet are compared with SPICAV observation. We also calculated intensities of N2Vegard-Kaplan UV bands and O I 2972 Å emissions during moderate and high solar activity conditions.

  17. The Luminosity Function and Star Formation Rate Between Redshifts of 0.07 and 1.47 for Narrow-band Emitters in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, M.; Kashikawa, N.; Shimasaku, K.; Doi, M.; Nagao, T.; Iye, M.; Kodama, T.; Morokuma, T.; Motohara, K.

    2006-06-01

    Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple narrow-band filters are used to distinguish Hα, [OII], and [OIII] emitters between redshifts of 0.07 and 1.47 to construct their averaged rest-frame optical-to-UV SED and luminosity functions. These luminosity functions are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N 200-900) sample for each redshift interval, a Schechter profile is fitted to each luminosity function. Prior to dust extinction corrections, the [OIII] and [OII] luminosity functions reported in this paper agree reasonably well with those of Hippelein et al (2003). The z=0.066-0.092 Hα LF agrees with those of Jones & Bland-Hawthorn (2001), but for z=0.24 and 0.40, their number density is higher by a factor of two or more. The z=0.08 Hα LF, which reaches two orders of magnitude fainter than Gallego et al. (1995), is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1 than predicted. The faint end slope α and φ* show a strong evolution with redshift while L* show little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Hα for 0.07

  18. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    SciTech Connect

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; Dalla Bontà, E.; Ciroi, S.

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  19. The MAON model of Astronomical Unidentified Infrared Emission Bands

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Zhang, Yong

    2015-08-01

    Infrared spectroscopic observations of the stretching and bending modes of aliphatic and aromatic compounds are now seen throughout the Universe, from the diffuse interstellar medium of the Milky Way Galaxy to distant galaxies. Observations of evolved stars have revealed a rapid (~10$^3$ year time scale) and continuous synthesis of organic materials from the end of the asymptotic giant branch (AGB), to proto-planetary nebulae, to planetary nebulae. These synthesized products are ejected into the interstellar medium through stellar winds and as a result enriching the Galaxy with complex organics. Analysis of the infrared spectra suggests that the chemical structure of the carrier is consistent with that of mixed aromatic and aliphatic nanoparticles (MAON). These structures are very similar to those of the insoluble organic matter found in meteorites, suggesting that the early solar system may have been enriched by stellar ejecta.ReferencesKwok, S. The Synthesis of Organic and Inorganic Compounds in Evolved Stars, Nature, 430, 985 (2004)Kwok, S. and Zhang, Y. Mixed aromatic/aliphatic organic nanoparticles as carriers of unidentified infrared emission features, Nature, 479, 80 (2011)Kwok, S. Organic Matter in the Universe, Wiley (2011)

  20. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  1. Monitoring radiation belt particle precipitation - automatic detection of enhanced transient ionisation in the lower plasmasphere using subionospheric narrow band VLF signals

    NASA Astrophysics Data System (ADS)

    Steinbach, P.; Lichtenberger, J.; Ferencz, Cs.

    2009-04-01

    Signals of naval VLF transmitters, propagating long distances along the Earth-ionosphere waveguide (EIWG) have been widely applied as effective tools for monitoring transient ionization at mesospheric altitudes. Perturbations in recorded amplitude and/or phase data series of stable frequency signals may refer to the effect of transient enhanced ionization in the EIWG, due to e.g. loss-cone precipitation of trapped energetic electrons (Carpenter et al., 1984, Dowden and Adams, 1990), burst of solar plasma particles (Clilverd et al., 2001). The contribution of precipitating particles are thought to be substantial in certain Sun-to-Earth energy flow processes in the upper atmosphere (Rodger et al., 2005). Narrow band VLF measuring network has been set up, developed and operated in Hungary, running in the last decade almost continuously, dedicated to monitor ionization enhancement regions along numerous transmitter-receiver paths. This setup is based on Omnipal and Ultra-MSK equipment, logging amplitude and phase data of received signals, sampled at frequencies of selected VLF transmitters. Signal trajectories, selected for recording represent proper configuration to survey transient ionization caused by energetic particles in the sub-polar region, such as effect of scattered particles of the inner radiation belt. Reprocessing of the mass archived recordings has been started using a newly developed signal processing code, detecting and classifying different sort of perturbations automatically on narrow band VLF series. Occurrence rates, daily and seasonal variation, statistics of transient ionization enhancements, their geographic distribution within the surveyed range and time period, and correlation with intense geomagnetic and/or Solar event is yielded by this analysis. References: Carpenter, D.L., Inan, U.S., Trimpi, M.L., Helliwell, R.A., and Katsufrakis, J.P.: Perturbations of subionospheric LF and MF signals due to whistler-induced electron precipitation burst

  2. A Direct Linkage between AGN Outflows in the Narrow-line Regions and the X-Ray Emission from the Accretion Disks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, D. W.; Wei, J. Y.

    2016-03-01

    The origin of outflow in the narrow-line region (NLR) of the active galactic nucleus (AGN) is studied in this paper by focusing on the relationship between the [O iii]λ5007 line profile and the hard-X-ray (in a bandpass of 2-10 keV) emission from the central super-massive black hole (SMBH) in type-I AGNs. A sample of 47 local X-ray selected type-I AGNs at z\\lt 0.2 is extracted from the 2XMMi/SDSS-DR7 catalog, which was originally cross-matched by Pineau et al. The X-ray luminosities in an energy band from 2 to 10 keV of these luminous AGNs range from 1042 to {10}44 {erg} {{{s}}}-1. A joint spectral analysis is performed on their optical and X-ray spectra, in which the [O iii] line profile is modeled by a sum of several Gaussian functions to quantify its deviation from a pure Gaussian function. The statistics allow us to identify a moderate correlation with a significance level of 2.78σ: luminous AGNs with stronger [O iii] blue asymmetry tend to have steeper hard-X-ray spectra. By identifying the role of L/{L}{Edd} on the correlation at a 2-3σ significance level in both direct and indirect ways, we argue that the photon index versus the asymmetry correlation provides evidence that the AGN’s outflow commonly observed in its NLR is related to the accretion process occurring around the central SMBH, which favors the wind/radiation model as the origin of the outflow in luminous AGNs.

  3. Feeding at a high pitch: source parameters of narrow band, high-frequency clicks from echolocating off-shore hourglass dolphins and coastal Hector's dolphins.

    PubMed

    Kyhn, Line A; Tougaard, J; Jensen, F; Wahlberg, M; Stone, G; Yoshinaga, A; Beedholm, K; Madsen, P T

    2009-03-01

    Toothed whales depend on echolocation for orientation and prey localization, and source parameters of echolocation clicks from free-ranging animals therefore convey valuable information about the acoustic physiology and behavioral ecology of the recorded species. Recordings of wild hourglass (Lagenorhynchus cruciger) and Hector's dolphins (Cephalorhynchus hectori) were made in the Drake Passage (between Tierra del Fuego and the Antarctic Peninsular) and Banks Peninsular (Akaroa Harbour, New Zealand) with a four element hydrophone array. Analysis of source parameters shows that both species produce narrow band high-frequency (NBHF) echolocation clicks. Coastal Hector's dolphins produce clicks with a mean peak frequency of 129 kHz, 3 dB bandwidth of 20 kHz, 57 micros, 10 dB duration, and mean apparent source level (ASL) of 177 dB re 1 microPa(p.-p.). The oceanic hourglass dolphins produce clicks with mean peak frequency of 126 kHz, 3 dB bandwidth of 8 kHz, 116 micros, 10 dB duration, and a mean estimated ASL of 197 dB re 1 microPa(p.-p.). Thus, hourglass dolphins apparently produce clicks of higher source level, which should allow them to detect prey at more than twice the distance compared to Hector's dolphins. The observed source parameter differences within these two NBHF species may be an adaptation to a coastal cluttered environment versus a deep water, pelagic habitat. PMID:19275335

  4. Clicking in a killer whale habitat: narrow-band, high-frequency biosonar clicks of harbour porpoise (Phocoena phocoena) and Dall's porpoise (Phocoenoides dalli).

    PubMed

    Kyhn, Line A; Tougaard, Jakob; Beedholm, Kristian; Jensen, Frants H; Ashe, Erin; Williams, Rob; Madsen, Peter T

    2013-01-01

    Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall's porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall's (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall's porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring.

  5. Endoscopic submucosal dissection of a squamous cell carcinoma in situ in the anal canal diagnosed by magnifying endoscopy with narrow-band imaging.

    PubMed

    Tsuji, Shigetsugu; Doyama, Hisashi; Yamada, Shinya; Tominaga, Kei; Ota, Ryosuke; Yoshikawa, Akane; Kotake, Masanori; Ohno, Hideki; Kurumaya, Hiroshi

    2014-06-01

    A 60-year-old female underwent screening colonoscopy. Narrow-band imaging (NBI) without magnification showed a 20-mm, well-demarcated brownish area located close to the dentate line of the anal canal. Conventional white-light imaging revealed an ill-defined, flat lesion with scattered reddish spots at the same site. Magnifying endoscopy with NBI (M-NBI) revealed abnormal microvessels with dilatation, tortuosity, caliber change and various shapes that were similar to the intrapapillary capillary loop patterns seen in esophageal squamous cell carcinoma in situ. Endoscopic submucosal dissection (ESD) was performed, and on histological examination, the resected specimen showed squamous cell carcinoma (SCC) in situ and clear surgical margins. Thus, NBI is an efficient method for detecting superficial SCC in the anal canal and M-NBI may be useful for determining the extent of the lesion. During screening colonoscopy, the anal region should be carefully observed using NBI, as early detection offers a greater opportunity for ESD which is a less invasive procedure.

  6. Successful treatment of psoriasis vulgaris with targeted narrow-band ultraviolet B therapy using a new flat-type fluorescent lamp.

    PubMed

    Nishida, Emi; Furuhashi, Takuya; Kato, Hiroshi; Kaneko, Natsumi; Shintani, Yoichi; Morita, Akimichi

    2011-10-01

    Narrow-band ultraviolet B (NB-UVB) therapy is widely used for refractory skin diseases. Targeted phototherapy is now being used to reduce the number of sessions and to avoid exposing normal skin. We developed a targeted NB-UVB therapy using a flat-type lamp emitting a wavelength similar to that of the TL-01 fluorescent lamp. Six Japanese patients with psoriasis were recruited and treated with the flat-type NB-UVB device with an initial dose of 70% of the minimal erythema dose, with a 20% increase at each subsequent session. The plaque severity score was determined. All lesions of the tested patients were responsive to NB-UVB therapy using the flat-type lamp. The mean percent reduction of the lesion was 58.3 ± 17.7%. The mean cumulative dose was 20.8 ± 10.8 J/cm². No side effects were observed during treatment. The flat-type targeted NB-UVB device is compact and convenient, and highly effective for the treatment of limited psoriasis lesions.

  7. Clicking in a Killer Whale Habitat: Narrow-Band, High-Frequency Biosonar Clicks of Harbour Porpoise (Phocoena phocoena) and Dall’s Porpoise (Phocoenoides dalli)

    PubMed Central

    Kyhn, Line A.; Tougaard, Jakob; Beedholm, Kristian; Jensen, Frants H.; Ashe, Erin; Williams, Rob; Madsen, Peter T.

    2013-01-01

    Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall’s porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall’s (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall’s porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring. PMID:23723996

  8. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers.

    PubMed

    Taylor, Luke R; Feng, Yan; Calia, Domenico Bonaccini

    2010-04-12

    We demonstrate the cascaded coherent collinear combination of a seed-split triplet of 1178nm high-power narrow-band (sub-1.5MHz) SBS-suppressed CW Raman fibre amplifiers via nested free-space constructive quasi-Mach-Zehnder interferometry, after analysing the combination of the first two amplifiers in detail. Near-unity combination and cascaded-combination efficiencies are obtained at all power levels up to a maximum P(1178) > 60W. Frequency doubling of this cascaded-combined output in an external resonant cavity yields P(589) > 50W with peak conversion efficiency eta(589) ~85%. We observe no significant differences between the SHG of a single, combined pair or triplet of amplifiers. Although the system represents a successful power scalability demonstrator for fibre-based Na-D(2a)-tuned mesospheric laser-guide-star systems, we emphasise its inherent wavelength versatility and consider its spectroscopic and near-diffraction-limited qualities equally well suited to other applications. PMID:20588700

  9. Narrow band imaging with magnification can pick up esophageal squamous cell carcinoma more efficiently than lugol chromoendoscopy in patients after chemoradiotherapy.

    PubMed

    Asada-Hirayama, Itsuko; Kodashima, Shinya; Fujishiro, Mitsuhiro; Ono, Satoshi; Niimi, Keiko; Mochizuki, Satoshi; Konno-Shimizu, Maki; Mikami-Matsuda, Rie; Minatsuki, Chihiro; Nakayama, Chiemi; Takahashi, Yu; Yamamichi, Nobutake; Koike, Kazuhiko

    2013-01-01

    Aim. Little is known about the usefulness of narrow band imaging (NBI) for surveillance of patients after chemoradiotherapy for esophageal neoplasia. Its usefulness in detecting esophageal squamous cell carcinoma (SCC) or high-grade intraepithelial neoplasia (HGIN) in these patients was retrospectively compared to Lugol chromoendoscopy. Patients and Methods. We assessed the diagnostic ability of NBI with magnification based on the biopsy specimens obtained from iodine-unstained lesions. Seventy-two iodine-unstained lesions were biopsied and consecutively enrolled for this study. The lesions were divided into NBI positive and NBI negative. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of NBI with magnification and PPV of Lugol chromoendoscopy was calculated using histological assessment as a gold standard. Results. Forty-six endoscopic examinations using NBI with magnification followed by Lugol chromoendoscopy were performed to 28 patients. The prevalence of SCC and HGIN was 21.4%. Sensitivity, specificity, PPV, NPV, and accuracy of NBI were 100.0%, 98.5%, 85.7%, 100%, and 98.6%, respectively. On the contrary, PPV of Lugol chromoendoscopy were 8.3%. Compared to Lugol chromoendoscopy, NBI with magnification showed equal sensitivity and significantly higher PPV (P < 0.0001). Conclusion. NBI with magnification would be able to pick up esophageal neoplasia more efficiently than Lugol chromoendoscopy in patients after chemoradiotherapy.

  10. Narrow-Band Imaging Magnifying Endoscopy versus Lugol Chromoendoscopy with Pink-Color Sign Assessment in the Diagnosis of Superficial Esophageal Squamous Neoplasms: A Randomised Noninferiority Trial.

    PubMed

    Goda, Kenichi; Dobashi, Akira; Yoshimura, Noboru; Kato, Masayuki; Aihara, Hiroyuki; Sumiyama, Kazuki; Toyoizumi, Hirobumi; Kato, Tomohiro; Ikegami, Masahiro; Tajiri, Hisao

    2015-01-01

    Previous studies have shown the high diagnostic accuracy of narrow-band imaging magnifying endoscopy (NBI-ME) and Lugol chromoendoscopy with pink-color sign assessment (LCE-PS) for superficial esophageal squamous cell carcinoma (SESCC). However, there has been no controlled trial comparing these two diagnostic techniques. We conducted a randomized noninferiority trial to compare the diagnostic accuracy of NBI-ME and LCE-PS. We recruited patients with, or with a history of, squamous cell carcinoma in the head and neck region or in the esophagus. They were randomly assigned to either NBI-ME or LCE-PS. When lesions > 5 mm in diameter were found as brownish areas on NBI or as Lugol-voiding lesions (LVL), they were evaluated to determine whether they are SESCC on the basis of the findings of NBI-ME or PS in the LVL. NBI-ME and LCE-PS were completed in 147 patients each. There was no significant difference in all diagnostic values between the two techniques. Compared with LCE-PS, NBI-ME showed a significantly shorter examination time but a larger number of misdiagnosed lesions especially in patients with many irregularly shaped multiform LVLs. Compared with LCE-PS, NBI-ME might be similarly accurate and less invasive, but less reliable in patients with many LVLs, in the diagnosis of SESCC.

  11. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers.

    PubMed

    Taylor, Luke R; Feng, Yan; Calia, Domenico Bonaccini

    2010-04-12

    We demonstrate the cascaded coherent collinear combination of a seed-split triplet of 1178nm high-power narrow-band (sub-1.5MHz) SBS-suppressed CW Raman fibre amplifiers via nested free-space constructive quasi-Mach-Zehnder interferometry, after analysing the combination of the first two amplifiers in detail. Near-unity combination and cascaded-combination efficiencies are obtained at all power levels up to a maximum P(1178) > 60W. Frequency doubling of this cascaded-combined output in an external resonant cavity yields P(589) > 50W with peak conversion efficiency eta(589) ~85%. We observe no significant differences between the SHG of a single, combined pair or triplet of amplifiers. Although the system represents a successful power scalability demonstrator for fibre-based Na-D(2a)-tuned mesospheric laser-guide-star systems, we emphasise its inherent wavelength versatility and consider its spectroscopic and near-diffraction-limited qualities equally well suited to other applications.

  12. Light on the 3 μm Emission Band from Space with Molecular Beam Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Mackie, Cameron J.; Candian, Alessandra; Petrignani, Annemieke; Tielens, Xander; Oomens, Jos; Huang, Xinchuan; Lee, Timothy; Buma, Wybren Jan

    2016-06-01

    The majority of interstellar objects shows IR emission features also known as unidentified infrared (UIR) emission bands. These UIR bands are attributed to IR emission of highly-excited gaseous polycyclic aromatic hydrocarbons (PAHs). To understand the physical conditions and chemical evolution of the interstellar environment a precise identification of the emission carriers is desired. The 3 μm UIR feature is represented by a strong band at 3040 cm-1, a plateau from 3150 to 2700 cm-1 and a number of weak features within this plateau. The 3040 cm-1 component is assigned to fundamental CH-stretch vibrations of PAHs, but there still remain many questions on the origin of the other features. In this work we have studied experimentally the 3 μm region of regular, hydrogenated and methylated PAHs (up to 5 rings), combining molecular beam techniques with IR-UV ion dip spectroscopy, and theoretically by density functional theory (DFT) calculations within the harmonic and anharmonic approximation. We find that (a) the 3 μm region of PAHs is dominated by Fermi resonances and thereby cannot be treated within the harmonic approximation; (b) the periphery structure of the molecules strongly affects the shape of the 3 μm band. In particular, the two-component emission interpretation can be explained by the presence of molecules with and without bay-hydrogens; (c) due to strong Fermi resonances of fundamental modes with combination bands regular PAHs can significantly contribute to the 3 μm plateau in the 3150-2950 cm-1, while hydrogenated and methylated species are primarily responsible for features in the 2950-2750 cm-1 region.

  13. Mechanism of generation of the emission bands in the dynamic spectrum of the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Ardavan, Houshang; Ardavan, Arzhang; Singleton, John; Perez, Mario R.

    2008-08-01

    We show that the proportionately spaced emission bands in the dynamic spectrum of the Crab pulsar fit the oscillations of the square of a Bessel function whose argument exceeds its order. This function has already been encountered in the analysis of the emission from a polarization current with a superluminal distribution pattern: a current whose distribution pattern rotates (with an angular frequency ω) and oscillates (with a frequency Ω > ω differing from an integral multiple of ω) at the same time. Using the results of our earlier analysis, we find that the dependence on frequency of the spacing and width of the observed emission bands can be quantitatively accounted for by an appropriate choice of the value of the single free parameter Ω/ω. In addition, the value of this parameter, thus implied by Hankins & Eilek's data, places the last peak in the amplitude of the oscillating Bessel function in question at a frequency (~Ω3/ω2) that agrees with the position of the observed ultraviolet peak in the spectrum of the Crab pulsar. We also show how the suppression of the emission bands by the interference of the contributions from differing polarizations can account for the differences in the time and frequency signatures of the interpulse and the main pulse in the Crab pulsar. Finally, we put the emission bands in the context of the observed continuum spectrum of the Crab pulsar by fitting this broad-band spectrum (over 16 orders of magnitude of frequency) with that generated by an electric current with a superluminally rotating distribution pattern.

  14. Analysis of multi-band pyrometry for emissivity and temperature measurements of gray surfaces at ambient temperature

    NASA Astrophysics Data System (ADS)

    Araújo, António

    2016-05-01

    A multi-band pyrometry model is developed to evaluate the potential of measuring temperature and emissivity of assumably gray target surfaces at 300 K. Twelve wavelength bands between 2 and 60 μm are selected to define the spectral characteristics of the pyrometers. The pyrometers are surrounded by an enclosure with known background temperature. Multi-band pyrometry modeling results in an overdetermined system of equations, in which the solution for temperature and emissivity is obtained through an optimization procedure that minimizes the sum of the squared residuals of each system equation. The Monte Carlo technique is applied to estimate the uncertainties of temperature and emissivity, resulting from the propagation of the uncertainties of the pyrometers. Maximum reduction in temperature uncertainty is obtained from dual-band to tri-band systems, a small reduction is obtained from tri-band to quad-band, with a negligible reduction above quad-band systems (a reduction between 6.5% and 12.9% is obtained from dual-band to quad-band systems). However, increasing the number of bands does not always reduce uncertainty, and uncertainty reduction depends on the specific band arrangement, indicating the importance of choosing the most appropriate multi-band spectral arrangement if uncertainty is to be reduced. A reduction in emissivity uncertainty is achieved when the number of spectral bands is increased (a reduction between 6.3% and 12.1% is obtained from dual-band to penta-band systems). Besides, emissivity uncertainty increases for pyrometers with high wavelength spectral arrangements. Temperature and emissivity uncertainties are strongly dependent on the difference between target and background temperatures: uncertainties are low when the background temperature is far from the target temperature, tending to very high values as the background temperature approaches the target temperature.

