Science.gov

Sample records for narrow energy spread

  1. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  2. Multichromatic Narrow-Energy-Spread Electron Bunches from Laser-Wakefield Acceleration with Dual-Color Lasers

    NASA Astrophysics Data System (ADS)

    Zeng, M.; Chen, M.; Yu, L. L.; Mori, W. B.; Sheng, Z. M.; Hidding, B.; Jaroszynski, D. A.; Zhang, J.

    2015-02-01

    A method based on laser wakefield acceleration with controlled ionization injection triggered by another frequency-tripled laser is proposed, which can produce electron bunches with low energy spread. As two color pulses copropagate in the background plasma, the peak amplitude of the combined laser field is modulated in time and space during the laser propagation due to the plasma dispersion. Ionization injection occurs when the peak amplitude exceeds a certain threshold. The threshold is exceeded for limited duration periodically at different propagation distances, leading to multiple ionization injections and separated electron bunches. The method is demonstrated through multidimensional particle-in-cell simulations. Such electron bunches may be used to generate multichromatic x-ray sources for a variety of applications.

  3. Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator.

    PubMed

    Pollock, B B; Clayton, C E; Ralph, J E; Albert, F; Davidson, A; Divol, L; Filip, C; Glenzer, S H; Herpoldt, K; Lu, W; Marsh, K A; Meinecke, J; Mori, W B; Pak, A; Rensink, T C; Ross, J S; Shaw, J; Tynan, G R; Joshi, C; Froula, D H

    2011-07-22

    Laser wakefield acceleration of electrons holds great promise for producing ultracompact stages of GeV scale, high-quality electron beams for applications such as x-ray free electron lasers and high-energy colliders. Ultrahigh intensity laser pulses can be self-guided by relativistic plasma waves (the wake) over tens of vacuum diffraction lengths, to give >1  GeV energy in centimeter-scale low density plasmas using ionization-induced injection to inject charge into the wake even at low densities. By restricting electron injection to a distinct short region, the injector stage, energetic electron beams (of the order of 100 MeV) with a relatively large energy spread are generated. Some of these electrons are then further accelerated by a second, longer accelerator stage, which increases their energy to ∼0.5  GeV while reducing the relative energy spread to <5% FWHM.

  4. Energy-Spread Generation

    NASA Astrophysics Data System (ADS)

    Grzela, Grzegorz

    2007-11-01

    Nowadays people are very dependent on electricity. All devices like mobile phones, laptops and even watches have batteries that must be charged. That is not a problem while staying close to sources of electricity, but if we travel some problems may occur with energy availability. Why not then use the most basic and ecological ways to become self-dependent, i.e., use small power plants which would provide energy for all devices we have? This paper presents a review of environmental friendly independent mechanisms and devices to generate electricity using sunlight (photovoltaic), fuel cells and thermoelectric power generation based mostly on semiconductors.

  5. Production of low energy spread ion beams with multicusp sources

    NASA Astrophysics Data System (ADS)

    Y., Lee; Perkins, L. T.; Gough, R. A.; Hoffmann, M.; Kunkel, W. B.; N. Leung, K.; Sarstedt, M.; Vujic, J.; Weber, M.; Williams, M. D.

    1996-02-01

    The use of multicusp sources to generate ion beams with narrow energy spread has been investigated. It is found that the presence of a magnetic filter can reduce the longitudinal energy spread significantly. This is achieved by creating a uniform plasma potential distribution in the discharge chamber region, eliminating ion production in the extraction chamber and in the sheath of the exit aperture and by minimizing the probability of charge exchange processes in the extraction chamber. An energy spread as low as 1 eV has been measured.

  6. Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui

    Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in

  7. Free energy analysis of cell spreading.

    PubMed

    McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick

    2017-10-01

    In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing

  8. Opposed-Flow Flame Spread in a Narrow Channel Apparatus over Thin PMMA Sheets

    NASA Technical Reports Server (NTRS)

    Bornand, G. R.; Olson, Sandra L.; Miller, F. J.; Pepper, J. M.; Wichman, I. S.

    2013-01-01

    Flame spread tests have been conducted over polymethylmethacrylate (PMMA) samples in San Diego State University's Narrow Channel Apparatus (SDSU NCA). The Narrow Channel Apparatus (NCA) has the ability to suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression achieved with a NCA allows for tests to be conducted in a simulated microgravity atmosphere-a characteristic that Test 1 lacks since flames present in Test 1 are buoyantly driven. The SDSU NCA allows for flame spread tests to be conducted with varying opposed flow oxidizer velocities, oxygen percent by volume, and total pressure. Also, since the test sample is placed symmetrically between two confining plates so that there is a gap above and below the sample, this gap can be adjusted. This gap height adjustment allows for a compromise between heat loss from the flame to the confining boundaries and buoyancy suppression achieved by those boundaries. This article explores the effect gap height has on the flame spread rate for 75 µm thick PMMA at 1 atm pressure and 21% oxygen concentration by volume in the SDSU NCA. Flame spread results from the SDSU NCA for thin cellulose fuels have previously been compared to results from tests in actual microgravity at various test conditions with the same sample materials and were found to be in good agreement. This article also presents results from the SDSU NCA for PMMA at 1 atm pressure, opposed oxidizer velocity ranging from 3 to 35 cm/s, oxygen concentration by volume at 21%, 30 %, and 50% and fuel thicknesses of 50 and 75 µm. These results are compared to results obtained in actual microgravity for PMMA obtained at the 4.5s drop tower of MGLAB in Gifu, Japan, and the 5.2s drop tower at NASA's Zero-Gravity Research Facility in Cleveland, OH. This comparison confirms

  9. Narrowing the spread in CMIP5 model projections of air-sea CO2 fluxes

    PubMed Central

    Wang, Lei; Huang, Jianbin; Luo, Yong; Zhao, Zongci

    2016-01-01

    Large spread appears in the projection of air-sea CO2 fluxes using the latest simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Here, two methods are applied to narrow this spread in 13 CMIP5 models. One method involves model selection based on the ability of models to reproduce the observed air-sea CO2 fluxes from 1980 to 2005. The other method involves constrained estimation based on the strong relationship between the historical and future air-sea CO2 fluxes. The estimated spread of the projected air-sea CO2 fluxes is effectively reduced by using these two approaches. These two approaches also show great agreement in the global ocean and three regional oceans of the equatorial Pacific Ocean, the North Atlantic Ocean and the Southern Ocean, including the average state and evolution characteristics. Based on the projections of the two approaches, the global ocean carbon uptake will increase in the first half of the 21st century then remain relatively stable and is projected to be 3.68–4.57 PgC/yr at the end of 21st century. The projections indicate that the increase in the CO2 uptake by the oceans will cease at the year of approximately 2070. PMID:27892473

  10. Spreading pulses of the Tyrrhenian Sea during narrowing of the Calabrian slab

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Funiciello, Francesca; Faccenna, Claudio; Martinod, Joseph; Olivetti, Valerio

    2010-05-01

    The opening of the Tyrrhenian Sea has been punctuated by short-lived episodes of oceanic accretion on separate small backarc basins during early Pliocene (Vavilov basin) and early Pleistocene (Marsili basin). These spreading pulses have been related to the rollback of the Ionian slab. They occurred following the reduction of the subduction zone width by the horizontal propagation of slab detachments, forming the narrow Calabrian arc. Nevertheless, the mechanisms leading to the episodic and transient behavior of the backarc region are hitherto unclear. To investigate the long term and transient effects of the reduction of slab width on the subduction kinematics, we perform dynamically self-consistent laboratory models consisting in a two-layer linearly viscous system simulating the roll-back of a fixed subducting plate (simulated using silicone putty) into the upper mantle (simulated using glucose syrup). We first show, with a set of experiments in which slab width is kept constant throughout experiment, that a six times increase in slab width (from 300 to 1800 km) produces a reduction of trench velocity of about 30%. We also observe that the abrupt reduction of the subducting plate width (from 1800 to 600 km) during experiment results in a pulse of acceleration of the trench retreat velocity of about 50%, as the balance between driving and resisting forces acting on the slab is temporarily modified. The Tyrrhenian acceleration phase can be reproduced if the slab is two to three orders of magnitude stronger than the uppermost part of the mantle, giving a range of mantle viscosity between 1019-1020 Pa s. Those values are low but reasonable as they may represent the shallow (first 100-200 km) and hot asthenosphere wedge expected in backarc regions. We propose that the fast and short pulses of spreading of the Tyrrhenian Sea resulted from the abrupt fragmentation of the subducting lithosphere, forming large windows. This model can be exported to other settings where

  11. Fast IMRT with narrow high energy scanned photon beams.

    PubMed

    Andreassen, Björn; Strååt, Sara Janek; Holmberg, Rickard; Näfstadius, Peder; Brahme, Anders

    2011-08-01

    Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with GEANT4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm2 field, the authors used a spot matrix of 100 equal intensity beam spots resulting in a

  12. An energy spread correction for ERDA hydrogen depth profiling

    SciTech Connect

    Verda, R. D.; Nastasi, Michael Anthony,

    2002-01-01

    A technique for hydrogen depth profiling by reflection elastic recoil detection analysis called the channel-depth conversion was introduced by Verda, et al.' However, the energy spread in elastic recoil detection analysis spectra, which causes a broadening in the energy range and leads to errors in depth profiling, was not addressed by this technique. Here we introduce a technique to addresses this problem, called the energy spread correction. Together, the energy spread correction and the channel-depth conversion techniques comprise the depth profiling method presented in this work.

  13. Use of incomplete energy recovery for the energy compression of large energy spread charged particle beams

    DOEpatents

    Douglas, David R.; Benson, Stephen V.

    2007-01-23

    A method of energy recovery for RF-base linear charged particle accelerators that allows energy recovery without large relative momentum spread of the particle beam involving first accelerating a waveform particle beam having a crest and a centroid with an injection energy E.sub.o with the centroid of the particle beam at a phase offset f.sub.o from the crest of the accelerating waveform to an energy E.sub.full and then recovering the beam energy centroid a phase f.sub.o+Df relative to the crest of the waveform particle beam such that (E.sub.full-E.sub.o)(1+cos(f.sub.o+Df))>dE/2 wherein dE=the full energy spread, dE/2=the full energy half spread and Df=the wave form phase distance.

  14. Magnifying endoscopy with narrow-band imaging findings in the diagnosis of Barrett's esophageal adenocarcinoma spreading below squamous epithelium.

    PubMed

    Omae, Masami; Fujisaki, Junko; Shimizu, Tomoki; Igarashi, Masahiro; Yamamoto, Noriko

    2013-05-01

    It has been described that most cases of Barrett's esophageal adenocarcinoma in Japan are cases of Barrett's esophageal adenocarcinoma on a background of short-segment Barrett's esophagus, frequently occurring rostrad to Barrett's epithelium, adjacent to the squamous epithelium of the right wall of the esophagogastric junction. Barrett's esophageal adenocarcinoma may spread below the squamous epithelium when the tumor is situated adjacent to the squamocolumnar junction, so that it is usually difficult to diagnose its presence and extent by conventional endoscopy alone. We have noted that the spread of Barrett's esophageal adenocarcinoma below the squamous epithelium is recognizable as annular vascular formations (AVF) by magnifying endoscopy with narrow-band imaging (ME-NBI), and have verified it by 3-D stereo-reconstruction using serial sections from a specimen of the same lesion. When horizontal cross-sections of the tissue were viewed from the surface, AVF emerged at a depth of approximately 100 μm from the surface and disappeared at a depth of approximately 300 μm. Therefore, it would be presumed to be difficult to visualize the characteristic structural features by ME-NBI if the carcinomatous glandular ducts were situated deeper than approximately 300 μm underneath a thick layer of squamous epithelium. Thickness of the overlying squamous epithelium may be a limiting factor for whether or not the characteristic structural features can be detected.

  15. Scaling of gain with energy spread and energy in the PEP FEL

    SciTech Connect

    Fisher, A.S.

    1992-07-13

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread {sigma}{sub {var epsilon}}. I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field.

  16. Scaling of gain with energy spread and energy in the PEP FEL

    SciTech Connect

    Fisher, A.S.

    1992-07-13

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread {sigma}{sub {var_epsilon}}. I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field.

  17. Uncorrelated Energy Spread and Longitudinal Emittance of a Photoinjector Beam

    SciTech Connect

    Huang, Z; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Stupakov, G.; Wu, J.; /SLAC

    2005-05-25

    Longitudinal phase space properties of a photoinjector beam are important in many areas of high-brightness beam applications such as bunch compression, transverse-to-longitudinal emittance exchange, and high-gain free-electron lasers. In this paper, we discuss both the rf and the space charge contributions to the uncorrelated energy spread of the beam generated from a laser-driven rf gun. We compare analytical expressions for the uncorrelated energy spread and the longitudinal emittance with numerical simulations and recent experimental results.

  18. Beam-energy-spread minimization using cell-timing optimization

    NASA Astrophysics Data System (ADS)

    Rose, C. R.; Ekdahl, C.; Schulze, M.

    2012-04-01

    Beam energy spread, and related beam motion, increase the difficulty in tuning for multipulse radiographic experiments at the dual-axis radiographic hydrodynamic test facility’s axis-II linear induction accelerator (LIA). In this article, we describe an optimization method to reduce the energy spread by adjusting the timing of the cell voltages (both unloaded and loaded), either advancing or retarding, such that the injector voltage and summed cell voltages in the LIA result in a flatter energy profile. We developed a nonlinear optimization routine which accepts as inputs the 74 cell-voltage, injector voltage, and beam current waveforms. It optimizes cell timing per user-selected groups of cells and outputs timing adjustments, one for each of the selected groups. To verify the theory, we acquired and present data for both unloaded and loaded cell-timing optimizations. For the unloaded cells, the preoptimization baseline energy spread was reduced by 34% and 31% for two shots as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline.

  19. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-21

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  20. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2013-01-01

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  1. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  2. Wake fields and energy spread for the ERHIC ERL

    SciTech Connect

    Fedotov, A.; Kayran, D.

    2011-10-16

    Wake fields in high-current ERLs can cause significant beam quality degradations. Here we summarize effects of coherent synchrotron radiation, resistive wall, accelerating cavities and wall roughness for ERL parameters of the eRHIC project. A possibility of compensation of such correlated energy spread is also presented. An emphasis in the discussion is made on the suppression of coherent synchrotron radiation due to shielding and a possible reduction of wall roughness effects for realistic surfaces.

  3. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect

    Pollock, Bradley Bolt

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  4. Effect of energy spread and gyromotion on efficiency of a Smith-Purcell FEL

    NASA Astrophysics Data System (ADS)

    Hafizi, B.; Sprangle, P.; Serafim, P.

    1992-07-01

    The start-oscillation current, gain and energy spread requirement for operation of a Smith-Purcell free-electron laser oscillator are determined. The effects of beam thickness, energy spread and gyromotion on the efficiency are discussed.

  5. Noninvasive emittance and energy spread monitor using optical synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fiorito, R.; Shkvarunets, A.; Castronovo, D.; Cornacchia, M.; Di Mitri, S.; Kishek, R.; Tschalaer, C.; Veronese, M.

    2014-12-01

    We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, divergences, emittances, Twiss parameters and energy spread of a relativistic electron beam. The beam is externally focused to a waist at the first bend and the OSR generated there can be used to measure the rms beam size. Subsequent pairs of bends produce far field OSR interferences (OSRI) whose visibility depends on the beam energy spread and the angular divergence. Under proper conditions, one of these two effects will dominate the OSRI visibility from a particular pair of bends and can be used to diagnose the dominant effect. The properties of different configuration of bends in the chicane have been analyzed to provide an optimum diagnostic design for a given set of beam parameters to: (1) provide a sufficient number of OSR interferences to allow a measurement of the fringe visibility; (2) minimize the effect of coherent synchrotron radiation and space charge forces on the particles motion; and (3) minimize the effect of compression on the bunch length as the beam passes through the chicane. A design for the chicane has been produced for application to the FERMI free electron laser facility and by extension to similar high brightness linear accelerators. Such a diagnostic promises to greatly improve control of the electron beam optics with a noninvasive measurement of beam parameters and allow on-line optics matching and feedback.

  6. Alternative Main Linac BNS Configuration for Reduced IP Energy Spread (LCC-0139)

    SciTech Connect

    Tenenbaum, P

    2004-05-24

    We present a series of alternate BNS phase configurations for the 500 GeV CM NLC main linac in which the energy spread at the end of the linac is reduced from its nominal 0.25% value. The energy spectrum, achievable IP beam energy, energy bias, and linac stability are evaluated for the alternate cases. We conclude that the RMS energy spread and energy bias in the NLC can easily be reduced but that modest reductions in CM energy are required.

  7. Adaptive narrow-band interference rejection in a DS spread-spectrum intercept receiver using transform domain signal processing techniques

    NASA Technical Reports Server (NTRS)

    Gevargiz, John; Das, Pankaj K.; Milstein, Laurence B.

    1989-01-01

    An intercept receiver which uses a transform-domain-processing filter is described. This receiver detects direct-sequence BPSK spread-spectrum signals in the presence of narrowband interference by employing adaptive narrowband interference rejection techniques. The improvement in the system performance over that of conventional detection techniques is shown by presenting the results of experimental measurements of probability of detection versus false alarm for an enhanced total power detector. Also presented are certain results corresponding to detection of the spectral lines generated at twice the carrier frequency, wherein the goal is often not just signal detection, but also carrier frequency estimation. The receiver uses one of two transform-domain-processing techniques for adaptive narrowband interference rejection. In the first technique, the narrowband interference is detected and excised in the transform domain by using an adaptive notch filter. In the second technique, the interference is suppressed using soft-limiting in the transform domain.

  8. Demonstration of a high-energy, narrow-bandwidth, and temporally shaped fiber regenerative amplifier.

    PubMed

    Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2015-09-15

    We report a high-energy and high-gain fiber regenerative amplifier for narrow-bandwidth nanosecond laser pulses that uses a Yb-doped photonic crystal fiber. The input pulse energy is 270 pJ for a 3.5 ns laser pulse with 0.3 nm (FWHM) bandwidth. At a pump laser power of 8.6 W at 974 nm, pulse energies up to 746 μJ with 1.2% (rms) energy stability are generated. To the best of our knowledge, this is the highest energy obtained in a fiber-based regenerative amplifier. A high-energy, nearly diffraction-limited, single-mode beam with a high gain of 64 dB shows promise for future application in the front ends of high-power laser facilities.

  9. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    SciTech Connect

    Bhat, C. M.; Chase, B. E.; Chaurize, S. J.; Garcia, F. G.; Seiya, K.; Pellico, W. A.; Sullivan, T. M.; Triplett, A. K.

    2015-04-27

    We have measured the energy spread of the Booster beam at its injection energy of 400 MeV by three different methods: (1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, (2) injecting partial turn beam and letting it to debunch, and (3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of rf systems in the ring and in the beam transfer line.

  10. Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering

    SciTech Connect

    Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.; Penco, Giuseppe

    2008-07-11

    Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI@elettra electron gun.

  11. Wake fields and energy spread for the eRHIC ERL

    SciTech Connect

    Fedotov, A.; Kayran, D.

    2011-10-16

    Wake fields in high-current ERLs can cause significant beam quality degradations. Here we summarize effects of coherent synchrotron radiation, resistive wall, accelerating cavities and wall roughness for ERL parameters of the eRHIC project. A possibility of compensation of such correlated energy spread is also presented. An emphasis in the discussion is made on the suppression of coherent synchrotron radiation due to shielding and a possible reduction of wall roughness effects for realistic surfaces. In this report we discuss the wake fields with a focus on their effect on the energy spread of the beam. Other effects of wake fields are addressed elsewhere. An energy spread builds up during a pass though a very long beam transport in the eRHIC ERL under design. Such energy spread become important when beam is decelerated to low energy, and needs to be corrected. Several effects, such as Coherent Synchrotron Radiation (CSR), Resistive Wall (RW), accelerating RF cavities (RF) and Wall Roughness (WR) were considered. In this paper, we briefly summarize major contributions to energy spread from the wake fields for eRHIC parameters, and present possible energy spread compensation for decelerated beam. In the rest of the report we discuss effects which we believe are suppressed for the eRHIC parameters.

  12. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  13. Landau damping effects and evolutions of energy spread in small isochronous ring

    SciTech Connect

    Li, Yingjie; Wang, Langfa; Lin, Fanglei

    2014-11-01

    This paper presents the Landau damping effects on the microwave instability of a coasting long bunch in an isochronous ring due to finite energy spread and emittance. Our two-dimensional (2D) dispersion relation gives more accurate predictions of the microwave instability growth rates of short-wavelength perturbations than the conventional 1D formula. The long-term evolution of energy spread is also studied by measurements and simulations.

  14. Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.

    PubMed

    Kartashova, Elena

    2012-10-01

    A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.

  15. Formation energies and energy levels of deep defects in narrow gap semiconductors

    SciTech Connect

    Patterson, J.D.; Li, W.

    1996-12-31

    The authors use a Green`s function technique for deep defect energy level calculations in mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total binding energy with an impurity cluster and with a perfect cluster. These alloys are among those that have been experimentally grown in microgravity aboard the Space Shuttle. To evaluate the quality of these crystals, it is necessary to characterize them, and one important aspect of this characterization is the study of deep defects which can limit carrier lifetime. Relaxation effects are calculated with molecular dynamics. The resulting energy shift can be greater for the interstitial case than the substitutional one. Relaxation in vacancies is also considered. The charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that caused by relaxation. However, different charged states for vacancies had little effect on the formation energy. For all cases the authors considered the concentration of Cd or Zn in the range appropriate for a band gap of 0.1 eV. The emphasis of their calculation is on chemical trends. Only limited comparison to experiment and other calculations is possible, but what there is supports the statement that their results are at least of the right order of magnitude.

  16. Energy spectra of 2D gravity and capillary waves with narrow frequency band excitation

    NASA Astrophysics Data System (ADS)

    Kartashova, E.

    2012-02-01

    In this letter we present a new method, called increment chain equation method (ICEM), for computing a cascade of distinct modes in a two-dimensional weakly nonlinear wave system generated by narrow frequency band excitation. The ICEM is a means for computing the quantized energy spectrum as an explicit function of frequency ω0 and stationary amplitude A0 of excitation. The physical mechanism behind the generation of the quantized cascade is modulation instability. The ICEM can be used in numerous 2D weakly nonlinear wave systems with narrow frequency band excitation appearing in hydrodynamics, nonlinear optics, electrodynamics, convection theory etc. In this letter the ICEM is demonstrated with examples of gravity and capillary waves with dispersion functions ω(k)~k1/2 and ω(k)~k3/2, respectively, and for two different levels of nonlinearity ɛ=A0k0: small (ɛ~0.1 to 0.25) and moderate (ɛ~0.25 to 0.4).

  17. Production of low axial energy spread ion beams with multicusp sources

    SciTech Connect

    Lee, Yung -Hee Y.

    1998-05-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution.

  18. The Macro and Micro of it Is that Entropy Is the Spread of Energy

    NASA Astrophysics Data System (ADS)

    Phillips, Jeffrey A.

    2016-09-01

    While entropy is often described as "disorder," it is better thought of as a measure of how spread out energy is within a system. To illustrate this interpretation of entropy to introductory college or high school students, several activities have been created. Students first study the relationship between microstates and macrostates to better understand the probabilities involved. Then, each student observes how a system evolves as energy is allowed to move within it. By studying how the class's ensemble of systems evolves, the tendency of energy to spread, rather than concentrate, can be observed. All activities require minimal equipment and provide students with a tactile and visual experience with entropy.

  19. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  20. Note on numerical study of the beam energy spread in NDCX-I

    SciTech Connect

    Vay, J.-L.; Seidl, P.A.; Friedman, A.

    2011-01-19

    The kinetic energy spread (defined here as the standard deviation of the beam particle energies) sets the ultimate theoretical limit on the longitudinal compression that can be attained on NDCX-I and NDCX-II. Experimental measurements will inevitably include the real influences on the longitudinal phase space of the beam due to injector and accelerator field imperfections1. These induced energy variations may be the real limit to the longitudinal compression in an accelerator. We report on a numerical investigation of the energy spread evolution in NDCX-I; these studies do not include all the real imperfections, but rather are intended to confirm that there are no other intrinsic mechanisms (translaminar effects, transverse-longitudinal anisotropy instability, etc.) for significant broadening of the energy distribution. We have performed Warp simulations that use a realistic Marx voltage waveform which was derived from experimental measurements (averaged over several shots), a fully-featured model of the accelerating and focusing lattice, and new diagnostics for computing the local energy spread (and temperature) that properly account for linear correlations that arise from the discrete binning along each physical dimension (these capabilities reproduce and extend those of the earlier HIF code BPIC). The new diagnostics allow for the calculation of multi-dimensional maps of energy spread and temperature in 2-D axisymmetric or 3-D Cartesian space at selected times. The simulated beam-line was terminated at z = 3 m by a conducting plate, so as to approximately reproduce the experimental conditions at the entrance of the spectrometer that was used for mapping the longitudinal phase space. Snapshots of the beam projection and current, as well as the Marx waveform and history of beam kinetic energy collected at the end plate, are shown in Fig. 1. A two-dimensional axisymmetric map of energy spread from simulations of a typical NDCX-I configuration is shown in Fig. 2 (a

  1. Measurement of the energy-spread contribution to information transfer limits in HR-TEM

    SciTech Connect

    O'Keefe, Michael A.; Tiemeijer, Peter C.; Sidorov, Maxim V.

    2002-02-18

    Sub-Angstrom TEM of materials at intermediate voltages requires a sub-Angstrom information limit for the microscope. With a Scherzer resolution of 1.7 Angstrom, but a sub-Angstrom information limit, the one-Angstrom microscope (OAM) project at the NCEM is able to generate resolution below 0.8 Angstrom. Microscope information limit comes from damping of transfer by the temporal coherence. A major term contributing to temporal coherence is energy spread in the electron beam. We derive a new expression for the energy spread, and show how it can be measured from the result that is obtained using a standard electron spectrometer.

  2. Universal function for the brilliance of undulator radiation considering the energy spread effect.

    PubMed

    Tanaka, Takashi; Kitamura, Hideo

    2009-05-01

    Angular and spatial profiles of undulator radiation have been investigated to derive a universal function that evaluates the brilliance of undulator radiation and takes into account the effects of electron beam emittance and energy spread. It has been found that the effects of energy spread on the angular divergence and source size can be expressed by simple analytic expressions, and a universal brilliance function has been derived by convolution with the electron beam distribution functions. Comparisons with numerical results have been carried out to show the validity and applicability of the universal function.

  3. Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments.

    PubMed

    Lee, Jae Bong; Derome, Dominique; Dolatabadi, Ali; Carmeliet, Jan

    2016-02-09

    The maximum spreading of an impinging droplet on a rigid surface is studied for low to high impact velocity, until the droplet starts splashing. We investigate experimentally and numerically the role of liquid properties, such as surface tension and viscosity, on drop impact using three liquids. It is found that the use of the experimental dynamic contact angle at maximum spreading in the Kistler model, which is used as a boundary condition for the CFD-VOF calculation, gives good agreement between experimental and numerical results. Analytical models commonly used to predict the boundary layer thickness and time at maximum spreading are found to be less correct, meaning that energy balance models relying on these relations have to be considered with care. The time of maximum spreading is found to depend on both the impact velocity and surface tension, and neither dependency is predicted correctly in common analytical models. The relative proportion of the viscous dissipation in the total energy budget increases with impact velocity with respect to surface energy. At high impact velocity, the contribution of surface energy, even before splashing, is still substantial, meaning that both surface energy and viscous dissipation have to be taken into account, and scaling laws depending only on viscous dissipation do not apply. At low impact velocity, viscous dissipation seems to play an important role in low-surface-tension liquids such as ethanol.

  4. SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement

    SciTech Connect

    Anferov, V; Derenchuk, V; Moore, R; Schreuder, A

    2015-06-15

    Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (width at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.

  5. The Macro and Micro of It Is That Entropy Is the Spread of Energy

    ERIC Educational Resources Information Center

    Phillips, Jeffrey A.

    2016-01-01

    While entropy is often described as "disorder," it is better thought of as a measure of how spread out energy is within a system. To illustrate this interpretation of entropy to introductory college or high school students, several activities have been created. Students first study the relationship between microstates and macrostates to…

  6. The Macro and Micro of It Is That Entropy Is the Spread of Energy

    ERIC Educational Resources Information Center

    Phillips, Jeffrey A.

    2016-01-01

    While entropy is often described as "disorder," it is better thought of as a measure of how spread out energy is within a system. To illustrate this interpretation of entropy to introductory college or high school students, several activities have been created. Students first study the relationship between microstates and macrostates to…

  7. New methods to estimate the HOM generation and energy spread of SRF cavities in the eRHIC ERL design

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.; Hao, Yue; Ptitsyn, Vadim

    2017-03-01

    High Order Mode (HOM) power is produced by high current linear accelerators. In this paper, we report a new method to estimate the HOM power generation and energy spread from multiple bunch patterns in the time domain on multiple HOMs. These methods can be used to evaluate the HOM power and energy spread induced by the HOM field, and to optimize the design of SRF cavities to minimize the HOM power and the energy spread induced by the HOMs.

  8. Production of low axial energy spread ion beams with multicusp sources

    NASA Astrophysics Data System (ADS)

    Lee, Yung-Hee Yvette

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuratian has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 20-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution. Unlike any other source in existence, the co-axial source has been designed to have a capability in adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance). The effect on the beam emittance has been verified by using a triode accelerator assembly and a Allison type parallel- plate emittance

  9. Impact of inward turbulence spreading on energy loss of edge-localized modes

    NASA Astrophysics Data System (ADS)

    Ma, Chenhao

    2014-10-01

    BOUT++ six-field Landau-fluid simulations show that an ELM crash has two phases: fast initial crash of ion temperature profile on the order of Alfven time scale near the peak gradient region and slow electron inward turbulence spreading from the ELM crash event. Both of them contribute to the ELM energy loss. However, the conducted ELM energy loss dominates over the convected ELM energy loss, which remains almost constant after the initial crash. The total ELM energy loss is mainly determined by the MHD turbulence spreading when the pedestal temperature height is large. The inward front propagation of electron temperature perturbation spreads into the linearly stable zone, while the ion perturbation front has much less spreading. The electron temperature fluctuation peaks on the rational surfaces and the front jumps gradually inwards towards neighboring rational surfaces. The electron wave-particle resonances via Landau closure provide a relatively strong parallel damping effect on the electron temperature perturbation and induce a large cross-phase shift of about π / 2 angle between ExB velocity and the ion temperature, which yields almost no spreading for ion temperature and density fluctuation. When pedestal temperature height increases, the cross-phase shift of electron decreases and is close to π / 4 angle which yields a large turbulence spreading and generates the large electron conducted energy loss. The front propagation stops at the position where the radial turbulent correlation length is shorter than the magnetic surface spacing. The energy burst of an ELM is controlled by the magnetic shear profile, the characteristic front propagating velocity and the turbulence correlation time. The inward turbulence spreading is mainly driven by (1) a series of micro-crashes due to a localized steepening of profile and (2) the magnetic flutter. The impact of other kinetic effects, such as full FLR effect and toroidal resonance, will be presented via simulations of

  10. Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants

    NASA Astrophysics Data System (ADS)

    Prabhu, K. Narayan; Fernandes, Peter

    2007-08-01

    An investigation was conducted to study the suitability of vegetable oils such as sunflower, coconut, groundnut, castor, cashewnut shell (CNS), and palm oils as quench media (bioquenchants) for industrial heat treatment by assessing their wetting behavior and severity of quenching. The relaxation of contact angle was sharp during the initial stages, and it became gradual as the system approached equilibrium. The equilibrium contact angle decreased with increase in the temperature of the substrate and decrease in the viscosity of the quench medium. A comparison of the relaxation of the contact angle at various temperatures indicated the significant difference in spreading of oils having varying viscosity. The spread activation energy was determined using the Arrhenius type of equation. Oils with higher viscosity resulted in lower cooling rates. The quench severity of various oil media was determined by estimating heat-transfer coefficients using the lumped capacitance method. Activation energy for spreading determined using the wetting behavior of oils at various temperatures was in good agreement with the severity of quenching assessed by cooling curve analysis. A high quench severity is associated with oils having low spread activation energy.

  11. Co-axial multicusp source for low axial energy spread ion beam production

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Leung, K. N.; Vujic, J.; Williams, M. D.; Zahir, N.

    1999-09-01

    A co-axial multicusp ion source has been designed and tested. This source uses a new magnetic filter configuration. This magnetic filter is efficient in modifying the plasma potential distribution which can reduce the axial energy spread of the extracted ion beam. Energy spreads as low as 0.6 eV have been obtained. The electron temperature in this source has also been found to be about 0.1 eV. Furthermore, the new source configuration is capable of adjusting the radial plasma potential distribution which can improve the transverse ion energy, which results in a low beam emittance. The co-axial source can be used for a number of different applications such as ion projection lithography and radioactive ion beam projets.

  12. Note: Diagnostic deuterium beam with an ultra-small energy spread for plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Savkin, V. Ya.; Lizunov, A. A.

    2017-07-01

    The DINA-5M diagnostic atomic beam has been upgraded to reduce the energy spread down to 50 eV. An active voltage stabilization system introduces a chain of varistors connected in series that can be switched with the time constant of 70 μs to minimize the deviation from the reference to the high-voltage level. Using deuterium, the enhanced diagnostic beam has the current of four atomic amperes and the energy of 50 keV ± 50 eV. The primary considered application is a motional Stark effect diagnostic combined with laser-induced fluorescence, where the beam energy spread is an ultimate parameter determining the measurement performance.

  13. Impact of inward turbulence spreading on energy loss of edge-localized modes

    SciTech Connect

    Ma, C. H.; Xu, X. Q.; Xi, P. W.; Xia, T. Y.; Snyder, P. B.; Kim, S. S.

    2015-05-18

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes(ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulencetransport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. As a result, the gyrofluid simulations show that the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.

  14. Impact of inward turbulence spreading on energy loss of edge-localized modes

    DOE PAGES

    Ma, C. H.; Xu, X. Q.; Xi, P. W.; ...

    2015-05-18

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes(ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulencetransport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. As a result, the gyrofluid simulations show thatmore » the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.« less

  15. Impact of inward turbulence spreading on energy loss of edge-localized modesa)

    DOE PAGES

    Ma, C. H.; Xu, X. Q.; Xi, P. W.; ...

    2015-05-18

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes(ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulencetransport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. As a result, the gyrofluid simulations show thatmore » the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.« less

  16. Impact of inward turbulence spreading on energy loss of edge-localized modes

    SciTech Connect

    Ma, C. H.; Xi, P. W.; Xu, X. Q.; Xia, T. Y.; Snyder, P. B.; Kim, S. S.

    2015-05-15

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes (ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulence transport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. The gyrofluid simulations show that the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height.

  17. Ion energy spread and current measurements of the rf-driven multicusp ion source

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.

  18. A phase-space fluid simulation of a two-component narrow planetary ring - Particle size segregation, edge formation, and spreading rates

    NASA Technical Reports Server (NTRS)

    Brophy, Thomas G.; Stewart, Glen R.; Esposito, Larry W.

    1990-01-01

    The Krook kinetic equation for identical planetary ring particles is presently generalized for the case of two-component systems, and the equations are numerically solved on the basis of Brophy and Esposito's (1989) phase-space CFD method. Attention is given to the simulation results obtained for a two-component narrow ring, in which the large particles are eight times as massive as the small particles. This ring's unconstrained edge dynamics are resolved by the simulation, and are found to exhibit a sharpening that would not have been expected in single-component rings.

  19. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Li, Wentao; Liu, Jiansheng; Wang, Wentao; Yu, Changhai; Tian, Ye; Nakajima, Kazuhisa; Deng, Aihua; Qi, Rong; Wang, Cheng; Qin, Zhiyong; Fang, Ming; Liu, Jiaqi; Xia, Changquan; Li, Ruxin; Xu, Zhizhan

    2016-05-01

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, the e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.

  20. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    SciTech Connect

    Zhang, Zhijun; Li, Wentao; Wang, Wentao; Yu, Changhai; Tian, Ye; Qi, Rong; Wang, Cheng; Qin, Zhiyong; Fang, Ming; Liu, Jiaqi; Li, Ruxin Xu, Zhizhan; Liu, Jiansheng; Nakajima, Kazuhisa; Deng, Aihua; Xia, Changquan

    2016-05-15

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, the e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.

  1. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun

    2017-05-01

    We report the observation of energy-spread compensation of electron bunches in a laser wakefield accelerator in experiment. The compensation was caused by the gradient wakefield in plasma wake, and the energy spectra of the bunches evolved during the acceleration so that we propose a new method to diagnose the longitudinal length of the ultrashort electron bunch. By analyzing the energy spectra of electron bunches with different acceleration length, the wakefield gradient difference and the wakefield slope of the bunch could be estimated by combining with the slippage between the plasma wave and the electron bunch, thus the electron bunches' longitudinal length could be estimated. By applying this new method, the longitudinal length of electron bunches with charge of about 40 pC generated from a laser wakefield accelerator was estimated to be (2.4 ± 2.2) μm in experiment, which was in good agreement with three-dimension particle-in-cell simulations.

  2. Energy Spread of Field Emission Electrons from Single Pentagons in Individual Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Fujieda, Tadashi; Okai, Makoto; Tokumoto, Hiroshi

    2008-04-01

    We investigated the dependence of tip radius on the field emission energy spread of electrons emitted from clean single pentagons in individual multi-walled carbon nanotubes (MWNTs) in a wide range of total emission currents (10-2000 nA). We found that the full width at half maximum of the field emission energy distribution decreases in inverse proportion to the involution of the radius of curvature at a constant total emission current. This is because as the radius of curvature increases, the space between adjoining pentagons becomes wider, and therefore the stochastic Coulomb interactions between electrons emitted from adjoining pentagons become weaker. The full widths at half maximum of the field emission energy distributions of MWNTs with tip radii of 1.8-45.0 nm were 0.38-0.60 eV at a total emission current of 2000 nA.

  3. Correlated energy-spread removal with space charge for high-harmonic generation.

    PubMed

    Hemsing, E; Marinelli, A; Marcus, G; Xiang, D

    2014-09-26

    We study the effect of longitudinal space charge on the correlated energy spread of a relativistic high-brightness electron beam that has been density modulated for the emission of coherent, high-harmonic radiation. We show that, in the case of electron bunching induced by a laser modulator followed by a dispersive chicane, longitudinal space charge forces can act to strongly reduce the induced energy modulation of the beam without a significant reduction in the harmonic bunching content. This effect may be optimized to enhance the output power and overall performance of free-electron lasers that produce coherent light through high-gain harmonic generation. It also increases the harmonic number achievable in these devices, which are otherwise gain-limited by the induced energy modulation from the laser.

  4. Spread of thermal energy and heat sinks: implications for nerve-sparing robotic prostatectomy.

    PubMed

    Khan, Farhan; Rodriguez, Esequiel; Finley, David S; Skarecky, Douglas W; Ahlering, Thomas E

    2007-10-01

    During nerve-sparing robot-assisted laparoscopic prostatectomy, nerve injury caused by thermal energy is a concern. Using a porcine model, we studied thermal spread and queried whether vessels such as the prostatic pedicle may act as a heat sink, reducing the spread of thermal energy. Monopolar (MP) and bipolar (BP) cautery was applied laparoscopically on the anterior abdominal wall surface of six pigs with the da Vinci robot. Using fiberoptic thermometry (Luxtron Inc. Santa Clara, CA), temperatures were recorded with and without the interposed inferior epigastric vessels to evaluate the heat sink effect. Interposition of the inferior epigastric vessels definitively demonstrated a heat sink phenomenon: at 7 mm from the MP/BP energy source, temperatures rose 10.7 degrees C to 13.8 degrees C without interposed vessels versus only 1.9 degrees C to 2.5 degrees C when vessels were interposed (P < 0.001). The heat sink phenomenon suggests that the prostatic vascular pedicle should be protective of the neurovascular bundle during transection of the bladder neck during laparoscopic prostatectomy.

  5. Minimizing the energy spread within a single bunch by shaping its charge distribution

    SciTech Connect

    Loew, G.A.; Wang, J.W.

    1985-03-01

    It has been known for some time that partial compensation of the longitudinal wake field effects can be obtained for any bunch by placing it ahead of the accelerating crest (in space), thereby letting the positive rising sinusoidal field offset the negative beam loading field. The work presented in this paper shows that it is possible to obtain complete compensation, i.e., to reduce the energy spread essentially to zero by properly shaping the longitudinal charge distribution of the bunch and by placing it at the correct position on the wave. 3 refs., 5 figs., 3 tabs.

  6. Estimation of the electron beam energy spread for TEM information limit

    SciTech Connect

    O'Keefe, Michael A.; Tiemeijer, Peter C.; Sidorov, Maxim V.

    2002-02-20

    Sub-Angstrom TEM of materials requires focal-series reconstruction (FSR) or electron holography to retrieve the electron wave at the specimen exit-surface to very high resolution. As a consequence, we need to measure the microscope information limit. With a sub-Angstrom information limit, the one-Angstrom microscope (OAM) project at the NCEM has achieved sub-Angstrom resolution by FSR. We present a new method of estimating the information limit of the microscope, based on energy-spread measurements with an image filter.

  7. Reducing the RF Voltage Swing by Blowing up the Initial Energy Spread

    SciTech Connect

    Parzen, G.

    1988-07-16

    The high frequency rf system can have a large range in voltage requirements; e.g. from V=12 to V=11 MV. This large range can be reduced by blowing up the initial energy spread, σpo. However this increase in σpo is limited by the following effects due to intrabeam scattering. The following IBS results show that by blowing up σpo one can get by with a rf voltage swing of v=1.5 to v=12 MV.

  8. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.

    2014-10-01

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.

  9. Effects of the energy spread of secondary electrons in a dc-biased single-surface multipactor

    NASA Astrophysics Data System (ADS)

    Hur, Min Sup; Kim, Jung-Il; Kim, Geun-Ju; Jeon, Seok-Gy

    2011-03-01

    The effects of the energy spread of secondary electrons are theoretically investigated for a dc-biased single-surface multipactor. In our previous publication [S. G. Jeon et al., Phys. Plasmas 16, 073101 (2009)], we obtained the conditions for the phase lock of an electron bunch, assuming zero velocity spread of the secondary electrons. In this work, we extended our previous theory to derive a quadratic map, by which the stability and bifurcation of the electron bunch can be systematically investigated. For the study of the energy spread of the secondary electrons, a randomized term was added to this map. The modified map then showed significant smearing-out of the bifurcated branches. The theoretical results were verified by particle-in-cell simulations, which showed good agreement in wide parameter ranges for both cases of monoenergetic and energy-spread secondary electrons.

  10. Ion acceleration with a narrow energy spectrum by nanosecond laser-irradiation of solid target

    SciTech Connect

    Altana, C.; Lanzalone, G.; Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Tudisco, S.; Muoio, A.

    2016-02-15

    In laser-driven plasma, ion acceleration of aluminum with the production of a quasi-monoenergetic beam has occurred. A useful device to analyze the ions is the Thomson parabolas spectrometer, a well-known diagnostic that is able to obtain information on charge-to-mass ratio and energy distribution of the charged particles. At the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS in Catania, experimental measures were carried out; the features of LENS are: Q-switched Nd:YAG laser with 2 J laser energy, 1064 nm fundamental wavelengths, and 6 ns pulse duration.

  11. Energy spectrum and transport in narrow HgTe quantum wells

    SciTech Connect

    Germanenko, A. V.; Minkov, G. M.; Rut, O. E.; Sherstobitov, A. A.; Dvoretsky, S. A.; Mikhailov, N. N.

    2015-01-15

    The results of an experimental study of the transport phenomena and the hole energy spectrum of two-dimensional systems in the quantum well of HgTe zero-gap semiconductor with normal arrangement of quantum-confinement subbands are presented. An analysis of the experimental data allows us to reconstruct the carrier energy spectrum near the hole subband extrema. The results are interpreted using the standard kP model.

  12. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  13. Investigation of possible csr induced energy spread effects with the A0 photoinjector bunch compressor

    SciTech Connect

    Fliller, R.P., III; Edwards, H.; Kazakevich, G.; Thurman-Keup, R.M.; Ruan, J.; /Fermilab

    2008-06-01

    The bunch compressor of the A0 Photoinjector at Fermilab was removed this past spring to install a transverse to longitudinal emittance exchange experiment. Prior to its removal questions arose about the possibility of observing the effects of Coherent Synchrotron Radiation on the compressed beam. The energy spread of the beam with and without compression was measured to observe any changes. Various beam charges were used to look for square law effects associated with CSR. No direct observation of CSR in the compressor was attempted because the design of the vacuum chamber did not allow it. In this paper we report the results of these experiments and comparison with simulations using ASTRA and CSRTrack. The results are also compared with analytical approximations.

