Science.gov

Sample records for narrow line seyfert

  1. A spectrophotometric atlas of Narrow-Line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.; Gonçalves, A. C.

    2001-06-01

    We have compiled a list of 83 objects classified as Narrow-Line Seyfert 1 galaxies (NLS1s) or known to have a broad Balmer component narrower than 2 000 km s-1. Of these, 19 turned out to have been spectroscopically misidentified in previous studies; only 64 of the selected objects are genuine NLS1s. We have spectroscopically observed 59 of them and tried to characterize their Narrow and Broad-Line Regions (NLR and BLR) by fitting the emission-lines with Gaussian and/or Lorentzian profiles. In most cases, the broad Balmer components are well fitted by a single Lorentzian profile, confirming previous claims that Lorentzian rather than Gaussian profiles are better suited to reproduce the shape of the NLS1s broad emission lines. This has consequences concerning their FWHMs and line ratios: when the broad Balmer components are fitted with a Lorentzian, most narrow line regions have line ratios typical of Seyfert 2s while, when a Gaussian profile is used for fitting the broad Balmer components, the line ratios are widely scattered in the usual diagnostic diagrams (Veilleux & Osterbrock \\cite{vei87}); moreover, the FWHM of the best fitting Lorentzian is systematically smaller than the FWHM of the Gaussian. We find that, in general, the [O III] lines have a relatively narrow Gaussian profile ( ~ 200-500 km s-1 FWHM) with often, in addition, a second broad ( ~ 500-1 800 km s-1 FWHM), blueshifted Gaussian component. We do not confirm that the [O III] lines are weak in NLS1s. As previously suggested, there is a continuous transition of all properties between NLS1s and classical Broad-Line Seyfert 1 Galaxies (BLS1s) and the limit of 2000 km s-1 used to separate the two species is arbitrary; R4570, the ratio of the Fe II to the Hβ fluxes, could be a physically more meaningful parameter to distinguish them.

  2. Visible and Near-Infrared Spectroscopy of Seyfert 1 and Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, Alberto; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-01-01

    This paper studies the continuum and emission-line properties of a sample composed of 16 normal Seyfert 1 and seven narrow-line Seyfert 1 (NLS1) galaxies using optical and near-IR CCD spectroscopy. The continuum emission of the galaxies can be described in terms of a combination of stellar population, a nonstellar continuum of power-law form, and Fe II emission. A significative difference in the optical spectral index between NLS1's and normal Seyfert 1's is observed; the latter is steeper. Most NLS1's show Fe II/Hβ ratios larger than those observed in the other Seyfert 1's. In the IRAS band, both groups of galaxies have very similar properties. We have searched for the presence of optically thin gas in the broad-line region (BLR) of the galaxies by comparing the broad O I λ8446 and Hα emission-line profiles. Our analysis show that in the NLS1's, both profiles are similar in shape and width. This result contradicts the hypothesis of thin gas emission in the high-velocity part of the BLR to explain the ``narrowness'' of broad optical permitted lines in these objects. Evidence of narrow O I λ8446 emission is found in six galaxies of our sample, implying that this line is not restricted to a pure BLR phenomenon. In the narrow-line region, we find similar luminosities in the permitted and high-ionization lines of NLS1's and normal Seyfert 1's. However, low-ionization lines such as [O I] λ6300, [O II] λ3727, and [S II] λλ6717, 6731 are intrinsically less luminous in NLS1's. Physical properties derived from density- and temperature-sensitive line ratios suggest that the [O II] and [S II] emitting zones are overlapping in normal Seyfert 1's and separated in NLS1's. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.

  3. Masas de agujeros negros en Narrow Line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Schmidt, E.; Ferreiro, D.; Oio, G.; Vega, L.; Donoso, L.

    We describe two of the ways to estimate black hole masses in AGN, and then we estimate the black hole masses of 13 Narrow Line Seyfert 1 galaxies with the two methods: virial masses, using the correlation found by Greene & Ho (2005, ApJ, 630, 122); and the correlation found by Tremaine et al. (2002, ApJ, 574, 740). For this work we analyzed the optical spectroscopy data we obtained from CASLEO (San Juan). We compare the results obtained through both methods. FULL TEXT IN SPANISH

  4. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  5. Relativistic jets in Narrow-Line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Angelakis, E.; Bonnoli, G.; Calderone, G.; Colpi, M.; D'Ammando, F.; Donato, D.; Falcone, A.; Fuhrmann, L.; Ghisellini, G.; Ghirlanda, G.; Hauser, M.; Kovalev, Y. Y.; Maraschi, L.; Nieppola, E.; Richards, J.; Stamerra, A.; Tagliaferri, G.; Tavecchio, F.; Thompson, D. J.; Tibolla, O.; Tramacere, A.; Wagner, S.

    2011-02-01

    Narrow-Line Seyfert 1 (NLS1) class of active galactic nuclei (AGNs) is generally radio-quiet, but a small percent of them are radio-loud. The recent discovery by Fermi/LAT of high-energy γ-ray emission from 4 NLS1s proved the existence of relativistic jets in these systems. It is therefore important to study this new class of γ-ray emitting AGNs. Here we report preliminary results about the observations of the July 2010 γ-ray outburst of PMN J0948+0022, when the source flux exceeded for the first time 10-6 ph cm-2 s-1 (E > 100 MeV).

  6. Radio properties of narrow-lined Seyfert 1 galaxies

    NASA Technical Reports Server (NTRS)

    Ulvestad, James S.; Antonucci, Robert R. J.; Goodrich, Robert W.

    1995-01-01

    We have observed seven narrow-linedd Seyfert 1 (NLS1) galaxies and one high-ionization Seyfert 2 galaxy with the Very Large Array (VLA). Combining these observations with published data, we summarize the radio properties of the NLS1 galaxies for which spectropolarimetry was reported by Goodrich. Fifteen of these 17 objects now have published radio observations of high sensitivity, and only nine of those have been detected. For a Hubble parameter of 75 km/s/Mpc, the 6 cm radio powers range from 10(exp 20) to 10(exp 23) W/Hz, within the range previously found for other types of Seyfert galaxy. The median radio size of the nine VLA-detected galaxies is no larger than 300 pc, similar to the median size found by Ulvestad & Wilson for a distance-limited sample of Seyfert galaxies. Of the six NLS1 galaxies known to have significant intrinsic optical polarization, three have measurable radio axes. Two of those three galaxies have radio major axes close to 90 deg from their polarization position angles, while the third has an inner radio axis that may be nearly parallel to the polarization position angle. The former relationship is expected for a Seyfert 1 in a unified model of Seyfert galaxies, assuming no intrinsic continuum polarization.

  7. 37 GHz observations of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Lähteenmäki, A.; Järvelä, E.; Hovatta, T.; Tornikoski, M.; Harrison, D. L.; López-Caniego, M.; Max-Moerbeck, W.; Mingaliev, M.; Pearson, T. J.; Ramakrishnan, V.; Readhead, A. C. S.; Reeves, R. A.; Richards, J. L.; Sotnikova, Y.; Tammi, J.

    2017-07-01

    Observations performed at Metsähovi Radio Observatory at 37 GHz are presented for a sample of 78 radio-loud and radio-quiet narrow-line Seyfert 1 (NLS1) galaxies, together with additional lower and higher frequency radio data from RATAN-600, Owens Valley Radio Observatory, and the Planck satellite. Most of the data have been gathered between February 2012 and April 2015 but for some sources even longer light curves exist. The detection rate at 37 GHz is around 19%, which is comparable to other populations of active galactic nuclei presumed to be faint at radio frequencies, such as BL Lac objects. Variability and spectral indices are determined for sources with enough detections. Based on the radio data, many NLS1 galaxies show a blazar-like radio spectra exhibiting significant variability. The spectra at a given time are often inverted or convex. The source of the high-frequency radio emission in NLS1 galaxies, detected at 37 GHz, is most probably a relativistic jet rather than star formation. Jets in NLS1 galaxies are therefore expected to be a much more common phenomenon than earlier assumed. Full Table 7 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A100

  8. THE DIFFERENCE IN NARROW Fe K{alpha} LINE EMISSION BETWEEN SEYFERT 1 AND SEYFERT 2 GALAXIES

    SciTech Connect

    Liu Teng; Wang Junxian E-mail: jxw@ustc.edu.c

    2010-12-20

    We compile a sample of 89 Seyfert galaxies with both [O IV] 25.89 {mu}m line luminosities observed by Spitzer IRS and X-ray spectra observed by XMM-Newton EPIC. Using [O IV] emission as a proxy for active galactic nucleus (AGN) intrinsic luminosity, we find that although type 2 AGNs have higher line equivalent widths, the narrow Fe K{alpha} lines in Compton-thin and Compton-thick Seyfert 2 galaxies are 2.9{sup +0.8}{sub -0.6} and 5.6{sup +1.9}{sub -1.4} times weaker in terms of luminosity than Seyfert 1 galaxies, respectively. This indicates that different correction factors need to be applied for various types of AGNs before the narrow Fe K{alpha} line luminosity could serve as an intrinsic AGN luminosity indicator. We also find that Seyfert 1 galaxies in our sample have on average marginally larger line widths and higher line centroid energies, suggesting contamination from highly ionized Fe line or broader line emission from much smaller radius, but this effect is too weak to explain the large difference in narrow Fe K{alpha} line luminosity between type 1 and type 2 AGNs. This is the first observational evidence showing that the narrow Fe K{alpha} line emission in AGNs is anisotropic. The observed difference is consistent with theoretical calculations assuming a smoothly distributed obscuring torus and could provide independent constraints on the clumpiness of the torus.

  9. MULTI-WAVELENGTH PROBES OF OBSCURATION TOWARD THE NARROW-LINE REGION IN SEYFERT GALAXIES

    SciTech Connect

    Kraemer, S. B.; Schmitt, H.R.; Crenshaw, D. M.; Melendez, M.; Turner, T.J.; Guainazzi, M.; Mushotzky, R.F.

    2011-02-01

    We present a study of reddening and absorption toward the narrow line regions (NLRs) in active galactic nuclei (AGNs) selected from the Revised Shapley-Ames, 12 {mu}m, and Swift/Burst Alert Telescope samples. For the sources in host galaxies with inclinations of b/a > 0.5, we find that the mean ratio of [O III] {lambda}5007, from ground-based observations, and [O IV] 28.59 {mu}m, from Spitzer/Infrared Spectrograph observations, is a factor of two lower in Seyfert 2s than Seyfert 1s. The combination of low [O III]/[O IV] and [O III] {lambda}4363/{lambda}5007 ratios in Seyfert 2s suggests more extinction of emission from the NLR than in Seyfert 1s. Similar column densities of dusty gas, N{sub H}{approx} several x 10{sup 21} cm{sup -2}, can account for the suppression of both [O III] {lambda}5007 and [O III] {lambda}4363, as compared to those observed in Seyfert 1s. Also, we find that the X-ray line O VII {lambda}22.1 A is weaker in Seyfert 2s, consistent with absorption by the same gas that reddens the optical emission. Using a Hubble Space Telescope/Space Telescope Imaging Spectrograph slitless spectrum of the Seyfert 1 galaxy NGC 4151, we estimate that only {approx}30% of the [O III] {lambda}5007 comes from within 30 pc of the central source, which is insufficient to account for the low [O III]/[O IV] ratios in Seyfert 2s. If Seyfert 2 galaxies have similar intrinsic [O III] spatial profiles, the external dusty gas must extend further out along the NLR, perhaps in the form of nuclear dust spirals that have been associated with fueling flows toward the AGN.

  10. Are Narrow Line Seyfert 1 Galaxies Viewed Pole-on?

    DTIC Science & Technology

    2011-04-01

    0.2’’ respectively. Figure 1 displays the position of each slit over a Barbosa et al. (2009) GMOS IFU image of the [S III] flux (which originates...C. Winge, H. Schmitt: Gemini/ GMOS IFU gas velocity ’tomography’ of the narrow line region of nearby active galaxies, MNRAS, 396 (2009) 2. [2] D...1995) 81. 4 P o S ( N L S 1 ) 0 5 0 Are NLS1s Pole-on? Travis C. Fischer 5 Figure 1: NGC 4051 GMOS IFU image showing integrated [SIII] flux

  11. Variability Studies of Narrow Line Seyfert 1 Galaxy

    NASA Technical Reports Server (NTRS)

    Marshall, Hermann

    1994-01-01

    I supported the data reduction and analysis. We found that the source was not as variable as other soft AGN such as the narrow line Sy 1 galaxies (NLSls). The NLSls vary on time scales of days, while the ROSAT data for this target was fairly constant over a week at a time. Thus, it was very important to have a light curve that spanned 60 days as was the case for these ROSAT observations because the power spectral distribution can be established to very low frequencies that are rarely measured.

  12. Narrow line Seyfert 1 galaxies: where are the broad line regions?

    NASA Astrophysics Data System (ADS)

    Mao, Weiming; Hu, Chen; Wang, Jianmin; Bian, Weihao; Zhang, Shu; Zhao, Gang

    2010-12-01

    A sample consisting of 211 narrow line Seyfert 1 galaxies (NLS1s) with high quality spectra from the Sloan Digital Sky Survey (SDSS) is selected to explore where broad line regions are in these objects. We find that the H β profile can be fitted well by three (narrow, intermediate and broad) Gaussian components, and the FWHM ratios of the broad to the intermediate components hold a constant of 3.0 roughly for the entire sample. If the broad components originate from the region scaled by the well-determined H β reverberation mapping relation, we find that the intermediate components originate from the inner edge of the torus, which is scaled by dust K-band reverberation. We find that the IC and the BC are strongly linked dynamically, but the relation of their covering factors is much more relaxed, implying that both regions are clumpy.

  13. Narrow Line Seyfert 1 Galaxies and the Evolution of Galaxies and Active Galaxies

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2000-01-01

    Narrow Line Seyfert 1 galaxies (NLS1s) are intriguing due to their continuum as well as emission line properties. The observed peculiar properties of the NLS1s are believed to be due to accretion rate close to Eddington limit. As a consequence, for a given luminosity, NLS1s have smaller black hole (BH) masses compared to normal Seyfert galaxies. Here we argue that NLS1s might be Seyfert galaxies in their early stage of evolution and as such may be low redshift, low luminosity analogues of high redshift quasars. We propose that NLS1s may reside in rejuvenated, gas rich galaxies. The also argue in favor of collisional ionization for production of FeII in active galactic nuclei (AGN).

  14. The jet detection in radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Gu, Minfeng

    With relatively small black hole masses and high accretion rates, narrow-line Seyfert 1 galaxies are thought to be young AGNs. About 7% of them are radio-loud narrow-line Seyfert 1 galaxies (RLNLS1s). RLNLS1s allow us to re-address some of the key questions regarding the physics of jet formation. As the first step of the systematic study on the jet properties of RLNLS1s, we present the radio structure of fourteen RLNLS1s from VLBA observations at 5 GHz in 2013. Although all these sources are very radio-loud with R > 100, their jet properties are diverse, in terms of their pc-scale morphology and overall radio spectral shape. The core brightness temperatures of our sources are significantly lower than those of blazars, therefore, the beaming effect is generally not significant, compared to blazars. This implies that the bulk jet speed may likely be low in our sources.

  15. Basic properties of Narrow-Line Seyfert 1 Galaxies with relativistic jets

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Angelakis, E.; Bonnoli, G.; Braito, V.; Caccianiga, A.; Fuhrmann, L.; Gallo, L.; Ghirlanda, G.; Ghisellini, G.; Grupe, D.; Hamilton, T.; Kaufmann, S.; Komossa, S.; Kovalev\\inst{7 2}, Y. Y.; Lahteenmaki, A.; Lister, M. L.; Mannheim, K.; Maraschi, L.; Mathur, S.; Peterson, B. M.; Romano, P.; Severgnini, P.; Tagliaferri, G.; Tammi, J.; Tavecchio, F.; Tibolla, O.; Tornikoski, M.; Vercellone, S.

    We present the preliminary results of a survey performed with Swift to observe a sample of radio-loud Narrow-Line Seyfert 1 Galaxies (RLNLS1s). Optical-to-X-ray data from Swift are complemented with gamma -ray observations from Fermi/LAT and radio measurements available in the literature. The comparison with a sample of bright Fermi blazars indicates that RLNLS1s seem to be the low-power tail of the distribution.

  16. Apparent [O III] variability in the narrow line Seyfert I Mrk142

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang; Feng, Long-Long

    2016-03-01

    In this Letter, we checked spectral properties of the well-known narrow line Seyfert I Mrk142, in order to try to find effects of narrow line variability on BLR radius of Mrk142 which is an outlier in the R-L plane. Although, no improvement can be found on BLR radius, apparent narrow line variability can be confirmed in Mrk142. Using the public spectra collected from the Lick AGN Monitoring Project, the spectral scaling method based on assumption of constant [O III] line is first checked by examining broad and narrow emission line properties. We find that with the application of the spectral scaling method, there is a strong correlation between the [O III] line flux and the [O III] line width, but weaker correlations between the broad Hα flux and the broad Hβ flux, and between the broad Hα flux and the continuum emission at 5100 Å. The results indicate that the assumption of constant [O III] line is not preferred, and caution should be exercised when applying the spectral scaling calibration method. And then, we can find a strong correlation between the [O III] line flux and the continuum emission at 5100 Å, which indicates apparent short-term variability of the [O III] line in Mrk142 over about two months.

  17. Infrared photometric study of SDSS selected narrow line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Chen, P. S.; Liu, J. Y.; Shan, H. G.

    2017-07-01

    The infrared photometric study of SDSS selected Narrow Line Seyfert 1 Galaxies (NLS1s) is presented in this paper. We have made cross-identifications for such NLS1s with 2MASS and WISE observations. Finally 992 NLS1s have 2MASS and WISE counterparts. Comparisons of NLS1s with the Broad Line Seyfert 1 (BLS1s) and Seyfert 2 galaxies are made. It is shown that from 1 μm to 5 μm NLS1s are redder than BLS1s and Seyfert 2 galaxies possibly due to the richer dust environment in NLS1 nuclei or to the orientation effect while in the longer wavelengths those three kinds of sources have quite similar behavior indicative of radiation mainly from the similar warm starburst-related dust and the related AGN dust. In addition, relations between infrared colors and related (to Hβ) strengths of some important lines are also investigated. The results show that the related strengths of [FeII] 4570 Å are positively correlated with infrared colors in the 1-5 μm region, but negatively correlated with infrared colors in the 12-22 μm region; the related strength of [OIII] 5007 Å are negatively correlated with infrared colors in the 1-5 μm region, but positively correlated with infrared colors in the 12-22 μm region; the related strength of [NII]6583 Å are also negatively correlated with infrared colors in the 1-5 μm region, but positively correlated with infrared colors in the 12-22 μm region. Therefore it is indicated that the behavior of [FeII] 4570 Å is just opposed to that for [OIII] 5007 Å and [NII] 6583 Å This result may be caused by different origins of such lines.

  18. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  19. Evidence of coronal flaring in narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.

    High-energy (E>2 keV) continuum flaring is detected in two narrow-line Seyfert 1 galaxies (I Zw 1 and NAB 0205+024), consistent with occurring in a hot corona distinct from the accretion disc. The flare in I Zw 1 is accompanied by an increase in the amount of gravitationally redshifted reflected emission coming from the accretion disc. This indicates that the high-energy continuum component is compact and located close to the black hole, and could possibly be the base of an aborted jet.

  20. An Extreme, Blueshifted Iron Line in the Narrow Line Seyfert 1 PG 1402+261

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-01-01

    We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.

  1. γ-ray variability of radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Calderone, G.; Foschini, L.; Ghisellini, G.; Colpi, M.; Maraschi, L.; Tavecchio, F.; Decarli, R.; Tagliaferri, G.

    2011-06-01

    The recent detection of γ-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the active galactic nuclei (AGN) activity of these objects shares some similarities with that of blazars, namely the presence of a γ-ray emitting, variable jet of plasma closely aligned to the line of sight. In this work we analyse the γ-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy γ-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the γ-ray photons and confirms the presence of a relativistic jet. Furthermore, we estimate the minimum e-folding variability time-scale (3-30 d) and infer an upper limit for the size of the emitting region (0.2-2 pc, assuming a relativistic Doppler factor δ= 10 and a jet aperture of θ= 0.1 rad).

  2. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to -3.2 ≲ log U ≲ -3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  3. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    NASA Astrophysics Data System (ADS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  4. Optical Properties of Radio-Selected Narrow Line Seyfert 1 Galaxies

    SciTech Connect

    Whalen, J; Laurent-Muehleisen, S A; Moran, E C; Becker, R H

    2006-01-05

    We present results from the analysis of the optical spectra of 47 radio-selected narrow-line Seyfert 1 galaxies (NLS1s). These objects are a subset of the First Bright Quasar Survey (FBQS) and were initially detected at 20 cm (flux density limit {approx} 1 mJy) in the VLA FIRST Survey. We run Spearman rank correlation tests on several sets of parameters and conclude that, except for their radio properties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1 galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies have small black hole masses that are accreting very close to the Eddington rate. We have found 16 new radio-loud NLS1 galaxies, which increases the number of known radio-loud NLS1 galaxies by a factor of {approx} 5.

  5. Gamma-ray Emitting Narrow Line Seyfert 1 Galaxies in SDSS-DR12

    NASA Astrophysics Data System (ADS)

    Sharan Paliya, Vaidehi

    2017-08-01

    The detection of significant γ-ray emission from radio-loud narrow line Seyfert 1 galaxies (NLSy1s) enables to study the properties of relativistic jets at different jet launching environment than that generally claimed for blazars. Here, we report the first detection of the significant γ-ray emission from AGNs which are recently classified as NLSy1 from their SDSS optical spectrum. Comparing the γ-ray properties of these objects with 3LAC blazars reveals their spectral shapes to be similar to FSRQs, however, with low γ-ray luminosity ( ≤1046-47 erg s-1). Moreover, in the WISE color-color diagram, these objects occupy a region mainly populated by FSRQs, thus indicating γ-NLSy1s to be the low black hole mass counterpart of powerful FSRQs.

  6. An Extended Look at the Narrow-Line Region of the Seyfert 2 Galaxy Mrk 573

    NASA Astrophysics Data System (ADS)

    Machuca, Camilo; Fischer, Travis C.; Crenshaw, D. Michael

    2017-01-01

    Active galactic nuclei (AGN) are supermassive black holes found in the centers of galaxies which accrete matter from their surroundings and subsequently produce AGN feedback in the form of ionized and molecular gas outflows. These outflows are largely contained within the Narrow-Line Region (NLR), a low density sector that extends froms tens to thousands of parsecs away from the nucleus. In order to clarify the relationship between the AGN and its host galaxy at these various distances, we present this study on Mrk 573, a Seyfert 2 AGN, based on long-slit spectroscopy from the Dual Imaging Spectrograph (DIS) on the ARC 3.5-meter telescope at Apache Point Observatory. We find that the dominant ionization mechanism of the gas up to a radius of 2 kpc can be attributed to the AGN and that the ionized gas kinematics are dominated by galactic rotation at distances larger than 750 pc.