  15. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  16. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  17. Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1985-01-01

    The unidentified infrared emission features (UIR bands) are attributed to a collection of partially hydrogenated, positively charged polycyclic aromatic hydrocarbons (PAHs). This assignment is based on a spectroscopic analysis of the UIR bands. Comparison of the observed interstellar 6.2 and 7.7-micron bands with the laboratory measured Raman spectrum of a collection of carbon-based particulates (auto exhaust) shows a very good agreement, supporting this identification. The infrared emission is due to relaxation from highly vibrationally and electronically excited states. The excitation is probably caused by UV photon absorption. The infrared fluorescence of one particular, highly vibrationally excited PAH (chrysene) is modeled. In this analysis the species is treated as a molecule rather than bulk material and the non-thermodynamic equilibrium nature of the emission is fully taken into account. From a comparison of the observed ratio of the 3.3 to 11.3-micron UIR bands with the model calculations, the average number of carbon atoms per molecule is estimated to be about 20. The abundance of interstellar PAHs is calculated to be about 2 x 10 to the -7th with respect to hydrogen.

  18. Field emission analysis of band bending in donor/acceptor heterojunction

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Li, Shuai; Wang, Guiwei; Zhao, Tianjiao; Zhang, Gengmin

    2016-06-01

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction. Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.

  19. Dayglow emissions of the O2 Herzberg bands and the Rayleigh backscattered spectrum of the earth

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Abrams, R. B.

    1982-01-01

    It is pointed out that numerous fluorescent emissions from the Herzberg bands of molecular oxygen lie in the spectral region 242-300 nm. This coincides with the wavelength range used by orbiting spectrometers that observe the Rayleigh backscattered spectrum of the earth for the purpose of monitoring the vertical distribution of stratospheric ozone. Model calculations suggest that Herzberg band emissions in the dayglow could provide significant contamination of the ozone measurements if the quenching rate of O2(A3Sigma) is sufficiently small. It is noted that this is especially true near 255 nm, where the most intense fluorescent emissions relative to the Rayleigh scattered signal are located and where past satellite measurements have shown a persistent excess radiance above that expected for a pure ozone absorbing and molecular scattering atmosphere. Very small quenching rates, however, are adequate to reduce the dayglow emission to negligible levels. Noting that available laboratory data have not definitely established the quenching on the rate of O2(A3Sigma) as a function of vibration level, it is emphasized that such information is required before the Herzberg band contributions can be evaluated with confidence.

  20. An Unusual Rotationally Modulated Attenuation Band in the Jovian Hectometric Radio Emission Spectrum

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Menietti, J. D.; Persoon, A. M.

    1998-01-01

    A well-defined attenuation band modulated by the rotation of Jupiter has been found in the spectrum of Jovian hectometric radiation using data from the Galileo plasma wave instrument. The center frequency of this band usually occurs in the frequency range from about 1 to 3 MHz and the bandwidth is about 10 to 20 percent. The center frequency varies systematically with the rotation of Jupiter and has two peaks per rotation, the first at a system III longitude of about 50 deg, and the second at about 185 deg. It is now believed that the attenuation occurs as the ray path from a high-latitude cyclotron maser source passes approximately parallel to the magnetic field near the northern or southern edges of the Io L-shell. The peak at 50 deg system 3 longitude is attributed to radiation from a southern hemisphere source and the peak at 185 deg is from a northern hemisphere source. The attenuation is thought to be caused by coherent scattering or shallow angle reflection from field-aligned density irregularities near the Io L-shell. The narrow bandwidth indicates that the density irregularities are confined to a very narrow range of L values (Delta L = 0.2 to 0.4) near the Io L-shell.

  1. Mie Resonances, Infrared Emission, and the Band Gap of InN

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Ivanov, S. V.; Jmerik, V. N.; Solnyshkov, D. D.; Vekshin, V. A.; Kop'ev, P. S.; Vasson, A.; Leymarie, J.; Kavokin, A.; Amano, H.; Shimono, K.; Kasic, A.; Monemar, B.

    2004-03-01

    Mie resonances due to scattering or absorption of light in InN-containing clusters of metallic In may have been erroneously interpreted as the infrared band gap absorption in tens of papers. Here we show by direct thermally detected optical absorption measurements that the true band gap of InN is markedly wider than the currently accepted 0.7eV. Microcathodoluminescence studies complemented by the imaging of metallic In have shown that bright infrared emission at 0.7 0.8eV arises in a close vicinity of In inclusions and is likely associated with surface states at the metal/InN interfaces.

  2. Local corticosterone activation by 11β-hydroxysteroid dehydrogenase 1 in keratinocytes: the role in narrow-band UVB-induced dermatitis

    PubMed Central

    Itoi-Ochi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2016-01-01

    ABSTRACT Keratinocytes are known to synthesize cortisol through activation of the enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). To confirm the function of 11β-HSD1 in keratinocytes during inflammation in vivo, we created keratinocyte-specific-11β-HSD1 knockout mice (K5-Hsd11b1-KO mice) and analyzed the response to narrow-band ultraviolet B (NB-UVB) irradiation. Firstly, we measured the mRNA and protein levels of 11β-HSD1 following NB-UVB irradiation and found that the expression of 11β-HSD1 in keratinocytes of mouse ear skin was enhanced at 3 and 24 hours after 250 mJ/cm2, 500 mJ/cm2, 1 J/cm2, and 2 J/cm2 NB-UVB irradiation. Next, we determined that 24 hours after exposure to 1 J/cm2 NB-UVB irradiation, the numbers of F4/80-, CD45-, and Gr-1-positive cells were increased in K5-Hsd11b1-KO mice compared to wild type (WT) mice. Furthermore, the expression of the chemokine (C-X-C-motif) ligand 1 (CXCL1) and interleukin (IL)-6 was also significantly enhanced in NB-UVB-irradiated K5-Hsd11b1-KO mice compared with WT mice. In addition, activation of nuclear factor-kappa B (NF-κB) after NB-UVB irradiation was enhanced in K5-Hsd11b1-KO mice compared to that in WT mice. Thus, NB-UVB-induced inflammation is augmented in K5-Hsd11b1-KO mice compared with WT mice. These results indicate that 11β-HSD1 may suppress NB-UVB-induced inflammation via inhibition of NF-κB activation. PMID:27195053

  3. A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery.

    PubMed

    Vicini, C; Montevecchi, F; D'Agostino, G; DE Vito, A; Meccariello, G

    2015-06-01

    The primary goal of surgical oncology is to obtain a tumour resection with disease-free margins. Transoral robotic surgery (TORS) for surgical treatment of head-neck cancer is commensurate with standard treatments. However, the likelihood of positive margins after TORS is up to 20.2% in a recent US survey. The aim of this study is to evaluate the efficacy and the feasibility of narrow-band imaging (NBI) during TORS in order to improve the ability to achieve disease-free margins during tumour excision. The present study was conducted at the ENT, Head- Neck Surgery and Oral Surgery Unit, Department of Special Surgery, Morgagni Pierantoni Hospital, Azienda USL Romagna. From March 2008 to January 2015, 333 TORS were carried out for malignant and benign diseases. For the present study, we retrospectively evaluated 58 biopsy-proven squamous cell carcinoma patients who underwent TORS procedures. Patients were divided into 2 groups: (1) 32 who underwent TORS and intra-operative NBI evaluation (NBI-TORS); (2) 21 who underwent TORS with standard intra-operative white-light imaging (WLITORS). Frozen section analysis of margins on surgical specimens showed a higher rate of negative superficial lateral margins in the NBI-TORS group compared with the WLI-TORS group (87.9% vs. 57.9%, respectively, p = 0.02). The sensitivity and specificity of intra-operative use of NBI, respectively, were 72.5% and 66.7% with a negative predictive value of 87.9%. Tumour margin enhancement provided by NBI associated with magnification and 3-dimensional view of the surgical field might increase the capability to achieve an oncologically-safe resection in challenging anatomical areas where minimal curative resection is strongly recommended for function preservation.

  4. Diagnosis of small intramucosal signet ring cell carcinoma of the stomach by non-magnifying narrow-band imaging: A pilot study

    PubMed Central

    Watari, Jiro; Tomita, Toshihiko; Ikehara, Hisatomo; Taki, Masato; Ogawa, Tomohiro; Yamasaki, Takahisa; Kondo, Takashi; Toyoshima, Fumihiko; Sakurai, Jun; Kono, Tomoaki; Tozawa, Katsuyuki; Ohda, Yoshio; Oshima, Tadayuki; Fukui, Hirokazu; Hirota, Seiichi; Miwa, Hiroto

    2015-01-01

    AIM: To examine the efficacy of non-magnifying narrow-band imaging (NM-NBI) imaging for small signet ring cell carcinoma (SRC). METHODS: We retrospectively analyzed 14 consecutive small intramucosal SRCs that had been treated with endoscopic submucosal dissection (ESD) and 14 randomly selected whitish gastric ulcer scars (control). The strength and shape of the SRCs and whitish scars by NM-NBI and white-light imaging (WLI) were assessed with Image J (NIH, Bethesda). RESULTS: NM-NBI findings of SRC showed a clearly isolated whitish area amid the brown color of the surrounding normal mucosa. The NBI index, which indicates the potency of NBI for visualizing SRC, was significantly higher than the WLI index (P = 0.001), indicating SRC was more clearly identified by NM-NBI. Although the NBI index was not significantly different between SRCs and controls, the circle (C)-index, as an index of circularity of tumor shape, was significantly higher in SRCs (P = 0.001). According to the receiver-operating characteristic analysis, the resulting cut-off value of the circularity index (C-index) for SRC was 0.60 (85.7% sensitivity, 85.7% specificity). Thus a lesion with a C-index ≥ 0.6 was significantly more likely to be an SRC than a gastric ulcer scar (OR = 36.0; 95%CI: 4.33-299.09; P = 0.0009). CONCLUSION: Small isolated whitish round area by NM-NBI endoscopy is a useful finding of SRCs which is the indication for ESD. PMID:26380053

  5. Endoscopic diagnosis of invasion depth for early colorectal carcinomas: a prospective comparative study of narrow-band imaging, acetic acid, and crystal violet.

    PubMed

    Zhang, Jing-Jing; Gu, Li-Yang; Chen, Xiao-Yu; Gao, Yun-Jie; Ge, Zhi-Zheng; Li, Xiao-Bo

    2015-02-01

    Several studies have validated the effectiveness of narrow-band imaging (NBI) in estimating invasion depth of early colorectal cancers. However, comparative diagnostic accuracy between NBI and chromoendoscopy remains unclear. Other than crystal violet, use of acetic acid as a new staining method to diagnose deep submucosal invasive (SM-d) carcinomas has not been extensively evaluated. We aimed to assess the diagnostic accuracy and interobserver agreement of NBI, acetic acid enhancement, and crystal violet staining in predicting invasion depth of early colorectal cancers. A total of 112 early colorectal cancers were prospectively observed by NBI, acetic acid, and crystal violet staining in sequence by 1 expert colonoscopist. All endoscopic images of each technique were stored and reassessed. Finally, 294 images of 98 lesions were selected for evaluation by 3 less experienced endoscopists. The accuracy of NBI, acetic acid, and crystal violet for real-time diagnosis was 85.7%, 86.6%, and 92.9%, respectively. For image evaluation by novices, NBI achieved the highest accuracy of 80.6%, compared with that of 72.4% by acetic acid, and 75.8% by crystal violet. The kappa values of NBI, acetic acid, and crystal violet among the 3 trainees were 0.74 (95% CI 0.65-0.83), 0.68 (95% CI 0.59-0.77), and 0.70 (95% CI 0.61-0.79), respectively. For diagnosis of SM-d carcinoma, NBI was slightly inferior to crystal violet staining, when performed by the expert endoscopist. However, NBI yielded higher accuracy than crystal violet staining, in terms of less experienced endoscopists. Acetic acid enhancement with pit pattern analysis was capable of predicting SM-d carcinoma, comparable to the traditional crystal violet staining.

  6. COMPARATIVE THERAPEUTIC EVALUATION OF DIFFERENT TOPICALS AND NARROW BAND ULTRAVIOLET B THERAPY COMBINED WITH SYSTEMIC METHOTREXATE IN THE TREATMENT OF PALMOPLANTAR PSORIASIS

    PubMed Central

    Gupta, Sunil K; Singh, K K; Lalit, Mohan

    2011-01-01

    Background: The incidence of uncomplicated psoriasis is 1–3% in the general population. The involvement of palm and sole is seen in 7–14.5% of cases. There are different topicals and systemic therapies available for treating the case of psoriasis but none is satisfactory for longer duration. Aim: The study involved the comparative therapeutic evaluation of the different topical regimens and narrow band ultraviolet B (NB-UVB) therapy in combination with systemic methotrexate. Materials and Methods: The study was held in out-patient department of Skin, VD and Leprosy of B.R.D. Medical College, Gorakhpur, from July 2007 to December 2008. The group included 98 new cases of palmoplantar psoriasis. These cases were divided into eight groups according to the eight regimens involved in the study. The severity of psoriasis was assessed by the ESIF (erythema, scaling, induration and fissuring) score. Results: The study showed that all the regimens had significant response rates. The combination of NB-UVB with systemic methotrexate had maximum response rate (64.85±4.52%) that was statistically significant (paired “t” at 16d.f. = 33.329, P<0.001) with minimum number of recurrences after stopping the treatment. The combination of halobetasol ointment with systemic methotrexate also had significant response rate (paired “t” at 19d.f. = 13.5183, P<0.001) but had maximum number of cases with recurrence (70%) after stopping the treatment. Conclusion: These results suggest that the combination of every regimen with systemic methotrexate resulted in an early and a good improvement in the quality of life of patients suffering from psoriasis. It also shows that NB-UVB in combination with systemic methotrexate is more efficacious and has minimum recurrence rate and side effects in the treatment of palmoplantar psoriasis. PMID:21716541

  7. Narrow-band imaging with magnifying endoscopy for Peyer's patches is useful in predicting the recurrence of remissive patients with ulcerative colitis

    PubMed Central

    Hiyama, Satoshi; Kawai, Syoichiro; Mukai, Akira; Shiraishi, Eri; Iwatani, Shuko; Yamaguchi, Toshio; Araki, Manabu; Hayashi, Yoshito; Shinzaki, Shinichiro; Mizushima, Tsunekazu; Tsujii, Masahiko; Takehara, Tetsuo

    2016-01-01

    Background/Aims Peyer's patches (PPs) are aggregates of lymphoid follicles that are mainly located in the distal ileum; they play a major role in mucosal immunity. We recently reported that patients with ulcerative colitis (UC) have alterations in PPs that can be detected using narrow-band imaging with magnifying endoscopy (NBI-ME). However, the usefulness of NBI-ME in UC treatment as a whole is still unknown. Methods We collected NBI-ME images of PPs from 67 UC patients who had undergone ileocolonoscopy. We evaluated changes in the villi using the "villi index," which is based on three categories: irregular formation, hyperemia, and altered vascular network pattern. The patients were divided into two groups on the basis of villi index: low (L)- and high (H)-types. We then determined the correlation between morphological alteration of the PPs and various clinical characteristics. In 52 patients who were in clinical remission, we also analyzed the correlation between NBI-ME findings of PPs and clinical recurrence. Results The time to clinical recurrence was significantly shorter in remissive UC patients with H-type PPs than in those with L-type PPs (P<0.01). Moreover, PP alterations were not correlated with age, sex, disease duration, clinical activity, endoscopic score, or extent of disease involvement. Multivariate analysis revealed that the existence of H-type PPs was an independent risk factor for clinical recurrence (hazard ratio, 3.3; P<0.01). Conclusions UC patients with morphological alterations in PPs were at high risk of clinical relapse. Therefore, to predict the clinical course of UC, it may be useful to evaluate NBI-ME images of PPs. PMID:27799882

  8. An educational intervention to improve the endoscopist’s ability to correctly diagnose small gastric lesions using magnifying endoscopy with narrow-band imaging

    PubMed Central

    Mabe, Katsuhiro; Yao, Kenshi; Nojima, Masanori; Tanuma, Tokuma; Kato, Mototsugu

    2014-01-01

    Background Magnifying endoscopy with narrow-band imaging (ME-NBI) and a simple and systematic classification system based on microvascular and microsurface patterns, the “VS” classification system (VSCS), have been shown to be useful for the diagnosis of early gastric cancer. The aim of this study was to clarify whether an educational lecture about the VSCS improves performance with ME-NBI. Methods Sixty-four gastrointestinal endoscopists took the 1st exam before receiving the lecture about the VSCS, the 2nd exam immediately after the lecture, and the 3rd exam 2 months after the lecture. We compared the VSCS-based diagnostic accuracy among the participants before and after the lecture. Results The proportion of correct diagnoses was significantly higher, at 70.8% in the 2nd exam than in the 1st exam, at 53.1% (P<0.001). The correct diagnosis rate in the 3rd exam was significantly lower than that in the 2nd exam (60.9% vs. 70.8%; P<0.001) but was still higher than that in the 1st exam (60.9% vs. 53.1%; P<0.001). The difference in proportion of correct diagnosis between the 2nd and the 3rd exams was smaller among routine ME-NBI practitioners (n=6; 79.2% and 76.1%, respectively), compared to that among non-routine practitioners (n=34; 71.6% and 59.8%, respectively) or non-practitioners (n=24; 67.5% and 58.8%, respectively). Conclusion This study revealed that an educational intervention increased correct diagnosis rate of small gastric lesions using the VSCS, diagnosis criteria based on ME-NBI and also showed that the routine use of the modality and the diagnosis criteria was necessary to maintain diagnostic skills. PMID:24733047

  9. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    SciTech Connect

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi; Ita, Yoshifusa; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Nakashima, Asami; and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  10. High brightness field emission from printed carbon nanotubes in an S-band microwave gun

    NASA Astrophysics Data System (ADS)

    Wang, Qilong; Li, Xiangkun; Di, Yusong; Yu, Cairu; Zhang, Xiaobing; Li, Ming; Lei, Wei

    2016-02-01

    Printed carbon nanotubes (CNTs) were applied as cold cathode and placed into an S-band microwave gun operating at 2856 MHz with the pulse duration of 2.8 μs. High brightness field emission was demonstrated and the current density achieves the value more than 4.2 A/cm2. The emittance of field emission beam is calculated to be nearly 21 μm based on the beam profile of emission electrons monitored via yttrium aluminum garnet screen. The infrared image of printed CNTs confirms that the emitters in the center contributed more electrons and the heat generated during the large current density field emission. The results in the paper imply that randomly distributed printed CNTs have the potential to be applied as the high brightness electron sources for free electron lasers.

  11. One Martian Year of the Orbiting Thermal Emission Spectrometer's Observations of 10μ m CO2 Hot Band Emission

    NASA Astrophysics Data System (ADS)

    Maguire, W. C.; Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Kutepov, A. A.; Feofilov, A. G.; Christensen, P. R.

    2003-05-01

    More than a complete Martian year's Mars Global Surveyor (MGS/TES) data have been obtained allowing tracking of the 10μ m CO2 hot band emission. We show the latitudinal and height changes of the emission as a function of time. Previously, we have shown how absorption of solar radiation in the 1-5μ m region pumping the ν 3 CO2 manifold in our non-LTE (non-local thermodynamic equilibrium) model reproduces the seasonal, latitudinal and height dependence of this IR emission[1]. We will describe improvements to our model and discuss high altitude observations. In Mars' atmosphere, the 15μ m CO2 band is used for temperature retrievals, including limb retrievals. Non-LTE effects in the CO2 vibrational bending mode manifold set in above about 95 km. Even at lower altitudes limb observations, due to long optical paths, include contributions from above 95 km. We will report on our comparison of non-LTE to LTE limb retrievals. Funding for this research was provided by NASA through the Mars Data Analysis Program. We also acknowledge support by NASA for an NAS/NRC Associateship. [1] W.C. Maguire, J.C. Pearl, M.D. Smith, B.J. Conrath, A.A. Kutepov, M.S. Kaelberer, E. Winter and P.R. Christensen, Observations of high-altitude CO2 hot bands in Mars by the orbiting Thermal Emission Spectrometer, J.G.R. 107 (E), doi: 10.1029/2001JE001516, 2002.

  12. GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM THE DENSE HOT JUPITER WASP-43b IN THE H AND K{sub s} BANDS

    SciTech Connect

    Wang, W.; Zhao, G.; Van Boekel, R.; Henning, Th.; Madhusudhan, N.; Chen, G.

    2013-06-10

    We report new detections of thermal emission from the transiting hot Jupiter WASP-43b in the H and K{sub s} bands as observed at secondary eclipses. The observations were made with the WIRCam instrument on the Canada-France-Hawaii Telescope. We obtained a secondary eclipse depth of 0.103{sub -0.017}{sup +0.017}%$ and 0.194{sub -0.029}{sup +0.029} in the H and K{sub s} bands, respectively. The K{sub s}-band depth is consistent with the previous measurement in the narrow band centered at 2.09 {mu}m by Gillon et al. Our eclipse depths in both bands are consistent with a blackbody spectrum with a temperature of {approx}1850 K, slightly higher than the dayside equilibrium temperature without day-night energy redistribution. Based on theoretical models of the dayside atmosphere of WASP-43b, our data constrain the day-night energy redistribution in the planet to be {approx}< 15%-25%, depending on the metal content in the atmosphere. Combined with energy balance arguments, our data suggest that a strong temperature inversion is unlikely in the dayside atmosphere of WASP-43b. However, a weak inversion cannot be strictly ruled out at the current time. Future observations are required to place detailed constraints on the chemical composition of the atmosphere.

  13. L to X-band scatter and emission measurements of vegetation

    NASA Astrophysics Data System (ADS)

    Hueppi, R.; Schanda, E.

    1986-08-01

    A broad-band H and V polarization radiometer was combined with a noise transmitter to an instrument for measuring active and passive microwave signatures at seven frequencies between L and X band. This radiometer-scatterometer is operated from a cherry picker over agricultural fields. During the growing seasons the development of sugar-beet, wheat, and corn was measured. The geometrical structure of the vegetation cover was described by recording the crop type, the distances between the plants, and the canopy height. The soil underneath was characterized by moisture, temperature profile, and dielectric constant. Another variable was the seasonal change in water content of the plants. Relating these parameters to the microwave signatures reveals the interaction of scatter and emission processes between soil and vegetation. Significant differences of the emission and scattering behavior for the measured crops are found.