  14. Ultrasonic, bipolar, and integrated energy devices: comparing heat spread in collateral tissues.

    PubMed

    Applewhite, Megan K; White, Michael G; James, Benjamin C; Abdulrasool, Layth; Kaplan, Edwin L; Angelos, Peter; Grogan, Raymon H

    2017-01-01

    Integrated devices incorporating ultrasonic and bipolar technology have been used in laparoscopic surgery, however, are not yet incorporated into open operations. Here, we compare thermal spread and recurrent laryngeal nerve (RLN) functional data of the integrated THUNDERBEAT Open Fine Jaw device, the bipolar Ligasure Small Jaw, and the ultrasonic Harmonic Focus for open thyroidectomy. The three energy devices were compared in a live porcine model using three tissue types including liver, muscle, and thyroid. The devices were fired three times on each energy setting, and the thermal spread was measured by thermocouples that were inserted in surrounding tissues at 1-mm intervals. To determine RLN injury, devices were fired at successive 1-mm increments from the RLN until the monitor signal was lost. When comparing heat generated across these devices at 1 mm, the peak temperature (Celsius) reached in liver tissue was observed with the ultrasonic device (115.4 ± 86.7), in muscle tissue with the integrated device (104.2 ± 82.1), and in thyroid with the bipolar device (81.4 ± 41.3). Temperatures generated at individual settings on each device were similar (P = 0.11-0.81). RLN injury occurred after firing on manually approximated tissue 1-mm away from the RLN for all devices; however, there was no signal loss at ≥2 mm. Heat transfer was similar among all devices with the exception of the ultrasonic device when used in the liver, which showed higher temperatures. Liver tissue showed the most consistent results. RLN injury did not occur if the devices were fired on manually approximated tissue ≥2 mm from the nerve. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    PubMed

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.

  16. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks

    PubMed Central

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network’s life time. PMID:27447489

  17. The sower’s way: quantifying the narrowing net-energy pathways to a global energy transition

    NASA Astrophysics Data System (ADS)

    Sgouridis, Sgouris; Csala, Denes; Bardi, Ugo

    2016-09-01

    Planning the appropriate renewable energy (RE) installation rate should balance two partially contradictory objectives: substituting fossil fuels fast enough to stave-off the worst consequences of climate change while maintaining a sufficient net energy flow to support the world’s economy. The upfront energy invested in constructing a RE infrastructure subtracts from the net energy available for societal energy needs, a fact typically neglected in energy projections. Modeling feasible energy transition pathways to provide different net energy levels we find that they are critically dependent on the fossil fuel emissions cap and phase-out profile and on the characteristic energy return on energy invested of the RE technologies. The easiest pathway requires installation of RE plants to accelerate from 0.12 TWp yr-1 in 2013 to peak between 7.3 and 11.6 TWp yr-1 in the late 2030s, for an early or a late fossil-fuel phase-out respectively in order for emissions to stay within the recommended CO2 budget.

  18. The importance of surface recombination and energy-bandgap narrowing in p-n-junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.

    1979-01-01

    Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.

  19. The importance of surface recombination and energy-bandgap narrowing in p-n-junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.

    1979-01-01

    Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.

  20. Stable Electron Beams With Low Absolute Energy Spread From a LaserWakefield Accelerator With Plasma Density Ramp Controlled Injection

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, E.; Esarey, E.; Leemans,W.P.; Nakamura, K.; Panasenko, D.; Plateau, Guillaume R.; Schroeder, CarlB.; Toth, Csaba; Cary, J.R.

    2007-06-25

    Laser wakefield accelerators produce accelerating gradientsup to hundreds of GeV/m, and recently demonstrated 1-10 MeV energy spreadat energies up to 1 GeV using electrons self-trapped from the plasma.Controlled injection and staging may further improve beam quality bycircumventing tradeoffs between energy, stability, and energyspread/emittance. We present experiments demonstrating production of astable electron beam near 1 MeV with hundred-keV level energy spread andcentral energy stability by using the plasma density profile to controlselfinjection, and supporting simulations. Simulations indicate that suchbeams can be post accelerated to high energies,potentially reducingmomentum spread in laser acceleratorsby 100-fold or more.

  1. Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter.

    PubMed

    Bethune-Waddell, Max; Chau, Kenneth J

    2015-12-01

    Consensus on a single electrodynamic theory has yet to be reached. Discord was seeded over a century ago when Abraham and Minkowski proposed different forms of electromagnetic momentum density and has since expanded in scope with the gradual introduction of other forms of momentum and force densities. Although degenerate sets of electrodynamic postulates can be fashioned to comply with global energy and momentum conservation, hope remains to isolate a single theory based on detailed comparison between force density predictions and radiation pressure experiments. This comparison is two-fold challenging because there are just a handful of quantitative radiation pressure measurements over the past century and the solutions developed from different postulates, which consist of approximate expressions and inferential deductions, are scattered throughout the literature. For these reasons, it is appropriate to conduct a consolidated and comprehensive re-analysis of past experiments under the assumption that the momentum and energy of light in matter are degenerate. We create a combined electrodynamic/fluid dynamic simulation testbed that uses five historically significant sets of electrodynamic postulates, including those by Abraham and Minkowski, to model radiation pressure under diverse configurations with minimal assumptions. This leads to new interpretations of landmark investigations of light momentum, including the Balazs thought experiment, the Jones-Richards and Jones-Leslie measurements of radiation pressure on submerged mirrors, observations of laser-deformed fluid surfaces, and experiments on optical trapping and tractor beaming of dielectric particles. We discuss the merits and demerits of each set of postulates when compared to available experimental evidence and fundamental conservation laws. Of the five sets of postulates, the Abraham and Einstein-Laub postulates provide the greatest consistency with observations and the most physically plausible

  2. Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter

    NASA Astrophysics Data System (ADS)

    Bethune-Waddell, Max; Chau, Kenneth J.

    2015-12-01

    Consensus on a single electrodynamic theory has yet to be reached. Discord was seeded over a century ago when Abraham and Minkowski proposed different forms of electromagnetic momentum density and has since expanded in scope with the gradual introduction of other forms of momentum and force densities. Although degenerate sets of electrodynamic postulates can be fashioned to comply with global energy and momentum conservation, hope remains to isolate a single theory based on detailed comparison between force density predictions and radiation pressure experiments. This comparison is two-fold challenging because there are just a handful of quantitative radiation pressure measurements over the past century and the solutions developed from different postulates, which consist of approximate expressions and inferential deductions, are scattered throughout the literature. For these reasons, it is appropriate to conduct a consolidated and comprehensive re-analysis of past experiments under the assumption that the momentum and energy of light in matter are degenerate. We create a combined electrodynamic/fluid dynamic simulation testbed that uses five historically significant sets of electrodynamic postulates, including those by Abraham and Minkowski, to model radiation pressure under diverse configurations with minimal assumptions. This leads to new interpretations of landmark investigations of light momentum, including the Balazs thought experiment, the Jones-Richards and Jones-Leslie measurements of radiation pressure on submerged mirrors, observations of laser-deformed fluid surfaces, and experiments on optical trapping and tractor beaming of dielectric particles. We discuss the merits and demerits of each set of postulates when compared to available experimental evidence and fundamental conservation laws. Of the five sets of postulates, the Abraham and Einstein-Laub postulates provide the greatest consistency with observations and the most physically plausible

  3. Is Spreading Depolarization Characterized by an Abrupt, Massive Release of Gibbs Free Energy from the Human Brain Cortex?

    PubMed Central

    Dreier, Jens P.; Isele, Thomas; Reiffurth, Clemens; Offenhauser, Nikolas; Kirov, Sergei A.; Dahlem, Markus A.; Herreras, Oscar

    2012-01-01

    In the evolution of the cerebral cortex, the sophisticated organization in a steady state far away from thermodynamic equilibrium has produced the side effect of two fundamental pathological network events: ictal epileptic activity and spreading depolarization. Ictal epileptic activity describes the partial disruption, and spreading depolarization describes the near-complete disruption of the physiological double Gibbs–Donnan steady state. The occurrence of ictal epileptic activity in patients has been known for decades. Recently, unequivocal electrophysiological evidence has been found in patients that spreading depolarizations occur abundantly in stroke and brain trauma. The authors propose that the ion changes can be taken to estimate relative changes in Gibbs free energy from state to state. The calculations suggest that in transitions from the physiological state to ictal epileptic activity to spreading depolarization to death, the cortex releases Gibbs free energy in a stepwise fashion. Spreading depolarization thus appears as a twilight state close to death. Consistently, electrocorticographic recordings in the core of focal ischemia or after cardiac arrest display a smooth transition from the initial spreading depolarization component to the later ultraslow negative potential, which is assumed to reflect processes in cellular death. PMID:22829393

  4. A grouping strategy for autoconvolution summation in the stochastic theory for energy straggling and narrow resonance excitation curve calculations

    NASA Astrophysics Data System (ADS)

    Vickridge, Ian; Amsel, Georges

    1992-02-01

    The direct construction of solutions to the stochastic equations for energy loss straggling and narrow resonance excitation curve calculations requires the weighted summing of the autoconvolutions of a probability density f( u) corresponding to the energy loss u in a single atomic encounter. Whilst conceptually simple, this involves considerable computational overhead since a new f( u) and numerically calculated autoconvolutions are required for each particle/energy/substrate combination. We deem it desirable to maintain the conceptual simplicity of the direct construction of solutions, and so have sought ways of reducing the computational overhead whilst retaining the essential features of the method. We have found that it is not necessary to include all of the autoconvolutions in the weighted summing and have devised an algorithm for deciding, on the basis of an acceptable level of approximation, which autoconvolutions are really necessary, and a method for calculating the corresponding weights. Since we can decide in advance which autoconvolutions are necessary, we can calculate, store and sum only those that we need, and it is this that is the basis for the improvement in computational efficiency. We demonstrate by comparison of complete calculations, in which all the autoconvolutions are included, with calculations employing our grouping strategy, that for a negligibly small sacrifice in accuracy a large gain in computational power is possible.

  5. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  6. Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements.

    PubMed

    Bandopadhyay, Aditya; Chakraborty, Suman

    2011-10-04

    In this work, we explore the possibilities of utilizing the combined consequences of interfacial electrokinetics and rheology toward augmenting the energy transfer efficiencies in narrow fluidic confinements. In particular, we consider the exploitation of steric effects (i.e., effect of finite size of the ionic species) in non-Newtonian fluids over small scales, to report dramatic augmentations in the streaming potential, for shear-thickening fluids. We first derive an expression for the streaming potential considering strong electrical double layer interactions in the confined flow passage and the consequences of the finite conductance of the Stern layer, going beyond the Debye-Hückel limit. With a detailed accounting for the excluded volume effects of the ionic species and their interaction with pertinent interfacial phenomena of special type of rheological fluids such as the power law fluids in the above-mentioned formalism, we demonstrate that a confluence of the steric interactions with the non-Newtonian transport characteristics may result in giant augmentations in the energy transfer efficiency for shear-thickening fluids under appropriate conditions. © 2011 American Chemical Society

  7. Modeling of fluorescence line-narrowed spectra in weakly coupled dimers in the presence of excitation energy transfer

    SciTech Connect

    Lin, Chen; Reppert, Mike; Feng, Ximao; Jankowiak, Ryszard

    2014-07-21

    This work describes simple analytical formulas to describe the fluorescence line-narrowed (FLN) spectra of weakly coupled chromophores in the presence of excitation energy transfer (EET). Modeling studies for dimer systems (assuming low fluence and weak coupling) show that the FLN spectra (including absorption and emission spectra) calculated for various dimers using our model are in good agreement with spectra calculated by: (i) the simple convolution method and (ii) the more rigorous treatment using the Redfield approach [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)]. The calculated FLN spectra in the presence of EET of all three approaches are very similar. We argue that our approach provides a simplified and computationally more efficient description of FLN spectra in the presence of EET. This method also has been applied to FLN spectra obtained for the CP47 antenna complex of Photosystem II reported by Neupane et al. [J. Am. Chem. Soc. 132, 4214 (2010)], which indicated the presence of uncorrelated EET between pigments contributing to the two lowest energy (overlapping) exciton states, each mostly localized on a single chromophore. Calculated and experimental FLN spectra for CP47 complex show very good qualitative agreement.

  8. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  9. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Astrophysics Data System (ADS)

    Patterson, James D.; Li, Wei-Gang

    1995-03-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  10. Single cells spreading on a protein lattice adopt an energy minimizing shape

    PubMed Central

    Vianay, Benoit; Käfer, Jos; Planus, Emmanuelle; Block, Marc; Graner, François; Guillou, Hervé

    2010-01-01

    When spreading onto a protein microlattice living cells spontaneously acquire simple shapes determined by the lattice geometry. This suggests that, on a lattice, living cells’ shapes are in thermodynamic metastable states. Using a model at thermodynamic equilibrium we are able to reproduce the observed shapes. We build a phase diagram based on two adimensional parameters characterizing essential cellular properties involved in spreading: the cell’s compressibility and fluctuations. PMID:20867675

  11. Empirical determination of the energy band gap narrowing in p{sup +} silicon heavily doped with boron

    SciTech Connect

    Yan, Di Cuevas, Andres

    2014-11-21

    In the analysis of highly doped silicon, energy band gap narrowing (BGN) and degeneracy effects may be accounted for separately, as a net BGN in conjunction with Fermi-Dirac statistics, or lumped together in an apparent BGN used with Boltzmann statistics. This paper presents an experimental study of silicon highly doped with boron, with the aim of evaluating the applicability of previously reported BGN models. Different boron diffusions covering a broad range of dopant densities were prepared, and their characteristic recombination current parameters J{sub 0} were measured using a contactless photoconductance technique. The BGN was subsequently extracted by matching theoretical simulations of carrier transport and recombination in each of the boron diffused regions and the measured J{sub 0} values. An evaluation of two different minority carrier mobility models indicates that their impact on the extraction of the BGN is relatively small. After considering possible uncertainties, it can be concluded that the BGN is slightly larger in p{sup +} silicon than in n{sup +} silicon, in qualitative agreement with theoretical predictions by Schenk. Nevertheless, in quantitative terms that theoretical model is found to slightly underestimate the BGN in p{sup +} silicon. With the two different parameterizations derived in this paper for the BGN in p{sup +} silicon, both statistical approaches, Boltzmann and Fermi-Dirac, provide a good agreement with the experimental data.

  12. Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Masao

    2017-07-01

    The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ ˜t-α with the spreading exponent α , which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.

  13. Is Perceptual Narrowing Too Narrow?

    ERIC Educational Resources Information Center

    Cashon, Cara H.; Denicola, Christopher A.

    2011-01-01

    There is a growing list of examples illustrating that infants are transitioning from having earlier abilities that appear more "universal," "broadly tuned," or "unconstrained" to having later abilities that appear more "specialized," "narrowly tuned," or "constrained." Perceptual narrowing, a well-known phenomenon related to face, speech, and…

  14. Energy spread and time structure of ion beams extracted from the ReA-EBIT rare isotope charge breeder

    SciTech Connect

    Baumann, Thomas M.; Lapierre, Alain; Schwarz, Stefan; Kittimanapun, Kritsada; Bollen, Georg

    2015-01-09

    The ReA re-accelerator of the National Superconducting Cyclotron Laboratory at Michigan State University utilizes an Electron Beam Ion Trap (EBIT) for charge breeding thermalized rare isotope beams. Recent commissioning measurements have been performed to characterize the performance of this EBIT. The energy spread of extracted highly charged ion beams was measured to be about 0.3% of the total beam energy. From this, the temperature of the ion ensemble in the trap is calculated to be kT{sub q}/q = 31eV for O{sup 7+}, while it is kT{sub q}/q = 25eV for K{sup 15+}. In addition initial results are presented for two extraction schemes developed to spread highly charged ion pulses in time.

  15. Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation.

    PubMed

    Deng, Haixiao; Feng, Chao

    2013-08-23

    To improve temporal coherence in electron beam based light sources, various techniques employ frequency up conversion of external seed sources via electron beam density modulation; however, the energy spread of the beam may hinder the harmonic generation efficiency. In this Letter, a method is described for cooling the electron beam energy spread by off-resonance seed laser modulation, through the use of a transversely dispersed electron beam and a modulator undulator with an appropriate transverse field gradient. With this novel mechanism, it is shown that the frequency up-conversion efficiency can be significantly enhanced. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser and storage ring based coherent harmonic generation in the extreme ultraviolet spectral region.

  16. End-pumped Nd:YAG Q-switched laser with high energy and narrow pulse for glass carving

    NASA Astrophysics Data System (ADS)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    In order to raise the accuracy of glass carving and improve deep cutting, a novel diode end-pumed solid-state laser is researched. Selecting proper volume of laser crytal, one continue wave laser diode which longitudinally pumped Nd:YAG crystal is performed and an applied optics coupling system is designed with self focusing.Computing with ray trace software and MATLAB software, the best parameter is obtained, so pumping beam is coupled efficiently to Nd:YAG.Used a Cr4+:YAG crystal with the singnal transmission of 82% and a line plane-concave cavity, nanosecond narrow pulse is gotten. After two thermal-electrical coolers kept the laser to work at constant temperature instead of water cooling, the volume of laser is markedly reduced. The method of thermal-electrical cooling could increase the system efficiency,achieve the effect of low mode output.Experimental results indicate that the maximum laser output energy in 1064 nm is 118mJ,pulse width is 5 ns, conversion efficiency from light to light is 15.7% under the condition of the incident power of 5 W and the diameter of the output laser spot is less than 1 mm. This end-pumped Nd:YAG Q-switched laser with the light output of high quality and long life, which has 0.01 mm accuracy after lens focusing can satisfy the glass carving with higher precision, rapid speed as well as easy control. It can be used in carving all kinds of glass and replace current CO2 laser.

  17. Control of energy spread and dark current in proton and ion beams generated in high-contrast laser solid interactions.

    PubMed

    Dollar, F; Matsuoka, T; Petrov, G M; Thomas, A G R; Bulanov, S S; Chvykov, V; Davis, J; Kalinchenko, G; McGuffey, C; Willingale, L; Yanovsky, V; Maksimchuk, A; Krushelnick, K

    2011-08-05

    By using temporal pulse shaping of high-contrast, short pulse laser interactions with solid density targets at intensities of 2 × 10(21) W cm(-2) at a 45° incident angle, we show that it is possible to reproducibly generate quasimonoenergetic proton and ion energy spectra. The presence of a short pulse prepulse 33 ps prior to the main pulse produced proton spectra with an energy spread between 25% and 60% (ΔE/E) with energy of several MeV, with light ions becoming quasimonoenergetic for 50 nm targets. When the prepulse was removed, the energy spectra was broad. Numerical simulations suggest that expansion of the rear-side contaminant layer allowed for density conditions that prevented the protons from being screened from the sheath field, thus providing a low energy cutoff in the observed spectra normal to the target surface.

  18. An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode

    SciTech Connect

    Grishkov, A. A. Pegel, I. V.

    2013-11-15

    An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.

  19. The Spreading of Social Energy: How Exposure to Positive and Negative Social News Affects Behavior.

    PubMed

    Yao, Ziqing; Yu, Rongjun

    2016-01-01

    Social news, unlike video games or TV programs, conveys real-life interactions. Theoretically, social news in which people help or harm each other and violate rules should influence both prosocial and violation behaviors. In two experiments, we demonstrated the spreading effects of social news in a social interaction context emphasizing social conventions and a nonsocial interaction context emphasizing moral norms. Across the two studies, the results showed that positive social news increased cooperation (decreased defection) but had no effect on cheating, whereas negative social news increased cheating but with no change in cooperation (or defection). We conclude that there is a spreading impact of positive social news in the conventional norm domain and of negative social news in the moral norm domain.

  20. The Spreading of Social Energy: How Exposure to Positive and Negative Social News Affects Behavior

    PubMed Central

    Yao, Ziqing; Yu, Rongjun

    2016-01-01

    Social news, unlike video games or TV programs, conveys real-life interactions. Theoretically, social news in which people help or harm each other and violate rules should influence both prosocial and violation behaviors. In two experiments, we demonstrated the spreading effects of social news in a social interaction context emphasizing social conventions and a nonsocial interaction context emphasizing moral norms. Across the two studies, the results showed that positive social news increased cooperation (decreased defection) but had no effect on cheating, whereas negative social news increased cheating but with no change in cooperation (or defection). We conclude that there is a spreading impact of positive social news in the conventional norm domain and of negative social news in the moral norm domain. PMID:27253877

  1. Imaging performance of annular apertures. IV - Apodization and point spread functions. V - Total and partial energy integral functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1983-01-01

    Reference is made to a study by Tschunko (1979) in which it was discussed how apodization modifies the modulation transfer function for various central obstruction ratios. It is shown here how apodization, together with the central obstruction ratio, modifies the point spread function, which is the basic element for the comparison of imaging performance and for the derivation of energy integrals and other functions. At high apodization levels and lower central obstruction (less than 0.1), new extended radial zones are formed in the outer part of the central ring groups. These transmutation of the image functions are of more than theoretical interest, especially if the irradiance levels in the outer ring zones are to be compared to the background irradiance levels. Attention is then given to the energy distribution in point images generated by annular apertures apodized by various transmission functions. The total energy functions are derived; partial energy integrals are determined; and background irradiance functions are discussed.

  2. Imaging performance of annular apertures. IV - Apodization and point spread functions. V - Total and partial energy integral functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1983-01-01

    Reference is made to a study by Tschunko (1979) in which it was discussed how apodization modifies the modulation transfer function for various central obstruction ratios. It is shown here how apodization, together with the central obstruction ratio, modifies the point spread function, which is the basic element for the comparison of imaging performance and for the derivation of energy integrals and other functions. At high apodization levels and lower central obstruction (less than 0.1), new extended radial zones are formed in the outer part of the central ring groups. These transmutation of the image functions are of more than theoretical interest, especially if the irradiance levels in the outer ring zones are to be compared to the background irradiance levels. Attention is then given to the energy distribution in point images generated by annular apertures apodized by various transmission functions. The total energy functions are derived; partial energy integrals are determined; and background irradiance functions are discussed.

  3. Keeping the Edges Sharp I: Honing the Theory of Narrow Rings

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.; Rimlinger, Thomas; Hahn, Joseph M.

    2016-05-01

    Most of the rings that encircle Saturn, Uranus, and Neptune are very narrow structures with typical radial widths of just a few kilometers. Such extreme sharpness is surprising, as even slightly different orbital periods should allow ring particles to continually jostle one another in collisions that preserve angular momentum whileinexorably draining energy. Sharp edges should blur as rings spread in response to collisions and yet they do not. The generally accepted solution to this dilemma is to bracket each narrow ring with a pair of shepherding satellites that can pump energy back into the ring to replace that lost by collisions. But only a disappointing two of roughly twenty narrow rings actually have known attendant satellites. We present a compelling alternative in which the slight eccentricities and inclinations of narrow ringlets act as internal energy sources that can be tapped to prevent ring spreading. When unattended circular rings dissipate energy they must spread radially in order to preserve angular momentum. By contrast, eccentric or inclined rings have an extra degree of freedom that can be exploited to prevent radial spreading; energy is dissipated while keeping z-component of angular momentum, sqrt(a(1-e^2))cos(i), constant by simply decreasing the overall eccentricity (e) and/or inclination (i) of the entire ring. A real narrow ring moves inward as a unit, circularizes, and drops into the equatorial plane in a process that deters radial spreading for millions or billions of years. Using secular theory with dissipation (Zhang et al. 2013), we show that narrow rings are secular eigenstates in which ellipses are nested with pericenters almost, but not exactly aligned. The misalignment of pericenters is crucial in allowing energy dissipation to be shared evenly across the ring. We predict ring surface densities that are roughly constant across the ring's width, in contrast to profiles expected for shepherded rings. Rimlinger et al. (this meeting

  4. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Mehrling, T. J.; Robson, R. E.; Erbe, J.-H.; Osterhoff, J.

    2016-09-01

    This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.

  5. Blueshifts of emission energy from InAs quantum dots in GaAs matrix due to narrowed interdot spacing: a token of the integrity of a nanostructure

    NASA Astrophysics Data System (ADS)

    Shin, H.; Yoon, E.; Hong, K.-S.; Lee, W.; Yoo, Y.-H.

    2005-09-01

    The shifts of emission energy from InAs quantum dots (QDs) in the GaAs matrix due to change in the QD stacking period have been numerically analyzed by investigating the strain modified shifts of band edges. Narrower stacking results in a blueshift of emission energy from direct band gap transition provided the QD spacing is wide enough to avoid electronic coupling. Through a comparison with existing experimental results in the literature, processing methods and variables that have benefits in achieving a blueshift have been inferred. A blueshift through decreased QD spacing has been proposed as a token of the integrity of a processed QD nanostructure.

  6. Pollutant advective spreading in beach sand exposed to high-energy tides

    NASA Astrophysics Data System (ADS)

    Itugha, Okuroghoboye D.; Chen, Daoyi; Guo, Yakun

    2016-11-01

    This paper presents field measurements in which dye solute was injected into coastal sand to investigate contaminant advection in intertidal beach sand. The measurements show the pathways of a contaminated plume in the unsaturated zone during both the flood and ebb tides. A prescribed amount of dye tracer solution was directly injected through the topsoil, with average porosity 0.3521 ± 0.01, at predetermined locations of the River Mersey's outer estuarial beach during ebb-tide. The injected dye was monitored, sampled and photographed over several tidal cycles. The distinctive features of the plume (full two dimensional cross-sections), sediments and water-table depth were sampled in-situ, close to the injection point (differing from previous contaminant monitoring tests in aquifers). The advective movement is attributed to tidal impact which is different from contaminant transport in aquifers. The experimental results show that plumes have significantly large spatial variability, diverging upwards and converging downwards, with a conical geometric shape which is different from the usual spherical/elliptical shape reported in literature. The mean vertical motion of the plume reaches three times the top-width within ten tidal cycles, exceeding the narrow bottom-width by a factor of order 2. The observed transport features of the plume within the beach sand have significant relevance to saltwater intrusion, surface water and groundwater quality. The field observations are unique and can serve as a valuable benchmark database for relevant numerical studies.

  7. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    NASA Astrophysics Data System (ADS)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  8. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy

    DOE PAGES

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2015-12-01

    We report that the rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials", expressed as integrals of equilibrium Drude weights. This relation between nonequilibriummore » quantities and linear response implies non-equilibrium Maxwell relations for the Drude weights. Lastly, we verify our results via DMRG calculations for the XXZ chain.« less

  9. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy

    SciTech Connect

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2015-12-01

    We report that the rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials", expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies non-equilibrium Maxwell relations for the Drude weights. Lastly, we verify our results via DMRG calculations for the XXZ chain.

  10. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2015-12-01

    The rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever the energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (X X Z spin chain), the energy current in Lorentz-invariant theories or the particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials," expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies nonequilibrium Maxwell relations for the Drude weights. We verify our results via density-matrix renormalization group calculations for the X X Z chain.

  11. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy.

    PubMed

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E

    2015-12-31

    The rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever the energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), the energy current in Lorentz-invariant theories or the particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials," expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies nonequilibrium Maxwell relations for the Drude weights. We verify our results via density-matrix renormalization group calculations for the XXZ chain.

  12. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    NASA Astrophysics Data System (ADS)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlathölter, T.

    2010-10-01

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with 12C ions under spread-out Bragg peak conditions (densely ionizing) and with 137Cs γ-photons (sparsely ionizing) as a function of dose. To evaluate the relevance of indirect effects, i.e. influences of diffusion limited radical induced DNA damage triggered by water radiolysis, the experiments were performed at various concentrations of the radical scavenger mannitol. Agarose gel electrophoresis was employed to quantify the DNA damage. At low scavenger concentration for a given dose DNA damage is higher for γ-photons than for 12C. For the latter, the microscopic dose distribution is inhomogeneous, with very high dose deposited along the few tracks through the solution. This is in agreement with the concept that scavengers efficiently reduce damage for γ-photons, implying that the underlying damage mechanism is single strand break induction by OH radicals. For 12C induced damage, the fraction of SSB and DSB that is unaffected by radical scavengers and thus due to direct effect is quantified.

  13. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  14. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  15. Lower hybrid instability driven by mono-energy {alpha}-particles with finite pitch angle spread in a plasma

    SciTech Connect

    Kumar, Pawan; Singh, Vishwesh; Tripathi, V. K.

    2013-02-15

    A kinetic formalism of lower hybrid wave instability, driven by mono-energy {alpha}-particles with finite pitch angle spread, is developed. The instability arises through cyclotron resonance interaction with high cyclotron harmonics of {alpha}-particles. The {alpha}-particles produced in D-T fusion reactions have huge Larmor radii ({approx}10 cm) as compared to the wavelength of the lower hybrid wave, whereas their speed is an order of magnitude smaller than the speed of light in vacuum. As a result, large parallel phase velocity lower hybrid waves, suitable for current drive in tokamak, are driven unstable via coupling to high cyclotron harmonics. The growth rate decreases with increase in pitch angle spread of the beam. At typical electron density of {approx}10{sup 19} m{sup -3}, magnetic field {approx}4 Tesla and {alpha}-particle concentration {approx}0.1%, the large parallel phase velocity lower hybrid wave grows on the time scale of 20 ion cyclotron periods. The growth rate decreases with plasma density.

  16. Long-pulse, high-energy, narrow-linewidth Nd:LGGG laser at 1336.63 nm with reflecting Bragg grating

    NASA Astrophysics Data System (ADS)

    Li, Jia-Jia; Wang, Zhi-Min; Wang, Ming-Qiang; Zhang, Feng-Feng; Xu, Yi-Chen; Guo, Chuan; Zong, Nan; Zhang, Shen-Jin; Yang, Feng; Gao, Hong-Wei; Yuan, Lei; Bo, Yong; Cui, Da-Fu; Peng, Qin-Jun; Xu, Zu-Yan

    2017-04-01

    A long-pulse, high-energy, narrow-linewidth 1336.63 nm laser based on Nd:(Lu x Gd1‑x )3Ga5O12 crystal is demonstrated for the first time. A reflecting volume Bragg grating is used as a cavity mirror of the standing-wave cavity to select the desired wavelength. In order to narrow the linewidth, an 8 mm thick etalon is inserted in the cavity. A maximum output energy of 0.66 J at an operation pulse repetition rate of 5 Hz with a pulse width of 770 µs is obtained. The beam quality factor M 2 is about 1.2. The tuning range is more than 32 pm from 1336.613 to 1336.645 nm through changing the temperature of RVBG. The standard deviation of wavelength stability is about 1.6 pm over 20 min. At the output energy of about 0.59 J, the linewidth is estimated to be 6.79 pm.

  17. Velocity dispersion of correlated energy spread electron beams in the free electron laser

    NASA Astrophysics Data System (ADS)

    Campbell, L. T.; Maier, A. R.

    2017-03-01

    The effects of a correlated linear energy/velocity chirp in the electron beam in the free electron laser (FEL), and how to compensate for its effects by using an appropriate taper (or reverse-taper) of the undulator magnetic field, is well known. The theory, as described thus far, ignores velocity dispersion from the chirp in the undulator, taking the limit of a ‘small’ chirp. In the following, the physics of compensating for chirp in the beam is revisited, including the effects of velocity dispersion, or beam compression or decompression, in the undulator. It is found that the limit of negligible velocity dispersion in the undulator is different from that previously identified as the small chirp limit, and is more significant than previously considered. The velocity dispersion requires a taper which is nonlinear to properly compensate for the effects of the detuning, and also results in a varying peak current (end thus a varying gain length) over the length of the undulator. The results may be especially significant for plasma driven FELs and low energy linac driven FEL test facilities.

  18. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

    DOE PAGES

    Manahan, Grace G.; Habib, A. F.; Scherkl, P.; ...

    2017-06-05

    Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m–1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave canmore » be locally overloaded without compromising the witness bunch normalized emittance. Here, this reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.« less

  19. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

    PubMed Central

    Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.

    2017-01-01

    Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams. PMID:28580954

  20. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  1. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using {epsilon} near-zero metamaterials

    SciTech Connect

    Silveirinha, Mario G.; Engheta, Nader

    2007-12-15

    In this work, we investigate the detailed theory of the supercoupling, anomalous tunneling effect, and field confinement originally identified by Silveirinha and Engheta [Phys. Rev. Lett. 97, 157403 (2006)], where we demonstrated the possibility of using materials with permittivity {epsilon} near zero to drastically improve the transmission of electromagnetic energy through a narrow irregular channel with very subwavelength transverse cross section. Here, we present additional physical insights, describe applications of the tunneling effect in relevant waveguide scenarios (e.g., the 'perfect' or 'super' waveguide coupling), and study the effect of metal losses in the metallic walls and the possibility of using near-zero {epsilon} materials to confine energy in a subwavelength cavity with gigantic field enhancement. In addition, we systematically study the propagation of electromagnetic waves through narrow channels filled with anisotropic near-zero {epsilon} materials. It is demonstrated that these materials may have interesting potentials, and that for some particular geometries, the reflectivity of the channel is independent of the specific dimensions or parameters of near-zero {epsilon} transition. We also describe several realistic metamaterial implementations of the studied problems, based on standard metallic waveguides, microstrip line configurations, and wire media.

  2. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    SciTech Connect

    Xu, Tong; Chen, Min Li, Fei-Yu; Yu, Lu-Le; Sheng, Zheng-Ming; Zhang, Jie

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

  3. Chaos and Energy Spreading for Time-Dependent Hamiltonians, and the Various Regimes in the Theory of Quantum Dissipation

    NASA Astrophysics Data System (ADS)

    Cohen, Doron

    2000-08-01

    We make the first steps toward a generic theory for energy spreading and quantum dissipation. The Wall formula for the calculation of friction in nuclear physics and the Drude formula for the calculation of conductivity in mesoscopic physics can be regarded as two special results of the general formulation. We assume a time-dependent Hamiltonian H(Q, P; x(t)) with x(t)=Vt, where V is slow in a classical sense. The rate-of-change V is not necessarily slow in the quantum-mechanical sense. The dynamical variables (Q, P) may represent some "bath" which is being parametrically driven by x. This bath may consist of just a few degrees of freedom, but it is assumed to be classically chaotic. In the case of either the Wall or Drude formula, the dynamical variables (Q, P) may represent a single particle. In any case, dissipation means an irreversible systematic growth of the (average) energy. It is associated with the stochastic spreading of energy across levels. The latter can be characterized by a transition probability kernel Pt(n ∣ m), where n and m are level indices. This kernel is the main object of the present study. In the classical limit, due to the (assumed) chaotic nature of the dynamics, the second moment of Pt(n ∣ m) exhibits a crossover from ballistic to diffusive behavior. In order to capture this crossover within quantum mechanics, a proper theory for the quantal Pt(n ∣ m) should be constructed. We define the V regimes where either perturbation theory or semiclassical considerations are applicable in order to establish this crossover. In the limit ℏ→0 perturbation theory does not apply but semiclassical considerations can be used in order to argue that there is detailed correspondence, during the crossover time, between the quantal and the classical Pt(n ∣ m). In the perturbative regime there is a lack of such correspondence. Namely, Pt(n ∣ m) is characterized by a perturbative core-tail structure that persists during the crossover time. In

  4. X-ray Variability Characteristics of the Narrow line SEYFERT 1 MKN 766 I: Energy Dependent Timing Properties

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  5. The Energy-Dependent X-Ray Timing Characteristics of the Narrow Line Seyfert 1 MKN 766

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Papadakis, I.; Arevalo, P.; Turner, T. J.; Miller, L.; Reeves, J. N.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  6. Using the optical-klystron effect to increase and measure the intrinsic beam energy spread in free-electron-laser facilities

    NASA Astrophysics Data System (ADS)

    Prat, Eduard; Ferrari, Eugenio; Reiche, Sven; Schietinger, Thomas

    2017-04-01

    We present a setup based on the optical klystron concept, consisting of two undulator modules separated by a magnetic chicane, that addresses two issues in free-electron-laser (FEL) facilities. On the one hand, it allows increasing the intrinsic energy spread of the beam at the source, which is useful to counteract the harmful microbunching instability. This represents an alternative method to the more conventional laser heater with the main advantage that no laser system is required. On the other hand, the setup can be used to reconstruct the initial beam energy spread, whose typical values in FEL injectors around 1 keV are very difficult to measure with standard procedures.

  7. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models.

    PubMed

    Peeler, Christopher R; Titt, Uwe

    2012-06-21

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose.

  8. High energy, narrow linewidth 1572nm ErYb-fiber based MOPA for a multi-aperture CO2 trace-gas laser space transmitter

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark

    2016-03-01

    A cladding-pumped, LMA ErYb fiber-based, amplifier is presented for use in a LIDAR transmitter for remote sensing of atmospheric CO2 from space. The amplifier is optimized for high peak power, high efficiency, and narrow linewidth operation at 1572.3nm. Using highly reliable COTS components, the amplifier achieves 0.5kW peak power (440uJ pulse energy), 3.3W average power with transform limited (TL) linewidth and M2<1.3. The power amplifier supports a 30% increase in pulse energy when linewidth is increased to 100MHz. A preliminary conductively cooled laser optical module (LOM) concept has size 9x10x1.25 in (113 in3) and estimated weight of 7.2lb (3.2 kg). Energy scaling with pulse width up to 645uJ, 1.5usec is demonstrated. A novel doubleclad ErYb LMA fiber (30/250um) with high pump absorption (6 dB/m at 915nm) was designed, fabricated, and characterized for power scaling. The upgraded power amplifier achieves 0.8kW peak power (720uJ pulse energy) 5.4W average power with TL linewidth and M2<1.5.

  9. Energy level systems and transitions of Ho:LuAG laser resonantly pumped by a narrow line-width Tm fiber laser.

    PubMed

    Chen, Hao; Zhao, Ting; Yang, Hao; Zhang, Le; Zhou, Tianyuan; Tang, Dingyuan; Wong, Chingping; Chen, Yung-Fu; Shen, Deyuan

    2016-11-28

    We presented a Ho:LuAG ceramic laser in-band pumped by a narrow emission line-width Tm fiber laser at 1907 nm. All of potential transitions between 5I7 and 5I8 manifold were discussed to form the Ho's in-band-pump energy level systems, which were not described in details earlier. For the emission band centered at ~2095 nm, both laser absorption and emission transition separately consisted of two groups were first analyzed and observed. Using output couplers (OCs) with different transmittances (T = 6, 10 and 20%), the similar ~0.5 W continuous-wave (CW) output power under an incident pump power of ~4.9 W was obtained, with twin (or triplet) emission bands respectively. The blue shift of center emission wavelengths was observed with the increase of transmittances.

  10. Wetting and dewetting of narrow hydrophobic channels by orthogonal electric fields: Structure, free energy, and dynamics for different water models.

    PubMed

    Kayal, Abhijit; Chandra, Amalendu

    2015-12-14

    Wetting and dewetting of a (6,6) carbon nanotube in presence of an orthogonal electric field of varying strengths are studied by means of molecular dynamics simulations using seven different models of water. We have looked at filling of the channel, occupancy and structure of water inside it, associated free energy profiles, and also dynamical properties like the time scales of collective dipole flipping and residence dynamics. For the current systems where the entire simulation box is under the electric field, the nanotube is found to undergo electrodrying, i.e., transition from filled to empty states on increase of the electric field. The free energy calculations show that the empty state is the most stable one at higher electric field as it raptures the hydrogen bond environment inside the carbon nanotube by reorienting water molecules to its direction leading to a depletion of water molecules inside the channel. We investigated the collective flipping of water dipoles inside the channel and found that it follows a fast stepwise mechanism. On the dynamical side, the dipole flipping is found to occur at a faster rate with increase of the electric field. Also, the rate of water flow is found to decrease dramatically as the field strength is increased. The residence time of water molecules inside the channel is also found to decrease with increasing electric field. Although the effects of electric field on different water models are found to be qualitatively similar, the quantitative details can be different for different models. In particular, the dynamics of water molecules inside the channel can vary significantly for different water models. However, the general behavior of wetting and dewetting transitions, enhanced dipole flips, and shorter residence times on application of an orthogonal electric field hold true for all water models considered in the current work.

  11. Time-resolved imaging of the microbunching instability and energy spread at the Linac Coherent Light Source

    DOE PAGES

    Ratner, D.; Behrens, C.; Ding, Y.; ...

    2015-03-09

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore » comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. As a result, detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less

  12. Evaluating the role of inertial and tidal internal wave dynamics on a narrow continental shelf: An assessment of the dominant physical dynamics influencing mixing and the energy budget

    NASA Astrophysics Data System (ADS)

    Schlosser, T. L.; Bluteau, C.; Jones, N. L.; Lucas, A.; Nash, J. D.; Ivey, G. N.

    2016-02-01

    Mesoscale, wind, inertial, tide and internal tide dynamics determine the vertical mixing, horizontal transport of mass and energy, and dissipation of energy on the continental shelf. We investigate the relative contribution of each of these processes, with emphasis on the internal wave dynamics in particular, to shelf mixing and to the cross- and along-shelf energy budgets on the Tasmanian Eastern Shelf, Australia. We deployed three traditional moorings and two autonomous profilers (WireWalkers) along a transect on this relatively narrow shelf. Estimates of mixing rates were derived from both high-frequency temperature measurements (chi-pods) on the WireWalkers and near-bed continuous measurements of temperature and velocity. The region is unique with a locally generated sub-inertial diurnal internal tide and a super-inertial semidiurnal internal tide, the potential for remotely generated energetic internal tides to be scattered onto the shelf, strong winds that force inertial waves and a persistent along-shore current. Although the diurnal internal tide is sub-inertial, the total horizontal kinetic energy (HKE) is the same order of magnitude as the super-inertial internal semidiurnal tide at O(10 Jm-3). In comparison, the near-inertial HKE is O(100 Jm-3) and dominates the baroclinic tides. Frequent but irregular bore-like nonlinear waves with amplitudes O(10 m) are measured at the shelf-break, but do not propagate to the mid-shelf moorings ( 10 km west). Estimated turbulent dissipation rates ɛ varied from 1e-9 to 1e-6 W kg-1 near the seabed with increased values near the surface following large wind events (>0.6 N m-2). Mixing rates were often in excess of 10-4 m2s-1. The implications of the topographically trapped internal diurnal tide for local dissipation of energy will be discussed.

  13. The wetting of steel, DLC coatings, ceramics and polymers with oils and water: The importance and correlations of surface energy, surface tension, contact angle and spreading

    NASA Astrophysics Data System (ADS)

    Kalin, M.; Polajnar, M.

    2014-02-01

    The importance of wetting is becoming increasingly obvious and its control is inevitable in many engineering applications, including tribology and interface nanotechnology. However, the relations between the key parameters affecting surface-liquid wetting behaviour under realistic conditions are not very well understood, especially for typical engineering materials and lubricants (oils), often leading to exceptions and contradictions, which impede their use in engineering models and theories, and so the possible optimisation of the interfaces of engineering systems. In this paper we present the correlations between the contact angle, the spreading, the surface tension and the surface energy of fourteen frequently used engineering materials belonging to four different classes of materials (steel, DLC coatings, ceramics, and polymers) wetted with four different liquids: three oils (a non-polar synthetic oil of two different viscosities and a polar natural-based oil) and water. The results represent systematically and consistently obtained data about the wetting-relevant parameters of the selected materials and lubricants and numerous correlations between them. However, the most striking result suggests that the spreading parameter correlates very linearly with the surface energy for all the materials and liquids studied, in both the adhesion-wetting and spreading-wetting regimes. The experimentally determined spreading vs. surface energy correlation functions that appear generally valid for a broad range of properties of the materials and oils can thus be applied as an engineering tool to tailor and design the required/desired wetting performance and nature of the solid-liquid interfaces. The spreading parameter SP - in contrast to the contact angle - was found to be a reliable and relevant parameter for describing the wetting of oils with selected engineering materials.

  14. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    PubMed

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  15. ESCIMO.spread - a spreadsheet-based point snow surface energy balance model to calculate hourly snow water equivalent and melt rates for historical and changing climate conditions

    NASA Astrophysics Data System (ADS)

    Strasser, U.; Marke, T.

    2010-05-01

    This paper describes the spreadsheet-based point energy balance model ESCIMO.spread which simulates the energy and mass balance as well as melt rates of a snow surface. The model makes use of hourly recordings of temperature, precipitation, wind speed, relative humidity, global and longwave radiation. The effect of potential climate change on the seasonal evolution of the snow cover can be estimated by modifying the time series of observed temperature and precipitation by means of adjustable parameters. Model output is graphically visualized in hourly and daily diagrams. The results compare well with weekly measured snow water equivalent (SWE). The model is easily portable and adjustable, and runs particularly fast: hourly calculation of a one winter season is instantaneous on a standard computer. ESICMO.spread can be obtained from the authors on request (contact: ulrich.strasser@uni-graz.at).