  7. NGC 4051 and the Nature of Narrow-Line Seyfert I Galaxies

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; McHardy, I. M.; Wilkes, B. J.

    2004-01-01

    We report on the results of a three-year program of coordinated X-ray and optical monitoring of the narrow-line Seyfert 1 galaxy NGC 4051. The principal results of this program are: (1) The H-beta emission line time lag and Doppler width yield a virial mass estimate of about 1.1 mission solar masses, at the extreme low end of AGN masses. A plausible adjustment for inclination effects increases this mass slightly to about 1.4 mission solar masses. (2) During the third year of this campaign, both the X-ray continuum and the He II 4686 line went into extremely low states, although the optical continuum and the H-beta broad line were both still present and variable. We suggest that the inner part of the accretion disk may have gone into an advection-dominated state, yielding little radiation from the hotter inner disk. (3) The He II 4686 line is almost five times as broad as H-beta, and it is strongly blueward asymmetric, as are the high-ionization UV lines recorded in archive spectra of NGC 4051. The data are consistent with the Balmer lines arising in a low-inclination disk-like configuration, and the high-ionization lines arising in an outflowing wind, of which we observe preferentially the near side.

  8. Properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Berton, M.; Caccianiga, A.; Ciroi, S.; Cracco, V.; Peterson, B. M.; Angelakis, E.; Braito, V.; Fuhrmann, L.; Gallo, L.; Grupe, D.; Järvelä, E.; Kaufmann, S.; Komossa, S.; Kovalev, Y. Y.; Lähteenmäki, A.; Lisakov, M. M.; Lister, M. L.; Mathur, S.; Richards, J. L.; Romano, P.; Sievers, A.; Tagliaferri, G.; Tammi, J.; Tibolla, O.; Tornikoski, M.; Vercellone, S.; La Mura, G.; Maraschi, L.; Rafanelli, P.

    2015-03-01

    We have conducted a multiwavelength survey of 42 radio loud narrow-1ine Seyfert 1 galaxies (RLNLS1s), selected by searching among all the known sources of this type and omitting those with steep radio spectra. We analyse data from radio frequencies to X-rays, and supplement these with information available from online catalogues and the literature in order to cover the full electromagnetic spectrum. This is the largest known multiwavelength survey for this type of source. We detected 90% of the sources in X-rays and found 17% at γ rays. Extreme variability at high energies was also found, down to timescales as short as hours. In some sources, dramatic spectral and flux changes suggest interplay between a relativistic jet and the accretion disk. The estimated masses of the central black holes are in the range ~106-8 M⊙, lower than those of blazars, while the accretion luminosities span a range from ~0.01 to ~0.49 times the Eddington limit, with an outlier at 0.003, similar to those of quasars. The distribution of the calculated jet power spans a range from ~1042.6 to ~1045.6 erg s-1, generally lower than quasars and BL Lac objects, but partially overlapping with the latter. Once normalised by the mass of the central black holes, the jet power of the three types of active galactic nuclei are consistent with each other, indicating that the jets are similar and the observational differences are due to scaling factors. Despite the observational differences, the central engine of RLNLS1s is apparently quite similar to that of blazars. The historical difficulties in finding radio-loud narrow-line Seyfert 1 galaxies might be due to their low power and to intermittent jetactivity. Tables 4-9 and Figs. 8-13 are available in electronic form at http://www.aanda.org

  9. Large-scale environments of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Järvelä, E.; Lähteenmäki, A.; Lietzen, H.; Poudel, A.; Heinämäki, P.; Einasto, M.

    2017-09-01

    Studying large-scale environments of narrow-line Seyfert 1 (NLS1) galaxies gives a new perspective on their properties, particularly their radio loudness. The large-scale environment is believed to have an impact on the evolution and intrinsic properties of galaxies, however, NLS1 sources have not been studied in this context before. We have a large and diverse sample of 1341 NLS1 galaxies and three separate environment data sets constructed using Sloan Digital Sky Survey. We use various statistical methods to investigate how the properties of NLS1 galaxies are connected to the large-scale environment, and compare the large-scale environments of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to study how they are related. NLS1 galaxies reside in less dense environments than any of the comparison samples, thus confirming their young age. The average large-scale environment density and environmental distribution of NLS1 sources is clearly different compared to BLS1 galaxies, thus it is improbable that they could be the parent population of NLS1 galaxies and unified by orientation. Within the NLS1 class there is a trend of increasing radio loudness with increasing large-scale environment density, indicating that the large-scale environment affects their intrinsic properties. Our results suggest that the NLS1 class of sources is not homogeneous, and furthermore, that a considerable fraction of them are misclassified. We further support a published proposal to replace the traditional classification to radio-loud, and radio-quiet or radio-silent sources with a division into jetted and non-jetted sources.

  10. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    SciTech Connect

    Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.; Kovacevic, J.; Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L.; Ilic, D.; Kovacevic, A.; Kollatschny, W.; Bochkarev, N. G.; Leon-Tavares, J.; Mercado, A.; Benitez, E.; Dultzin, D.; De la Fuente, E.

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  11. Cinemática y masas de agujeros negros en galaxias activas del tipo "Narrow Line Seyfert 1"

    NASA Astrophysics Data System (ADS)

    Oío, G.; Schmidt, E.; Vega Neme, L. R.

    We apply a spectral synthesis method to Narrow Line Seyfert 1 active galax- ies with public spectra available. Our goal will be to obtain the stellar ve- locity dispersions, and then the central black hole masses via the Tremaine relation. We comment several problems we found in fitting this type of objects and the possibility of obtaining masses through the emission lines. FULL TEXT IN SPANISH

  12. An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.

  13. Investigating powerful jets in radio-loud narrow-line Seyfert 1s

    DOE PAGES

    Orienti, M.; D'Ammando, F.; Larsson, J.; ...

    2015-09-14

    Here, we report results on multiband observations from radio to γ-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Furthermore, both sources show a core–jet structure on parsec scale, while they are unresolved at the arcsecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good γ-ray source candidates. Fermi-Large Area Telescope detected γ-ray emission only from PKS 2004-447, with a γ-ray luminosity comparable to that observed in blazars. There was no γ-ray emission observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of themore » spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM–Newton in 2012 are described by a single power law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.« less

  14. Investigating powerful jets in radio-loud narrow-line Seyfert 1s

    SciTech Connect

    Orienti, M.; D'Ammando, F.; Larsson, J.; Finke, J.; Giroletti, M.; Dallacasa, D.; Isacsson, T.; Stoby Hoglund, J.

    2015-09-14

    Here, we report results on multiband observations from radio to γ-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Furthermore, both sources show a core–jet structure on parsec scale, while they are unresolved at the arcsecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good γ-ray source candidates. Fermi-Large Area Telescope detected γ-ray emission only from PKS 2004-447, with a γ-ray luminosity comparable to that observed in blazars. There was no γ-ray emission observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of the spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM–Newton in 2012 are described by a single power law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.

  15. Reddening and He i ∗ λ10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng; Liu, Wenjuan; Pan, Xiang; Jiang, Ning; Ji, Tuo; Jiang, Peng; Wang, Shufen

    2017-08-01

    We report the detection of heavy reddening and the He i* λ10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E(B - V) ˜ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those of narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.

  16. Radio jet emission from GeV-emitting narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Fuhrmann, L.; Marchili, N.; Foschini, L.; Myserlis, I.; Karamanavis, V.; Komossa, S.; Blinov, D.; Krichbaum, T. P.; Sievers, A.; Ungerechts, H.; Zensus, J. A.

    2015-03-01

    Context. With the current study we aim at understanding the properties of radio emission and the assumed jet from four radio-loud and γ-ray-loud narrow-line Seyfert 1 galaxies that have been detected by Fermi. These are Seyfert 1 galaxies with emission lines at the low end of the FWHM distribution. Aims: The ultimate goal is twofold: first we investigate whether a relativistic jet is operating at the source producing the radio output, and second, we quantify the jet characteristics to understand possible similarities with and differences from the jets found in typical blazars. Methods: We relied on the most systematic monitoring of radio-loud and γ-ray-detected narrow-line Seyfert 1 galaxies in the cm and mm radio bands conducted with the Effelsberg 100 m and IRAM 30 m telescopes. It covers the longest time-baselines and the most radio frequencies to date. This dataset of multi-wavelength, long-term radio light-curves was analysed from several perspectives. We developed a novel algorithm to extract sensible variability parameters (mainly amplitudes and time scales) that were then used to compute variability brightness temperatures and the corresponding Doppler factors. The jet powers were computed from the light curves to estimate the energy output and compare it with that of typical blazars. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. Results: The length of the available light curves for three of the four sources in the sample allowed a firm understanding of the general behaviour of the sources. They all display intensive variability that appears to be occurring at a pace rather faster than what is commonly seen in blazars. The flaring events become progressively more prominent as the frequency increases and show intensive spectral evolution that is indicative of shock evolution. The variability brightness temperatures and the associated Doppler factors are moderate, implying a mildly

  17. A Bar Fuels a Supermassive Black Hole?: Host Galaxies of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Ohta, Kouji; Aoki, Kentaro; Kawaguchi, Toshihiro; Kiuchi, Gaku

    2007-03-01

    We present optical images of nearby 50 narrow-line Seyfert 1 galaxies (NLS1s) that cover all the NLS1s at z<0.0666 and δ>=-25deg known in 2001. Among the 50 NLS1s, 40 images are newly obtained by our observations and 10 images are taken from archive data. Motivated by the hypothesis that NLS1s are in an early phase of a supermassive black hole (BH) evolution, we present a study of NLS1 host galaxy morphology to examine trigger mechanism(s) of active galactic nuclei (AGNs) by seeing the early phase of AGN. With these images, we made morphological classification by visual inspection and by quantitative method, and found a high bar frequency of the NLS1s in the optical band; the bar frequency is 85%+/-7% among disk galaxies (64%-71% in total sample) which is more frequent than that (40%-70%) of broad-line Seyfert 1 galaxies (BLS1s) and normal disk galaxies, although the significance is marginal. Our results confirm the claim by Crenshaw and coworkers with a similar analysis for 19 NLS1s. The frequency is comparable to that of H II/starburst galaxies. We also examined the bar frequency against width of the broad Hβ emission line, Eddington ratio, and BH mass, but no clear trend is seen. Possible implications, such as an evolutionary sequence from NLS1s to BLS1s, are discussed briefly. Based on data collected at University of Hawaii 88 inch telescope, Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, Kitt Peak National Observatory 2.1 m telescope, which is operated by the National Optical Astronomy Observatory (NOAO), operated by AURA, Inc., under contract with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii-Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the

  18. SBS 0846+513: a new γ-ray-emitting narrow-line Seyfert 1 galaxy

    SciTech Connect

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; Readhead, A. C. S.; Richards, J. L.; Stawarz, Ł.; Donato, D.

    2012-10-11

    In this paper, we report Fermi Large Area Telescope (LAT) observations of the radio-loud active galactic nucleus SBS 0846+513 (z = 0.5835), optically classified as a narrow-line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at γ-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October–2011 August. In particular, a strong γ-ray flare was observed in 2011 June reaching an isotropic γ-ray luminosity (0.1–300 GeV) of 1.0 × 1048 erg s-1, comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in γ rays. An apparent superluminal velocity of (8.2 ± 1.5)c in the jet was inferred from 2011 to 2012 Very Long Baseline Array (VLBA) images, suggesting the presence of a highly relativistic jet. Finally, both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and γ-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  19. SBS 0846+513: a new γ-ray-emitting narrow-line Seyfert 1 galaxy

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Finke, J.; ...

    2012-10-11

    In this paper, we report Fermi Large Area Telescope (LAT) observations of the radio-loud active galactic nucleus SBS 0846+513 (z = 0.5835), optically classified as a narrow-line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at γ-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October–2011 August. In particular, a strong γ-ray flare was observed in 2011 June reaching an isotropic γ-ray luminosity (0.1–300 GeV) of 1.0 × 1048 erg s-1, comparable to that of the brightest flat spectrum radio quasars, and showingmore » spectral evolution in γ rays. An apparent superluminal velocity of (8.2 ± 1.5)c in the jet was inferred from 2011 to 2012 Very Long Baseline Array (VLBA) images, suggesting the presence of a highly relativistic jet. Finally, both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and γ-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.« less

  20. THE COMPACT RADIO STRUCTURE OF RADIO-LOUD NARROW LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Gu Minfeng; Chen Yongjun

    2010-06-15

    We present the compact radio structure of three radio-loud narrow line Seyfert 1 galaxies from the Very Long Baseline Array archive data at 2.3, 5, and 8.4 GHz. In RXS J16290+4007, the radio structure is mostly unresolved. The combination of compact radio structure, high brightness temperature, and inverted spectrum between simultaneous 2.3 and 8.4 GHz strongly favors jet relativistic beaming. Combined with the very long baseline interferometry data at 1.6 and 8.4 GHz from the literature, we argue that RXS J16333+4718 also may harbor a relativistic jet, with resolved core-jet structure in 5 GHz. B3 1702+457 is clearly resolved with a well-defined jet component. The overall radio steep spectrum indicates that B3 1702+457 is likely a source optically defined as NLS1 with radio definition of compact steep spectrum sources. From these three sources, we found that radio loud NLS1s can be either intrinsically radio loud (e.g., B3 1702+457) or apparently radio loud due to jet beaming effects (e.g., RXS J16290+4007 and RXS J16333+4718).

  1. A FANAROFF-RILEY TYPE I CANDIDATE IN NARROW-LINE SEYFERT 1 GALAXY Mrk 1239

    SciTech Connect

    Doi, Akihiro; Wajima, Kiyoaki; Hagiwara, Yoshiaki; Inoue, Makoto

    2015-01-10

    We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-producing central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff-Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.

  2. SBS 0846+513: a New Gamma-ray Emitting Narrow-line Seyfert 1 Galaxy

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; hide

    2012-01-01

    We report Fermi-LAT observations of the radio-loud AGN SBS 0846+513 (z=0.5835), optically classified as a Narrow-Line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at ?-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular a strong gamma-ray flare was observed in 2011 June reaching an isotropic ?-ray luminosity (0.1-300 GeV) of 1.0×10(sup 48) erg s(sup -1), comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in gamma rays. An apparent superluminal velocity of (8.2+/-1.5)c in the jet was inferred from 2011-2012 VLBA images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and gamma-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  3. A Fanaroff-Riley Type I Candidate in Narrow-Line Seyfert 1 Galaxy Mrk 1239

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Wajima, Kiyoaki; Hagiwara, Yoshiaki; Inoue, Makoto

    2015-01-01

    We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-producing central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff-Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.

  4. Narrow Line Seyfert 1 Galaxies from the Final Data Release of SDSSII

    NASA Astrophysics Data System (ADS)

    Tammour, Aycha; Eskridge, P. B.

    2011-05-01

    We present a study of a sample of Narrow Line Seyfert 1 (NLS1) candidates extracted from the seventh data release of the Sloan Digital Sky Survey SDSSII. The sample is restricted to objects from the QSO database that are detected by ROSAT and have z < 0.39, FWHM(Hα) < 4000 km.s-1 and FWHM(Hβ) < 4000 km.s-1 as determined by the SDSS pipeline. We fit Hβ with a Gaussian and a Lorentzian in order to examine the various properties of the spectra with the width of the Lorentzian Hβ. We also look at the properties of the sample above the classic NLS1 cut-off of FWHM(Hβ) < 2000 km.s-1 . We gratefully acknowledge the financial support from the College of Science, Engineering and Technology, and from the College of Graduate Studies at Minnesota State University. A.T. acknowledges the support from the US Department of State -The Fulbright Program and the AMIDEAST.

  5. Narrow-Line Seyfert 1 Galaxies and their place in the Universe

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Colpi, M.; Gallo, L.; Grupe, D.; Komossa, S.; Leighly, K.; Mathur, S.

    In 1978, Davidson and Kinman wrote about Markarian 359: "This unusual object merits further observations...". In 1985, Osterbrock and Pogge defined a new class of active galactic nuclei (AGN), named Narrow-Line Seyfert 1 (NLS1). Twenty-five years later, NLS1s still continue to intrigue and bewilder. NLS1s manifest extreme behaviour at all wavelengths. They exhibit the most extreme X-ray variability seen in radio-quiet AGN, the most intense optical FeII emission, and high rates of star formation. In general, their characteristics are consistent of AGNs with relatively low mass black holes accreting close to the Eddington rate. The 2009 Fermi Gamma-ray Space Telescope discovery of high-energy (E>100 MeV) gamma rays in a handful of NLS1s has established the existence of relativistic jets in these systems -- a fact previously hinted at by the flat radio spectrum and high brightness temperature seen in some objects. Since NLS1 are generally hosted by spirals, this poses some intriguing questions on the galaxy evolution and on how relativistic jets are generated. It is therefore time for the broad community to come together and discuss what we have discovered in the last quarter century and lay the foundation for future work. Workshop Topics: * Central engine: BH mass, accretion disk, BLR/NLR, jet * Host galaxy: morphology, star formation, merging history * NLS1 in the Universe: comparison with other types of AGN, surveys/statistics, formation/merging, cosmological evolution

  6. EXTENDED NARROW-LINE EMISSION IN THE BRIGHT SEYFERT 1.5 GALAXY HE 2211-3903

    SciTech Connect

    Scharwaechter, J.; Dopita, M. A.; Zuther, J.; Fischer, S.; Eckart, A.; Komossa, S.

    2011-08-15

    Extended narrow-line regions (ENLRs) and extended emission-line regions have been the focus of integral field spectroscopy aiming at the inner kiloparsecs of nearby Seyfert galaxies as well as the larger environment of high-redshift QSOs. Based on observations with the Wide Field Spectrograph at the 2.3 m telescope of the Australian National University, we present spatially resolved emission-line diagnostics of the bright Seyfert 1.5 galaxy HE 2211-3903 which is drawn from a sample of the brightest Seyfert galaxies at z < 0.06 with luminosities around the classical Seyfert/QSO demarcation. In addition to the previously known spiral arms of HE 2211-3903, the emission-line maps reveal a large-scale ring with a radius of about 6 kpc which is connected to the active galactic nucleus (AGN) through a bar-like structure. The overall gas kinematics indicates a disk rotation pattern. The emission-line ratios show Seyfert-type, H II region-type, and composite classifications, while there is no strong evidence of LINER-type ratios. Shock ionization is likely to be negligible throughout the galaxy. The composite line ratios are explained via a mixing line between AGN and H II region photoionization. Composite line ratios are predominantly found in between the H II regions in the circum-nuclear region, the bar-like structure to the east of the nucleus, and the eastern half of the ring, suggesting AGN photoionization of the low-density interstellar medium in an ENLR on galaxy scales. The line ratios in the nucleus indicate N enrichment, which is discussed in terms of chemical enrichment by Wolf-Rayet and asymptotic giant branch stars during past and ongoing nuclear starburst activity.

  7. PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy

    NASA Astrophysics Data System (ADS)

    Blanchard, P. K.; Nicholl, M.; Berger, E.; Guillochon, J.; Margutti, R.; Chornock, R.; Alexander, K. D.; Leja, J.; Drout, M. R.

    2017-07-01

    We present observations of PS16dtm (also known as SN 2016ezh), a luminous transient that occurred at the nucleus of a narrow-line Seyfert 1 galaxy hosting a 106 M ⊙ black hole. The light curve shows that PS16dtm exhibited a plateau phase for ∼100 days, during which it showed no color evolution, maintained a blackbody temperature of ∼ 1.7× {10}4 K, and radiated at approximately the Eddington luminosity of the supermassive black hole (SMBH). The spectra exhibit multicomponent hydrogen emission lines and strong Fe ii emission, show little time evolution, and closely resemble the spectra of NLS1s while being distinct from those of Type IIn supernovae (SNe IIn). Moreover, PS16dtm is undetected in the X-rays to a limit an order of magnitude below an archival X-ray detection of its host galaxy. These observations strongly link PS16dtm to activity associated with the SMBH and are difficult to reconcile with an SN origin or known forms of active galactic nucleus (AGN) variability. Therefore, we argue that PS16dtm is a tidal disruption event (TDE) in which the accretion of the stellar debris powers the rise in the continuum and excitation of the preexisting broad-line region, while obscuring the X-ray-emitting region of the preexisting AGN disk. We predict that PS16dtm will remain bright for years and that the X-ray emission will reappear on a similar timescale as the accretion rate declines. Placing PS16dtm in the context of other TDEs, we find that TDEs in AGN galaxies are more efficient and reach Eddington luminosities, likely due to interaction of the stellar debris with the preexisting accretion disk.

  8. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Anjum, Ayesha; Pandey, S. B.

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  9. Investigating the Sensitivity of Emission Line Spectra to the Incident SED in Narrow Line Seyferts and LINERs

    NASA Astrophysics Data System (ADS)

    Greene, Christopher; Richardson, Chris T.

    2017-01-01

    This research investigates photoionization models of the Narrow Line Region (NLR) of Seyfert galaxies and Low-Ionization Nuclear Emitting Region (LINER) galaxies with the use of the astrophysical code CLOUDY. Groves et al. 2004 attempted to resolve the apparent uniformity of emission line ratios in the NLR through introducing dusty, radiation pressure-dominated photoionization models of AGN. This model assumed a simple power law relation for the Spectral Energy Distribution (SED). Grupe et al. 2010 found a correlation between αuv and αx, and by constraining αuv as a function of αx we developed a photoionization model for the ionizing spectrum of a typical Seyfert Narrow Line Region. The incident SED is based upon the spectral indices αuv, αx, αox , and the blackbody accretion disk temperature Tbb . We set the value of αox based on the average of data collected in Grupe et al. 2010, and fix the value of αuv to αx based on their linear correlation. To check the validity of our model, simulations were run across a range of blackbody accretion disk temperatures and αx, while fixing the hydrogen density, ionization parameter, and elemental abundance of clouds in the NLR. The emission lines produced by these simulations were plotted using standard diagnostic diagrams and compared to emission line data obtained from the Sloan Digital Sky Survey. Our model produces emission lines without significant variation between simulations with αx = 1.42, 1.17, and 2.19, with Tbb ranging from 104 K to 107 K, except with regard to [O I] λ6300/Hα, where our simulated spectra started to fall on the boundary between Seyferts and LINERs. This leads us to examine the ability of our photoionization model to create emission line spectra that are typical of LINERs, as debate still continues over the primary excitation mechanism for LINERs. To adjust our model to fit LINERs, we lower the value of the ionization parameter and discuss the preliminary results within the context of

  10. Radiation mechanisms and physical properties of the γ-ray narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Zhou, Bing

    2015-12-01

    We investigate the physical properties and radiation mechanisms of 11 states of five narrow-line Seyfert 1 (NLS1) galaxies detected by the Large Area Telescope on board Fermi through modeling the quasi-simultaneous multi-band observations. We obtain the best-fitting model parameters and their uncertainties for each state with the χ2-minimization procedure and discuss their implications on the characteristics of jet. Similar to blazars, their spectral energy distributions (SEDs) have a two-humped structure and their non-thermal emission can be modelled with the single-zone synchrotron + inverse Compton (IC) model. For all states, the GeV γ-rays may be contributed by the external Compton (EC) emission components. The observations of Fermi are mostly located at the declining stage of the EC humps. Text < 0.5 eV in all cases (Text is the characteristic temperature of external soft photons), suggesting that their radiation zones may be usually located outside of the broad line region (BLR) and the soft photons of Compton scattering mainly come from the dust torus. Compared with the bright Fermi blazars studied by Ghisellini et al. (2014, Nature, 515, 376), the Pjet (the power of the jets) of NLS1 galaxies detected by Fermi is similar to that of the flat spectrum radio quasars (FSRQs) but a little larger than that of the BL Lac objects (BL Lacs). However, a comparison of Pr (the powers of radiations) with the FSRQs and BL Lac objects shows that NLS1 galaxies' Pr has values comparable to BL Lac objects but lower than FSRQs in spite of having similar Pjet values and the same energy carrier (the cold protons) as the FSRQs. Observations indicate that γ-NLS1 galaxies might have lower η (efficiency of gravitational energy release) values than GeV blazars.