  14. Anomalous Series of Bands in the Edge Emission Spectra of CdS(О)

    NASA Astrophysics Data System (ADS)

    Morozova, N. K.; Kanakhin, A. A.; Galstyan, V. G.; Shnitnikov, A. S.

    2015-02-01

    The region of the edge emission spectrum of CdS(O) single crystals with cadmium excess is examined. An anomalous series of equidistant bands with leading line at 514 nm and phonon replicas has been revealed. These bands grow in intensity with increase of the excitation density up to 1026-1027 cm-3ṡs-1 at 80 K, and the leading line of the series is observed even at 300 K. It is shown that luminescence is conditioned by the exciton spectrum in perfect bulk single-crystals of CdO. Some characteristics of this spectrum are presented, in particular, the dependence on temperature, excitation intensity, composition and size of the crystals, and the LO interaction. The results experimentally confirm the theoretically calculated magnitude of the direct band gap of CdO.

  15. Photoconvertible Behavior of LSSmOrange Applicable for Single Emission Band Optical Highlighting.

    PubMed

    De Keersmaecker, Herlinde; Fron, Eduard; Rocha, Susana; Kogure, Takako; Miyawaki, Atsushi; Hofkens, Johan; Mizuno, Hideaki

    2016-09-01

    Photoswitchable fluorescent proteins are capable of changing their spectral properties upon light irradiation, thus allowing one to follow a chosen subpopulation of molecules in a biological system. Recently, we revealed a photoinduced absorption band shift of LSSmOrange, which was originally engineered to have a large energy gap between excitation and emission bands. Here, we evaluated the performance of LSSmOrange as a fluorescent tracer in living cells. The absorption maximum of LSSmOrange in HeLa cells shifted from 437 nm to 553 nm upon illumination with a 405-, 445-, 458-, or 488-nm laser on a laser-scanning microscope, whereas the emission band remained same (∼570 nm). LSSmOrange behaves as a freely diffusing protein in living cells, enabling the use of the protein as a fluorescence tag for studies of protein dynamics. By targeting LSSmOrange in mitochondria, we observed an exchange of soluble molecules between the matrices upon mitochondrial fusion. Since converted and unconverted LSSmOrange proteins have similar emission spectra, this tracer offers unique possibilities for multicolor imaging. The fluorescence emission from LSSmOrange was spectrally distinguishable from that of eYFP and mRFP, and could be separated completely by applying linear unmixing. Furthermore, by using a femtosecond laser at 850 nm, we showed that a two-photon process could evoke a light-induced red shift of the absorption band of LSSmOrange, providing a strict confinement of the conversion volume in a three-dimensional space.

  16. Photoconvertible Behavior of LSSmOrange Applicable for Single Emission Band Optical Highlighting.

    PubMed

    De Keersmaecker, Herlinde; Fron, Eduard; Rocha, Susana; Kogure, Takako; Miyawaki, Atsushi; Hofkens, Johan; Mizuno, Hideaki

    2016-09-01

    Photoswitchable fluorescent proteins are capable of changing their spectral properties upon light irradiation, thus allowing one to follow a chosen subpopulation of molecules in a biological system. Recently, we revealed a photoinduced absorption band shift of LSSmOrange, which was originally engineered to have a large energy gap between excitation and emission bands. Here, we evaluated the performance of LSSmOrange as a fluorescent tracer in living cells. The absorption maximum of LSSmOrange in HeLa cells shifted from 437 nm to 553 nm upon illumination with a 405-, 445-, 458-, or 488-nm laser on a laser-scanning microscope, whereas the emission band remained same (∼570 nm). LSSmOrange behaves as a freely diffusing protein in living cells, enabling the use of the protein as a fluorescence tag for studies of protein dynamics. By targeting LSSmOrange in mitochondria, we observed an exchange of soluble molecules between the matrices upon mitochondrial fusion. Since converted and unconverted LSSmOrange proteins have similar emission spectra, this tracer offers unique possibilities for multicolor imaging. The fluorescence emission from LSSmOrange was spectrally distinguishable from that of eYFP and mRFP, and could be separated completely by applying linear unmixing. Furthermore, by using a femtosecond laser at 850 nm, we showed that a two-photon process could evoke a light-induced red shift of the absorption band of LSSmOrange, providing a strict confinement of the conversion volume in a three-dimensional space. PMID:27602729

  17. Valence-band electronic structure of silicon nitride studied with the use of soft-x-ray emission

    NASA Astrophysics Data System (ADS)

    Carson, R. D.; Schnatterly, S. E.

    1986-02-01

    We have studied the valence-band electronic structure of α-phase, β-phase, and amorphous silicon nitride samples, using Si L-x-ray emission. Our results are compared with a recent band-structure calculation and show that Si 3d states are necessary to properly describe the upper-valence-band and lower-conduction-band density of states. A prominent feature is seen above the valence band which is attributed to conduction-band states that are populated by the incident electron beam. By reducing the energy of the electron beam it is possible to enhance the surface emission relative to bulk emission, and such spectra are also presented and discussed.

  18. Laboratory Measurement of the CO Cameron Bands and Visible Emissions Following VUV Photodissociation of CO{_2}

    NASA Astrophysics Data System (ADS)

    Kalogerakis, K. S.; Romanescu, C.; Slanger, T. G.; Lee, L. C.; Ahmed, M.; Wilson, K. R.

    2009-06-01

    The CO(a^{3}Π-X^{1}Σ^{+}) Cameron bands are one of the most important emission features in the UV dayglow of the CO{_2} planets, as demonstrated in the case of Mars by the measurements performed by Mariner and Mars Express missions. One of the mechanisms to produce electronically excited CO(a^{3}Π) is photodissociation of CO{_2} at wavelengths shorter than 108 nm. At wavelengths below 100 nm, new CO{_2} photodissociation channels open leading to formation of higher energy triplet states of CO. These states cascade into the lower triplet state by emission in the visible spectral region before radiating in the Cameron system. This two step relaxation pathway was demonstrated by Lee and Judge for the 90-93 nm photodissociation of CO{_2}. We have further investigated this process using the 85-110 nm tunable synchrotron radiation at the Advanced Light Source facility at Lawrence Berkeley Laboratory. The experimental results confirmed that once a triplet state excitation threshold is exceeded, a fraction of the Cameron band emission is accompanied by visible emission. These results indicate that the emission corresponding to the CO(a^'-a, d-a, e-a) triplet bands must be part of the visible Mars / Venus dayglow. The same is true for CO{_2} photoexcitation in cometary atmospheres. This work was supported by the NASA Outer Planets Research Program under grant NNX06AB82G. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D. L. Judge and L. C. Lee, J. Chem. Phys., 58, 104 (1973)

  19. Excitation temperatures determined from H{sup +}{sub 3} hot band emission in the Jovian ionosphere

    SciTech Connect

    Jagod, M.F.; Oka, T.; Geballe, T.R.

    1996-12-31

    Since the observation of the 3.544 {mu}m 2v{sup 0}{sub 2} {r_arrow} v{sub 2} (J = 9, K = 9 {r_arrow} J = 8, G = 9, U = 1) hot band transition of H{sup +}{sub 3} in the polar regions of Jupiter, the authors have pursued the simultaneous detection of additional hot band transitions with fundamental band transitions in order to derive well determined H+ excitation temperatures. The authors report 9 additional resolved 2{nu}{sub 2}{sup 2} {r_arrow} {nu}{sub 2} and {nu}{sub 1} + {nu}{sub 2} {r_arrow} {nu}{sub 1} hot band transitions observed in emission at 3.52, 3.63, 3.66, and 3.84 {mu}m. The hot band transitions have thus far only been detected in the polar regions, with the occasional exception being the 3.544 {mu}m 2{nu}{sup 0}{sub 2} {r_arrow} {nu}{sub 2} transition around 45{degrees}S latitude during the 1994 Comet Shoemaker Levy-9 encounter. Temporal and spatial variation of the excitation temperatures as well as their dependence on vibrational mode will be presented. Anomalous line intensities, e.g. {sup r}R(3,3){sup -b} will also be discussed. All observations were made with the CGS4 spectrometer at the United Kingdom Infrared Telescope on Mauna Kea, Hawaii.

  20. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    SciTech Connect

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-28

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  1. Epitaxy, phase separation and band-edge emission of spontaneously formed InGaN nanorods

    NASA Astrophysics Data System (ADS)

    De, Arpan; Shivaprasad, S. M.

    2016-09-01

    An In-flux dependent study of the nature of epitaxy, compositional phase separation and band-edge emission of spontaneously formed c-oriented InGaN nanorods on c-sapphire is performed. At higher In flux-rates, m-faceted thick nanorods (≈700 nm) form with two in-plane epitaxial orientations, and display compositional phases with In composition varying from 14 to 63%. In these rods, photo-luminescent (PL) emission is seen to originate only from the localized high-In phase (63%) that is embedded in the low-In (14%) InGaN matrix. As the In flux-rate is reduced, nanorods of smaller diameter (≈60 nm) and a coalesced nanorod network are formed, with In incorporation of 15% and 9%, respectively. These faceted, c-aligned thinner nanorods are of a single compositional phase and epitaxy and display room-temperature PL emission. Optical absorption and emission properties of these nanostructures follow Vegard’s law of band-gaps, and the observed bowing parameter and Stokes shifts correlate to the observed compositional inhomogeneity and carrier localization.

  2. Real-Time Characterization of Diminutive Colorectal Polyp Histology Using Narrow-Band Imaging: Implications for the Resect and Discard Strategy

    PubMed Central

    Patel, Swati G.; Schoenfeld, Philip; Kim, Hyungjin Myra; Ward, Emily K.; Bansal, Ajay; Kim, Yeonil; Hosford, Lindsay; Myers, Aimee; Foster, Stephanie; Craft, Jenna; Shopinski, Samuel; Wilson, Robert H.; Ahnen, Dennis J.; Rastogi, Amit; Wani, Sachin

    2016-01-01

    BACKGROUND & AIMS Narrow-band imaging (NBI) allows real-time histologic classification of colorectal polyps. We investigated whether endoscopists without prior training in NBI can achieve the following thresholds recommended by the American Society for Gastrointestinal Endoscopy: for diminutive colorectal polyps characterized with high confidence, a ≥90% negative predictive value for adenomas in the rectosigmoid and a ≥90% agreement in surveillance intervals. METHODS Twenty-six endoscopists from 2 tertiary care centers underwent standardized training in NBI interpretation. Endoscopists made real-time predictions of diminutive colorectal polyp histology and surveillance interval predictions based on NBI. Their performance was evaluated by comparing predicted with actual findings from histologic analysis. Multilevel logistic regression was used to assess predictors of performance. Cumulative summation analysis was used to characterize learning curves. RESULTS The endoscopists performed 1451 colonoscopies and made 3012 diminutive polyp predictions (74.3% high confidence) using NBI. They made 898 immediate post-procedure surveillance interval predictions. An additional 505 surveillance intervals were determined with histology input. The overall negative predictive value for high-confidence characterizations in the rectosigmoid was 94.7% (95% confidence interval: 92.6%–96.8%) and the surveillance interval agreement was 91.2% (95% confidence interval: 89.7%–92.7%). Overall, 97.0% of surveillance interval predictions would have brought patients back on time or early. High-confidence characterization was the strongest predictor of accuracy (odds ratio = 3.42; 95% confidence interval: 2.72–4.29; P < .001). Performance improved over time, however, according to cumulative summation analysis, only 7 participants (26.9%) identified adenomas with sufficient sensitivity such that further auditing is not required. CONCLUSIONS With standardized training

  3. Prospective Investigation of 25(OH)D3 Serum Concentration Following UVB Narrow Band Phototherapy in Patients with Psoriasis and Atopic Dermatitis.

    PubMed

    Weinhold, Annett; Obeid, Rima; Vogt, Thomas; Reichrath, Jörg

    2016-03-01

    Vitamin D deficiency represents a major health issue. It is a worldwide endemic and is associated with a broad variety of severe diseases. The skin is a key tissue for the human body's vitamin D endocrine system. It represents a target tissue for biologically active vitamin D metabolites. Approximately 90% of the human body's requirements of vitamin D have to be synthesised in the skin by the action of UVB-radiation. However, individual factors that influence a person's cutaneous synthesis of vitamin D are still not well understood. In our present prospective study we investigated the effect of UVB narrow band (UVBnb, 311 nm) and PUVA phototherapy on 25(OH)D3 serum concentration, in patients with psoriasis, atopic dermatitis and a few cases with other dermatoses (n=41). We found that two weeks of UVBnb treatment resulted in an increase of 25(OH)D3 serum concentration from 11.4 to 20.5 ng/ml (p<0.001), while in contrast PUVA-treatment did not significantly alter vitamin D status. These findings question the hypothesis of a relevant vitamin D metabolizing effect of UVA. Psoriasis patients showed a trend for a stronger increase in 25(OH)D3 serum levels following UVBnb compared to patients with atopic dermatitis. Patients with relatively low baseline serum 25(OH)D3 concentrations had a stronger increase in 25(OH)D3 concentrations compared to patients with relatively high 25(OH)D serum concentrations. In general patients with skin types (Fitzpatrick) I and II (median=14.3 ng/ml) had a higher baseline of 25(OH)D3 serum concentration compared to patients with skin types III (median=11.2 ng/ml) or IV-V (median=12.3 ng/ml), although these differences were not statistically significant (p=0.106). Baseline 25(OH)D3 serum concentrations were correlated with presence of genetic variants (SNPs of VDR, CYP2R1, VDBP/GC) that influence vitamin D status, and with other individual factors such as body mass index, age and gender. We also investigated the effect of phototherapy on

  4. Narrow-band imaging does not improve detection of colorectal polyps when compared to conventional colonoscopy: a randomized controlled trial and meta-analysis of published studies

    PubMed Central

    2011-01-01

    Background A colonoscopy may frequently miss polyps and cancers. A number of techniques have emerged to improve visualization and to reduce the rate of adenoma miss. Methods We conducted a randomized controlled trial (RCT) in two clinics of the Gastrointestinal Department of the Sanitas University Foundation in Bogota, Colombia. Eligible adult patients presenting for screening or diagnostic elective colonoscopy were randomlsy allocated to undergo conventional colonoscopy or narrow-band imaging (NBI) during instrument withdrawal by three experienced endoscopists. For the systematic review, studies were identified from the Cochrane Library, PUBMED and LILACS and assessed using the Cochrane risk of bias tool. Results We enrolled a total of 482 patients (62.5% female), with a mean age of 58.33 years (SD 12.91); 241 into the intervention (NBI) colonoscopy and 241 into the conventional colonoscopy group. Most patients presented for diagnostic colonoscopy (75.3%). The overall rate of polyp detection was significantly higher in the conventional group compared to the NBI group (RR 0.75, 95%CI 0.60 to 0.96). However, no significant differences were found in the mean number of polyps (MD -0.1; 95%CI -0.25 to 0.05), and the mean number of adenomas (MD 0.04 95%CI -0.09 to 0.17). Meta-analysis of studies (regardless of indication) did not find any significant differences in the mean number of polyps (5 RCT, 2479 participants; WMD -0.07 95% CI -0.21 to 0.07; I2 68%), the mean number of adenomas (8 RCT, 3517 participants; WMD -0.08 95% CI -0.17; 0.01 to I2 62%) and the rate of patients with at least one adenoma (8 RCT, 3512 participants, RR 0.96 95% CI 0.88 to 1,04;I2 0%). Conclusion NBI does not improve detection of colorectal polyps when compared to conventional colonoscopy (Australian New Zealand Clinical Trials Registry ACTRN12610000456055). PMID:21943365

  5. Prospective Investigation of 25(OH)D3 Serum Concentration Following UVB Narrow Band Phototherapy in Patients with Psoriasis and Atopic Dermatitis.

    PubMed

    Weinhold, Annett; Obeid, Rima; Vogt, Thomas; Reichrath, Jörg

    2016-03-01

    Vitamin D deficiency represents a major health issue. It is a worldwide endemic and is associated with a broad variety of severe diseases. The skin is a key tissue for the human body's vitamin D endocrine system. It represents a target tissue for biologically active vitamin D metabolites. Approximately 90% of the human body's requirements of vitamin D have to be synthesised in the skin by the action of UVB-radiation. However, individual factors that influence a person's cutaneous synthesis of vitamin D are still not well understood. In our present prospective study we investigated the effect of UVB narrow band (UVBnb, 311 nm) and PUVA phototherapy on 25(OH)D3 serum concentration, in patients with psoriasis, atopic dermatitis and a few cases with other dermatoses (n=41). We found that two weeks of UVBnb treatment resulted in an increase of 25(OH)D3 serum concentration from 11.4 to 20.5 ng/ml (p<0.001), while in contrast PUVA-treatment did not significantly alter vitamin D status. These findings question the hypothesis of a relevant vitamin D metabolizing effect of UVA. Psoriasis patients showed a trend for a stronger increase in 25(OH)D3 serum levels following UVBnb compared to patients with atopic dermatitis. Patients with relatively low baseline serum 25(OH)D3 concentrations had a stronger increase in 25(OH)D3 concentrations compared to patients with relatively high 25(OH)D serum concentrations. In general patients with skin types (Fitzpatrick) I and II (median=14.3 ng/ml) had a higher baseline of 25(OH)D3 serum concentration compared to patients with skin types III (median=11.2 ng/ml) or IV-V (median=12.3 ng/ml), although these differences were not statistically significant (p=0.106). Baseline 25(OH)D3 serum concentrations were correlated with presence of genetic variants (SNPs of VDR, CYP2R1, VDBP/GC) that influence vitamin D status, and with other individual factors such as body mass index, age and gender. We also investigated the effect of phototherapy on

  6. The microwave emission and transmission characters of deciduous forest at L-band

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongjun; Yuan, Yu; Zheng, Xingming; Zhu, Xiaoming; Fu, Xiuli

    2014-11-01

    Forest covers about 30% of earth surface, which plays an important role in global forecast and carbon cycle. Monitoring forest biomass, and retrieving soil moisture at forest area, are the main goals of most passive microwave sensors on satellite missions. L-band is the most sensitive frequency among all the frequencies due to its good penetration ability. Because of its variety of the size of scattering components, the complicated structures and species of forest, it is difficult to describe the scattering and attenuation characters of forest in modeling microwave emission at forest area. In this paper, we studied the emissivity and transmissivity of deciduous forest at L(1.4GHz) by model simulation and field experiment. The microwave emission model was based on Matrix-Doubling algorithm. The comparison between simulated emissivity and measured data collected during an experiment at Maryland, USA in 2007 was good. Since theoretical model like Matrix-Doubling is too complicated to be used in retrial application, we mapped the results of Matrix-Doubling to a simple 0th-order model, also called ω-τ model, by setting the simulated emissivity to be the emissivity of 0th-order model at the same environment, which 2 unknown variables---opacity τ and effective single scattering albedo ω need to be determined. To valited τ (transmissivity of forest) simulated by Matrix-Doubling, we took an deciduous forest experiment by an L band microwave radiometer under trees at JingYueTan area, Changchun, Jilin Province in April to June in 2014. Thus the ω of forest can be determined. The matching results are presented in this paper. The relationship between LAI and forest microwave characters are discussed.

  7. Soil nitrous oxide emissions following band-incorporation of fertilizer nitrogen and swine manure.

    PubMed

    Chantigny, Martin H; Rochette, Philippe; Angers, Denis A; Bittman, Shabtai; Buckley, Katherine; Massé, Daniel; Bélanger, Gilles; Eriksen-Hamel, Nikita; Gasser, Marc-Olivier

    2010-01-01

    Treatment of liquid swine manure (LSM) offers opportunities to improve manure nutrient management. However, N2O fluxes and cumulative emissions resulting from application of treated LSM are not well documented. Nitrous oxide emissions were monitored following band-incorporation of 100 kg N ha(-1) of either mineral fertilizer, raw LSM, or four pretreated LSMs (anaerobic digestion; anaerobic digestion + flocculation: filtration; decantation) at the four-leaf stage of corn (Zea mays L.). In a clay soil, a larger proportion of applied N was lost as N2O with the mineral fertilizer (average of 6.6%) than with LSMs (3.1-5.0%), whereas in a loam soil, the proportion of applied N lost as N2O was lower with the mineral fertilizer (average of 0.4%) than with LSMs (1.2-2.4%). Emissions were related to soil NO3 intensity in the clay soil, whereas they were related to water-extractable organic C in the loam soil. This suggests that N2O production was N limited in the clay soil and C limited in the loam soil, and would explain the interaction found between N sources and soil type. The large N2O emission coefficients measured in many treatments, and the contradicting responses among N sources depending on soil type, indicate that (i) the Intergovernmental Panel on Climate Change (IPCC) default value (1%) may seriously underestimate N2O emissions from fine-textured soils where fertilizer N and manure are band-incorporated, and (ii) site-specific factors, such as drainage conditions and soil properties (e.g., texture, organic matter content), have a differential influence on emissions depending on N source.

  8. Multiyear On-orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Kwo-Fu; Wu, Aisheng; Barnes, William; Guenther, Bruce; Salomonson, Vincent

    2007-01-01

    Since launch in December 1999, Terra MODIS has been making continuous Earth observations for more than seven years. It has produced a broad range of land, ocean, and atmospheric science data products for improvements in studies of global climate and environmental change. Among its 36 spectral bands, there are 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS thermal emissive bands cover the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions with wavelengths from 3.7 to 14.4pm. They are calibrated on-orbit using an on-board blackbody (BB) with its temperature measured by a set of thermistors on a scan-by-scan basis. This paper will provide a brief overview of MODIS TEB calibration and characterization methodologies and illustrate on-board BB functions and TEB performance over more than seven years of on-orbit operation and calibration. Discussions will be focused on TEB detector short-term stability and noise characterization, and changes in long-term response (or system gain). Results show that Terra MODIS BB operation has been extremely stable since launch. When operated at its nominal controlled temperature of 290K, the BB temperature variation is typically less than +0.30mK on a scan-by-scan basis and there has been no time-dependent temperature drift. In addition to excellent short-term stability, most TEB detectors continue to meet or exceed their specified noise characterization requirements, thus enabling calibration accuracy and science data product quality to be maintained. Excluding the noisy detectors identified pre-launch and those that occurred post-launch, the changes in TEB responses have been less than 0.7% on an annual basis. The optical leak corrections applied to bands 32-36 have been effective and stable over the entire mission

  9. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices

    NASA Astrophysics Data System (ADS)

    Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M. L.; Zarco-Tejada, P. J.