  16. Observations of energy transport and rate of spreads from low-intensity fires in longleaf pine habitat-RxCADRE 2012

    Treesearch

    Bret Butler; C. Teske; Dan Jimenez; Joseph O' Brien; Paul Sopko; Cyle Wold; Mark Vosburgh; Ben Hornsby; E. Louise Loudermilk

    2016-01-01

    Wildland fire rate of spread (ROS) and intensity are determined by the mode and magnitude of energy transport from the flames to the unburned fuels. Measurements of radiant and convective heating and cooling from experimental fires are reported here. Sensors were located nominally 0.5mabove ground level. Flame heights varied from 0.3 to 1.8 m and flaming zone depth...

  17. Parallel blind deconvolution of astronomical images based on the fractal energy ratio of the image and regularization of the point spread function

    NASA Astrophysics Data System (ADS)

    Jia, Peng; Cai, Dongmei; Wang, Dong

    2014-11-01

    A parallel blind deconvolution algorithm is presented. The algorithm contains the constraints of the point spread function (PSF) derived from the physical process of the imaging. Additionally, in order to obtain an effective restored image, the fractal energy ratio is used as an evaluation criterion to estimate the quality of the image. This algorithm is fine-grained parallelized to increase the calculation speed. Results of numerical experiments and real experiments indicate that this algorithm is effective.

  18. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    SciTech Connect

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  19. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    NASA Astrophysics Data System (ADS)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-04-01

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  20. Process contributions to the intermodel spread in amplified Arctic warming

    NASA Astrophysics Data System (ADS)

    Boeke, R.; Taylor, P. C.

    2016-12-01

    The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature

  1. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  2. Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e^+e^- circular collider

    NASA Astrophysics Data System (ADS)

    Cerri, Olmo; de Gruttola, Michele; Pierini, Maurizio; Podo, Alessandro; Rolandi, Gigi

    2017-02-01

    We study the expected sensitivity to measure the branching ratio of Higgs boson decays to invisible particles at a future circular e^+e^-collider (FCC-ee) in the process e^+e^-→ HZ with Z→ ℓ ^+ℓ ^- (ℓ =e or μ ) using an integrated luminosity of 3.5 ab^{-1} at a center-of-mass energy √{s}=240 GeV. The impact of the energy spread of the FCC-ee beam and of the resolution in the reconstruction of the leptons is discussed. The minimum branching ratio for a 5σ observation after 3.5 ab^{-1} of data taking is 1.7± 0.1%(stat+syst) . The branching ratio exclusion limit at 95% CL is 0.63 ± 0.22%((stat+syst)).

  3. Spread Supersymmetry

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence J.; Nomura, Yasunori

    2012-01-01

    In the multiverse the scale of supersymmetry breaking, widetilde{m} = {F_X}/{M_{ * }} ∗, may scan and environmental constraints on the dark matter density may exclude a large range of m from the reheating temperature after inflation down to values that yield a lightest supersymmetric particle (LSP) mass of order a TeV. After selection effects, for example from the cosmological constant, the distribution for widetilde{m} in the region that gives a TeV LSP may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP somewhat lighter than the corresponding value for single-component LSP dark matter. If supersymmetry breaking is mediated to the Standard Model sector at order X † X and higher, only squarks, sleptons and one Higgs doublet acquire masses of order widetilde{m} . The gravitino mass is lighter by a factor of M ∗ /M Pl and the gaugino masses are suppressed by a further loop factor. This Spread Supersymmetry spectrum has two versions, one with Higgsino masses arising from supergravity effects of order the gravitino mass giving a wino LSP, and another with the Higgsino masses generated radiatively from gaugino masses giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 103 TeV and 106 TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread Supersymmetry. The Higgs boson is Standard Model-like and predicted to lie in the range 110-145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is at

  4. Narrowness and Liberality

    ERIC Educational Resources Information Center

    Agresto, John

    2003-01-01

    John Agresto, whose task has been to rebuild the war-ravaged infrastructure of a Middle-Eastern university system, is discouraged to see that narrow expertise is the only goal of education there, to the utter exclusion of intellectual breadth. He comments that, although it is not that bad in the U.S., he feels that doctoral programs as currently…

  5. Spreading of miscible liquids

    NASA Astrophysics Data System (ADS)

    Walls, Daniel J.; Haward, Simon J.; Shen, Amy Q.; Fuller, Gerald G.

    2016-05-01

    Miscible liquids commonly contact one another in natural and technological situations, often in the proximity of a solid substrate. In the scenario where a drop of one liquid finds itself on a solid surface and immersed within a second, miscible liquid, it will spread spontaneously across the surface. We show experimental findings of the spreading of sessile drops in miscible environments that have distinctly different shape evolution and power-law dynamics from sessile drops that spread in immiscible environments, which have been reported previously. We develop a characteristic time to scale radial data of the spreading sessile drops based on a drainage flow due to gravity. This time scale is effective for a homologous subset of the liquids studied. However, it has limitations when applied to significantly chemically different, yet miscible, liquid pairings; we postulate that the surface energies between each liquid and the solid surface becomes important for this other subset of the liquids studied. Initial experiments performed with pendant drops in miscible environments support the drainage flow observed in the sessile drop systems.

  6. [Narrow lumbar canal].

    PubMed

    Deshayes, P; Louvel, J P

    1992-03-01

    The diagnosis of spinal stenosis can be strongly suspected when the following symptoms are present: limbs neuralgias with a poorly defined location, paresthesias in several dermatomas neurogenic intermittent claudication. Myelography coupled with scan yields the best information about morphology, levels of stenosis and narrowing factors, bone bridges ligaments and discal structures. If surgery is decided after failure of medical treatment to improve the patient's condition, the choice will be best guided by the myeloscan analysis.

  7. Cryogenic Detectors (Narrow Field Instruments)

    NASA Astrophysics Data System (ADS)

    Hoevers, H.; Verhoeve, P.

    Two cryogenic imaging spectrometer arrays are currently considered as focal plane instruments for XEUS. The narrow field imager 1 (NFI 1) will cover the energy range from 0.05 to 3 keV with an energy resolution of 2 eV, or better, at 500 eV. A second narrow field imager (NFI 2) covers the energy range from 1 to 15 keV with an energy resolution of 2 eV (at 1 keV) and 5 eV (at 7 keV), creating some overlap with part of the NFI 1 energy window. Both narrow field imagers have a 0.5 arcmin field of view. Their imaging capabilities are matched to the XEUS optics of 2 to 5 arcsec leading to 1 arcsec pixels. The detector arrays will be cooled by a closed cycle system comprising a mechanical cooler with a base temperature of 2.5 K and either a low temperature 3He sorption pump providing the very low temperature stage and/or an Adiabatic Demagnetization Refrigerator (ADR). The ADR cooler is explicitly needed to cool the NFI 2 array. The narrow field imager 1} Currently a 48 times 48 element array of superconducting tunnel junctions (STJ) is envisaged. Its operating temperature is in the range between 30 and 350 mK. Small, single Ta STJs (20-50 mum on a side) have shown 3.5 eV (FWHM) resolution at E = 525 eV and small arrays have been successfully demonstrated (6 times 6 pixels), or are currently tested (10 times 12 pixels). Alternatively, a prototype Distributed Read-Out Imaging Device (DROID), consisting of a linear superconducting Ta absorber of 20 times 100 mum2, including a 20 times 20 mum STJ for readout at either end, has shown a measured energy resolution of 2.4 eV (FWHM) at E = 500 eV. Simulations involving the diffusion properties as well as loss and tunnel rates have shown that the performance can be further improved by slight modifications in the geometry, and that the size of the DROIDS can be increased to 0.5-1.0 mm without loss in energy resolution. The relatively large areas and good energy resolution compared to single STJs make DROIDS good candidates for the

  8. Perceptual narrowing: retrospect and prospect.

    PubMed

    Flom, Ross

    2014-11-01

    Research is reviewed demonstrating perceptual narrowing across a variety of domains. Research is also reviewed showing that the temporal window of perceptual narrowing can be extended and, in some cases, perceptual narrowing can be reversed. Research is also reviewed highlighting the neurophysiological correlates of perceptual narrowing as well as some of the individual neurophysiological differences associated with perceptual narrowing. Various methodological issues associated with perceptual narrowing are also discussed. The broader purpose of this paper, however, is to argue that the term perceptual narrowing fails to capture the dynamic nature of this perceptual process. Finally, it is argued that just as other concepts associated with experience and development are refined and modified as new evidence emerges, likewise we need to evaluate and refine how we conceptualize perceptual narrowing.

  9. Narrow Angle movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief three-frame movie of the Moon was made from three Cassini narrow-angle images as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The purpose of this particular set of images was to calibrate the spectral response of the narrow-angle camera and to test its 'on-chip summing mode' data compression technique in flight. From left to right, they show the Moon in the green, blue and ultraviolet regions of the spectrum in 40, 60 and 80 millisecond exposures, respectively. All three images have been scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is the same in each image. The spatial scale in the blue and ultraviolet images is 1.4 miles per pixel (2.3 kilometers). The original scale in the green image (which was captured in the usual manner and then reduced in size by 2x2 pixel summing within the camera system) was 2.8 miles per pixel (4.6 kilometers). It has been enlarged for display to the same scale as the other two. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  10. High Energy, Narrow Linewidth 1572nm Eryb-Fiber Based MOPA for a Multi-Aperture CO2 Trace-Gas Laser Space Transmitter

    NASA Technical Reports Server (NTRS)

    Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark

    2016-01-01

    Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.

  11. Keeping the Edges Sharp II: Honing Simulations of Narrow Rings

    NASA Astrophysics Data System (ADS)

    Rimlinger, Thomas; Hamilton, Douglas; Hahn, Joseph M.

    2016-05-01

    It has long been believed that shepherd satellites are necessary to keep narrow rings confined. While a pair of nearby satellites brackets Saturn’s F ring and Uranus’ Epsilon ring, dozens of other ringlets observed around the outer three planets seem to be unattended. Hamilton et al. (this meeting) have argued analytically that eccentric or inclined rings can maintain their sharp edges for millions or even billions of years despite continually dissipating energy. Here, we present numerical integrations showing isolated eccentric ringlets that do not spread; our model includes only the gravity from an oblate planet, ring self-gravity, and viscosity. We use the symplectic integrator epi_int written by Hahn & Spitale (2013).For narrow rings, the weak perturbation forces that we study act on secular rather than orbital timescales. Therefore, we find that we can use an unusually long timestep, in which these weak forces are applied once every ~30 orbits, with good energy and angular momentum conservation. Long timesteps allow us to run simulations that might otherwise take hours or even days in a matter of minutes. We present comparisons between simulations with identical initial conditions but varying timesteps to show that our approach is appropriate for this class of problems. This technique of speeding up numerical integrations works for any symplectic integrator, requiring only that the forces be weak and that the timescale of interest be long. Problems well suited to this approach (those with only secular and drag forces) include tidally-damped exoplanets and dust grains subject to radiation pressure and Poynting-Robertson drag.

  12. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: Modeling of spreading and degradation

    NASA Astrophysics Data System (ADS)

    Zuurbier, Koen G.; Hartog, Niels; Valstar, Johan; Post, Vincent E. A.; van Breukelen, Boris M.

    2013-04-01

    Groundwater systems are increasingly used for seasonal aquifer thermal energy storage (SATES) for periodic heating and cooling of buildings. Its use is hampered in contaminated aquifers because of the potential environmental risks associated with the spreading of contaminated groundwater, but positive side effects, such as enhanced contaminant remediation, might also occur. A first reactive transport study is presented to assess the effect of SATES on the fate of chlorinated solvents by means of scenario modeling, with emphasis on the effects of transient SATES pumping and applicable kinetic degradation regime. Temperature effects on physical, chemical, and biological reactions were excluded as calculations and initial simulations showed that the small temperature range commonly involved (ΔT < 15 °C) only caused minor effects. The results show that a significant decrease of the contaminant mass and (eventually) plume volume occurs when degradation is described as sediment-limited with a constant rate in space and time, provided that dense non-aqueous phase liquid (DNAPL) is absent. However, in the presence of DNAPL dissolution, particularly when the dissolved contaminant reaches SATES wells, a considerably larger contaminant plume is created, depending on the balance between DNAPL dissolution and mass removal by degradation. Under conditions where degradation is contaminant-limited and degradation rates depend on contaminant concentrations in the aquifer, a SATES system does not result in enhanced remediation of a contaminant plume. Although field data are lacking and existing regulatory constraints do not yet permit the application of SATES in contaminated aquifers, reactive transport modeling provides a means of assessing the risks of SATES application in contaminated aquifers. The results from this study are considered to be a first step in identifying the subsurface conditions under which SATES can be applied in a safe or even beneficial manner.

  13. Narrowing of the ITCZ in a warming climate: Physical mechanisms

    NASA Astrophysics Data System (ADS)

    Byrne, Michael P.; Schneider, Tapio

    2016-11-01

    The Intertropical Convergence Zone (ITCZ) narrows in response to global warming in both observations and climate models. However, a physical understanding of this narrowing is lacking. Here we show that the narrowing of the ITCZ in simulations of future climate is related to changes in the moist static energy (MSE) budget. MSE advection by the mean circulation and MSE divergence by transient eddies tend to narrow the ITCZ, while changes in net energy input to the atmosphere and the gross moist stability tend to widen the ITCZ. The narrowing tendency arises because the meridional MSE gradient strengthens with warming, whereas the largest widening tendency is due to increasing shortwave heating of the atmosphere. The magnitude of the ITCZ narrowing depends strongly on the gross moist stability and clouds, emphasizing the need to better understand these fundamental processes in the tropical atmosphere.

  14. Tectonics and magmatism of ultraslow spreading ridges

    NASA Astrophysics Data System (ADS)

    Dubinin, E. P.; Kokhan, A. V.; Sushchevskaya, N. M.

    2013-05-01

    The tectonics, structure-forming processes, and magmatism in rift zones of ultraslow spreading ridges are exemplified in the Reykjanes, Kolbeinsey, Mohns, Knipovich, Gakkel, and Southwest Indian ridges. The thermal state of the mantle, the thickness of the brittle lithospheric layer, and spreading obliquety are the most important factors that control the structural pattern of rift zones. For the Reykjanes and Kolbeinsey ridges, the following are crucial factors: variations in the crust thickness; relationships between the thicknesses of its brittle and ductile layers; width of the rift zone; increase in intensity of magma supply approaching the Iceland thermal anomaly; and spreading obliquety. For the Knipovich Ridge, these are its localization in the transitional zone between the Gakkel and Mohns ridges under conditions of shear and tensile stresses and multiple rearrangements of spreading; nonorthogonal spreading; and structural and compositional barrier of thick continental lithosphere at the Barents Sea shelf and Spitsbergen. The Mohns Ridge is characterized by oblique spreading under conditions of a thick cold lithosphere and narrow stable rift zone. The Gakkel and the Southwest Indian ridges are distinguished by the lowest spreading rate under the settings of the along-strike variations in heating of the mantle and of a variable spreading geometry. The intensity of endogenic structure-forming varies along the strike of the ridges. In addition to the prevalence of tectonic factors in the formation of the topography, magmatism and metamorphism locally play an important role.

  15. Narrow electron injector for ballistic electron spectroscopy

    SciTech Connect

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-06-04

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of {Delta}E{sub inj}=10 meV is derived. {copyright} 2001 American Institute of Physics.

  16. Characterization of high-dose and high-energy implanted gate and source diode and analysis of lateral spreading of p gate profile in high voltage SiC static induction transistors

    NASA Astrophysics Data System (ADS)

    Onose, Hidekatsu; Kobayashi, Yutaka; Onuki, Jin

    2017-03-01

    The effect of the p gate dose on the characteristics of the gate-source diode in SiC static induction transistors (SIT) was investigated. It was found that a dose of 1.5 × 1014 cm-2 yields a pn junction breakdown voltage higher than 60 V and good forward characteristics. A normally on SiC SIT was fabricated and demonstrated. A blocking voltage higher than 2.0 kV at a gate-source voltage of -50 V and on-resistance of 70 mΩ cm2 were obtained. Device simulations were performed to investigate the effect of the lateral spreading. By comparing the measured I-V curves with simulation results, the lateral spreading factor was estimated to be about 0.5. The lateral spreading detrimentally affected the electrical properties of the SIT made using implantations at energies higher than 1 MeV.

  17. NFC - Narrow Field Camera

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.

    2015-01-01

    We have been introducing a low-cost CCTV video system for faint meteor monitoring and here we describe the first results from 5 months of two-station operations. Our system called NFC (Narrow Field Camera) with a meteor limiting magnitude around +6.5mag allows research on trajectories of less massive meteoroids within individual parent meteor showers and the sporadic background. At present 4 stations (2 pairs with coordinated fields of view) of NFC system are operated in the frame of CEMeNt (Central European Meteor Network). The heart of each NFC station is a sensitive CCTV camera Watec 902 H2 and a fast cinematographic lens Meopta Meostigmat 1/50 - 52.5 mm (50 mm focal length and fixed aperture f/1.0). In this paper we present the first results based on 1595 individual meteors, 368 of which were recorded from two stations simultaneously. This data set allows the first empirical verification of theoretical assumptions for NFC system capabilities (stellar and meteor magnitude limit, meteor apparent brightness distribution and accuracy of single station measurements) and the first low mass meteoroid trajectory calculations. Our experimental data clearly showed the capabilities of the proposed system for low mass meteor registration and for calculations based on NFC data to lead to a significant refinement in the orbital elements for low mass meteoroids.

  18. Spreading of triboelectrically charged granular matter

    PubMed Central

    Kumar, Deepak; Sane, A.; Gohil, Smita.; Bandaru, P. R.; Bhattacharya, S.; Ghosh, Shankar

    2014-01-01

    We report on the spreading of triboelectrically charged glass particles on an oppositely charged surface of a plastic cylindrical container in the presence of a constant mechanical agitation. The particles spread via sticking, as a monolayer on the cylinder's surface. Continued agitation initiates a sequence of instabilities of this monolayer, which first forms periodic wavy-stripe-shaped transverse density modulation in the monolayer and then ejects narrow and long particle-jets from the tips of these stripes. These jets finally coalesce laterally to form a homogeneous spreading front that is layered along the spreading direction. These remarkable growth patterns are related to a time evolving frictional drag between the moving charged glass particles and the countercharges on the plastic container. The results provide insight into the multiscale time-dependent tribolelectric processes and motivates further investigation into the microscopic causes of these macroscopic dynamical instabilities and spatial structures. PMID:24919483

  19. Spreading of triboelectrically charged granular matter.

    PubMed

    Kumar, Deepak; Sane, A; Gohil, Smita; Bandaru, P R; Bhattacharya, S; Ghosh, Shankar

    2014-06-12

    We report on the spreading of triboelectrically charged glass particles on an oppositely charged surface of a plastic cylindrical container in the presence of a constant mechanical agitation. The particles spread via sticking, as a monolayer on the cylinder's surface. Continued agitation initiates a sequence of instabilities of this monolayer, which first forms periodic wavy-stripe-shaped transverse density modulation in the monolayer and then ejects narrow and long particle-jets from the tips of these stripes. These jets finally coalesce laterally to form a homogeneous spreading front that is layered along the spreading direction. These remarkable growth patterns are related to a time evolving frictional drag between the moving charged glass particles and the countercharges on the plastic container. The results provide insight into the multiscale time-dependent tribolelectric processes and motivates further investigation into the microscopic causes of these macroscopic dynamical instabilities and spatial structures.

  20. Liquid spreading along a nanostructured superhydrophilic microlane

    NASA Astrophysics Data System (ADS)

    Kim, Seungho; Kim, Ho-Young

    2016-11-01

    Deposition of functional liquids on solid surfaces is an important step in electronic circuit printing and fabrication of some biochips. Here we show that a liquid drop that gently touches a nanostructured superhydrophilic microlane surrounded by hydrophobic background spreads along the pre-defined pattern, allowing for a facile venue to liquid patterning. We find that different regimes of spreading dynamics occur depending on the lane width and the driving force at the liquid source. For a hydrophilic lane narrower than a critical width, the hemiwicking flow driven by capillarity but resisted by viscosity follows the Washburn law. For relatively wider lanes, on the other hand, the spreading rate is a sensitive function of the hydrostatic pressure at the liquid source, so that different power laws for spreading distance with time are observed. We rationalize the observed power laws with scaling analysis considering the effects of liquid bulk invading the hydrophilic lane.

  1. Dual polarized, heat spreading rectenna

    NASA Technical Reports Server (NTRS)

    Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor); Smith, R. Peter (Inventor); Smith, Hugh K. (Inventor)

    1999-01-01

    An aperture coupled patch splits energy from two different polarization components to different locations to spread heat. In addition, there is no physical electrical connection between the slot, patch and circuitry. The circuitry is located under a ground plane which shields against harmonic radiation back to the RF source.

  2. Spectral and spread-spectral teleportation

    SciTech Connect

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  3. Turbulent forces within river plumes affect spread

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  4. Energy spectrum control for modulated proton beams

    SciTech Connect

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-06-15

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to {+-}21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than {+-}3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  5. Energy spectrum control for modulated proton beams

    PubMed Central

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-01-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to ±21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than ±3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies. PMID:19610318

  6. Spectrally Shaped Random-Phase Spreading Functions

    DTIC Science & Technology

    2003-10-24

    gain reduction due to reference function windowing. 18 3.3 Excision of narrow band interference. 19 4 4.1 Hardware based adaptive system with...frequency-spread CW interference falling within the data-rate bandwidth. Assuming that fref(t) is at base band, i.e. having a spectrum extending from zero...report describes the baseband hardware demonstrator based upon AT&T DSP32C digital signal processing cards in an IBM personal computer host platform, and

  7. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  8. Electronically steerable ultrasound-driven long narrow air stream

    NASA Astrophysics Data System (ADS)

    Hasegawa, Keisuke; Qiu, Liwei; Noda, Akihito; Inoue, Seki; Shinoda, Hiroyuki

    2017-08-01

    Acoustic streaming, which is the unidirectional movement of a medium driven by its internal intense acoustic vibrations, has been known for more than a century. Despite the long history of research, there have been no scientific reports on the creation of long stretching steerable airflows in an open space, generated by ultrasound. Here, we demonstrated the creation of a narrow, straight flow in air to a distance of 400 mm from an ultrasound phased array emitting a Bessel beam. We also demonstrated that the direction of the flow could be controlled by appropriately tuning the wavefronts of the emission from the phased array. Unlike conventional airflows such as those generated by jets or fans, which decelerate and spread out as they travel farther, the flow that we created proceeded while being accelerated by the kinetic energy supplied from the ultrasound beam and keeping the diameter as small as the wavelength. A flow of 3 m/s with a 10 mm diameter extended for several hundreds of millimeters in a room that was large enough to be regarded as an open-boundary environment. These properties of the generated flow will enable fine and rapid control of three-dimensional airflow distributions.

  9. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  10. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  11. Influence of phantom materials on the energy dependence of LiF:Mg,Ti thermoluminescent dosimeters exposed to 20-300 kV narrow x-ray spectra, 137Cs and 60Co photons.

    PubMed

    Massillon-J L, G; Cabrera-Santiago, A; Minniti, R; O'Brien, M; Soares, C G

    2014-08-07

    LiF:Mg,Ti, are widely used to estimate absorbed-dose received by patients during diagnostic or medical treatment. Conveniently, measurements are usually made in plastic phantoms. However, experimental conditions vary from one group to another and consequently, a lack of consensus data exists for the energy dependence of thermoluminescent (TL) response. This work investigated the energy dependence of TLD-100 TL-response and the effect of irradiating the dosimeters in different phantom materials for a broad range of energy photons in an attempt to understand the parameters that affect the discrepancies reported by various research groups. TLD-100s were exposed to 20-300 kV narrow x-ray spectra, (137)Cs and (60)Co photons. Measurements were performed in air, PMMA, wt1, polystyrene and TLDS as surrounding material. Total air-kerma values delivered were between 50 and 150 mGy for x-rays and 50 mGy for (137)Cs and (60)Co beams; each dosimeter was irradiated individually. Relative response, R, defined as the TL-response per air-kerma and relative efficiency, RE, described as the TL-response per absorbed-dose (obtained through Monte Carlo (MC) and analytically) were used to describe the TL-response. Both R and RE are normalized to the responses in a (60)Co beam. The results indicate that the use of different phantom materials affects the TL-response and this response varies with energy and material type. MC simulations reproduced qualitatively the experimental data: a) R increases, reaches a maximum at ~25 keV and decreases; b) RE decreases, down to a minimum at ~60 keV, increases to a maximum at ~150 keV and after decreases. Independent of the phantom materials, RE strongly depends on how the absorbed dose is evaluated and the discrepancies between RE evaluated analytically and by MC simulation are around 4% and 18%, dependent on the photon energy. The comparison between our results and that reported in the literature suggests that the discrepancy observed

  12. Influence of phantom materials on the energy dependence of LiF:Mg,Ti thermoluminescent dosimeters exposed to 20-300 kV narrow x-ray spectra, 137Cs and 60Co photons

    NASA Astrophysics Data System (ADS)

    Massillon-JL, G.; Cabrera-Santiago, A.; Minniti, R.; O'Brien, M.; Soares, C. G.

    2014-08-01

    LiF:Mg,Ti, are widely used to estimate absorbed-dose received by patients during diagnostic or medical treatment. Conveniently, measurements are usually made in plastic phantoms. However, experimental conditions vary from one group to another and consequently, a lack of consensus data exists for the energy dependence of thermoluminescent (TL) response. This work investigated the energy dependence of TLD-100 TL-response and the effect of irradiating the dosimeters in different phantom materials for a broad range of energy photons in an attempt to understand the parameters that affect the discrepancies reported by various research groups. TLD-100s were exposed to 20-300 kV narrow x-ray spectra, 137Cs and 60Co photons. Measurements were performed in air, PMMA, wt1, polystyrene and TLDS as surrounding material. Total air-kerma values delivered were between 50 and 150 mGy for x-rays and 50 mGy for 137Cs and 60Co beams; each dosimeter was irradiated individually. Relative response, R, defined as the TL-response per air-kerma and relative efficiency, RE, described as the TL-response per absorbed-dose (obtained through Monte Carlo (MC) and analytically) were used to describe the TL-response. Both R and RE are normalized to the responses in a 60Co beam. The results indicate that the use of different phantom materials affects the TL-response and this response varies with energy and material type. MC simulations reproduced qualitatively the experimental data: a) R increases, reaches a maximum at ~25 keV and decreases; b) RE decreases, down to a minimum at ~60 keV, increases to a maximum at ~150 keV and after decreases. Independent of the phantom materials, RE strongly depends on how the absorbed dose is evaluated and the discrepancies between RE evaluated analytically and by MC simulation are around 4% and 18%, dependent on the photon energy. The comparison between our results and that reported in the literature suggests that the discrepancy observed between

  13. Fourier deconvolution reveals the role of the Lorentz function as the convolution kernel of narrow photon beams.

    PubMed

    Djouguela, Armand; Harder, Dietrich; Kollhoff, Ralf; Foschepoth, Simon; Kunth, Wolfgang; Rühmann, Antje; Willborn, Kay; Poppe, Björn

    2009-05-07

    The two-dimensional lateral dose profiles D(x, y) of narrow photon beams, typically used for beamlet-based IMRT, stereotactic radiosurgery and tomotherapy, can be regarded as resulting from the convolution of a two-dimensional rectangular function R(x, y), which represents the photon fluence profile within the field borders, with a rotation-symmetric convolution kernel K(r). This kernel accounts not only for the lateral transport of secondary electrons and small-angle scattered photons in the absorber, but also for the 'geometrical spread' of each pencil beam due to the phase-space distribution of the photon source. The present investigation of the convolution kernel was based on an experimental study of the associated line-spread function K(x). Systematic cross-plane scans of rectangular and quadratic fields of variable side lengths were made by utilizing the linear current versus dose rate relationship and small energy dependence of the unshielded Si diode PTW 60012 as well as its narrow spatial resolution function. By application of the Fourier convolution theorem, it was observed that the values of the Fourier transform of K(x) could be closely fitted by an exponential function exp(-2pilambdanu(x)) of the spatial frequency nu(x). Thereby, the line-spread function K(x) was identified as the Lorentz function K(x) = (lambda/pi)[1/(x(2) + lambda(2))], a single-parameter, bell-shaped but non-Gaussian function with a narrow core, wide curve tail, full half-width 2lambda and convenient convolution properties. The variation of the 'kernel width parameter' lambda with the photon energy, field size and thickness of a water-equivalent absorber was systematically studied. The convolution of a rectangular fluence profile with K(x) in the local space results in a simple equation accurately reproducing the measured lateral dose profiles. The underlying 2D convolution kernel (point-spread function) was identified as K(r) = (lambda/2pi)[1/(r(2) + lambda(2))](3/2), fitting

  14. The spreading of disorder.

    PubMed

    Keizer, Kees; Lindenberg, Siegwart; Steg, Linda

    2008-12-12

    Imagine that the neighborhood you are living in is covered with graffiti, litter, and unreturned shopping carts. Would this reality cause you to litter more, trespass, or even steal? A thesis known as the broken windows theory suggests that signs of disorderly and petty criminal behavior trigger more disorderly and petty criminal behavior, thus causing the behavior to spread. This may cause neighborhoods to decay and the quality of life of its inhabitants to deteriorate. For a city government, this may be a vital policy issue. But does disorder really spread in neighborhoods? So far there has not been strong empirical support, and it is not clear what constitutes disorder and what may make it spread. We generated hypotheses about the spread of disorder and tested them in six field experiments. We found that, when people observe that others violated a certain social norm or legitimate rule, they are more likely to violate other norms or rules, which causes disorder to spread.

  15. Flame spread across liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher; Schiller, David; Sirignano, William

    1995-01-01

    Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface.

  16. Predicting the evolution of spreading on complex networks

    PubMed Central

    Chen, Duan-Bing; Xiao, Rui; Zeng, An

    2014-01-01

    Due to the wide applications, spreading processes on complex networks have been intensively studied. However, one of the most fundamental problems has not yet been well addressed: predicting the evolution of spreading based on a given snapshot of the propagation on networks. With this problem solved, one can accelerate or slow down the spreading in advance if the predicted propagation result is narrower or wider than expected. In this paper, we propose an iterative algorithm to estimate the infection probability of the spreading process and then apply it to a mean-field approach to predict the spreading coverage. The validation of the method is performed in both artificial and real networks. The results show that our method is accurate in both infection probability estimation and spreading coverage prediction. PMID:25130862

  17. Early Experience & Multisensory Perceptual Narrowing

    PubMed Central

    Lewkowicz, David J.

    2014-01-01

    Perceptual narrowing is a reflection of early experience and contributes in key ways to perceptual and cognitive development. In general, findings have shown that unisensory perceptual sensitivity in early infancy is broadly tuned such that young infants respond to, and discriminate, native as well as non-native sensory inputs, whereas older infants only respond to native inputs. Recently, my colleagues and I discovered that perceptual narrowing occurs at the multisensory processing level as well. The present article reviews this new evidence and puts it in the larger context of multisensory perceptual development and the role that perceptual experience plays in it. Together, the evidence on unisensory and multisensory narrowing shows that early experience shapes the emergence of perceptual specialization and expertise. PMID:24435505

  18. Flame Spread Across Liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher J.; Sirignano, William A.; Schiller, David

    1997-01-01

    The principal goal of our recent research on flame spread across liquid pools is the detailed identification of the mechanisms that control the rate and nature of flame spread when the liquid pool is initially at an isothermal bulk temperature that is below the fuel's flash point temperature. In our project, we specialize the subject to highlight the roles of buoyancy-related processes regarding the mechanisms of flame spread, an area of research cited recently by Linan and Williams as one that needs further attention and which microgravity (micro-g) experiments could help to resolve. Toward resolving the effects of buoyancy on this flame spread problem, comparisons - between 1-g and micro-g experimental observations, and between model predictions and experimental data at each of these gravitational levels - are extensively utilized. The present experimental and computational foundation is presented to support identification of the mechanisms that control flame spread in the pulsating flame spread regime for which long-duration, micro-g flame spread experiments have been conducted aboard a sounding rocket.

  19. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  20. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films

    SciTech Connect

    Gregoire, John M.; Dale, Darren; Kazimirov, Alexander; DiSalvo, Francis J.; Dover, R. Bruce van

    2009-12-15

    High-throughput crystallography is an important tool in materials research, particularly for the rapid assessment of structure-property relationships. We present a technique for simultaneous acquisition of diffraction images and fluorescence spectra on a continuous composition spread thin film using a 60 keV x-ray source. Subsequent noninteractive data processing provides maps of the diffraction profiles, thin film fiber texture, and composition. Even for highly textured films, our diffraction technique provides detection of diffraction from each family of Bragg reflections, which affords direct comparison of the measured profiles with powder patterns of known phases. These techniques are important for high throughput combinatorial studies as they provide structure and composition maps which may be correlated with performance trends within an inorganic library.

  1. Spreading of a granular droplet

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  2. Spreading of a granular droplet

    NASA Astrophysics Data System (ADS)

    Sánchez, Iván; Raynaud, Franck; Lanuza, José; Andreotti, Bruno; Clément, Eric; Aranson, Igor S.

    2007-12-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the“granular droplet”) and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  3. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.

  4. A simple physical model for forest fire spread

    Treesearch

    E. Koo; P. Pagni; J. Woycheese; S. Stephens; D. Weise; J. Huff

    2005-01-01

    Based on energy conservation and detailed heat transfer mechanisms, a simple physical model for fire spread is presented for the limit of one-dimensional steady-state contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution for the fire spread rate is found as an eigenvalue from this model with appropriate boundary conditions through a...

  5. Optimization of monochromated TEM for ultimate resolution imaging and ultrahigh resolution electron energy loss spectroscopy.

    PubMed

    Lopatin, Sergei; Cheng, Bin; Liu, Wei-Ting; Tsai, Meng-Lin; He, Jr-Hau; Chuvilin, Andrey

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Crustal accretion at high temperature spreading centres: Rheological control of crustal thickness

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro

    2010-12-01

    New determinations of lateral crustal thickness variations at anomalous oceanic spreading centres such as Iceland have shown that the crust may be thinner at the ridge axis above the plume thickening towards the sides ( Bjarnason and Schmeling, 2009). To understand this behaviour crustal accretion models have been carried out solving the conservation equations of mass, momentum and energy with melting, melt extraction, and feedback of extracted material as newly formed crust for an extending lithosphere system underlain by a hot mantle plume. The dynamics of rifting are thermally and rheologically controlled by the feedback due to accreted new crust. Four accretional modes with characteristic crustal thickness variations are identified depending on the width of the volcanic emplacement zone, the accretional heating rate, which can be associated with the thickness of the surface layer in which magmatic emplacement takes place, and the spreading rate. Mode 1: zero crustal thickness at the spreading axis develops for cool accretion and a wide emplacement zone. Mode 2: strongly or moderately crustal thickening away from the axis develops in case of warm (deep reaching) accretion and wide emplacement zones. Mode 3: nearly constant crustal thickness develops in case of warm (deep reaching) accretion but narrow emplacement zones. Dynamic topography of mode 3 shows only a weak or no regional minimum at all near the axis. Modes 2 or 3 may be identified with the situation in Iceland. Mode 4: a stagnating central crustal block evolves for cool accretion and narrow emplacement. This mode disappears for increasing spreading rates. No accretional mode with maximum crustal thickness above the plume at the rift axis has been found. The absence of mode 1 accretion (with zero crust at ridge axis) on earth may be an indication that in general crustal accretion is not cold (and shallow). The model is also applied to other hotspot-ridge settings (Azores, Galapagos) and suggests modes 2

  7. Narrow resonances and short-range interactions

    NASA Astrophysics Data System (ADS)

    Gelman, Boris A.

    2009-09-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q≪Λ—a short-distance scale—and an energy difference δɛ=|E-ɛ0|≪ɛ0—a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q0 and a Breit-Wigner term of order Q2(δɛ)-1 which becomes dominant for δɛ≲Q3. Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  8. Narrow resonances and short-range interactions

    SciTech Connect

    Gelman, Boris A.

    2009-09-15

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q<<{lambda}--a short-distance scale--and an energy difference {delta}{epsilon}=|E-{epsilon}{sub 0}|<<{epsilon}{sub 0}--a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q{sup 0} and a Breit-Wigner term of order Q{sup 2}({delta}{epsilon}){sup -1} which becomes dominant for {delta}{epsilon} < or approx. Q{sup 3}. Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  9. Splitting, Stretching and Spreading of Lithosphere

    NASA Astrophysics Data System (ADS)

    Buck, W.

    2003-12-01

    That lithospheric plates diverge across relatively narrow zones has been accepted since the late nineteen sixties. Thus, in surprise many that several basic features of continental rifts and oceanic spreading centers were first observed in the last few years. Several of these new findings concern the distribution of molten or frozen magma along segments of present or past divergence. One view that the observations reinforce is that tectonic processes often cannot be understood without accounting for magmatism. This talk highlights the impact of new observations on how we think about the processes of faulting and magmatism from the plate tectonic scale to the scale of individual faults and magma chambers.

  10. Modeling Viral Spread

    PubMed Central

    Graw, Frederik; Perelson, Alan S.

    2016-01-01

    The way in which a viral infection spreads within a host is a complex process that is not well understood. Different viruses, such as human immunodeficiency virus type 1 and hepatitis C virus, have evolved different strategies, including direct cell-to-cell transmission and cell-free transmission, to spread within a host. To what extent these two modes of transmission are exploited in vivo is still unknown. Mathematical modeling has been an essential tool to get a better systematic and quantitative understanding of viral processes that are difficult to discern through strictly experimental approaches. In this review, we discuss recent attempts that combine experimental data and mathematical modeling in order to determine and quantify viral transmission modes. We also discuss the current challenges for a systems-level understanding of viral spread, and we highlight the promises and challenges that novel experimental techniques and data will bring to the field. PMID:27618637

  11. The Meteorological Setting of Narrow Bipolar Events

    NASA Astrophysics Data System (ADS)

    Stanley, M. A.; Suszcynsky, D. M.; Heavner, M. J.

    2003-12-01

    Narrow Bipolar Events (NBEs) are an impulsive form of electrical breakdown in storms which emits strong VHF radiation. It is well known that these events can be readily detected by VHF receivers in orbit and thus may provide a highly practical means to globally monitor storm activity. However, relatively little is known about how NBEs relate to the convective phase of storms and of how good a predictor they are of severe weather events such as large hail, damaging winds, and tornadoes. On June 10, 2002, numerous energetic NBEs were detected over Kansas by the Los Alamos National Laboratory Edot array, which is primarily located in Florida. These NBEs were also detected by a VHF receiver on-board the SVN 54 GPS satellite. The NBEs were associated with severe thunderstorms which produced softball size hail exceeding 11 centimeters in diameter and a weak F0 tornado. In another case study, several F2 tornadic Florida storms were analyzed for March, 2001. Unlike the Kansas storms, the NBEs of the Florida tornadic storms were spread out over a much wider area and exhibited considerable variability in both frequency of occurrence and predominant polarity of vertical charge transfer. To further explore the significance of the NBE rate variability, we will analyze NEXRAD radar volume scans in conjunction with Edot 3-dimensional locations to better understand how NBEs correlate with the thunderstorm life-cycle.

  12. Topography driven spreading.

    PubMed

    McHale, G; Shirtcliffe, N J; Aqil, S; Perry, C C; Newton, M I

    2004-07-16

    Roughening a hydrophobic surface enhances its nonwetting properties into superhydrophobicity. For liquids other than water, roughness can induce a complete rollup of a droplet. However, topographic effects can also enhance partial wetting by a given liquid into complete wetting to create superwetting. In this work, a model system of spreading droplets of a nonvolatile liquid on surfaces having lithographically produced pillars is used to show that superwetting also modifies the dynamics of spreading. The edge speed-dynamic contact angle relation is shown to obey a simple power law, and such power laws are shown to apply to naturally occurring surfaces.

  13. The Interaction Energies of Cholesterol and 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine in Spread Mixed Monolayers at the Air-Water Interface

    PubMed Central

    Savva, Michalakis; Acheampong, Samuel

    2010-01-01

    The interaction of cholesterol with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was investigated in insoluble miscible mixed monolayers at the air-water interface using a Langmuir balance technique. The strong condensation effects observed at all compositions were quantified on the basis of excess thermodynamic properties of the system. It was found that partial molar areas and work of compression of cholesterol in the mixed monolayers were greatly reduced and increased, respectively, at xDOPE of 0.8, while in accord to the “umbrella model” the character of cholesterol monolayers was drastically affected even at mole fractions of DOPE as low as 0.2. Calculated Gibbs free energies of mixing were shown to be symmetric about equimolar lipid quantities, and considerably decreased at high surface pressures. Interaction energy parameters calculated from values of excess Gibbs energy are found to decrease linearly with surface pressure at a rate of 100 k T m N−1, irregardless of composition. All evidence, points out that cholesterol-DOPE molecular interactions can be adequately simulated using a simple regular mixture model. PMID:19569618

  14. The interaction energies of cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine in spread mixed monolayers at the air-water interface.

    PubMed

    Savva, Michalakis; Acheampong, Samuel

    2009-07-23

    The interaction of cholesterol with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was investigated in insoluble miscible mixed monolayers at the air-water interface using a Langmuir balance technique. The strong condensation effects observed at all compositions were quantified on the basis of excess thermodynamic properties of the system. It was found that partial molar areas and work of compression of cholesterol in the mixed monolayers were greatly reduced and increased, respectively, at xDOPE of 0.8, while, in accord with the "umbrella model", the character of cholesterol monolayers was drastically affected even at mole fractions of DOPE as low as 0.2. Calculated Gibbs free energies of mixing were shown to be symmetric about equimolar lipid quantities and considerably decreased at high surface pressures. Interaction energy parameters calculated from values of excess Gibbs energy are found to decrease linearly with surface pressure at a rate of 100 kT m.N(-1), regardless of composition. All evidence points out that cholesterol-DOPE molecular interactions can be adequately simulated using a simple regular mixture model.

  15. Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of monte carlo simulations for a varian 2100EX accelerator.

    PubMed

    Ding, George X

    2002-04-07

    The purpose of this study is to provide detailed characteristics of incident photon beams for different field sizes and beam energies. This information is critical to the future development of accurate treatment planning systems. It also enhances our knowledge of radiotherapy photon beams. The EGS4 Monte Carlo code, BEAM, has been used to simulate 6 and 18 MV photon beams from a Varian Clinac-2100EX accelerator. A simulated realistic beam is stored in a phase space data file, which contains details of each particle's complete history including where it has been and where it has interacted. The phase space files are analysed to obtain energy spectra, angular distribution, fluence profile and mean energy profiles at the phantom surface for particles separated according to their charge and history. The accuracy of a simulated beam is validated by the excellent agreement between the Monte Carlo calculated and measured dose distributions. Measured depth-dose curves are obtained from depth-ionization curves by accounting for newly introduced chamber fluence corrections and the stopping-power ratios for realistic beams. The study presents calculated depth-dose components from different particles as well as calculated surface dose and contribution from different particles to surface dose across the field. It is shown that the increase of surface dose with the increase of the field size is mainly due to the increase of incident contaminant charged particles. At 6 MV, the incident charged particles contribute 7% to 21% of maximum dose at the surface when the field size increases from 10 x 10 to 40 x 40 cm2. At 18 MV, their contributions are up to 11% and 29% of maximum dose at the surface for 10 x 10 cm2 and 40 x 40 cm2 fields respectively. However, the fluence of these incident charged particles is less than 1% of incident photon fluence in all cases.

  16. Propagation of narrow laser beams in a resonantly absorbing medium

    SciTech Connect

    Petrushevich, Yu V; Starostin, Andrei N

    2000-03-31

    The propagation of a narrow laser beam in a resonantly absorbing medium is analysed. Qualitatively different patterns of the dynamics of a radiation pulse travelling in a medium (depending on conditions of the problem) were obtained by a real three-dimensional nonstationary numerical simulation. The diffraction spreading of a pulse, its compression due to self-focusing, and chaotic beam splitting caused by the development of instability were observed. The simulation results are compared with the experimental data published in the literature. A qualitative agreement is obtained with the observations and conclusions made earlier. (nonlinear optical phenomena and devices)

  17. Bacterial motion in narrow capillaries

    PubMed Central

    Ping, Liyan; Wasnik, Vaibhav; Emberly, Eldon

    2014-01-01

    Motile bacteria often have to pass through small tortuous pores in soil or tissue of higher organisms. However, their motion in this prevalent type of niche is not fully understood. Here, we modeled it with narrow glass capillaries and identified a critical radius (Rc) for bacterial motion. Near the surface of capillaries narrower than that, the swimming trajectories are helices. In larger capillaries, they swim in distorted circles. Under non-slip condition, the peritrichous Escherichia coli swam in left-handed helices with an Rc of ∼10 μm near glass surface. However, slipping could occur in the fast monotrichous Pseudomonas fluorescens, when a speed threshold was exceeded, and thus both left-handed and right-handed helices were executed in glass capillaries. In the natural non-cylindrical pores, the near-surface trajectories would be spirals and twisted loops. Engaging in such motions reduces the bacterial migration rate. With a given pore size, the run length and the tumbling angle of the bacterium determine the probability and duration of their near-surface motion. Shear flow and chemotaxis potentially enhance it. Based on this observation, the puzzling previous observations on bacterial migration in porous environments can be interpreted. PMID:25764548

  18. Driven tracers in narrow channels

    NASA Astrophysics Data System (ADS)

    Cividini, J.; Mukamel, D.; Posch, H. A.