  11. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Richards, Joseph L.; Lister, Matthew L.

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  12. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Ravikumar, C. D.

    2015-02-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  13. Kiloparsec-Scale Jets in Three Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Richards, Joseph L.; Lister, Matthew L.

    2015-02-01

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20-70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core-luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲1010 K), we conclude these jets are mildly relativistic (β ≲ 0.3, δ ˜ 1-1.5) and aligned at moderately small angles to the line of sight (10-15°). The derived kinematic ages of ˜ {{10}6}-107 yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  14. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    SciTech Connect

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang; Komossa, S.; Zensus, J. A.; Yuan, Weimin; Wajima, Kiyoaki; Zhou, Hongyan

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  15. Intra-night optical variability characteristics of different classes of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Kshama, S. K.; Paliya, Vaidehi S.; Stalin, C. S.

    2017-04-01

    In a first systematic effort to characterize the intra-night optical variability (INOV) of different classes of narrow-line Seyfert 1 (NLSy1) Galaxies, we have carried out observations on a sample of radio-loud (RL) and radio-quiet (RQ) NLSy1 galaxies. The RL-NLSy1 galaxies are further divided into γ-ray loud (GL) and γ-ray quiet (GQ) NLSy1 galaxies. Our sample consists of four sets, each set consisting of a RQ-NLSy1, a GQ-NLSy1 and a GL-NLSy1 galaxy, closely matched in redshift and optical luminosity. Our observations on both RQ- and GQ-NLSy1 galaxies consist of a total of 19 nights, whereas the data for GL-NLSy1 galaxies (18 nights) were taken from the literature published earlier by us. This enabled us to do a comparison of the duty cycle (DC) of different classes of NLSy1 galaxies. Using power-enhanced F-test, with a variability threshold of 1 per cent, we find DCs of about 55 per cent, 39 per cent and 0 per cent for GL-, GQ- and RQ-NLSy1 galaxies, respectively. The high DC and large amplitude of INOV (24.0 ± 13.7 per cent) shown by GL-NLSy1 galaxies relative to the other two classes might be due to their inner aligned relativistic jets having large bulk Lorentz factors. The null DC of RQ-NLSy1 galaxies could mean the presence of low power and/or largely misaligned jets in them. However, dividing RL-NLSy1 galaxies into low and high optical polarization sources, we find that sources with large polarization show somewhat higher DCs (69 per cent) and amplitudes (29 per cent) compared to those with low polarization. This points to a possible link between INOV and optical polarization.

  16. Temporal and dynamical spectral analysis of select narrow line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Liebmann, Andrew Cargill

    2010-12-01

    Presented is the detailed analysis of three Narrow Line Seyfert 1 galaxies using the method of dynamical spectral analysis. These are NGC 4051, IRAS F12397+3333 and Mrk 766. The highly variable NGC 4051 exhibits some dramatic changes over the course of two observations. These dramatic changes are attributed to a variable emission region being partially covered by a fixed, thick absorbing cloud. A unique time region was found where the emission region becomes smaller than the absorbing cloud. Source enters a true minimal phase and appears quite stable, appearing to "turn off." When in its lowest flux states NGC 4051 has a thermal plasma feature suggesting starburst activity in the nucleus. The possibility of starburst activity proves an important link in the understanding of the evolution of Active Galactic Nuclei. IRAS F12397+3333, a little studied source, was found to possess a complex, dusty, warm absorber spectrum of helium- and hydrogen-like carbon, nitrogen, oxygen, neon and several ionic species of iron. This is similar to the spectrum of IRAS 13349+2348. A two-phase gas was used to model this spectrum. The location of the gas is consistent with being located in the narrow line region. Two types of variability were found in the rapidly varying Mrk 766. The long-term variability and its associated spectral flattening seen in two observations are caused by a thick partially covering cloud and variable emission region. However the average spectral behavior shows partial covering of a thinner cloud. The result is a "lumpy cloud." When the source is dim a thicker portion of the clouds covers it, but as the source brightens and enlarges the thinner portion plays a more dominant role in the covering. The short, rapid variability is caused by the combination of a highly variable power law component and a stable reflected component, referred to here as ionized relativistic reflection. Finally, some unique flares were discovered. Unlike the other flares seen in the

  17. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our

  18. A spectroscopic analysis of a sample of narrow-line Seyfert 1 galaxies selected from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Cracco, V.; Ciroi, S.; Berton, M.; Di Mille, F.; Foschini, L.; La Mura, G.; Rafanelli, P.

    2016-10-01

    We revisited the spectroscopic characteristics of narrow-line Seyfert 1 galaxies (NLS1s) by analysing a homogeneous sample of 296 NLS1s at redshift between 0.028 and 0.345, extracted from the Sloan Digital Sky Survey (SDSS-DR7) public archive. We confirm that NLS1s are mostly characterized by Balmer lines with Lorentzian profiles, lower black hole masses and higher Eddington ratios than classic broad-line Seyfert 1 (BLS1s), but they also appear to be active galactic nuclei (AGNs) contiguous with BLS1s and sharing with them common properties. Strong Fe II emission does not seem to be a distinctive property of NLS1s, as low values of Fe II/Hβ are equally observed in these AGNs. Our data indicate that Fe II and Ca II kinematics are consistent with the one of Hβ. On the contrary, O I λ8446 seems to be systematically narrower and it is likely emitted by gas of the broad-line region more distant from the ionizing source and showing different physical properties. Finally, almost all NLS1s of our sample show radial motions of the narrow-line region highly ionized gas. The mechanism responsible for this effect is not yet clear, but there are hints that very fast outflows require high continuum luminosities (>1044 erg s-1) or high Eddington ratios (log (Lbol/LEdd) > -0.1).

  19. Near-infrared Spectroscopy of Nearby Seyfert Galaxies: Is There Evidence for Shock Excitation in Narrow-line Regions?

    NASA Astrophysics Data System (ADS)

    Terao, K.; Nagao, T.; Hashimoto, T.; Yanagisawa, K.; Matsuoka, K.; Toba, Y.; Ikeda, H.; Taniguchi, Y.

    2016-12-01

    One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J-band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257 μm and [P ii]1.188 μm, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition to our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.

  20. Multifrequency studies of the narrow-line Seyfert 1 galaxy SBS 0846+513

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Finke, J.; ...

    2013-09-16

    Here, the narrow-line Seyfert 1 galaxy SBS 0846+513 was first detected by the Large Area Telescope on board Fermi in 2011 June–July when it underwent a period of flaring activity. Since then, as Fermi continues to accumulate data on this source, its flux has been monitored on a daily basis. Two further γ-ray flaring episodes from SBS 0846+513 were observed in 2012 May and August, reaching a daily peak flux integrated above 100 MeV of (50 ± 12) × 10–8 ph cm–2 s–1, and (73 ± 14) × 10–8 ph cm–2 s–1 on May 24 and August 7, respectively. Threemore » outbursts were detected at 15 GHz by the Owens Valley Radio Observatory 40 m telescope in 2012 May, 2012 October and 2013 January, suggesting a complex connection with the γ-ray activity. The most likely scenario suggests that the 2012 May γ-ray flare may not be directly related to the radio activity observed over the same period, while the two γ-ray flaring episodes may be related to the radio activity observed at 15 GHz in 2012 October and 2013 January. The γ-ray flare in 2012 May triggered Swift observations that confirmed that SBS 0846+513 was also exhibiting high activity in the optical, UV and X-ray bands, thus providing a firm identification between the γ-ray source and the lower energy counterpart. We compared the spectral energy distribution (SED) of the flaring state in 2012 May with that of a quiescent state. The two SEDs, modelled as an external Compton component of seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. No significant evidence of thermal emission from the accretion disc has been observed. Interestingly, in the 5 GHz radio luminosity versus synchrotron peak frequency plot SBS 0846+513 seems to lie in the flat spectrum radio quasar part of the so-called ‘blazar sequence’.« less

  1. Multifrequency studies of the narrow-line Seyfert 1 galaxy SBS 0846+513

    SciTech Connect

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Karamanavis, V.; Max-Moerbeck, W.; Myserlis, I.; Readhead, A. C. S.; Richards, J. L.

    2013-09-16

    Here, the narrow-line Seyfert 1 galaxy SBS 0846+513 was first detected by the Large Area Telescope on board Fermi in 2011 June–July when it underwent a period of flaring activity. Since then, as Fermi continues to accumulate data on this source, its flux has been monitored on a daily basis. Two further γ-ray flaring episodes from SBS 0846+513 were observed in 2012 May and August, reaching a daily peak flux integrated above 100 MeV of (50 ± 12) × 10–8 ph cm–2 s–1, and (73 ± 14) × 10–8 ph cm–2 s–1 on May 24 and August 7, respectively. Three outbursts were detected at 15 GHz by the Owens Valley Radio Observatory 40 m telescope in 2012 May, 2012 October and 2013 January, suggesting a complex connection with the γ-ray activity. The most likely scenario suggests that the 2012 May γ-ray flare may not be directly related to the radio activity observed over the same period, while the two γ-ray flaring episodes may be related to the radio activity observed at 15 GHz in 2012 October and 2013 January. The γ-ray flare in 2012 May triggered Swift observations that confirmed that SBS 0846+513 was also exhibiting high activity in the optical, UV and X-ray bands, thus providing a firm identification between the γ-ray source and the lower energy counterpart. We compared the spectral energy distribution (SED) of the flaring state in 2012 May with that of a quiescent state. The two SEDs, modelled as an external Compton component of seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. No significant evidence of thermal emission from the accretion disc has been observed. Interestingly, in the 5 GHz radio luminosity versus synchrotron peak frequency plot SBS 0846+513 seems to lie in the flat spectrum radio quasar part of the so-called ‘blazar sequence’.

  2. The ordinary life of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    SciTech Connect

    D'Ammando, F.; Orienti, M.; Doi, A.; Giroletti, M.; Dallacasa, D.; Hovatta, T.; Drake, A. J.; Max-Moerbeck, W.; Readhead, A. C. S.; Richards, J. L.

    2013-06-03

    In this paper, we report on multifrequency observations of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036 performed from radio to γ-rays during 2008 August–2012 November by Fermi-Large Area Telescope (LAT), Swift (X-ray Telescope and Ultraviolet/Optical Telescope), Owens Valley Radio Observatory, Very Long Baseline Array (VLBA) and Very Large Array. No significant variability has been observed in γ-rays, with 0.1–100 GeV flux that ranged between (3–7) × 10–8 ph cm–2 s–1 using 3-month time bins. The photon index of the LAT spectrum (Γ = 2.60 ± 0.06) and the apparent isotropic γ-ray luminosity (L0.1-100 GeV = 7.8 × 1045 erg s–1) over 51 months are typical of a flat spectrum radio quasar. The radio spectral variability and the one-sided structure, in addition to the observed γ-ray luminosity, suggest a relativistic jet with a high Doppler factor. In contrast to SBS 0846+513, the VLBA at 15 GHz did not observe superluminal motion for PKS 1502+036. Despite having the optical characteristics typical of a narrow-line Seyfert 1 galaxy, radio and γ-ray properties of PKS 1502+036 are found to be similar to those of a blazar at the low end of the black hole mass distribution for blazars. As a result, this is in agreement with what has been found in the case of the other γ-ray emitting narrow-line Seyfert 1 SBS 0846+513.

  3. The ordinary life of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Doi, A.; ...

    2013-06-03

    In this paper, we report on multifrequency observations of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036 performed from radio to γ-rays during 2008 August–2012 November by Fermi-Large Area Telescope (LAT), Swift (X-ray Telescope and Ultraviolet/Optical Telescope), Owens Valley Radio Observatory, Very Long Baseline Array (VLBA) and Very Large Array. No significant variability has been observed in γ-rays, with 0.1–100 GeV flux that ranged between (3–7) × 10–8 ph cm–2 s–1 using 3-month time bins. The photon index of the LAT spectrum (Γ = 2.60 ± 0.06) and the apparent isotropic γ-ray luminosity (L0.1-100 GeV = 7.8 × 1045more » erg s–1) over 51 months are typical of a flat spectrum radio quasar. The radio spectral variability and the one-sided structure, in addition to the observed γ-ray luminosity, suggest a relativistic jet with a high Doppler factor. In contrast to SBS 0846+513, the VLBA at 15 GHz did not observe superluminal motion for PKS 1502+036. Despite having the optical characteristics typical of a narrow-line Seyfert 1 galaxy, radio and γ-ray properties of PKS 1502+036 are found to be similar to those of a blazar at the low end of the black hole mass distribution for blazars. As a result, this is in agreement with what has been found in the case of the other γ-ray emitting narrow-line Seyfert 1 SBS 0846+513.« less

  4. Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-04

    In this work, we report the discovery with Fermi/LAT of γ-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z = 0.409), 1H 0323+342 (z = 0.061), and PKS 2004 – 447 (z = 0.24). In addition to PMN J0948+0022 (z = 0.585), the first source of this type to be detected in γ rays, they may form an emerging new class of γ-ray active galactic nuclei (AGNs). Lastly, these findings can have strong implications on our knowledge about relativistic jets and the unified model of the AGN.

  5. Seyfert galaxy narrow-line regions. I - Observations of forbidden O III lambda 5007

    NASA Technical Reports Server (NTRS)

    Vrtilek, J. M.; Carleton, N. P.

    1985-01-01

    High-resolution (23 km/s) spectra of the forbidden O III emission line at 500.7 nm from the nuclear regions of 32 Seyfert galaxies and low-redshift QSOs have been obtained at the Smithsonian Institution/University of Arizona Multiple Mirror Telescope. The properties of the data are summarized by a group of measures which efficiently describe the entire line profiles, are stable in the presence of noise, and have easily visualized geometric meaning. The distributions of line profile measures are shown. In particular, typical forbidden O III FWHM values of 200-520 km/s (mean + or - 1 sigma) and a highly significant tendency for the lines to fall off more slowly on the blue than on the red side of the peak have been found, in agreement with previous work. Using galaxian system velocities obtained from absorption-line measurements, the distribution of differences between forbidden O III emission-line velocities and galaxian system velocities has been determined; in disagreement with previous work, this distribution has been found to be consistent with symmetry about zero difference velocity.

  6. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948 0022 in March-July 2009

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R. Berenji, B.; Bloom, E.D.; Bonamente, E. Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; Caliandro, G.A.; /more authors..

    2012-03-29

    Following the recent discovery of {gamma} rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to {gamma} rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to {gamma}-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the {gamma}-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  7. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-25

    For this research, following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band.more » The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. In conclusion, these results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.« less

  8. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Celotti, A.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Collmar, W.; Conrad, J.; Costamante, L.; Cutini, S.; de Angelis, A.; de Palma, F.; Do Couto e Silva, E.; Drell, P. S.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Foschini, L.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; McGlynn, S.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Nestoras, I.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Parent, D.; Pavlidou, V.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, O.; Reposeur, T.; Richards, J. L.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F. -W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Shaw, M. S.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Angelakis, E.; Bailyn, C.; Bignall, H.; Blanchard, J.; Bonning, E. W.; Buxton, M.; Canterna, R.; Carramiñana, A.; Carrasco, L.; Colomer, F.; Doi, A.; Ghisellini, G.; Hauser, M.; Hong, X.; Isler, J.; Kino, M.; Kovalev, Y. Y.; Kovalev, Yu. A.; Krichbaum, T. P.; Kutyrev, A.; Lahteenmaki, A.; van Langevelde, H. J.; Lister, M. L.; Macomb, D.; Maraschi, L.; Marchili, N.; Nagai, H.; Paragi, Z.; Phillips, C.; Pushkarev, A. B.; Recillas, E.; Roming, P.; Sekido, M.; Stark, M. A.; Szomoru, A.; Tammi, J.; Tavecchio, F.; Tornikoski, M.; Tzioumis, A. K.; Urry, C. M.; Wagner, S.

    2009-11-25

    For this research, following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. In conclusion, these results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  9. VizieR Online Data Catalog: Narrow line Seyfert 1 galaxies from SDSS-DR3 (Zhou+, 2006)

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y.

    2017-01-01

    We carried out a systematic search for narrow line Seyfert 1 galaxies (NLS1s) from objects assigned as "QSOs" or "galaxies" in the spectroscopic sample of the Sloan Digital Sky Survey Data Release 3 (SDSS DR3) by a careful modeling of their emission lines and continua. The result is a uniform sample comprising ~2000 NLS1s. This sample dramatically increases the number of known NLS1s by a factor of ~10 over previous compilations. This paper presents the parameters of the prominent emission lines and continua, which were measured accurately with typical uncertainties <10%. Taking advantage of such an unprecedented large and uniform sample with accurately measured spectral parameters, we carried out various statistical analyses, some of which were only possible for the first time. (1 data file).

  10. Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo

    NASA Astrophysics Data System (ADS)

    D'Ammando, Filippo; Orienti, Monica; Finke, Justin; Giroletti, Marcello; Larsson, Josefin

    2016-08-01

    Relativistic jets are usually produced by radio-loud AGN hosted in giant elliptical galaxies such as blazars and radio galaxies. The discovery by Fermi-LAT of variable gamma-ray emission from narrow-line Seyfert 1 (NLSy1) galaxies revealed the presence of a new class of AGN with relativistic jets. Considering that NLSy1 are usually hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects and the formation of relativistic jets. In this talk I discuss the radio-to-gamma-ray properties of the gamma-ray NLSy1 detected during the first 7 years of Fermi operation, the observations of their host galaxies, and the estimation of their black hole masses.

  11. Probing the physics of narrow-line regions of Seyfert galaxies. I. The case of NGC 5427

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Scharwächter, Julia; Shastri, Prajval; Kewley, Lisa J.; Davies, Rebecca; Sutherland, Ralph; Kharb, Preeti; Jose, Jessy; Hampton, Elise; Jin, Chichuan; Banfield, Julie; Basurah, Hassan; Fischer, Sebastian

    2014-06-01

    Context. The spectra of the extended narrow-line regions (ENLRs) of Seyfert 2 galaxies probe the physics of the central active galaxy nucleus (AGN), since they encode the energy distribution of the ionising photons, the radiative flux and radiation pressure, nuclear chemical abundances and the mechanical energy input of the (unseen) central AGN. Aims: We aim to constrain the chemical abundance in the interstellar medium of the ENLR by measuring the abundance gradient in the circum-nuclear H ii regions to determine the nuclear chemical abundances, and to use these to in turn determine the EUV spectral energy distribution for comparison with theoretical models. Methods: We have used the Wide Field Spectrograph (WiFeS) on the ANU 2.3 m telescope at Siding Spring to observe the nearby, nearly face-on, Seyfert 2 galaxy, NGC 5427. We have obtained integral field spectroscopy of both the nuclear regions and the H ii regions in the spiral arms. The observed spectra have been modelled using the MAPPINGS IV photoionisation code, both to derive the chemical abundances in the H ii regions and the Seyfert nucleus, and to constrain the EUV spectral energy distribution of the AGN illuminating the ENLR. Results: We find a very high nuclear abundance, 3.0 times solar, with clear evidence of a nuclear enhancement of N and He, possibly caused by massive star formation in the extended (~100 pc) central disk structure. The circum-nuclear narrow-line region spectrum is fit by a radiation pressure dominated photoionisation model model with an input EUV spectrum from a Black Hole with mass 5 × 107 M⊙ radiating at ~0.1 of its Eddington luminosity. The bolometric luminosity is closely constrained to be log Lbol = 44.3 ± 0.1 erg s-1. The EUV spectrum characterised by a soft accretion disk and a harder component extending to above 15 keV. The ENLR region is extended in the NW-SE direction. The line ratio variation in circum-nuclear spaxels can be understood as the result of mixing H ii

  12. EMERGENCE OF A BROAD ABSORPTION LINE OUTFLOW IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007

    SciTech Connect

    Leighly, Karen M.; Casebeer, Darrin A.; Hamann, Fred; Grupe, Dirk

    2009-08-10

    We report results from a 2003 Far Ultraviolet Spectroscopic Explorer (FUSE) observation and reanalysis of a 1996 Hubble Space Telescope (HST) observation of the unusual X-ray transient Narrow-line Seyfert 1 galaxy WPVS 007. The HST Faint Object Spectrograph (FOS) spectrum revealed mini-BALs (broad absorption lines) with V {sub max} {approx} 900 km s{sup -1} and FWHM {approx}550 km s{sup -1}. The FUSE spectrum showed that an additional BAL outflow with V {sub max} {approx} 6000 km s{sup -1} and FWHM {approx}3400 km s{sup -1} had appeared. WPVS 007 is a low-luminosity object in which such a high-velocity outflow is not expected; therefore, it is an outlier on the M{sub V} /v {sub max} relationship. Template spectral fitting yielded apparent ionic columns, and a Cloudy analysis showed that the presence of P V requires a high-ionization parameter log(U) {>=} 0 and high-column density log(N {sub H}) {>=} 23 assuming solar abundances and a nominal spectral energy distribution (SED) for low-luminosity NLS1s with {alpha} {sub ox} = -1.28. A recent long Swift observation revealed the first hard X-ray detection and an intrinsic (unabsorbed) {alpha} {sub ox} {approx} -1.9. Using this SED in our analysis yielded lower column density constraints (log(N {sub H}) {>=} 22.2 for Z = 1, or log(N {sub H}) {>=} 21.6 if Z = 5). The X-ray weak continuum, combined with X-ray absorption consistent with the UV lines, provides the best explanation for the observed Swift X-ray spectrum. The large column densities and velocities implied by the UV data in any of these scenarios could be problematic for radiative acceleration. We also point out that since the observed P V absorption can be explained by lower total column densities using an intrinsically X-ray weak spectrum, we might expect to find P V absorption preferentially more often (or stronger) in quasars that are intrinsically X-ray weak.