    2012-07-01

    This paper deals with the monitoring of water status and the assessment of the effect of stress on citrus fruit quality using structural and physiological remote sensing indices. Four flights were conducted over a citrus orchard in 2009 using an unmanned aerial vehicle (UAV) carrying a multispectral camera with six narrow spectral bands in the visible and near infrared. Physiological indices such as the Photochemical Reflectance Index (PRI570), a new structurally robust PRI formulation that uses the 515 nm as the reference band (PRI515), and a chlorophyll ratio (R700/R670) were compared against the Normalized Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI) and Modified Triangular Vegetation Index (MTVI) canopy structural indices for their performance in tracking water status and the effects of sustained water stress on fruit quality at harvest. The irrigation setup in the commercial orchard was compared against a treatment scheduled to satisfy full requirements (based on estimated crop evapotranspiration) using two regulated deficit irrigation (RDI) strategies. The water status of the trees throughout the experiment was monitored with frequent field measurements of stem water potential (Ψx), while titratable acidity (TA) and total soluble solids (TSS) were measured at harvest on selected trees from each irrigation treatment. The high spatial resolution of the multispectral imagery (30 cm pixel size) enabled identification of pure tree crown components, extracting the tree reflectance from shaded, sunlit and aggregated pixels. The physiological and structural indices were then calculated from each tree at the following levels: (i) pure sunlit tree crown, (ii) entire crown, aggregating the within-crown shadows, and (iii) simulating a lower resolution pixel, including tree crown, sunlit and shaded soil pixels. The resulting analysis demonstrated that both PRI formulations were able to track water status, except when water stress

  10. The average GeV-band emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Lange, J.; Pohl, M.

    2013-03-01

    Aims: We analyze the emission in the 0.3-30 GeV energy range of gamma-ray bursts detected with the Fermi Gamma-ray Space Telescope. We concentrate on bursts that were previously only detected with the Gamma-Ray Burst Monitor in the keV energy range. These bursts will then be compared to the bursts that were individually detected with the Large Area Telescope at higher energies. Methods: To estimate the emission of faint GRBs we used nonstandard analysis methods and sum over many GRBs to find an average signal that is significantly above background level. We used a subsample of 99 GRBs listed in the Burst Catalog from the first two years of observation. Results: Although most are not individually detectable, the bursts not detected by the Large Area Telescope on average emit a significant flux in the energy range from 0.3 GeV to 30 GeV, but their cumulative energy fluence is only 8% of that of all GRBs. Likewise, the GeV-to-MeV flux ratio is less and the GeV-band spectra are softer. We confirm that the GeV-band emission lasts much longer than the emission found in the keV energy range. The average allsky energy flux from GRBs in the GeV band is 6.4 × 10-4 erg cm-2 yr-1 or only ~4% of the energy flux of cosmic rays above the ankle at 1018.6 eV.

  11. EXAMINING THE BROADBAND EMISSION SPECTRUM OF WASP-19b: A NEW z-BAND ECLIPSE DETECTION

    SciTech Connect

    Zhou, George; Bayliss, Daniel D. R.; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2013-09-10

    WASP-19b is one of the most irradiated hot-Jupiters known. Its secondary eclipse is the deepest of all transiting planets and has been measured in multiple optical and infrared bands. We obtained a z-band eclipse observation with a measured depth of 0.080% {+-} 0.029%, using the 2 m Faulkes Telescope South, which is consistent with the results of previous observations. We combined our measurement of the z-band eclipse with previous observations to explore atmosphere models of WASP-19b that are consistent with its broadband spectrum. We use the VSTAR radiative transfer code to examine the effect of varying pressure-temperature profiles and C/O abundance ratios on the emission spectrum of the planet. We find that models with super-solar carbon enrichment best match the observations, which is consistent with previous model retrieval studies. We also include upper atmosphere haze as another dimension in the interpretation of exoplanet emission spectra and find that particles <0.5 {mu}m in size are unlikely to be present in WASP-19b.

  12. Dielectric properties and emissivity of seawater at C-band microwave frequency.

    PubMed

    Murugkar, A G; Joshi, A S; Kurtadikar, M L

    2012-10-01

    Microwave remote sensing applications over ocean using radar and radiometers, a precise knowledge of emissivity and reflectivity, are required. Emissivity of ocean surface is a function of the surface configuration, frequency of radiation, temperature and its dielectric properties. The emissivity of a smooth ocean surface at a particular wavelength is determined by its complex dielectric properties. In present study, laboratory measurements of complex dielectric properties, real part epsilon', and imaginary part epsilon", of surface seawater samples collected from Bay of Bengal and Arabian Sea are carried out. Measurements of these seawater samples are done at 5 GHz and 30 degrees C using an automated C-band microwave bench set up. The salinity of samples is also measured using autosalinometer. The salinity values are used to determine epsilon' and epsilon" using the Debye equations. The normal incidence emissivity and brightness temperature values for smooth sea surface are reported for surface samples. The dielectric constant epsilon' decreases and dielectric loss increases with increase in salinity at 5 GHz and 30 degrees C. At normal incidence, emissivity is almost constant for varying salinities.

  13. Study of instrument temperature effect on MODIS thermal emissive band responses

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Xiong, Xiaoxiong

    2010-09-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) has 16 thermal emissive bands (TEB) over a spectral range from mid-wave infrared (MWIR) to long-wave infrared (LWIR), using photovoltaic (PV) HgCdTe detectors for bands 20-25 and 27-30 with wavelengths from 3.75μm to 9.73μm and photoconductive (PC) HgCdTe detectors for bands 31-36 with wavelengths from 11.0μm to 14.2μm. A total of 160 individual detectors, 10 per band, are distributed on the short- and mid-wave (SMIR) and LWIR cold focal-plane assemblies (CFPA) with temperature controlled at 83K. The instrument temperature affects the detector response and this effect varies with the detector type. Detector responses from on-orbit calibration and pre-launch measurements have been examined to characterize this effect. Results from this analysis show that, for the PV detectors on the SMIR CFPA, the detector responses (gains) increase with instrument temperature whereas the PC detector responses decrease with the instrument temperature. The calibration impact due to on-orbit changes in instrument temperatures is examined. On-orbit detector offset and nonlinear response characterization obtained from the on-boar blackbody (BB) warm-up and cool-down (WUCD) cycle is discussed. This investigation was performed for both Terra MODIS and Aqua MODIS.

  14. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  15. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    PubMed

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.

  16. Studies of collision-induced emission in the fundamental vibration-rotation band of H2

    NASA Astrophysics Data System (ADS)

    Caledonia, G. E.; Krech, R. H.; Wilkerson, T.; Taylor, R. L.; Birnbaum, G.

    Measurements are presented of the collision induced emission (CIE) from the fundamental vibration-rotation band of H2 taken over the temperature range of 900-3000 K. The spectral shape and strength of this IR band centered about 2.4 microns has been measured behind reflected shocks in mixtures of H2/Ar. The observed radiation at elevated temperatures is found to be dominantly in the Q branch. The results, compared with theory, show that radiation at elevated temperatures is primarily the result of an induced dipole moment in H2 induced by the overlap between the H2 and Ar electron clouds during collision. The strength of this interaction has been evaluated by an analysis of the measured temperature dependence of the absolute bandstrengths.

  17. Effect of nitrogen addition on the band gap, core level shift, surface energy, and the threshold field of electron emission of the SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Bian, H. J.; Chen, X. F.; Pan, J. S.; Zhu, W.; Sun, Chang Q.

    2007-12-01

    The effect of nitrogen (N) doping on the behavior of field emission, surface energy and the band structure of strontium titanate (SrTiO3) thin films coated on silicon tip arrays has been examined in detail. Measurements using x-ray photoelectron spectroscopy, ellipsometry, water contact angle and field emission testing revealed that the optimal 50%-nitrogen partial pressure (PN) could improve substantially the threshold field of electron emission of the SrTiO3 films accompanied with narrowed band gap, lowered surface energy and work function and a negative energy shift of the N 1s level from 404 to 396 eV. Results evidence consistently the presence of the nonbonding lone pairs and the lone pair induced antibonding dipoles upon tetrahedron formation which is responsible for the observations. At PN below and above the optimal value physisorption and hydrogen bond likes formation like to occur.

  18. Band edge and phonon-assisted deep level emissions in the ordered filled tetrahedral semiconductor LiMgP

    NASA Astrophysics Data System (ADS)

    Kuriyama, K.; Kushida, K.

    2000-03-01

    Band edge and phonon-assisted deep level emissions in the ordered filled tetrahedral semiconductor LiMgP (space group: F4¯3m, direct band gap: 2.43 eV at room temperature), viewed as a zincblende-like (MgP)- lattice partially filled with He-like Li+ interstitials, have been studied using a photoluminescence (PL) method. Two band edge emissions A and B, consisting of two PL peaks, were observed at around 489 nm at 15 K. Emissions A and B were associated with a free carrier recombination (2.535 eV) and a donor-to-valence band transition (2.532 eV), respectively. From the temperature dependence of the band edge emission and optical absorption data, the temperature variation of the band gap was approximated by the empirical formula Eg(eV)=2.536-1.43×10-3T2/(T+912) (T in K). A broad emission involving at least three phonon lines was observed at around 625 nm with full width at half maximum of ˜150 meV, showing a large Franck-Condon shift. The main phonon lines in the broad PL emission were associated with two combinations of longitudinal-optical phonons relating to Li-P and Mg-P pairs.

  19. Valence x-ray-emission bands of a-Si:H/a-SiNx:H superlattices

    NASA Astrophysics Data System (ADS)

    Nithianandam, Jeyasingh; Schnatterly, Stephen E.

    1990-11-01

    Si L2,3 x-ray-emission spectra from amorphous superlattices made with a-Si:H and a-SiNx:H are presented and interpreted using a two-phase linear superposition model for the valence-band region. The average thickness of buried interfaces in these superlattices was found to be 1.8 Å and the interfaces were shown to be of silicon-nitride character. A direct measurement of the fluorescence yield ratio in the soft-x-ray spectral range for any two materials is also presented.

  20. Development of a L-band ocean emissivity electromagnetic model using observations from the Aquarius Radiometer

    NASA Astrophysics Data System (ADS)

    Hejazin, Y.; Jones, W.; El-Nimri, S.

    2012-12-01

    The Aquarius/SAC-D ocean salinity measurement mission was launched into polar orbit during the summer of 2011. The prime sensor is an L-band radiometer/scatterometer developed jointly by NASA Goddard Space Flight Center and the Jet Propulsion Laboratory. This paper deals with the development of an ocean emissivity model using AQ radiometer brightness temperature (Tb) observations. This model calculates the ocean surface emissivity as a function of ocean salinity, sea surface temperature, surface wind speed and direction. One unique aspect of this model is that it calculates ocean emissivity over wide ranges of Earth incidence angles (EIAs) from nadir to > 60°and ocean wind speeds from 0 m/s to > 70 m/s. This physical electromagnetic model with empirical coefficients follows the form of Stogryn [1967] that treats the ocean as a mixture of foam and clean rough water. The CFRSL ocean surface emissivity (ɛocean) is modeled as a linear sum of foam (ɛfoam) and foam-free seawater (ɛrough) emissivities, according to ɛocean = FF * ɛfoam + (1 - FF) * ɛrough (1) where FF is the fractional area coverage by foam. The foam emissivity is modeled as ɛfoam = Q(freq, U10, EIA) (2) where Q( ) is the empirical dependence of foam emissivity on radiometer frequency, the 10-m neutral stability wind speed and EIA according to El-Nimri [2010]. Following Stogryn, the foam-free seawater emissivity (ɛrough) is modeled ɛrough = ɛsmooth +Δɛexcess (3) where ɛsmooth = (1 - Γ) is the smooth surface emissivity, Γ is the Fresnel power reflection coefficient, and Δɛexcess is the wind-induced excess emissivity, given by Δɛexcess = G(freq, U10, WDir, EIA) (4) Where G( ) is the empirical signature of foam-free rough ocean, which depends upon the surface wind speed and wind direction. This function is determined empirically from measured AQ radiometer Tb's associated with surface wind vector from collocated NOAA GDAS numerical weather model. Ocean emissivity calculations are compared

  1. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  2. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications.

    PubMed

    Allamandola, L J; Tielens, A G; Barker, J R

    1989-12-01

    This article presents a comprehensive treatment of the polycyclic aromatic hydrocarbon (PAH) hypothesis. The interstellar, infrared spectral features which have been attributed to emission from highly vibrationally excited PAHs are discussed in detail. These include major (most intense) bands at 3040, 1615, "1310," 1150, and 885 cm-1 (3.29, 6.2 "7.7," 8.7, and 11.3 micrometers), minor bands and broad features in the 3200-2700 cm-1 [correction of 3200-2700-1] (3.1-3.7 micrometers), 1600-1100 cm-1 (6.0-9 micrometers) and 910-770 cm-1 (11-13 micrometers) regions, as well as the vibrational quasi-continuum spanning the entire mid-IR and the electronic transitions which contribute to the high-frequency IR continuum. All the major and minor bands, as well as the quasi-continuum, can be attributed to vibrational transitions in molecular-sized PAHs. The latter two broad features probably arise from very large PAHs, PAH clusters, and amorphous carbon particles. A precise match of the interstellar spectra with laboratory spectra is not yet possible because laboratory spectra are not available of PAHs in the forms probably present in the interstellar medium (completely isolated, ionized, some completely dehydrogenated, and containing between about 20 and 40 carbon atoms). The method with which one can calculate the IR fluorescence spectrum from a vibrationally excited molecule is also described in detail. Fluorescence band intensities, relaxation rates, and dependence on molecule size and energy content are treated explicitly. Analysis of the interstellar spectra indicates that the PAHs which dominate the infrared spectra contain between about 20 and 40 carbon atoms. The results obtained with this method are compared with the results obtained using a thermal approximation. It is shown that for high levels of vibrational excitation and emission from low-frequency modes, the two methods give similar results. However, at low levels of vibrational excitation and for the high

  3. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    NASA Astrophysics Data System (ADS)

    Le Vine, D. M.; Lang, R. H.; Wentz, F. J.; Meissner, T.

    2012-12-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.2 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest. Second, observations from Aquarius are being used to develop a model for the effect of wind-driven roughness (waves) on the emissivity in the open ocean. This is done by comparing the measured

  4. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.

    2015-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.

  5. The Dust Sublimation Radius as an Outer Envelope to the Bulk of the Narrow Fe Kalpha Line Emission in Type 1 AGNs

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-01

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (RFe) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (Rdust) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. RFe matches Rdust well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, RFe is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of RFe, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.

  6. THE DUST SUBLIMATION RADIUS AS AN OUTER ENVELOPE TO THE BULK OF THE NARROW Fe Kα LINE EMISSION IN TYPE 1 AGNs

    SciTech Connect

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-20

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (R{sub Fe}) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (R{sub dust}) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. R{sub Fe} matches R{sub dust} well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, R{sub Fe} is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of R{sub Fe}, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.

  7. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

    PubMed

    Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui

    2015-11-10

    In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.

  8. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  9. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  10. Probing the Ionization States of Polycyclic Aromatic Hydrocarbons via the 15-20 μm Emission Bands

    NASA Astrophysics Data System (ADS)

    Shannon, M. J.; Stock, D. J.; Peeters, E.

    2015-10-01

    We report new correlations between ratios of band intensities of the 15-20 μm emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of 57 sources observed with the Spitzer/Infrared Spectrograph. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey survey, two Galactic interstellar medium cirrus sources, and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4, and 17.8 μm band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 μm band intensities. The 15.8 μm band correlates only with the 15-18 μm plateau and the 11.2 μm emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4, and 17.8 μm bands; the 11.2, 15.8 μm bands and the 15-18 μm plateau; and the 11.0 and 17.4 μm bands. We also find that the spatial distribution of the 12.7, 16.4, and 17.8 μm bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 μm and neutral 11.2 μm bands. We conclude that the 17.4 μm band is dominated by cations, the 15.8 μm band by neutral species, and the 12.7, 16.4, and 17.8 μm bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15-20 μm emission variability.

  11. PROBING THE IONIZATION STATES OF POLYCYCLIC AROMATIC HYDROCARBONS VIA THE 15–20 μm EMISSION BANDS

    SciTech Connect

    Shannon, M. J.; Stock, D. J.; Peeters, E.

    2015-10-01

    We report new correlations between ratios of band intensities of the 15–20 μm emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of 57 sources observed with the Spitzer/Infrared Spectrograph. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey survey, two Galactic interstellar medium cirrus sources, and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4, and 17.8 μm band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 μm band intensities. The 15.8 μm band correlates only with the 15–18 μm plateau and the 11.2 μm emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4, and 17.8 μm bands; the 11.2, 15.8 μm bands and the 15–18 μm plateau; and the 11.0 and 17.4 μm bands. We also find that the spatial distribution of the 12.7, 16.4, and 17.8 μm bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 μm and neutral 11.2 μm bands. We conclude that the 17.4 μm band is dominated by cations, the 15.8 μm band by neutral species, and the 12.7, 16.4, and 17.8 μm bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15–20 μm emission variability.

  12. Is Perceptual Narrowing Too Narrow?

    ERIC Educational Resources Information Center

    Cashon, Cara H.; Denicola, Christopher A.

    2011-01-01

    There is a growing list of examples illustrating that infants are transitioning from having earlier abilities that appear more "universal," "broadly tuned," or "unconstrained" to having later abilities that appear more "specialized," "narrowly tuned," or "constrained." Perceptual narrowing, a well-known phenomenon related to face, speech, and…

  13. Impact of Conifer Forest Litter on Microwave Emission at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Cosh, Michael H.; Joseph, Alicia T.; Jackson, Thomas J.

    2011-01-01

    This study reports on the utilization of microwave modeling, together with ground truth, and L-band (1.4-GHz) brightness temperatures to investigate the passive microwave characteristics of a conifer forest floor. The microwave data were acquired over a natural Virginia Pine forest in Maryland by a ground-based microwave active/passive instrument system in 2008/2009. Ground measurements of the tree biophysical parameters and forest floor characteristics were obtained during the field campaign. The test site consisted of medium-sized evergreen conifers with an average height of 12 m and average diameters at breast height of 12.6 cm. The site is a typical pine forest site in that there is a surface layer of loose debris/needles and an organic transition layer above the mineral soil. In an effort to characterize and model the impact of the surface litter layer, an experiment was conducted on a day with wet soil conditions, which involved removal of the surface litter layer from one half of the test site while keeping the other half undisturbed. The observations showed detectable decrease in emissivity for both polarizations after the surface litter layer was removed. A first-order radiative transfer model of the forest stands including the multilayer nature of the forest floor in conjunction with the ground truth data are used to compute forest emission. The model calculations reproduced the major features of the experimental data over the entire duration, which included the effects of surface litter and ground moisture content on overall emission. Both theory and experimental results confirm that the litter layer increases the observed canopy brightness temperature and obscure the soil emission.

  14. Observational studies on the near-infrared unidentified emission bands in galactic H II regions

    SciTech Connect

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ohsawa, Ryou; Bell, Aaron C.; Ishihara, Daisuke; Shimonishi, Takashi

    2014-03-20

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I {sub 3.4-3.6} {sub μm}/I {sub 3.3} {sub μm} decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I {sub cont,} {sub 3.7} {sub μm}/I {sub 3.3} {sub μm}, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I {sub 9} {sub μm}/I {sub 18} {sub μm} also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I {sub Brα}/I {sub 3.3} {sub μm}. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  15. Evaluation of VIIRS and MODIS thermal emissive band calibration consistency using Dome C

    NASA Astrophysics Data System (ADS)

    Madhavan, Sriharsha; Wu, Aisheng; Brinkmann, Jake; Wenny, Brian; Xiong, Xiaoxiong

    2015-10-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is designed based on MODIS heritage and uses a similar on-board calibrating source - a V-grooved blackbody for the Thermal Emissive Bands (TEBs). Except for the 10.7 μm band, the central wavelengths of the rest of the VIIRS TEBs match well with MODIS. To ensure the continuity and consistency of data records between VIIRS and MODIS TEBs, it is important to assess any systematic differences between the two instruments for scenes with temperatures significantly lower than blackbody operating temperatures at ~290 K. In previous studies, the MODIS Calibration and Characterization Support Team (MCST) at NASA/GSFC uses recurrent observations of Dome C, Antarctica by both Terra and Aqua MODIS over the mission lifetime to track their calibration stability and consistency. Near-surface temperature measurements from an Automatic Weather Station (AWS) provide a proxy reference useful for tracking the stability and determining the relative bias between the two MODIS instruments. In this study, the same approach is applied to VIIRS TEBs and the results are compared with those from the matched MODIS TEBs. The results of this study provide a quantitative assessment for VIIRS TEBs performance over the first three years of the mission.

  16. On-orbit Characterization of RVS for MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V.; Chiang, K.; Wu, A.; Guenther, B.; Barnes, W.

    2004-01-01

    Response versus scan angle (RVS) is a key calibration parameter for remote sensing radiometers that make observations using a scanning optical system, such as a scan mirror in MODIS and GLI or a rotating telescope in SeaWiFS and VIIRS, since the calibration is typically performed at a fixed viewing angle while the Earth scene observations are made over a range of viewing angles. Terra MODIS has been in operation for more than four years since its launch in December 1999. It has 36 spectral bands covering spectral range from visible (VIS) to long-wave infrared (LWIR). It is a cross-track scanning radiometer using a two-sided paddle wheel scan mirror, making observations over a wide field of view (FOV) of +/-55 deg from the instrument nadir. This paper describes on-orbit characterization of MODIS RVS for its thermal emissive bands (TEB), using the Earth view data collected during Terra spacecraft deep space maneuvers (DSM). Comparisons with pre-launch analysis and early on-orbit measurements are also provided.