    2017-01-01

    Steady-state properties of a driven tracer moving in a narrow two-dimensional (2D) channel of quiescent medium are studied. The tracer drives the system out of equilibrium, perturbs the density and pressure fields, and gives the bath particles a nonzero average velocity, creating a current in the channel. Three models in which the confining effect of the channel is probed are analyzed and compared in this study: the first is the simple symmetric exclusion process (SSEP), for which the stationary density profile and the pressure on the walls in the frame of the tracer are computed. We show that the tracer acts like a dipolar source in an average velocity field. The spatial structure of this 2D strip is then simplified to a one-dimensional (1D) SSEP, in which exchanges of position between the tracer and the bath particles are allowed. Using a combination of mean-field theory and exact solution in the limit where no exchange is allowed gives good predictions of the velocity of the tracer and the density field. Finally, we show that results obtained for the 1D SSEP with exchanges also apply to a gas of overdamped hard disks in a narrow channel. The correspondence between the parameters of the SSEP and of the gas of hard disks is systematic and follows from simple intuitive arguments. Our analytical results are checked numerically.

  19. Gap narrowing in charged and doped silicon nanoclusters

    NASA Astrophysics Data System (ADS)

    Titov, Andrey; Michelini, Fabienne; Raymond, Laurent; Kulatov, Erkin; Uspenskii, Yurii A.

    2010-12-01

    The gap narrowing in charged Si35H36 and n -type doped Si34DH36 ( D=P , As, Sb, S, Se, and Te) clusters is studied within the GW approximation, including energy dependence of the dielectric matrix and local-field effects. It is shown that the density functional theory does not properly describe the gap narrowing in clusters, as it was found earlier in bulk Si. The main mechanisms of this effect in clusters are the same as in bulk Si: (i) the screened exchange interaction between additional electrons and (ii) the extra screening of the Coulomb interaction by additional electrons. At the same time, our calculations show that the carrier-induced gap narrowing has peculiar features in the clusters. A much weaker screening of the electron-electron interaction strongly increases the first and decreases the second mechanism of gap narrowing in Si clusters as compared to bulk Si. We find also that the gap-narrowing effect is more pronounced in doped clusters than in charged ones due to the charge localization near impurity ions. The electronic spectrum of the charged and doped Si clusters with one electron is spin split. The local-density approximation calculation greatly underestimates the value of the spin splitting. A calculation performed with the screened Hartree-Fock method shows that the splitting is large. It considerably narrows the gap and brings important spin effects into cluster properties.

  20. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  1. Spread spectrum image steganography.

    PubMed

    Marvel, L M; Boncelet, C R; Retter, C T

    1999-01-01

    In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.

  2. Reaction spreading on graphs.

    PubMed

    Burioni, Raffaella; Chibbaro, Sergio; Vergni, Davide; Vulpiani, Angelo

    2012-11-01

    We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e., on the time evolution of the reaction product M(t). At variance with pure diffusive processes, characterized by the spectral dimension d{s}, the important quantity for reaction spreading is found to be the connectivity dimension d{l}. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t)∼t{d{l}}. In the case of Erdös-Renyi random graphs, the reaction product is characterized by an exponential growth M(t)e{αt} with α proportional to ln(k), where (k) is the average degree of the graph.

  3. Spread-Spectrum Communications.

    DTIC Science & Technology

    1984-08-07

    Articles M. B. Parsley and H. F. A. Roefs, "Numerical evaluation of correlation parameters for optimal phases of binary shift-register sequences," IEEE...Transactions on Communications, Vol. COM-27, pp. 1597-1604, October 1979. D. V. Sarwate and M. B. Parsley , "Crcuecorrehation proets Of psuoadmand related...Signal Processing, Vol. 128, pp. 104-109, April 1981. * M. B. Parsley , D. V. Sarwate, and W. E. Stark, ’Error probability for direct-sequence spread

  4. The Tacoma Narrows Bridge Collapse on Film and Video

    ERIC Educational Resources Information Center

    Olson, Don; Hook, Joseph; Doescher, Russell; Wolf, Steven

    2015-01-01

    This month marks the 75th anniversary of the Tacoma Narrows Bridge collapse. During a gale on Nov. 7, 1940, the bridge exhibited remarkable oscillations before collapsing spectacularly (Figs. 1-5). Physicists over the years have spent a great deal of time and energy studying this event. By using open-source analysis tools and digitized footage of…

  5. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  6. The Tacoma Narrows Bridge Collapse on Film and Video

    ERIC Educational Resources Information Center

    Olson, Don; Hook, Joseph; Doescher, Russell; Wolf, Steven

    2015-01-01

    This month marks the 75th anniversary of the Tacoma Narrows Bridge collapse. During a gale on Nov. 7, 1940, the bridge exhibited remarkable oscillations before collapsing spectacularly (Figs. 1-5). Physicists over the years have spent a great deal of time and energy studying this event. By using open-source analysis tools and digitized footage of…

  7. Origin and turbulence spreading of plasma blobs

    SciTech Connect

    Manz, P.; Birkenmeier, G.; Stroth, U.; Ribeiro, T. T.; Scott, B. D.; Carralero, D.; Müller, S. H.; Müller, H. W.; Wolfrum, E.; Fuchert, G.

    2015-02-15

    The formation of plasma blobs is studied by analyzing their trajectories in a gyrofluid simulation in the vicinity of the separatrix. Most blobs arise at the maximum radial electric field outside the separatrix. In general, blob generation is not bound to one particular radial position or instability. A simple model of turbulence spreading for the scrape-off layer is derived. The simulations show that the blob dynamics can be represented by turbulence spreading, which constitutes a substantial energy drive for far scrape-off layer turbulence and is a more suitable quantity to study blob generation compared to the skewness.

  8. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  9. The Spread of Inequality

    PubMed Central

    Rogers, Deborah S.; Deshpande, Omkar; Feldman, Marcus W.

    2011-01-01

    The causes of socioeconomic inequality have been debated since the time of Plato. Many reasons for the development of stratification have been proposed, from the need for hierarchical control over large-scale irrigation systems to the accumulation of small differences in wealth over time via inheritance processes. However, none of these explains how unequal societies came to completely displace egalitarian cultural norms over time. Our study models demographic consequences associated with the unequal distribution of resources in stratified societies. Agent-based simulation results show that in constant environments, unequal access to resources can be demographically destabilizing, resulting in the outward migration and spread of such societies even when population size is relatively small. In variable environments, stratified societies spread more and are also better able to survive resource shortages by sequestering mortality in the lower classes. The predictions of our simulation are provided modest support by a range of existing empirical studies. In short, the fact that stratified societies today vastly outnumber egalitarian societies may not be due to the transformation of egalitarian norms and structures, but may instead reflect the more rapid migration of stratified societies and consequent conquest or displacement of egalitarian societies over time. PMID:21957457

  10. Illusory spreading of watercolor

    PubMed Central

    Devinck, Frédéric; Hardy, Joseph L.; Delahunt, Peter B.; Spillmann, Lothar; Werner, John S.

    2008-01-01

    The watercolor effect (WCE) is a phenomenon of long-range color assimilation occurring when a dark chromatic contour delineating a figure is flanked on the inside by a brighter chromatic contour; the brighter color spreads into the entire enclosed area. Here, we determined the optimal chromatic parameters and the cone signals supporting the WCE. To that end, we quantified the effect of color assimilation using hue cancellation as a function of hue, colorimetric purity, and cone modulation of inducing contours. When the inner and outer contours had chromaticities that were in opposite directions in color space, a stronger WCE was obtained as compared with other color directions. Additionally, equal colorimetric purity between the outer and inner contours was necessary to obtain a large effect compared with conditions in which the contours differed in colorimetric purity. However, there was no further increase in the magnitude of the effect when the colorimetric purity increased beyond a value corresponding to an equal vector length between the inner and outer contours. Finally, L–M-cone-modulated WCE was perceptually stronger than S-cone-modulated WCE for our conditions. This last result demonstrates that both L–M-cone and S-cone pathways are important for watercolor spreading. Our data suggest that the WCE depends critically upon the particular spatiochromatic arrangement in the display, with the relative chromatic contrast between the inducing contours being particularly important. PMID:16881793

  11. Magnetization in narrow ribbons: curvature effects

    NASA Astrophysics Data System (ADS)

    Gaididei, Yuri; Goussev, Arseni; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Robbins, J. M.; Sheka, Denis D.; Slastikov, Valeriy; Vasylkevych, Sergiy

    2017-09-01

    A ribbon is a surface swept out by a line segment turning as it moves along a central curve. For narrow magnetic ribbons, for which the length of the line segment is much less than the length of the curve, the anisotropy induced by the magnetostatic interaction is biaxial, with a hard axis normal to the ribbon and an easy axis along the central curve. The micromagnetic energy of a narrow ribbon reduces to that of a one-dimensional ferromagnetic wire, but with curvature, torsion and local anisotropy modified by the rate of turning. These general results are applied to two examples, namely a helicoid ribbon, for which the central curve is a straight line, and a Möbius ribbon, for which the central curve is a circle about which the line segment executes a {{180}\\circ} twist. In both examples, for large positive tangential anisotropy, the ground state magnetization lies tangent to the central curve. As the tangential anisotropy is decreased, the ground state magnetization undergoes a transition, acquiring an in-surface component perpendicular to the central curve. For the helicoid ribbon, the transition occurs at vanishing anisotropy, below which the ground state is uniformly perpendicular to the central curve. The transition for the Möbius ribbon is more subtle; it occurs at a positive critical value of the anisotropy, below which the ground state is nonuniform. For the helicoid ribbon, the dispersion law for spin wave excitations about the tangential state is found to exhibit an asymmetry determined by the geometric and magnetic chiralities.

  12. Spreading of ultrarelativistically expanding shell: An application to GRBs

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Siutsou, I. A.; Vereshchagin, G. V.

    2014-02-01

    Optically thick energy dominated plasma created in the source of Gamma-Ray Bursts (GRBs) expands radially with acceleration and forms a shell with constant width measured in the laboratory frame. When strong Lorentz factor gradients are present within the shell it is supposed to spread at sufficiently large radii. There are two possible mechanisms of spreading: hydrodynamical and thermal ones. We consider both mechanisms evaluating the amount of spreading that occurs during expansion up to the moment when the expanding shell becomes transparent for photons. We compute the hydrodynamical spreading of an ultrarelativistically expanding shell. In the case of thermal spreading we compute the velocity spread as a function of two parameters: comoving temperature and bulk Lorentz factor of relativistic Maxwellian distribution. Based on this result we determine the value of thermal spreading of relativistically expanding shell. We found that thermal spreading is negligible for typical GRB parameters. Instead hydrodynamical spreading appears to be significant, with the shell width reaching ˜1010 cm for total energy E=1054 erg and baryonic loading B=10-2. Within the fireshell model such spreading will result in the duration of Proper Gamma-Ray Bursts up to several seconds.

  13. How cells flow in the spreading of cellular aggregates.

    PubMed

    Beaune, Grégory; Stirbat, Tomita Vasilica; Khalifat, Nada; Cochet-Escartin, Olivier; Garcia, Simon; Gurchenkov, Vasily Valérïévitch; Murrell, Michael P; Dufour, Sylvie; Cuvelier, Damien; Brochard-Wyart, Françoise

    2014-06-03

    Like liquid droplets, cellular aggregates, also called "living droplets," spread onto adhesive surfaces. When deposited onto fibronectin-coated glass or polyacrylamide gels, they adhere and spread by protruding a cellular monolayer (precursor film) that expands around the droplet. The dynamics of spreading results from a balance between the pulling forces exerted by the highly motile cells at the periphery of the film, and friction forces associated with two types of cellular flows: (i) permeation, corresponding to the entry of the cells from the aggregates into the film; and (ii) slippage as the film expands. We characterize these flow fields within a spreading aggregate by using fluorescent tracking of individual cells and particle imaging velocimetry of cell populations. We find that permeation is limited to a narrow ring of width ξ (approximately a few cells) at the edge of the aggregate and regulates the dynamics of spreading. Furthermore, we find that the subsequent spreading of the monolayer depends heavily on the substrate rigidity. On rigid substrates, the migration of the cells in the monolayer is similar to the flow of a viscous liquid. By contrast, as the substrate gets softer, the film under tension becomes unstable with nucleation and growth of holes, flows are irregular, and cohesion decreases. Our results demonstrate that the mechanical properties of the environment influence the balance of forces that modulate collective cell migration, and therefore have important implications for the spreading behavior of tissues in both early development and cancer.

  14. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    zones of active extension) common to all spreading centers, regional tectonic setting determined by stage (early, advanced), and rate (slow, intermediate-to-fast) of opening of an ocean basin about a spreading center, and local tectonic sub-setting that incorporates anomalous structural and thermal conditions conducive to mineral concentration (thermal gradient, permeability, system geometry, leaky versus tight hydrothermal systems). Temporal frames of reference comprise the relation between mineral concentration and timing of regional plutonic, volcanic and tectonic cycles and of episodic local physical and chemical events (transient stress, fluctuating heat transfer, intrusion-extrusion, fracturing, sealing, etc.). Types of hydrothermal deposits are not uniquely associated with specific tectonic settings and subsettings. Similar types of hydrothermal deposits may occur in different tectonic settings as a consequence of convergence of physical and chemical processes of concentration. Local tectonic sub-settings with conditions conducive to hydrothermal mineralization at slow-spreading centers (half rate ≤ 2cm y -1; length c. 28,000 km), characterized by an estimated average convective heat transfer of 15.1·10 8 cal. cm -2, deep-level ( > 3 km), relative narrow (< 5 km wide at base) magma chambers, and high topographic relief (1-5 km) are: (1) basins along linear sections of the axial zone of volcanic extrusion near transform faults at an early stage of opening, represented by a large stratiform sulfide deposit (estimated 32.5·10 6 metric tons) of the Atlantis II Deep of the Red Sea; (2) the wall along linear sections of the rift valley in the marginal zone of active extension at an advanced stage of opening, represented by encrustations and layered deposits of manganese and iron oxides, hydroxides and silicates inferred to be underlain by stockwork sulfides at the TAG Hydrothermal Field at latitude 26°C on the Mid-Atlantic Ridge; (3) transform faults, especially

  15. Narrow gap electronegative capacitive discharges

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  16. The spreading of a proton beam by the atmosphere.

    NASA Technical Reports Server (NTRS)

    Johnstone, A. D.

    1972-01-01

    A simplified approximate expression is analytically derived for the spreading by charge exchange of a fine proton beam precipitating into the atmosphere. It shows in a simple way the dependence of proton beam spreading on atmospheric structure, collision data, primary particle energy, and pitch angle.

  17. Key Comparison APMP.RI(I)-K2 of air kerma standards for the CCRI reference radiation qualities for low-energy x-rays, including a supplementary comparison for the ISO 4037 narrow spectrum series

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Saito, N.; Bero, M.; Butler, D.; Mahant, A. K.; Meghzifene, A.; Chu, C. H.; Kadni, T. B.; Jinjie, WU; Soodprasert, T.

    2014-01-01

    An indirect comparison was performed between nine national standards for air kerma for the CCRI radiation qualities from 10 kV to 50 kV (APMP.RI(I)-K2) and for the ISO 4037 narrow spectrum series (15 kV and 40 kV). Among the nine institutes that participated in the comparison, seven institutes were APMP member laboratories. Three commercially available thin window parallel plate ionization chambers were used as transfer instruments and circulated among the participants. The pilot laboratory, the NMIJ/AIST, served also as the link to the corresponding BIPM.RI(I)-K2 comparison. The results show general agreement within the combined uncertainties, although certain results for Nuclear Malaysia, the BARC and the OAP show larger differences. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Fraenkel, E. D.; Glas, Dariusz; Legumina, Remigiusz

    2013-12-01

    The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages.

  19. Infants Experience Perceptual Narrowing for Nonprimate Faces

    ERIC Educational Resources Information Center

    Simpson, Elizabeth A.; Varga, Krisztina; Frick, Janet E.; Fragaszy, Dorothy

    2011-01-01

    Perceptual narrowing--a phenomenon in which perception is broad from birth, but narrows as a function of experience--has previously been tested with primate faces. In the first 6 months of life, infants can discriminate among individual human and monkey faces. Though the ability to discriminate monkey faces is lost after about 9 months, infants…

  20. Infants Experience Perceptual Narrowing for Nonprimate Faces

    ERIC Educational Resources Information Center

    Simpson, Elizabeth A.; Varga, Krisztina; Frick, Janet E.; Fragaszy, Dorothy

    2011-01-01

    Perceptual narrowing--a phenomenon in which perception is broad from birth, but narrows as a function of experience--has previously been tested with primate faces. In the first 6 months of life, infants can discriminate among individual human and monkey faces. Though the ability to discriminate monkey faces is lost after about 9 months, infants…

  1. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  2. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    PubMed Central

    Major, Sebastian; Pannek, Heinz-Wolfgang; Woitzik, Johannes; Scheel, Michael; Wiesenthal, Dirk; Martus, Peter; Winkler, Maren K.L.; Hartings, Jed A.; Fabricius, Martin; Speckmann, Erwin-Josef; Gorji, Ali

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression

  3. Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber.

    PubMed

    Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2014-01-10

    Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.

  4. Plume Flux, Spreading Rate, and Obliquity of Seafloor Spreading

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Gordon, R. G.

    2016-12-01

    Most of Earth's surface is created by seafloor spreading, a fundamental global tectonic process. While most seafloor spreading is orthogonal, i.e., the strike of mid-ocean ridge (MOR) segments is perpendicular to transform faults, obliquity of up to 45° occurs. Here, building on the work of DeMets et al. [2010] we investigate the global relationship between obliquity of seafloor spreading, spreading rates, and the flux of nearby plumes. While we confirm the well-known tendency for obliquity to decrease with increasing spreading rate [Atwater and Macdonald, 1977], we find exceptions at both intermediate (up to 18°) and ultra-fast (up to 12°) rates of spreading. Thus, factors other than the minimization of power dissipation across mid-ocean ridges and transform faults [Stein, 1978] may influence the amount of obliquity. Abelson & Agnon [1997] modeled spreading centers as fluid-filled cracks and found that the variation of segment orientation depends on the ratio of the magma overpressure to the remote tectonic tension that drives plate separation. A high ratio promotes oblique spreading and a low ratio promotes segmentation that results in orthogonal spreading. They further argued that if a hotspot lies near a MOR segment, the hotspot contributes to magma overpressure along the segment. We quantify their argument as follows: (1) that magma overpressure increases with increasing flux of a plume. (2) that effective magma overpressure decreases with increasing distance between a MOR segment and a plume. From this we estimate the effective plume flux delivered to each mid-ocean ridge using published plume flux estimates. Not only does obliquity tend to decrease with increasing spreading rate, but also it tends to increase with increasing effective plume flux delivered to a MOR segment. Many exceptions occur, however. Along slow spreading centers, many segments are less oblique than along the Reykjanes Ridge and western Gulf of Aden despite having higher effective

  5. SETI: Spreading the net

    NASA Astrophysics Data System (ADS)

    Carstairs, Ian R.

    2002-12-01

    Ian R Carstairs reports on efforts to extend the search for extraterrestrial intelligence to X and γ-ray regions. Traditional Search for Extra-Terrestrial Intelligence (SETI) strategies have used radio, microwave and, to a limited extent, optical searches. But this ignores the higher energy X and γ-ray regions that a technologically advanced extraterrestrial civilization might use to attract our attention - using messages encoded in discrete photon-counting exchange, much like the signals seen from pulsars. Here, the methods used in high-energy pulsar detection and analysis are reviewed and applied to this new SETI initiative.

  6. Features of the potential barrier and current flow in the narrow Schottky diodes

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.

    2013-08-01

    This paper presents some specific characteristics of the potential barrier and the current flow in the narrow Au-nGaAs Schottky diodes (SDs), in which an additional electric field (AEF) directly measured by atomic-force microscopy. Show that there existing a potential barrier in the narrow SD is formed by the superposition of the space charge field and the AEF in the near-contact area of the semiconductor. Dependence of the potential barrier height of the voltage narrow SD has about the same character in both forward and reverse directions. Forward I-V characteristics narrow Au-nGaAs SD width of 1, 2 and 3 μm represented by straight lines in the semi-logarithmic scale in a wide current range of about nine order and ideality factor is close to unity. The reverse current of the same narrow SD in the initial reverse voltage is virtually absent and with increasing voltage increases linearly in the order of 3-5 in the semi-logarithmic scale. The correlation between the numerical values of electrophysical parameters of the forward and reverse current-voltage characteristics of narrow SD was founded. Energy diagram of the narrow SD was created and its corresponding energy parameters were evaluated. It has been shown that the conductivity in the narrow Au-nGaAs SD qualitatively and quantitatively well described by energy model real metal-semiconductor contacts with AEF.

  7. Photoluminescence from narrow InAs-AlSb quantum wells

    NASA Technical Reports Server (NTRS)

    Brar, Berinder; Kroemer, Herbert; Ibbetson, James; English, John H.

    1993-01-01

    We report on photoluminescence spectra from narrow InAs-AlSb quantum wells. Strong, clearly resolved peaks for well widths from 2 to 8 monolayers were observed. Transmission electron micrographs show direct evidence for the structural quality of the quantum well structures. The transition energies of the narrowest wells suggest a strong influence of the AlSb X-barrier on the electronic states in the conduction band.

  8. Flow-induced polymer translocation through narrow and patterned channels.

    PubMed

    Nikoubashman, Arash; Likos, Christos N

    2010-08-21

    We consider linear and branched polymers driven through narrow and patterned channels by imposing a Poiseuille flow on the ambient solvent. We establish, by means of scaling arguments, that the translocation probability of dendrimers through the pore is independent of the number of monomers and that it takes place above a viscosity-dependent critical external current. When the channel walls are smooth, the translocation times of linear and branched polymers with the same monomer number are very similar. However, for walls that are decorated with attractive patches, dramatic differences show up: whereas a dendrimer successively docks at the patches and "walks" from one to the next, being carried away by the solvent flow, linear chains spread themselves along the channel wall without achieving translocation within simulation times. Our findings are relevant for, e.g., drug delivery through dendritic carrier molecules in capillary arterioles.

  9. Multilayer dielectric narrow band mangin mirror

    NASA Astrophysics Data System (ADS)

    Ahmed, K.; Khan, A. N.; Rauf, A.; Gul, A.

    2014-06-01

    The design of multilayer stack of dielectric films for narrow band mirror is developed using thin film coating software. The proposed design is materialized by employing thin film coating (PVD) method and reflectance in narrow band spectrum range is achieved. Thickness of high and low refractive index material is taken precisely up to nanometer level. The curved coated substrate is cemented with another K9 matching substrate that forms a Mangin mirror for wavelength 650nm. Narrow band mirrors with reflectivity more than 90% has been produced by properly stacking of 21 layers and advantage of the use of this type of mirror as an interference filter is discussed.

  10. Islamic Universities Spread through Africa

    ERIC Educational Resources Information Center

    Lindow, Megan

    2007-01-01

    This article reports on new universities for Muslims, many supported by groups in the Middle East, which are spreading through the sub-Saharan region. The Islamic University in Uganda is a prime example of a new kind of institution that has slowly been spreading its way across the continent. Embracing both conservative Muslim values and modern…

  11. Islamic Universities Spread through Africa

    ERIC Educational Resources Information Center

    Lindow, Megan

    2007-01-01

    This article reports on new universities for Muslims, many supported by groups in the Middle East, which are spreading through the sub-Saharan region. The Islamic University in Uganda is a prime example of a new kind of institution that has slowly been spreading its way across the continent. Embracing both conservative Muslim values and modern…

  12. Increased Spreading Activation in Depression

    ERIC Educational Resources Information Center

    Foster, Paul S.; Yung, Raegan C.; Branch, Kaylei K.; Stringer, Kristi; Ferguson, Brad J.; Sullivan, William; Drago, Valeria

    2011-01-01

    The dopaminergic system is implicated in depressive disorders and research has also shown that dopamine constricts lexical/semantic networks by reducing spreading activation. Hence, depression, which is linked to reductions of dopamine, may be associated with increased spreading activation. However, research has generally found no effects of…

  13. Increased Spreading Activation in Depression

    ERIC Educational Resources Information Center

    Foster, Paul S.; Yung, Raegan C.; Branch, Kaylei K.; Stringer, Kristi; Ferguson, Brad J.; Sullivan, William; Drago, Valeria

    2011-01-01

    The dopaminergic system is implicated in depressive disorders and research has also shown that dopamine constricts lexical/semantic networks by reducing spreading activation. Hence, depression, which is linked to reductions of dopamine, may be associated with increased spreading activation. However, research has generally found no effects of…

  14. Heat transfer and fire spread

    Treesearch

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  15. Sinking, wedging, spreading - viscous spreading on a layer of fluid

    NASA Astrophysics Data System (ADS)

    Bergemann, Nico; Juel, Anne; Heil, Matthias

    2016-11-01

    We study the axisymmetric spreading of a sessile drop on a pre-existing layer of the same fluid in a regime where the drop is sufficiently large so that the spreading is driven by gravity while capillary and inertial effects are negligible. Experiments performed with 5 ml drops and layer thicknesses in the range 0.1 mm <= h <= 1 mm show that at long times the radius of the drop evolves as R tn , where the spreading exponent n increases with the layer thickness h. Numerical simulations, based on the axisymmetric free-surface Navier-Stokes equations, reveal three distinct spreading regimes depending on the layer thickness. For thick layers the drop sinks into the layer, accompanied by significant flow in the layer. By contrast, for thin layers the layer ahead of the propagating front is at rest and the spreading behaviour resembles that of a gravity-driven drop spreading on a dry substrate. In the intermediate regime the spreading is characterised by an advancing wedge, which is sustained by fluid flow from the drop into the layer.

  16. Reconditioning of Cassini Narrow-Angle Camera

    NASA Image and Video Library

    2002-07-23

    These five images of single stars, taken at different times with the narrow-angle camera on NASA Cassini spacecraft, show the effects of haze collecting on the camera optics, then successful removal of the haze by warming treatments.

  17. Narrow deeply bound K- atomic states

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    1999-07-01

    Using optical potentials fitted to a comprehensive set of strong interaction level shifts and widths in K- atoms, we predict that the K- atomic levels which are inaccessible in the atomic cascade process are generally narrow, spanning a range of widths about 50-1500 keV over the entire periodic table. The mechanism for this narrowing is different from the mechanism for narrowing of pionic atom levels. Examples of such `deeply bound' K- atomic states are given, showing that in many cases these states should be reasonably well resolved. Several reactions which could be used to form these `deeply bound' states are mentioned. Narrow deeply bound states are expected also in overlinep atoms.

  18. Frequency-narrowed diode array bar.

    PubMed

    Babcock, Earl; Chann, Bien; Nelson, Ian A; Walker, Thad G

    2005-05-20

    We describe a method to frequency narrow multielement high-power diode bars. Using a commercial 60-W, 49-element, 1-cm-long diode array bar at 795 nm running at 45 W, we narrow the linewidth from 1000 to 64 GHz with only a loss of 33% in output power. The resulting laser light is well suited for spin-exchange optical pumping of noble gas nuclei.

  19. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  20. Drop spreading with random viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver E.

    2016-10-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated viscosity within the precursor film to hinder spreading. A low-order model provides explicit predictions of the variances in spreading rate and drop location, which are validated against simulations.

  1. Drop spreading with random viscosity

    PubMed Central

    2016-01-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid’s viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop’s motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop’s effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated viscosity within the precursor film to hinder spreading. A low-order model provides explicit predictions of the variances in spreading rate and drop location, which are validated against simulations. PMID:27843398

  2. Epidemic spreading on evolving signed networks.

    PubMed

    Saeedian, M; Azimi-Tafreshi, N; Jafari, G R; Kertesz, J

    2017-02-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

  3. Epidemic spreading on evolving signed networks

    NASA Astrophysics Data System (ADS)

    Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.

    2017-02-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

  4. Presunrise spread F at Fortaleza

    NASA Astrophysics Data System (ADS)

    MacDougall, J. W.; Abdu, M. A.; Jayachandran, P. T.; Cecile, J.-F.; Batista, I. S.

    1998-10-01

    At Fortaleza, Brazil, in the equatorial zone about 400 km south of the magnetic equator a presunrise (secondary) maximum of spread F occurrence is observed during sunspot minimum and, in particular, during December solstice. The spread F takes the form of patches of irregularities that are convecting eastwards at ~50 ms-1. Most of the patches are collocated with bottomside bulges of the ionosphere. Our measurements indicate that these bottomside bulges are unstable due to a gradient-drift instability that is slowly growing and produces the spread F. The bulges themselves seem to be evidence of a Rayleigh-Taylor instability proces.

  5. Spreading of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Poulard, Christophe

    2004-11-01

    A cyanobiphenyl liquid crystal drop in the nematic phase should spread on a silicon wafer. In fact, the drop hardly spreads due to the strong antagonist anchoring on the substrate and at the free surface. In a humidity controlled box at high RH and on a hydrophilic substrate, the friction is considerably reduced and the drop spreads easily. A well defined instability develops at the contact line, with two characteristic wavelengths, associated with a modulation of the drop thickness. A theoretical analysis, made by M. Ben Amar and L. Cummings, allows to understand one of the wavelength by an elastic approach and gives a wavelength proportionnal to the local drop's thickness.

  6. Spreading of Viscous Liquids at High Temperature: Silicate Glasseson Molybdenum

    SciTech Connect

    Lopez-Esteban, Sonia; Saiz, Eduardo; Moya, Jose S.; Tomsia,Antoni P.

    2004-12-15

    The spreading of Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. By controlling the oxygen activity in the furnace, spreading can take place under reactive or non-reactive conditions. As the nucleation of the reaction product under reactive conditions is slow in comparison to the spreading kinetics, in both cases the glass front moves on the metal surface with similar spreading velocities. Spreading can be described using a molecular dynamics model where the main contribution to the wetting activation energy comes from the viscous interactions in the liquid. Enhanced interfacial diffusions in low-oxygen activities (reactive cases) form triple-line ridges that can pin the wetting front and cause a stick-slip motion.

  7. Impact of relative phase shift on inward turbulent spreading

    DOE PAGES

    Ma, C. H.; Xu, X. Q.; Xi, P. W.; ...

    2015-01-01

    The relative cross-phase between density, temperature and potential perturbations plays a major role in turbulent spreading and transport. Nonlinear Landau-Fluid simulations show that the electron wave-particle resonances provide a relatively strong parallel damping effect on the electron temperature perturbation and can induce a relative cross-phase shift of smaller than π/2 angle between E x B velocity and the electron temperature perturbation for large electron temperature gradient, which yields a large spreading for electron. The relative phase for ions is about π/2 and has no turbulent spreading effect on it. The inward turbulent spreading stops at the position where the radialmore » turbulent correlation length is shorter than the magnetic surface spacing. The temperature pedestal height determines the energy loss due to the turbulent spreading.« less

  8. Transport and Mixing of Pollutants In A Narrow Alpine Valley

    NASA Astrophysics Data System (ADS)

    Kerbiriou, M. A.; Chollet, J. P.; Staquet, C.

    Atmospheric dynamics in narrow valleys often lead to the formation of bottom and capping inversion layers, whose features depend upon the geometry and the soil char- acteristics of the topography. The altitude and thickness of such stable layers evolve during a diurnal cycle under the effect of solar radiation. Therefore, the layers strongly influence the transport and dispersion of pollutants emitted at the bottom of the val- ley. We conducted a numerical study of the processes leading to the formation and destruction of such inversion layers in a narrow alpine valley, using the ARPS 4.5.1 code. We shall present considerations on the energy balance between the ground and the above atmosphere in this case. We shall also address the effect of such layers on the dispersion of pollutants, using lagrangian tracors, and we will show some prelim- inary results about the transport and mixing throughout the layers during one diurnal cycle.

  9. Domain wall pinning in ultra-narrow electromigrated break junctions.

    PubMed

    Reeve, Robert M; Loescher, André; Mawass, Mohamad-Assaad; Hoffmann-Vogel, Regina; Kläui, Mathias

    2014-11-26

    The study of magnetic domain walls in constrained geometries is an important topic, yet when dealing with extreme nanoscale magnetic systems artefacts can often dominate the measurements and obscure the effects of intrinsic magnetic origin. In this work we study the evolution of domain wall depinning in electromigrated ferromagnetic junctions which are both initially fabricated and subsequently tailored in-situ in clean ultra-high vacuum conditions. Carefully designed Ni(80)Fe(20) (Permalloy) notched half-ring structures are fabricated and investigated as a function of constriction width by tailoring the size of the contact using controlled in-situ electromigration. It is found that the domain wall pinning strength is increased on reducing the contact size in line with a reduction of the wall energy in narrower constrictions. Furthermore, the angular dependency and symmetry of the depinning field is measured to determine the full pinning potential for a domain wall in a system with a narrow constriction.

  10. Spreading dynamics of polymer nanodroplets

    NASA Astrophysics Data System (ADS)

    Heine, David R.; Grest, Gary S.; Webb, Edmund B.

    2003-12-01

    The spreading of polymer droplets is studied using molecular dynamics simulations. To study the dynamics of both the precursor foot and the bulk droplet, large hemispherical drops of 200 000 monomers are simulated using a bead-spring model for polymers of chain length 10, 20, and 40 monomers per chain. We compare spreading on flat and atomistic surfaces, chain length effects, and different applications of the Langevin and dissipative particle dynamics thermostats. We find diffusive behavior for the precursor foot and good agreement with the molecular kinetic model of droplet spreading using both flat and atomistic surfaces. Despite the large system size and long simulation time relative to previous simulations, we find that even larger systems are required to observe hydrodynamic behavior in the hemispherical spreading droplet.

  11. 78 FR 46332 - Golden Spread Electric Cooperative, Inc. v. Southwestern Public Service Company; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Energy Regulatory Commission Golden Spread Electric Cooperative, Inc. v. Southwestern Public Service Company; Notice of Complaint Take notice that on July 19, 2013, Golden Spread Electric Cooperative, Inc. (Golden Spread or Complainant) filed a formal complaint against Southwestern Public Service Company (SPS...

  12. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  13. Scaled experiments of volcanic spreading

    NASA Astrophysics Data System (ADS)

    Merle, Olivier; Borgia, Andrea

    1996-06-01

    Experiments were conducted to study the spreading of volcanic constructs. Volcanoes are simulated by a sand cone, and the volcanic substratum is simulated by a sand layer (brittle substratum) overlying a silicone layer (ductile substratum). Similarity conditions between natural volcanoes and experimental prototypes led to the definition of dimensionless π numbers. Experiments determine π values which predict whether or not spreading takes place. Of particular importance are the ratio between the thickness of the brittle substratum and the height of the volcano (π2) and the brittle/ductile ratio of the substratum (π3). π2 indicates that the volcano must be large enough to "break" the substratum before spreading occurs, whereas π3 controls the style of deformation. During spreading, these dimensionless numbers change with time, reaching values that tend toward those observed for stable configurations. Experimental values are compared with those from well-constrained natural examples. It is found that an essential requirement for volcanic spreading is the presence of a low-viscosity layer within the substratum. Flow of the weak layer away from the excess load is responsible for the spreading. The overlying edifice displays radial intersecting grabens, due to concentric stretching, dissected summit areas; concentric zones of thrusts and folds form in the substratum around the edifice, and diapirs of the ductile substratum rise within the fault zones.

  14. Spread dynamics of invasive species.

    PubMed

    Arim, Matías; Abades, Sebastián R; Neill, Paula E; Lima, Mauricio; Marquet, Pablo A

    2006-01-10

    Species invasions are a principal component of global change, causing large losses in biodiversity as well as economic damage. Invasion theory attempts to understand and predict invasion success and patterns of spread. However, there is no consensus regarding which species or community attributes enhance invader success or explain spread dynamics. Experimental and theoretical studies suggest that regulation of spread dynamics is possible; however, the conditions for its existence have not yet been empirically demonstrated. If invasion spread is a regulated process, the structure that accounts for this regulation will be a main determinant of invasion dynamics. Here we explore the existence of regulation underlying changes in the rate of new site colonization. We employ concepts and analytical tools from the study of abundance dynamics and show that spread dynamics are, in fact, regulated processes and that the regulation structure is notably consistent among invasions occurring in widely different contexts. We base our conclusions on the analysis of the spread dynamics of 30 species invasions, including birds, amphibians, fish, invertebrates, plants, and a virus, all of which exhibited similar regulation structures. In contrast to current beliefs that species invasions are idiosyncratic phenomena, here we provide evidence that general patterns do indeed exist.

  15. Spread dynamics of invasive species

    PubMed Central

    Arim, Matías; Abades, Sebastián R.; Neill, Paula E.; Lima, Mauricio; Marquet, Pablo A.

    2006-01-01

    Species invasions are a principal component of global change, causing large losses in biodiversity as well as economic damage. Invasion theory attempts to understand and predict invasion success and patterns of spread. However, there is no consensus regarding which species or community attributes enhance invader success or explain spread dynamics. Experimental and theoretical studies suggest that regulation of spread dynamics is possible; however, the conditions for its existence have not yet been empirically demonstrated. If invasion spread is a regulated process, the structure that accounts for this regulation will be a main determinant of invasion dynamics. Here we explore the existence of regulation underlying changes in the rate of new site colonization. We employ concepts and analytical tools from the study of abundance dynamics and show that spread dynamics are, in fact, regulated processes and that the regulation structure is notably consistent among invasions occurring in widely different contexts. We base our conclusions on the analysis of the spread dynamics of 30 species invasions, including birds, amphibians, fish, invertebrates, plants, and a virus, all of which exhibited similar regulation structures. In contrast to current beliefs that species invasions are idiosyncratic phenomena, here we provide evidence that general patterns do indeed exist. PMID:16387862

  16. Narrowing of intersensory speech perception in infancy

    PubMed Central

    Pons, Ferran; Lewkowicz, David J.; Soto-Faraco, Salvador; Sebastián-Gallés, Núria

    2009-01-01

    The conventional view is that perceptual/cognitive development is an incremental process of acquisition. Several striking findings have revealed, however, that the sensitivity to non-native languages, faces, vocalizations, and music that is present early in life declines as infants acquire experience with native perceptual inputs. In the language domain, the decline in sensitivity is reflected in a process of perceptual narrowing that is thought to play a critical role during the acquisition of a native-language phonological system. Here, we provide evidence that such a decline also occurs in infant response to multisensory speech. We found that infant intersensory response to a non-native phonetic contrast narrows between 6 and 11 months of age, suggesting that the perceptual system becomes increasingly more tuned to key native-language audiovisual correspondences. Our findings lend support to the notion that perceptual narrowing is a domain-general as well as a pan-sensory developmental process. PMID:19541648

  17. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  18. Microlayer during boiling in narrow slot channels

    NASA Astrophysics Data System (ADS)

    Diev, Mikhail D.; Leontiev, Alexander I.

    1997-01-01

    An international space station Alpha will have a two-phase thermal control system. Boiling of a liquid ammonia will be a process of heat collection in evaporative heat exchangers. Unfortunately, only little data is available for boiling heat transfer in microgravity. Geometries of boiling channels working good in normal gravity are not appropriate in microgravity, and special means should be worked out to avoid some undesired events. From this point of view, the narrow slot channels may be assumed as a promising geometry for microgravity operation. During boiling in narrow slots, the vapor bubbles are flattened between the channel walls. The vapor phase and the channel wall are separated by a thin liquid film which is known as a microlayer. The paper presents the experimental results compared to the theoretical analysis, the paper also shows the narrow slot channels as a perspective configuration for microgravity applications.

  19. Congenital narrowing of the cervical spinal canal.

    PubMed Central

    Kessler, J T

    1975-01-01

    The clinical and laboratory findings in six patients with congenital narrowing of the cervical spinal canal and neurological symptoms are described. A variable age of onset and an entirely male occurrence were found. Signs and symptoms of spinal cord dysfunction predominated in all but one patient. Symptoms were produced in five patients by increased physical activity alone. Congenital narrowing of the cervical spinal canal may result in cord compression without a history of injury and occasionally without evidence of significant bony degenerative changes. The clinical features may be distinguishable from those found in cervical spondylosis without congenital narrowing. Intermittent claudication of the cervical spinal cord appears to be an important feature of this syndrome. Surgery improved four out of five people. PMID:1219087

  20. Does interest broaden or narrow attentional scope?

    PubMed

    Sung, Billy; Yih, Jennifer

    2015-08-10

    Theory proposes that interest is a positive emotion that may either broaden attention to facilitate processing of new information, or narrow attention to preserve engagement with new information. To our knowledge, no research has directly examined the effect of interest on attentional scope. Across four experiments, we show that traits associated with the propensity to experience interest-specifically, trait curiosity and internal boredom proneness-are associated with a narrower scope of attention. We also find that, instead of broadening, interest actually narrows attentional scope in comparison to a neutral state and awe. Challenging the conventional notion that all positive emotions broaden cognition and attention, our findings suggest that specific emotions influence attention in ways that extend beyond a general emotional valence effect.

  1. Efficient, Narrow-Pass-Band Optical Filters

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    1996-01-01

    Optical filters with both narrow pass bands and high efficiencies fabricated to design specifications. Offer tremendous improvements in performance for number of optical (including infrared) systems. In fiber-optic and free-space communication systems, precise frequency discrimination afforded by narrow pass bands of filters provide higher channel capacities. In active and passive remote sensors like lidar and gas-filter-correlation radiometers, increased efficiencies afforded by filters enhance detection of small signals against large background noise. In addition, sizes, weights, and power requirements of many optical and infrared systems reduced by taking advantage of gains in signal-to-noise ratios delivered by filters.

  2. Oxygen availability and spreading depolarizations provide complementary prognostic information in neuromonitoring of aneurysmal subarachnoid hemorrhage patients.

    PubMed

    Winkler, Maren Kl; Dengler, Nora; Hecht, Nils; Hartings, Jed A; Kang, Eun J; Major, Sebastian; Martus, Peter; Vajkoczy, Peter; Woitzik, Johannes; Dreier, Jens P

    2017-05-01

    Multimodal neuromonitoring in neurocritical care increasingly includes electrocorticography to measure epileptic events and spreading depolarizations. Spreading depolarization causes spreading depression of activity (=isoelectricity) in electrically active tissue. If the depression is long-lasting, further spreading depolarizations occur in still isoelectric tissue where no activity can be suppressed. Such spreading depolarizations are termed isoelectric and are assumed to indicate energy compromise. However, experimental and clinical recordings suggest that long-lasting spreading depolarization-induced depression and isoelectric spreading depolarizations are often recorded outside of the actual ischemic zones, allowing the remote diagnosis of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Here, we analyzed simultaneous electrocorticography and tissue partial pressure of oxygen recording in 33 aneurysmal subarachnoid hemorrhage patients. Multiple regression showed that both peak total depression duration per recording day and mean baseline tissue partial pressure of oxygen were independent predictors of outcome. Moreover, tissue partial pressure of oxygen preceding spreading depolarization was similar and differences in tissue partial pressure of oxygen responses to spreading depolarization were only subtle between isoelectric spreading depolarizations and spreading depressions. This further supports that, similar to clustering of spreading depolarizations, long spreading depolarization-induced periods of isoelectricity are useful to detect energy compromise remotely, which is valuable because the exact location of future developing pathology is unknown at the time when the neurosurgeon implants recording devices.

  3. Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng

    2016-05-01

    Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).