  13. Multi-wavelength Probes of Obscuration Towards the Narrow Line Region in Seyfert Galaxies (PREPRINT)

    DTIC Science & Technology

    2010-11-01

    in the Seyfert 1 galaxy NGC 4151 (Kraemer et al. 2000), near IR emission detected in Gemini/Near-Infrared Integrated Field Spectrograph ( NIFS ...any case, it points to the presence of a significant amount of material outside the optical NLR, in agreement with results from NIFS spectra of a

  14. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    SciTech Connect

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; Dalla Bontà, E.; Ciroi, S.

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  15. Radio-loud Narrow Line Seyfert 1 under a different perspective: a revised black hole mass estimate from optical spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Baldi, Ranieri D.; Capetti, Alessandro; Robinson, Andrew; Laor, Ari; Behar, Ehud

    2016-05-01

    Several studies indicate that radio-loud (RL) active galactic nuclei (AGNs) are produced only by the most massive black holes (BH), MBH ˜ 108-1010 M⊙. This idea has been challenged by the discovery of RL Narrow Line Seyfert 1 (RL NLSy1), having estimated masses of MBH ˜ 106-107 M⊙. However, these low MBH estimates might be due to projection effects. Spectropolarimetry allows us to test this possibility by looking at RL NLSy1s under a different perspective, i.e. from the viewing angle of the scattering material. We here report the results of a pilot study of Very Large Telescope spectropolarimetric observations of the RL NLSy1 PKS 2004-447. Its polarization properties are remarkably well reproduced by models in which the scattering occurs in an equatorial structure surrounding its broad-line region, seen close to face-on. In particular, we detect a polarized Hα line with a width of ˜9000 km s-1, ˜6 times broader than the width seen in direct light. This corresponds to a revised estimate of MBH ˜ 6 × 108 M⊙, well within the typical range of RL AGN. The double-peaked polarized broad Hα profile of the target suggests that the rare combination of the orientation effects and a broad line region dominated by the rotation might account for this class of objects, casting doubts on the virial estimates of BH mass for type-I AGN.

  16. Reverberation Mapping of a Low-mass Black Hole in a Narrow-line Seyfert 1 Galaxy

    NASA Astrophysics Data System (ADS)

    Rafter, Stephen E.; Kaspi, Shai; Chelouche, Doron; Sabach, Efrat; Karl, David; Behar, Ehud

    2013-08-01

    We present results of a reverberation mapping (RM) campaign on the low black hole mass narrow-line Seyfert 1 (NLS1) galaxy SDSS J113913.91+335551.1 (hereafter SL01). Using the Hβ measurements, we find a time lag \\tau = 12.5^{+0.5}_{-11} days and a broad-line velocity width of 1450 km s-1 which implies a black hole mass of 3.8^{+0.6}_{-2.8} \\times 10^{6} M ⊙. To further bolster our time lag results, we employ a secondary method based on the multivariate correlation function as described in Chelouche & Zucker, in which case we obtain consistent lags for the Balmer lines, yet without the need to spectrally deconvolve line from continuum emission processes. Given SL01's luminosity (L bol ≈ 7 × 1043 erg s-1), we estimate an Eddington ratio (L bol/L Edd) of ~0.18. This fairly low-mass determination and rather high L bol/L Edd is consistent with the current paradigm that the nuclei of NLS1 galaxies host small black holes (as low as 106 M ⊙) with high accretion rates. SL01 is one of only a few NLS1s to date with robust RM results.

  17. Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.

    1996-01-01

    We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in

  18. A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2

    NASA Astrophysics Data System (ADS)

    Pons, E.; Watson, M. G.

    2016-10-01

    A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sources, we were able to rule out dust reddening and variability for most of them as an explanation of the absence of optical broad emission-lines. The main explanations remaining are the dilution of weak/very broad emission-lines by the host galaxy and the intrinsic absence of the broad-line region (BLR) due to low accretion rates (i.e. True Sy2). However, the number of True Sy2 strongly depends on the method used to verify the intrinsic lack of broad lines. Indeed using the optical continuum luminosity to predict the BLR properties gives a much larger fraction of True Sy2 (about 90% of the unobscured Sy2 sample) than the use of the X-ray 2 keV luminosity (about 20%). Nevertheless the number of AGN we securely detected as True Sy2 is at least three times larger that the previously confirmed number of True Sy2.

  19. A Comprehensive Study of 2000 Narrow Line Seyfert 1 Galaxies from the Sloan Digital Sky Survey. I. The Sample

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin; Lu, Honglin; Dong, Xiaobo; Wang, Junxian; Lu, Youjun

    2006-09-01

    This is the first paper in a series dedicated to the study of the emission-line and continuum properties of narrow line Seyfert 1 galaxies (NLS1s). We carried out a systematic search for NLS1s from objects assigned as ``QSOs'' or ``galaxies'' in the spectroscopic sample of the Sloan Digital Sky Survey Data Release 3 (SDSS DR3) by a careful modeling of their emission lines and continua. The result is a uniform sample comprising ~2000 NLS1s. This sample dramatically increases the number of known NLS1s by a factor of ~10 over previous compilations. This paper presents the parameters of the prominent emission lines and continua, which were measured accurately with typical uncertainties <10%. Taking advantage of such an unprecedented large and uniform sample with accurately measured spectral parameters, we carried out various statistical analyses, some of which were only possible for the first time. The main results found are as follows. (1) Within the overall Seyfert 1 population, the incidence of NLS1s is strongly dependent on the optical, X-ray, and radio luminosities as well as the radio loudness. The fraction of NLS1s peaks around SDSS g-band absolute magnitude Mg~-22 mag in the optical and ~1043.2 ergs s-1 in the soft X-ray band, and decreases quickly as the radio loudness increases. (2) On average the relative Fe II emission, R4570=Fe II λλ4434-4684/Hβ, in NLS1s is about twice that in normal active galactic nuclei (AGNs) and is anticorrelated with the broad component width of the Balmer emission lines. (3) The well-known anticorrelation between the width of broad low-ionization lines and the soft X-ray spectral slope for broad line AGNs extends down to FWHM~1000 km s-1 in NLS1s, but the trend appears to reverse at still smaller line widths. (4) The equivalent width of Hβ and Fe II emission lines are strongly correlated with the Hβ and continuum luminosities. (5) We do not find any difference between NLS1s and normal AGNs in regard to the narrow line region

  20. PROBING THE PHYSICS OF NARROW LINE REGIONS IN ACTIVE GALAXIES. II. THE SIDING SPRING SOUTHERN SEYFERT SPECTROSCOPIC SNAPSHOT SURVEY (S7)

    SciTech Connect

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Sutherland, Ralph; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-15

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  1. Probing the Physics of Narrow Line Regions in Active Galaxies. II. The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Shastri, Prajval; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Scharwächter, Julia; Sutherland, Ralph; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; Juneau, Stéphanie; James, Bethan; Srivastava, Shweta

    2015-03-01

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530-710 nm), and R = 3000 in the blue (340-560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  2. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    SciTech Connect

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  3. Multiwavelength observations of the γ-ray-emitting narrow-line Seyfert 1 PMN J0948+0022 in 2011

    DOE PAGES

    D'Ammando, F.; Larsson, J.; Orienti, M.; ...

    2014-01-28

    Here, we report on radio-to-γ-ray observations during 2011 May–September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in γ-rays by Fermi-Large Area Telescope. Strong variability was observed in γ-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in γ-rays. The difference in behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multicell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates abovemore » ~2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonization of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expected from the high accretion rate. Except for the soft X-ray excess, unusual in jet-dominated active galactic nuclei, PMN J0948+0022, shows all characteristics of the blazar class.« less

  4. Multiwavelength observations of the γ-ray-emitting narrow-line Seyfert 1 PMN J0948+0022 in 2011

    SciTech Connect

    D'Ammando, F.; Larsson, J.; Orienti, M.; Raiteri, C. M.; Angelakis, E.; Carraminana, A.; Carrasco, L.; Drake, A. J.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Porras, A.; Readhead, A. C. S.; Recillas, E.; Richards, J. L.

    2014-01-28

    Here, we report on radio-to-γ-ray observations during 2011 May–September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in γ-rays by Fermi-Large Area Telescope. Strong variability was observed in γ-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in γ-rays. The difference in behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multicell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates above ~2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonization of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expected from the high accretion rate. Except for the soft X-ray excess, unusual in jet-dominated active galactic nuclei, PMN J0948+0022, shows all characteristics of the blazar class.

  5. The first γ-ray detection of the narrow-line Seyfert 1 FBQS J1644+2619

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Larsson, J.; ...

    2015-07-06

    Here, we report the discovery of γ-ray emission from the narrow-line Seyfert 1 (NLSy1) galaxy FBQS J1644+2619 by the Large Area Telescope on board the Fermi satellite. The Third Fermi LAT Source catalogue reports an unidentified γ-ray source, detected over the first four years of Fermi operation, 0.°23 from the radio position of the NLSy1. Analysing 76 months of γ-ray data (2008 August 4–2014 December 31) we are able to better constrain the localization of the γ-ray source. The new position of the γ- ray source is 0.°05 from FBQS J1644+2619, suggesting a spatial association with the NLSy1. This ismore » the sixth NLSy1 detected at high significance by Fermi-LAT so far. Notably, a significant increase of activity was observed in γ-rays from FBQS J1644+2619 during 2012 July–October, and an increase of activity in V -band was detected by the Catalina Real-Time Sky Survey in the same period.« less

  6. X-ray Observations of the Radio-loud Narrow-Line Seyfert 1 Galaxy PMN J0948+0022

    NASA Astrophysics Data System (ADS)

    Brenneman, Laura; Reynolds, Christopher S.; Markoff, Sera; Parker, Michael; Miller, Jon M.

    2017-08-01

    We report on the 200-ks NuSTAR observation of the narrow-line Seyfert 1 (NLS1) AGN, PMN J0948+0022, executed simultaneously with an 80-ks XMM-Newton observation in 2016. PMN J0948+0022 was chosen because it is one of seven known, powerfully-jetted radio-loud (RL) NLS1s that have been observed with Fermi. We will detail our progress toward meeting the following campaign objectives with the analysis of these datasets: (1) Confirming the presence of the soft excess and look for any evidence of reflection, either in Fe K emission or the Compton hump above 10 keV; (2) Determining the correct spectral model across the entire X-ray bandpass (e.g., Comptonization vs. blurred reflection for the soft excess); (3) Measuring the coronal parameters (temperature, optical depth, compactness) by constraining the high-energy cutoff of the power-law and the low-energy UV/optical data simultaneously; (4) Looking for any correlations between the corona, jet and accretion properties by examining radio and Fermi monitoring of the source contemporaneous with the X-ray and UV/optical data and comparing fits to pure disk/corona models vs. jet models; (5) Furthering our understanding of the jet emission mechanism(s) in RLNLS1s by adding new information to the SED modeling of this source.

  7. The Parsec-scale Structure and Kinematics of Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Richards, Joseph L; Lister, Matthew L.; Foschini, Luigi; Savolainen, Tuomas; Homan, Daniel C.; Kadler, Matthias; Readhead, Anthony C. S.; Arshakian, Tigran; Chavushyan, Vahram

    2014-08-01

    We have begun a campaign to monitor a sample of 15 radio-loud narrow-line Seyfert 1 galaxies (NLS1s) with the Very Long Baseline Array (VLBA). Here, we present early results from this program, which includes total intensity and polarimetric observations at 1, 2, 4, and 6cm wavelengths. NLS1s are a class of active galactic nuclei that share many observational properties with the much more powerful blazar classes. Despite their low black hole masses and near- or super-Eddington accretion rates, a small minority are radio loud. A growing number of these have been detected in GeV gamma rays, indicating that a relativistic jet has formed in at least some of these sources. This presents a challenge to jet models, but may provide a link between jets found at the small scales of galactic binaries and the large scales of giant quasars. In addition to our VLBA program, we are carrying out complementary fast-cadence single dish 2cm radio monitoring with the Owens Valley Radio Observatory 40m telescope and an optical spectroscopic monitoring campaign using the Guillermo Haro Astrophysics Observatory 2m-class telescope in Cananea, Mexico. Using data from this program, we will expand the currently limited knowledge of the parsec-scale properties and kinematics of this class of sources. Among our first epoch results, we find significant parsec-scale extension in about about two thirds of our sample, many of which are excellent candidates for jet kinematics analysis.

  8. The parsec-scale structure, kinematics, and polarization of radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Richards, J. L.; Lister, M. L.; Savolainen, T.; Homan, D. C.; Kadler, M.; Hovatta, T.; Readhead, A. C. S.; Arshakian, T. G.; Chavushyan, V.

    2015-03-01

    Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as these sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40 m telescope and optical spectroscopic monitoring with with the 2 m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.

  9. The first γ-ray detection of the narrow-line Seyfert 1 FBQS J1644+2619

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Larsson, J.; Giroletti, M.

    2015-09-01

    We report the discovery of γ-ray emission from the narrow-line Seyfert 1 (NLSy1) galaxy FBQS J1644+2619 by the Large Area Telescope on board the Fermi satellite. The Third Fermi LAT Source catalogue reports an unidentified γ-ray source, detected over the first four years of Fermi operation, 0.23° from the radio position of the NLSy1. Analysing 76 months of γ-ray data (2008 August 4-2014 December 31) we are able to better constrain the localization of the γ-ray source. The new position of the γ-ray source is 0.05° from FBQS J1644+2619, suggesting a spatial association with the NLSy1. This is the sixth NLSy1 detected at high significance by Fermi-LAT so far. Notably, a significant increase of activity was observed in γ-rays from FBQS J1644+2619 during 2012 July-October, and an increase of activity in the V band was detected by the Catalina Real-Time Sky Survey in the same period.

  10. The first γ-ray detection of the narrow-line Seyfert 1 FBQS J1644+2619

    SciTech Connect

    D'Ammando, F.; Orienti, M.; Larsson, J.; Giroletti, M.

    2015-07-06

    Here, we report the discovery of γ-ray emission from the narrow-line Seyfert 1 (NLSy1) galaxy FBQS J1644+2619 by the Large Area Telescope on board the Fermi satellite. The Third Fermi LAT Source catalogue reports an unidentified γ-ray source, detected over the first four years of Fermi operation, 0.°23 from the radio position of the NLSy1. Analysing 76 months of γ-ray data (2008 August 4–2014 December 31) we are able to better constrain the localization of the γ-ray source. The new position of the γ- ray source is 0.°05 from FBQS J1644+2619, suggesting a spatial association with the NLSy1. This is the sixth NLSy1 detected at high significance by Fermi-LAT so far. Notably, a significant increase of activity was observed in γ-rays from FBQS J1644+2619 during 2012 July–October, and an increase of activity in V -band was detected by the Catalina Real-Time Sky Survey in the same period.

  11. The Parsec-scale Structure and Kinematics of Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Richards, Joseph L.; Lister, M. L.; Foschini, L.; Savolainen, T.; Homan, D. C.; Kadler, M.; Hovatta, T.; Readhead, A. C.; Arshakian, T.; Chavushyan, V.

    2014-01-01

    Narrow-line Seyfert 1 galaxies (NLS1) are a class of active galactic nuclei that share many observational properties with the much more powerful blazar classes. Despite their low black hole masses (typically 10^6-10^8 solar masses) and near- or super-Eddington accretion rates, a small minority are radio loud (RLNLS1s). A growing number of these have been detected in GeV gamma rays by the Fermi Large Area Telescope (LAT), indicating that a relativistic jet has formed in at least some of these sources. This presents a challenge to jet models, but may provide a link between jets found at the small scales of galactic binaries and the large scales of giant quasars. We are carrying out a multifrequency polarimetric radio monitoring campaign of a sample of 15 RLNLS1s using the Very Long Baseline Array (VLBA). Using data from this program, we will expand the currently limited knowledge of the parsec-scale properties and kinematics of this class of sources. We are complementing this campaign with fast-cadence single dish radio monitoring with the Owens Valley Radio Observatory 40m telescope and an optical spectroscopic monitoring campaign using the GHAO 2m-class telescope in Cananea, Mexico.

  12. Zooming in on the peculiar radio-loud narrow-line Seyfert 1 galaxy, J1100+4421

    NASA Astrophysics Data System (ADS)

    Gabányu, K. É.; Frey, S.; Paragi, Z.; Tar, I.; An, T.; Tanaka, M.; Morokuma, T.

    2016-08-01

    Narrow-line Seyfert 1 galaxies (NLS1) are interesting subsamples of active galactic nuclei, which are typically thought to contain a relatively smaller supermassive black holes (10^6-10^8 solar masses) and show quite high accretion rate. Only 7% of them are detected in radio. The radio structure of the objects in the extremely radio-loud NLS1 subsample indicates the presence of relativistically beamed jets. Some radio-loud NLS1s were detected even at high energies with the Fermi Large Array Telescope. Therefore these sources are often suggested to be the low-luminosity and younger counterparts of blazars. SDSS J110006.07+442144.3 was identified as an NLS1 at z=0.84 after its dramatic optical brightening discovered by Tanaka et al. (2014) Our dual-frequency (1.6 and 5 GHz) European VLBI Network observations taken one year after this event show a compact structre with brightness temperature of 6 x 10^9 K and a flat spectral index indicating the presence of a compact synchrotron self-absorbed core. Compared with low resolution VLA-FIRST data, the large-scale structure seen there is resolved out in the EVN observation. However the recovered flux density in our L-band EVN observation is significantly higher than the FIRST flux density, which is indicative of brightening in the radio regime. All these results fit into the picture where radio-loud NLS1s are described as faint blazars.

  13. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  14. Reverberation Mapping of the Gamma-Ray Loud Narrow-line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Du, Pu; Hu, Chen; Bai, Jin-Ming; Wang, Chuan-Jun; Yi, Wei-Min; Wang, Jian-Guo; Zhang, Ju-Jia; Xin, Yu-Xin; Lun, Bao-Li; Chang, Liang; Fan, Yu-Feng

    2016-06-01

    Recently, 1H 0323+342 has attracted a lot of attention as one of several narrow-line Seyfert 1 galaxies detected in the γ-ray band. To understand their central energy engines and jet phenomena, the black hole mass is important. We made use of the Lijiang 2.4 m Telescope to monitor 1H 0323+342 for more than two months. This galaxy is one of the candidates for a monitoring project of super-Eddington accreting massive black holes. The reverberation mapping shows that Hβ emission has a delayed response of {14.8}-2.7+3.9 days with respect to the SDSS g‧ light curve in the rest frame. The optical Fe ii variations were detected after subtracting host contaminations, and a reverberation with a delay of {15.2}-4.1+7.4 days was found in the rest frame. By assuming the viral factor f BLR = 6.17 for the broad-line region (BLR) velocity characterized by FWHM because of the face-on orientation, we find that the black hole mass derived from Hβ is {M}\\bullet ={3.4}-0.6+0.9× {10}7{M}⊙ , and the accretion rate is \\dot{{M}}={1.11}-0.47+0.69, where \\dot{{M}}={\\dot{M}}\\bullet {c}2/{L}{{Edd}}, {\\dot{M}}\\bullet is the mass accretion rate, L Edd is the Eddington luminosity, and c is the speed of light. This black hole is one order less massive than that given by the Magorrian relation from the bulge mass. We test the relation between accretion rates and radio-loudnesses in all mapped radio-loud active galactic nuclei, and find that 1H 0323+342 falls within this group.

  15. SDSSJ143244.91+301435.3 at VLBI: a compact radio galaxy in a narrow-line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Caccianiga, A.; Dallacasa, D.; Antón, S.; Ballo, L.; Berton, M.; Mack, K.-H.; Paulino-Afonso, A.

    2017-01-01

    We present very long baseline interferometry (VLBI) observations, carried out with the European Very Long Baseline Interferometry Network (EVN), of SDSSJ143244.91+301435.3, a radio-loud narrow-line Seyfert 1 (RL NLS1) characterized by a steep radio spectrum. The source, compact at Very Large Array resolution, is resolved on the milliarcsec scale, showing a central region plus two extended structures. The relatively high brightness temperature of all components (5 × 106-1.3 × 108 K) supports the hypothesis that the radio emission is non-thermal and likely produced by a relativistic jet and/or small radio lobes. The observed radio morphology, the lack of a significant core, and the presence of a low frequency (230 MHz) spectral turnover are reminiscent of the Compact Steep-Spectrum (CSS) sources. However, the linear size of the source (˜0.5 kpc) measured from the EVN map is lower than the value predicted using the turnover/size relation valid for CSS sources (˜6 kpc). This discrepancy can be explained by an additional component not detected in our observations, accounting for about a quarter of the total source flux density, combined to projection effects. The low core dominance of the source (CD < 0.29) confirms that SDSSJ143244.91+301435.3 is not a blazar, i.e. the relativistic jet is not pointing towards the observer. This supports the idea that SDSSJ143244.91+301435.3 may belong to the `parent population' of flat-spectrum RL NLS1 and favours the hypothesis of a direct link between RL NLS1 and compact, possibly young, radio galaxies.

  16. A physical model for the X-ray time lags of narrow-line Seyfert type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Gardner, Emma; Done, Chris

    2014-08-01

    We study the origin of the soft X-ray excess seen in the `simple' narrow-line Seyfert 1 galaxy PG1244+026 using all available spectral-timing information. This object shows the now ubiquitous switch between soft leading the hard band on long time-scales, to the opposite behaviour on short time-scales. This is interpreted as a combination of intrinsic fluctuations propagating down through the accretion flow giving the soft lead, together with reflection of the hard X-rays giving the soft lag. We build a full model of the spectral and time variability including both propagation and reflection, and compare our model with the observed power spectra, coherence, covariance, lag-frequency and lag-energy spectra. We compare models based on a separate soft excess component with those based on reflection-dominated soft emission. Reflection-dominated spectra have difficulty reproducing the soft lead at low frequency since reflection will always lag. They also suffer from high coherence and nearly identical hard- and soft-band power spectra in disagreement with the observations. This is a direct result of the power-law and reflection components both contributing to the hard and soft energy bands, and the small radii over which the relativistically smeared reflection is produced allowing too much high-frequency power to be transmitted into the soft band. Conversely, we find the separate soft excess models (where the inner disc radius is >6Rg) have difficulty reproducing the soft lag at high frequency, as reflected flux does not contribute enough signal to overwhelm the soft lead. However, reflection should also be accompanied by reprocessing and this should add to the soft excess at low energies. This model can quantitatively reproduce the switch from soft lead to soft lag seen in the data and reproduces well the observed power spectra and other timing features which reflection-dominated models cannot.