  17. A Narrow Amide I Vibrational Band Observed by Sum Frequency Generation Spectroscopy Reveals Highly Ordered Structures of a Biofilm Protein at the Air/Water Interface†

    PubMed Central

    Wang, Zhuguang; Morales-Acosta, M. Daniela; Li, Shanghao; Liu, Wei; Kanai, Tapan; Liu, Yuting; Chen, Ya-Na; Walker, Frederick J.; Ahn, Charles H.; Leblanc, Roger M.

    2016-01-01

    We characterized BslA, a bacterial biofilm protein, at the air/water interface using vibrational sum frequency generation spectroscopy and observed one of the sharpest amide I band ever reported. Combining methods of surface pressure measurements, thin film X-ray reflectivity, and atomic force microscopy, we showed extremely ordered BslA at the interface. PMID:26779572

  18. Optical study of narrow band gap InAsxSb1 -x (x =0 , 0.25, 0.5, 0.75, 1) alloys

    NASA Astrophysics Data System (ADS)

    Namjoo, Shirin; Rozatian, Amir S. H.; Jabbari, Iraj; Puschnig, Peter

    2015-05-01

    The structural, electronic, and optical properties of InAs, InSb, and their ternary alloys InAsxSb1 -x (x =0.25 , 0.5, 0.75) are investigated within density functional theory utilizing the wien2k package. We find that the lattice constants and bulk moduli as a function of x are in best agreement with Vegard's linear rule. When computing the electronic band structures with the modified Becke-Johnson exchange-correlation functional (mBJLDA), our results for the band gaps of InAs, InSb, and their ternary alloys are in good agreement with the available experimental results while the conventional Wu-Cohen generalized gradient approximation (GGA) functional leads to zero or close to zero band gaps. In particular, our mBJLDA results confirm experimental evidence that the minimum band gap occurs for As concentrations around x ≈0.3 . Furthermore, we investigate the dielectric function of these compounds within the random phase approximation using both the Wu-Cohen GGA and the mBJLDA functionals. While the mBJLDA results of our fully first-principles calculations show good agreement of the peak positions in ɛ2(ω ) with experiments, the peaks in the optical spectra based on the Wu-Cohen GGA band structure appear redshifted compared to experiment. We further identify the interband transitions responsible for the structures in the spectra. Looking at the optical matrix element, we note that the major peaks are dominated by transition from the Sb 5 p (As 4 p ) states to In s states for InSb and InAs0.25Sb0.75 (InAs, InAs0.75Sb0.25 , and InAs0.5Sb0.5 ).

  19. Crystal and electronic structures and high-pressure behavior of AgSO4, a unique narrow band gap antiferromagnetic semiconductor: LDA(+U) picture.

    PubMed

    Derzsi, Mariana; Stasiewicz, Juliusz; Grochala, Wojciech

    2011-09-01

    We demonstrate that DFT calculations performed with the local density approximation (LDA) allow for significantly better reproduction of lattice constants, the unit cell volume and the density of Ag(II)SO(4) than those done with generalized gradient approximation (GGA). The LDA+U scheme, which accounts for electronic correlation effects, enables the accurate prediction of the magnetic superexchange constant of this strongly correlated material and its band gap at the Fermi level. The character of the band gap places the compound on the borderline between a Mott insulator and a charge transfer insulator. The size of the band gap (0.82 eV) indicates that AgSO(4) is a ferrimagnetic semiconductor, and possibly an attractive material for spintronics. A bulk modulus of 27.0 GPa and a compressibility of 0.037 GPa(-1) were determined for AgSO(4) from the third-order Birch-Murnaghan isothermal equation of state up to 20 GPa. Several polymorphic types compete with the ambient pressure P-1 phase as the external pressure is increased. The P-1 phase is predicted to resist pressure-induced metallization up to at least 20 GPa.

  20. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  1. Predicted Fe II Spectra plus UV through sub-mm Emission Line Fluxes for Other Species Arising in Narrow Line Regions of AGNs

    NASA Astrophysics Data System (ADS)

    Verner, Ekaterina; Bruhweiler, F. C.; Wills, B. J.

    2009-01-01

    Optical and UV spectra indicate pronounced Fe II emission from multitudinous lines superposed on the underlying UV and optical continua of Seyferts and QSOs. Although the intrinsic UV of the these objects exhibit strong Fe II emission arising in higher density Broad Line Region (BLR) gas, observations at visual wavelengths indicate Fe II originating in both BLR and lower density Narrow Line Region (NLR) gas. Our modeling of observed intrinsic UV Fe II emission produces better fits with both BLR and NLR components. We have calculated a grid of photoionization models appropriate for NLR, spanning a range of number density [log (n/cm-3) = 1.0 to 8.0], photoionizing flux [log (Φ/cm-2 s-1) = 10.0-18.0], microturbulence (ξ = 0, 2, 10, and 20 km s-1), and abundance (0.1, 0.5, 1.0 and 5 times solar). These models include the effects of cooling from Fe II. The effects of Fe II cooling and the use of a 371 versus an 830-level atom for Fe II in producing the Fe II emission spectra are explored. We present predicted Fe II spectra from the UV through the IR, plus fluxes of important lines of other species from the UV through the sub-mm wavelength range. These predictions, besides being relevant for studies of Fe II in AGNs, provide predicted fluxes for important lines for upcoming missions such as Herschel and SOPHIA. These results will be made available to researchers via the World Wide Web. We acknowledge the support of the National Science Foundation through grant AST-0607465 to CUA.

  2. Use of IRI to Model the Effect of Ionosphere Emission on Earth Remote Sensing at L-Band

    NASA Technical Reports Server (NTRS)

    Abraham, Saji; LeVine, David M.

    2004-01-01

    Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.

  3. Impact of surface roughness on L-band emissivity of the sea ice

    NASA Astrophysics Data System (ADS)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  4. Alterations in Cochlear Function after Exposure to Short Term Broad Band Noise Assessed by Otoacoustic Emissions

    PubMed Central

    Reddy, Prasen; M M, Kavitha; Khavasi, Prabhu; Doddamani, S S

    2014-01-01

    Background: Sudden or chronic exposure to sound alters the functioning of cochlea. This results in temporary or permanent alteration of functioning of cochlear cells. Alteration of functioning of outer hair cells (OHC) of cochlea following exposure to noise can be assessed by measurement of transient otoacoustic emissions (TEOAE). Such a measurement is of great clinical importance in early detection of the damage to the OHC. Aim: In this study we aim to study effect of noise on outer hair cell function by studying the changes in TEOAE’s amplitude following exposure to short term broad band noise in healthy volunteers. Materials and Methods: Twenty volunteers’ ten males and ten females participated in the study. They underwent pure tone and impedance audiometry to rule out ear pathology. Then pre-exposure TEOAE’s were recorded. After that they were exposed to broad band noise for two minutes. After gap of five minutes again TEOAE’s were recorded. Pre and post exposure amplitude of TEOAE’s was analysed statistically.s Results: There was statistically significant difference between pre exposure and post-exposure amplitude of TEOAE’s. Pre and post exposure values for A & B amplitudes showed p-value of 0.0001 whereas values for A-B amplitude showed p-value of 0.0001. Conclusion: Measurement of TEOAE’s can detect early changes in the functioning of outer hair cells which cannot be picked by routine pure tone audiometry. Thus they can be used in assessing early changes in cochlear function following exposure to noise in individuals exposed to sudden noise or working in noisy environments. Thus preventive methods to reduce the noise induced hearing loss in such individuals can be implemented. PMID:25386468

  5. Narrow spectral emission CaMoO4: Eu3+, Dy3+, Tb3+ phosphor crystals for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Khanna, A.; Dutta, P. S.

    2013-02-01

    Alkaline earth metal molybdates are promising candidates as a host material for high efficiency narrow spectral emission phosphors. These phosphors could potentially be used for the fabrication of phosphor-converted light emitting diodes (pc-LEDs). Phosphor crystals of calcium molybdate doped with rare earth dopant Ln3+(Ln=Eu, Dy, Tb) grown using flux growth method have been shown to exhibit higher excitation efficiency than the powders synthesized by solid-state reaction process. Molybdenum (VI) oxide has been found to be a suitable flux for growing large size optically transparent high quality crystals at a temperature around 1100 °C. Using the excitation wavelengths of 465 nm, 454 nm and 489 nm for CaMoO4: Eu3+, CaMoO4: Dy3+ and CaMoO4: Tb3+, respectively, intense emission lines at wavelengths of 615 nm, 575 nm and 550 nm were observed. The optimized doping concentrations of 12%, 2% and 5% for Eu3+, Dy3+ and Tb3+, respectively, provided the highest luminescence intensity.

  6. The ground-based H-, K-, and L-band absolute emission spectra of HD 209458b

    SciTech Connect

    Zellem, Robert T.; Griffith, Caitlin A.; Deroo, Pieter; Swain, Mark R.; Waldmann, Ingo P.

    2014-11-20

    Here we explore the capabilities of NASA's 3.0 m Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 m Hale telescope with the TripleSpec spectrometer with near-infrared H-, K-, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L band indicate bright emission hypothesized to result from non-LTE CH{sub 4} ν{sub 3} fluorescence. We do not detect a similar bright 3.3 μm feature to ∼3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations that overlap the H, K, and L bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

  7. The ROSCOE manual. Volume 28-1: Molecular band model parameters for thermal emissions: Expanded wavelength coverage

    NASA Astrophysics Data System (ADS)

    Stephens, T. L.; Klein, A. L.

    1981-01-01

    The spectral range of band model parameters for the ROSCOE thermal emission has been extended to cover the 2- to 100-micron region. Sources for the new parameter compilation are documented, and graphical representations of the parameters at selected temperatures are presented.

  8. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  9. The origin of yellow band emission and cathodoluminescence of Au-catalyzed wurtzite GaN nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, R. S.; Jiao, J. F.; Wu, X.

    2016-06-01

    GaN nanowires with large yield are directly synthesized by simply ammoniating the gallium oxide powders in the presence of ammonia gas at 1000 °C, under the assistance of Au nanocatalysts. The microstructure and crystallinity of as-synthesized GaN nanowires are well studied by using high-resolution transmission electron microscope (HRTEM) and some structural defects such as stacking faults are found in the GaN nano-crystal. Cathodoluminescence measurement shows that a strong near-band-edge (NBE) emission band centered at 384 nm and a broad yellow band in the range of 500-800 nm are observed. Finally, the growth mechanism and possible optical emission process of GaN nanowires are discussed.

  10. Design concepts for a high-impedance narrow-band 42 GHz power TWT using a fundamental/forward ladder-based circuit

    NASA Technical Reports Server (NTRS)

    Karp, A.

    1980-01-01

    A low-cost, narrowband, millimeter wave space communications TWT design was studied. Cold test interaction structure scale models were investigated and analyses were undertaken to predict the electrical and thermal response of the hypothetical 200 W TWT at 42 GHz and 21 kV beam voltage. An intentionally narrow instantaneous bandwidth (1%, with the possibility of electronic tuning of the center frequency over several percent) was sought with a highly dispersive, high impedance "forward wave' interaction structure based on a ladder (for economy in fabrication) and nonspace harmonic interaction, for a high gain rate and a short, economically focused tube. The "TunneLadder' interaction structure devised combines ladder properties with accommodation for a pencil beam. Except for the impedance and bandwidth, there is much in common with the millimeter wave helix TWTs which provided the ideal of diamond support rods. The benefits of these are enhanced in the TunneLadder case because of spatial separation of beam interception and RF current heating.

  11. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS2 and Metal/WSe2 Heterojunctions

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Ezhilarasu, Goutham; Chatzakis, Ioannis; Dhall, Rohan; Chen, Chun-Chung; Cronin, Stephen

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds, therefore make more `ideal' Schottky junctions than bulk semiconductors, which produce recombination centers at the interface with metals, inhibiting charge transfer. Here, we observe a more than 10X enhancement in the indirect band gap PL of TMDCs deposited on various metals, while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2, and subsequently recombine radiatively with minority holes. Since the conduction band at the K-point is 0.5eV higher than at the Σ-point, a lower Schottky barrier of the Σ-point band makes electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wavefunctions in the metal. This enhancement only occurs for thick flakes, and is absent in monolayer and few-layer flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures. Reference: DOI: 10.1021/acs.nanolett.5b00885

  12. Narrow spectral emission CaMoO{sub 4}: Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+} phosphor crystals for white light emitting diodes

    SciTech Connect

    Khanna, A.; Dutta, P.S.

    2013-02-15

    Alkaline earth metal molybdates are promising candidates as a host material for high efficiency narrow spectral emission phosphors. These phosphors could potentially be used for the fabrication of phosphor-converted light emitting diodes (pc-LEDs). Phosphor crystals of calcium molybdate doped with rare earth dopant Ln{sup 3+}(Ln=Eu, Dy, Tb) grown using flux growth method have been shown to exhibit higher excitation efficiency than the powders synthesized by solid-state reaction process. Molybdenum (VI) oxide has been found to be a suitable flux for growing large size optically transparent high quality crystals at a temperature around 1100 Degree-Sign C. Using the excitation wavelengths of 465 nm, 454 nm and 489 nm for CaMoO{sub 4}: Eu{sup 3+}, CaMoO{sub 4}: Dy{sup 3+} and CaMoO{sub 4}: Tb{sup 3+}, respectively, intense emission lines at wavelengths of 615 nm, 575 nm and 550 nm were observed. The optimized doping concentrations of 12%, 2% and 5% for Eu{sup 3+}, Dy{sup 3+} and Tb{sup 3+}, respectively, provided the highest luminescence intensity. - Graphical Abstract: CaMoO{sub 4}: Eu{sup 3+} phosphor crystals grown using a molybdenum (VI) oxide flux exhibited around 1.5 times the emission intensity of powders obtained from solid-state reaction at the same synthesis temperature. These crystals were found to efficiently emit 615 nm red light when excited by near UV light up to a wavelength of 395 nm. Highlights: Black-Right-Pointing-Pointer CaMoO{sub 4}: Ln{sup 3+} (Ln=Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}) phosphor crystals were successfully grown using high temperature flux (solutions) containing molybdenum (VI) oxide or lithium chloride. Black-Right-Pointing-Pointer Narrow spectral emission at 615 nm, 575 nm and 550 nm, respectively, was observed from CaMoO{sub 4}: Ln{sup 3+} (Ln=Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}) phosphor crystals. Black-Right-Pointing-Pointer The optimized doping concentrations of Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+} in CaMoO{sub 4} for highest

  13. C{sub 2} swan band emission intensity as a function of C{sub 2} density.

    SciTech Connect

    Goyette, A. N.; Lawler, J. E.; Anderson, L. W.; Gruen, D. M.; McCauley, T. G.; Zhou, D.; Krauss, A. R.; Univ. of Wisconsin

    1998-05-01

    We report the systematic comparison of the optical emission intensity of the d {sup 3}{Pi} {yields} a {sup 3}{Pi} (0, 0) vibrational band of the C{sub 2} Swan system with the absolute C{sub 2} concentration in Ar/H{sub 2}/CH{sub 4} and Ar/H{sub 2}/C{sub 60} microwave plasmas used in the deposition of nanocrystalline diamond. The absolute C{sub 2} concentration is obtained using white-light absorption spectroscopy. Emission intensity correlates linearly with C{sub 2} density for variations of several plasma parameters and across two decades of species concentration. Although optical emission intensity generally is not an accurate quantitative diagnostic for gas phase species concentrations, these results confirm the reliability of the (0,0) Swan band for relative determination of C{sub 2} density with high sensitivity under conditions used for hydrogen-deficient plasma-enhanced chemical vapor deposition of diamond.

  14. Monitoring MRK 509: The Origin of the Reprocessor and Broad Band X-ray Spectrum of Narrow Line Seyfert 1 AKN 564

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Leighly, Karen M.

    1998-01-01

    The ten monitoring observations of Mrk 509 were made successfully between October 20 and November 26 last year. These observations were simultaneously with RXTE observations. A preliminary analysis of the RXTE observations has been done, and the light curve is shown in figure 1. Our aim in this experiment is to determine the location of the emission region of the reflection component by reverberation mapping. This component could be emitted from the accretion disk, within 100 Scwartzschild radii (R(sub s)) from the source. Note that the monitoring interval of 2.5 days corresponds to 100 R(sub s) for a 2 x 10(exp 8) solar mass black hole, which may be appropriate for this luminous object. In that case, we would expect the reflected component to vary along the direct flux, and there should be no spectral variability between observations. Alternatively, the reflected emission could come from the molecular torus, several parsecs from the nucleus. In that case, the reflection component flux should not vary. The light curve in figure 1 shows that during the monitoring period, the target varied in an ideal way, since significant variability was observed between observations and yet the most rapid variability is apparently sampled. The analysis of this data is not yet completed. The measurement of the reflection component in the combined ASCa and RXTE spectra depends critically on the RXTE background subtraction and calibration, but these have not yet progressed to the point where the analysis can be done.

  15. Optical Observations of the Nearby Galaxy IC342 With Narrow Band [S II] and Hα Filters. II - Detection of 16 Optically-Identified Supernova Remnant Candidates

    NASA Astrophysics Data System (ADS)

    Vučetić, M. M.; Ćiprijanović, A.; Pavlović, M. Z.; Pannuti, T. G.; Petrov, N.; Göker, Ü. D.; Ercan, E. N.

    2015-12-01

    We present the detection of 16 optical supernova remnant (SNR) candidates in the nearby spiral galaxy IC342. The candidates were detected by applying [S II]/Hα ratio criterion on observations made with the 2 m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper, we report the coordinates, diameters, Hα and [S II] fluxes for 16 SNRs detected in two fields of view in the IC342 galaxy. Also, we estimate that the contamination of total Hα flux from SNRs in the observed portion of IC342 is 1.4 percent. This would represent the fractional error when the star formation rate (SFR) for this galaxy is derived from the total galaxy's Hα emission.

  16. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: implications of the interfacial charge transfer (IFCT).

    PubMed

    Rtimi, S; Sanjines, R; Pulgarin, C; Houas, A; Lavanchy, J-C; Kiwi, J

    2013-09-15

    This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N₂ and O₂ led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta₂O₅ and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag₂O and Ag(0), and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag₂O conduction band (cb) to the lower laying Ta₂O₅ (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation.

  17. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: implications of the interfacial charge transfer (IFCT).

    PubMed

    Rtimi, S; Sanjines, R; Pulgarin, C; Houas, A; Lavanchy, J-C; Kiwi, J

    2013-09-15

    This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N₂ and O₂ led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta₂O₅ and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag₂O and Ag(0), and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag₂O conduction band (cb) to the lower laying Ta₂O₅ (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation. PMID:23867967

  18. Passive L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; van der Velde, R.; O'Neill, P. E.; Kim, E. J.; Lang, R. H.; Gish, T. J.

    2012-12-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (TB's) measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These TB measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly TB's could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly TB. Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, hr, on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on TB simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent hr parameterization was responsible for the largest error reduction of TB simulations in the early growth cycle. A.T. Joseph, R. Van der Velde, P.E. O'Neill, R.H. Lang, and T. Gish, "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations", IEEE Transactions on Geoscience and Remote Sensing, vol. 46, DOI:10.1109/TGRS.2008.917214, Aug. 2008. M.C. Dobson, F.T. Ulaby, M

  19. Space Telescope Imaging Spectrograph Long-Slit Spectroscopy of the Narrow-Line Region of NGC 4151. 1; Kinematics and Emission-Line Ratios

    NASA Technical Reports Server (NTRS)

    Nelson, C. H.; Weistrop, D.; Hutchinson, J. B.; Crenshaw, D. M.; Gull, T. R.; Kaiser, M. E.; Kraemer, S. B.; Lindler, D.

    2003-01-01

    Long-slit spectra of the Seyfert galaxy NGC 4151 from the UV to the near-infrared have been obtained with the Space Telescope Imaging Spectrograph (STIS) to study the kinematics and physical conditions in the narrow-line region (NLR). The kinematics shows evidence for three components, a low-velocity system in normal disk rotation, a high-velocity system in radial outflow at a few hundred kilometers per second relative to the systemic velocity, and an additional high-velocity system also in outflow with velocities up to 1400 km s(-l), in agreement with results from STIS slitless spectroscopy. We have explored two simple kinematic models and suggest that radial outflow in the form of a wind is the most likely explanation. We also present evidence indicating that the wind may be decelerating with distance from the nucleus. We find that the emission-line ratios along our slits are all entirely consistent with photoionization from the nuclear continuum source. A decrease in the ratios [O III] lambda 5007/H beta and [O III] lambda 5007/[O II] lambda 3727 suggests that the density decreases with distance from the nucleus. This trend is borne out by the [S II] ratios as well. We find no strong evidence for interaction between the radio jet and the NLR gas in either the kinematics or the emission-line ratios, in agreement with the recent results of Kaiser et al., who found no spatial coincidence of NLR clouds and knots in the radio jet. These results are in contrast to other recent studies of nearby active galactic nuclei that find evidence for significant interaction between the radio source and the NLR gas.

  20. A narrow view of the broad iron line in MCG --6-30-15

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Lee, J. C.; Reynolds, C. S.; Fabian, A. C.; Gibson, R.; Canizares, C. R.

    2004-12-01

    We present the deepest Chandra High Energy Transmission Grating Spectrometer observation of the Seyfert 1 galaxy MCG --6-30-15 to date. Concentrating on the hard X-ray band we note the continued presence of the relativistically broadened iron Kα fluorescence line, and discuss the various narrow emission and absorption features in this band. In particular, we find narrow, weak H- and He-like iron absorption lines, but no evidence of K-shell absorption lines from less highly ionized iron, supporting the relativistic disk line interpretation of the broad iron line. This work is supported by NASA contract NAS8-01129.