  4. Worldwide spreading of economic crisis

    NASA Astrophysics Data System (ADS)

    Garas, Antonios; Argyrakis, Panos; Rozenblat, Céline; Tomassini, Marco; Havlin, Shlomo

    2010-11-01

    We model the spreading of a crisis by constructing a global economic network and applying the susceptible-infected-recovered (SIR) epidemic model with a variable probability of infection. The probability of infection depends on the strength of economic relations between a given pair of countries and the strength of the target country. It is expected that a crisis that originates in a large country, such as the USA, has the potential to spread globally, such as the recent crisis. Surprisingly, we also show that countries with a much lower GDP, such as Belgium, are able to initiate a global crisis. Using the k-shell decomposition method to quantify the spreading power (of a node), we obtain a measure of 'centrality' as a spreader of each country in the economic network. We thus rank the different countries according to the shell they belong to, and find the 12 most central ones. These countries are the most likely to spread a crisis globally. Of these 12, only six are large economies, while the other six are medium/small ones, a result that could not have been otherwise anticipated. Furthermore, we use our model to predict the crisis spreading potential of countries belonging to different shells according to the crisis magnitude.

  5. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  6. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  7. Narrow-band tunable alexandrite laser with passive Q switching

    SciTech Connect

    Tyryshkin, I S; Ivanov, N A; Khulugurov, V M

    1998-06-30

    An alexandrite laser with a self-injection of narrow-band radiation into its cavity was developed. A Fabry - Perot interferometer and a diffraction grating were used as dispersive components in an additional cavity. The cavity was switched by an LiF crystal with F{sub 3}{sup -} colour centres. The laser generated a single pulse of {approx} 180 ns duration and of 1.5 mJ energy, and with a spectrum 5 x 10{sup -3} cm{sup -1} wide. The laser emitted in the spectral range 720 - 780 nm. (lasers, active media)

  8. An Injection-seeded Narrow Linewidth Singly Resonant ZGP OPO

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Barnes, Norman P.; Lee, Hyung R.; Bai, Yingxin

    2006-01-01

    Injection seeding of a singly resonant ZnGeP2 (ZGP) mid-infrared optical parametric oscillator (OPO) using a continuous wave 3.39 micrometers laser and a tunable near-infrared laser has been demonstrated. This ZGP OPO utilizes a bow-tie shape cavity with a partially reflective mirror for injection seeding at the signal wavelength. It produces high energy pulses in the mid-IR range from 4-10 micrometers. The injection seeded OPO provides a narrow idler wavelength linewidth of approximately 1 nm, limited by the measurement resolution of the monochromator.

  9. Narrow vision after view-broadening travel.

    PubMed

    Melo, Mariana de Mendonça; Ciriano, Jose P Martinez; van Genderen, Perry J J

    2008-01-01

    Loss of vision is a threatening presentation of disease. We describe a case of acute idiopathic blind spot enlargement in a 26-year-old male traveler who presented with narrow vision after a journey to Indonesia. Although the patient used mefloquine at time of presentation, we were unable to retrieve sound data incriminating mefloquine in this rare eye disorder.

  10. Narrow-headed garter snake (Thamnophis rufipunctatus)

    USGS Publications Warehouse

    Nowak, Erika M.

    2006-01-01

    The narrow-headed garter snake is a harmless, nonvenomous snake that is distinguished by its elongated, triangular-shaped head and the red or dark spots on its olive to tan body. Today, the narrow-headed garter snake is a species of special concern in the United States because of its decline over much of its historic range. Arizona's Oak Creek has historically contained the largest population of narrow-headed garter snakes in the United States. The U.S. Geological Survey (USGS) and the Arizona Game and Fish Department jointly funded research by USGS scientists in Oak Creek to shed light on the factors causing declining population numbers. The research resulted in better understanding of the snake's habitat needs, winter and summer range, and dietary habits. Based on the research findings, the U.S. Forest Service has developed recommendations that visitors and local residents can adopt to help slow the decline of the narrow-headed garter snake in Oak Creek.

  11. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  12. Narrow band binary phase locked loops

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    Very high Q digital filtering circuits for audio frequencies in the range of 1Hz to 15 KHz are implemented in simple CMOS hardware using a binary local reference clock frequency. The circuits have application to VLF navigation receivers and other narrow band audio range tracking problems.

  13. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  14. Colony spreading in Staphylococcus aureus.

    PubMed

    Kaito, Chikara; Sekimizu, Kazuhisa

    2007-03-01

    Wild-type Staphylococcus aureus rapidly expands on the surface of soft agar plates. The rates of expansion and the shapes of the resultant giant colonies were distinct for different strains of laboratory stocks and clinical isolates. The colony spreading abilities did not correlate with the biofilm-forming abilities in these strains. Insertional disruption of the dltABCD operon, which functions at the step of D-alanine addition to teichoic acids, and of the tagO gene, which is responsible for the synthesis of wall teichoic acids, decreased the colony spreading ability. The results indicate that wall teichoic acids and D-alanylation of teichoic acids are required for colony spreading.

  15. Controlling droplet spreading with topography

    NASA Astrophysics Data System (ADS)

    Kant, P.; Hazel, A. L.; Dowling, M.; Thompson, A. B.; Juel, A.

    2017-09-01

    We present an experimental system that can be used to study the dynamics of a picoliter droplet (in-flight radius of 12.2 μ m ) as it spreads over substrates with topographic variations. We concentrate on the spreading of a droplet within a recessed stadium-shaped pixel, with applications to the manufacture of polymer organic light-emitting-diode displays, and find that the sloping sidewall of the pixel can either locally enhance or hinder spreading depending on whether the topography gradient ahead of the contact line is positive or negative, respectively. Locally enhanced spreading occurs via the formation of thin pointed rivulets along the sidewalls of the pixel through a mechanism similar to capillary rise in sharp corners. We demonstrate that a simplified model involving quasistatic surface-tension effects within the framework of a thin-film approximation combined with an experimentally measured dynamic spreading law, relating the speed of the contact line to the contact angle, provides excellent predictions of the evolving liquid morphologies. A key feature of the liquid-substrate interaction studied here is the presence of significant contact angle hysteresis, which enables the persistence of noncircular fluid morphologies. We also show that the spreading law for an advancing contact line can be adequately approximated by a Cox-Voinov law for the majority of the evolution. The model does not include viscous effects in the bulk of the droplet and hence the time scales for the propagation of the thin pointed rivulets are not captured. Nonetheless, this simple model can be used very effectively to predict the areas covered by the liquid and may serve as a useful design tool for systems that require precise control of liquid on substrates.

  16. Detonation spreading in fine TATBs

    SciTech Connect

    Kennedy, J.E.; Lee, K.Y.; Spontarelli, T.; Stine, J.R.

    1998-12-31

    A test has been devised that permits rapid evaluation of the detonation-spreading (or corner-turning) properties of detonations in insensitive high explosives. The test utilizes a copper witness plate as the medium to capture performance data. Dent depth and shape in the copper are used as quantitative measures of the detonation output and spreading behavior. The merits of the test are that it is easy to perform with no dynamic instrumentation, and the test requires only a few grams of experimental explosive materials.

  17. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  18. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    SciTech Connect

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-10-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  19. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-05-20

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  20. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2017-01-31

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  1. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.

    2016-06-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  2. Vortex formation in magnetic narrow rings

    NASA Astrophysics Data System (ADS)

    Bland, J. A. C.

    2002-03-01

    film thickness, using magneto-optic Kerr effect (MOKE) magnetometry. The data indicates that the outer diameter of the ring only plays a minor role in determining the value of the switching field. As a general trend, the switching field decreases with increasing ring width and with decreasing film thickness. In particular, the dependence of the switching field on ring width becomes more pronounced for smaller ring widths. This stems from the fact that the vortex state becomes more stable for the narrower rings due to the exchange energy contribution to the barrier for reversal to the onion state. Thicker films also favour the vortex state over the onion state, since the magnetostatic energy associated with the latter state increases with film thickness [3]. Using micromagnetic simulations we show also that the magnetisation reversal in narrow rings can take place via a nucleation-free domain wall motion process when a field pulse is applied in the plane of the film and perpendicular to the net magnetisation. Switching times of the order of 400 ps can be achieved with this approach. A lower bound for the depinning time of the domain walls and a weak dependence of the domain wall velocity with the applied field are described [4]. The magnetic nanostructure of epitaxial fcc Co/Cu(001) circular elements has been imaged with scanning electron microscopy with polarisation analysis (SEMPA) [5]. The elements vary from disks to rings according to the dimensions of the inner diameter of the ring structure and have a nominal composition 4 nm Au/2 nm Cu/34 nm Co/100 nm Cu. In this study the outer diameter was fixed at 1.7 μm while the smallest ring width varies in the range 0.3-0.5 μm. A closed flux quadrant configuration is observed for some of the disks, characteristic of systems with cubic anisotropy (i.e., near vortex structure), besides other more complex configurations at remanence. The width of the 90^o domain wall in the disks is around 0.20 ± 0.05 μm. This value is

  3. Tuning magnetofluidic spreading in microchannels

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomeng; Varma, V. B.; Wang, Z. P.; Ramanujan, R. V.

    2015-12-01

    Magnetofluidic spreading (MFS) is a phenomenon in which a uniform magnetic field is used to induce spreading of a ferrofluid core cladded by diamagnetic fluidic streams in a three-stream channel. Applications of MFS include micromixing, cell sorting and novel microfluidic lab-on-a-chip design. However, the relative importance of the parameters which govern MFS is still unclear, leading to non-optimal control of MFS. Hence, in this work, the effect of various key parameters on MFS was experimentally and numerically studied. Our multi-physics model, which combines magnetic and fluidic analysis, showed excellent agreement between theory and experiment. It was found that spreading was mainly due to cross-sectional convection induced by magnetic forces, and can be enhanced by tuning various parameters. Smaller flow rate ratio, higher magnetic field, higher core stream or lower cladding stream dynamic viscosity, and larger magnetic particle size can increase MFS. These results can be used to tune magnetofluidic spreading in microchannels.

  4. Spreading dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  5. Lateral Spreading of Visual Adaptation,

    DTIC Science & Technology

    1982-03-02

    adapting field. 2.4X10- 3 footlamberts to simulate the luminance of In studying the spreading of adaptational ef- grass on a clear night with a full ... moon . fects (sensitivity changes) to areas outside of the adaptational field we are also interested in discovering the mechanisms which produce such a

  6. Regulation of cerebral metabolism during cortical spreading depression

    PubMed Central

    Feuerstein, Delphine; Gramer, Markus; Takagaki, Masatoshi; Gabel, Paula; Kumagai, Tetsuya; Graf, Rudolf

    2015-01-01

    We analyzed the metabolic response to cortical spreading depression that drastically increases local energy demand to restore ion homeostasis. During single and multiple cortical spreading depressions in the rat cortex, we simultaneously monitored extracellular levels of glucose and lactate using rapid sampling microdialysis and glucose influx using 18 F-fluorodeoxyglucose positron emission tomography while tracking cortical spreading depression using laser speckle imaging. Combining the acquired data with steady-state requirements we developed a mass-conserving compartment model including neurons and glia that was consistent with the observed data. In summary, our findings are: (1) Early breakdown of glial glycogen provides a major source of energy during increased energy demand and leaves 80% of blood-borne glucose to neurons. (2) Lactate is used solely by neurons and only if extracellular lactate levels are >80% above normal. (3) Although the ratio of oxygen and glucose consumption transiently reaches levels <3, the major part (>90%) of the overall energy supply is from oxidative metabolism. (4) During cortical spreading depression, brain release of lactate exceeds its consumption suggesting that lactate is only a circumstantial energy substrate. Our findings provide a general scenario for the metabolic response to increased cerebral energy demand. PMID:26661217

  7. Experimental Study of Underwater Shock Wave and Cavitation Generated by Underwater Electric Discharge in a Narrow Container

    NASA Astrophysics Data System (ADS)

    Koita, T.; Hayashi, K.; Sun, Mingyu

    Water jet induced by underwater explosion in a narrow pipe is a simple model of volcano eruption and the laser-induced liquid jet (LILJ) in a tube [1]. For these applications, the effect of the explosion energy on the water jet formation and velocity has been investigated in the narrow tube with a rectangular cross-section [2

  8. Epidemic spreading on random surfer networks with infected avoidance strategy

    NASA Astrophysics Data System (ADS)

    Feng, Yun; Ding, Li; Huang, Yun-Han; Guan, Zhi-Hong

    2016-12-01

    In this paper, we study epidemic spreading on random surfer networks with infected avoidance (IA) strategy. In particular, we consider that susceptible individuals’ moving direction angles are affected by the current location information received from infected individuals through a directed information network. The model is mainly analyzed by discrete-time numerical simulations. The results indicate that the IA strategy can restrain epidemic spreading effectively. However, when long-distance jumps of individuals exist, the IA strategy’s effectiveness on restraining epidemic spreading is heavily reduced. Finally, it is found that the influence of the noises from information transferring process on epidemic spreading is indistinctive. Project supported in part by the National Natural Science Foundation of China (Grant Nos. 61403284, 61272114, 61673303, and 61672112) and the Marine Renewable Energy Special Fund Project of the State Oceanic Administration of China (Grant No. GHME2013JS01).

  9. Ballistic spreading of entanglement in a diffusive nonintegrable system.

    PubMed

    Kim, Hyungwon; Huse, David A

    2013-09-20

    We study the time evolution of the entanglement entropy of a one-dimensional nonintegrable spin chain, starting from random nonentangled initial pure states. We use exact diagonalization of a nonintegrable quantum Ising chain with transverse and longitudinal fields to obtain the exact quantum dynamics. We show that the entanglement entropy increases linearly with time before finite-size saturation begins, demonstrating a ballistic spreading of the entanglement, while the energy transport in the same system is diffusive. Thus, we explicitly demonstrate that the spreading of entanglement is much faster than the energy diffusion in this nonintegrable system.

  10. Powerful narrow linewidth random fiber laser

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Zhou, Pu

    2017-03-01

    In this paper, we demonstrate a narrow linewidth random fiber laser, which employs a tunable pump laser to select the operating wavelength for efficiency optimization, a narrow-band fiber Bragg grating (FBG) and a section of single mode fiber to construct a half-open cavity, and a circulator to separate pump light input and random lasing output. Spectral linewidth down to 42.31 GHz is achieved through filtering by the FBG. When 8.97 W pump light centered at the optimized wavelength 1036.5 nm is launched into the half-open cavity, 1081.4 nm random lasing with the maximum output power of 2.15 W is achieved, which is more powerful than the previous reported results.

  11. Exciton absorption in narrow armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Monozon, B. S.; Schmelcher, P.

    2016-11-01

    We develop an analytical approach to the exciton optical absorption for narrow gap armchair graphene nanoribbons (AGNR). We focus on the regime of dominant size quantization in combination with the attractive electron-hole interaction. An adiabatic separation of slow and fast motions leads via the two-body Dirac equation to the isolated and coupled subband approximations. Discrete and continuous exciton states are in general coupled and form quasi-Rydberg series of purely discrete and resonance type character. The corresponding oscillator strengths and widths are derived. We show that the exciton peaks are blue-shifted, become broader and increase in magnitude upon narrowing the ribbon. At the edge of a subband the singularity related to the 1D density of states is transformed into finite absorption via the presence of the exciton. Our analytical results are in good agreement with those obtained by other methods including numerical approaches. Estimates of the expected experimental values are provided for realistic AGNR.

  12. Creep turns linear in narrow ferromagnetic nanostrips.

    PubMed

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-02-04

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.

  13. Powerful narrow linewidth random fiber laser

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Zhou, Pu

    2016-11-01

    In this paper, we demonstrate a narrow linewidth random fiber laser, which employs a tunable pump laser to select the operating wavelength for efficiency optimization, a narrow-band fiber Bragg grating (FBG) and a section of single mode fiber to construct a half-open cavity, and a circulator to separate pump light input and random lasing output. Spectral linewidth down to 42.31 GHz is achieved through filtering by the FBG. When 8.97 W pump light centered at the optimized wavelength 1036.5 nm is launched into the half-open cavity, 1081.4 nm random lasing with the maximum output power of 2.15 W is achieved, which is more powerful than the previous reported results.

  14. Creep turns linear in narrow ferromagnetic nanostrips

    NASA Astrophysics Data System (ADS)

    Leliaert, Jonathan; van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; van Waeyenberge, Bartel

    2016-02-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.

  15. Creep turns linear in narrow ferromagnetic nanostrips

    PubMed Central

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-01-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media. PMID:26843125

  16. Narrow linewidth single frequency microfiber laser.

    PubMed

    Fan, Wei; Gan, Jiulin; Zhang, Zhishen; Wei, Xiaoming; Xu, Shanhui; Yang, Zhongmin

    2012-10-15

    A compact 2 kHz linewidth single frequency microfiber ring laser is demonstrated. Microfiber, with a diameter of 1.88 μm, which is drawn from an Er(3+)/Yb(3+) co-doped phosphate glass fiber, serves as the gain medium. By using this microfiber, a double-knot resonator with a total length of 1.75 mm is constructed. Based on this resonator, a narrow linewidth single frequency laser with output power higher than 0.95 μW is obtained at the wavelength of 1536.1 nm. The linewidth of this microfiber laser is as narrow as 2 kHz, and the side-mode-suppression ratio is higher than 38 dB.

  17. Multiwatts narrow linewidth fiber Raman amplifiers.

    PubMed

    Feng, Yan; Taylor, Luke; Bonaccini Calia, Domenico

    2008-07-21

    Up to 4.8 W, approximately 10 MHz, 1178 nm laser is obtained by Raman amplification of a distributed feedback diode laser in standard single mode fibers pumped by an 1120 nm Yb fiber laser. More than 10% efficiency and 27 dB amplification is achieved, limited by onset of stimulated Brillouin scattering. The ratio of Raman to Brillouin gain coefficient of a fiber is identified as a figure of merit for building a narrow linewidth fiber Raman amplifier.

  18. The s-physics of narrow samples

    NASA Astrophysics Data System (ADS)

    Roth, Yehuda

    1993-01-01

    The physical properties of neutral particles confined to a three-dimensional narrow sample with a nonconstant width and with no potential in the narrow dimension is explored. We investigate the nature of those particles through the eyes of a two-dimensional slow observer (s-observer) who averages over a time and distance scale much longer and larger than the typical time and length scales associated with the narrow coordinate, respectively. This averaging process provides us, in a sense, with a new language (an s-physics) for describing the particle behaviour (s-particles). In this context it is shown that the width variation is responsible for the occurrence of a time-dependent potential in an s-Hamiltonian, and that it causes the s-particles to be correlated with a virtual s-state. The two s-particle states are for that case enforced to possess fermion or boson symmetry. In the case of a clean sample (i.e. the particles collide with the walls only) it is shown that the potential causes the system to exhibit a characteristic classical behaviour. This means that there is a solution for an s-Schrödinger equation, in which the s-particle density behaves as a rigid body accelerated according to Newton's second law. For a system which is ballistic in the narrow coordinate only, it is shown that the first-order correction to the Born-Oppenheimer-approximation Hamiltonian is a power-operator-like term. The correlations in that approximation depend on the distance between the s-particles only.

  19. Spinal canal narrowing during simulated frontal impact.

    PubMed

    Ivancic, Paul C; Panjabi, Manohar M; Tominaga, Yasuhiro; Pearson, Adam M; Elena Gimenez, S; Maak, Travis G

    2006-06-01

    Between 23 and 70% of occupants involved in frontal impacts sustain cervical spine injuries, many with neurological involvement. It has been hypothesized that cervical spinal cord compression and injury may explain the variable neurological profile described by frontal impact victims. The goals of the present study, using a biofidelic whole cervical spine model with muscle force replication, were to quantify canal pinch diameter (CPD) narrowing during frontal impact and to evaluate the potential for cord compression. The biofidelic model and a sled apparatus were used to simulate frontal impacts at 4, 6, 8, and 10 g horizontal accelerations of the T1 vertebra. The CPD was measured in the intact specimen in the neutral posture (neutral posture CPD), under static sagittal pure moments of 1.5 Nm (pre-impact CPD), during dynamic frontal impact (dynamic impact CPD), and again under static pure moments following each impact (post-impact CPD). Frontal impact caused significant (P<0.05) dynamic CPD narrowing at C0-dens, C2-C3, and C6-C7. The narrowest dynamic CPD was observed at C0-dens during the 10 g impact and was 25.9% narrower than the corresponding neutral posture CPD. Interpretation of the present results indicate that the neurological symptomatology reported by frontal impact victims is most likely not due to cervical spinal cord compression. Cord compression due to residual spinal instability is also not likely.

  20. Neutral and positively charged excitons in narrow quantum ring

    SciTech Connect

    Porras Monroy, L. C.; Rodríguez-Prada, F. A.; Mikhailov, I. D.

    2014-05-15

    We study theoretically quantized states of a neutral and a positively charged exciton (trion X{sup +}) confined in a heterostructure with the ring-like geometry. In order to assess the experimentally relevant domain of parameters, we adopt a simple model of a narrow ring when 3D wave equations for the neutral and positively charged excitons can be separated. By using the Fourier series method, we have calculated the energy spectra of excitons complexes in a quantum ring as a function of the electron-to-hole mass ratio, the ring radius, and the magnetic field strength. The quantum-size effect and the size-dependent magnetic oscillations of energy levels of excitons' complexes spectra have been revealed.

  1. Ultra-narrow laser linewidth measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xiaopei

    In this report, we give a deeper investigation of the loss-compensated recirculating delayed self-heterodyne interferometer (LC-RDSHI) for ultra-narrow linewidth measurement, including the theoretical analysis, experimental implementation, further modification on the system and more applications. Recently, less than 1kHz linewidth fiber lasers have been commercialized. But even the manufacturers face a challenge on accurately measuring the linewidth of such lasers. There is a need to develop more accurate methods to characterize ultra-narrow laser linewidth and frequency noises. Compared with other currently available linewidth measurement techniques, the loss-compensated recirculating delayed-heterodyne interferometer (LC-RDSHI) technique is the most promising one. It overcomes the bottle-neck of the high resolution requirement on the delayed self-heterodyne interferometer (DSHI) by using a short length of fiber delay line. This method does not need another narrower and more stable laser as the reference which is the necessary component in heterodyne detection. The laser spectral lineshape can be observed directly instead of complicated interpretation in frequency discriminator techniques. The theoretical analysis of a LC-RDSHI gives us a guidance on choosing the optimal parameters of the system and assists us to interpret the recorded spectral lineshape. Laser linewidth as narrow as 700Hz has been proved to be measurable by using the LC-RDSHI method. The non-linear curve fitting of Voigt lineshape to separate Lorentzian and Gaussian components was investigated. Voigt curve fitting results give us a clear view on laser frequency noises and laser linewidth nature. It is also shown that for a ultra-narrow linewidth laser, simply taking 20dB down from the maximum value of the beat spectrum and dividing by 2 99 will over estimate the laser linewidth and coherent length. Besides laser linewidth measurement in the frequency domain, we also implemented time

  2. Increasing antimicrobial resistance and narrowing therapeutics in typhoidal salmonellae.

    PubMed

    Kaurthe, Jaspal

    2013-03-01

    Multidrug-resistant typhoid fever (MDRTF) is a major public health problem in developing countries and is an emerging problem in the developed world. Because of the difficulties in preventing typhoid by public health measures or immunization in developing countries, great reliance is placed on antimicrobial chemotherapy. The treatment should commence as soon as the clinical diagnosis is made rather than after the results of antimicrobial susceptibility tests but the existence of MDRTF poses a serious clinical dilemma in the selection of empiric antimicrobial therapy. With the widespread emergence and spread of strains resistant to chloramphenicol, ampicillin and trimethoprim, ciprofloxacin became the drug of choice for the treatment of typhoid fever. However, of late the efficacy of fluoroquinolones too has been questioned, mainly due to increasing reports of increasing defervescence time and poor patient response. This indicates that the organism has begun to develop resistance to fluoroquinolones, and is corroborated by a steady increase in Minimum Inhibitory Concentration (MIC) of ciprofloxacin. The therapeutics of ciprofloxacin-resistant enteric fever narrows down to third- and fourth-generation cephalosporins and azithromycin. However, the emergence of extended-spectrum b-lactamases (ESBLs) in typhoidal Salmonellae poses a new challenge and would greatly limit the therapeutic options leaving only tigecycline and carbepenems as secondary antimicrobial drugs. This increasing resistance is alarming and emphasizes the need of effective preventive measures to control typhoid and to limit the unnecessary use of antibiotics.

  3. Testing Different Survey Techniques to Model Architectonic Narrow Spaces

    NASA Astrophysics Data System (ADS)

    Mandelli, A.; Fassi, F.; Perfetti, L.; Polari, C.

    2017-08-01

    In the architectural survey field, there has been the spread of a vast number of automated techniques. However, it is important to underline the gap that exists between the technical specification sheet of a particular instrument and its usability, accuracy and level of automation reachable in real cases scenario, especially speaking about Cultural Heritage (CH) field. In fact, even if the technical specifications (range, accuracy and field of view) are known for each instrument, their functioning and features are influenced by the environment, shape and materials of the object. The results depend more on how techniques are employed than the nominal specifications of the instruments. The aim of this article is to evaluate the real usability, for the 1:50 architectonic restitution scale, of common and not so common survey techniques applied to the complex scenario of dark, intricate and narrow spaces such as service areas, corridors and stairs of Milan's cathedral indoors. Tests have shown that the quality of the results is strongly affected by side-issues like the impossibility of following the theoretical ideal methodology when survey such spaces. The tested instruments are: the laser scanner Leica C10, the GeoSLAM ZEB1, the DOT DPI 8 and two photogrammetric setups, a full frame camera with a fisheye lens and the NCTech iSTAR, a panoramic camera. Each instrument presents advantages and limits concerning both the sensors themselves and the acquisition phase.

  4. Propagation modeling results for narrow-beam undersea laser communications

    NASA Astrophysics Data System (ADS)

    Fletcher, Andrew S.; Hardy, Nicholas D.; Hamilton, Scott A.

    2016-03-01

    Communication links through ocean waters are challenging due to undersea propagation physics. Undersea optical communications at blue or green wavelengths can achieve high data rates (megabit- to gigabit-per-second class links) despite the challenging undersea medium. Absorption and scattering in ocean waters attenuate optical signals and distort the waveform through dense multipath. The exponential propagation loss and the temporal spread due to multipath limit the achievable link distance and data rate. In this paper, we describe the Monte Carlo modeling of the undersea scattering and absorption channel. We model photon signal attenuation levels, spatial photon distributions, time of arrival statistics, and angle of arrival statistics for a variety of lasercom scenarios through both clear and turbid water environments. Modeling results inform the design options for an undersea optical communication system, particularly illustrating the advantages of narrow-beam lasers compared to wide beam methods (e.g. LED sources). The modeled pupil plane and focal plane photon arrival distributions enable beam tracking techniques for robust pointing solutions, even in highly scattering harbor waters. Laser communication with collimated beams maximizes the photon transfer through the scattering medium and enables spatial and temporal filters to minimize waveform distortion and background interference.

  5. Equatorial Spread F Fossil Plumes

    DTIC Science & Technology

    2010-11-01

    2007, 2007. Steenburgh, R. A., Smithtro, C. G., and Groves, K. M.: Ionospheric scintillation effects on single frequency GPS , Space Weather, 6, S04D02...issues, J. Geophys. Res., 107, 1468, doi:10.1029/2002JA009430, 2002. Retterer, J. M.: Forecasting low-latitude radio scintillation with 3- D ionospheric ... Ionosphere (Equatorial ionosphere ; Ionosphere - atmosphere interactions; Ionospheric irregularities) 1 Introduction Equatorial spread F (ESF), the result of

  6. Spread Spectrum Mobile Radio Communications.

    DTIC Science & Technology

    1986-03-31

    for radio frequency spectrum has led to a wide variety of techniques for solving the problem of spectral conjestion. Spectrally efficient modulation ...Kenkichi Hirade, " GMSK Modulation for Digital Mobile Radio Telephcny", IEEE Trans. on Commun., Vol. COM-29, No. 7, July 1981, pp. 1044-1050. [20.] .C...necessary and Identify by block number) Spread Spectrum Mobile Packet Radio Network Carrier Sense Multiple Access Spectrally Efficient Modulation Speech

  7. Effect of Latent Heat of Freezing on Crustal Generation at Ultraslow Spreading Rates

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.; Warren, J. M.

    2013-12-01

    The transition between slow and ultraslow ridge axes occurs at the spreading rate below which steady state molten rock cannot exist above the normal Moho depth of ca. 6 km. The latent heat of basaltic magma freezing within the mantle and the kinematics of the seafloor spreading play significant roles in this transition. Using thermal models, we show that freezing of melt at mantle depths buffers temperature due to latent heat of freezing. This allows steady state crustal magma at lower spreading rates than when all the melt freezes at shallow crustal depths. Two quasi-stable seafloor-spreading patterns are possible: (1) basaltic magma along a narrow axial zone, maintaining a hot, weak axial lid that favors this extension pattern; (2) extension in simple shear over a broad zone with isotherms that are horizontal within the cool lid, favoring extension in simple shear. The statistics of basalt, gabbro, melt-impregnated peridotite, and peridotite dredged from transitional ridge axes indicates that the mode of crustal generation is extremely variable at ultraslow spreading rates. Portions of the easternmost Southwest Indian Ridge (SWIR) are spreading at 14 mm per year and consist of 90 percent peridotite, whereas the SWIR Oblique Segment has the same spreading rate but only 37 percent peridotite. Overall, the dredge statistics indicate that some, but not all, the latent heat of ascending magmas is released at mantle depth, that both quasi-stable seafloor-spreading geometries occur, and that magma ascent focuses locally along the strike of transitional ridge axes.

  8. Drop Spreading with Random Viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  9. Spread of entanglement and causality

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Liu, Hong; Mezei, Márk

    2016-07-01

    We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.

  10. Undersea Laser Communication with Narrow Beams

    DTIC Science & Technology

    2015-09-29

    temporal spread. Based on information theoretic arguments, gigabit-per-second class links can be achieved at 20 extinction lengths by utilizing pulse...given as b) both in units of m-1. A beam attenuation length, or extinction length, of (a+b)-1 m refers to the propagation distance that results in a...chromophoric dissolved organic matter (CDOM), or in some cases suspended sediment. We can see a variation in extinction greater than a factor of 10; we

  11. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  12. Electrically modulated dynamic spreading of drops on soft surfaces

    NASA Astrophysics Data System (ADS)

    Dey, Ranabir; Daga, Ashish; DasGupta, Sunando; Chakraborty, Suman

    2015-07-01

    The intricate interaction between the deformability of a substrate and the dynamic spreading of a liquid drop on the same, under the application of an electrical voltage, has remained far from being well understood. Here, we demonstrate that electrospreading dynamics on soft substrates is dictated by the combined interplay of electrocapillarity, the wetting line friction, and the viscoelastic energy dissipation at the contact line. Our results reveal that during such electro-elastocapillarity mediated spreading of a sessile drop, the contact radius evolution exhibits a universal power-law in a substrate elasticity based non-dimensional time, with an electrical voltage dependent spreading exponent. Simultaneously, the macroscopic dynamic contact angle variation follows a general power-law in the contact line velocity, normalized by elasticity dependent characteristic velocity scale. These findings will be beneficial for comprehending droplet spreading dynamics stemming from the combination of electrically modulated spreading and "soft wetting." Hence, our results are likely to provide the foundation for the development of a plethora of applications involving droplet manipulations by exploiting the interplay between electrically triggered spreading and substrate-compliance over interfacial scales.

  13. Energy

    ERIC Educational Resources Information Center

    Boyer, Ernest L.

    1977-01-01

    Schools must teach pupils about the wide nature of our energy dilemma and prepare them for a future in which not only will conservation of energy be essential, but also the conservation and preservation of our total natural resources. (JD)

  14. Chromatic assimilation: spread light or neural mechanism?

    PubMed

    Cao, Dingcai; Shevell, Steven K

    2005-04-01

    Chromatic assimilation is the shift in color appearance of a test field toward the appearance of nearby light. Possible explanations of chromatic assimilation include wavelength independent spread light, wavelength-dependent chromatic aberration and neural summation. This study evaluated these explanations by measuring chromatic assimilation from a concentric-ring pattern into an equal-energy-white background, as a function of the inducing rings' width, separation, chromaticity and luminance. The measurements showed, in the s direction, that assimilation was observed with different inducing-ring widths and separations when the inducing luminance was lower or higher than the test luminance. In general, the thinner the inducing rings and the smaller their separation, the stronger the assimilation in s. In the l direction, either assimilation or contrast was observed, depending on the ring width, separation and luminance. Overall, the measured assimilation could not be accounted for by the joint contributions from wavelength-independent spread light and wavelength-dependent chromatic aberration. Spatial averaging of neural signals explained the assimilation in s reasonably well, but there were clear deviations from neural spatial averaging for the l direction.

  15. Reverse preferential spread in complex networks

    NASA Astrophysics Data System (ADS)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  16. Are Quantity-Distances Narrowing in?

    DTIC Science & Technology

    2010-07-01

    REPORT TYPE N/A 3 . DATES COVERED - 4. TITLE AND SUBTITLE Are Quantity-Distances Narrowing in? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...adopt AASTP-1 and AASTP-5 for ammunition storage /1/, /2 /. Quantity-Distance History The history of QD goes far back, see e.g. / 3 /, /4/, /5...6 3 /. Reference / / quotes /7 /: “Act for preventing the Mischiefs which may happen by keeping too great Quantities of gunpowder in or near

  17. Global viscous overstabilities in narrow rings

    NASA Astrophysics Data System (ADS)

    Longaretti, Pierre-Yves; French, Richard G.; Nicholson, Philip D.

    2016-10-01

    Local viscous overstabilities have been the focus of a number of theoretical analyses in the last decades due to the rôle they are believed to play in the creation of the small scale structure of broad ring systems (Saturn, Uranus). Global viscous overstabilities have also been investigated in the 1980s and 1990s as a potential source of narrow ring eccentricities (Longaretti and Rappaport, 1995, Icarus, 116, 376).An important feature of global viscous overstabilities is that they produce slow relative librating or circulating motions of narrow ring edges; they may also produce slowly librating or circulating components of edge modes. This process is potentially relevant to explain the occurrence of unusually large apsidal shifts observed in some saturnian ringlets and may also explain the existence of the free m=2 B ring edge mode that is slowly circulating with respect to the component forced by Mimas.The time-scale of such motions is primarily controlled by the ring self-gravity and can be analytically quantified in a two-streamline analysis which yields a characteristic libration/circulation frequency Ωl = (n/π)(Mr/Mp)(a/δa)2H(q2) where n is the mean motion, Mr the ringlet or pertubed region mass, Mp the planet mass, a the semi-major axis, δa the narrow ringlet or pertubed region width and H(q2) a dimensionless factor of order unity that depends on the streamline compression parameter q. The related time-scale is of the order of a few years to a few tens of years depending on the surface density and ringlet/perturbed region geometry. Preliminary data analyzes indicate that the Maxwell and Huyghens ringlets are probably librating with periods consistent with this two-streamline estimate.The talk will briefly present the physics of global viscous overstabilities as well as more detailed applications to narrow rings, and if time permits, to edge modes.

  18. Spectral narrowing and spin echo for localized carriers with heavy-tailed Lévy distribution of hopping times

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Mkhitaryan, V. V.; Raikh, M. E.

    2016-05-01

    We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, τ , are widely spread according to the Lévy distribution. The power-law tail ∝τ-1 -α in the distribution of τ does not affect the conventional spectral narrowing for α >2 but leads to a dramatic acceleration of the free induction decay in the domain 2 >α >1 . The next abrupt acceleration of the decay takes place as α becomes smaller than 1. In the latter domain the decay does not follow a simple-exponent law. To capture the behavior of the average spin in this domain, we solve the evolution equation for the average spin using the approach different from the conventional approach based on the Laplace transform. Unlike the free induction decay, the tail in the distribution of the residence times leads to the slow decay of the spin echo. The echo is dominated by realizations of the carrier motion for which the number of sites, visited by the carrier, is minimal.

  19. Spectral narrowing and spin echo for localized carriers with heavy-tailed L evy distribution of hopping times

    SciTech Connect

    Yue, Z.; Mkhitaryan, Vagharsh; Raikh, M. E.

    2016-02-02

    We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, , are widely spread according to the L evy distribution. The power-law tail ∝ τ-1-∝ in the distribution of does not affect the conventional spectral narrowing for α > 2, but leads to a dramatic acceleration of the free induction decay in the domain 2 > α > 1. The next abrupt acceleration of the decay takes place as becomes smaller than 1. In the latter domain the decay does not follow a simple-exponent law. To capture the behavior of the average spin in this domain, we solve the evolution equation for the average spin using the approach different from the conventional approach based on the Laplace transform. Unlike the free induction decay, the tail in the distribution of the residence times leads to the slow decay of the spin echo. The echo is dominated by realizations of the carrier motion for which the number of sites, visited by the carrier, is minimal.

  20. Seismicity at interactions of spreading centers and transform faults

    SciTech Connect

    Rowlett, H.

    1981-05-10

    Ocean-bottom seismographs were used in a microearthquake monitoring experiment at the eastern junction of the Oceanographer transform with the mid-Atlantic ridge at 35 /sup 0/N. Microearthquake activity at the junction occurred over a broad area (>7 km). These microearthquakes 'cut across' the corner between the transform and median valley and are associated with fault scarps that form the inner walls on the west and north sides of the median and transform valleys. At intersections of other major fracture zones (>100-km offset) and slow to moderate spreading centers microearthquake activity is also diffuse and cuts across the corner between the spreading center and transform fault. The narrow zone of decoupling (approx.1 km) observed between spreading center and transform boundaries by detailed geological studies at the Tamayo/East Pacific Rise and Vema/mid-Atlantic Ridge interactions suggest that the diffuse seismicity (20 to 30 km in width) does not reflect a diffuse plate boundary at the transition from rift to transform valley. Instead, the faulting probably reflects internal deformation of the corner by secondary faults off of the plate boundary.

  1. Electronic characterization of defects in narrow gap semiconductors

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1993-01-01

    The study of point defects in semiconductors has a long and honorable history. In particular, the detailed understanding of shallow defects in common semiconductors traces back to the classic work of Kohn and Luttinger. However, the study of defects in narrow gap semiconductors represents a much less clear story. Here, both shallow defects (caused by long range potentials) and deep defects (from short range potentials) are far from being completely understood. In this study, all results are calculational and our focus is on the chemical trend of deep levels in narrow gap semiconductors. We study substitutional (including antisite), interstitial and ideal vacancy defects. For substitutional and interstitial impurities, the efects of relaxation are included. For materials like Hg(1-x)Cd(x)Te, we study how the deep levels vary with x, of particular interest is what substitutional and interstitial atoms yield energy levels in the gap i.e. actually produce deep ionized levels. Also, since the main technique utilized is Green's functions, we include some summary of that method.

  2. Subwavelength-Sized Narrow-Band Anechoic Waveguide Terminations

    NASA Astrophysics Data System (ADS)

    Santillán, Arturo; Ćrenlund, Emil; Bozhevolnyi, Sergey I.

    2016-11-01

    We propose and demonstrate the use of a pair of detuned acoustic resonators to efficiently absorb narrow-band sound waves in a terminated waveguide. The suggested configuration is relatively simple and advantageous for usage at low frequencies, since the dimensions of the resonators are very small compared to the wavelength. We present a theoretical description based on lumped parameters to calculate the absorption coefficient, which agrees very well with experimental data. The experimental results verify that the anechoic (reflection approximately -38 dB ) narrow-band (Δ f /f ˜0.1 ) termination with deeply subwavelength (<λ /10 ) sizes can be realized at a target frequency, suggesting thereby applications for noise control and sensing. As an illustration of possible applications for sound absorption in a room, we demonstrate by use of numerical simulations that a given axial resonant excitation in a room can be practically eliminated. Thus, a reduction of approximately 24 dB in the average acoustic energy is achieved in the room when using only four Helmholtz resonators. We also discuss various scenarios of noise control in rooms.

  3. Spectral narrowing in gases using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Karpate, Tanvi; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Mathur, D.

    2017-05-01

    Filamentation in gases due to high power femtosecond pulses results from the combined action of the optical Kerr effect (giving rise to self-focusing) and plasma formation (giving rise to defocusing) that confines optical energy in a small region over a distance longer than the Rayleigh range. Since the discovery of N2 as a potential gain medium, which subsequently led to the formation of nitrogen lasers, it has held a keen interest due to its potential in achieving lasing by remote excitation. Recently, Yamanouchi and coworkers demonstrated lasing action in N2 in the forward as well the backward directions along the femtosecond pulse propagation. In the present work, we have focused on excitation of N2 + (corresponding to the 391nm spectral feature) and have measured spectral narrowing. We have investigated the influence exerted by the incident pulse power and gas pressure for incident pulses of durations 40 fs and 10 fs in forward and backward detection modes. Spectral narrowing that occurs for N2 gas at 391 nm shows a dependence on the incident pulse duration. Pressure threshold for different incident powers for lasing has been established. Increase in the signal intensity on varying the incident power is ascribed to amplified spontaneous emission (ASE). White-light-seeded lasing in N2 + is generated by a Ti:sapphire femtosecond laser for different focusing. The lasing lines peak over the trail of the incident broadband spectra.

  4. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    PubMed Central

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases. PMID:26133935

  5. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature.

    PubMed

    Ayata, Cenk; Lauritzen, Martin

    2015-07-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.

  6. Geodynamic environments of ultra-slow spreading

    NASA Astrophysics Data System (ADS)

    Kokhan, Andrey; Dubinin, Evgeny

    2015-04-01

    Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central

  7. Narrow Spin Resonance Width and Spin Flip with an rf-Bunched Deuteron Beam

    SciTech Connect

    Morozov, V. S.; Chao, A. W.; Krisch, A. D.; Leonova, M. A.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Kondratenko, A. M.

    2009-10-02

    We used an rf solenoid to study the widths of rf spin resonances with both bunched and unbunched beams of 1.85 GeV/c polarized deuterons stored in the COSY synchrotron. With the unbunched beam at different fixed rf-solenoid frequencies, we observed only partial depolarization near the resonance. However, the bunched beam's polarization was almost fully flipped; moreover, its resonance was much narrower. We then used Chao's recent equations to explain this behavior and to calculate the polarization's dependence on various rf-solenoid and beam parameters. Our data and calculations indicate that a bunched deuteron beam's polarization can behave as if the beam has zero momentum spread.

  8. Studies of narrow autoionizing resonances in gadolinium

    SciTech Connect

    Bushaw, Bruce A.; Nortershauser, W.; Blaum, K.; Wendt, Klaus

    2003-06-30

    The autoionization (AI) spectrum of gadolinium between the first and second limits has been investigated by triple-resonance excitation with high-resolution cw lasers. A large number of narrow AI resonances have been observed and assigned total angular momentum J values. The resonances are further divided into members of AI Rydberg series converging to the second limit or other ''interloping'' levels. Fine structure in the Rydberg series has been identified and interpreted in terms of Jc j coupling. A number of detailed studies have been performed on the interloping resonances: These include lifetime determination by lineshape analysis, isotope shifts, hyperfine structure, and photoionization saturation parameters. The electronic structure of the interloping levels is discussed in terms of these studies. Linewidths generally decrease with increasing total angular momentum and the J = 7 resonances are extremely narrow with Lorentzian widths ranging from < 1 MHz up to 157 MHz. The strongest resonances are found to have cross-sections of {approx}10-12 cm{sup 2} and photoionization can be saturated with powers available from cw diode lasers.

  9. Cortical spreading depression: An enigma

    NASA Astrophysics Data System (ADS)

    Miura, R. M.; Huang, H.; Wylie, J. J.

    2007-08-01

    The brain is a complex organ with active components composed largely of neurons, glial cells, and blood vessels. There exists an enormous experimental and theoretical literature on the mechanisms involved in the functioning of the brain, but we still do not have a good understanding of how it works on a gross mechanistic level. In general, the brain maintains a homeostatic state with relatively small ion concentration changes, the major ions being sodium, potassium, and chloride. Calcium ions are present in smaller quantities but still play an important role in many phenomena. Cortical spreading depression (CSD for short) was discovered over 60 years ago by A.A.P. Leão, a Brazilian physiologist doing his doctoral research on epilepsy at Harvard University, “Spreading depression of activity in the cerebral cortex," J. Neurophysiol., 7 (1944), pp. 359-390. Cortical spreading depression is characterized by massive changes in ionic concentrations and slow nonlinear chemical waves, with speeds on the order of mm/min, in the cortex of different brain structures in various experimental animals. In humans, CSD is associated with migraine with aura, where a light scintillation in the visual field propagates, then disappears, and is followed by a sustained headache. To date, CSD remains an enigma, and further detailed experimental and theoretical investigations are needed to develop a comprehensive picture of the diverse mechanisms involved in producing CSD. A number of mechanisms have been hypothesized to be important for CSD wave propagation. In this paper, we briefly describe several characteristics of CSD wave propagation, and examine some of the mechanisms that are believed to be important, including ion diffusion, membrane ionic currents, osmotic effects, spatial buffering, neurotransmitter substances, gap junctions, metabolic pumps, and synaptic connections. Continuum models of CSD, consisting of coupled nonlinear diffusion equations for the ion concentrations, and

  10. Modeling the Spread of Ebola

    PubMed Central

    Do, Tae Sug; Lee, Young S.