  17. Absorption-Line Studies of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael

    We propose to undertake a "reverberation analysis" of the variable absorption lines ill two Seyfert Galaxies (NGC 4051 and Mrk 279) to help understand the origin of intrinsic absorption lines in AGNs. Stich an analysis is a powerful tool for elucidating the radial distribution of absorbing gas in the broad-line region (BLR) and narrow-line region (NLR). Only two Seyferts have previously been studied with this technique: NGC 4151 (Bromage el al. 1985; Clavel et al. 1987) and NGC 3516 (Voit, Shull, and Begelman 1987). The absorption features have been interpreted as an outflow of ionized clouds from the nuclear region or from an accretion disk affected by UV/X-ray heating. Neither the source of the absorbing gas in these Seyferts nor the "gene" which distingishes them from other Seyferts is known. Until the 1984 onset of absorption in Mrk 279, broad self-absorbed. lines had been observed only in Seyferts of low intrinsic luminosity, such as NGC 4051. Mrk 279 is intrinsically much brighter, and therefore more quasar-like, than the other three absorptionline Seyfert I's in the CfA sample. Thus, it may show how the absorption phenomenon changes at higher luminosity and could bridge the gap between the low luminosity absorption-line Seyferts and the well-studied broad absorption-line (BAL) QSO's. In addition, Mrk 279's significant redshift will allow us to study, for the first time, the Ly-alpha line in an absorption-line Seyfert. With 3 US-1 shifts for each of these two underobserved Seyferts, we can double the number of objects in which absorption-line variability has been studied and investigate why the absorption-line strengths correlate or anti-correlate with the UV continuum.

  18. The awakening of the γ-ray narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Hovatta, T.; Giroletti, M.; Max-Moerbeck, W.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R. A.; Richards, J. L.

    2016-12-01

    After a long low-activity period, a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) was detected by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1-300 GeV band, of (93 ± 19) × 10-8 ph cm-2 s-1, attaining a flux of (237 ± 71) × 10-8 ph cm-2 s-1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 1047 erg s-1. The γ-ray flare was not accompanied by significant spectral changes. We report on multiwavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August-2016 March by Fermi-LAT, Swift, XMM-Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. This suggests that the γ-ray-emitting region is located beyond the broad-line region. We compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. The fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.

  19. The awakening of the γ-ray narrow-line Seyfert 1 galaxy PKS 1502+036

    SciTech Connect

    D'Ammando, F.; Orienti, M.; Finke, J.; Hovatta, T.; Giroletti, M.; Max-Moerbeck, W.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R. A.; Richards, J. L.

    2016-09-14

    After a long low-activity period, we detected a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1–300 GeV band, of (93 ± 19) × 10-8 ph cm-2 s-1, attaining a flux of (237 ± 71) × 10-8 ph cm-2 s-1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 1047 erg s-1. The γ-ray flare was not accompanied by significant spectral changes. We report on multiwavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August–2016 March by Fermi-LAT, Swift, XMM–Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. Furthermore, this suggests that the γ-ray-emitting region is located beyond the broad-line region. We also compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. Furthermore, the fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.

  20. The awakening of the γ-ray narrow-line Seyfert 1 galaxy PKS 1502+036

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Finke, J.; ...

    2016-09-14

    After a long low-activity period, we detected a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1–300 GeV band, of (93 ± 19) × 10-8 ph cm-2 s-1, attaining a flux of (237 ± 71) × 10-8 ph cm-2 s-1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 1047 erg s-1. The γ-ray flare was not accompanied by significant spectral changes. We report on multiwavelength radio-to-γ-raymore » observations of PKS 1502+036 during 2008 August–2016 March by Fermi-LAT, Swift, XMM–Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. Furthermore, this suggests that the γ-ray-emitting region is located beyond the broad-line region. We also compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. Furthermore, the fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.« less

  1. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    SciTech Connect

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.

  2. A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335

    SciTech Connect

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Bord, D. J.; Che, X.; Chen, C.; Cohen, S. A.; and others

    2012-01-15

    We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II {lambda}4686 broad emission line relative to the optical continuum to be 2.7 {+-} 0.6 days and the lag in the H{beta}{lambda}4861 broad emission line to be 13.9 {+-} 0.9 days. Combined with the line width, the He II lag yields a black hole mass M{sub BH} = (2.6 {+-} 0.8) Multiplication-Sign 10{sup 7} M{sub Sun }. This measurement is consistent with measurements made using the H{beta}{lambda}4861 line, suggesting that the He II emission originates in the same structure as H{beta}, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.

  3. On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan

    1993-01-01

    A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.

  4. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    SciTech Connect

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei; Zhang, Jin; Xue, Zi-Wei; Zhang, Shuang-Nan

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  5. Jet Properties of GeV-Selected Radio-Loud Narrow-line Seyfert 1 Galaxies and Possible Connection to Their Disk and Corona

    NASA Astrophysics Data System (ADS)

    Zhang, Jin

    2015-08-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (Lcorona) to the accretion disk luminosity (Ld) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with Lcorona. However, it is still unclear whether a system with a high Lcorona/Ld ratio prefers to power a jet.

  6. Jet Properties of GeV-selected Radio-loud Narrow-line Seyfert 1 Galaxies and Possible Connection to Their Disk and Corona

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Na; Zhang, Jin; Lin, Da-Bin; Xue, Zi-Wei; Liang, En-Wei; Zhang, Shuang-Nan

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L corona) to the accretion disk luminosity (L d) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L corona. However, it is still unclear whether a system with a high L corona/L d ratio prefers to power a jet.

  7. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes?

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N. A.; Winge, C.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc-3 at z ~ 0.3, these "green beans" (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 1043 erg s-1, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Based on observations

  8. Variable Reddening and Broad Absorption Lines in the Narrow-line Seyfert 1 Galaxy WPVS 007: An Origin in the Torus

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-01

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11733, 13015, and 14058.

  9. Probing the Physics of Narrow-line Regions in Active Galaxies. IV. Full Data Release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Dopita, Michael A.; Shastri, Prajval; Davies, Rebecca; Hampton, Elise; Kewley, Lisa; Banfield, Julie; Groves, Brent; James, Bethan L.; Jin, Chichuan; Juneau, Stéphanie; Kharb, Preeti; Sairam, Lalitha; Scharwächter, Julia; Shalima, P.; Sundar, M. N.; Sutherland, Ralph; Zaw, Ingyin

    2017-09-01

    We present the second and final data release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). Data are presented for 63 new galaxies not included in the first data release, and we provide 2D emission-line fitting products for the full S7 sample of 131 galaxies. The S7 uses the WiFeS instrument on the ANU 2.3 m telescope to obtain spectra with a spectral resolution of R = 7000 in the red (540–700 nm) and R = 3000 in the blue (350–570 nm), over an integral field of 25 × 38 arcsec2 with 1 × 1 arcsec2 spatial pixels. The S7 contains both the largest sample of active galaxies and the highest spectral resolution of any comparable integral field survey to date. The emission-line fitting products include line fluxes, velocities, and velocity dispersions across the WiFeS field of view, and an artificial neural network has been used to determine the optimal number of Gaussian kinematic components for emission-lines in each spaxel. Broad Balmer lines are subtracted from the spectra of nuclear spatial pixels in Seyfert 1 galaxies before fitting the narrow lines. We bin nuclear spectra and measure reddening-corrected nuclear fluxes of strong narrow lines for each galaxy. The nuclear spectra are classified on optical diagnostic diagrams, where the strength of the coronal line [Fe vii] λ6087 is shown to be correlated with [O iii]/Hβ. Maps revealing gas excitation and kinematics are included for the entire sample, and we provide notes on the newly observed objects.

  10. On the reality of broad iron L lines from the narrow line Seyfert 1 galaxies 1H0707-495 and IRAS 13224-3809

    NASA Astrophysics Data System (ADS)

    Karbhari Pawar, Pramod; Dewangan, Gulab Chand; Khushalrao Patil, Madhav; Misra, Ranjeev; Keshav Jogadand, Sharada

    2016-11-01

    We performed time resolved spectroscopy of 1H0707-495 and IRAS 13224-3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 keV that have been interpreted as relativistically broad Fe Lα lines. Such features are not clearly observed in other active galactic nuclei despite sometimes having high iron abundance required by the best fitted blurred reflection models. Given the importance of these lines, we explore whether the rapid variability of spectral parameters may introduce broad bumps/dips artificially in the time averaged spectrum, which may then be mistaken as broadened lines. We tested this hypothesis by performing time resolved spectroscopy using long (>100 ks) XMM-Newton observations and by dividing them into segments with typical exposures of a few ks. We extracted spectra from each such segment and modeled them using a two component phenomenological model consisting of a power law to represent the hard component and a black body to represent the soft emission. As expected, both the sources showed variations in the spectral parameters. Using these variation trends, we simulated model spectra for each segment and then co-added to get a combined simulated spectrum. In the simulated spectra, we found no broad features below 1 keV and in particular no deviation near 0.9 keV as seen in the real averaged spectra. This implies that the broad Fe Lα line that is seen in the spectra of these sources is not an artifact of the variation of spectral components and, hence, provides evidence that the line is indeed genuine.

  11. Evolutionary Implications from SDSS J085338.27+033246.1: A Spectacular Narrow-Line Seyfert 1 Galaxy with Young Poststarburst

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wei, J. Y.

    2006-09-01

    We analyze the physical properties of the poststarburst active galactic nucleus (AGN) SDSS J085338.27+033246.1 according to its optical spectrum and discuss its implications on AGNs' evolution. The spectra principal component analysis (PCA) method is developed to extract emission lines and absorption features from the total light spectrum. The emission-line analysis indicates that the object can be classified as a narrow-line Seyfert 1 galaxy with FeII/HβB=2.4+/-0.2, large Eddington ratio (~0.34), small black hole mass (~1.1×107 Msolar), and intermediately strong radio emission. A simple single stellar population model indicates that the absorption features are rather well reproduced by a ~100 Myr old starburst with a mass of ~7×109 Msolar. However, the current star formation rate, ~3.0 Msolar yr-1, inferred from the [O II] emission is much smaller than the past average star formation rate, ~70 Msolar yr-1. The line ratio diagnosis using Baldwin-Phillips-Terlevich (BPT) diagrams indicates that the narrow emission lines are almost entirely emitted from H II regions. We further discuss a possible evolutionary path that links AGN and starburst phenomena.

  12. A Revised Broad-line Region Radius and Black Hole Mass for the Narrow-line Seyfert 1 NGC 4051

    NASA Astrophysics Data System (ADS)

    Denney, K. D.; Watson, L. C.; Peterson, B. M.; Pogge, R. W.; Atlee, D. W.; Bentz, M. C.; Bird, J. C.; Brokofsky, D. J.; Comins, M. L.; Dietrich, M.; Doroshenko, V. T.; Eastman, J. D.; Efimov, Y. S.; Gaskell, C. M.; Hedrick, C. H.; Klimanov, S. A.; Klimek, E. S.; Kruse, A. K.; Lamb, J. B.; Leighly, K.; Minezaki, T.; Nazarov, S. V.; Petersen, E. A.; Peterson, P.; Poindexter, S.; Schlesinger, Y.; Sakata, K. J.; Sergeev, S. G.; Tobin, J. J.; Unterborn, C.; Vestergaard, M.; Watkins, A. E.; Yoshii, Y.

    2009-09-01

    We present the first results from a high sampling rate, multimonth reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from telescopes around the world. The primary goal of this campaign was to obtain either new or improved Hβ reverberation lag measurements for several relatively low luminosity active galactic nuclei (AGNs). We feature results for NGC 4051 here because, until now, this object has been a significant outlier from AGN scaling relationships, e.g., it was previously a ~2-3σ outlier on the relationship between the broad-line region (BLR) radius and the optical continuum luminosity—the R BLR-L relationship. Our new measurements of the lag time between variations in the continuum and Hβ emission line made from spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R BLR = 1.87+0.54 -0.50 light days and black hole mass of M BH = (1.73+0.55 -0.52) × 106 M sun. This radius is consistent with that expected from the R BLR-L relationship, based on the present luminosity of NGC 4051 and the most current calibration of the relation by Bentz et al.. We also present a preliminary look at velocity-resolved Hβ light curves and time delay measurements, although we are unable to reconstruct an unambiguous velocity-resolved reverberation signal.

  13. The photometric monitoring of γ-ray-loud narrow-line Seyfert 1 galaxy 1H 0323+342 from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xiong, Ding-Rong; Bai, Jin-Ming; Li, Shao-Kun; Wang, Jian-Guo

    2017-07-01

    1H 0323+342 is a γ-ray-loud narrow-line Seyfert 1 galaxy (NLS1). The variability mechanism of γ-ray-loud NLS1s remains unclear. We have observed 1H 0323+342 photometrically from 2006 to 2010 with a total of 41 nights of observations in order to constrain the variability mechanism. Intraday variabilities (IDVs) are detected on four nights. When considering the nights with time spans > 2 hours, the duty cycle is 28.3%. The average variability amplitude is 10.8% for IDVs and possibly variable nights. In the color-magnitude diagram, there are bluer-when-brighter chromatic trends for intraday and long-term timescales, which could be explained by the shock-in-jet model, and also could possibly be due to two distinct components or an accretion disk model.

  14. DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    SciTech Connect

    Tanaka, Masaomi; Morokuma, Tomoki; Doi, Mamoru; Kikuchi, Yuki; Itoh, Ryosuke; Akitaya, Hiroshi; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Tominaga, Nozomu; Saito, Yoshihiko; Kawai, Nobuyuki; Stawarz, Łukasz; Gandhi, Poshak; Ali, Gamal; Essam, Ahmad; Hamed, Gamal; Aoki, Tsutomu; Contreras, Carlos; Hsiao, Eric Y.; Iwata, Ikuru; and others

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ∼10{sup 7} M {sub ☉} implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ≅ 4 × 10{sup 2}-3 × 10{sup 3}, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  15. Discovery of Dramatic Optical Variability in SDSS J1100+4421: A Peculiar Radio-loud Narrow-line Seyfert 1 Galaxy?

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  16. On the black hole mass of the γ-ray emitting narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Landt, H.; Ward, M. J.; Baloković, M.; Kynoch, D.; Storchi-Bergmann, T.; Boisson, C.; Done, C.; Schimoia, J.; Stern, D.

    2017-01-01

    Narrow-line Seyfert 1 galaxies have been identified by the Fermi Gamma-Ray Space Telescope as a rare class of γ-ray emitting active galactic nuclei. The lowest redshift candidate among them is the source 1H 0323+342. Here we present quasi-simultaneous Gemini near-infrared and Keck optical spectroscopy for it, from which we derive a black hole mass based on both the broad Balmer and Paschen emission lines. We supplement these observations with a Nuclear Spectroscopic Telescope Array X-ray spectrum taken about two years earlier, from which we constrain the black hole mass based on the short time-scale spectral variability. Our multiwavelength observations suggest a black hole mass of ˜2 × 107 M⊙, which agrees well with previous estimates. We build the spectral energy distribution and show that it is dominated by the thermal and reprocessed emission from the accretion disc rather than the non-thermal jet component. A detailed spectral fitting with the energy-conserving accretion disc model of Done et al. constrains the Eddington ratio to L/LEdd ˜ 0.5 for a (non-rotating) Schwarzschild black hole and to L/LEdd ˜ 1 for a Kerr black hole with dimensionless spin of a⋆ = 0.8. Higher spin values and so higher Eddington ratios are excluded, since they would strongly overpredict the observed soft X-ray flux.

  17. The mass and spin of the extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and its implications for the trigger for relativistic jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-08-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high-spin, moderate-inclination, low-mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140-260 times the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different from the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10-15) jets.

  18. Minute-scale Rapid Variability of the Optical Polarization in the Narrow-line Seyfert 1 Galaxy PMN J0948+0022

    NASA Astrophysics Data System (ADS)

    Itoh, Ryosuke; Tanaka, Yasuyuki T.; Fukazawa, Yasushi; Kawabata, Koji S.; Kawaguchi, Kenji; Moritani, Yuki; Takaki, Katsutoshi; Ueno, Issei; Uemura, Makoto; Akitaya, Hiroshi; Yoshida, Michitoshi; Ohsugi, Takashi; Hanayama, Hidekazu; Miyaji, Takeshi; Kawai, Nobuyuki

    2013-09-01

    We report on optical photopolarimetric results of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy PMN J0948+0022 on 2012 December to 2013 February triggered by flux enhancements in the near infrared and γ-ray bands. With the one-shot polarimetry of the Hiroshima One-shot Wide field Polarimeter installed on the Kanata Telescope, we detected very rapid variability in the polarized-flux (PF) light curve on MJD 56281 (2012 December 20). The rise and decay times were about 140 s and 180 s, respectively. The polarization degree (PD) reached 36% ± 3% at the peak of the short-duration pulse, while the polarization angle remained almost constant. In addition, temporal profiles of the total flux and PD showed highly variable but well correlated behavior and discrete correlation function analysis revealed that no significant time lag of more than 10 minutes was present. The high PD and minute-scale variability in PF provides clear evidence of synchrotron radiation from a very compact emission region of ~1014 cm size with a highly ordered magnetic field. Such micro-variability of polarization is also observed in several blazar jets, but its complex relation between total flux and PD are explained by a multi-zone model in several blazars. The implied single emission region in PMN J0948+0022 might reflect a difference of jets between RL-NLSy1s and blazars.

  19. MINUTE-SCALE RAPID VARIABILITY OF THE OPTICAL POLARIZATION IN THE NARROW-LINE SEYFERT 1 GALAXY PMN J0948+0022

    SciTech Connect

    Itoh, Ryosuke; Tanaka, Yasuyuki T.; Fukazawa, Yasushi; Kawaguchi, Kenji; Takaki, Katsutoshi; Ueno, Issei; Kawabata, Koji S.; Moritani, Yuki; Uemura, Makoto; Akitaya, Hiroshi; Yoshida, Michitoshi; Ohsugi, Takashi; Hanayama, Hidekazu; Miyaji, Takeshi; Kawai, Nobuyuki

    2013-09-20

    We report on optical photopolarimetric results of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy PMN J0948+0022 on 2012 December to 2013 February triggered by flux enhancements in the near infrared and γ-ray bands. With the one-shot polarimetry of the Hiroshima One-shot Wide field Polarimeter installed on the Kanata Telescope, we detected very rapid variability in the polarized-flux (PF) light curve on MJD 56281 (2012 December 20). The rise and decay times were about 140 s and 180 s, respectively. The polarization degree (PD) reached 36% ± 3% at the peak of the short-duration pulse, while the polarization angle remained almost constant. In addition, temporal profiles of the total flux and PD showed highly variable but well correlated behavior and discrete correlation function analysis revealed that no significant time lag of more than 10 minutes was present. The high PD and minute-scale variability in PF provides clear evidence of synchrotron radiation from a very compact emission region of ∼10{sup 14} cm size with a highly ordered magnetic field. Such micro-variability of polarization is also observed in several blazar jets, but its complex relation between total flux and PD are explained by a multi-zone model in several blazars. The implied single emission region in PMN J0948+0022 might reflect a difference of jets between RL-NLSy1s and blazars.

  20. Uncovering the host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy FBQS J1644+2619

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Raiteri, C. M.; Baldi, R. D.; Orienti, M.; Ramos Almeida, C.

    2017-07-01

    The discovery of γ-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1) galaxies has questioned the need for large black hole masses ( ≳ 108 M⊙) to launch relativistic jets. We present near-infrared data of the γ-ray-emitting NLSy1 FBQS J1644+2619 that were collected using the camera CIRCE (Canarias InfraRed Camera Experiment) at the 10.4-m Gran Telescopio Canarias to investigate the structural properties of its host galaxy and to infer the black hole mass. The 2D surface brightness profile is modelled by the combination of a nuclear and a bulge component with a Sérsic profile with index n = 3.7, indicative of an elliptical galaxy. The structural parameters of the host are consistent with the correlations of effective radius and surface brightness against absolute magnitude measured for elliptical galaxies. From the bulge luminosity, we estimated a black hole mass of (2.1 ± 0.2) × 108 M⊙, consistent with the values characterizing radio-loud active galactic nuclei.

  1. Similarity of jet radiation between flat spectrum radio quasars and GeV narrow-line Seyfert 1 galaxies: a universal δ-L c correlation

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Kai; Zhang, Jin; Zhang, Hai-Ming; Liang, En-Wei; Yan, Da-Hai; Cui, Wei; Zhang, Shuang-Nan

    2016-11-01

    By modeling the broadband spectral energy distributions (SEDs) of a typical flat spectrum radio quasar (FSRQ, 3C 279) and two GeV narrow-line Seyfert 1 galaxies (NLS1s, PMN J0948+0022 and 1H 0323+342) in different flux stages with one-zone leptonic models, we find a universal correlation between their Doppler factors (δ) and peak luminosities (L c) of external Compton scattering bumps. Compiling a combined sample of FSRQs and GeV NLS1s, it is found that both FSRQs and GeV NLS1s in different stages and in different sources follow the same δ-L c correlation well. This indicates that the variations of observed luminosities may be essentially due to the Doppler boosting effect. The universal δ-L c relation between FSRQs and GeV NLS1s in different stages may be further evidence that the particle acceleration and radiation mechanisms for the two kinds of sources are similar. In addition, by replacing L c with the observed luminosity in the Fermi/LAT band (L LAT), this correlation holds and it may serve as an empirical indicator of δ. We estimate the δ values with L LAT for 484 FSRQs in the Fermi/LAT Catalog and they range from 3 to 41, with a median of 16, which are statistically consistent with the values derived by other methods.

  2. The first gamma-ray outburst of a narrow-line Seyfert 1 galaxy: The case of PMN J0948+0022 in 2010 July

    DOE PAGES

    Foschini, Luigi; Ghisellini, G.; Kovalev, Y. Y.; ...

    2011-05-11

    We report on a multiwavelength campaign for the radio-loud narrow-line Seyfert 1 (NLS1) galaxy PMN J0948+0022 (z= 0.5846) performed in 2010 July–September and triggered by a high-energy γ-ray outburst observed by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The peak flux in the 0.1–100 GeV energy band exceeded, for the first time in this type of source, the value of ~10–6 photon cm–2 s–1, corresponding to an observed luminosity of ~1048 erg s–1. Although the source was too close to the Sun position to organize a densely sampled follow-up, it was possible to gather some multiwavelength datamore » that confirmed the state of high activity across the sampled electromagnetic spectrum. Furthermore, the comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar – such as 3C 273 – shows that the power emitted at γ-rays is extreme.« less

  3. Inner jet kinematics and the viewing angle towards the γ-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Lars; Karamanavis, Vassilis; Komossa, Stefanie; Angelakis, Emmanouil; Krichbaum, Thomas P.; Schulz, Robert; Kreikenbohm, Annika; Kadler, Matthias; Myserlis, Ioannis; Ros, Eduardo; Nestoras, Ioannis; Zensus, J. Anton

    2016-11-01

    Near-Eddington accretion rates onto low-mass black holes are thought to be a prime driver of the multi-wavelength properties of the narrow-line Seyfert 1 (NLS1) population of active galactic nuclei (AGNs). Orientation effects have repeatedly been considered as another important factor involved, but detailed studies have been hampered by the lack of measured viewing angles towards this type of AGN. Here we present multi-epoch, 15 GHz VLBA images (MOJAVE program) of the radio-loud and Fermi/LAT-detected NLS1 galaxy 1H 0323+342. These are combined with single-dish, multi-frequency radio monitoring of the source's variability, obtained with the Effelsberg 100-m and IRAM 30-m telescopes, in the course of the F-GAMMA program. The VLBA images reveal six components with apparent speeds of ˜ 1-7 c, and one quasi-stationary feature. Combining the obtained apparent jet speed (β app) and variability Doppler factor (D var) estimates together with other methods, we constrain the viewing angle θ towards 1H 0323+342 to θ ≤ 4°-13°. Using literature values of βapp and D var, we also deduce a viewing angle of ≤ 8°-9° towards another radio- and γ-ray-loud NLS1, namely SBS 0846+513.