  1. Large-amplitude, narrow-linewidth microwave emission in a dual free-layer MgO spin-torque oscillator

    SciTech Connect

    Nagasawa, Tazumi Kudo, Kiwamu; Suto, Hirofumi; Mizushima, Koichi; Sato, Rie

    2014-11-03

    Synchronized magnetization motion among the several magnetic layers composing a spin-torque oscillator (STO) is considered an effective way to improve spectral purity. To utilize this scheme in a MgO-based STO, we have fabricated a dual free-layer STO composed of a CoFeB free layer (FL), a MgO barrier layer, and a CoFe/Ru/CoFeB synthetic ferrimagnet free layer (SyF). Unlike conventional MgO-based STOs, this structure does not have an antiferromagnetic layer that pins the SyF, leading to a large-amplitude oscillation of magnetization in the SyF. The dual free-layer STO exhibits coherent microwave emissions with power spectrum density beyond 800 nW/GHz and narrow spectral linewidth below 5 MHz (Q-factor ≈ 2000). Macrospin simulations confirm that the stable oscillations originate from the synchronized magnetization motion of the FL and the SyF through dynamical dipolar coupling.

  2. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Doi, Akihiro; Asada, Keiichi; Inoue, Makoto; Fujisawa, Kenta; Nagai, Hiroshi; Hagiwara, Yoshiaki; Wajima, Kiyoaki

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  3. DETECTION OF K{sub S} -BAND THERMAL EMISSION FROM WASP-3b

    SciTech Connect

    Zhao Ming; Wright, Jason; Milburn, Jennifer; Hinkley, Sasha; Barman, Travis; Swain, Mark R.; Monnier, John D.

    2012-03-20

    We report the detection of thermal emission from the hot Jupiter WASP-3b in the K{sub S} band, using a newly developed guiding scheme for the WIRC instrument at the Palomar Hale 200 inch telescope. Our new guiding scheme has improved the telescope guiding precision by a factor of {approx}5-7, significantly reducing the correlated systematics in the measured light curves. This results in the detection of a secondary eclipse with depth of 0.181% {+-} 0.020% (9{sigma})-a significant improvement in WIRC's photometric precision and a demonstration of the capability of Palomar/WIRC to produce high-quality measurements of exoplanetary atmospheres. Our measured eclipse depth cannot be explained by model atmospheres with heat redistribution but favors a pure radiative equilibrium case with no redistribution across the surface of the planet. Our measurement also gives an eclipse phase center of 0.5045 {+-} 0.0020, corresponding to an ecos {omega} of 0.0070 {+-} 0.0032. This result is consistent with a circular orbit, although it also suggests that the planet's orbit might be slightly eccentric. The possible non-zero eccentricity provides insight into the tidal circularization process of the star-planet system, but might also have been caused by a second low-mass planet in the system, as suggested by a previous transit timing variation study. More secondary eclipse observations, especially at multiple wavelengths, are necessary to determine the temperature-pressure profile of the planet's atmosphere and shed light on its orbital eccentricity.

  4. Methane oxidation behind reflected shock waves: Ignition delay times measured by pressure and flame band emission

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Robertson, T. F.

    1986-01-01

    Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure trances enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 58.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microsecond should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 micro sec) for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.

  5. L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; va der Velde, R.; O'Neill, P. E.; Kim, E.; Lang, R. H.; Gish, T.

    2012-01-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle.

  6. Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities

    NASA Technical Reports Server (NTRS)

    Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.

    1984-01-01

    A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.

  7. Effect of N2 and H2 plasma treatments on band edge emission of ZnO microrods

    PubMed Central

    Rodrigues, Joana; Holz, Tiago; Fath Allah, Rabie; Gonzalez, David; Ben, Teresa; Correia, Maria R.; Monteiro, Teresa; Costa, Florinda M.

    2015-01-01

    ZnO microrods were grown by laser assisted flow deposition technique in order to study their luminescence behaviour in the near band edge spectral region. Transmission electron microscopy analysis put in evidence the high crystallinity degree and microrod’s compositional homogeneity. Photoluminescence revealed a dominant 3.31 eV emission. The correlation between this emission and the presence of surface states was investigated by performing plasma treatments with hydrogen and nitrogen. The significant modifications in photoluminescence spectra after the plasma treatments suggest a connexion between the 3.31 eV luminescence and the surface related electronic levels. PMID:26027718

  8. Investigating the Origin of Upper-Side-Band Distortion-Product Otoacoustic Emissions within a Micromechanical Cochlear Model

    NASA Astrophysics Data System (ADS)

    Young, J.; Elliott, S. J.; Lineton, B.

    2011-11-01

    Upper-side-band distortion-product otoacoustic emissions (DPOAEs) have a higher frequency than either of the stimulus tones (f1 and f2). They are less widely used in clinical practice and their generation is more difficult to understand in comparison to lower side band DPOAEs. We have developed a numerical quasilinear model of the cochlea based on the work of Kanis and de Boer. The model is applied to investigate the source of the 2f2-f1 upper-side-band DPOAE using several complementary approaches, including a novel method of decomposing the predicted cochlear response into forward and backward travelling waves. We conclude that the simulated 2f2-f1 distortion product (DP) consists of contributions from two source mechanisms: A distributed distortion source encompassing both the DP and f2 characteristic places, and a reflection source at the DP characteristic place.

  9. Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe2)

    NASA Astrophysics Data System (ADS)

    Froehlicher, Guillaume; Lorchat, Etienne; Berciaud, Stéphane

    2016-08-01

    We probe the room temperature photoluminescence of N -layer molybdenum ditelluride (MoTe2) in the continuous wave (cw) regime. The photoluminescence quantum yield of monolayer MoTe2 is three times larger than in bilayer MoTe2 and 40 times greater than in the bulk limit. Mono- and bilayer MoTe2 display almost symmetric emission lines at 1.10 and 1.07 eV, respectively, which predominantly arise from direct radiative recombination of the A exciton. In contrast, N ≥3 -layer MoTe2 exhibits a much reduced photoluminescence quantum yield and a broader, redshifted, and seemingly bimodal photoluminescence spectrum. The low- and high-energy contributions are attributed to emission from the indirect and direct optical band gaps, respectively. Bulk MoTe2 displays a broad emission line with a dominant contribution at 0.94 eV that is assigned to emission from the indirect optical band gap. As compared to related systems (such as MoS2,MoSe2,WS2, and WSe2), the smaller energy difference between the monolayer direct optical band gap and the bulk indirect optical band gap leads to a smoother increase of the photoluminescence quantum yield as N decreases. In addition, we study the evolution of the photoluminescence intensity in monolayer MoTe2 as a function of the exciton formation rate Wabs up to 3.6 ×1022cm-2s-1 . The line shape of the photoluminescence spectrum remains largely independent of Wabs, whereas the photoluminescence intensity grows sublinearly above Wabs˜1021cm-2s-1 . This behavior is assigned to exciton-exciton annihilation and is well captured by an elementary rate equation model.

  10. Research on effect of emission uniformity on X-band relativistic backward oscillator using conformal PIC code

    NASA Astrophysics Data System (ADS)

    Chen, Zaigao

    2016-07-01

    Explosive emission cathodes (EECs) are adopted in relativistic backward wave oscillators (RBWOs) to generate intense relativistic electron beam. The emission uniformity of the EEC can render saturation of the power generation unstable and the output mode impure. However, the direct measurement of the plasma parameters on the cathode surface is quite difficult and there are very few related numerical study reports about this issue. In this paper, a self-developed three-dimensional conformal fully electromagnetic particle in cell code is used to study the effect of emission uniformity on the X-band RBWO; the electron explosive emission model and the field emission model are both implemented in the same cathode surface, and the local field enhancement factor is also considered in the field emission model. The RBWO with a random nonuniform EEC is thoroughly studied using this code; the simulation results reveal that when the area ratio of cathode surface for electron explosive emission is 80%, the output power is unstable and the output mode is impure. When the annular EEC does not emit electron in the angle range of 30°, the RBWO can also operate normally.

  11. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure

    NASA Astrophysics Data System (ADS)

    Huang, Zhong-Mei; Huang, Wei-Qi; Liu, Shi-Rong; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke; Qin, Cao-Jian

    2016-04-01

    In our experiment, it was observed that the emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional (1D) structure. The results of experiment and calculation demonstrate that the uniaxial tensile strain in the (111) and (110) direction can efficiently transform Ge to a direct bandgap material with the bandgap energy useful for technological application. It is interested that under the tensile strain from Ge-GeSn layers on 1D structure in which the uniaxial strain could be obtained by curved layer (CL) effect, the two bandgaps EΓg and ELg in the (111) direction become nearly equal at 0.83 eV related to the emission of direct-gap band near 1500 nm in the experiments. It is discovered that the red-shift of the peaks from 1500 nm to 1600 nm occurs with change of the uniaxial tensile strain, which proves that the peaks come from the emission of direct-gap band.

  12. Wavelength Shifts of the 7.7 Micron Emission Band in Reflection Nebulae

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Temi, Pasquale

    2003-01-01

    Using spatial-spectral data cubes of reflection nebulae obtained by ISOCAM, we have observed a shift in the central wavelength of the 7.7 micron band within several reflection nebulae. The band shifts progressively from approx. 7.8 microns near the edge of the nebulae to approx. 7.6 microns towards the center of the nebulae. The ratio of the 11.3/7.7 micron bands also changes with distance from the central star, first rising from the center towards the edge of the nebula, then falling at the largest distances from the star, consistent with the 11.3/7.7 micron band ratio being controlled by the PAH ionization state. The behavior of the 7.7 micron band center can be explained either by assuming that anions are the origin of the 7.85 micron band and cations the 7.65 micron band, or that the band center wavelength depends on the chemical nature of the PAHs.

  13. Calculated hydroxyl A2 sigma --> X2 pi (0, 0) band emission rate factors applicable to atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Ha, Y. L.; Jiang, Y.; Morgan, M. F.; Yung, Y. L.; Sander, S. P.

    1997-01-01

    A calculation of the A2 sigma --> X2 pi (0, 0) band emission rate factors and line center absorption cross sections of OH applicable to its measurement using solar resonant fluorescence in the terrestrial atmosphere is presented in this paper. The most accurate available line parameters have been used. Special consideration has been given to the solar input flux because of its highly structured Fraunhofer spectrum. The calculation for the OH atmospheric emission rate factor in the solar resonant fluorescent case is described in detail with examples and intermediate results. Results of this calculation of OH emission rate factors for individual rotational lines are on average 30% lower than the values obtained in an earlier work.

  14. The circumstellar dust envelopes of red giant stars. I - M giant stars with the 10-micron silicate emission band

    NASA Technical Reports Server (NTRS)

    Hashimoto, O.; Nakada, Y.; Onaka, T.; Kamijo, F.; Tanabe, T.

    1990-01-01

    Spherical dust envelope models of red giant stars are constructed by solving the radiative transfer equations of the generalized two-stream Eddington approximation. The IRAS observations of M giant stars which show the 10-micron silicate emission band in IRAS LRS spectra are explained by the models with the dirty silicate grains with K proportional to lambda exp -1.5 for lambda greather than 28 microns. Under the assumption of steady mass flow in the envelope, this model analysis gives the following conclusions: (1) the strength of the silicate emission peak at 10 microns is a good indicator of the mass loss rate of the star, (2) no stars with the 10-microns silicate emission feature are observed in the range of mass loss rate smaller than 7 x 10 to the -8th solar mass/yr, and (3) the characteristic time of the mass loss process of M stars does not exceed a few 10,000 years.

  15. Synchrotron studies of narrow band materials

    SciTech Connect

    Not Available

    1992-01-01

    Since last year, we have had three 3-week blocks of beamtime, in April and November 1991 and February 1992, on the Ames/Montana beamline at the Wisconsin Synchrotron Radiation Center (SRC). These runs continued our program on high temperature superconductors, heavy Fermion and related uranium and rare earth materials, and started some work on transition metal oxides. We have also had beamtime at the Brookhaven NSLS, 5 days of beamtime on the Dragon monochromator, beamline U4B, studying resonant photoemission of transition metal oxides using photon energies around the transition metal 2p edges. Data from past runs has been analyzed, and in some cases combined with photoemission and bremsstrahlung isochromat spectroscopy (BIS) data taken in the home U-M lab. 1 fig.

  16. The Influence of Martian Global Dust Storm 2001A on CO2 Hot Band Emission As Observed by the Thermal Emission Spectrometer

    NASA Astrophysics Data System (ADS)

    Maguire, W. C.; Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Kutepov, A. A.; Christensen, P. R.

    2002-09-01

    The Thermal Emission Spectrometer on Mars Global Surveyor observed the genesis and evolution of a major dust storm beginning on 26 June 2001 at areocentric longitude Ls = 185 deg. The atmospheric temperature at 0.5 mbar ( 25 km above the surface) reached a maximum for 200 deg < Ls < 220 deg( 23 July 2001 to 23 August 2001). The middle atmosphere temperature was 40K warmer during this time than the corresponding Ls interval ( 4 September 1999 to 6 October 1999) in the previous Martian year. (Smith et al., Icarus 157 , 259-263 (2001)). The altitude of the region of nonlocal thermodynamic equilibrium (non-LTE) emission from the 10μ m CO2 hot bands rose 10 km compared to the earlier time. We present preliminary modeling of this emission region, comparing it to our previous modeling of non-LTE CO2 hot band seasonal variation (Maguire et al., J.G.R. 107, 10.1029/2001JE001516, 2002). This work was supported in part by the NASA Mars Data Analysis Program.

  17. Imaging Jupiter's aurorae from H3+ emissions in the 3-4 micrometers band.

    PubMed

    Baron, R; Joseph, R D; Owen, T; Tennyson, J; Miller, S; Ballester, G E

    1991-10-10

    Since H3+ was first spectroscopically detected on Jupiter, there has been considerable interest in using this simple molecular ion to probe conditions existing in the planet's auroral regions. Here we present a series of images of Jupiter recorded at wavelengths sensitive to emission by H3+, which reveal the spatial distribution of excited H3+ molecular ions in the jovian ionosphere, as seen from Earth. We believe that they provide high-spatial-resolution images of polar aurorae on Jupiter. They suggest that the intensity of the auroral emission can vary on a timescale of an hour, a shorter period than had previously been noted. We also find that the spatial distribution of H3+ emissions correlates only partially with the loci of auroral activity inferred from ultraviolet and longer-wavelength infrared observations. The H3+ emission may therefore be controlled by auroral processes that are different from those responsible for the ultraviolet and infrared emissions.

  18. DOMEX-2 Ground-Based Antarctic L-Band Emission Measurements: a Contribution to Smos Calibration

    NASA Astrophysics Data System (ADS)

    Drinkwater, M. R.; Macelloni, G.; Brogioni, M.; Pettinato, S.

    2010-12-01

    In recent years, interest has grown in the remote sensing community for using the Antarctic ice sheet for calibrating and validating data from low-frequency satellite-borne microwave radiometers such as SMOS, Aquarius and SMAP. In particular, the East Antarctic Plateau Dome-C region around the Concordia Station appears to be particularly suited for this purpose. The specific characteristics of this region of interest are its size, structure, spatial homogeneity and thermal stability as well as frequent overpasses of these polar-orbiting satellites. In-situ measurements indicate that the roughness is limited with respect to other Antarctic areas and the temperature of the firn below 10 m remains stable on multiyear timescales. This attribute is particularly interesting for low-frequency microwave radiometers since, due to the low extinction of dry snow, the upper ice sheet layer is almost transparent and the brightness temperature (Tb) variability therefore predicted to be extremely small. At the year-round Italian-French base of Concordia ancillary data such as atmospheric parameters and snow temperature at different depths are routinely acquired as a basis for the analysis and the interpretation of satellite microwave data. Meanwhile, a first pilot experiment, called DOMEX-1 carried out an austral summer Antarctic campaign in November 2004- December 2005 to demonstrate the short-term brightness temperature stability at monthly scale. With the November 2009 launch of the European Space Agency’s SMOS satellite, a corresponding second experiment called DOMEX-2 was initiated in the Austral summer 2008-2009 with the goal to verify the assumption of year-round stability and suitability of the ice sheet as an external calibration reference target. The primary objectives of DOMEX-2 are to provide an independent source of stable reference data for SMOS satellite calibration and in particular: continuous acquisition of a calibrated time series of microwave (L-band) and

  19. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  20. Lugol chromo-endoscopy versus narrow band imaging for endoscopic screening of esophageal squamous-cell carcinoma in patients with a history of cured esophageal cancer: a feasibility study.

    PubMed

    Lecleire, S; Antonietti, M; Iwanicki-Caron, I; Duclos, A; Lemoine, F; Pessot, F L; Michel, P; Ducrotté, P; Di Fiore, F

    2011-08-01

    To date, Lugol chromo-endoscopy is the reference technique to detect an esophageal neoplasia in patients with prior esophageal squamous-cell carcinoma (ESCC), but is not easy to perform without general anesthesia, which can limit its use in routine practice. The objective of this study were to compare the accuracy of white light, narrow band imaging (NBI), and Lugol to detect esophageal neoplasia in patients with a history of cured ESCC, in a prospective study. Thirty patients were prospectively included between June 2006 and June 2009. They all had a history of cured ESCC. Esophageal mucosa was examined first using white light, second NBI, and third after Lugol staining. Histology was obtained in all abnormalities detected by white light, NBI, and/or Lugol. Five neoplastic lesions in five different patients were identified at histology, four cancers, and one high-grade dysplasia. NBI and Lugol both detected all esophageal neoplastic lesions, whereas white light detected the four cancers but missed the high-grade dysplasia. In this feasibility study, NBI and Lugol both detected all identified esophageal neoplasia in very high-risk patients of ESCC. This result suggests that NBI could be used instead of Lugol to detect an esophageal neoplasia in patients with high risk of ESCC, but needs to be confirmed in a larger study.

  1. Optimal fluorescence excitation and emission bands for detection of fecal contamination.

    PubMed

    Kim, Moon S; Lefcourt, Alan M; Chen, Yud-Ren

    2003-07-01

    Fecal contamination of food products is a critical health issue. To test the feasibility of the use fluorescent techniques to detect fecal contamination, fluorescence excitation and emission characteristics of fecal matter from cows, deer, swine, chickens, and turkeys in the UV to far-red regions of the spectrum were evaluated. To allow the optimization of the detection of fecal contamination on animal carcasses and cut meats, emission-excitation spectra of the feces were compared with spectra for animal meats. The feedstuffs for the swine, chickens, and turkeys were also analyzed. Excitation at approximately 410 to 420 nm yielded the highest level of fluorescence for both feces and feedstuffs. Emission maxima were in the red region (at 632 nm for chicken feces and at 675 nm for the feces of the other species). The major constituent responsible for emission at 632 nm was tentatively identified as protoporphyrin IX; emission at 675 nm most likely emanates from chlorophyll a or its metabolites. Animal meats emitted strong fluorescence in the blue-green regions, but no emission peaks were observed in the red region for these meats. These results suggest that fluorescence emissions from naturally occurring chlorophyll a and its metabolites are good markers for fecal contamination and that with excitation at 410 to 420 nm, the responses of fecal matter can easily be differentiated from the responses of animal meats. We suggest that the detection of fecal contamination can be enhanced by requiring a minimum chlorophyll a content in the finishing diets of all farm animals.

  2. High resolution vacuum ultraviolet emission spectrum of D2: the B' 1Sigmau+-->X 1Sigmag+ band system.

    PubMed

    Roudjane, Mourad; Tchang-Brillet, W-U Lydia; Launay, Françoise

    2007-08-01

    In this work, we have extended our previous high resolution study of the vacuum ultraviolet emission spectrum of the D2 molecule [M. Roudjane, et al. J. Chem. Phys. 125, 214305 (2006)] up to 124.2 nm in order to investigate the B' 1Sigmau+-->X 1Sigmag+ band system. The analysis of the spectrum has been carried out by means of a complex spectrum visual identification code IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656, (1993)] and supported by theoretical calculations using ab initio data [L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); G. Staszewska and L. Wolniewicz, J. Mol. Spectrosc. 212, 208 (2002); L. Wolniewicz and G. Staszewska, 220, 45 (2003)] which provided level energies and transition probabilities. More than 1480 new emission lines have been observed and 109 bands belonging to the B' 1Sigmau+-->X 1Sigmag+ system have been identified between 84.1 and 121.6 nm. Except for the upsilon'-0 bands that were reported in absorption [I. Dabrowski and G. Herzberg, Can. J. Phys. 52, 1110 (1974)], all the upsilon'-upsilon" bands are reported here for the first time. The analysis led to the determination of 111 rovibronic energy levels in the B' 1Sigmau+ state, of which 31 with higher rotational numbers J are new. Observed perturbations are accounted for through a set of coupled equations involving the four excited electronic states B 1Sigmau+, B' 1Sigmau+, C 1Piu, and D 1Piu and including nonadiabatic couplings. The solution of this set provides the percent contribution of these four states to each of the observed rovibronic level.

  3. Detection of CO Cameron band emission in comet P/Hartley 2 (1991 XV) with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.; Feldman, P. D.; Mcphate, J. B.; A'Hearn, M. F.; Arpigny, C.; Smith, T. E.