    2016-01-01

    Objectives This study aims to create a mathematical model to better understand the spread of Ebola, the mathematical dynamics of the disease, and preventative behaviors. Methods An epidemiological model is created with a system of nonlinear differential equations, and the model examines the disease transmission dynamics with isolation through stability analysis. All parameters are approximated, and results are also exploited by simulations. Sensitivity analysis is used to discuss the effect of intervention strategies. Results The system has only one equilibrium point, which is the disease-free state (S,L,I,R,D) = (N,0,0,0,0). If traditional burials of Ebola victims are allowed, the possible end state is never stable. Provided that safe burial practices with no traditional rituals are followed, the endemic-free state is stable if the basic reproductive number, R0, is less than 1. Model behaviors correspond to empirical facts. The model simulation agrees with the data of the Nigeria outbreak in 2004: 12 recoveries, eight deaths, Ebola free in about 3 months, and an R0 value of about 2.6 initially, which signifies swift spread of the infection. The best way to reduce R0 is achieving the speedy net effect of intervention strategies. One day's delay in full compliance with building rings around the virus with isolation, close observation, and clear education may double the number of infected cases. Conclusion The model can predict the total number of infected cases, number of deaths, and duration of outbreaks among others. The model can be used to better understand the spread of Ebola, educate about prophylactic behaviors, and develop strategies that alter environment to achieve a disease-free state. A future work is to incorporate vaccination in the model when the vaccines are developed and the effects of vaccines are known better. PMID:26981342

  11. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F.; Dress, William B.

    2010-02-02

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  12. Sea-Floor Spreading and Transform Faults

    ERIC Educational Resources Information Center

    Armstrong, Ronald E.; And Others

    1978-01-01

    Presents the Crustal Evolution Education Project (CEEP) instructional module on Sea-Floor Spreading and Transform Faults. The module includes activities and materials required, procedures, summary questions, and extension ideas for teaching Sea-Floor Spreading. (SL)

  13. Lexical Ambiguity: Making a Case against Spread

    ERIC Educational Resources Information Center

    Kaplan, Jennifer J.; Rogness, Neal T.; Fisher, Diane G.

    2012-01-01

    We argue for decreasing the use of the word "spread" when describing the statistical idea of dispersion or variability in introductory statistics courses. In addition, we argue for increasing the use of the word "variability" as a replacement for "spread."

  14. Lexical Ambiguity: Making a Case against Spread

    ERIC Educational Resources Information Center

    Kaplan, Jennifer J.; Rogness, Neal T.; Fisher, Diane G.

    2012-01-01

    We argue for decreasing the use of the word "spread" when describing the statistical idea of dispersion or variability in introductory statistics courses. In addition, we argue for increasing the use of the word "variability" as a replacement for "spread."

  15. Influence of slope on fire spread rate

    Treesearch

    B.W. Butler; W.R. Anderson; E.A. Catchpole

    2007-01-01

    Data demonstrate the effect of slope on heading and backing fires burning through woody fuels. The data indicate that the upper limit of heading fire rate of spread is defined by the rate of spread up a vertical fuel array, and the lower limit is defined by the rate of spread of a backing fire burning downslope. The minimum spread rate is found to occur at nominally --...

  16. Energy

    DTIC Science & Technology

    2003-01-01

    Canada, Britain, and Spain. We found that the energy industry is not in crisis ; however, U.S. government policies, laws, dollars, and even public...CEIMAT (Centro de Investagaciones Energeticas , Medioambeintales y Tecnologicas) Research and development Page 3 of 28ENERGY 8/10/04http://www.ndu.edu...procurement or storage of standard, common use fuels. NATURAL GAS Natural gas, abundant globally and domestically, offers energy versatility among

  17. Macroscopic model of phospholipid vesicle spreading and rupture.

    PubMed

    Efremov, A; Mauro, J C; Raghavan, S

    2004-07-06

    We present a macroscopic model for the spreading and rupture of a spherical lipid vesicle on a flat, isotropic, hydrophilic surface. Formulas for the free energy of the initial and final states are derived, and the details of spreading pathways are examined. We show that the activation barrier for vesicle rupture is too large to be overcome by thermal fluctuations at room temperature and the final configuration is more likely to consist of a deflated vesicle. In order for the vesicle to rupture into a planar bilayer, it would have to be aided by increased temperature, application of an external force, or preparation of a mixed hydrophilic/ hydrophobic surface.

  18. nem_spread Ver. 5.10

    SciTech Connect

    HENNIGAN, GARY; SHADID, JOHN; SJAARDEMA, GREGORY; HUTCHINSON, SCOTT

    2009-06-08

    Nem_spread reads it's input command file (default name nem_spread.inp), takes the named ExodusII geometry definition and spreads out the geometry (and optionally results) contained in that file out to a parallel disk system. The decomposition is taken from a scalar Nemesis load balance file generated by the companion utility nem_slice.

  19. 2. Photocopied July 1971 from photostat Jordan Narrows Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopied July 1971 from photostat Jordan Narrows Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. JORDAN NARROWS STATION. PLAN AND SECTION. - Salt Lake City Water & Electrical Power Company, Jordan Narrows Hydroelectric Plant, Jordan River, Riverton, Salt Lake County, UT

  20. 33 CFR 117.561 - Kent Island Narrows.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Kent Island Narrows. 117.561... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.561 Kent Island Narrows. The draw of the U.S. Route 50/301 bridge, mile 1.0, Kent Island Narrows, operates as follows: (a) From November 1...

  1. 33 CFR 117.561 - Kent Island Narrows.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Kent Island Narrows. 117.561... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.561 Kent Island Narrows. The draw of the U.S. Route 50/301 bridge, mile 1.0, Kent Island Narrows, operates as follows: (a) From November 1...

  2. 33 CFR 117.561 - Kent Island Narrows.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Kent Island Narrows. 117.561... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.561 Kent Island Narrows. The draw of the U.S. Route 50/301 bridge, mile 1.0, Kent Island Narrows, operates as follows: (a) From November 1...

  3. 33 CFR 117.561 - Kent Island Narrows.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Kent Island Narrows. 117.561... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.561 Kent Island Narrows. The draw of the U.S. Route 50/301 bridge, mile 1.0, Kent Island Narrows, operates as follows: (a) From November 1...

  4. 33 CFR 117.561 - Kent Island Narrows.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kent Island Narrows. 117.561... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.561 Kent Island Narrows. The draw of the U.S. Route 50/301 bridge, mile 1.0, Kent Island Narrows, operates as follows: (a) From November 1...

  5. Promoting L2 Vocabulary Learning through Narrow Reading

    ERIC Educational Resources Information Center

    Kang, Eun Young

    2015-01-01

    Krashen (2004) has advocated that narrow reading, i.e., reading a series of texts addressing one specific topic, is an effective method to grow vocabulary. While narrow reading has been championed to have many advantages for L2 vocabulary learning, there remains a relative dearth of empirical studies that test the impact of narrow reading on L2…

  6. The spreading of misinformation online.

    PubMed

    Del Vicario, Michela; Bessi, Alessandro; Zollo, Fabiana; Petroni, Fabio; Scala, Antonio; Caldarelli, Guido; Stanley, H Eugene; Quattrociocchi, Walter

    2016-01-19

    The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. However, the World Wide Web (WWW) also allows for the rapid dissemination of unsubstantiated rumors and conspiracy theories that often elicit rapid, large, but naive social responses such as the recent case of Jade Helm 15--where a simple military exercise turned out to be perceived as the beginning of a new civil war in the United States. In this work, we address the determinants governing misinformation spreading through a thorough quantitative analysis. In particular, we focus on how Facebook users consume information related to two distinct narratives: scientific and conspiracy news. We find that, although consumers of scientific and conspiracy stories present similar consumption patterns with respect to content, cascade dynamics differ. Selective exposure to content is the primary driver of content diffusion and generates the formation of homogeneous clusters, i.e., "echo chambers." Indeed, homogeneity appears to be the primary driver for the diffusion of contents and each echo chamber has its own cascade dynamics. Finally, we introduce a data-driven percolation model mimicking rumor spreading and we show that homogeneity and polarization are the main determinants for predicting cascades' size.

  7. Cross spread pupil tracking technique

    NASA Astrophysics Data System (ADS)

    Wolski, Krzysztof; Mantiuk, Radosław

    2016-11-01

    We present a fast and minimum delay algorithm for detecting the pupil center, called the "cross spread" tracking technique. This algorithm is meant for video eye trackers that estimate gaze direction from the position of the pupil center in the captured images. Contrary to other solutions, we do not try to make this technique robust to distractors such as reflections, distortions caused by glasses, or eyelids covering the pupil, but rather we assume eye tracking in stable light conditions. We argue that this approach is useful in many eye tracking applications, such as gaze tracking during psychophysical experiments in stable laboratory conditions, and that this approach can significantly reduce the eye tracker's complexity while maintaining its accuracy and performance. The proposed cross spread technique estimates pupil by tracing rays in horizontal and vertical directions in the image, starting from a point in the pupil region and continuing to the pupil boundary. The found boundary points determine the next starting point and the procedure is iteratively repeated. Parallel processing can be efficiently used enabling accurate pupil center detection in <2 ms on typical laptops. We compare the proposed algorithm to other pupil detection algorithms.

  8. Spreading Astronomy Education Through Africa

    NASA Astrophysics Data System (ADS)

    Baki, P.

    2006-08-01

    Although Astronomy has been an important vehicle for effectively passing a wide range of scientific knowledge, teaching the basic skills of scientific reasoning, and for communicating the excitement of science to the public, its inclusion in the teaching curricula of most institutions of higher learning in Africa is rare. This is partly due to the fact that astronomy appears to be only good at fascinating people but not providing paid jobs. It is also due to the lack of trained instructors, teaching materials, and a clear vision of the role of astronomy and basic space science within the broader context of education in the physical and applied sciences. In this paper we survey some of the problems bedeviling the spread of astronomy in Africa and discuss some interdisciplinary traditional weather indicators. These indicators have been used over the years to monitor the appearance of constellations. For example, orions are closely intertwined with cultures of some ethnic African societies and could be incorporated in the standard astronomy curriculum as away of making the subject more `home grown' and to be able to reach out to the wider populace in popularizing astronomy and basic sciences. We also discuss some of the other measures that ought to be taken to effectively create an enabling environment for sustainable teaching and spread of astronomy through Africa.

  9. The spreading of misinformation online

    PubMed Central

    Del Vicario, Michela; Bessi, Alessandro; Zollo, Fabiana; Petroni, Fabio; Caldarelli, Guido; Stanley, H. Eugene; Quattrociocchi, Walter

    2016-01-01

    The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. However, the World Wide Web (WWW) also allows for the rapid dissemination of unsubstantiated rumors and conspiracy theories that often elicit rapid, large, but naive social responses such as the recent case of Jade Helm 15––where a simple military exercise turned out to be perceived as the beginning of a new civil war in the United States. In this work, we address the determinants governing misinformation spreading through a thorough quantitative analysis. In particular, we focus on how Facebook users consume information related to two distinct narratives: scientific and conspiracy news. We find that, although consumers of scientific and conspiracy stories present similar consumption patterns with respect to content, cascade dynamics differ. Selective exposure to content is the primary driver of content diffusion and generates the formation of homogeneous clusters, i.e., “echo chambers.” Indeed, homogeneity appears to be the primary driver for the diffusion of contents and each echo chamber has its own cascade dynamics. Finally, we introduce a data-driven percolation model mimicking rumor spreading and we show that homogeneity and polarization are the main determinants for predicting cascades’ size. PMID:26729863

  10. Relativistic jets in Narrow-Line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Angelakis, E.; Bonnoli, G.; Calderone, G.; Colpi, M.; D'Ammando, F.; Donato, D.; Falcone, A.; Fuhrmann, L.; Ghisellini, G.; Ghirlanda, G.; Hauser, M.; Kovalev, Y. Y.; Maraschi, L.; Nieppola, E.; Richards, J.; Stamerra, A.; Tagliaferri, G.; Tavecchio, F.; Thompson, D. J.; Tibolla, O.; Tramacere, A.; Wagner, S.

    2011-02-01

    Narrow-Line Seyfert 1 (NLS1) class of active galactic nuclei (AGNs) is generally radio-quiet, but a small percent of them are radio-loud. The recent discovery by Fermi/LAT of high-energy γ-ray emission from 4 NLS1s proved the existence of relativistic jets in these systems. It is therefore important to study this new class of γ-ray emitting AGNs. Here we report preliminary results about the observations of the July 2010 γ-ray outburst of PMN J0948+0022, when the source flux exceeded for the first time 10-6 ph cm-2 s-1 (E > 100 MeV).

  11. Single-Frequency Narrow Linewidth 2 Micron Fiber Laser

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)

    2006-01-01

    A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.

  12. Narrow-field imaging of the lunar sodium exosphere

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Flynn, Brian C.

    1995-01-01

    We present the first results of a new technique for imaging the lunar Na atmosphere. The technique employs high resolution, a narrow bandpass, and specific observing geometry to suppress scattered light and image lunar atmospheric Na I emission down to approximately 50 km altitude. Analysis of four latitudinally dispersed images shows that the lunar Na atmosphere exhibits intersting latitudinal and radial dependencies. Application of a simple Maxwellian collisionless exosphere model indicates that: (1) at least two thermal populations are required to adequately fit the soldium's radial intensity behavior, and (2) the fractional abundances and temperatures of the two components vary systematically with latitude. We conclude that both cold (barometric) and hot (suprathermal) Na may coexist in the lunar atmosphere, either as distinct components or as elements of a continuum of populations ranging in temperature from the local surface temperature up to or exceeding escape energies.

  13. The Tacoma Narrows Bridge Collapse on Film and Video

    NASA Astrophysics Data System (ADS)

    Olson, Don; Hook, Joseph; Doescher, Russell; Wolf, Steven

    2015-11-01

    This month marks the 75th anniversary of the Tacoma Narrows Bridge collapse. During a gale on Nov. 7, 1940, the bridge exhibited remarkable oscillations before collapsing spectacularly (Figs. 1-5). Physicists over the years have spent a great deal of time and energy studying this event. By using open-source analysis tools and digitized footage of the disaster, physics students in both high school and college can continue in this tradition. Students can watch footage of "Galloping Gertie," ask scientific questions about the bridge's collapse, analyze data, and draw conclusions from that analysis. Students should be encouraged to pursue their own investigations, but the question that drove our inquiry was this: "When physics classes watch modern video showing the oscillations and the free fall of the bridge fragments, are these scenes sped up, slowed down, or at the correct speed compared to what was observed by the eyewitnesses on Nov. 7, 1940?"

  14. Observations of the cavitating jet in a narrow watercourse

    SciTech Connect

    Soyama, H.; Ikohagi, T.; Oba, R.

    1994-12-31

    Highspeed submerged water-jets ar very often successfully applied for peening and cleaning. And such a jet-working-capacity closely depends on the shedding of cavitation clouds. In order to make clear the shedding mechanism of the clouds, the authors systematically observe the aspects of a two-dimensional jet in a 0.35mm-thin narrow watercourse, ejecting from the nozzle whose throat is 4mm long and 1mm wide. The cavitating jet is carefully observed by means of a highspeed photography and a digital image processing technique. The cavitating jet is very rapidly changing with time, and the clouds associated with the highly erosive cavitation are periodically shedding, whose frequency is about 800 Hz. The vortex cavitation around the jet is also shedding in 3kHz. The acceleration levels associated with high cavitation-erosion-energy are also measured.

  15. Microgravity flame spread over thick solids in low velocity opposed flow

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  16. Narrow-track wheeled agricultural tractor parameter variation.

    PubMed

    Guzzomi, A; Rondelli, V

    2013-10-01

    Despite a general consensus among farmers, manufacturers, and researchers that wheeled agricultural tractor design has changed over time, there is little published evidence. There is debate as to whether the standardized rollover protective structure (ROPS) energy and force requirements, based on a tractor reference mass and pertaining to studies conducted more than 40 years ago, are appropriate for modern tractors. This article investigated the physical parameters of 326 modern narrow-track tractors, measured according to OECD Code 6 over 16 years (1993 to 2008 inclusive): 252 (-77%) were fixed-chassis tractors and 74 (-23%) were articulated. To understand the significance of design changes, the data were analyzed with respect to time and as a function of tractor mass. Articulated and fixed-chassis data were treated separately. The time data allowed qualitative analysis, while the mass data allowed quantitative analysis. The parameters show some changes over time and clearly indicate differences between articulated and fixed-chassis types. The parameter changes, along with the differences between types, may have important safety ramifications for ROPS energy absorption requirements, and these aspects are discussed. Regression lines with R2 values were fitted to the mass-related data for fixed-chassis and articulated tractors to determine the suitability of fit. The mass relations also displayed differences between fixed-chassis and articulated tractors. Thus, the most significant recommendation from this study is that the standardized testing procedure for narrow-track wheeled agricultural tractor category should be split into two groups: fixed-chassis and articulated.

  17. Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes.

    PubMed

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester

    2011-05-28

    Quantum fluctuations significantly increase the self-diffusive motion of para-hydrogen adsorbed in narrow carbon nanotubes at 30 K comparing to its classical counterpart. Rigorous Feynman's path integral calculations reveal that self-diffusive motion of para-hydrogen in a narrow (6,6) carbon nanotube at 30 K and pore densities below ∼29 mmol cm(-3) is one order of magnitude faster than the classical counterpart. We find that the zero-point energy and tunneling significantly smoothed out the free energy landscape of para-hydrogen molecules adsorbed in a narrow (6,6) carbon nanotube. This promotes a delocalization of the confined para-hydrogen at 30 K (i.e., population of unclassical paths due to quantum effects). Contrary the self-diffusive motion of classical para-hydrogen molecules in a narrow (6,6) carbon nanotube at 30 K is very slow. This is because classical para-hydrogen molecules undergo highly correlated movement when their collision diameter approached the carbon nanotube size (i.e., anomalous diffusion in quasi-one dimensional pores). On the basis of current results we predict that narrow single-walled carbon nanotubes are promising nanoporous molecular sieves being able to separate para-hydrogen molecules from mixtures of classical particles at cryogenic temperatures.

  18. Gravity tectonics of topographic ridges: Halokinesis and gravitational spreading in the western Ogaden, Ethiopia

    NASA Astrophysics Data System (ADS)

    Mège, Daniel; Le Deit, Laetitia; Rango, Tewodros; Korme, Tesfaye

    2013-07-01

    The Cenozoic history of the western Ogaden region of Ethiopia, between the Ethiopian rift and the South Afar margin, is marked by uplift and incision of the Ogaden plateau down to the Gorrahei Formation, an upper Cretaceous evaporite formation. Debuttressing of this and the overlying sedimentary formations resulted in widespread and spectacular gravitational spreading landforms over a minimum surface area of 15,000 km2, most of which remains unstudied. After clearing up some misconceptions about the surface geology of the study area, the Kebenawa Ridge in the Audo Range, observations are reported that point to a tectonic style controlled by halokinesis and subsequently, gravitational spreading. The role of diapirism and karstification in the observed halokinesis is discussed, as well as the influence of halokinesis on gravitational spreading. Spreading is in part akin to sackung, in that ridge deformation features include a crestal graben and basal ridge topography extrusion, and deformation was triggered by lateral ridge debuttressing. Ridge spreading also presents analogy with gravitational spreading of the Canyonlands grabens in the Needles District, Canyonlands National Park, Utah. The scale and the mechanisms are found to be basically similar, but two differences are noted. First, incision by the drainage network in response to plateau uplift in Ethiopia has debuttressed the topography along two parallel rivers, instead of a single river (the Colorado River) in Utah. Secondly, incision proceeded to the base of the evaporite layer in the Ogaden, whereas incision has not exceeded the top of the evaporite layer in Utah. These differences may have influenced the details of the spreading mechanisms in ways that remain to be investigated. Overall, in Ethiopia, association of halokinesis and a transitional mode of gravitational spreading at the interface between narrow ridge spreading (sackung) and plateau spreading (Canyonlands-type), illustrates a fascinating and

  19. Narrow UV Absorption Line Outflows from Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, L.; Rodriguez Hidalgo, P.; Capellupo, D.

    2012-08-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ˜5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ˜100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ˜43% of bright quasars have a C IV NAL outflow while ˜68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  20. Narrow-angle astrometry with PRIMA

    NASA Astrophysics Data System (ADS)

    Sahlmann, J.; Ségransan, D.; Mérand, A.; Zimmerman, N.; Abuter, R.; Chazelas, B.; Delplancke, F.; Henning, T.; Kaminski, A.; Köhler, R.; Launhardt, R.; Mohler, M.; Pepe, F.; Queloz, D.; Quirrenbach, A.; Reffert, S.; Schmid, C.; Schuhler, N.; Schulze-Hartung, T.

    2012-07-01

    The Extrasolar Planet Search with PRIMA project (ESPRI) aims at characterising and detecting extrasolar planets by measuring the host star's reflex motion using the narrow-angle astrometry capability of the PRIMA facility at the Very Large Telescope Interferometer. A first functional demonstration of the astrometric mode was achieved in early 2011. This marked the start of the astrometric commissioning phase with the purpose of characterising the instrument's performance, which ultimately has to be sufficient for exoplanet detection. We show results obtained from the observation of bright visual binary stars, which serve as test objects to determine the instrument's astrometric precision, its accuracy, and the plate scale. Finally, we report on the current status of the ESPRI project, in view of starting its scientific programme.

  1. Diluted magnetic semiconductors with narrow band gaps

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Maekawa, Sadamichi

    2016-10-01

    We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.

  2. Gated Narrow Escape Time for Molecular Signaling

    NASA Astrophysics Data System (ADS)

    Reingruber, Jürgen; Holcman, David

    2009-10-01

    The mean time for a diffusing ligand to activate a target protein located on the surface of a microdomain can regulate cellular signaling. When the ligand switches between various states induced by chemical interactions or conformational changes, while target activation occurs in only one state, this activation time is affected. We investigate this dynamics using new equations for the sojourn times spent in each state. For two states, we obtain exact solutions in dimension one, and asymptotic ones confirmed by Brownian simulations in dimension 3. We find that the activation time is quite sensitive to changes of the switching rates, which can be used to modulate signaling. Interestingly, our analysis reveals that activation can be fast although the ligand spends most of the time “hidden” in the nonactivating state. Finally, we obtain a new formula for the narrow escape time in the presence of switching.

  3. Nondecaying hydrodynamic interactions along narrow channels

    NASA Astrophysics Data System (ADS)

    Misiunas, Karolis; Pagliara, Stefano; Lauga, Eric; Lister, John R.; Keyser, Ulrich

    Particle-particle interactions are of paramount importance in every multi-body system as they determine the collective behaviour and coupling strength. Many well-known interactions like electro-static, van der Waals or screened Coulomb, decay exponentially or with negative powers of the particle spacing r. Similarly, hydrodynamic interactions between particles undergoing Brownian motion decay as 1 / r in bulk, and are assumed to decay in small channels. Such interactions are ubiquitous in biological and technological systems. Here we confine two particles undergoing Brownian motion in narrow, microfluidic channels and study their coupling through hydrodynamic interactions. Our experiments show that the hydrodynamic particle-particle interactions are distance-independent in these channels. This finding is of fundamental importance for the interpretation of experiments where dense mixtures of particles or molecules diffuse through finite length, water-filled channels or pore networks.

  4. Robotic chair at steep and narrow stairways

    NASA Astrophysics Data System (ADS)

    Imazato, Masahiro; Yamaguchi, Masahiro; Moromugi, Shunji; Ishimatsu, Takakazu

    2007-12-01

    A robotic chair is developed to support mobility of elderly and disabled people living in the house where steep and narrow stairways are installed. In order to deal with such mobility problem the developed robotic chair has a compact original configuration. The robotic chair vertically moves by actuation of electric cylinders and horizontally moves by push-pull operation given by a care-giver. In order to navigate safely every action of the chair is checked by the operator. Up-and-down motions of the robotic chair on the stairway are executed through combinations of motor and cylinder actuations. Performance of the robotic chair was evaluated through two kinds of experiments. The excellent ability of the robotic chair could be confirmed through these experiments.

  5. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  6. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  7. DICOM extensions for narrow-band networks.

    PubMed

    Riesmeier, J; Eichelberg, M; Lemoine, D; Punys, V; Balogh, N; Jensch, P

    2000-01-01

    DICOM is today's de-facto standard for exchanging medical images. Since new image acquisition devices produce more and more image and non-image data, image compression has become an important part of the standard. However, the compression of non-pixel data also stored in DICOM data sets has been disregarded up to now. In the scope of an EU research project we have examined a large amount of real-world DICOM images to test whether or not there is a potential for compressing the non-pixel attributes. Especially for use with narrow-band networks extensions as proposed in this paper could be a solution to save valuable bandwidth.

  8. NARROW-GAP POINT-TO-PLANE CORONA WITH HIGH VELOCITY FLOWS

    EPA Science Inventory

    The article discusses a mathematical model developed to describe a narrow- gap point- to- plane corona system used in the detoxification of chemical agents or their simulants, for which the degree of destruction depends on the strength of the electric field or electron energy. Na...

  9. NARROW-GAP POINT-TO-PLANE CORONA WITH HIGH VELOCITY FLOWS

    EPA Science Inventory

    The article discusses a mathematical model developed to describe a narrow- gap point- to- plane corona system used in the detoxification of chemical agents or their simulants, for which the degree of destruction depends on the strength of the electric field or electron energy. Na...

  10. An Instability in Narrow Planetary Rings

    NASA Astrophysics Data System (ADS)

    Weiss, J. W.; Stewart, G. R.

    2003-08-01

    We will present our work investigating the behavior of narrow planetary rings with low dispersion velocities. Such narrow a ring will be initially unstable to self-gravitational collapse. After the collapse, the ring is collisionally very dense. At this stage, it is subject to a new instability. Waves appear on the inner and outer edges of the ring within half of an orbital period. The ring then breaks apart radially, taking approximately a quarter of an orbital period of do so. As clumps of ring particles expand radially away from the dense ring, Kepler shear causes these clumps to stretch out azimuthally, and eventually collapse into a new set of dense rings. Small-scale repetitions of the original instability in these new rings eventually leads to a stabilized broad ring with higher dispersion velocities than the initial ring. Preliminary results indicate that this instability may be operating on small scales in broad rings in the wake-like features seen by Salo and others. Some intriguing properties have been observed during this instability. The most significant is a coherence in the epicyclic phases of the particles. Both self-gravity and collisions in the ring operated to create and enforce this coherence. The coherence might also be responsible for the instability to radial expansion. We also observe that guiding centers of the particles do not migrate to the center of the ring during the collapse phase of the ring. In fact, guiding centers move radially away from the core of the ring during this phase, consistent with global conservation of angular momentum. We will show the results of our simulations to date, including movies of the evolution of various parameters. (Audiences members wanting popcorn are advised to bring their own.) This work is supported by a NASA Graduate Student Research Program grant and by the Cassini mission.

  11. Superballistic wavepacket spreading in double kicked rotors

    NASA Astrophysics Data System (ADS)

    Fang, Ping; Wang, Jiao

    2016-08-01

    We investigate possible ways in which a quantum wavepacket spreads. We show that in a general class of double kicked rotor system, a wavepacket may undergo superballistic spreading; i.e., its variance increases as the cubic of time. The conditions for the observed superballistic spreading and two related characteristic time scales are studied. Our results suggest that the symmetry of the studied model and whether it is a Kolmogorov-Arnold-Moser system are crucial to its wavepacket spreading behavior. Our study also sheds new light on the exponential wavepacket spreading phenomenon previously observed in the double kicked rotor system.

  12. Cooperative spreading processes in multiplex networks

    NASA Astrophysics Data System (ADS)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-an

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  13. Compensating tune spread induced by space charge in bunched beams

    SciTech Connect

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  14. Forest fire spread with non-universal critical behavior

    NASA Astrophysics Data System (ADS)

    Khelloufi, K.; Baara, Y.; Clerc, J. P.; Porterie, B.; Zekri, N.

    2013-10-01

    The critical behavior of spread dynamics is examined using a forest fire model. This model is characterized by long-range interactions due to flame radiation and a weighting process induced by the combustibles’ ignition energy and the flame residence time. Unlike magnetic systems, this model exhibits a non-universal phase transition. The critical exponents of the rate of spread depend both on the local interaction and on weighting. Near the transition, the exponent x of rate of spread is found to be equivalent to that of correlation time. The weighting process exhibits a new phase transition related to the heating process. This transition is analogous to the gelation transition in spin glasses.

  15. Wave Shaping and Lateral Spreading of Impact Loads Using Layered Materials and Structures

    NASA Astrophysics Data System (ADS)

    Ding, J. L.; Robbins, J.; Gupta, Y. M.; Wong, M. K.

    1999-06-01

    The overall objective of our work is to explore a new concept for developing resilient armor using high wave speed layers to rapidly spread the loads arising from projectile impacts. Because layered structures involve many additional geometrical and material variables, and because layers affect stress distribution and energy absorption capability of the target, a fundamental issue in determining layering effects is the quantification of load spreading in a consistent manner. We have found that the distribution of dissipative energy density normalized by the averaged total energy density imparted to the substrate appears to be an effective measure for evaluating load spreading and penetration resistance of layered targets. Using this measure in numerical simulations, we have demonstrated the feasibility of the load spreading concept. In addition, we have also investigated numerically the effects of layering geometry, and mechanical properties of the layer and substrate on load spreading. Experimental work is currently underway to evaluate the computational results.

  16. The effect of narrow provider networks on health care use.

    PubMed

    Atwood, Alicia; Lo Sasso, Anthony T

    2016-12-01

    Network design is an often overlooked aspect of health insurance contracts. Recent policy factors have resulted in narrower provider networks. We provide plausibly causal evidence on the effect of narrow network plans offered by a large national health insurance carrier in a major metropolitan market. Our econometric design exploits the fact that some firms offer a narrow network plan to their employees and some do not. Our results show that narrow network health plans lead to reductions in health care utilization and spending. We find evidence that narrow networks save money by selecting lower cost providers into the network.

  17. Spreading granular material with a blade

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Singh, Vachitar; Grimaldi, Emma; Sauret, Alban

    2015-11-01

    The spreading of a complex fluid with a blade is encountered in applications that range from the bulldozing of granular material in construction projects to the coating of substrates with fluids in industrial applications. This spreading process is also present in everyday life, when we use a knife to turn a lump of peanut butter into a thin layer over our morning toast. In this study, we rely on granular media in a model experiment to describe the three-dimensional spreading of the material. Our experimental set-up allows tracking the spreading of a sandpile on a translating flat surface as the blade remains fixed. We characterize the spreading dynamics and the shape of the spread fluid layer when varying the tilt of the blade, its spacing with the surface and its speed. Our findings suggest that it is possible to tune the spreading parameters to optimize the coating.

  18. Structural processes at slow-spreading ridges.

    PubMed

    Mutter, J C; Karson, J A

    1992-07-31

    Slow-spreading (<35 millimeters per year) mid-ocean ridges are dominated by segmented, asymmetric, rifted depressions like continental rifts. Fast-spreading ridges display symmetric, elevated volcanic edifices that vary in shape and size along axis. Deep earthquakes, major normal faults, and exposures of lower crustal rocks are common only along slow-spreading ridges. These contrasting features suggest that mechanical deformation is far more important in crustal formation at slow-spreading ridges than at fast-spreading ridges. New seismic images suggest that the nature and scale of segmentation of slow-spreading ridges is integral to the deformational process and not to magmatic processes that may control segmentation on fast-spreading ridges.

  19. SAW correlator spread spectrum receiver

    DOEpatents

    Brocato, Robert W

    2014-04-01

    A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.

  20. Geographical Barriers Impeded the Spread of a Parasitic Chromosome

    PubMed Central

    Manrique-Poyato, María Inmaculada; López-León, María Dolores; Cabrero, Josefa; Gómez, Ricardo; Perfectti, Francisco; Camacho, Juan Pedro M.

    2015-01-01

    Parasitic supernumerary (B) chromosomes show high capability to spread across populations. But the existence of abrupt discontinuities in their distribution demands an explanation. The grasshopper Eyprepocnemis plorans plorans harbour supernumerary chromosomes in all natural populations hitherto analyzed from the Circum-Mediterranean region, with the single exception of the headwaters of the Iberian Segura River and several of its tributaries. To ascertain the causes of this distribution pattern, we analyze here the genetic structure of five natural populations collected in this zone (two +B and three -B), by means of ISSR markers. We found significant population structure, with two kinds of populations coinciding with +B and -B ones, separated by strong barriers to gene flow. This gives strong support to the hypothesis that the non-B populations precede B origin, and that B-carrying individuals from coastal zones have been able to colonize upstream areas, until geographical barriers (usually narrow canyons and arid areas surrounding them) impeded their advance. PMID:26111020

  1. Geographical Barriers Impeded the Spread of a Parasitic Chromosome.

    PubMed

    Manrique-Poyato, María Inmaculada; López-León, María Dolores; Cabrero, Josefa; Gómez, Ricardo; Perfectti, Francisco; Camacho, Juan Pedro M

    2015-01-01

    Parasitic supernumerary (B) chromosomes show high capability to spread across populations. But the existence of abrupt discontinuities in their distribution demands an explanation. The grasshopper Eyprepocnemis plorans plorans harbour supernumerary chromosomes in all natural populations hitherto analyzed from the Circum-Mediterranean region, with the single exception of the headwaters of the Iberian Segura River and several of its tributaries. To ascertain the causes of this distribution pattern, we analyze here the genetic structure of five natural populations collected in this zone (two +B and three -B), by means of ISSR markers. We found significant population structure, with two kinds of populations coinciding with +B and -B ones, separated by strong barriers to gene flow. This gives strong support to the hypothesis that the non-B populations precede B origin, and that B-carrying individuals from coastal zones have been able to colonize upstream areas, until geographical barriers (usually narrow canyons and arid areas surrounding them) impeded their advance.

  2. Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie

    2017-07-01

    Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.

  3. Thermoluminescence dosimeters with narrow bandpass filters

    DOEpatents

    Walker, Scottie W.

    2004-07-20

    A dosimetry method exposes more than one thermoluminescence crystals to radiation without using conventional filters, and reads the energy stored in the crystals by converting the energy to light in a conventional manner, and then filters each crystal output in a different portion of the spectrum generated by the crystals.

  4. Spread and SpreadRecorder An Architecture for Data Distribution

    NASA Technical Reports Server (NTRS)

    Wright, Ted

    2006-01-01

    The Space Acceleration Measurement System (SAMS) project at the NASA Glenn Research Center (GRC) has been measuring the microgravity environment of the space shuttle, the International Space Station, MIR, sounding rockets, drop towers, and aircraft since 1991. The Principle Investigator Microgravity Services (PIMS) project at NASA GRC has been collecting, analyzing, reducing, and disseminating over 3 terabytes of collected SAMS and other microgravity sensor data to scientists so they can understand the disturbances that affect their microgravity science experiments. The years of experience with space flight data generation, telemetry, operations, analysis, and distribution give the SAMS/ PIMS team a unique perspective on space data systems. In 2005, the SAMS/PIMS team was asked to look into generalizing their data system and combining it with the nascent medical instrumentation data systems being proposed for ISS and beyond, specifically the Medical Computer Interface Adapter (MCIA) project. The SpreadRecorder software is a prototype system developed by SAMS/PIMS to explore ways of meeting the needs of both the medical and microgravity measurement communities. It is hoped that the system is general enough to be used for many other purposes.

  5. Spreading in integrable and non-integrable many-body systems

    NASA Astrophysics Data System (ADS)

    Freese, Johannes; Gutkin, Boris; Guhr, Thomas

    2016-11-01

    We consider a finite, closed and selfbound many-body system in which a collective degree of freedom is excited. The redistribution of energy and momentum into a finite number of the non-collective degrees of freedom is referred to as spreading as opposed to damping in open systems. Spreading closely relates to thermalization, but while thermalization requires non-integrability, spreading can also present in integrable systems. We identify subtle features which determine the onset of spreading in an integrable model and compare the result with a non-integrable case.

  6. Diffusion in narrow channels on curved manifolds

    NASA Astrophysics Data System (ADS)

    Chacón-Acosta, Guillermo; Pineda, Inti; Dagdug, Leonardo

    2013-12-01

    In this work, we derive a general effective diffusion coefficient to describe the two-dimensional (2D) diffusion in a narrow and smoothly asymmetric channel of varying width, embedded on a curved surface, in the simple diffusion of non-interacting, point-like particles under no external field. To this end, we extend the generalization of the Kalinay-Percus' projection method [J. Chem. Phys. 122, 204701 (2005); Kalinay-Percus', Phys. Rev. E 74, 041203 (2006)] for the asymmetric channels introduced in [L. Dagdug and I. Pineda, J. Chem. Phys. 137, 024107 (2012)], to project the anisotropic two-dimensional diffusion equation on a curved manifold, into an effective one-dimensional generalized Fick-Jacobs equation that is modified according to the curvature of the surface. For such purpose we construct the whole expansion, writing the marginal concentration as a perturbation series. The lowest order in the perturbation parameter, which corresponds to the Fick-Jacobs equation, contains an additional term that accounts for the curvature of the surface. We explicitly obtain the first-order correction for the invariant effective concentration, which is defined as the correct marginal concentration in one variable, and we obtain the first approximation to the effective diffusion coefficient analogous to Bradley's coefficient [Phys. Rev. E 80, 061142 (2009)] as a function of the metric elements of the surface. In a straightforward manner, we study the perturbation series up to the nth order, and derive the full effective diffusion coefficient for two-dimensional diffusion in a narrow asymmetric channel, with modifications according to the metric terms. This expression is given as D(ξ )=D_0/w^' (ξ )}√{g_1/g_2} lbrace arctan [√{g_2/g_1}(y^' }_0(ξ )+w^' }(ξ )/2)]-arctan [√{g_2/g_1}(y^' }_0(ξ )-w^' }(ξ )/2)] rbrace, which is the main result of our work. Finally, we present two examples of symmetric surfaces, namely, the sphere and the cylinder, and we study certain

  7. Myosin is involved in postmitotic cell spreading

    PubMed Central

    1995-01-01

    We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time- lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin II and myosin V adenosine triphosphatases. BDM reversibly inhibits PtK2 postmitotic cell spreading. Listeria motility is not affected by this drug. Electron microscopy studies show that some actin filaments in spreading edges are part of actin bundles that are also found in long, thin, structures that are connected to spreading edges and substrate (retraction fibers), and that 90% of this actin is oriented with barbed ends in the direction of spreading. The remaining actin in spreading edges has a more random orientation and spatial arrangement. Myosin II is associated with actin polymer in spreading cell edges, but not retraction fibers. Myosin II is excluded from lamellipodia that protrude from the cell edge at the end of spreading. We suggest that spreading involves myosin, possibly myosin II. PMID:7559774

  8. Spectral narrowing of solid state lasers by narrow-band PTR Bragg mirrors

    NASA Astrophysics Data System (ADS)

    Chung, T.; Rapaport, A.; Chen, Y.; Smirnov, V.; Hemmer, M.; Glebov, L. B.; Richardson, M. C.; Bass, M.

    2006-05-01

    Dramatic spectral narrowing of normally broad band lasers, Ti:Sapphire,Cr:LiSAF, and alexandrite was achieved by simply replacing the output mirror with a reflective, volumetric Bragg grating recorded in photo thermal refractive (PTR) glass. The output power of each laser was changed very slightly from that obtained using dielectric coated output mirrors with the same output coupling as the Bragg grating while spectral brightness increased by about three orders of magnitude.

  9. Evidence for a narrow N{sup *}(1685) resonance in quasifree Compton scattering on the neutron

    SciTech Connect

    Kuznetsov, V.; Polyakov, M. V.; Bellini, V.; Giusa, A.; Mammoliti, F.; Randieri, C.; Russo, G.; Sperduto, M. L.; Boiko, T.; Chebotaryov, S.; Dho, H.-S.; Kim, W.; Milman, E.; Ni, A.; Gervino, G.; Ghio, F.; Kim, A.; Perevalova, I. A.; Vall, A. N.; Sutera, C. M.

    2011-02-15

    The study of quasifree Compton scattering on the neutron in the energy range of E{sub {gamma}}=0.75-1.5 GeV is presented. The data reveal a narrow peak at W{approx}1.685 GeV. This result, being considered in conjunction with the recent evidence for a narrow structure at W{approx}1.68 GeV in {eta} photoproduction on the neutron, suggests the existence of a nucleon resonance with unusual properties: a mass M{approx}1.685 GeV, a narrow width {Gamma}{<=}30 MeV, and the much stronger photoexcitation on the neutron than on the proton.

  10. Red-blue-green solid state light sources using a narrow line-width green phosphor.

    PubMed

    Liu, A; Khanna, A; Dutta, P S; Shur, M

    2015-04-06

    We demonstrate that using a narrow line-width green phosphor with the peak wavelength closely aligned with the peak in the human eye sensitivity significantly improves the Luminous Efficacy of Radiation (LER) for Red-Green-Blue (RGB) emitters. Compared to the traditional RGB sources, the improvement in LER of 20 lm/W can be achieved. Combining the narrow band green phosphor with conventional wide band red and blue phosphors allows for trading off these improvements against the deviation from the Planckian locus for even higher LER. The light sources with the narrow line green phosphor are particularly promising for high energy efficiency and high intensity illumination, where somewhat compromises can be made in the color quality such as in automotive, outdoor spaces, industrial ware-houses, public places (train stations, airports) etc..

  11. Spread spectrum time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Smith, Paul Samuel

    For many years, wiring has been treated as a system that could be installed and expected to work for the life of the aircraft. As aircraft age far beyond their original expected life span, this attitude is rapidly changing. Wiring problems have recently been identified as the cause of several tragic mishaps and hundreds of thousands of lost mission hours. Intermittent wiring faults have been and continue to be difficult to resolve. Test methods that pinpoint faults on the ground can miss intermittent failures. New test methods involving spread spectrum signals are investigated that could be used in flight to locate intermittent failures, including open circuits, short circuits, and arcs. Spread spectrum time domain reflectometry (SSTDR) and sequence time domain reflectometry (STDR) are analyzed in light of the signals commonly present on aircraft wiring. Pseudo noise codes used for the generation of STDR and SSTDR signals are analyzed for application in a STDR/SSTDR test system in the presence of noise. The effects of Mil-Std 1553 and white noise on the STDR and SSTDR signals are discussed analytically, through simulations, and with the use of test hardware. A test system using STDR and SSTDR is designed, built, and used to collect STDR and SSTDR test data. The data collected with the STDR/SSTDR test hardware is analyzed and compared to the theoretical results. Experimental data for open and short circuits collected using SSTDR and a curve fitting algorithm shows a maximum range estimation error of +/-0.2 ft for 75O coaxial cable up to 100ft, and +/-0.6ft for a sample 32.5ft non-controlled impedance aircraft cable. Mil-Std 1553 is specified to operate reliably with a signal-to-noise ratio of 17.5dB, and the SSTDR test system was able to locate an open circuit on a cable also carrying simulated Mil-Std 1553 data where the SSTDR signal was 50dB below the Mil-Std 1553 signal. STDR and SSTDR are shown to be effective in detecting and locating dry and wet arcs on wires.

  12. Tunable pulsed narrow bandwidth light source

    DOEpatents

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  13. Spoof surface plasmons guided by narrow grooves

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory

    2017-08-01

    An approximate description of surface waves propagating along periodically grooved surfaces is intuitively developed in the limit where the grooves are narrow relative to the period. Considering acoustic and electromagnetic waves guided by rigid and perfectly conducting gratings, respectively, the wave field is obtained by interrelating elementary approximations obtained in three overlapping spatial domains. Specifically, above the grating and on the scale of the period the grooves are effectively reduced to point resonators characterized by their dimensions as well as the geometry of their apertures. Along with this descriptive physical picture emerges an analytical dispersion relation, which agrees remarkably well with exact calculations and improves on preceding approximations. Scalings and explicit formulas are obtained by simplifying the theory in three distinguished propagation regimes, namely where the Bloch wave number is respectively smaller than, close to, or larger than that corresponding to a groove resonance. Of particular interest is the latter regime where the field within the grooves is resonantly enhanced and the field above the grating is maximally localized, attenuating on a length scale comparable with the period.

  14. Narrow bandpass cryogenic filter for microwave measurements

    NASA Astrophysics Data System (ADS)

    Ivanov, B. I.; Klimenko, D. N.; Sultanov, A. N.; Il'ichev, E.; Meyer, H.-G.