  4. The first gamma-ray outburst of a narrow-line Seyfert 1 galaxy: The case of PMN J0948+0022 in 2010 July

    SciTech Connect

    Foschini, Luigi; Ghisellini, G.; Kovalev, Y. Y.; Lister, M. L.; D’Ammando, F.; Thompson, D. J.; Tramacere, A.; Angelakis, E.; Donato, D.; Falcone, A.; Fuhrmann, L.; Hauser, M.; Kovalev, Yu. A.; Mannheim, K.; Maraschi, L.; Max-Moerbeck, W.; Nestoras, I.; Pavlidou, V.; Pearson, T. J.; Pushkarev, A. B.; Readhead, A. C. S.; Richards, J. L.; Stevenson, M. A.; Tagliaferri, G.; Tibolla, O.; Tavecchio, F.; Wagner, S.

    2011-05-11

    We report on a multiwavelength campaign for the radio-loud narrow-line Seyfert 1 (NLS1) galaxy PMN J0948+0022 (z= 0.5846) performed in 2010 July–September and triggered by a high-energy γ-ray outburst observed by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The peak flux in the 0.1–100 GeV energy band exceeded, for the first time in this type of source, the value of ~10–6 photon cm–2 s–1, corresponding to an observed luminosity of ~1048 erg s–1. Although the source was too close to the Sun position to organize a densely sampled follow-up, it was possible to gather some multiwavelength data that confirmed the state of high activity across the sampled electromagnetic spectrum. Furthermore, the comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar – such as 3C 273 – shows that the power emitted at γ-rays is extreme.

  5. Simultaneous NuSTAR and XMM-Newton 0.5-80 keV spectroscopy of the narrow-line Seyfert 1 galaxy SWIFT J2127.4+5654

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F.; Brenneman, L.; Boggs, S. E.; Cappi, M.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Risaliti, G.; Reynolds, C. S.; Stern, D. K.; Walton, D. J.; Zhang, W.

    2014-05-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 ks performed during three XMM-Newton orbits. We detect a relativistic broadened iron Kα line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58^{+0.11}_{-0.17}. The intrinsic spectrum is steep (Γ = 2.08 ± 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E_c=108^{+11}_{-10} keV) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 rg. These timing results independently support an intermediate black hole spin and a compact corona.

  6. Simultaneous NuSTAR and XMM-Newton 0.5-80 KeV Spectroscopy of the Narrow-Line Seyfert 1 Galaxy SWIFT J2127.4+5654

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.; Boggs, S. E.; Cappi, M.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Risaliti, G.; Reynolds, C. S.; Stern, D. K.; Walton, D. J.; Zhang, W.

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.

  7. Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Caccianiga, A.; Foschini, L.; Peterson, B. M.; Mathur, S.; Terreran, G.; Ciroi, S.; Congiu, E.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2016-06-01

    Narrow-line Seyfert 1 galaxies (NLS1s) are an interesting subclass of active galactic nuclei (AGN), which tipically does not exhibit any strong radio emission. Seven percent of them, though, are radio-loud and often show a flat radio-spectrum (F-NLS1s). This, along to the detection of γ-ray emission coming from them, is usually interpreted as a sign of a relativistic beamed jet oriented along the line of sight. An important aspect of these AGN that must be understood is the nature of their parent population, in other words how do they appear when observed under different angles. In the recent literature it has been proposed that a specific class of radio-galaxies, compact-steep sources (CSS) classified as high excitation radio galaxies (HERG), can represent the parent population of F-NLS1s. To test this hypothesis in a quantitative way,in this paper we analyzed the only two statistically complete samples of CSS/HERGs and F-NLS1s available in the literature. We derived the black hole mass and Eddington ratio distributions, and we built for the first time the radio luminosity function of F-NLS1s. Finally, we applied a relativistic beaming model to the luminosity function of CSS/HERGs, and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent candidates and that F-NLS1s, when observed with a different inclination, might actually appear as CSS/HERGs.

  8. Radio-to-γ-ray monitoring of the narrow-line Seyfert 1 galaxy PMN J0948 + 0022 from 2008 to 2011

    SciTech Connect

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; Ghisellini, G.; Hovatta, T.; Lahteenmaki, A.; Lister, M. L.; Braito, V.; Gallo, L.; Hamilton, T. S.; Kino, M.; Komossa, S.; Pushkarev, A. B.; Thompson, D. J.; Tibolla, O.; Tramacere, A.; Carramiñana, A.; Carrasco, L.; Falcone, A.; Giroletti, M.; Grupe, D.; Kovalev, Y. Y.; Krichbaum, T. P.; Max-Moerbeck, W.; Nestoras, I.; Pearson, T. J.; Porras, A.; Readhead, A. C. S.; Recillas, E.; Richards, J. L.; Riquelme, D.; Sievers, A.; Tammi, J.; Tornikoski, M.; Ungerechts, H.; Zensus, J. A.; Celotti, A.; Bonnoli, G.; Doi, A.; Maraschi, L.; Tagliaferri, G.; Tavecchio, F.

    2012-11-30

    Here, we present more than three years of observations at different frequencies, from radio to high-energy γ-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948 + 0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of γ-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948 + 0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at γ-rays of the order of 1048 erg s-1, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (γ-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of γ-ray spectra before and including 2011 data suggested that there was a softening of the high-energy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at γ-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at γ-rays is 2.3 ± 0.5 days. Finally, these small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.

  9. Radio-to-γ-ray monitoring of the narrow-line Seyfert 1 galaxy PMN J0948 + 0022 from 2008 to 2011

    DOE PAGES

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; ...

    2012-11-30

    Here, we present more than three years of observations at different frequencies, from radio to high-energy γ-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948 + 0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of γ-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948 + 0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at γ-rays of the order of 1048 ergmore » s-1, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (γ-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of γ-ray spectra before and including 2011 data suggested that there was a softening of the high-energy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at γ-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at γ-rays is 2.3 ± 0.5 days. Finally, these small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.« less

  10. Short-term radio variability and parsec-scale structure in A gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Wajima, Kiyoaki; Fujisawa, Kenta; Hayashida, Masaaki; Isobe, Naoki; Ishida, Takafumi; Yonekura, Yoshinori

    2014-02-01

    We made simultaneous single-dish and very long baseline interferometer (VLBI) observations of a narrow-line Seyfert 1 galaxy 1H 323+342, showing gamma-ray activity revealed by Fermi/Large Area Telescope observations. We found significant variation of the total flux density at 8 GHz on the timescale of one month by the single-dish monitoring. The total flux density varied by 5.5% in 32 days, which is comparable to the gamma-ray variability timescale, corresponding to the variability brightness temperature of 7.0 × 10{sup 11} K. The source consists of central and southeastern components on the parsec (pc) scale. Only the flux of the central component decreased in the same way as the total flux density, indicating that the short-term radio variability, and probably the gamma-ray-emitting region, is associated with this component. From the VLBI observations, we obtained brightness temperatures of greater than (5.2 ± 0.3) × 10{sup 10} K and derived an equipartition Doppler factor of greater than 1.7, a variability Doppler factor of 2.2, and an 8 GHz radio power of 10{sup 24.6} W Hz{sup –1}. Combining them, we conclude that acceleration of radio jets and creation of high-energy particles are ongoing in the central engine and that the apparent very radio-loud feature of the source is due to the Doppler boosting effect, resulting in the intrinsic radio loudness being an order of magnitude smaller than the observed values. We also conclude that the pc-scale jet represents recurrent activity from the spectral fitting and the estimated kinematic age of pc- and kpc-scale extended components with different position angles.

  11. SDSS J143244.91+301435.3: a link between radio-loud narrow-line Seyfert 1 galaxies and compact steep-spectrum radio sources?

    NASA Astrophysics Data System (ADS)

    Caccianiga, A.; Antón, S.; Ballo, L.; Dallacasa, D.; Della Ceca, R.; Fanali, R.; Foschini, L.; Hamilton, T.; Kraus, A.; Maccacaro, T.; Mack, K.-H.; Marchã, M. J.; Paulino-Afonso, A.; Sani, E.; Severgnini, P.

    2014-06-01

    We present SDSS J143244.91+301435.3, a new case of a radio-loud narrow-line Seyfert 1 (RL NLS1) with a relatively high radio power (P1.4 GHz = 2.1 × 1025 W Hz-1) and large radio-loudness parameter (R1.4 = 600 ± 100). The radio source is compact with a linear size below ˜1.4 kpc but, in contrast to most of the RL NLS1 discovered so far with such a high R1.4, its radio spectrum is very steep (α = 0.93, Sν ∝ ν-α) and does not support a `blazar-like' nature. Both the small mass of the central supermassive black hole and the high accretion rate relative to the Eddington limit estimated for this object (3.2 × 107 M⊙ and 0.27, respectively, with a formal error of ˜0.4 dex for both quantities) are typical of the NLS1 class. Through modelling the spectral energy distribution of the source, we have found that the galaxy hosting SDSS J143244.91+301435.3 is undergoing quite intense star formation (SFR = 50 M⊙ yr-1), which, however, is expected to contribute only marginally (˜1 per cent) to the observed radio emission. The radio properties of SDSS J143244.91+301435.3 are remarkably similar to those of compact steep-spectrum (CSS) radio sources, a class of active galactic nuclei (AGN) mostly composed of young radio galaxies. This may suggest a direct link between these two classes of AGN, with CSS sources possibly representing the misaligned version (the so-called `parent population') of RL NLS1 showing blazar characteristics.

  12. Short-term Radio Variability and Parsec-scale Structure in a Gamma-Ray Narrow-line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Wajima, Kiyoaki; Fujisawa, Kenta; Hayashida, Masaaki; Isobe, Naoki; Ishida, Takafumi; Yonekura, Yoshinori

    2014-02-01

    We made simultaneous single-dish and very long baseline interferometer (VLBI) observations of a narrow-line Seyfert 1 galaxy 1H 323+342, showing gamma-ray activity revealed by Fermi/Large Area Telescope observations. We found significant variation of the total flux density at 8 GHz on the timescale of one month by the single-dish monitoring. The total flux density varied by 5.5% in 32 days, which is comparable to the gamma-ray variability timescale, corresponding to the variability brightness temperature of 7.0 × 1011 K. The source consists of central and southeastern components on the parsec (pc) scale. Only the flux of the central component decreased in the same way as the total flux density, indicating that the short-term radio variability, and probably the gamma-ray-emitting region, is associated with this component. From the VLBI observations, we obtained brightness temperatures of greater than (5.2 ± 0.3) × 1010 K and derived an equipartition Doppler factor of greater than 1.7, a variability Doppler factor of 2.2, and an 8 GHz radio power of 1024.6 W Hz-1. Combining them, we conclude that acceleration of radio jets and creation of high-energy particles are ongoing in the central engine and that the apparent very radio-loud feature of the source is due to the Doppler boosting effect, resulting in the intrinsic radio loudness being an order of magnitude smaller than the observed values. We also conclude that the pc-scale jet represents recurrent activity from the spectral fitting and the estimated kinematic age of pc- and kpc-scale extended components with different position angles.

  13. Evidence of bar-driven secular evolution in the gamma-ray narrow-line Seyfert 1 galaxy FBQS J164442.5+261913

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; Kotilainen, J. K.; León Tavares, J.; Chavushyan, V.; Añorve, C.

    2017-01-01

    We present near-infrared (NIR) imaging of FBQS J164442.5+261913, one of the few γ-ray emitting Narrow Line Seyfert 1 (NLSy1) galaxies detected at high significance level by Fermi-LAT. This study is the first morphological analysis performed of this source and the third performed of this class of objects. Conducting a detailed two-dimensional modeling of its surface brightness distribution and analysing its J - Ks colour gradients, we find that FBQS J164442.5+261913 is statistically most likely hosted by a barred lenticular galaxy (SB0). We find evidence that the bulge in the host galaxy of FBQS J164442.5+261913 is not classical but pseudo, against the paradigm of powerful relativistic jets exclusively launched by giant ellipticals. Our analysis, also reveal the presence of a ring with diameter equalling the bar length (rbar = 8.13 kpc ± 0.25), whose origin might be a combination of bar-driven gas rearrangement and minor mergers, as revealed by the apparent merger remnant in the J-band image. In general, our results suggest that the prominent bar in the host galaxy of FBQS J164442.5+261913 has mostly contributed to its overall morphology driving a strong secular evolution, which plays a crucial role in the onset of the nuclear activity and the growth of the massive bulge. Minor mergers, in conjunction, are likely to provide the necessary fresh supply of gas to the central regions of the host galaxy.

  14. Accretion disc-corona and jet emission from the radio-loud narrow-line Seyfert 1 galaxy RX J1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-08-01

    We perform X-ray/ultraviolet (UV) spectral and X-ray variability studies of the radio-loud narrow-line Seyfert 1 (NLS1) galaxy RX J1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultrasoft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power law due to the thermal Comptonization (Γ = 1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of 2 lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RX J1633.3+4719 is variable with fractional variability amplitude Fvar = 13.5 ± 1.0 per cent. In contrast to radio-quiet active galactic nuclei (AGN), X-ray emission from the source becomes harder with increasing flux. The fractional rms variability increases with energy and the rms spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anticorrelated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RX J1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  15. Radio-to-Gamma-Ray Monitoring of the Narrow-line Seyfert 1 Galaxy PMN J0948+0022 from 2008 to 2011

    NASA Technical Reports Server (NTRS)

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; Ghisellini, G.; Hovatta, T.; Lahteenmaki, A.; Lister, M. L.; Braito, V.; Gallo, L.; Hamilton, T. S.; Kino, M.; Komossa S.; Pushkarev, A. B.; Thompson, D. J.; Tibolla, O.; Tramacere, A.; Carrasco, L.; Carraminana, A.; Falcone, A.; Giroletti, M.; Grupe, D.; Kovalev, Y. Y.; Krichbaum, T. P.; Max-Moerbeck, W.; Nestoras, I.; Pearson, T.J.; Porras, A.; Readhead, A.C.S.; Recillas, E.; Richards, J.L.; Riquelme, D.; Sievers, A.; Tammi, J.; Ungerechts, H.

    2012-01-01

    We present more than three years of observations at different frequencies, from radio to high-energy ?-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of ?-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948+0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at gamma-rays of the order of 1048 erg per second, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (gamma-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of gamma-ray spectra before and including 2011 data suggested that there was a softening of the highenergy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at gamma-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at gamma-rays is 2.3 +/- 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.

  16. STRONG UV AND X-RAY VARIABILITY OF THE NARROW LINE SEYFERT 1 GALAXY WPVS 007-ON THE NATURE OF THE X-RAY LOW STATE

    SciTech Connect

    Grupe, Dirk; Barlow, Brad N.; Komossa, S.; Scharwaechter, Julia; Dietrich, Matthias; Leighly, Karen M.; Lucy, Adrian E-mail: julia.scharwaechter@obspm.fr

    2013-10-01

    We report on multi-wavelength observations of the X-ray transient Narrow Line Seyfert 1 (NLS1) galaxy WPVS 007. The galaxy was monitored with Swift between 2005 October and 2013 July, after it had previously undergone a dramatic drop in its X-ray flux. For the first time, we are able to repeatedly detect this NLS1 in X-rays again. This increased number of detections in the last couple of years may suggest that the strong absorber that has been found in this active galactic nucleus (AGN) is starting to become leaky and may eventually disappear. The X-ray spectra obtained for WPVS 007 are all consistent with a partial covering absorber model. A spectrum based on the data during the extreme low X-ray flux states shows that the absorption column density is of the order of 4 Multiplication-Sign 10{sup 23} cm{sup -2} with a covering fraction of 95%. WPVS 007 also displays one of the strongest UV variabilities seen in NLS1s. The UV continuum variability anti-correlates with the optical/UV slope {alpha}{sub UV}, which suggests that the variability may be primarily due to reddening. The UV variability timescales are consistent with moving dust ''clouds'' located beyond the dust sublimation radius of R{sub sub} Almost-Equal-To 20 lt-days. We present for the first time near-infrared JHK data of WPVS 007, which reveal a rich emission-line spectrum. Recent optical spectroscopy does not indicate significant variability in the broad permitted and Fe II emission lines, implying that the ionizing continuum seen by those gas clouds has not significantly changed over the last decades. All X-ray and UV observations are consistent with a scenario in which an evolving broad absorption line (BAL) flow obscures the continuum emission. As such, WPVS 007 is an important target for our understanding of BAL flows in low-mass AGNs.

  17. The First GeV Outburst of the Radio-loud Narrow-line Seyfert 1 Galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Stalin, C. S.

    2016-03-01

    The γ-ray-loud narrow-line Seyfert 1 (γ-NLSy1) galaxy PKS 1502+036 (z = 0.409) exhibited its first γ-ray outburst on 2015 December 20. In the energy range of 0.1-300 GeV, the highest flux measured by the Fermi-Large Area Telescope is (3.90 ± 1.52) × 10-6 {ph} {{cm}}-2 {{{s}}}-1, which is the highest γ-ray flux ever detected from this object. The associated spectral shape is soft (Γ0.1-300 GeV = 2.57 ± 0.17) and this corresponds to an isotropic γ-ray luminosity of (1.2 ± 0.6) × 1048 erg s-1. We generate the broadband spectral energy distribution (SED) during the GeV flare and reproduce it using a one-zone leptonic emission model. The optical-UV spectrum can be explained by a combination of synchrotron and accretion disk emission, whereas the X-ray-to-γ-ray SED can be satisfactorily reproduced by inverse-Compton scattering of thermal photons that originated from the torus. The derived SED parameters hint that the increase in the bulk Lorentz factor is a major cause of the flare and the location of the emission region is estimated as being outside the broad-line region but still inside the torus. A comparison of the GeV-flaring SED of PKS 1502+036 with that of two other γ-NLSy1 galaxies, namely, 1H 0323+342 (z = 0.061) and PMN J0948+0022 (z = 0.585), and also with flat spectrum radio quasar (FSRQ) 3C 279 (z = 0.536), has led to the conclusion that the GeV-flaring SEDs of γ-NLSy1 galaxies resemble FSRQs and a major fraction of their bolometric luminosities are emitted at γ-ray energies.

  18. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. II. The radio view

    NASA Astrophysics Data System (ADS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Großberger, C.; Hase, H.; Horiuchi, S.; Lovell, J. E. J.; Mannheim, K.; Markowitz, A.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Trüstedt, J.; Tzioumis, A. K.; Wilms, J.

    2016-04-01

    Context. Γ-ray-detected radio-loud narrow-line Seyfert 1 (γ-NLS1) galaxies constitute a small but interesting sample of the γ-ray-loud AGN. The radio-loudest γ-NLS1 known, PKS 2004-447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims: We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS 2004-447, which are essential for understanding the diversity of the radio properties of γ-NLS1s. Methods: The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results: The TANAMI VLBI image at 8.4 GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other γ-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size < 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions: PKS 2004-447 appears to be a unique member of the γ-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all γ-NLS1s and extremely rare among γ-ray-loud AGN. The VLBI images shown in Figs. 3 and 4 (as FITS files) and the ATCA

  19. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    NASA Technical Reports Server (NTRS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  20. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. I. The X-ray View

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Schulz, R.; Kadler, M.; Wilms, J.; Markowitz, A.; Chang, C. S.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Mannheim, K.; Müller, C.; Ojha, R.; Ros, E.; Trüstedt, J.

    2016-01-01

    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004-447 are in the range of (0.5-2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band.

  1. Evidence of bar-driven secular evolution in the gamma-ray narrow-line Seyfert 1 galaxy FBQS J164442.5+261913

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; Kotilainen, J. K.; León Tavares, J.; Chavushyan, V.; Añorve, C.

    2017-05-01

    We present near-infrared imaging of FBQS J164442.5+261913, one of the few γ-ray emitting narrowline Seyfert 1 galaxies detected at high significance level by Fermi Large Area Telescope. This study is the first morphological analysis performed of this source and the third performed of this class of objects. Conducting a detailed 2D modelling of its surface brightness distribution and analysing its J - Ks colour gradients, we find that FBQS J164442.5+261913 is statistically most likely hosted by a barred lenticular galaxy (SB0). We find evidence that the bulge in the host galaxy of FBQS J164442.5+261913 is not classical but pseudo, against the paradigm of powerful relativistic jets exclusively launched by giant ellipticals. Our analysis also reveals the presence of a ring with diameter equalling the bar length (rbar = 8.13 ± 0.25 kpc), whose origin might be a combination of bar-driven gas rearrangement and minor mergers, as revealed by the apparent merger remnant in the J-band image. In general, our results suggest that the prominent bar in the host galaxy of FBQS J164442.5+261913 has mostly contributed to its overall morphology driving a strong secular evolution, which plays a crucial role in the onset of the nuclear activity and the growth of the massive bulge. Minor mergers, in conjunction, are likely to provide the necessary fresh supply of gas to the central regions of the host galaxy.

  2. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  3. Data-driven dissection of emission-line regions in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Villarroel, Beatriz; Korn, Andreas J.

    2016-11-01

    Aims: Indirectly resolving the line-emitting gas regions in distant active galactic nuclei (AGN) requires both high-resolution photometry and spectroscopy (i.e. through reverberation mapping). Emission in AGN originates on widely different scales; the broad-line region (BLR) has a typical radius less than a few parsec, the narrow-line region (NLR) extends out to hundreds of parsecs. But emission also appears on large scales from heated nebulae in the host galaxies (tenths of kpc). Methods: We propose a novel, data-driven method based on correlations between emission-line fluxes to identify which of the emission lines are produced in the same kind of emission-line regions. We tested the method on Seyfert galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) and Galaxy Zoo project. Results: We demonstrate the usefulness of the method on Seyfert-1s and Seyfert-2 objects, showing similar narrow-line regions (NLRs). Preliminary results from comparing Seyfert-2s in spiral and elliptical galaxy hosts suggest that the presence of particular emission lines in the NLR depends both on host morphology and eventual radio-loudness. Finally, we explore an apparent linear relation between the final correlation coefficient obtained from the method and time lags as measured in reverberation mapping for Zw229-015.