    1994-01-01

    Ultraviolet (UV) spectra of comet P/Hartley 2 (1991 XV) taken with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) in 1991 September reveal several bands of the Cameron system of CO (a 3 Pi-X 1 Sigma). These band are most likely due to 'prompt' emission from CO2 and, thus, provide a direct tracer of the CO2 abundance in the nucleus. Photodissociative excitation of CO2 is probably the largest contributor to the Cameron band emission, but significant contributions from electron impact excitation of CO, electron impact dissociation of CO2, and dissociative recombination of CO2(+), are also possible. Using our estimate that photodissociative excitation is responsible for approximately 60% of the total excitation of the Cameron system, we derive Q(sub CO2) approximately 2.6 x 10(exp 27) molecules/s, which implies CO2/H20 approximately 4%. If all of the Cameron band emission is due to photodissociative excitation, then CO2/H2O = 7 +/- 2%. For the largest possible contributions from the other excitation mechanisms considered, the CO2 abundance could be as a small as aproximately 2-3%. We did not detect CO Fourth Positive Group emission in our data and derive an upper limit of CO/H2O less than or equal to 1% (3 sigma) for CO coming directly from the nucleus. Comparison of the relative CO2 and CO abundances in P/Hartley 2 to those in P/Halley (CO2/H2O approximately 3%-4%, CO/H20 approximately 4% for the nucleus source) indicates that selective devolatilization of the nucleus may have occurred for P/Hartley 2. A relatively large CO2/CO ratio (i.e., approximately greater than 1) seems to be a common property of cometary nuclei. Since gas phase chemistry, in either the solar nebula or the interstellar medium (ISM), appears incapable of producing large relative CO2 abundances, the CO2 in cometary nuclei is probably produced either by UV and/or cosmic ray irradiation of ISM grains prior to the formation of the Solar System, or by condensation

  4. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling...

  5. Resonant soft-x-ray emission study in relation to the band structure of cBN

    SciTech Connect

    Agui, A.; Shin, S.; Fujisawa, M.; Tezuka, Y.; Ishii, T.; Muramatsu, Y.; Mishima, O.; Era, K.

    1997-01-01

    The resonant soft-x-ray emission (SXE) and its total photon yield (TPY) spectra were measured at the B 1s and N 1s edges of cubic boron nitride (cBN) using undulator radiation. The band-gap energy was found to be about 6.2 eV, which is in good agreement with other experiments. It was found that the emission from the high symmetry point in the SXE spectrum is enhanced when the same high symmetry point in the TPY spectrum is excited. The line shapes in both the SXE and N 1s TPY spectra were consistent with the calculated partial density of states, though the total bandwidth was not well reproduced. On the other hand, the exciton effect was found to be strong in the B 1s TPY spectra. {copyright} {ital 1997} {ital The American Physical Society}

  6. Soil moisture, dielectric permittivity and emissivity of soil: effective depth of emission measured by the L-band radiometer ELBARA

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy; Lipiec, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Due to the large variation of soil moisture in space and in time, obtaining soil water balance with an aid of data acquired from the surface is still a challenge. Microwave remote sensing is widely used to determine the water content in soil. It is based on the fact that the dielectric constant of the soil is strongly dependent on its water content. This method provides the data in both local and global scales. Very important issue that is still not solved, is the soil depth at which radiometer "sees" the incoming radiation and how this "depth of view" depends on water content and physical properties of soil. The microwave emission comes from its entire profile, but much of this energy is absorbed by the upper layers of soil. As a result, the contribution of each layer to radiation visible for radiometer decreases with depth. The thickness of the surface layer, which significantly contributes to the energy measured by the radiometer is defined as the "penetration depth". In order to improve the physical base of the methodology of soil moisture measurements using microwave remote sensing and to determine the effective emission depth seen by the radiometer, a new algorithm was developed. This algorithm determines the reflectance coefficient from Fresnel equations, and, what is new, the complex dielectric constant of the soil, calculated from the Usowicz's statistical-physical model (S-PM) of dielectric permittivity and conductivity of soil. The model is expressed in terms of electrical resistance and capacity. The unit volume of soil in the model consists of solid, water and air, and is treated as a system made up of spheres, filling volume by overlapping layers. It was assumed that connections between layers and spheres in the layer are represented by serial and parallel connections of "resistors" and "capacitors". The emissivity of the soil surface is calculated from the ratio between the brightness temperature measured by the ELBARA radiometer (GAMMA Remote

  7. Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres.

    PubMed

    Zang, Yashu; He, Xu; Li, Jing; Yin, Jun; Li, Kongyi; Yue, Chuang; Wu, Zhiming; Wu, Suntao; Kang, Junyong

    2013-01-21

    Periodic Ag nanoball (NB) arrays on ZnO hollow nanosphere (HNS) supporting structures were fabricated in a large area by a laser irradiation method. The optimized laser power and spherical supporting structure of ZnO with a certain size and separation were employed to aggregate a sputtering-deposited Ag nano-film into an ordered, large-area, and two dimensional Ag NB array. A significant band edge (BE) emission enhancement of ZnO HNSs was achieved on this Ag NB/ZnO HNS hybrid structure and the mechanism was revealed by further experimental and theoretical analyses. With successfully fabricating the direct-contact structure of a Ag NB on the top of each ZnO HNS, the highly localized quadrupole mode surface plasmon resonance (SPR), realized on the metal NBs in the ultraviolet region, can effectively improve the BE emission of ZnO through strong coupling with the excitons of ZnO. Compared with the dipole mode SPR, the quadrupole mode SPR is insensitive to the metal nanoparticle's size and has a resonance frequency in the BE region of the wide band gap materials, hence, it can be potentially applied in related optoelectronic devices. PMID:23196786

  8. HITEMP derived spectral database for the prediction of jet engine exhaust infrared emission using a statistical band model

    NASA Astrophysics Data System (ADS)

    Lindermeir, E.; Beier, K.

    2012-08-01

    The spectroscopic database HITEMP 2010 is used to upgrade the parameters of the statistical molecular band model which is part of the infrared signature prediction code NIRATAM (NATO InfraRed Air TArget Model). This band model was recommended by NASA and is applied in several codes that determine the infrared emission of combustion gases. The upgrade regards spectral absorption coefficients and line densities of the gases H2O, CO2, and CO in the spectral region 400-5000 cm-1 (2-25μm) with a spectral resolution of 5 cm-1. The temperature range 100-3000 K is covered. Two methods to update the database are presented: the usually applied method as provided in the literature and an alternative, more laborious procedure that employs least squares fitting. The achieved improvements resulting from both methods are demonstrated by comparisons of radiance spectra obtained from the band model to line-by-line results. The performance in a realistic scenario is investigated on the basis of measured and predicted spectra of a jet aircraft plume in afterburner mode.

  9. Spectral modification of the laser emission of a terahertz quantum cascade laser induced by broad-band double pulse injection seeding

    SciTech Connect

    Markmann, Sergej Nong, Hanond Hekmat, Negar; Jukam, Nathan; Pal, Shovon; Scholz, Sven; Kukharchyk, Nadezhda; Ludwig, Arne; Wieck, Andreas D.; Dhillon, Sukhdeep; Tignon, Jérôme; Marcadet, Xavier; Bock, Claudia; Kunze, Ulrich

    2015-09-14

    We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.

  10. Spectral modification of the laser emission of a terahertz quantum cascade laser induced by broad-band double pulse injection seeding

    NASA Astrophysics Data System (ADS)

    Markmann, Sergej; Nong, Hanond; Pal, Shovon; Hekmat, Negar; Scholz, Sven; Kukharchyk, Nadezhda; Ludwig, Arne; Dhillon, Sukhdeep; Tignon, Jérôme; Marcadet, Xavier; Bock, Claudia; Kunze, Ulrich; Wieck, Andreas D.; Jukam, Nathan

    2015-09-01

    We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.

  11. Effectiveness of Magnifying Narrow-Band Imaging Endoscopy for Differential Diagnosis between the High-Risk Mixed-Type and Low-Risk Simple-Type of Low-Grade, Well-Differentiated Gastric Tubular Adenocarcinoma.

    PubMed

    Saitoh, Takashi; Takamura, Asako; Watanabe, Gen; Sugitani, Suzuko; Ajioka, Yoichi

    2016-01-01

    Backgrounds. Magnifying endoscopy with narrow-band imaging (NBI-ME) is useful for diagnosing differentiated early gastric cancer (D-EGC). D-EGC is classified as high- or low-grade based on its glandular architectural and cytological atypia. Low-grade, well-differentiated tubular adenocarcinoma (LG-tub1) mixed with high-grade tub1 (HG-tub1) and/or other histological types (M-LG-tub1) may indicate a primitive high-risk malignant lesion compared to histologically simple-type LG-tub1 (S-LG-tub1). Because LG-tub1 is occasionally difficult to diagnose due to its unclear demarcation under conventional white light endoscopy, early precise diagnoses are important. Methods. We compared NBI-ME and postendoscopic submucosal dissection histological findings for 30 S-LG-tub1 and 15 M-LG-tub1 lesions. We classified the NBI-ME findings of S-LG-tub1 (and not D-EGC) into four patterns. The differential diagnosis between M-LG-tub1 and S-LG-tub1 depended on the presence of more than one of these patterns without or with other patterns (referred to as "limited-to-four-pattern [LFP] sign-positive" and "sign-negative", resp.). Result. The sensitivity, specificity, accuracy, positive and negative predictive values, and intraobserver and interobserver agreement, using the "LFP sign" for the differential diagnosis between M-LG-tub1 and S-LG-tub1, were 87.9%, 91.7%, 88.9%, 96.7%, 73.3%, and k = 0.842 and k = 0.737, respectively. Conclusion. NBI-ME may be useful in differentiating between high-risk M-LG-tub1 and low-risk S-LG-tub1. PMID:27127502

  12. Serum levels of homocysteine, folate and vitamin B12 in patients with vitiligo before and after treatment with narrow band ultraviolet B phototherapy and in a group of controls.

    PubMed

    Ataş, Hatice; Cemil, Bengü Çevirgen; Gönül, Müzeyyen; Baştürk, Eda; Çiçek, Emel

    2015-07-01

    The association between vitamin B12, folate, homocysteine and vitiligo were studied in several studies, but the results are contradictory. Narrow-band ultraviolet B (NBUVB) phototherapy is now considered as a gold standard for the treatment of diffuse vitiligo. The effects of NBUVB phototherapy on both vitamin B12, folate and homocysteine levels have not been studied in vitiligo patients yet. Serum levels of vitamin B12, folate and homocysteine were measured in vitiligo patients and control group and also both before and after NBUVB phototherapy in vitiligo patients. While levels of homocysteine in patients with vitiligo were significantly higher than controls (16.9±8.4 vs. 10. 9±3.4 μmol/L; p<0,001) vitamin B12 and folate levels were not different (p>0.05). NBUVB phototherapy led to a 33.7±21.9% (0-75%) response in patients with vitiligo after 80 seccions. Treatment with NBUVB improved vitiligo and decreased serum levels of vitamin B12 (375±151 vs. 346±119 pg/ml, p=0.024), while serum levels of folate and homocysteine did not change significantly after treatment (p=0.914, p=0.127). Further studies are needed to clarify the influence of NBUVB phototherapy on folate, vitamin B12 and homocysteine levels in patients with vitiligo. Furthermore, studies with the analysis of skin levels of homocysteine rather than circulating levels may be useful to elucidate the effects of phototherapy on homocysteine levels.

  13. Effectiveness of Magnifying Narrow-Band Imaging Endoscopy for Differential Diagnosis between the High-Risk Mixed-Type and Low-Risk Simple-Type of Low-Grade, Well-Differentiated Gastric Tubular Adenocarcinoma

    PubMed Central

    Takamura, Asako; Watanabe, Gen; Sugitani, Suzuko; Ajioka, Yoichi

    2016-01-01

    Backgrounds. Magnifying endoscopy with narrow-band imaging (NBI-ME) is useful for diagnosing differentiated early gastric cancer (D-EGC). D-EGC is classified as high- or low-grade based on its glandular architectural and cytological atypia. Low-grade, well-differentiated tubular adenocarcinoma (LG-tub1) mixed with high-grade tub1 (HG-tub1) and/or other histological types (M-LG-tub1) may indicate a primitive high-risk malignant lesion compared to histologically simple-type LG-tub1 (S-LG-tub1). Because LG-tub1 is occasionally difficult to diagnose due to its unclear demarcation under conventional white light endoscopy, early precise diagnoses are important. Methods. We compared NBI-ME and postendoscopic submucosal dissection histological findings for 30 S-LG-tub1 and 15 M-LG-tub1 lesions. We classified the NBI-ME findings of S-LG-tub1 (and not D-EGC) into four patterns. The differential diagnosis between M-LG-tub1 and S-LG-tub1 depended on the presence of more than one of these patterns without or with other patterns (referred to as “limited-to-four-pattern [LFP] sign-positive” and “sign-negative”, resp.). Result. The sensitivity, specificity, accuracy, positive and negative predictive values, and intraobserver and interobserver agreement, using the “LFP sign” for the differential diagnosis between M-LG-tub1 and S-LG-tub1, were 87.9%, 91.7%, 88.9%, 96.7%, 73.3%, and k = 0.842 and k = 0.737, respectively. Conclusion. NBI-ME may be useful in differentiating between high-risk M-LG-tub1 and low-risk S-LG-tub1. PMID:27127502

  14. Effectiveness of Magnifying Narrow-Band Imaging Endoscopy for Differential Diagnosis between the High-Risk Mixed-Type and Low-Risk Simple-Type of Low-Grade, Well-Differentiated Gastric Tubular Adenocarcinoma.

    PubMed

    Saitoh, Takashi; Takamura, Asako; Watanabe, Gen; Sugitani, Suzuko; Ajioka, Yoichi

    2016-01-01

    Backgrounds. Magnifying endoscopy with narrow-band imaging (NBI-ME) is useful for diagnosing differentiated early gastric cancer (D-EGC). D-EGC is classified as high- or low-grade based on its glandular architectural and cytological atypia. Low-grade, well-differentiated tubular adenocarcinoma (LG-tub1) mixed with high-grade tub1 (HG-tub1) and/or other histological types (M-LG-tub1) may indicate a primitive high-risk malignant lesion compared to histologically simple-type LG-tub1 (S-LG-tub1). Because LG-tub1 is occasionally difficult to diagnose due to its unclear demarcation under conventional white light endoscopy, early precise diagnoses are important. Methods. We compared NBI-ME and postendoscopic submucosal dissection histological findings for 30 S-LG-tub1 and 15 M-LG-tub1 lesions. We classified the NBI-ME findings of S-LG-tub1 (and not D-EGC) into four patterns. The differential diagnosis between M-LG-tub1 and S-LG-tub1 depended on the presence of more than one of these patterns without or with other patterns (referred to as "limited-to-four-pattern [LFP] sign-positive" and "sign-negative", resp.). Result. The sensitivity, specificity, accuracy, positive and negative predictive values, and intraobserver and interobserver agreement, using the "LFP sign" for the differential diagnosis between M-LG-tub1 and S-LG-tub1, were 87.9%, 91.7%, 88.9%, 96.7%, 73.3%, and k = 0.842 and k = 0.737, respectively. Conclusion. NBI-ME may be useful in differentiating between high-risk M-LG-tub1 and low-risk S-LG-tub1.

  15. A Comparison of the Progression and Recurrence Risk Index in Non-Muscle-Invasive Bladder Tumors Detected by Narrow-Band Imaging Versus White Light Cystoscopy, Based on the EORTC Scoring System

    PubMed Central

    Shadpour, Pejman; Emami, Maryam; Haghdani, Saeid

    2016-01-01

    Background: Transitional cell carcinoma of the bladder, the second most common urologic malignancy, is amenable to early diagnosis. This study presents the potential prognostic benefit for a less invasive modification to the standard endoscopic approach. Objectives: To evaluate the risk index for the progression and recurrence of additional tumors detected with narrow-band imaging (NBI) cystoscopy compared to standard white light imaging (WLI) cystoscopy in non-muscle-invasive bladder cancer (NMIBC), based on the European organization for research and treatment of cancer (EORTC) scoring system. Patients and Methods: Patients with NMIBC, who were scheduled for resection between May 2012 and May 2013, were studied and mapped under NBI and WLI cystoscopy by independent surgeons prior to resection. Detection rates and tumor characteristics, including EORTC progression and the recurrence risk index, were compared. Results: Fifty patients, aged 63.86 ± 10.05 years, were enrolled. The overall detection rate was 98.9% for NBI vs. 89.4% for WLI (P = 0.001), and the false-positive rates were 9.6% and 5.8%, respectively (P = 0.051). Ten tumors were detected by NBI alone, including four grade I tumors, four grade III tumors, and two carcinomas in situ. The tumor progression index was not significantly reduced with NBI compared to WLI (P > 0.05); however, the recurrence index was significantly lower in the NBI group (P < 0.05). Conclusions: NBI cystoscopy improved the detection rate. Although false positives were more common with NBI, this was not statistically significant. NBI found additional aggressive tumors, which underscores the impact of detection in EORTC recurrence risk scoring. PMID:26981499

  16. Molecular emission bands in the ultraviolet spectrum of the red rectangle star HD 44179

    NASA Technical Reports Server (NTRS)

    Sitko, M. L.

    1981-01-01

    New observations of the ultraviolet spectrum of HD 44179 are reported. Absorption due to the CO molecule is present in the spectrum with NCO approximately 10 to the 18th power per sq cm. Emission due to either CO or a molecule containing C=C, C=N, C-C, and C-H bonds (or both) is also present.

  17. Mapping H-band Scattered Light Emission in the Mysterious SR21Transitional Disk

    NASA Technical Reports Server (NTRS)

    Follette, Katherine B.; Motohide, Tamura; Hashimoto, Jun; Whitney, Barbara; Grady, Carol; Close, Laird; Andrews, Sean M.; Kwon, Jungmi; Wisniewski, John; Brandt, Timothy D.; Mayama, Satoshi; Kandori, Ryo; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Guyon, Olivier.; Hayano, Yutaka; McElwain, Michael W.; Hayashi, Masahiko; Hayashi, Saeko

    2013-01-01

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.1 < or approx. r < or approx. 0.6 (12 < or approx. r < or approx. 75AU). We compare our results with previously published spatially resolved 880 micron continuum Submillimeter Array images that show an inner r < or approx. 36AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be "universal" for all grain sizes. Even significantly more moderate depletions (delta = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity (delta approx. 10(exp -6) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r(sup -3), with no evidence of a break at the 36AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component.We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r approx. 10-20AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.

  18. MAPPING H-BAND SCATTERED LIGHT EMISSION IN THE MYSTERIOUS SR21 TRANSITIONAL DISK

    SciTech Connect

    Follette, Katherine B.; Close, Laird; Tamura, Motohide; Hashimoto, Jun; Kwon, Jungmi; Kandori, Ryo; Whitney, Barbara; Grady, Carol; Andrews, Sean M.; Wisniewski, John; Brandt, Timothy D.; Dong, Ruobing; Mayama, Satoshi; Abe, Lyu; Brandner, Wolfgang; Feldt, Markus; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Goto, Miwa; and others

    2013-04-10

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.''1 {<=} r {<=} 0.''6 (12 {approx}< r {approx}< 75 AU). We compare our results with previously published spatially resolved 880 {mu}m continuum Submillimeter Array images that show an inner r {approx}< 36 AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be 'universal' for all grain sizes. Even significantly more moderate depletions ({delta} = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity ({delta} {approx} 10{sup -6}) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r {sup -3}), with no evidence of a break at the 36 AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component. We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r {approx} 10-20 AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.

  19. Gas to crystal Effect on the Spectral Line Narrowing of MEH-PPV.

    PubMed

    Familia, Aziz M; Sarangan, Andrew; Nelson, Thomas R

    2007-06-25

    We report two emission bands corresponding to the spectral line narrowing (SLN) of the conjugated polymer [2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) in films. The SLN emission coming from the polymer chains closer to the glass substrate are at a different spectral position compared to the chains that lay further away from the glass substrate. We explain this phenomenon as a direct consequence of the "gas-to-crystal" effect. In solution form, as concentration was increased, and thus the proportion of aggregates, a decrease in the SLN bandwidth and a red shift of the emission peak was observed.

  20. The electrosphere of macroscopc ""nuclei"": diffuse emissions in the MeV band from dark antimatter

    SciTech Connect

    Forbes, Michael Mcneil; Lawson, Kyle; Zhitnitsky, Ariel R

    2009-01-01

    Using a Thomas-Fermi model, we calculate the structure of the electrosphere of the quark antimatter nuggets postulated to comprise much of the dark matter. This provides a single self-consistent density profile from ultra-rel ativistic densities to the non-relativistic Boltzmann regime. We use this to present a microscopically justified calculation of several properties of the nuggets, including their net charge, and the ratio of MeV to 511 keV emissions from electron annihilation. We find that the calculated parameters agree with previous phenomenological estimates based on the observational supposition that the nuggets are a source of several unexplained diffuse emissions from the galaxy. This provides another nontrivial verification of the dark matter proposal. The structure of the electrosphere is quite general and will also be valid at the surface of strange-quark stars, should they exist.

  1. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Kocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Lee, K.-S.; Guo, Y.

    2011-01-01

    We identify an abundant population of extreme emission line galaxies at redshift z=1.6 - 1.8 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared, broad-band fluxes. Supported by spectroscopic confirmation of strong [OIII] emission lines - with equivalent widths approximately 1000A - in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are dwarf galaxies with approximately 10(exp 8) solar mass in stellar mass, undergoing an enormous star-burst phase with M*/M* of only approximately 10 Myr. The star formation activity and the co-moving number density (3.7 x 10(exp -4) Mpc(exp -3)) imply that strong, short-lived bursts play a significant, perhaps even dominant role in the formation and evolution of dwarf galaxies at z greater than 1. The observed star formation activity can produce in less than 5 Gyr the same amount of stellar mass density as is presently contained in dwarf galaxies. Therefore, our observations provide a strong indication that the stellar populations of present-day dwarf galaxies formed mainly in strong, short-lived bursts, mostly at z greater than 1.