    2013-05-01

    An ultra-wide stopband hairpin bandpass filter with integrated nonuniform transmission lines was designed and fabricated for highly sensitive measurements at cryogenic temperatures down to millikelvin and a frequency range of 10 Hz-10 GHz. The scattering matrices of the filter were characterized at T = 4.2 K. The filter provides a stopband from 10 Hz to 2.2 GHz and from 2.3 GHz to 10 GHz with more than 50 dB and 40 dB of amplitude suppression, respectively. The center frequency of the passband is f0 = 2.25 GHz with a bandwidth Δf = 80 MHz. The maximum insertion loss in the passband is 4 dB. The filter has a 50 Ω input and output impedance, SubMiniature version A connector termination, and significantly reduced form factor. The wide stopband frequency range and narrow passband in conjunction with small dimensions make the filter suitable to use it as a part of a high sensitive readout for superconducting quantum circuits, such as superconducting quantum bits and cryogenic parametric amplifiers.

  15. Diging simulation of a narrow trench

    NASA Astrophysics Data System (ADS)

    Anghelache, D. G.; Goanta, A. M.

    2016-08-01

    In this paper, we realized digging process simulation for a narrow trench using special equipment located at a mini excavator. These types of machines digging perform the longitudinal direction to the direction of travel, making trenches with widths of 0.4 m and depths of 3.5 -7.0 m. These are necessary for the location of underground cables or draining water in agriculture. For Parametric modelling of parts included in ensemble has used software from Siemens NX 7.5, we produce sketches of each piece, using following commands: Sketch, Profile (Line), Arc, Circle, Quick Trim Quick Extend, Constraints. Depending on the layout of each piece can also use other commands such as: Chamfer, Rotate, Mirror Curve, Offset Curve, etc. After completion of sketch and dimensioning commands was: Extrude, Revolve, and at this stage the play may various modifications such as drilling, removal of certain volumes of piece showing various forms or change the appearance of surfaces (thread cutting, bevelling). This paper was realized with this parametric modelling software because presents major advantages including: control over the design, making design speed and increasing productivity; increasing product quality, reducing design risk recovery and time work, less human effort and reduced financial resources throughout the process.

  16. Reconditioning of Cassini Narrow-Angle Camera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These five images of single stars, taken at different times with the narrow-angle camera on NASA's Cassini spacecraft, show the effects of haze collecting on the camera's optics, then successful removal of the haze by warming treatments.

    The image on the left was taken on May 25, 2001, before the haze problem occurred. It shows a star named HD339457.

    The second image from left, taken May 30, 2001, shows the effect of haze that collected on the optics when the camera cooled back down after a routine-maintenance heating to 30 degrees Celsius (86 degrees Fahrenheit). The star is Maia, one of the Pleiades.

    The third image was taken on October 26, 2001, after a weeklong decontamination treatment at minus 7 C (19 F). The star is Spica.

    The fourth image was taken of Spica January 30, 2002, after a weeklong decontamination treatment at 4 C (39 F).

    The final image, also of Spica, was taken July 9, 2002, following three additional decontamination treatments at 4 C (39 F) for two months, one month, then another month.

    Cassini, on its way toward arrival at Saturn in 2004, is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  17. Polarization and spectral action of narrow slit

    NASA Astrophysics Data System (ADS)

    Oleksyuk, M. V.; Felde, Ch. V.; Polyanskii, P. V.

    2012-01-01

    Experimental study of diffraction of coherent (laser, completely polarized) and incoherent (temporal, polychromatic, unpolarized) light radiation at slits whose width is restricted by a few wavelengths is made. It is shown that for diffraction at the edge of metallic half-plane screen, the angular dependences of diffraction field intensity are considerably different for orientation of the electric field vector parallel and perpendicular to the screen edge, so that metallic screen causes polarization action on the probing beam. It is shown that as the width of a slit formed by two metallic half-planes becomes less than ten wavelengths (being left larger than a wavelength), as the polarization effect is considerable even for the forward direction, i.e. for the zero diffraction angle. It causes also spectral effect, if polychromatic radiation diffracts at narrow slit at metallic screen. Namely, one observes pronounced blue shift of the maximum of the spectral distribution of the forward diffracted polychromatic ('white-light') beam. We apply for the first time the Berry's chromascopic technique for experimental data processing to elucidate such diffraction induced spectral changes.

  18. Polarization and spectral action of narrow slit

    NASA Astrophysics Data System (ADS)

    Oleksyuk, M. V.; Felde, Ch. V.; Polyanskii, P. V.

    2011-09-01

    Experimental study of diffraction of coherent (laser, completely polarized) and incoherent (temporal, polychromatic, unpolarized) light radiation at slits whose width is restricted by a few wavelengths is made. It is shown that for diffraction at the edge of metallic half-plane screen, the angular dependences of diffraction field intensity are considerably different for orientation of the electric field vector parallel and perpendicular to the screen edge, so that metallic screen causes polarization action on the probing beam. It is shown that as the width of a slit formed by two metallic half-planes becomes less than ten wavelengths (being left larger than a wavelength), as the polarization effect is considerable even for the forward direction, i.e. for the zero diffraction angle. It causes also spectral effect, if polychromatic radiation diffracts at narrow slit at metallic screen. Namely, one observes pronounced blue shift of the maximum of the spectral distribution of the forward diffracted polychromatic ('white-light') beam. We apply for the first time the Berry's chromascopic technique for experimental data processing to elucidate such diffraction induced spectral changes.

  19. Altered hypermetabolic response to cortical spreading depolarizations after traumatic brain injury in rats.

    PubMed

    Balança, Baptiste; Meiller, Anne; Bezin, Laurent; Dreier, Jens P; Marinesco, Stéphane; Lieutaud, Thomas

    2017-05-01

    Spreading depolarizations are waves of near-complete breakdown of neuronal transmembrane ion gradients, free energy starving, and mass depolarization. Spreading depolarizations in electrically inactive tissue are associated with poor outcome in patients with traumatic brain injury. Here, we studied changes in regional cerebral blood flow and brain oxygen (PbtO2), glucose ([Glc]b), and lactate ([Lac]b) concentrations in rats, using minimally invasive real-time sensors. Rats underwent either spreading depolarizations chemically triggered by KCl in naïve cortex in absence of traumatic brain injury or spontaneous spreading depolarizations in the traumatic penumbra after traumatic brain injury, or a cluster of spreading depolarizations triggered chemically by KCl in a remote window from which spreading depolarizations invaded penumbral tissue. Spreading depolarizations in noninjured cortex induced a hypermetabolic response characterized by a decline in [Glc]b and monophasic increases in regional cerebral blood flow, PbtO2, and [Lac]b, indicating transient hyperglycolysis. Following traumatic brain injury, spontaneous spreading depolarizations occurred, causing further decline in [Glc]b and reducing the increase in regional cerebral blood flow and biphasic responses of PbtO2 and [Lac]b, followed by prolonged decline. Recovery of PbtO2 and [Lac]b was significantly delayed in traumatized animals. Prespreading depolarization [Glc]b levels determined the metabolic response to clusters. The results suggest a compromised hypermetabolic response to spreading depolarizations and slower return to physiological conditions following traumatic brain injury-induced spreading depolarizations.

  20. Impacts of suppressing guide on information spreading

    NASA Astrophysics Data System (ADS)

    Xu, Jinghong; Zhang, Lin; Ma, Baojun; Wu, Ye

    2016-02-01

    It is quite common that guides are introduced to suppress the information spreading in modern society for different purposes. In this paper, an agent-based model is established to quantitatively analyze the impacts of suppressing guides on information spreading. We find that the spreading threshold depends on the attractiveness of the information and the topology of the social network with no suppressing guides at all. Usually, one would expect that the existence of suppressing guides in the spreading procedure may result in less diffusion of information within the overall network. However, we find that sometimes the opposite is true: the manipulating nodes of suppressing guides may lead to more extensive information spreading when there are audiences with the reversal mind. These results can provide valuable theoretical references to public opinion guidance on various information, e.g., rumor or news spreading.

  1. Perineural spread in head and neck tumors.

    PubMed

    Brea Álvarez, B; Tuñón Gómez, M

    2014-01-01

    Perineural spread is the dissemination of some types of head and neck tumors along nervous structures. Perineural spread has negative repercussions on treatment because it requires more extensive resection and larger fields of irradiation. Moreover, perineural spread is associated with increased local recurrence, and it is considered an independent indicator of poor prognosis in the TNM classification for tumor staging. However, perineural spread often goes undetected on imaging studies. In this update, we review the concept of perineural spread, its pathogenesis, and the main pathways and connections among the facial nerves, which are essential to understand this process. Furthermore, we discuss the appropriate techniques for imaging studies, and we describe and illustrate the typical imaging signs that help identify perineural spread on CT and MRI. Finally, we discuss the differential diagnosis with other entities.

  2. Nosocomial Spread of Viral Disease

    PubMed Central

    Aitken, Celia; Jeffries, Donald J.

    2001-01-01

    Viruses are important causes of nosocomial infection, but the fact that hospital outbreaks often result from introduction(s) from community-based epidemics, together with the need to initiate specific laboratory testing, means that there are usually insufficient data to allow the monitoring of trends in incidences. The most important defenses against nosocomial transmission of viruses are detailed and continuing education of staff and strict adherence to infection control policies. Protocols must be available to assist in the management of patients with suspected or confirmed viral infection in the health care setting. In this review, we present details on general measures to prevent the spread of viral infection in hospitals and other health care environments. These include principles of accommodation of infected patients and approaches to good hygiene and patient management. They provide detail on individual viral diseases accompanied in each case with specific information on control of the infection and, where appropriate, details of preventive and therapeutic measures. The important areas of nosocomial infection due to blood-borne viruses have been extensively reviewed previously and are summarized here briefly, with citation of selected review articles. Human prion diseases, which present management problems very different from those of viral infection, are not included. PMID:11432812

  3. On entanglement spreading from holography

    DOE PAGES

    Mezei, Márk

    2017-05-11

    A global quench is an interesting setting where we can study thermalization of subsystems in a pure state. We investigate entanglement entropy (EE) growth in global quenches in holographic field theories and relate some of its aspects to quantities characterizing chaos. More specifically we obtain four key results: 1. We prove holographic bounds on the entanglement velocity vE and the butterfly effect speed vB that arises in the study of chaos. 2. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initialmore » state or quench protocol. 3. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. 4. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times. In a companion paper, these results are put in the broader context of EE growth in chaotic systems: we relate EE growth to the chaotic spreading of operators, derive bounds on EE at a given time, and compare the holographic results to spin chain numerics and toy models. In this paper, we perform holographic calculations that provide the basis of arguments presented in that paper.« less

  4. Modeling spreading of nematic droplets

    NASA Astrophysics Data System (ADS)

    Lin, Te-Sheng; Cummings, Linda; Kondic, Lou

    2011-03-01

    Experiments by Poulard & Cazabat on spreading droplets of nematic liquid crystal reveal a surprisingly rich variety of behavior, including at least two different emerging lengthscales resulting from a contact line instability. In earlier work we modified a lubrication model for nematic liquid crystals due to Ben Amar and Cummings, and showed that, in a qualitative sense, it can account for much of the observed behavior. In the present work we propose a new approach, that allows us to explore the effect of anchoring variations on the substrate. This in turn gives a simple way to model the presence of defects, which are always present during such liquid crystal flows. The new model leads to additional terms in the governing equation. We first explore the influence of these additional terms for some simple flow scenarios, to gain a basic understanding of their influence, before extending our simulations to the experimental geometry and comparing our results to the experiments. This work was partially supported by NSF Grant No. DMS-0908158.

  5. Drops spreading on flexible fibers

    NASA Astrophysics Data System (ADS)

    Somszor, Katarzyna; Boulogne, François; Sauret, Alban; Dressaire, Emilie; Stone, Howard

    2015-11-01

    Fibrous media are encountered in many engineered systems such as textile, paper and insulating materials. In most of these materials, fibers are randomly oriented and form a complex network in which drops of wetting liquid tend to accumulate at the nodes of the network. Here we investigate the role of the fiber flexibility on the spreading of a small volume of liquid on a pair of crossed flexible fibers. A drop of silicone oil is dispensed at the point of contact of the fibers and we characterize the liquid morphologies as we vary the volume of liquid, the angle between the fibers, and the length and bending modulus of the fibers. Drop morphologies previously reported for rigid fibers, i.e. a drop, a column and a mixed morphology, are also observed on flexible fibers with modified domains of existence. Moreover, at small inclination angles of the fibers, a new behavior is observed: the fibers bend and collapse. Depending on the volume, the liquid can adopt a column or a mixed morphology on the collapsed fibers. We rationalize our observations with a model based on energetic considerations. Our study suggests that the fiber flexibility adds a rich variety of behaviors that can be crucial for industrial applications.

  6. Energy.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This document describes a course designed to acquaint students with the many societal and technological problems facing the United States and the world due to the increasing demand for energy. The course begins with a writing assignment that involves readings on the environmental philosophy of Native Americans and the Chernobyl catastrophe.…

  7. Indian power generation market: Narrowing the gap between supply & demand

    SciTech Connect

    Wilson, R.

    1997-01-01

    It is estimated that per capita consumption of electricity in India is less than 350 kWh per year, an extremely low level by world standards. India accounts for 16% of the world`s population, but only 3% of world energy consumption. Massive investments, as much as US $10 billion over the next five years, are needed to narrow the gap between supply and demand. Power sector policy reforms dating back to 1991 have encouraged private investors, but the lndian bureaucracy itself still bubbles with protectionist leanings and corruption, resulting in delays and inefficiencies. Stakes in the Indian power sector are so high, however, that investor interest is still keen. Most predict better than double-digit growth in the Indian energy sector through 2000. Those who have been persistent in courting the India power sector will eventually reap the rewards. This paper describes some of the projects in the works at present and the companies and equipment manufacturers involved. 6 figs.

  8. Capping Layer Effects on Electromigration in Narrow Cu Lines

    SciTech Connect

    Hu, C.-K.; Rosenberg, R.

    2004-12-08

    Electromigration in narrow (bamboo-like) Cu Damascene lines capped with either a CoWP, Ta/TaN, SiNx, or SiCxNyHz layer is reviewed. A thin CoWP or Ta/TaN cap on top of the Cu line surface significantly reduces interface diffusion and improves the electromigration lifetime when compared with lines capped with SiNx or SiCxNyHz. Activation energies for electromigration were found to be 1.9-2.4 eV, 1.4 eV, and 0.85-1.1 eV for the Cu lines capped with CoWP, Ta/TaN, and SiNx or SiCxNyHz, respectively. Relationships between line width, diffusion path, void nucleation sites and lifetime are presented. Resistance changes in the CoWP coated lines were related to the solubility and diffusivity of Co in Cu such that void growth caused by electromigration was detectable only as a significant resistance increase over that caused by the Co. The solubility and diffusivity of Co in Cu was determined from line resistance measurements of thermally annealed Cu lines with CoWP caps. The activation energy of Co diffusion in Cu lines was found to be 2.2 eV, and the solubility limit of Co in Cu was found to be 18e(-0.57eV/kT) atomic percent.

  9. Search for a narrow resonance structure in pion production from p+Cu near 350 MeV

    SciTech Connect

    Aseev, V.; Gavrilov, Y.; Guber, F.; Golubeva, M.; Karavicheva, T.; Kurepin, A.; Shileev, K.; Tiflov, V.; Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Turrisi, R. |; Bimbot, L.

    1997-08-01

    The excitation function of positive pions produced at 90{degree} by protons on Copper has been studied to get information on the long-standing problem of the existence of a narrow resonance near 350 MeV incident energy. Momentum spectra of {pi}{sup +} were measured by the CLAMSUD magnetic spectrometer. A narrow resonance has been indeed observed, in agreement with previous results obtained in different laboratories during the past years. {copyright} {ital 1997} {ital The American Physical Society}

  10. An updated rate-of-spread clock

    USGS Publications Warehouse

    Kolaks, Jeremy; Grabner, Keith W.; Hartman, George; Cutter, Bruce E.; Loewenstein, Edward F.

    2005-01-01

    Several years ago, Blank and Simard (1983) described an electronic timer, frequently referred to as a rate-of-spread (ROS) clock—a relatively simple instrument used in measuring fire spread. Although other techniques for measuring rate of spread are available (such as data loggers), the basic ROS clock remains a valuable and relatively inexpensive tool. However, several items described in the original article have changed. Therefore, we are describing an updated version of the ROS clock.

  11. Analysis of Architectural Building Design Influences on Fire Spread in Densely Urban Settlement using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Tambunan, L.; Salamah, H.; Asriana, N.

    2017-03-01

    This study aims to determine the influence of architectural design on the risk of fire spread in densely urban settlement area. Cellular Automata (CA) is used to analyse the fire spread pattern, speed, and the extent of damage. Four cells represent buildings, streets, and fields characteristic in the simulated area, as well as their flammability level and fire spread capabilities. Two fire scenarios are used to model the spread of fire: (1) fire origin in a building with concrete and wood material majority, and (2) fire origin in building with wood material majority. Building shape, building distance, road width, and total area of wall openings are considered constant, while wind is ignored. The result shows that fire spread faster in the building area with wood majority than with concrete majority. Significant amount of combustible building material, absence of distance between buildings, narrow streets and limited fields are factors which influence fire spread speed and pattern as well as extent of damage when fire occurs in the densely urban settlement area.

  12. Origin of the narrow, single peak in the fission-fragment mass distribution for 258Fm

    SciTech Connect

    Moller, Peter; Ickhikawa, Takatoshi; Iwamoto, Akira

    2008-01-01

    We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

  13. The Spread of Excitation in the Embryonic Chick Heart

    PubMed Central

    Lieberman, Melvyn; Paes de Carvalho, Antonio

    1965-01-01

    The spread of excitation in embryonic chick hearts, ranging in age from 7 to 20 days, was studied with both intracellular and extracellular electrodes. Evidence that the delay in ventricular excitation could be attributed to the cells of the entire atrioventricular (AV) ring was obtained, in part, from sagittal sections of the heart. In the intact preparation, uniform propagation occurred throughout the atrial roof at an apparent conduction velocity of 0.4 to 0.5 meter/sec. Delay of impulse propagation was localized in a very narrow band of tissue which extended across the AV ring. The apparent conduction velocity of this tissue was between 0.003 and 0.005 meter/sec. Both normal and retrograde propagation revealed the spread of conduction across the AV ring to be decremental in nature. This finding was supported by high frequency stimulation experiments which gave rise to AV block localized in the cells of the AV ring. Cardiac rhythmicity and AV transmission were responsive to acetylcholine and norepinephrine in much the same manner as in the adult mammalian heart. The present findings are in support of the hypothesis that the embryonic AV ring is the functional counterpart of the adult AV node. PMID:19873568

  14. Wetting and spreading at the molecular scale

    NASA Technical Reports Server (NTRS)

    Koplik, Joel; Banavar, Jayanth R.

    1994-01-01

    We have studied the microscopic aspects of the spreading of liquid drops on a solid surface by molecular dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor and solid. We consider both spherically symmetric atoms and chain-like molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observed a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with qualitative behavior resembling recent experimental findings, but with interesting differences in the spreading rate.

  15. Differential Dynamics of Platelet Contact and Spreading

    PubMed Central

    Lee, Dooyoung; Fong, Karen P.; King, Michael R.; Brass, Lawrence F.; Hammer, Daniel A.

    2012-01-01

    Platelet spreading is critical for hemostatic plug formation and thrombosis. However, the detailed dynamics of platelet spreading as a function of receptor-ligand adhesive interactions has not been thoroughly investigated. Using reflection interference contrast microscopy, we found that both adhesive interactions and PAR4 activation affect the dynamics of platelet membrane contact formation during spreading. The initial growth of close contact area during spreading was controlled by the combination of different immobilized ligands or PAR4 activation on fibrinogen, whereas the growth of the total area of spreading was independent of adhesion type and PAR4 signaling. We found that filopodia extend to their maximal length and then contract over time; and that filopodial protrusion and expansion were affected by PAR4 signaling. Upon PAR4 activation, the integrin αIIbβ3 mediated close contact to fibrinogen substrata and led to the formation of ringlike patterns in the platelet contact zone. A systematic study of platelet spreading of GPVI-, α2-, or β3-deficient platelets on collagen or fibrinogen suggests the integrin α2 is indispensable for spreading on collagen. The platelet collagen receptors GPVI and α2 regulate integrin αIIbβ3-mediated platelet spreading on fibrinogen. This work elucidates quantitatively how receptor-ligand adhesion and biochemical signals synergistically control platelet spreading. PMID:22325269

  16. Algebraic and geometric spread in finite frames

    NASA Astrophysics Data System (ADS)

    King, Emily J.

    2015-08-01

    When searching for finite unit norm tight frames (FUNTFs) of M vectors in FN which yield robust representations, one is concerned with finding frames consisting of frame vectors which are in some sense as spread apart as possible. Algebraic spread and geometric spread are the two most commonly used measures of spread. A frame with optimal algebraic spread is called full spark and is such that any subcollection of N frame vectors is a basis for FN. A Grassmannian frame is a FUNTF which satisfies the Grassmannian packing problem; that is, the frame vectors are optimally geometrically spread given fixed M and N. A particular example of a Grassmannian frame is an equiangular frame, which is such that the absolute value of all inner products of distinct vectors is equal. The relationship between these two types of optimal spread is complicated. The folk knowledge for many years was that equiangular frames were full spark; however, this is now known not to hold for an infinite class of equiangular frames. The exact relationship between these types of spread will be further explored in this talk, as well as Plücker coordinates and coherence, which are measures of how much a frame misses being optimally algebraically or geometrically spread.

  17. Propagation Characteristics of Narrow X-Ray Pulses

    DTIC Science & Technology

    1975-05-01

    NARROW X-RAY PULSES \\4 [’ AD -v Heber D. Jones Donald Eccleshall Judith K. Temperley May 1975 KÄVA?1^ ^US Government ancles only; Test and...Characteristics of Narrow X-Ray Pulses 7. AUTHORf«) lieber D, Jones, Donald Eccleshall, and Judith K. Temperley 9 PERFORMING OROANI Z...narrow pulse of x-rays is such that the absorption of later x-rays which follow the same path is greatly reduced. Various processes which

  18. 39. Photocopy of photograph. NARROW GAUGE LOCOMOTIVE AND ORE CARS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Photocopy of photograph. NARROW GAUGE LOCOMOTIVE AND ORE CARS, 1910. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  19. Ignition, Transition, Flame Spread in Multidimensional Configurations in Microgravity

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Mell, William E.; Baum, Howard R.; Olson, Sandra

    1999-01-01

    In the inhabited quarters of orbiting spacecraft, fire is a greatly feared hazard. Thus, the fire safety strategy in a spacecraft is (1) to keep any fire as small as possible, (2) to detect any fire as early as possible, and (3) to extinguish any fire as quickly as possible. This suggests that a material which undergoes a momentary ignition might be tolerable but a material which permits a transition from a localized ignition to flame spread would significantly increase the fire hazard in a spacecraft. If the transition does not take place, fire growth does not occur. Therefore, it is critical to understand what process controls the transition. Many previous works have studied ignition and flame spread separately or were limited to a two-dimensional configuration. In this study, time-dependent phenomena of the transition over a thermally thin sample is studied experimentally and theoretically in two- and three-dimensional (2D,3D) configurations. Furthermore, localized ignition can be initiated at the center portion of thermally thin paper sample instead of at one end of the sample. Thus, the transition to flame spread could occur either toward upstream or downstream or both directions simultaneously with an external flow. In this presentation, the difference in the transition between the 3D and 2D configurations is explained with the numerically calculated data. For sufficiently narrow samples edge effects exist. Some results on this issue are presented. New analysis of the surface smoldering experiments conducted in the space shuttle STS-75 flight is also described.

  20. Ignition, Transition, Flame Spread in Multidimensional Configurations in Microgravity

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Mell, William E.; Baum, Howard R.; Olson, Sandra

    1999-01-01

    In the inhabited quarters of orbiting spacecraft, fire is a greatly feared hazard. Thus, the fire safety strategy in a spacecraft is (1) to keep any fire as small as possible, (2) to detect any fire as early as possible, and (3) to extinguish any fire as quickly as possible. This suggests that a material which undergoes a momentary ignition might be tolerable but a material which permits a transition from a localized ignition to flame spread would significantly increase the fire hazard in a spacecraft. If the transition does not take place, fire growth does not occur. Therefore, it is critical to understand what process controls the transition. Many previous works have studied ignition and flame spread separately or were limited to a two-dimensional configuration. In this study, time-dependent phenomena of the transition over a thermally thin sample is studied experimentally and theoretically in two- and three-dimensional (2D,3D) configurations. Furthermore, localized ignition can be initiated at the center portion of thermally thin paper sample instead of at one end of the sample. Thus, the transition to flame spread could occur either toward upstream or downstream or both directions simultaneously with an external flow. In this presentation, the difference in the transition between the 3D and 2D configurations is explained with the numerically calculated data. For sufficiently narrow samples edge effects exist. Some results on this issue are presented. New analysis of the surface smoldering experiments conducted in the space shuttle STS-75 flight is also described.

  1. Linking preconditioning to extreme ENSO events and reduced ensemble spread

    NASA Astrophysics Data System (ADS)

    Larson, Sarah M.; Kirtman, Ben P.

    2017-07-01

    The contribution of the subsurface precursor, defined as the buildup of heat content in the equatorial subsurface prior to El Niño-Southern Oscillation (ENSO) events, to ENSO amplitude and predictability has been unclear for some time. To address the issue, this study implements a careful experimental design to construct three March-initialized precursor ensembles using CCSM4, one ensemble with ENSO-neutral initial conditions, one with a warm precursor in the subsurface, and one with a cold precursor. The initial precursors within each respective ensemble, although generated via identical wind forcing, differ slightly due to intrinsic sources of "noise" in the ocean and atmosphere. The ensembles are then integrated fully-coupled to produce a distribution of outcomes per each type of initial condition. Results show that a precursor is not essential to produce moderate El Niño and the full range of La Niña events, whereas a warm precursor is a necessary condition to generate extreme El Niño. The findings imply that extreme El Niño and the coldest La Niña events are fundamentally different. Presence of a warm (cold) precursor in the initial condition results in a warm (cold) shift and narrowing of the distribution of outcomes, suggesting increased predictability of El Niño (La Niña). Although the cold precursor is not necessary to produce La Niña, its presence in the initial condition reduces La Niña spread more than the warm precursor reduces El Niño spread. Despite the smaller ensemble spread for La Niña, signal-to-noise ratios indicate that El Niño may be more predictable than La Niña.

  2. Spreading of individual toner particles studied using in situ optical microscopy.

    PubMed

    Pettersson, Torbjörn; Fogden, Andrew

    2005-07-01

    This study develops and tests an experimental method to monitor in situ the dynamic spreading of individual toner particles on model substrates during heating, to simulate on laboratory scale the fusing sub-processes occurring in electrophotographic printing of paper. Real toner particles of cyan, magenta, yellow and black are transformed to perfect spheres by a temperature pre-treatment, then applied to the substrate, either high-energy clean glass or low-energy hydrophobised glass, and heated at rates up to 50 degrees C/min. The subsequent spreading as a function of time (and temperature) is recorded by an optical microscope and CCD camera mounted above the substrate, with the measured drop covering area used to calculate the corresponding toner-substrate-air contact angle. On the hydrophobic substrate the spreading is limited and equal for all four colours, while the substantially greater spreading on the hydrophilic substrate is accompanied by significant differences between the toner colours. In particular, the cyan and black toners are found to spread to almost twice the extent of the yellow particles. The dynamic spreading behaviour is interpreted in terms of complementary measurements of substrate and toner surface energy components and bulk toner rheology, and a simple empirical relation is proposed that fits very well the measurements for all toner and substrate types tested. In particular, the spreading relation is found to be determined only by the toner surface energy and its equilibrium contact angle, with no explicit dependence on toner viscosity.

  3. Spreading depolarization monitoring in neurocritical care of acute brain injury.

    PubMed

    Hartings, Jed A

    2017-04-01

    Spreading depolarizations are unique in being discrete pathologic entities that are well characterized experimentally and also occur commonly in patients with substantial acute brain injury. Here, we review essential concepts in depolarization monitoring, highlighting its clinical significance, interpretation, and future potential. Cortical lesion development in diverse animal models is mediated by tissue waves of mass spreading depolarization that cause the toxic loss of ion homeostasis and limit energy substrate supply through associated vasoconstriction. The signatures of such deterioration are observed in electrocorticographic recordings from perilesional cortex of patients with acute stroke or brain trauma. Experimental work suggests that depolarizations are triggered by energy supply-demand mismatch in focal hotspots of the injury penumbra, and depolarizations are usually observed clinically when other monitoring variables are within recommended ranges. These results suggest that depolarizations are a sensitive measure of relative ischemia and ongoing secondary injury, and may serve as a clinical guide for personalized, mechanistically targeted therapy. Both existing and future candidate therapies offer hope to limit depolarization recurrence. Electrocorticographic monitoring of spreading depolarizations in patients with acute brain injury provides a sensitive measure of relative energy shortage in focal, vulnerable brains regions and indicates ongoing secondary damage. Depolarization monitoring holds potential for targeted clinical trial design and implementation of precision medicine approaches to acute brain injury therapy.

  4. Narrow-linewidth Q-switched random distributed feedback fiber laser.

    PubMed

    Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu

    2016-08-22

    A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.

  5. Epidemic spreading through direct and indirect interactions

    NASA Astrophysics Data System (ADS)

    Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Saha, Sudipta

    2014-09-01

    In this paper we study the susceptible-infected-susceptible epidemic dynamics, considering a specialized setting where popular places (termed passive entities) are visited by agents (termed active entities). We consider two types of spreading dynamics: direct spreading, where the active entities infect each other while visiting the passive entities, and indirect spreading, where the passive entities act as carriers and the infection is spread via them. We investigate in particular the effect of selection strategy, i.e., the way passive entities are chosen, in the spread of epidemics. We introduce a mathematical framework to study the effect of an arbitrary selection strategy and derive formulas for prevalence, extinction probabilities, and epidemic thresholds for both indirect and direct spreading. We also obtain a very simple relationship between the extinction probability and the prevalence. We pay special attention to preferential selection and derive exact formulas. The analysis reveals that an increase in the diversity in the selection process lowers the epidemic thresholds. Comparing the direct and indirect spreading, we identify regions in the parameter space where the prevalence of the indirect spreading is higher than the direct one.

  6. Spreading to localized targets in complex networks

    PubMed Central

    Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu

    2016-01-01

    As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process. PMID:27966613

  7. Spreading to localized targets in complex networks

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu

    2016-12-01

    As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.

  8. Fire spread characteristics determined in the laboratory

    Treesearch

    Richard C. Rothermel; Hal E. Anderson

    1966-01-01

    Fuel beds of ponderosa pine needles and white pine needles were burned under controlled environmental conditions to determine the effects of fuel moisture and windspeed upon the rate of fire spread. Empirical formulas are presented to show the effect of these parameters. A discussion of rate of spread and some simple experiments show how fuel may be preheated before...

  9. Gravitational spreading of Danu, Freyja and Maxwell Montes, Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Solomon, Sean C.

    1991-01-01

    The potential energy of elevated terrain tends to drive the collapse of the topography. This process of gravitational spreading is likely to be more important on Venus than on Earth because the higher surface temperature weakens the crust. The highest topography on Venus is Ishtar Terra. The high plateau of Lakshmi Planum has an average elevation of 3 km above mean planetary radius, and is surrounded by mountain belts. Freyja, Danu, and Maxwell Montes rise, on average, an additional 3, 0.5, and 5 km above the plateau, respectively. Recent high resolution Magellan radar images of this area, east of approx. 330 deg E, reveal widespread evidence for gravity spreading. Some observational evidence is described for gravity spreading and the implications are discussed in terms of simple mechanical models. Several simple models predict that gravity spreading should be an important process on Venus. One difficulty in using remote observations to infer interior properties is that the observed features may not have formed in response to stresses which are still active. Several causes of surface topography are briefly examined.

  10. Projecting rates of spread for invasive species.

    PubMed

    Neubert, Michael G; Parker, Ingrid M

    2004-08-01

    All else being equal, the faster an invading species spreads, the more dangerous its invasion. The projection of spread rate therefore ought to be a central part of the determination of invasion risk. Originally formulated in the 1970s to describe the spatial spread of advantageous alleles, integrodifference equation (IDE) models have since been co-opted by population biologists to describe the spread of populations. More recently, they have been modified to include population structure and environmental variability. We review how IDE models are formulated, how they are parameterized, and how they can be analyzed to project spread rates and the sensitivity of those rates to changes in model parameters. For illustrative purposes, we apply these models to Cytisus scoparius, a large shrub in the legume family that is considered a noxious invasive species in eastern and western North America, Chile, Australia, and New Zealand.

  11. Contact line arrest in solidifying spreading drops

    NASA Astrophysics Data System (ADS)

    de Ruiter, Riëlle; Colinet, Pierre; Brunet, Philippe; Snoeijer, Jacco H.; Gelderblom, Hanneke

    2017-04-01

    When does a drop, deposited on a cold substrate, stop spreading? Despite the practical relevance of this question, for example, in airplane icing and three-dimensional metal printing, the detailed mechanism of arrest in solidifying spreading drops has remained debated. Here we consider the spreading and arrest of hexadecane drops of constant volume on two smooth wettable substrates: copper with a high thermal conductivity and glass with a low thermal conductivity. We record the spreading radius and contact angle in time for a range of substrate temperatures. The experiments are complemented by a detailed analysis of the temperature field near the rapidly moving contact line, by means of similarity solutions of the thermohydrodynamic problem. Our combined experimental and theoretical results provide strong evidence that the spreading of solidifying drops is arrested when the liquid at the contact line reaches a critical temperature, which is determined by the effect of kinetic undercooling.

  12. 3D Simulation Study of the Spreading/Elongation of Ribbons in Two-Ribbon Flares

    NASA Astrophysics Data System (ADS)

    Arencibia, Milton; Cassak, Paul; Qiu, Jiong; Longscope, Dana; Priest, Eric R.

    2017-08-01

    Two-ribbon solar flares are characterized by the appearance in pairs of bright ribbons on the surface of the Sun. The ribbons separate from each other in time, which has been cited as one of many pieces of evidence that magnetic reconnection participates in the release of magnetic energy in solar flares. In addition to moving apart from each other, observations have revealed that ribbons also elongate (or spread) in time along the polarity inversion line. This is likely related to the spreading of the magnetic reconnection process in the corona. Recent observations have shown ribbons can elongate either unidirectionally or bidirectionally. We investigate the physics of reconnection spreading and its potential relation to two-ribbon flares via a parametric study using 3D numerical simulations with the two-fluid (MHD + Hall effect + electron inertia) model. We study how anti-parallel reconnection spreads in current sheets with a non-uniform thickness in the out-of-plane direction. Previous numerical work on spreading in current sheets of uniform thickness revealed that anti-parallel reconnection spreads at a speed given by the current carriers, but it is not obvious how the spreading occurs in a current sheet with non-uniform thickness. We compare spreading in this system with spreading in current sheets of uniform thickness that are thicker than the dissipation scale. The results may be useful not just for solar flares, but also for Earth’s magnetotail, laboratory reconnection experiments, and reconnection in the solar wind.

  13. 1. Photocopied July 1971 from Photo 745, Jordan Narrows Folder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopied July 1971 from Photo 745, Jordan Narrows Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. JORDAN STATION, JULY 2, 1909. GENERAL VIEW. - Salt Lake City Water & Electrical Power Company, Jordan Narrows Hydroelectric Plant, Jordan River, Riverton, Salt Lake County, UT

  14. 3. Photocopied July 1971 from Photo 741, Jordan Narrows Folder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopied July 1971 from Photo 741, Jordan Narrows Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. INTERIOR VIEW, JULY 2, 1909. - Salt Lake City Water & Electrical Power Company, Jordan Narrows Hydroelectric Plant, Jordan River, Riverton, Salt Lake County, UT

  15. The Case for the Narrow View of Reading

    ERIC Educational Resources Information Center

    Kamhi, Alan G.

    2009-01-01

    Purpose: This prologue reiterates the case for the narrow view of reading as a solution to the persistently high levels of reading failure that occurs in our schools and provides a brief summary of the 5 response articles. Method: The arguments that support the narrow view of reading are presented and the respondents are introduced. Conclusion:…

  16. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    ERIC Educational Resources Information Center

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…

  17. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    ERIC Educational Resources Information Center

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…

  18. Channel Narrowing and Channel Reset: Effects of a Large Flood on the Vegetated, Narrowing Rio Grande

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Schmidt, J. C.

    2009-12-01

    In September 2008, heavy precipitation from a tropical storm in the Sierra Madre Occidental, MX, produced large amounts of stream flow to the Rio Conchos and lower Rio Grande. This flood was well publicized in the media due to the widespread flooding in Ojinaga, Chih., and Presidio, TX. Gage records indicate that this flood had an approximate recurrence of 15 years as measured on the Rio Grande near Presidio. Nevertheless, flood stages were the highest ever recorded and resulted from a significant loss of channel capacity due to channel narrowing that had occurred during the previous 18 years. Measurements from aerial photographs indicate that channel width had decreased between 35 and 50% between 1990 and 2008 during regional drought. During this period of low stream flow, invasion by non-native riparian vegetation (Tamarix spp., Arundo donax) helped trap sediment and promote floodplain accretion. Our resurveys of the channel indicate that the 2008 flood was a reset event and that the channel was re-widened by 32 to 48%. Repeated, oblique photographs showed significant channel migration and large scale floodplain stripping during this flood. These results show that although riparian vegetation may actively promote channel narrowing and floodplain accretion, moderately large floods may cause large scale bank erosion, floodplain stripping, and vegetation removal in alluvial valleys subject to large-scale invasion by nonnative plants.

  19. Searching for Narrow Emission Lines in X-ray Spectra: Computation and Methods

    NASA Astrophysics Data System (ADS)

    Park, Taeyoung; van Dyk, David A.; Siemiginowska, Aneta

    2008-12-01

    The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task. The Poisson nature of the photon counts leads to local random fluctuations in the observed spectrum that often result in excess emission in a narrow band of energy resembling a weak narrow line. From a formal statistical perspective, this leads to a (sometimes highly) multimodal likelihood. Many standard statistical procedures are based on (asymptotic) Gaussian approximations to the likelihood and simply cannot be used in such settings. Bayesian methods offer a more direct paradigm for accounting for such complicated likelihood functions, but even here multimodal likelihoods pose significant computational challenges. The new Markov chain Monte Carlo (MCMC) methods developed in 2008 by van Dyk and Park, however, are able to fully explore the complex posterior distribution of the location of a narrow line, and thus provide valid statistical inference. Even with these computational tools, standard statistical quantities such as means and standard deviations cannot adequately summarize inference and standard testing procedures cannot be used to test for emission lines. In this paper, we use new efficient MCMC algorithms to fit the location of narrow emission lines, we develop new statistical strategies for summarizing highly multimodal distributions and quantifying valid statistical inference, and we extend the method of posterior predictive p-values proposed by Protassov and coworkers to test for the presence of narrow emission lines in X-ray spectra. We illustrate and validate our methods using simulation studies and apply them to the Chandra observations of the high-redshift quasar PG 1634+706.

  20. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group.

    PubMed

    Dreier, Jens P; Fabricius, Martin; Ayata, Cenk; Sakowitz, Oliver W; William Shuttleworth, C; Dohmen, Christian; Graf, Rudolf; Vajkoczy, Peter; Helbok, Raimund; Suzuki, Michiyasu; Schiefecker, Alois J; Major, Sebastian; Winkler, Maren Kl; Kang, Eun-Jeung; Milakara, Denny; Oliveira-Ferreira, Ana I; Reiffurth, Clemens; Revankar, Gajanan S; Sugimoto, Kazutaka; Dengler, Nora F; Hecht, Nils; Foreman, Brandon; Feyen, Bart; Kondziella, Daniel; Friberg, Christian K; Piilgaard, Henning; Rosenthal, Eric S; Westover, M Brandon; Maslarova, Anna; Santos, Edgar; Hertle, Daniel; Sánchez-Porras, Renán; Jewell, Sharon L; Balança, Baptiste; Platz, Johannes; Hinzman, Jason M; Lückl, Janos; Schoknecht, Karl; Schöll, Michael; Drenckhahn, Christoph; Feuerstein, Delphine; Eriksen, Nina; Horst, Viktor; Bretz, Julia S; Jahnke, Paul; Scheel, Michael; Bohner, Georg; Rostrup, Egill; Pakkenberg, Bente; Heinemann, Uwe; Claassen, Jan; Carlson, Andrew P; Kowoll, Christina M; Lublinsky, Svetlana; Chassidim, Yoash; Shelef, Ilan; Friedman, Alon; Brinker, Gerrit; Reiner, Michael; Kirov, Sergei A; Andrew, R David; Farkas, Eszter; Güresir, Erdem; Vatter, Hartmut; Chung, Lee S; Brennan, K C; Lieutaud, Thomas; Marinesco, Stephane; Maas, Andrew Ir; Sahuquillo, Juan; Dahlem, Markus A; Richter, Frank; Herreras, Oscar; Boutelle, Martyn G; Okonkwo, David O; Bullock, M Ross; Witte, Otto W; Martus, Peter; van den Maagdenberg, Arn Mjm; Ferrari, Michel D; Dijkhuizen, Rick M; Shutter, Lori A; Andaluz, Norberto; Schulte, André P; MacVicar, Brian; Watanabe, Tomas; Woitzik, Johannes; Lauritzen, Martin; Strong, Anthony J; Hartings, Jed A

    2017-05-01

    Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.

  1. "Narrow" graphene nanoribbons made easier by partial hydrogenation.

    PubMed

    Xiang, Hongjun; Kan, Erjun; Wei, Su-Huai; Whangbo, Myung-Hwan; Yang, Jinlong

    2009-12-01

    It is highly desirable to produce narrow-width graphene nanoribbons (GNRs) with smooth edges in large scale. In an attempt to solve this difficult problem, we examined the hydrogenation of GNRs on the basis of first principles density functional calculations. Our study shows that narrow GNRs can be readily obtained from wide GNRs by partial hydrogenation. The hydrogenation of GNRs starts from the edges of GNRs and proceeds gradually toward the middle of the GNRs so as to maximize the number of carbon-carbon pi-pi bonds, hence effectively leading to narrower GNRs. Furthermore, the partially hydrogenated wide GNRs have similar electronic and magnetic properties as those of the narrow GNRs representing their graphene parts. Therefore, partial hydrogenation of wide GNRs should be a practical and reliable method to produce narrow GNRs in large scale.

  2. Dose spread functions in computed tomography: A Monte Carlo study

    SciTech Connect

    Boone, John M.

    2009-10-15

    Purpose: Current CT dosimetry employing CTDI methodology has come under fire in recent years, partially in response to the increasing width of collimated x-ray fields in modern CT scanners. This study was conducted to provide a better understanding of the radiation dose distributions in CT. Methods: Monte Carlo simulations were used to evaluate radiation dose distributions along the z axis arising from CT imaging in cylindrical phantoms. Mathematical cylinders were simulated with compositions of water, polymethyl methacrylate (PMMA), and polyethylene. Cylinder diameters from 10 to 50 cm were studied. X-ray spectra typical of several CT manufacturers (80, 100, 120, and 140 kVp) were used. In addition to no bow tie filter, the head and body bow tie filters from modern General Electric and Siemens CT scanners were evaluated. Each cylinder was divided into three concentric regions of equal volume such that the energy deposited is proportional to dose for each region. Two additional dose assessment regions, central and edge locations 10 mm in diameter, were included for comparisons to CTDI{sub 100} measurements. Dose spread functions (DSFs) were computed for a wide number of imaging parameters. Results: DSFs generally exhibit a biexponential falloff from the z=0 position. For a very narrow primary beam input (<<1 mm), DSFs demonstrated significant low amplitude long range scatter dose tails. For body imaging conditions (30 cm diameter in water), the DSF at the center showed {approx}160 mm at full width at tenth maximum (FWTM), while at the edge the FWTM was {approx}80 mm. Polyethylene phantoms exhibited wider DSFs than PMMA or water, as did higher tube voltages in any material. The FWTM were 80, 180, and 250 mm for 10, 30, and 50 cm phantom diameters, respectively, at the center in water at 120 kVp with a typical body bow tie filter. Scatter to primary dose ratios (SPRs) increased with phantom diameter from 4 at the center (1 cm diameter) for a 16 cm diameter cylinder

  3. Formation and early evolution of narrow planetary rings following the tidal disruption of satellites

    NASA Astrophysics Data System (ADS)

    Ogilvie, G. I.; Leinhardt, Z. M.; Latter, H. N.; Kokubo, E.