  4. Zooming into γ-ray loud galactic nuclei: broadband emission and structure dynamics of the blazar PKS 1502+106 and the narrow-line Seyfert 1 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Karamanavis, Vasileios (Vassilis)

    2015-05-01

    Blazars are accretion-powered systems representing the most extreme flavor of active galactic nuclei (AGN). This thesis focuses on the study of blazar PKS 1502+106 during a prominent broadband outburst using ultra-high resolution imaging and a broadband single-dish study. The former is accomplished through very-long-baseline interferometry (VLBI) down to short millimeter (mm) wavelengths, while the latter uses densely-sampled radio light curves at a wide frequency range. The same combination allows the detailed study of the galaxy 1H 0323+342. This is a prominent member of the narrow-line Seyfert 1 (NLS1) class of AGN, recently discovered to emit gamma-rays. General aspects of AGN along with an introduction to their discovery, phenomenology, and their constituent parts are discussed in Chapter 1. Here, specific aspects of blazars and concepts used in later chapters are also introduced. Chapter 2 introduces the technique of VLBI from a theoretical standpoint, while in Chapter 3 the practical aspects of VLBI calibration and imaging at mm wavelengths are discussed. The phenomenology and physical characteristics of PKS 1502+106 through a cm- to mm-VLBI study are presented in Chapter 4. The data set features Global Millimeter VLBI Array (GMVA) observations at 7 mm (43 GHz) and 3 mm (86 GHz) along with complementary observations at 2 cm (15 GHz) from the MOJAVE program. We also combine the analysis with F-GAMMA program data at frequencies matching the VLBI monitoring and with the Fermi/LAT gamma-ray light curve. From the rich data set we deduce its kinematical and spectral characteristics which allow the inference of physical parameters of the ultra-relativistic jet of PKS 1502+106. For the jet features identified across observing frequencies we deduce Doppler factors in the range ~10-50 at different positions within the flow. Magnetic field strengths and brightness temperatures along the jet are also deduced. The position-dependent differences in viewing angle and

  5. Emission Line Properties of Seyfert Galaxies in the 12 μm Sample

    NASA Astrophysics Data System (ADS)

    Malkan, Matthew A.; Jensen, Lisbeth D.; Rodriguez, David R.; Spinoglio, Luigi; Rush, Brian

    2017-09-01

    We present optical and ultraviolet spectroscopic measurements of the emission lines of 81 Seyfert 1 and 104 Seyfert 2 galaxies that comprise nearly all of the IRAS 12 μm AGN sample. We have analyzed the emission-line luminosity functions, reddening, and other diagnostics. For example, the narrow-line regions (NLR) of Seyfert 1 and 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the Hα/Hβ ratio with a new reddening indicator—the [S ii]6720/[O ii]3727 ratio—we find the average E(B–V) is 0.49 ± 0.35 for type 1 and 0.52 ± 0.26 for type 2 Seyferts. The NLR of Sy 1s has an ionization level insignificantly higher than that of Sy 2s. For the broad-line region (BLR), we find that the C iv equivalent width correlates more strongly with [O iii]/Hβ than with UV luminosity. Our bright sample of local active galaxies includes 22 Seyfert nuclei with extremely weak broad wings in Hα, known as Seyfert 1.9s and 1.8s, depending on whether or not broad Hβ wings are detected. Aside from these weak broad lines, our low-luminosity Seyferts are more similar to the Sy 2s than to Sy 1s. In a BPT diagram, we find that Sy 1.8s and 1.9s overlap the region occupied by Sy 2s. We compare our results on optical emission lines with those obtained by previous investigators, using AGN subsamples from the Sloan Digital Sky Survey. The luminosity functions of forbidden emission lines [O ii]λ3727 Å, [O iii]λ5007 Å, and [S ii]λ6720 Å in Sy 1s and Sy 2s are indistinguishable. They all show strong downward curvature. Unlike the LFs of Seyfert galaxies measured by the Sloan Digital Sky Survey, ours are nearly flat at low luminosities. The larger number of faint Sloan “AGN” is attributable to their inclusion of weakly emitting LINERs and H ii+AGN “composite” nuclei, which do not meet our spectral classification criteria for Seyferts. In an Appendix, we have investigated which emission line luminosities can provide the most reliable

  6. The Mg II line profile in the Seyfert galaxy NGC 4151 - A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T. R.

    1987-01-01

    This paper examines the Mg II 2795-2802 A doublet in the Seyfert galaxy NGC 4151 at a higher resolution than has previously been used, searching for velocity systems in absorption and emission. Evidence is presented for a new, narrow, outflowing absorption system in Mg II having a velocity of 825 km/s relative to the sun, and -165 km/s relative to the systemic velocity of NGC 4151. This feature is not present in Ly-alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines, a model decomposition of the line profile is presented.

  7. The Mg II line profile in the Seyfert galaxy NGC 4151: A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T.

    1986-01-01

    The Mg II 2795, 2802A doublet in the Seyfert galaxy NGC 4151 was examined to search for velocity systems in absorption and emission. Evidence for a narrow, outflowing absorption system in Mg II having a velocity of +825 km/sec relative to the Sun, -165 km/sec relative to the systemic velocity of NGC 4151 is presented. This feature is not present in Ly alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines a model decomposition of the line profile is shown.

  8. Radio emission and the forbidden line region of Seyfert galaxies

    SciTech Connect

    Ulvestad, J.S.

    1981-01-01

    The results of an extensive program of mapping Seyfert galaxies using the Very Large Array radio telescope are presented. Unlike the majority of radio galaxies, the radio emission in most Seyferts is confined to the inner few kiloparsecs (or less) of the galaxy. This scale is similar to the size of the region in which optical forbidden line emission occurs. Six double (or triple) radio sources have been mapped now in Seyfert galaxies. Approximately ten more galaxies shown more diffuse emission or are resolved only slightly. In almost all galaxies, the central radio peak, when present, coincides with the optical continuum peak. In every double or triple radio source, the outer radio lobes straddle that optical peak. The major axes of the double and triple radio sources may be correlated with the directions of greatest elongation of the optical line-emitting cloud complexes. However, the radio source axes do not appear to be related to the major or minor axes of the outer optical continuum isophotes of the Seyfert galaxies. Synchrotron emission is the dominant source of radio photons in all the galaxies observed. Thermal processes contribute, on the average, no more than about 6% of the total radio emission at 4.885 GHz. Using standard assumptions, radio luminosities, magnetic fields, and total energy contents have been calculated for the observed galaxies. The triple radio source in NGC 5548 has been studied in detail. The properties of NGC 5548 have been used to investigate some theoretical aspects of the double and triple sources and their relationship to the forbidden line region (FLR).

  9. Relativistic Fe Kα Line In Bright Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Mantovani, Giulia; Nandra, K.; Ponti, G.

    2016-10-01

    Relativistic iron lines are expected to be an ubiquitous feature in bright AGN. However, a significant fraction of object misses a relativistic line component. We investigated the physical reasons of its absence. To this aim we studied a sample of Seyfert 1 galaxies where controversial results on the presence of a relativistic line have been previously reported. I will show that high statistics is key to reveal the line: the relativistic Fe Kalpha line is detected at >95% confidence level in observations where the counts in the 5-7 keV energy band are >4 x 10^4. We also st udied the correlation between the relativistic line and the high energy reflection continuum, and explored whether evidences of light bending exist in the data.

  10. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  11. Constraints on the broad-line region properties and extinction in local Seyferts

    NASA Astrophysics Data System (ADS)

    Schnorr-Müller, Allan; Davies, R. I.; Korista, K. T.; Burtscher, L.; Rosario, D.; Storchi-Bergmann, T.; Contursi, A.; Genzel, R.; Graciá-Carpio, J.; Hicks, E. K. S.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R.; Riffel, Rogemar A.; Schartmann, M.; Sternberg, A.; Sturm, E.; Tacconi, L.; Veilleux, S.; Ulrich, O. A.

    2016-11-01

    We use high-spectral resolution (R > 8000) data covering 3800-13 000 Å to study the physical conditions of the broad-line region (BLR) of nine nearby Seyfert 1 galaxies. Up to six broad H I lines are present in each spectrum. A comparison - for the first time using simultaneous optical to near-infrared observations - to photoionization calculations with our devised simple scheme yields the extinction to the BLR at the same time as determining the density and photon flux, and hence distance from the nucleus, of the emitting gas. This points to a typical density for the H I emitting gas of 1011 cm-3 and shows that a significant amount of this gas lies at regions near the dust sublimation radius, consistent with theoretical predictions. We also confirm that in many objects, the line ratios are far from case B, the best-fitting intrinsic broad-line Hα/H β ratios being in the range 2.5-6.6 as derived with our photoionization modelling scheme. The extinction to the BLR, based on independent estimates from H I and He II lines, is AV ≤ 3 for Seyfert 1-1.5s, while Seyfert 1.8-1.9s have AV in the range 4-8. A comparison of the extinction towards the BLR and narrow-line region (NLR) indicates that the structure obscuring the BLR exists on scales smaller than the NLR. This could be the dusty torus, but dusty nuclear spirals or filaments could also be responsible. The ratios between the X-ray absorbing column NH and the extinction to the BLR are consistent with the Galactic gas-to-dust ratio if NH variations are considered.

  12. The origin of the broad line emission from Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1977-01-01

    Mass loss from an accretion disk around a supermassive (of the order of 100 million solar masses) black hole is proposed as the origin of the broad permitted lines of Seyfert galaxies and QSOs. The material is expelled by ionizing radiation emitted near the center of the disk and striking it at a radius of approximately 10 to the 16.5 power cm. The escaping gas initially has a density of about 1 trillion per cu cm, high enough for radiation pressure to accelerate the gas to high radial velocities. The model leads to line emission from tiny dense filaments moving at about 10,000 km/s in a region roughly 10 to the 17th power cm across. This agrees with the observed broad line widths, variability time scales, and the absence of broad forbidden-line emission.

  13. Recent Observations of Intrinsic UV Absorption Lines in Seyfert Galaxies with STIS

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Ruiz, J. R.

    2000-05-01

    We present recent observations of the intrinsic UV absorption lines in several Seyfert 1 galaxies with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). Echelle observations of NGC 4151 on 1999 June 19 indicate that the continuum and broad emission lines were at a low state at this time. Consequently, strong low-ionization absorption lines appear in the spectra, including numerous metastable Fe II lines. A feature in the blue wing of the C IV emission line, identified as a transient C IV absorption line at high outflow velocity by Weymann et al., turns out to be a fine-structure Si II line. Our current work focuses on determining the physical conditions in different kinematic components of the absorption using detailed photoionization models. Our STIS echelle observations of NGC 3783 on 2000 February 27 reveal that a new component of C IV and N V absorption has appeared since the last GHRS observation 5 years earlier, at a radial velocity of -800 km/sec relative to the systemic velocity. In addition, the component at -1400 km/sec has become much stronger and is present in Si IV, indicating a lower ionization state compared to the other components. We have also obtained low-resolution UV spectra of the Seyfert 1 galaxy NGC 3227, which is characterized by significant reddening of the continuum and emission lines. In addition to saturated absorption from high-ionization lines, we detect strong absorption in the Si IV and Mg II lines. This confirms our prediction that a lukewarm absorber that occults much of the narrow-line region is responsible for the reddening (Kraemer et al. 2000), rather than a large neutral column or a dusty X-ray absorber.

  14. Variable Iron K(alpha) Lines in Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Gelbord, J.; Yaqoob, T.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We find that variability of the iron K alpha line is common in Seyfert 1 galaxies. Using data from the ASCA archive for objects that have been observed more than once during the mission, we study the time-averaged spectra from individual observations, thereby probing variability on timescales that range from days to years. Since the statistics of the data do not warrant searches for line variability in terms of a complex physical model, we use a simple Gaussian to model the gross shape of the line and then use the centroid energy, intensity, and equivalent width as robust indicators of changes in the line profile. We find that approximately 70% of Seyfert 1 galaxies (10 out of 15) show variability in at least one of these parameters: the centroid energy, intensity, and equivalent width vary in six, four, and eight sources, respectively. Because of the low signal-to-noise ratio, limited sampling, and time averaging, we consider these results to represent lower limits to the rate of incidence of variability. In most cases changes in the line do not appear to track changes in the continuum. In particular, we find no evidence for variability of the line intensity in NGC 4151, suggesting an origin in a region larger than the putative accretion disk, where most of the iron line has been thought to originate. Mrk 279 is investigated on short timescales. The time-averaged effective line energy (as measured by the Gaussian center energy, which is weighted by emission in the entire line profile) is 6.5 keV in the galaxy rest frame. As the continuum flux increases by 20% in a few hours, the Fe K line responds within approximately 10,000 seconds with the effective line energy increasing by 0.22 keV (approximately 10,500 kilometers per second). We also examine the ROSAT PSPC spectrum of Mrk 279 but find inconsistencies with ASCA. Problems with the ASCA and ROSAT calibration that affect simultaneous spectral fits at low energies are discussed in an appendix.

  15. Variable Iron K(alpha) Lines in Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Gelbord, J.; Yaqoob, T.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We find that variability of the iron K alpha line is common in Seyfert 1 galaxies. Using data from the ASCA archive for objects that have been observed more than once during the mission, we study the time-averaged spectra from individual observations, thereby probing variability on timescales that range from days to years. Since the statistics of the data do not warrant searches for line variability in terms of a complex physical model, we use a simple Gaussian to model the gross shape of the line and then use the centroid energy, intensity, and equivalent width as robust indicators of changes in the line profile. We find that approximately 70% of Seyfert 1 galaxies (10 out of 15) show variability in at least one of these parameters: the centroid energy, intensity, and equivalent width vary in six, four, and eight sources, respectively. Because of the low signal-to-noise ratio, limited sampling, and time averaging, we consider these results to represent lower limits to the rate of incidence of variability. In most cases changes in the line do not appear to track changes in the continuum. In particular, we find no evidence for variability of the line intensity in NGC 4151, suggesting an origin in a region larger than the putative accretion disk, where most of the iron line has been thought to originate. Mrk 279 is investigated on short timescales. The time-averaged effective line energy (as measured by the Gaussian center energy, which is weighted by emission in the entire line profile) is 6.5 keV in the galaxy rest frame. As the continuum flux increases by 20% in a few hours, the Fe K line responds within approximately 10,000 seconds with the effective line energy increasing by 0.22 keV (approximately 10,500 kilometers per second). We also examine the ROSAT PSPC spectrum of Mrk 279 but find inconsistencies with ASCA. Problems with the ASCA and ROSAT calibration that affect simultaneous spectral fits at low energies are discussed in an appendix.

  16. Automated IFU Analysis: Narrow Line Region Outflows In Mrk 3

    NASA Astrophysics Data System (ADS)

    Fischer, Travis C.; Crenshaw, D. Michael; Pope, Crystal

    2015-08-01

    As Integral Field Unit (IFU) observations and large spectral surveys continue to become more prevalent, the handling of thousands of spectra has become common place. Establishing a method that will easily allow for multiple-component analysis of emission-line features, as often seen in the Narrow-Line Regions (NLRs) of nearby Active Galactic Nuclei (AGN), in an automated fashion would be of great use to the community. We present such an analysis for the NLR kinematics in the Type 2 Seyfert AGN Mrk 3, based on observations from the Gemini Near Infrared Integral Field Spectrograph (NIFS). By incorporating Bayesian model selection into our analysis, the fitting of multiple kinematic components is performed while simultaneously determining the correct number of components in each spectrum, streamlining the line measurements for a large number of spectra into a single process.

  17. The extended narrow line region of NGC 4151. I - Emission line ratios and their implications

    NASA Astrophysics Data System (ADS)

    Penston, M. V.; Robinson, A.; Alloin, D.; Appenzeller, I.; Aretxaga, I.; Axon, D. J.; Baribaud, T.; Barthel, P.; Baum, S. A.; Boisson, C.; de Bruyn, A. G.; Clavel, J.; Colina, L.; Dennefeld, M.; Diaz, A.; Dietrich, M.; Durret, F.; Dyson, J. E.; Gondhalekar, P.; van Groningen, E.; Jablonka, P.; Jackson, N.; Kollatschny, W.; Laurikainen, E.; Lawrence, A.; Masegosa, J.; McHardy, I.; Meurs, E. J. A.; Miley, G.; Moles, M.; O'Brien, P.; O'Dea, C.; del Olmo, A.; Pedlar, A.; Perea, J.; Perez, E.; Perez-Fournon, I.; Perry, J.; Pilbratt, G.; Rees, M.; Robson, I.; Rodriguez-Pascual, P.; Rodriguez Espinosa, J. M.; Santos-Lleo, M.; Schilizzi, R.; Stasińska, G.; Stirpe, G. M.; Tadhunter, C.; Terlevich, E.; Terlevich, R.; Unger, S.; Vila-Vilaro, V.; Vilchez, J.; Wagner, S. J.; Ward, M. J.; Yates, G. J.

    1990-09-01

    The paper presents the first results from long-slit spectra of the Seyfert galaxy NGC 4151 which give average diagnostic ratios of weak lines in the Extended Narrow Line Region (ENLR) of the galaxy and the first direct density measurement in an ENLR. These data confirm that the ENLR is kinematically undisturbed gas in the disk of the galaxy which is illuminated by an ionizing continuum stronger by a factor of 13 than a power law interpolated between recently observed ultraviolet and X-ray fluxes. Explanations of this apparent excess include a hot thermal continuum, time variations, and an anisotropic rotation field.

  18. Fe–K LINE TIME VARIABILITY AND Ni ABUNDANCE OF DISTANT REFLECTORS IN SEYFERT GALAXIES

    SciTech Connect

    Fukazawa, Yasushi; Furui, Shun’ya; Hayashi, Kazuma; Ohno, Masanori; Hiragi, Kazuyoshi; Noda, Hirofumi

    2016-04-10

    We have performed systematic studies of narrow Fe–K line (6.4 keV) flux variability and Ni–K line intensity for Seyfert galaxies, using Suzaku and XMM-Newton archival data. Significant Fe–K line variability of several tens of percent was detected for a pair of observations separated by 1000–2000 days (Cen A, IC 4329 A, NGC 3516, and NGC 4151) and 158 days (NGC 3516). These timescales are larger by a factor of 10–100 than the inner radius of the torus, consistent with the view that X-ray reflection by a torus is a main origin for a narrow Fe–K line. The Ni–K line was detected with a >2σ level for the Circinus galaxy, Cen A, MRK 3, NGC 4388, and NGC 4151. A mean and variance of the Ni–Kα to Fe–Kα line intensity ratios are 0.066 and 0.026, respectively. Comparing this with the Monte-Carlo simulation of reflection, the Ni to Fe abundance ratio is 1.9 ± 0.8 solar. We discuss the results and the possibility of Ni abundance enhancement.

  19. Mass Outflow in the Narrow Line Region of Markarian 573

    NASA Astrophysics Data System (ADS)

    Revalski, Mitchell; Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R.

    2016-01-01

    We present our progress toward determining the mass outflow rate in the narrow emission line region (NLR) of the Seyfert 2 galaxy Markarian 573. Mass outflows in Active Galactic Nuclei (AGN) drive gas away from the central supermassive black hole (SMBH) into the circumnuclear environment, and may play an important role in regulating the growth of the SMBH, and its coevolution with the host galaxy bulge. Recent work by Crenshaw et al. (2015, ApJ, 799, 83) found that the mass outflow rate in the NLR of NGC 4151 is too large for the outflowing mass to have originated only from the central region, indicating a significant amount of gas is picked up by the outflow as it travels away from the nucleus. Using archival spectra taken with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), we are working to determine the mass outflow rates in a sample of 10 Seyfert galaxies to determine if correlations exist between their outflows and other properties including galaxy luminosity. To accomplish this, we will analyze the emission line spectra using photoionization models to determine the mass of the outflowing gas. Combining this information with previous kinematic modeling from Fischer et al. (2013, ApJS, 209, 1), we can determine the mass outflow rates and kinetic luminosities as a function of radius from the nucleus. These quantities will provide a direct comparison between observation and theoretical feedback models, allowing us to determine the significance of these outflows in regulating AGN feedback.

  20. A detailed study of the emission lines in the Seyfert 1 nucleus of M81

    NASA Astrophysics Data System (ADS)

    Filippenko, Alexei V.; Sargent, Wallace L. W.

    1988-01-01

    The authors present optical spectra of M81 having moderate resolution (1.6 - 4.5 Å) and exceptionally high signal-to-noise ratios. The broad component of Hα emission first noticed by Peimbert and Torres-Peimbert is easily visible, confirming that M81 harbors an active galactic nucleus (AGN) of the Seyfert 1 type. Prominent forbidden lines are also present. An absorption-line template galaxy, NGC 4339, is used to eliminate the starlight, revealing the pure emission-line spectrum of M81. A detailed analysis of the nuclear narrow-line region is given. It is shown that a wide range of densities is present, making the observed relative intensities consistent with photoionization by dilute, nonstellar radiation. The authors derive the mass of the central object in M81 (≡5×105M_sun;), under the assumption that the widths of the broad permitted lines are induced by gravity. It appears that there have been no changes in the strength of the broad Hα line during the past few years, even though the X-ray flux of M81 has been observed to vary substantially.

  1. Black Hole-Bulge Relation for Narrow-Line Objects

    NASA Astrophysics Data System (ADS)

    Bian, Wei-Hao; Zhao, Yong-Heng

    2003-02-01

    It has been thought that narrow-line Seyfert 1 galaxies are likely to be in the early stages of the evolution of active galaxies. To test this suggestion, the ratios of the central massive black hole (MBH) mass to the bulge mass (Mbh/Mbulge) were estimated for 22 Narrow Line AGNs (NL AGNs). It is found that NL AGNs appear to have genuinely lower MBH/Bulge mass ratio (Mbh/Mbulge). The mean log (Mbh/Mbulge) for 22 NL AGNs is -3.9 ± 0.07, which is an order of magnitude lower than that for Broad Line AGNs and quiescent galaxies. We suggest a nonlinear MBH/Bulge relation and find there exists a relation between the Mbh / Mbulge and the velocity dispersion, σ, derived from the [O III ] width. A scenario of MBH growth for NL AGNs is one of our interpretations of the nonline ar MBH/Bulge relation. The MBH growth timescales for 22 NL AGNs were calculated, with a mean value (1.29 ± 0.24) × 108 yr. Another plausible interpretation is also possible: that NL AGNs occur in low-Mbulge galaxies and that in such galaxies Mbh/Mbulge is lower than that in galaxies with a higher Mbulge, if we consider that NL AGNs already have their ``final'' Mbh/Mbulge. More information of the bulge in NL AGNs is needed to clarify the black hole-bulge relation.