  2. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D. C.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Dickinson, M.; Jahnke, K.; Salmon, B. W.; deMello, D. F.; Kkocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Guo, Yicheng

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  3. Theoretical predictions for the effect of nebular emission on the broad-band photometry of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Coulton, William; Caruana, Joseph; Croft, Rupert; Matteo, Tiziana Di; Khandai, Nishikanta; Feng, Yu; Bunker, Andrew; Elbert, Holly

    2013-11-01

    By combining optical and near-IR observations from the Hubble Space Telescope with near-IR photometry from the Spitzer Space Telescope, it is possible to measure the rest-frame UV-optical colours of galaxies at z = 4-8. The UV-optical spectral energy distribution of star formation dominated galaxies is the result of several different factors. These include the joint distribution of stellar masses, ages and metallicities (solely responsible for the pure stellar spectral energy distribution), and the subsequent reprocessing by dust and gas in the interstellar medium. Using a large cosmological hydrodynamical simulation (MassiveBlack-II), we investigate the predicted spectral energy distributions of galaxies at high redshift with a particular emphasis on assessing the potential contribution of nebular emission. We find that the average (median) pure stellar UV-optical colour correlates with both luminosity and redshift such that galaxies at lower redshift and higher luminosity are typically redder. Assuming that the escape fraction of ionizing photons is close to zero, the effect of nebular emission is to redden the UV-optical 1500 - Vw colour by, on average, 0.4 mag at z = 8 declining to 0.25 mag at z = 4. Young and low-metallicity stellar populations, which typically have bluer pure stellar UV-optical colours, produce larger ionizing luminosities and are thus more strongly affected by the reddening effects of nebular emission. This causes the distribution of 1500 - Vw colours to narrow and the trends with luminosity and redshift to weaken. The strong effect of nebular emission leaves observed-frame colours critically sensitive to the redshift of the source. For example, increasing the redshift by 0.1 can result in observed-frame colours changing by up to ˜0.6. These predictions reinforce the need to include nebular emission when modelling the spectral energy distributions of galaxies at high redshift and also highlight the difficultly in interpreting the observed

  4. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri; Gardner, Brian

    2011-12-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E << Epeak are consistent with theoretical prediction and at E < Epeak can be flatter if the spectrum of electrons is roughly flat or has a shallow slope at low energies. The observed flat spectra at soft gamma-ray and hard x-ray bands is the evidence that there is a significant contribution at E < Epeak from lower Lorentz factor wing of electron distribution which have a roughly random acceleration rather than being thermal. This means that the state of matter in the jet at the time of ejection is most probably

  5. Search for CO2/CO Band Emission in Active Asteroid 324P

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Hora, Joseph L.; Hsieh, Henry H.; Trilling, David E.; Sheppard, Scott S.

    2015-10-01

    Until a few decades ago, the distinction between asteroids and comets seemed to be simple: comets exhibit activity in the form of a coma and/or a tail as a result of the sublimation of surface ices, whereas asteroids are inactive, rocky bodies. The separation between the two groups became less clear with the discovery of asteroidal bodies that exhibit comet-like dust activity - the active asteroids. For some of those objects, disruption or mass loss due to rotational destabilization or recent collisions are the most likely processes causing the activity. Other objects display recurrent dust activity near perihelion that seems to be caused by the sublimation of ices, but gases have never been directly measured in them. We propose the first Spitzer observations of recurrently active asteroid 324P to search for emission from CO2 or CO. Our observations will detect emission from either gas with unprecedented sensitivity and provide the first ever confirmed detection of volatiles in an active asteroid. We will measure the CO2/CO gas production rates - or put upper-limits on them in the case of a lack of emission. The detection of sublimation-driven activity in active asteroids provide important constraints on the volatile inventory of the inner Solar System and Solar System formation models, gives insight into volatile preservation/retention in asteroidal bodies, and may be relevant to primordial terrestrial water delivery scenarios, as well as future asteroid resource utilization. This proposal conforms with the Spitzer Cycle 12 focus on planetary science programs observing targets in our Solar System.

  6. Wide-band-tunable photomixers using resonant laser-assisted field emission

    NASA Astrophysics Data System (ADS)

    Hagmann, Mark J.

    2003-07-01

    Simulations and experiments show a resonant interaction of tunneling electrons with a radiation field, and photomixing (optical heterodyning) in laser-assisted field emission can cause current oscillations from dc to 100 THz with this effect. Recent simulations by others are shown to be consistent with Fowler-Nordheim theory when the radiation is at low frequencies, and also confirm the existence of the resonance. The relationship of these simulations to photomixing is demonstrated, and estimates are given for the power of signals that could be obtained by this means.

  7. Multi-band Emission Light Curves of Jupiter: Insights on Brown Dwarfs and Directly Imaged Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Ge, Huazhi; Orton, Glenn S.; Fletcher, Leigh N.; Sinclair, James; Fernandes, Joshua; Momary, Thomas W.; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya

    2016-10-01

    Many brown dwarfs exhibit significant infrared flux variability (e.g., Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750, 105), ranging from several to twenty percent of the brightness. Current hypotheses include temperature variations, cloud holes and patchiness, and cloud height and thickness variations (e.g., Apai et al. 2013, ApJ, 768, 121; Robinson and Marley 2014, ApJ, 785, 158; Zhang and Showman 2014, ApJ, 788, L6). Some brown dwarfs show phase shifts in the light curves among different wavelengths (e.g., Buenzli et al. 2012, ApJ, 760, L31; Yang et al. 2016, arXiv:1605.02708), indicating vertical variations of the cloud distribution. The current observational technique can barely detect the brightness changes on the surfaces of nearby brown dwarfs (Crossfield et al. 2014, Nature, 505, 654) let alone resolve detailed weather patterns that cause the flux variability. The infrared emission maps of Jupiter might shed light on this problem. Using COMICS at Subaru Telescope, VISIR at Very Large Telescope (VLT) and NASA's Infrared Telescope Facility (IRTF), we obtained infrared images of Jupiter over several nights at multiple wavelengths that are sensitive to several pressure levels from the stratosphere to the deep troposphere below the ammonia clouds. The rotational maps and emission light curves are constructed. The individual pixel brightness varies up to a hundred percent level and the variation of the full-disk brightness is around several percent. Both the shape and amplitude of the light curves are significantly distinct at different wavelengths. Variation of light curves at different epochs and phase shift among different wavelengths are observed. We will present principle component analysis to identify dominant emission features such as stable vortices, cloud holes and eddies in the belts and zones and strong emissions in the aurora region. A radiative transfer model is used to simulate those features to get a more quantitative

  8. Remote Sensing of lower thermospheric temperature and composition based on observations of O2 Atmospheric band emission.

    NASA Astrophysics Data System (ADS)

    Christensen, A. B.; Yee, J.; Budzien, S. A.; Bishop, R. L.; Hecht, J. H.; Stephan, A. W.; Crowley, G.

    2011-12-01

    upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra, Can. J. Phys. 88, 919-925, 2010. J. H. Yee, (private communication, 2011)

  9. Improvement of the Water Resistance of a Narrow-Band Red-Emitting SrLiAl3 N4 :Eu(2+) Phosphor Synthesized under High Isostatic Pressure through Coating with an Organosilica Layer.

    PubMed

    Tsai, Yi-Ting; Nguyen, Hoang-Duy; Lazarowska, Agata; Mahlik, Sebastian; Grinberg, Marek; Liu, Ru-Shi

    2016-08-01

    A SrLiAl3 N4 :Eu(2+) (SLA) red phosphor prepared through a high-pressure solid-state reaction was coated with an organosilica layer with a thickness of 400-600 nm to improve its water resistance. The observed 4f(6) 5d→4f(7) transition bands are thought to result from the existence of Eu(2+) at two different Sr(2+) sites. Luminescence spectra at 10 K revealed two zero-phonon lines at 15377 (for Eu(Sr1)) and 15780 cm(-1) (for Eu(Sr2)). The phosphor exhibited stable red emission under high pressure up to 312 kbar. The configurational coordinate diagram gave a theoretical explanation for the Eu(2+/3+) result. The coated samples showed excellent moisture resistance while retaining an external quantum efficiency (EQE) of 70 % of their initial EQE after aging for 5 days under harsh conditions. White-light-emitting diodes of the SLA red phosphor and a commercial Y3 Al5 O12 :Ce(3+) yellow phosphor on a blue InGaN chip showed high color rendition (CRI=89, R9=69) and a low correlated color temperature of 2406 K. PMID:27377167

  10. Spatially resolved band alignments at Au-hexadecanethiol monolayer-GaAs(001) interfaces by ballistic electron emission microscopy

    SciTech Connect

    Junay, A.; Guézo, S. Turban, P.; Delhaye, G.; Lépine, B.; Tricot, S.; Ababou-Girard, S.; Solal, F.

    2015-08-28

    We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buried interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.

  11. The modeling of emissions of Lyman-Birge-Hopfield and Vegard-Kaplan bands in the atmospheres of planets

    NASA Astrophysics Data System (ADS)

    Kirillov, Andrey S.

    Molecular nitrogen is main component in the atmospheres of Earth, Titan, Triton. Energetic particles interacting with the atmospheres cause electronic excitation of nitrogen molecules. Total quenching rate coefficients of three singlet and four triplet states of molecular nitrogen in the collisions with N2 and O2 molecules are calculated on the basis of quantum-chemical approximations. The calculated rate coefficients of electronic quenching of N2* molecules are compared with available experimental data. An influence of radiational and collisional processes on vibrational populations of electronically excited N2(a1) and N2(A3) molecules and emissions of Lyman-Birge-Hopfield and Vegard-Kaplan bands is studied for the mixture of N2 and O2 at different pressures. It is indicated that molecular collisions cause changes in relative populations of vibrational levels of the states and intensity relations of ultraviolet bands of N2 with the rise in the pressure and O2 admixture. The influence of electronically excited molecules on vibrational kinetics of molecular nitrogen is discussed.

  12. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    NASA Astrophysics Data System (ADS)

    Yater, J. E.; Shaw, J. L.; Pate, B. B.; Feygelson, T. I.

    2016-02-01

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distribution as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ˜0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron

  13. Value of probe-based confocal laser endomicroscopy (pCLE) and dual focus narrow-band imaging (dNBI) in diagnosing early squamous cell neoplasms in esophageal Lugol’s voiding lesions

    PubMed Central

    Prueksapanich, Piyapan; Pittayanon, Rapat; Rerknimitr, Rungsun; Wisedopas, Naruemon; Kullavanijaya, Pinit

    2015-01-01

    Background and study aims: Lugol’s chromoendoscopy provides excellent sensitivity for the detection of early esophageal squamous cell neoplasms (ESCN), but its specificity is suboptimal. An endoscopy technique for real-time histology is required to decrease the number of unnecessary biopsies. This study aimed to compare the ESCN diagnostic capability of probed-based confocal laser endomicroscopy (pCLE) and dual focus narrow-band imaging (dNBI) in Lugol’s voiding lesions. Patients and methods: Patients with a history of head and neck cancer without dysphagia were recruited. Lugol’s voiding lesions larger than 5 mm were sequentially characterized by dNBI and pCLE by two independent operators. Finally, all lesions larger than 5 mm were biopsied followed by histological analysis, which is considered to be the gold standard in cancer diagnosis. The primary outcomes were the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the accuracy of the two techniques. Results: In total, 44 patients were enrolled with a mean age of 60 years; 80 % were male. Twenty-one Lugol’s voiding lesions larger than 5 mm were detected in 12 patients. Seven lesions (33 %) from four patients were histologically diagnosed as ESCNs (four with high grade dysplasia and three with low grade dysplasia). The other 14 lesions were histologically confirmed as non-neoplastic: active esophagitis, glycogenation with inflammation, acute ulcer, inlet patch, and unremarkable changes. The sensitivity, specificity, PPV, NPV, and accuracy of pCLE vs. dNBI were 83 % vs. 85 %, 92 % vs. 62 %, 83 % vs. 54 %, 92 % vs. 89 %, and 89 % vs. 70 %, respectively (NS). Conclusions: Asymptomatic patients with a history of head and neck cancer underwent Lugol’s chromoendoscopy based ESCN surveillance. Further characterization of the Lugol’s voiding lesions by advanced imaging showed that both pCLE and dNBI provided good sensitivity in

  14. Spatial variation of the 3.29 and 3.40 micron emission bands within reflection nebulae and the photochemical evolution of methylated polycyclic aromatic hydrocarbons.

    PubMed

    Joblin, C; Tielens, A G; Allamandola, L J; Geballe, T R

    1996-02-20

    Spectra of 3 micrometers emission features have been obtained at several positions within the reflection nebulae NGC 1333 SVS3 and NGC 2023. Strong variations of the relative intensities of the 3.29 micrometers feature and its most prominent satellite band at 3.40 micrometers are found. It is shown that (i) the 3.40 micrometers band is too intense with respect to the 3.29 micrometers band at certain positions to arise from hot band emission alone, (ii) the 3.40 micrometers band can be reasonably well matched by new laboratory spectra of gas-phase polycyclic aromatic hydrocarbons (PAHs) with alkyl (-CH3) side groups, and (iii) the variations in the 3.40 micrometers to 3.29 micrometers band intensity ratios are consistent with the photochemical erosion of alkylated PAHs. We conclude that the 3.40 micrometers emission feature is attributable to -CH3 side groups on PAH molecules. We predict a value of 0.5 for the peak intensity ratio of the 3.40 and 3.29 micrometers emission bands from free PAHs in the diffuse interstellar medium, which would correspond to a proportion of one methyl group for four peripheral hydrogens. We also compare the 3 micrometers spectrum of the proto-planetary nebula IRAS 05341+0852 with the spectrum of the planetary nebula IRAS 21282+5050. We suggest that a photochemical evolution of the initial aliphatic and aromatic hydrocarbon mixture formed in the outflow is responsible for the changes observed in the 3 micrometers emission spectra of these objects. PMID:11538557

  15. Spatial variation of the 3.29 and 3.40 micron emission bands within reflection nebulae and the photochemical evolution of methylated polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Joblin, C.; Tielens, A. G.; Allamandola, L. J.; Geballe, T. R.

    1996-01-01

    Spectra of 3 micrometers emission features have been obtained at several positions within the reflection nebulae NGC 1333 SVS3 and NGC 2023. Strong variations of the relative intensities of the 3.29 micrometers feature and its most prominent satellite band at 3.40 micrometers are found. It is shown that (i) the 3.40 micrometers band is too intense with respect to the 3.29 micrometers band at certain positions to arise from hot band emission alone, (ii) the 3.40 micrometers band can be reasonably well matched by new laboratory spectra of gas-phase polycyclic aromatic hydrocarbons (PAHs) with alkyl (-CH3) side groups, and (iii) the variations in the 3.40 micrometers to 3.29 micrometers band intensity ratios are consistent with the photochemical erosion of alkylated PAHs. We conclude that the 3.40 micrometers emission feature is attributable to -CH3 side groups on PAH molecules. We predict a value of 0.5 for the peak intensity ratio of the 3.40 and 3.29 micrometers emission bands from free PAHs in the diffuse interstellar medium, which would correspond to a proportion of one methyl group for four peripheral hydrogens. We also compare the 3 micrometers spectrum of the proto-planetary nebula IRAS 05341+0852 with the spectrum of the planetary nebula IRAS 21282+5050. We suggest that a photochemical evolution of the initial aliphatic and aromatic hydrocarbon mixture formed in the outflow is responsible for the changes observed in the 3 micrometers emission spectra of these objects.

  16. Spatial Variation of the 3.29 and 3.40 Micron Emission Bands Within Reflection Nebulae and The Photochemical Evolution of Methylated Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Joblin, C.; Tielens, A. G. G. M.; Allamandola, L. J.; Geballe, T. R.

    1996-01-01

    Spectra of 3 microns emission features have been obtained at several positions within the reflection nebulae NGC 1333 SVS3 and NGC 2023. Strong variations of the relative intensities of the 3.29 microns feature and its most prominent satellite band at 3.40 microns are found. It is shown that: (1) the 3.40 microns band is too intense with respect to the 3.29 microns band at certain positions to arise from hot band emission alone, (2) the 3.40 microns band can be reasonably well matched by new laboratory spectra of gas-phase polycyclic aromatic hydrocarbons (PAHs) with alkyl (-CH3) side groups, and (3) the variations in the 3.40 microns to 3.29 microns band intensity ratios are consistent with the photochemical erosion of alkylated PAHs. We conclude that the 3.40 microns emission feature is attributable to -CH3 side groups on PAH molecules. We predict a value of 0.5 for the peak intensity ratio of the 3.40 and 3.29 microns emission bands from free PAHs in the diffuse interstellar medium, which would correspond to a proportion of one methyl group for four peripheral hydrogens. We also compare the 3 microns spectrum of the proto-planetary nebula IRAS 05341 + 0852 with the spectrum of the planetary nebula IRAS 21282 + 5050. We suggest that a photochemical evolution of the initial aliphatic and aromatic hydrocarbon mixture formed in the outflow is responsible for the changes observed in the 3 microns emission spectra of these objects.

  17. A Balloon-borne Limb-Emission Sounder at 650-GHz band for Stratospheric observations

    NASA Astrophysics Data System (ADS)

    Irimajiri, Yoshihisa; Ochiai, Satoshi

    We have developed a Balloon-borne Superconducting Submillimeter-Wave Limb-Emission Sounder (BSMILES) to observe stratospheric minor constituents like ozone, HCl etc. BSMILES carries a 300mm-diameter offset parabolic antenna, a 650-GHz heterodyne superconducting (SIS) low-noise receiver, and an acousto-optical spectrometer (AOS) with the bandwidth of 1GHz and the resolution of 1MHz. Gondola size is 1.35 m x 1.35 m x 1.26 m. Total weight is about 500 kg. Limb observations are made by scanning the antenna beam of about 0.12 degrees (FWHM) in vertical direction. A calibrated hot load (CHL) and elevation angle of 50 degrees are ob-served after each scan for calibration. The DSB system noise temperature of the SIS receiver is less than 460 K at 624-639 GHz with a best value of 330 K that is 11 times as large as the quantum limit. Data acquisition and antenna control are made by on-board PCs. Observed data are recorded to PC card with 2 GB capacity to collect after the observations from the sea, and HK data are transmitted to the ground. Gondola attitude is measured by three-axis fiber-optical gyroscope with accuracy less than 0.01 degrees, three-axis accelerometer, and a two-axis geoaspect sensor. Electric power is supplied by lithium batteries. Total power con-sumption is about 150W. Almost all systems are put in pressurized vessels for waterproofing, heat dissipation, and noise shield, etc. BSMILES was launched from Sanriku Balloon Center of Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), at the east coast of Japan, in the summer of 2003, 2004, and 2006. The gondola was carried to an altitude of 35 km by a balloon of 100,000 m3 in volume and the observations were made for 1.5 hours in 2004. All systems operated normally by keeping their temperature within the limit of operation by keeping gondola warm with styrene foam. After the observations, the gondola was dropped and splashed on the Pacific Ocean by a parachute and

  18. Modulations of broad-band radio continua and X-ray emissions in the large X-ray flare on 03 November 2003

    NASA Astrophysics Data System (ADS)

    Dauphin, C.; Vilmer, N.; Lüthi, T.; Trottet, G.; Krucker, S.; Magun, A.

    The GOES X3.9 flare on 03 November 2003 at ˜09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.

  19. Observations of the near- to Mid-infrared Unidentified Emission Bands in the Interstellar Medium of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Mori, Tamami I.; Sakon, Itsuki; Onaka, Takashi; Kaneda, Hidehiro; Umehata, Hideki; Ohsawa, Ryou

    2012-01-01

    We present the results of near- to mid-infrared slit spectroscopic observations (2.55-13.4 μm) of the diffuse emission toward nine positions in the Large Magellanic Cloud with the infrared camera on board AKARI. The target positions are selected to cover a wide range of the intensity of the incident radiation field. The unidentified infrared bands at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are detected toward all the targets and ionized gas signatures; hydrogen recombination lines and ionic forbidden lines are detected toward three of them. We classify the targets into two groups: those without the ionized gas signatures (Group A) and those with the ionized signatures (Group B). Group A includes molecular clouds and photodissociation regions, whereas Group B consists of H II regions. In Group A, the band ratios of I 3.3 μm/I 11.3 μm, I 6.2 μm/I 11.3 μm, I 7.7 μm/I 11.3 μm, and I 8.6 μm/I 11.3 μm show positive correlation with the IRAS and AKARI colors, but those of Group B do not follow the correlation. We discuss the results in terms of the polycyclic aromatic hydrocarbon (PAH) model and attribute the difference to the destruction of small PAHs and an increase in the recombination due to the high electron density in Group B. In the present study, the 3.3 μm band provides crucial information on the size distribution and/or the excitation conditions of PAHs and plays a key role in the distinction of Group A from B. The results suggest the possibility of the diagram of I 3.3 μm/I 11.3 μm versus I 7.7 μm/I 11.3 μm as an efficient diagnostic tool to infer the physical conditions of the interstellar medium.

  20. Making Waves—The VIIRS Day/Night Band Reveals Upper Atmospheric Gravity Wave via Sensitivity to Nightglow Emissions

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Straka, W. C.; Yue, J.; Smith, S. M.; Alexander, M. J.; Hoffmann, L.; Setvak, M.; Partain, P.

    2015-12-01

    Atmospheric gravity waves, which are disturbances to the atmospheric density structure with restoring forces of gravity and buoyancy, represent the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper-atmospheric circulation, driving coupled processes that in turn influence weather and climate patterns throughout the atmosphere on various spatial and temporal scales. Very little is known about upper-level gravity wave characteristics, mainly for lack of global, high-resolution observations from satellite observing systems. Consequently, representations of wave-related processes in global models at present are crude, highly parameterized, and poorly constrained. Shortly after launch of the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite instrument, it was discovered that its Visible/Infrared Imaging Radiomter Suite (VIIRS) Day/Night Band (DNB) was able to observe clouds on moonless nights using the reflection of downwelling nightglow—light emitted from a geometrically thin and tenuous emission layer residing near the mesopause (~85-95 km AMSL). Following this revelation, it was discovered that the DNB also held the further ability to resolve gravity structures within the nightglow direct emissions. On moonless nights, the DNB provides all-weather viewing of these waves at unprecedented 0.74 km horizontal resolution as they modulate the temperature and density structure (and hence brightness) of the nightglow layer. The waves are launched by a variety of physical mechanisms, ranging from terrain, to convective storms, to jet streams and strong wind shear, and even seismic and volcanic events. We cross-reference DNB imagery with thermal infrared imagery to discern nightglow wave structures and attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the general atmospheric circulation.