    2012-09-01

    satellite is placed sufficiently close to the planet, however, it undergoes a total disruption. We analyse the initial density profile and dynamical state of the newly formed rings, which have epicyclic motions of large amplitude. Using a variety of analytical and numerical models, we investigate the subsequent spreading and nonlinear oscillations of narrow rings. Viscous overstability is weakened by the spreading of the ring, with the result that the relative epicyclic amplitude typically decays slowly while the absolute amplitude may grow. Confinement of the ring by external processes may subsequently allow the oscillation to grow to a nonlinear amplitude as observed in many narrow rings.

  4. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  5. Narrow bandwidth Thomson photon source development using Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Geddes, C. G. R.; van Tilborg, J.; Tsai, H.-E.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Rykovanov, S. G.; Grote, D. P.; Friedman, A.; Leemans, W. P.

    2016-10-01

    Compact, high-quality photon sources at MeV energies are being developed based on Laser-Plasma Accelerators (LPAs). An independent scattering laser with controlled pulse shaping in frequency and amplitude can be used together with laser guiding to realize high photon yield and narrow bandwidth. Simulations are presented on production of controllable narrow bandwidth sources using the beam and plasma capabilities of LPAs. Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV Thomson sources. Design of experiments and laser capabilities to combine these elements will be presented, towards a compact photon source system. A dedicated facility under construction will be described. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  6. Short-range interactions and narrow resonances in effective field theory

    NASA Astrophysics Data System (ADS)

    Alhakami, Mohammad H.

    2017-09-01

    We consider the effective field theory (EFT) treatment of two-body systems with narrow resonances. Within this approach, an s -wave scattering amplitude can be expanded in powers of a typical momentum scale of a system Q ≪Λ , where Λ represents a hard scale of a scattering system, and an energy difference δ ɛ =|E -ɛ0|≪ɛ0, where ɛ0 is a resonance peak energy. It is shown that at leading order in the double expansion a universal form of a two-body scattering amplitude is a sum of a Breit-Wigner term of order Q-1, a smooth background term of order Q0, and an interference term of order Q0. The techniques developed in this paper can be used to investigate the properties of narrow resonances that are produced by short-distance dynamics.

  7. Developing high energy, stable laser wakefield accelerators: particle simulations and experiments

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron

    2006-10-01

    Laser driven wakefield accelerators produce accelerating fields thousands of times those achievable in conventional radiofrequency accelerators, and recent experiments have produced high energy electron bunches with low emittance and energy spread. Challenges now include control and reproducibility of the electron beam, further improvements in energy spread, and scaling to higher energies. We present large-scale particle in cell simulations together with recent experiments towards these goals. In LBNL experiments the relativistically intense drive pulse was guided over more than 10 diffraction ranges by plasma channels. Guiding beyond the diffraction range improved efficiency by allowing use of a smaller laser spot size (and hence higher intensities) over long propagation distances. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200pC charge above 80 MeV with normalized emittance estimated at < 2 π-mm-mrad were produced. Energies have now been scaled to 1 GeV using 40 TW of laser power. Particle simulations and data showed that the high quality bunch in recent experiments was formed when beam loading turned off injection after initial self trapping, creating a bunch of electrons isolated in phase space. A narrow energy spread beam was then obtained by extracting the bunch as it outran the accelerating phase of the wake. Large scale simulations coupled with experiments are now under way to better understand the optimization of such accelerators including production of reproducible electron beams and scaling to energies beyond a GeV. Numerical resolution and two and three dimensional effects are discussed as well as diagnostics for application of the simulations to experiments. Effects including injection and beam dynamics as well as pump laser depletion and reshaping will be described, with application to design of future experiments. Supported by DOE grant DE-AC02-05CH11231 and by an INCITE

  8. Extreme narrow photonic bands and strong photonic localization produced by 2D defect two-segment-connected quadrangular waveguide networks

    NASA Astrophysics Data System (ADS)

    Li, Zhaoyang; Yang, Xiangbo; Timon Liu, Chengyi

    2014-09-01

    In this paper, we investigate the properties of optical transmission and photonic localization of two-dimensional (2D) defect two-segment-connected quadrangular waveguide networks (DTSCQWNs) and find that many groups of extreme narrow photonic bands are created in the middle of the transmission spectra. The electromagnetic (EM) waves in DTSCQWNs with the frequencies of extreme narrow photonic bands can produce strong photonic localizations by adjusting defect broken degree. On the other hand, we obtain the formula of extreme narrow photonic bands' frequencies dependent on defect broken degree and the formula of the largest intensity of photonic localization dependent on defect broken degree, respectively. It may possess potential application for designing all-optical devices based on strong photonic localizations. Additionally, we propose a so-called defecton mode to study the splitting rules of extreme narrow photonic bands, where decomposition-decimation method is expanded from the field of electronic energy spectra to that of optical transmission spectra.

  9. Promoting information spreading by using contact memory

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Wang, Wei; Shu, Panpan; Gao, Hui; Braunstein, Lidia A.

    2017-04-01

    Promoting information spreading is a booming research topic in network science community. However, the existing studies about promoting information spreading seldom took into account the human memory, which plays an important role in the spreading dynamics. In this letter we propose a non-Markovian information spreading model on complex networks, in which every informed node contacts a neighbor by using the memory of neighbor's accumulated contact numbers in the past. We systematically study the information spreading dynamics on uncorrelated configuration networks and a group of 22 real-world networks, and find an effective contact strategy of promoting information spreading, i.e., the informed nodes preferentially contact neighbors with a small number of accumulated contacts. According to the effective contact strategy, the high-degree nodes are more likely to be chosen as the contacted neighbors in the early stage of the spreading, while in the late stage of the dynamics, the nodes with small degrees are preferentially contacted. We also propose a mean-field theory to describe our model, which qualitatively agrees well with the stochastic simulations on both artificial and real-world networks.

  10. Vagus nerve stimulation inhibits cortical spreading depression.

    PubMed

    Chen, Shih-Pin; Ay, Ilknur; de Morais, Andreia Lopes; Qin, Tao; Zheng, Yi; Sadeghian, Homa; Oka, Fumiaki; Simon, Bruce; Eikermann-Haerter, Katharina; Ayata, Cenk

    2016-04-01

    Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura and is a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its antimigraine effect. Unilateral vagus nerve stimulation was delivered either noninvasively through the skin or directly by electrodes placed around the nerve. Systemic physiology was monitored throughout the study. Both noninvasive transcutaneous and invasive direct vagus nerve stimulations significantly suppressed spreading depression susceptibility in the occipital cortex in rats. The electrical stimulation threshold to evoke a spreading depression was elevated by more than 2-fold, the frequency of spreading depressions during continuous topical 1 M KCl was reduced by ∼40%, and propagation speed of spreading depression was reduced by ∼15%. This effect developed within 30 minutes after vagus nerve stimulation and persisted for more than 3 hours. Noninvasive transcutaneous vagus nerve stimulation was as efficacious as direct invasive vagus nerve stimulation, and the efficacy did not differ between the ipsilateral and contralateral hemispheres. Our findings provide a potential mechanism by which vagus nerve stimulation may be efficacious in migraine and suggest that susceptibility to spreading depression is a suitable platform to optimize its efficacy.

  11. Development of Pistachio (Pistacia vera L.) spread.

    PubMed

    Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling

    2013-03-01

    Pistachio nut (Pistacia vera L.) is one of the most delicious and nutritious nuts in the world. Pistachio spreads were developed using pistachio paste as the main component, icing sugar, soy protein isolate (SPI), and red palm oil (RPO), at different ratios. The highest mean scores of all the sensory attributes were depicted by spreads that were made without addition of SPI. It was found that the work of shear was 0 to 11.0 kg s for an acceptable spread. Sensory spreadability, overall texture, spreadability, and overall acceptability were negatively correlated (R > 0.83) with the work of shear of spreads. The findings indicated that the presence of RPO had a direct effect on the viscoelastic behavior of the pistachio spreads. The a values, which are related to the green color of the pistachio product ranged from 1.7 to 3.9 for spread without addition of RPO, and 4.0 to 5.3 in the presence of RPO. The development of pistachio spread would potentially increase the food uses of pistachio and introduce consumers with a healthier snack food. © 2013 Institute of Food Technologists®

  12. Spreading and spontaneous motility of multicellular aggregates on soft substrates

    NASA Astrophysics Data System (ADS)

    Brochard-Wyart, Françoise

    2013-03-01

    We first describe the biomechanics of multicellular aggregates, a model system for tissues and tumors. We first characterize the tissue mechanical properties (surface tension, elasticity, viscosity) by a new pipette aspiration technique. The aggregate exhibits a viscoelastic response but, unlike an inert fluid, we observe aggregate reinforcement with pressure, which for a narrow range of pressures results in pulsed contractions or shivering. We interpret this reinforcement as a mechanosensitive active response of the acto-myosin cortex. Such an active behavior has previously been found to cause tissue pulsation during dorsal closure of Drosophila embryo. We then describe the spreading of aggregates on rigid glass substrates, varying both intercellular and substrate adhesion. We find both partial and complete wetting regimes. For the dynamics, we find a universal spreading law at short time, analogous to that of a viscoelastic drop. At long time, we observe, for strong substrate adhesion, a precursor film spreading around the aggregate. Depending on aggregate cohesion, this precursor film can be a dense cellular monolayer (liquid state) or consist of individual cells escaping from the aggregate body (gas state). The transition from liquid to gas state appears also to be present in the progression of a tumor from noninvasive to metastatic, known as the epithelial-mesenchymal transition. Finally, we describe the effect of the substrate rigidity on the phase diagram of wetting. On soft gels decorated with fibronectin and strongly cohesive aggregates, we have observed a wetting transition induced by the substrate rigidity: on ultra soft gels, below an elastic modulus Ec the aggregates do not spread, whereas above Ec we observe a precursor film expending with a diffusive law. The diffusion coefficient D(E) present a maximum for E =Em. A maximum of mobility versus the substrate rigidity had also been observed for single cells. Near Em, we observe a new phenomenon: a cell

  13. Optical properties of ZnTe epilayers with submonolayer planar narrow gap inclusions

    SciTech Connect

    Agekian, V. F.; Filosofov, N. G. Serov, A. Yu.; Shtrom, I. V.

    2016-06-17

    The exciton luminescence of ZnTe matrices with the embedded CdTe submonolayer inclusions is investigated. It is shown that the exciton localized by CdTe narrow gap component dominates in the emission spectrum. These localized excitons are coupled mainly with the phonons belonging to the cadmium enriched layers. The real distribution of cadmium in the direction of the heterostructure growth is determined from the energy position of the localized exciton emission bands.

  14. Dynamics of flow behind backward-facing step in a narrow channel

    NASA Astrophysics Data System (ADS)

    Uruba, V.

    2013-04-01

    The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD) technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.

  15. The Origin of Narrow Band Cyclotron Wave Emissions Called Chorus

    NASA Astrophysics Data System (ADS)

    Skoug, Ruth Marie

    1995-01-01

    On May 6, 1993, a sounding rocket experiment designed to study microburst electron precipitation was launched from Poker Flat, Alaska, into a morningside auroral event. This was the first sounding rocket to simultaneously detect microburst electrons and associated very low frequency (VLF) waves. Both microbursts and narrow band VLF chorus (risers) were observed throughout the flight. Waves and electron bursts were observed in association with each other, but no one-to-one correlations were seen between the two phenomena. The association between waves and particles suggests that both phenomena may be produced by a wave -particle interaction. This dissertation discusses the design of the VLF wave antenna, a magnetic search coil, and the analysis of data from this instrument. The data are compared to chorus production theories to determine the source location and mechanism of the observed waves. In this work, the observed chorus emissions are interpreted in terms of a cyclotron resonance interaction. This is the first comprehensive test of the cyclotron resonance theory applied to chorus associated with microburst precipitation. The frequency range of the risers and the observed electron energy range agree with those required to satisfy the cyclotron resonance condition. Using a criterion derived from the conservation of energy during an interaction, it is determined that a cold plasma cyclotron resonance interaction could have produced only the lower frequency portions of the observed chorus risers. We present an extension of the cyclotron resonance theory which uses a warm plasma model of the wave-particle interaction. This model assumes a two-component plasma, with an isotropic cold component and a bi-Maxwellian warm component. The addition of the warm component produces sufficient changes in the wave dispersion relation that the interaction can produce the highest frequencies observed in our data set. As predicted by theory, an anisotropic plasma is required to

  16. World food resources and population: the narrowing margin.

    PubMed

    Brown, L R

    1981-09-01

    This bulletin examines the narrowing margin between global food production and population growth. Between 1950 and 1971, world grain production nearly doubled and per capita production increased 31%. During the 1970s, gains in output barely kept pace with population growth, consumption/person declined in sub-Saharan Africa and parts of Asia, food prices were volatile, and over 100 food deficit countries came to depend on the exportable surplus of North America, now the only major grain exporting region. The world fish catch levelled off in the early 1970s and beef production, still dependent mainly on grassland grazing, levelled off in the mid-1970s. With little new land left to plow, satisfying increased food demand now depends on sharp increases in yields on existing crop land. Worldwide, this effort is hampered by loss of topsoil and irrigated land, conversion of cropland to nonfarm uses, rising energy costs, inefficient agrarian structures, particularly in the Soviet Union, the falling yield response to chemical fertilizers in agriculturally advanced countries, and the emerging competition between food and agriculturally based energy crops. Green Revolution successes in some developing countries deomonstrate that, given the right inputs, 3rd world farmers can increase crop yields dramatically. Feeding the world's poor also requires more equitable income and food distribution, including a reduction in the proportion of grain and fish consumed indirectly as livestock products by the affluent. Most important in meeting food needs on a finite planet is braking population growth. The author concludes that every effort should be made to stabilize world production at abour 6 billion by 2020, rather than 10.5 billion by 2110, as is now projected by the UN.

  17. Ionospheric frequency spread and its relationship with range spread in mid-latitude regions

    SciTech Connect

    Bowman, G.G. )

    1991-06-01

    The distinction between range spread and frequency spread as seen on mid-latitude ionograms is discussed. A classification of these two types of spread F is proposed in terms of different arrangements of the duplicate traces which provide the basic trace structures of mid-latitude spread F ionograms. Experimental results are presented to support the idea that frequency spread results from multiple ray paths (associated with a shallow ripple structure in the isoionic contours) close to the direction of the zenith position, so that each ray path has a range approximately equal to that of its neighbor. Furthermore, a horizontal gradient of maximum electron density is an additional requirement to create frequency spread. Atmospheric conditions (involving ionospheric F{sub 2} region heights and upper atmosphere neutral particle densities) which seem to favor the generation of frequency spread are discussed.

  18. Experimental and numerical study of liquefied natural gas (LNG) pool spreading and vaporization on water.

    PubMed

    Gopalaswami, Nirupama; Kakosimos, Konstantinos; Zhang, Bin; Liu, Yi; Mentzer, R; Mannan, M Sam

    2017-07-15

    The investigation of pool spreading and vaporization phenomenon is an essential part of consequence analysis to determine the severity of LNG spills on water. In this study, release of LNG on water during marine operations is studied through experimental and numerical methods The study involves emulation of an LNG leak from transfer arms during side by side loading operations. The experimental part involves flow of LNG in a narrow trench filled with water and subsequent measurement of pool spreading and vaporization parameters. The numerical part involves CFD simulation using a three dimensional hybrid homogenous Eulerian multiphase solver to model the pool spreading and vaporization phenomenon. In this method, LNG is modeled as dispersed phase droplets which can interact with continuous phases - water and air through interphase models. The numerical study also employs a novel user-defined routine for capturing the LNG vaporization process. The CFD solver was capable of capturing the salient features of LNG pool spreading and vaporization phenomena. It was observed from experiment and CFD simulation that wind influenced both pool spreading and vaporization phenomenon through entrainment and convection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  20. More efficient swimming by spreading your fingers

    NASA Astrophysics Data System (ADS)

    van de Water, Willem; van Houwelingen, Josje; Willemsen, Dennis; Breugem, Wim Paul; Westerweel, Jerry; Delfos, Rene; Grift, Ernst Jan

    2016-11-01

    A tantalizing question in free-style swimming is whether the stroke efficiency during the pull phase depends on spreading the fingers. It is a subtle effect-not more than a few percent-but it could make a big difference in a race. We measure the drag of arm models with increasing finger spreading in a wind tunnel and compare forces and moments to the results of immersed boundary simulations. Virtual arms were used in the simulations and their 3D-printed real versions in the experiment. We find an optimal finger spreading, accompanied by a marked increase of coherent vortex shedding. A simple actuator disk model explains this optimum.

  1. Coding for spread spectrum packet radios

    NASA Technical Reports Server (NTRS)

    Omura, J. K.

    1980-01-01

    Packet radios are often expected to operate in a radio communication network environment where there tends to be man made interference signals. To combat such interference, spread spectrum waveforms are being considered for some applications. The use of convolutional coding with Viterbi decoding to further improve the performance of spread spectrum packet radios is examined. At 0.00001 bit error rates, improvements in performance of 4 db to 5 db can easily be achieved with such coding without any change in data rate nor spread spectrum bandwidth. This coding gain is more dramatic in an interference environment.

  2. Pulsations, interpulsations, and sea-floor spreading.

    NASA Technical Reports Server (NTRS)

    Pessagno, E. A., Jr.

    1973-01-01

    It is postulated that worldwide transgressions (pulsations) and regressions (interpulsations) through the course of geologic time are related to the elevation and subsidence of oceanic ridge systems and to sea-floor spreading. Two multiple working hypotheses are advanced to explain major transgressions and regressions and the elevation and subsidence of oceanic ridge systems. One hypothesis interrelates the sea-floor spreading hypothesis to the hypothesis of sub-Mohorovicic serpentinization. The second hypothesis relates the sea-floor spreading hypothesis to a hypothesis involving thermal expansion and contraction.

  3. Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  4. Pulsations, interpulsations, and sea-floor spreading.

    NASA Technical Reports Server (NTRS)

    Pessagno, E. A., Jr.

    1973-01-01

    It is postulated that worldwide transgressions (pulsations) and regressions (interpulsations) through the course of geologic time are related to the elevation and subsidence of oceanic ridge systems and to sea-floor spreading. Two multiple working hypotheses are advanced to explain major transgressions and regressions and the elevation and subsidence of oceanic ridge systems. One hypothesis interrelates the sea-floor spreading hypothesis to the hypothesis of sub-Mohorovicic serpentinization. The second hypothesis relates the sea-floor spreading hypothesis to a hypothesis involving thermal expansion and contraction.

  5. Flame Spread Across Liquids: Experimental Results

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Miller, F. J.

    1999-01-01

    The goal of our research on flame spread across a pool of liquid fuel is the quantitative identification of the mechanisms that control the rate and nature of flame spread when the initial temperature of the liquid pool is below the fuel's flash point temperature. Besides numerous experiments in drop towers and 1 g laboratories, we have flown five microgravity (mu-g) experiments on sounding rockets. As described in earlier papers, the first three flights examined the effect of forced opposed airflow over a 2.5 cm deep x 2 cm wide x 30 cm long pool of 1-butanol in mu-g. It was found that the flame spread is much slower and steadier than in 1 g where flame spread has a pulsating character. It was speculated that the flame spread in mu-g resembled the character of pseudo-uniform spread in 1 g; Ito et al later confirmed this conclusively in 1 g experiments. Much of the mu-g flame is also farther from the surface, dimmer, and with less soot, when compared to the 1 g flame. Three-dimensional liquid-phase flow patterns that control the liquid preheating were discovered in both 1 g and mu-g. Our numerical model, restricted to two dimensions, had predicted faster, pulsating flame spread in mu-g for opposed airflow. In examining the differences in the dimensionality of the model and experiment, it was noted that the experiment allowed gas expansion in the lateral direction (across the width of the pool), for which the model could not account. Such lateral expansion could reduce the expansion in the forward and upward directions. Because only these latter directions could be modeled, it was decided to artificially reduce the gas thermal expansion in the predictions. When this was done, satisfactory agreement could be obtained between the predicted and observed spread rates and the steadiness of the spread in microgravity. In 1 g, however, the predicted flame spread character also changed to pseudo-uniform, which disagreed with our 1 g experiments where the spread is pulsating

  6. Pricing and hedging Asian basket spread options

    NASA Astrophysics Data System (ADS)

    Deelstra, Griselda; Petkovic, Alexandre; Vanmaele, Michèle

    2010-04-01

    Asian options, basket options and spread options have been extensively studied in the literature. However, few papers deal with the problem of pricing general Asian basket spread options. This paper aims to fill this gap. In order to obtain prices and Greeks in a short computation time, we develop approximation formulae based on comonotonicity theory and moment matching methods. We compare their relative performances and explain how to choose the best approximation technique as a function of the Asian basket spread characteristics. We also give explicitly the Greeks for our proposed methods. In the last section we extend our results to options denominated in foreign currency.

  7. Flame Spread Across Liquids: Experimental Results

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Miller, F. J.

    1999-01-01

    The goal of our research on flame spread across a pool of liquid fuel is the quantitative identification of the mechanisms that control the rate and nature of flame spread when the initial temperature of the liquid pool is below the fuel's flash point temperature. Besides numerous experiments in drop towers and 1 g laboratories, we have flown five microgravity (mu-g) experiments on sounding rockets. As described in earlier papers, the first three flights examined the effect of forced opposed airflow over a 2.5 cm deep x 2 cm wide x 30 cm long pool of 1-butanol in mu-g. It was found that the flame spread is much slower and steadier than in 1 g where flame spread has a pulsating character. It was speculated that the flame spread in mu-g resembled the character of pseudo-uniform spread in 1 g; Ito et al later confirmed this conclusively in 1 g experiments. Much of the mu-g flame is also farther from the surface, dimmer, and with less soot, when compared to the 1 g flame. Three-dimensional liquid-phase flow patterns that control the liquid preheating were discovered in both 1 g and mu-g. Our numerical model, restricted to two dimensions, had predicted faster, pulsating flame spread in mu-g for opposed airflow. In examining the differences in the dimensionality of the model and experiment, it was noted that the experiment allowed gas expansion in the lateral direction (across the width of the pool), for which the model could not account. Such lateral expansion could reduce the expansion in the forward and upward directions. Because only these latter directions could be modeled, it was decided to artificially reduce the gas thermal expansion in the predictions. When this was done, satisfactory agreement could be obtained between the predicted and observed spread rates and the steadiness of the spread in microgravity. In 1 g, however, the predicted flame spread character also changed to pseudo-uniform, which disagreed with our 1 g experiments where the spread is pulsating

  8. Possible use of spreads as a FOODlet for improving the diets of infants and young children.

    PubMed

    Briend, André

    2002-09-01

    Spreads are high-viscosity fat products prepared by mixing dried powdered ingredients with a vegetable fat chosen for its viscosity. Spreads are not traditionally used for feeding infants or young children and were initially proposed for feeding severely malnourished children during the recovery phase. The advantages of these products include a high energy and nutrient density, a very good acceptability, and resistance to bacterial contamination. Adapted spreads could be designed to boost the nutritional density of diets of young children from poor communities. Spreads could be mixed with the meals or porridges traditionally given to infants or eaten by themselves as snacks. Formulation of spread products is flexible, and acceptability and efficacy trials are required to optimize their composition and fortification levels and to select the best-adapted ingredients for each setting.

  9. Asymmetry and dynamics of a narrow sonar beam in an echolocating harbor porpoise.

    PubMed

    Koblitz, Jens C; Wahlberg, Magnus; Stilz, Peter; Madsen, Peter T; Beedholm, Kristian; Schnitzler, Hans-Ulrich

    2012-03-01

    A key component in the operation of a biosonar system is the radiation of sound energy from the sound producing head structures of toothed whales and microbats. The current view involves a fixed transmission aperture by which the beam width can only change via changes in the frequency of radiated clicks. To test that for a porpoise, echolocation clicks were recorded with high angular resolution using a 16 hydrophone array. The beam is narrower than previously reported (DI = 24 dB) and slightly dorso-ventrally compressed (horizontal -3 dB beam width: 13°, vertical -3 dB beam width: 11°). The narrow beam indicates that all smaller toothed whales investigated so far have surprisingly similar beam widths across taxa and habitats. Obtaining high directionality may thus be at least in part an evolutionary factor that led to high centroid frequencies in a group of smaller toothed whales emitting narrow band high frequency clicks. Despite the production of stereotyped narrow band high frequency clicks, changes in the directionality by a few degrees were observed, showing that porpoises can obtain changes in sound radiation. © 2012 Acoustical Society of America

  10. Squaraine-Based Polymer Dots with Narrow, Bright Near-Infrared Fluorescence for Biological Applications

    PubMed Central

    2015-01-01

    This article describes the design and development of squaraine-based semiconducting polymer dots (Pdots) that show large Stokes shifts and narrow-band emissions in the near-infrared (NIR) region. Fluorescent copolymers containing fluorene and squaraine units were synthesized and used as precursors for preparing the Pdots, where exciton diffusion and likely through-bond energy transfer led to highly bright and narrow-band NIR emissions. The resulting Pdots exhibit the emission full width at half-maximum of ∼36 nm, which is ∼2 times narrower than those of inorganic quantum dots in the same wavelength region (∼66 nm for Qdot705). The squaraine-based Pdots show a high fluorescence quantum yield (QY) of 0.30 and a large Stokes shift of ∼340 nm. Single-particle analysis indicates that the average per-particle brightness of the Pdots is ∼6 times higher than that of Qdot705. We demonstrate bioconjugation of the squaraine Pdots and employ the Pdot bioconjugates in flow cytometry and cellular imaging applications. Our results suggest that the narrow bandwidth, high QY, and large Stokes shift are promising for multiplexed biological detections. PMID:25494172

  11. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.

    PubMed

    Westergaard, Philip G; Christensen, Bjarke T R; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W

    2015-03-06

    As an alternative to state-of-the-art laser frequency stabilization using ultrastable cavities, it has been proposed to exploit the nonlinear effects from coupling of atoms with a narrow transition to an optical cavity. Here, we have constructed such a system and observed nonlinear phase shifts of a narrow optical line by a strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multiphoton scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intracavity power, we systematically study this nonlinear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub-100 mHz level and superradiant laser sources involving narrow-line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation to ultranarrow clock transitions.

  12. Can Tetraneutron be a Narrow Resonance?

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Rotureau, J.; Michel, N.; Płoszajczak, M.

    2017-07-01

    The search for a resonant four-neutron system has been revived thanks to the recent experimental hints reported in [1]. The existence of such a system would deeply impact our understanding of nuclear matter and requires a critical investigation. In this work, we study the existence of a four-neutron resonance in the quasistationary formalism using ab initio techniques with various two-body chiral interactions. We employ no-core Gamow shell model and density matrix renormalization group method, both supplemented by the use of natural orbitals and a new identification technique for broad resonances. We demonstrate that while the energy of the four-neutron system may be compatible with the experimental value, its width must be larger than the reported upper limit, supporting the interpretation of the experimental observation as a reaction process too short to form a nucleus.

  13. Synchrotron studies of narrow band materials

    SciTech Connect

    Not Available

    1992-01-01

    Since last year, we have had three 3-week blocks of beamtime, in April and November 1991 and February 1992, on the Ames/Montana beamline at the Wisconsin Synchrotron Radiation Center (SRC). These runs continued our program on high temperature superconductors, heavy Fermion and related uranium and rare earth materials, and started some work on transition metal oxides. We have also had beamtime at the Brookhaven NSLS, 5 days of beamtime on the Dragon monochromator, beamline U4B, studying resonant photoemission of transition metal oxides using photon energies around the transition metal 2p edges. Data from past runs has been analyzed, and in some cases combined with photoemission and bremsstrahlung isochromat spectroscopy (BIS) data taken in the home U-M lab. 1 fig.

  14. Orbital polarization in narrow band systems

    SciTech Connect

    Eriksson, O.; Johansson, B.; Brooks, M.S..S. . Inst. of Physics; Commission of the European Communities, Karlsruhe . European Inst. for Transuranium Elements)

    1989-01-01

    A novel technique for treating orbital polarization is presented. The single electron eigenvalue shifts that emanates from the orbital polarization is of the form -E{sup 3}Lm{sub l}, where E{sup 3} is the Racah parameter, L is the orbital moment and m{sub l} the azimuthal quantum number. Thereby the effect of Hund's second rule is included not only in the total energy, but also in the eigenvalue splittings which are required in the solid. The calculations presented also incorporate the exchange and correlation potential in the local spin density approximation as well as the spin-orbit coupling. The self-consistently calculated equation-of-state for the light lanthanide Ce is presented. The observed volume collapse is well described by the parameter free calculations and accordingly the volume collapse in Ce is described as a Mott transition of the 4f electron. 20 refs., 1 fig., 1 tab.

  15. Narrow Angle Wide Spectral Range Radiometer Design FEANICS/REEFS Radiometer Design Report

    NASA Technical Reports Server (NTRS)

    Camperchioli, William

    2005-01-01

    A critical measurement for the Radiative Enhancement Effects on Flame Spread (REEFS) microgravity combustion experiment is the net radiative flux emitted from the gases and from the solid fuel bed. These quantities are measured using a set of narrow angle, wide spectral range radiometers. The radiometers are required to have an angular field of view of 1.2 degrees and measure over the spectral range of 0.6 to 30 microns, which presents a challenging design effort. This report details the design of this radiometer system including field of view, radiometer response, radiometric calculations, temperature effects, error sources, baffling and amplifiers. This report presents some radiometer specific data but does not present any REEFS experiment data.

  16. Morphotectonic characteristics of a propagating spreading system in the northern Lau Basin

    NASA Astrophysics Data System (ADS)

    Wiedicke, Michael; Habler, Walter

    1993-07-01

    Bathymetric Sea Beam mapping of a southward propagating rift system in the Lau Basin (SW Pacific) shows a morphotectonic segmentation of the two competing axes: Over a distance of 70 km the propagating axis develops from a narrow rift graben at the propagator tip, via a leaky graben, into a juvenile volcanic ridge, and finally into a fully developed spreading ridge. The competing dying spreading axis 70 km farther east shows steady deepening towards the north, combined with a change from a small volcanic ridge to a narrow depression before it is buried by sediments. The relay zone between the two axes contains two deep N-S striking grabens; the eastern one, 3200 m deep, may act as a short-lived spreading center. A NE-trending string of slightly offset deep sediment-filled basins is interpreted as fossil analogs to these grabens, originally generated in the southward migrated relay zone. The string of basins suggests an episodic rather than steady state southward migration. Propagation and opening of grabens led to a rotation of the inherited ridge-parallel crustal fabric. However, the propagating tip and the grabens cut obliquely through the fabric thus generating small-scale structural and morphological inhomogeneities of the crust. At the propagating tip, old and new tectonic lineaments closely interfinger.

  17. Reactive spreading: Adsorption, ridging and compound formation

    SciTech Connect

    Saiz, E.; Cannon, R.M.; Tomsia, A.P.

    2000-09-11

    Reactive spreading, in which a chemically active element is added to promote wetting of noble metals on nonmetallic materials, is evaluated. Theories for the energetics and kinetics of the necessary steps involved in spreading are outlined and compared to the steps in compound formation that typically accompany reactive wetting. These include: fluid flow, active metal adsorption, including nonequilibrium effects, and triple line ridging. All of these can be faster than compound nucleation under certain conditions. Analysis and assessment of recently reported experiments on metal/ceramic systems lead to a focus on those conditions under which spreading proceeds ahead of the actual formation of a new phase at the interface. This scenario may be more typical than believed, and perhaps the most effective situation leading to enhanced spreading. A rationale for the pervasive variability and hysteresis observed during high temperature wetting also emerges.

  18. Flu Cases Starting to Spread: CDC

    MedlinePlus

    ... fullstory_163159.html Flu Cases Starting to Spread: CDC Illness now being reported in middle sections of ... potential benefit from the vaccine," Lynnette Brammer, a CDC epidemiologist, said Friday. She said flu activity is " ...

  19. Information spreading and development of cultural centers

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej; Mitarai, Namiko; Sneppen, Kim

    2012-05-01

    The historical interplay between societies is governed by many factors, including in particular the spreading of languages, religion, and other symbolic traits. Cultural development, in turn, is coupled to the emergence and maintenance of information spreading. Strong centralized cultures exist due to attention from their members, whose faithfulness in turn relies on the supply of information. Here we discuss a culture evolution model on a planar geometry that takes into account aspects of the feedback between information spreading and its maintenance. Features of the model are highlighted by comparing it to cultural spreading in ancient and medieval Europe, where it suggests in particular that long-lived centers should be located in geographically remote regions.

  20. Contact line arrest in solidifying spreading drops

    NASA Astrophysics Data System (ADS)

    de Ruiter, Rielle; Colinet, Pierre; Snoeijer, Jacco; Gelderblom, Hanneke

    2016-11-01

    When does a drop, deposited on a cold substrate, stop spreading? Despite the practical relevance of this question, for example in airplane icing and 3D metal printing, the exact mechanism of arrest in solidifying spreading drops has not yet been unraveled. Here, we consider the spreading and arrest of hexadecane drops of constant volume on two smooth wettable substrates; copper with a high thermal conductivity and glass with a low thermal conductivity. We record the spreading radius and contact angle in time for a range of substrate temperatures. We show that our measurements on both copper and glass are well explained by a contact line arrest condition based on crystallization kinetics, which takes into account the effect of kinetic undercooling and the thermal conductivity of the substrate.

  1. Zika Probably Not Spread Through Saliva: Study

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_167531.html Zika Probably Not Spread Through Saliva: Study Research with ... HealthDay News) -- Scientists have some interesting news about Zika: You're unlikely to get the virus from ...

  2. Spreading of oil spilled under ice

    SciTech Connect

    Yapa, P.D.; Chowdhury, T. )

    1990-12-01

    A new set of equations is presented to describe the process of oil spreading under ice in clam waters. These equations consider the gravity (buoyancy)-inertia phase, the gravity (buoyancy)-viscous phase, and the termination of spreading during the buoyancy-surface-tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to the termination of spreading is presented. Laboratory experiments were conducted using both real ice covers in a cold room and artificial ice covers. The experiments included different ice-cover roughnesses from smooth to rough, oils of different viscosities, and a variety of discharge conditions. The experimental data show close agreement with the theory. These equations can be used during cleanup or environmental impact assessment to estimate the area of an oil slick with respect to time.

  3. Epidemic spreading in a hierarchical social network

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Kosiński, R. A.

    2004-09-01

    A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.

  4. Compressible spreading rates of supersonic coaxial jets

    NASA Technical Reports Server (NTRS)

    Schadow, K. C.; Gutmark, E.; Wilson, K. J.

    1990-01-01

    The compressible spreading rates of two supersonic coaxial jets were studied experimentally. The center jet had a fully expanded Mach number of 3 and the outer jet of M = 1.8. The geometries of the center jet were circular and rectangular with two configurations, both with a 3:1 aspect ratio. The convective Mach numbers Mc were varied in the range between 0.25 and 2.25. The spreading rate of the center circular jet decreased with increasing Mc until it reached a constant value of 0.2 to 0.3 of the incompresible spreading rate for Mc larger than 1.4. The rectangular jets exhibited a similar drop at the same range of Mc, but their spreading rate was higher relative to the circular jet over the entire Mc range.

  5. Young's interference fringes with narrow-band light.

    PubMed

    Wolf, E

    1983-05-01

    The changes in the interference pattern in Young's interference experiment, produced by placing two identical narrow-band filters in front of the pinholes, are analyzed. It is shown theoretically that, in general, the fringes will not become sharp (i.e., their maximum visibility will not tend to unity) even when the filters have arbitrarily narrow passbands. The analysis brings out a relationship between the complex degree of coherence in the space-time and the space-frequency domains. When the passbands of the filters are narrow enough, the filtered light is found to be cross-spectrally pure.

  6. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  7. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  8. Development of 5-kHz ultra-line-narrowed F2 laser for dioptric projection system

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nohdomi, Ryoichi; Ariga, Tatsuya; Hotta, Kazuaki; Nakao, Kiyoharu; Kasuya, Koichi

    2003-11-01

    The roadmap of semiconductor fabrication predicts that the semiconductor market will demand 65 nm node devices from 2004/2005. Therefore, an Ultra-Line-Narrowed F2 laser for dioptric projection systems has been developed under the ASET project of "The F2 Laser Lithography Development Project". The target of this project is to achieve a F2 laser spectral bandwidth below 0.2 pm (FWHM) and an average power of 25 W at a repetition rate of 5 kHz. The energy stability (3-sigma) target is less than 10%. Simultaneously, it is also required to establish the technology of evaluating the optical performance. An Oscillator-Amplifier arrangement at 2 kHz was developed as a first step of an Ultra-Line-Narrowed F2 laser system. With this laser system, we achieved the basic study of the synchronization technology for line narrowing operation using two system arrangements: MOPA (Master Oscillator/Power Amplifier) and Injection Locking. Based on this experience we have developed the 5 kHz system. With the 5 kHz Line-Narrowed Injection Locking system, we have achieved a spectral bandwidth of <0.2 pm with an output energy of >5 mJ and a pulse to pulse energy stability of <10%. The feasibility of a 5 kHz Ultra-Line-Narrowed F2 Laser for Dioptric Projection Systems has been demonstrated.

  9. Measurements of monopolar and bipolar current spreads using forward-masking with a fixed probe.

    PubMed

    Bingabr, Mohamed G; Espinoza-Varas, Blas; Sigdel, Saroj

    2014-05-01

    This research employed a forward-masking paradigm to estimate the current spread of monopolar (MP) and bipolar (BP) maskers, with current amplitudes adjusted to elicit the same loudness. Since the spatial separation between active and return electrodes is smaller in BP than in MP configurations, the BP current spread is more localized and presumably superior in terms of speech intelligibility. Because matching the loudness requires higher current in BP than in MP stimulation, previous forward-masking studies show that BP current spread is not consistently narrower across subjects or electrodes within a subject. The present forward-masking measures of current spread differ from those of previous studies by using the same BP probe electrode configuration for both MP and BP masker configurations, and adjusting the current levels of the MP and BP maskers so as to match them in loudness. With this method, the estimate of masker current spread would not be contaminated by differences in probe current spread. Forward masking was studied in four cochlear implant patients, two females and two males, with speech recognition scores higher than 50%; that is, their auditory-nerve survival status was more than adequate to carry out the experiments. The data showed that MP and BP masker configurations produce equivalent masking patterns (and current spreads) in three participants. A fourth participant displayed asymmetrical patterns with enhancement rather than masking in some cases, especially when the probe and masker were at the same location. This study showed equivalent masking patterns for MP and BP maskers when the BP masker current amplitude was increased to match the loudness of the MP masker, and the same BP probe configuration is used with both maskers. This finding could help to explain why cochlear implant users often fail to accrue higher speech intelligibility benefit from BP stimulation.

  10. Liquefaction-Induced Lateral Spread Displacement

    DTIC Science & Technology

    1993-06-01

    DISPLACEMENT Abstract Lateral ground displacements generated by liquefaction-induced lateral spread are a severe threat to the Navy’s shore facilities. During...past earthquakes, lateral spread displace - ments have pulled apart or sheared shallow and deep foundations of buildings, several pipelines and other...structures and utilities that transect the ground displacement zone. buckle bridges or other structures constructed across the toe, and toppled

  11. 21 CFR 102.23 - Peanut spreads.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Peanut spreads. 102.23 Section 102.23 Food and... § 102.23 Peanut spreads. (a) The common or usual name of a spreadable peanut product that does not..., shall consist of the term “peanut spread” and a statement of the percentage by weight of peanuts in...

  12. [Global warming and spread of infectious diseases].

    PubMed

    Ebert, B; Fleischer, B

    2005-01-01

    At the end of the twentieth century, tropical infectious diseases increased despite earlier successes of eradication campaigns. As a global warming of 1.4-5.8 degrees C is anticipated to occur by 2100, mainly the vector-borne tropical diseases that are particularly sensitive to climate are expected to spread. Although biological reasons seemingly support this hypothesis, ecological and socioeconomic factors have in the past proven to be stronger driving forces for the spread of infectious disease than climate.

  13. Frequency Spreading in Underwater Acoustic Signal Transmission.

    DTIC Science & Technology

    1980-04-15

    acoustic signal transmitted and received underwater J-2 J.2 Signal spectrum computing block diagram. J-3 Chapter I. Frequency spreading 1.0 Introduction... transmitted frequency can be expected in the received signal [1] - [18]. This frequency spreading behavior is the result of the amplitude and phase...result of phase modulation of the transmitted sinusoid by the moving surface, and the separation between the spectral lines at the receiving point is

  14. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.

    PubMed

    Lee, Jae Bong; Derome, Dominique; Guyer, Robert; Carmeliet, Jan

    2016-02-09

    Droplet impact has been imaged on different rigid, smooth, and rough substrates for three liquids with different viscosity and surface tension, with special attention to the lower impact velocity range. Of all studied parameters, only surface tension and viscosity, thus the liquid properties, clearly play a role in terms of the attained maximum spreading ratio of the impacting droplet. Surface roughness and type of surface (steel, aluminum, and parafilm) slightly affect the dynamic wettability and maximum spreading at low impact velocity. The dynamic contact angle at maximum spreading has been identified to properly characterize this dynamic spreading process, especially at low impact velocity where dynamic wetting plays an important role. The dynamic contact angle is found to be generally higher than the equilibrium contact angle, showing that statically wetting surfaces can become less wetting or even nonwetting under dynamic droplet impact. An improved energy balance model for maximum spreading ratio is proposed based on a correct analytical modeling of the time at maximum spreading, which determines the viscous dissipation. Experiments show that the time at maximum spreading decreases with impact velocity depending on the surface tension of the liquid, and a scaling with maximum spreading diameter and surface tension is proposed. A second improvement is based on the use of the dynamic contact angle at maximum spreading, instead of quasi-static contact angles, to describe the dynamic wetting process at low impact velocity. This improved model showed good agreement compared to experiments for the maximum spreading ratio versus impact velocity for different liquids, and a better prediction compared to other models in literature. In particular, scaling according to We(1/2) is found invalid for low velocities, since the curves bend over to higher maximum spreading ratios due to the dynamic wetting process.

  15. Cytoskeleton mediated spreading dynamics of immune cells

    NASA Astrophysics Data System (ADS)

    Hui, King-Lam; Wayt, Jessica; Grooman, Brian; Upadhyaya, Arpita

    2009-03-01

    We have studied the spreading of Jurkat T-cells on anti-CD3 antibody-coated substrates as a model of immune synapse formation. Cell adhesion area versus time was measured via interference reflection contrast microscopy. We found that the spread area exhibited a sigmoidal growth as a function of time in contrast to the previously proposed universal power-law growth for spreading cells. We used high-resolution total internal reflection fluorescence microscopy of these cells transfected with GFP-actin to study cytoskeletal dynamics during the spreading process. Actin filaments spontaneously organized into a variety of structures including traveling waves, target patterns, and mobile clusters emanating from an organizing center. We quantify these dynamic structures and relate them to the spreading rates. We propose that the spreading kinetics are determined by active rearrangements of the cytoskeleton initiated by signaling events upon antibody binding by T-cell receptors. Membrane deformations induced by such wavelike organization of the cytoskeleton may be a general phenomenon that underlies cell movement and cell-substrate interactions.

  16. Time reversal communication over doubly spread channels.

    PubMed

    Zeng, Wen-Jun; Jiang, Xue

    2012-11-01

    Conventional time reversal can mitigate multipath delay dispersion by temporal focusing. But it is not applicable to time-varying channels with a Doppler spread. Although recently time reversal communication has been adapted to time-variant channels, the modified technique requires frequent channel updates to track channel variations and cannot handle large Doppler spread, which means that it cannot achieve frequency focusing. In this paper, two time reversal receivers for underwater acoustic communications over doubly spread channels are proposed. The proposed approach, which can be interpreted as time-frequency channel matching, is based on the channel spreading function rather than impulse response adopted by the existing techniques; this leads to much less frequent channel updates. Unlike existing methods that only correct a single Doppler shift, the proposed approach uses a rake-like structure to compensate for multiple Doppler shifts and hence can eliminate severe Doppler spread induced by temporal channel variations. Simulation results verify the effectiveness of the proposed approach, indicating that it can simultaneously counteract delay and Doppler spreads, achieving both temporal and frequency focusing.

  17. Wave directional spreading from point field measurements.

    PubMed

    McAllister, M L; Venugopal, V; Borthwick, A G L

    2017-04-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A465, 3361-3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices.

  18. Wave directional spreading from point field measurements

    PubMed Central

    Venugopal, V.; Borthwick, A. G. L.

    2017-01-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361–3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices. PMID:28484326

  19. Wave directional spreading from point field measurements

    NASA Astrophysics Data System (ADS)

    McAllister, M. L.; Venugopal, V.; Borthwick, A. G. L.

    2017-04-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361-3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices.

  20. Gossip spread in social network Models

    NASA Astrophysics Data System (ADS)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.