  2. Studying the Iron Line Complex in the Bright Seyfert Galaxy NGC 5506

    NASA Technical Reports Server (NTRS)

    Nicastro, Fabrizio; Atkins, Patricia M. (Technical Monitor)

    2002-01-01

    This grant was to support the reduction and analysis of our approved XMM observation of the nearby Seyfert 2 galaxy NGC 5506. The observation has been carried out simultaneously with a BeppoSAX observation of the same source. The proposal was aimed to study in detail the Compton reflection component and the complex Iron K line of this source, combining the still unique capability of BeppoSAX in hard X-rays (to strongly constrain the reflection component, and then the intrinsic nuclear continuum), and the sensitivity of XMM at the energy of the Iron Line complex. NGC 5506 is one of the brightest AGN in hard X-rays and has been intensively studied in the past. GINGA detected the complex iron line as well as the reflection component. Both ASCA (spectroscopically) and Rossi-XTE (through variability analysis) suggested that the FeK line is complex, possibly made up of several distinct components. The centroid of the FeK complex in a subsequent BeppoSAX observation was bluer than the 6.4 keV energy of the relatively low-ionization iron Kalpha transition. NGC 5506 has been observed simultaneously by NewtonXMM and BeppoSAX on February 2-3 2001. we have reduced and analyzed both the NewtonXMM and the BeppoSAX data, and have written and published a paper on our results (appeared in Volume 377 (page 31) of A&A-Letters). Our main results can be summarized as follows: (a) we confirm that the FeK line is complex, and for the first time disentangle its components: we find that at least two components made up the FeK complex, one neutral and narrow, at 6.4 keV (rest energy), and another one either broader and highly ionized, at about 6.7 keV (rest frame), or, in turn, made up of two narrow and unresolved components from the He-like and the H-like ions of Fe; (b) the two possible solution for the high-ionization Fe-K component, are statistically indistinguishable. However, physically, a blend of two narrow lines from photoionized matter seems to be preferable to emission of a

  3. The Relativistic Iron Line Profile in the Seyfert 1 Galaxy IC4329a

    NASA Technical Reports Server (NTRS)

    Done, C.; Madejski, G. M.; Zycki, P. T.

    2000-01-01

    We present simultaneous ASCA and RXTE data on the bright Seyfert 1 galaxy IC4329a. The iron line is significantly broadened, but not to the extent expected from an accretion disk which extends down to the last stable orbit around a black hole. We marginally detect a narrow line component, presumably from the molecular torus, but, even including this gives a line profile from the accretion disk which is significantly narrower that that seen in MCG-6-30-15, and is much more like that seen from the low/hard state galactic black hole candidates. This is consistent with the inner disk being truncated before the last stable orbit, forming a hot flow at small radii as in the ADAF models. However. we cannot rule out the presence of an inner disk which does not contribute to the reflected spectrum. either because of extreme ionisation suppressing the characteristic atomic features of the reflected spectrum or because the X-ray source is intrinsically anisotropic, so it does not illuminate the inner disk. The source was monitored by RXTE every 2 days for 2 months, and these snapshot spectra show that there is intrinsic spectral variability. The data are good enough to disentangle the power law from the reflected continuum and we see that the power law softens as the source brightens. The lack of a corresponding increase in the observed reflected spectrum implies that either the changes in disk inner radial extent/ionization structure are small, or that the variability is actually driven by changes in the seed photons which are decoupled from the hard X-ray mechanism.

  4. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    SciTech Connect

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Dasyra, Kalliopi M.; Calzoletti, Luca; Malkan, Matthew A.; Tommasin, Silvia

    2015-01-20

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10{sup 4} cm{sup –3}. Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions.

  5. Detection of the O I 11287 A line in the Seyfert 1 galaxy I ZW 1

    NASA Astrophysics Data System (ADS)

    Rudy, Richard J.; Rossano, George S.; Puetter, R. C.

    1989-07-01

    This paper reports a detection of the infrared 11287 A transition of neutral oxygen in the Seyfert 1 galaxy I Zw 1. The observed strength of the feature is 6.5 x 10 to the -14th erg/sq cm sec. When this value is compared to the flux of O I 8446A measured by Persson and McGregor (1985), the ratio of the photon fluxes is unity, to within the measurement uncertainties. This is a direct confirmation that the broad permitted O I lines observed in Seyfert 1 galaxies and quasars arise through fluorescent excitation by Lyman Beta.

  6. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  7. VLBI IMAGING OF THE DOUBLE PEAKED EMISSION LINE SEYFERT KISSR 1494

    SciTech Connect

    Kharb, P.; Das, M.; Subramanian, S.; Chitta, L. P.; Paragi, Z.

    2015-02-01

    We present here the results from dual-frequency phase-referenced Very Long Baseline Interferometry observations of the Seyfert galaxy KISSR 1494, which exhibits double peaked emission lines in its Sloan Digital Sky Survey spectrum. We detect a single radio component at 1.6 GHz, but not at 5 GHz, implying a spectral index steeper than –1.5 ± 0.5 (S {sub ν}∝ν{sup α}). The high brightness temperature of the radio component (∼1.4 × 10{sup 7} K) and the steep radio spectrum support a non-thermal synchrotron origin. A crude estimate of the black hole mass derived from the M {sub BH}-σ{sub *} relation is ∼1.4 ± 1.0 × 10{sup 8} M {sub ☉}; it is accreting at an Eddington rate of ∼0.02. The radio data are consistent with either the radio emission coming from the parsec-scale base of a synchrotron wind originating in the magnetized corona above the accretion disk, or from the inner ionized edge of the accretion disk or torus. In the former case, the narrow line region (NLR) clouds may form a part of the broad outflow, while in the latter, the NLR clouds may form a part of an extended disk beyond the torus. The radio and NLR emission may also be decoupled so that the radio emission originates in an outflow while the NLR is in a disk and vice versa. While with the present data it is not possible to clearly distinguish between these scenarios, there appears to be greater circumstantial evidence supporting the coronal wind picture in KISSR 1494. From the kiloparsec-scale radio emission, the time-averaged kinetic power of this outflow is estimated to be Q ≈ 1.5 × 10{sup 42} erg s{sup –1}, which is typical of radio outflows in low-luminosity active galactic nuclei. This supports the idea that radio ''jets'' and outflowing coronal winds are indistinguishable in Seyfert galaxies.

  8. The Radio-Loud Narrow-Line Quasar SDSS J172206.03+565451.6

    NASA Astrophysics Data System (ADS)

    Komossa, Stefanie; Voges, Wolfgang; Adorf, Hans-Martin; Xu, Dawei; Mathur, Smita; Anderson, Scott F.

    2006-03-01

    We report identification of the radio-loud narrow-line quasar SDSS J172206.03+565451.6, which we found in the course of a search for radio-loud narrow-line active galactic nuclei (AGNs). SDSS J172206.03+565451.6 is only about the fourth securely identified radio-loud narrow-line quasar and the second-most radio loud, with a radio index R1.4~100-700. Its black hole mass, MBH~=(2-3)×107 Msolar estimated from Hβ line width and 5100 Å luminosity, is unusually small given its radio loudness, and the combination of mass and radio index puts SDSS J172206.03+565451.6 in a scarcely populated region of MBH-R diagrams. SDSS J172206.03+565451.6 is a classical narrow-line Seyfert 1-type object with FWHMHβ~=1490 km s-1, an intensity ratio of [O III]/Hβ~=0.7, and Fe II emission complexes with Fe II λ4570/Hβ~=0.7. The ionization parameter of its narrow-line region, estimated from the line ratio [O II]/[O III], is similar to Seyferts, and its high ratio of [Ne V]/[Ne III] indicates a strong EUV-to-soft X-ray excess. We advertise the combined usage of [O II]/[O III] and [Ne V]/[Ne III] diagrams as a useful diagnostic tool to estimate ionization parameters and to constrain the EUV-soft X-ray continuum shape relatively independently from other parameters.

  9. THE EXTENDED NARROW-LINE REGION OF TWO TYPE-I QUASI-STELLAR OBJECTS

    SciTech Connect

    Oh, Semyeong; Woo, Jong-Hak; Bennert, Vardha N.; Jungwiert, Bruno; Leipski, Christian; Albrecht, Marcus E-mail: woo@astro.snu.ac.kr E-mail: bruno@ig.cas.cz E-mail: leipski@mpia-hd.mpg.de

    2013-04-20

    We investigate the narrow-line region (NLR) of two radio-quiet QSOs, PG1012+008 and PG1307+085, using high signal-to-noise spatially resolved long-slit spectra obtained with FORS1 at the Very Large Telescope. Although the emission is dominated by the point-spread function of the nuclear source, we are able to detect extended NLR emission out to several kiloparsec scales in both QSOs by subtracting the scaled central spectrum from outer spectra. In contrast to the nuclear spectrum, which shows a prominent blue wing and a broad line profile of the [O III] line, the extended emission reveals no clear signs of large-scale outflows. Exploiting the wide wavelength range, we determine the radial change of the gas properties in the NLR, i.e., gas temperature, density, and ionization parameter, and compare them with those of Seyfert galaxies and type-II QSOs. The QSOs have higher nuclear temperature and lower electron density than Seyferts, but show no significant difference compared to type-II QSOs, while the ionization parameter decreases with radial distance, similar to the case of Seyfert galaxies, For PG1012+008, we determine the stellar-velocity dispersion of the host galaxy. Combined with the black hole mass, we find that the luminous radio-quiet QSO follows the local M{sub BH}-{sigma}{sub *} relation of active galactic nuclei.

  10. Narrow UV Absorption Line Outflows from Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, L.; Rodriguez Hidalgo, P.; Capellupo, D.

    2012-08-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ˜5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ˜100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ˜43% of bright quasars have a C IV NAL outflow while ˜68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  11. DETERMINING INCLINATIONS OF ACTIVE GALACTIC NUCLEI VIA THEIR NARROW-LINE REGION KINEMATICS. I. OBSERVATIONAL RESULTS

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.

    2013-11-01

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight (LOS). However, except for a few special cases, the specific inclinations of individual AGNs are unknown. We have developed a promising technique for determining the inclinations of nearby AGNs by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph. Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our LOS. We present NLR analysis of 53 Seyfert galaxies and the resulting inclinations from models of 17 individual AGNs with clear signatures of biconical outflows. Our model results agree with the unified model in that Seyfert 1 AGNs have NLRs inclined further toward our LOS than Seyfert 2 AGNs. Knowing the inclinations of these AGN NLRs, and thus their accretion disk and/or torus axes, will allow us to determine how their observed properties vary as a function of polar angle. We find no correlation between the inclinations of the AGN NLRs and the disks of their host galaxies, indicating that the orientation of the gas in the torus is independent of that of the host disk.

  12. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  13. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  14. Determining inclinations of active galactic nuclei via their narrow-line region kinematics. II. Correlation with observed properties

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Turner, T. J.

    2014-04-10

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight, yet the specific inclinations of all but a few AGNs are generally unknown. By determining the inclinations and geometries of nearby Seyfert galaxies using the kinematics of their narrow-line regions (NLRs) and comparing them with observed properties, we find strong correlations between inclination and total hydrogen column density, infrared color, and Hβ FWHM. These correlations provide evidence that the orientation of AGNs with respect to our line of sight affects how we perceive them beyond the Seyfert 1/2 dichotomy. They can also be used to constrain three-dimensional models of AGN components such as the broad-line region and torus. Additionally, we find weak correlations between AGN luminosity and several modeled NLR parameters, which suggests that the NLR geometry and kinematics are dependent to some degree on the AGN's radiation field.

  15. X-Ray Spectrum of a Narrow Line Quasi-Stellar Object

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1996-01-01

    This AO-3 observation of a new narrow-line QSO was motivated by our extensive study of the unclassified X-ray sources from the ROSAT/IRAS survey of Boller et al. IRAS 2018.1-2244 was observed to have Balmer lines and forbidden lines of roughly equal width. There are possibly weak broad wings on the H-alpha line. One of the questions to be addressed by hard X-ray spectroscopy is whether or not these wings are to be interpreted as scattered or weakly transmitted flux from a hidden broad-line region. The optical spectrum of this QSO also has very weak permitted Fe II lines, possibly indicative of a hidden broad line region. A new wrinkle on the concept of the narrow-line QSO is the gradual realization that luminous objects with very strong but narrow Fe II lines are showing up preferentially in soft X-ray surveys. The AO-1 objective was to detect the Geminga Pulsar and to interpret its 2-10 keV spectrum and pulse profile in terms of its X-ray emission spectra. Also, the AO-1 observed the Seyfert galaxy NGC 3516 to obtain a high signal-to-noise ratio spectrum. We expected NGC 3516 to be one of the best candidates for a successful demonstration of the details of the warm-absorber model.

  16. On the emission-line response to continuum variations in the Seyfert galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai; Maoz, Dan

    1990-12-01

    The two optical monitoring groups which have recently attempted to ascertain the continuum and emission-line variations in the Seyfert galaxy NGC 5548 have reported apparently contradictory results for the delay of H-beta variations with respect to the continuum. The measurements of Clavel et al. (1991) are presently used to demonstrate that the emission-line lag behind continuum variations depends on the continuum variability time-scale in this object, in the sense that continuum variations with larger time-scales yield larger emission-line lags. Monte Carlo simulations are used to show that there is at least one possible model which can reproduce the two differing delays.

  17. The structure of the broad-line region in the Seyfert galaxy Markarian 590

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Ali, Babar; Horne, Keith; Bertram, Ray; Lame, Nancy J.; Pogge, Richard W.; Wagner, R. M.

    1993-01-01

    We have undertaken a nine-month study of continuum and emission-line variability in the Seyfert galaxy Mrk 590 in order to determine the structure of the broad-line region. The H-beta variations are found to lag behind those of the optical continuum by about 19 days. We apply a maximum entropy method to solve for the transfer function which relates the line and continuum variability. This analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source, as in the case of NGC 5548, although these data do not allow us to reject with confidence models with significant line-of-sight response. We also show that the H-beta line variability is apparently confined to the core of the emission line, as suggested previously by Ferland, Korista, and Peterson (1990).

  18. The structure of the broad-line region in the Seyfert galaxy Markarian 590

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Ali, Babar; Horne, Keith; Bertram, Ray; Lame, Nancy J.; Pogge, Richard W.; Wagner, R. M.

    1993-01-01

    We have undertaken a nine-month study of continuum and emission-line variability in the Seyfert galaxy Mrk 590 in order to determine the structure of the broad-line region. The H-beta variations are found to lag behind those of the optical continuum by about 19 days. We apply a maximum entropy method to solve for the transfer function which relates the line and continuum variability. This analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source, as in the case of NGC 5548, although these data do not allow us to reject with confidence models with significant line-of-sight response. We also show that the H-beta line variability is apparently confined to the core of the emission line, as suggested previously by Ferland, Korista, and Peterson (1990).

  19. Infrared coronal emission lines and the possibility of their laser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Avi

    1993-01-01

    Results are presented from detailed balance calculations, and a compilation of atomic data and other model calculations designed to support upcoming ISO and current observing programs involving IR coronal emission lines, together with a table with a complete line list of infrared transitions within the ground configurations 2s2 2p(k), 3s2 3p(k), and the first excited configurations 2s 2p and 3s 3p of highly ionized astrophysically abundant elements. The temperature and density parameter space for dominant cooling via IR coronal lines is presented, and the relationship of IR and optical coronal lines is discussed. It is found that, under physical conditions found in Seyfert nuclei, 14 of 70 transitions examined have significant population inversions in levels that give rise to IR coronal lines. Several IR coronal line transitions were found to have laser gain lengths that correspond to column densities of 10 exp 24-25/sq cm which are modeled to exist in Seyfert nuclei. Observations that can reveal inverted level populations and laser gain in IR coronal lines are suggested.

  20. Physical Conditions in the Narrow Line Region of M51

    NASA Astrophysics Data System (ADS)

    Bradley, L. D., II; Kaiser, M. E.; Baan, W. A.

    2001-12-01

    We present long-slit Space Telescope Imaging Spectrograph (STIS) and Very Large Array (VLA) observations of the near-nuclear region of M51 obtained to study the kinematic and ionization structure of multiple emission line clouds in the narrow line region (NLR). The STIS spectra were obtained at a single position angle (166o) which intersects the nucleus and several NLR clouds. Low-dispersion G430L and G750L spectra provide continuous wavelength coverage from 2900 Å to 1 micron, while G430M spectra of [OIII] (66 km s-1 resolution) were used to more precisely determine the velocity structure of the emission-line clouds. The VLA radio continuum observations obtained at 3.6 cm with a resolution of 0.24'' complement our high spatial resolution (0.1\\arcsec) HST/STIS spectra. M51 possesses a biconical ionization cone (Ford et al. 1985, Cecil 1988) typical of Seyferts and Liners. This near-nuclear emission is comprised of multiple knots spanning 3.0" (122 pc) with cloud separations ranging from 0.1" (4 pc) to 0.75" (31 pc). Our 3.6 cm radio observations exhibit elongated nuclear emission with a similar PA. In agreement with earlier lower resolution 6 cm data (Crane & van der Hulst 1992), a weak radio jet, ~2.5" in extent, connects the near-nuclear emission with a diffuse (lobe) structure which spans ~4'' (163 pc). Close to the northern edge of this diffuse structure lies a radio knot which is identified with the extra-nuclear cloud (XNC) detected in Hα + [NII] and [OIII] imaging (Ford et al. 1985; Grillmair et al. 1997) and the X-ray (Terashima & Wilson 2001). We also detect weak radio emission extending to the north of the nucleus roughly opposite the southern jet. This northern 10μ Jy radio contour encompasses the [OIII] emission structure ~1.2'' north of the nucleus. Cloud velocities, velocity dispersions, emission line flux ratios, and photoionization modelling will be presented and discussed to explore the physical conditions (reddening, temperature, density, and

  1. Relativistic Fe Kα line study in Seyfert 1 galaxies observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Mantovani, G.; Nandra, K.; Ponti, G.

    2016-06-01

    We present an analysis of a sample of Seyfert 1 galaxies observed with Suzaku. The aim of this work is to examine critically the evidence for a relativistic Fe Kα line in the X-ray spectra of these active galactic nuclei. The sample was compiled from those sources in which a relativistic component was missing in at least one XMM-Newton observation. We analysed the Suzaku spectra of these objects in order to have more constraints on the high-energy emission, including the Compton reflection hump. The results show that the relativistic Fe Kα line is detected (at >95 per cent confidence) in all sources observed with high-signal-to-noise ratio (e.g. where the counts in the 5-7 keV energy band are ≳4 × 104). This is in agreement with the idea that relativistic lines are a ubiquitous feature in the spectra of Seyfert galaxies, but are often difficult to detect without very high-quality data. We also investigate the relation between the Fe Kα line and the reflection continuum at high energies. For most of the sample, the strength of the reflection component is consistent with that of the line. There are exceptions in both senses, however i.e. where the reflection continuum is strong but with weak line emission, and vice versa. These observations present a challenge for standard reflection models.

  2. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    NASA Technical Reports Server (NTRS)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  3. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  4. Determining Inclinations of Active Galactic Nuclei via their Narrow-line Region Kinematics. I. Observational Results

    NASA Astrophysics Data System (ADS)

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.

    2013-11-01

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight (LOS). However, except for a few special cases, the specific inclinations of individual AGNs are unknown. We have developed a promising technique for determining the inclinations of nearby AGNs by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph. Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our LOS. We present NLR analysis of 53 Seyfert galaxies and the resulting inclinations from models of 17 individual AGNs with clear signatures of biconical outflows. Our model results agree with the unified model in that Seyfert 1 AGNs have NLRs inclined further toward our LOS than Seyfert 2 AGNs. Knowing the inclinations of these AGN NLRs, and thus their accretion disk and/or torus axes, will allow us to determine how their observed properties vary as a function of polar angle. We find no correlation between the inclinations of the AGN NLRs and the disks of their host galaxies, indicating that the orientation of the gas in the torus is independent of that of the host disk. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. These observations are associated with programs 11243, 11611, and 12212.

  5. Determining the Narrow-Line Region Geometry of Mrk 3 with Gemini/NIFS

    NASA Astrophysics Data System (ADS)

    Pope, Crystal L.; Fischer, Travis C.; Crenshaw, D. Michael

    2015-01-01

    We present a study of the narrow-line region (NLR) and inner disk of the Seyfert 2 Mrk 3, based on observations from the Gemini Near-Infrared Integral Field Spectrometer (NIFS). Mrk 3 exhibits emission-line knots within the NLR that are in the shape of a backward S, which is likely due to dust/gas spirals in the galaxy's disk that have been illuminated by the AGN's ionizing bicone. With our NIFS observations, we determine the kinematics of Mrk 3 using an automated Bayesian model selection algorithm. Comparing the NLR kinematics measured with NIFS to those previously measured with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), we are able to test the accuracy of our previous kinematic outflow model.

  6. The hydrogen line spectra of narrow-line radio galaxies

    NASA Astrophysics Data System (ADS)

    Ferland, G. J.; Osterbrock, D. E.

    1985-02-01

    The results of the first detection of Ly-alpha in a narrow-line radio galaxy are reported. Nearly simultaneous optical and UV observations of 3C 192 and 3C 223 allow the measurement of both Balmer and Lyman decrements. These line ratios are approximate functions of the interstellar reddening and of a parameter which is proportional to the amount of H I collisional excitation present. The reddening of 3C 192 is slightly larger than that due to the Galaxy, although 3C 223 may have a larger value. Both galaxies have intrinsic Balmer and Lyman decrements which are significantly steeper than case B, suggesting that the gas is photoionized by a fairly hard X-ray continuum. The deduced values of L-alpha/H-beta and H-alpha/H-beta compare favorably with predictions of recent models.

  7. The hydrogen line spectra of narrow-line radio galaxies

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Osterbrock, D. E.

    1985-01-01

    The results of the first detection of Ly-alpha in a narrow-line radio galaxy are reported. Nearly simultaneous optical and UV observations of 3C 192 and 3C 223 allow the measurement of both Balmer and Lyman decrements. These line ratios are approximate functions of the interstellar reddening and of a parameter which is proportional to the amount of H I collisional excitation present. The reddening of 3C 192 is slightly larger than that due to the Galaxy, although 3C 223 may have a larger value. Both galaxies have intrinsic Balmer and Lyman decrements which are significantly steeper than case B, suggesting that the gas is photoionized by a fairly hard X-ray continuum. The deduced values of L-alpha/H-beta and H-alpha/H-beta compare favorably with predictions of recent models.

  8. Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective

    NASA Astrophysics Data System (ADS)

    Du, Pu; Wang, Jian-Min; Zhang, Zhi-Xiang

    2017-05-01

    The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kinematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of black hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.

  9. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; Gallo, Luigi; Awaki, Hisamitsu; Griffiths, Richard E.

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  10. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These

  11. The Link between the Hidden Broad Line Region and the Accretion Rate in Seyfert 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Marinucci, Andrea; Bianchi, Stefano; Nicastro, Fabrizio; Matt, Giorgio; Goulding, Andy D.

    2012-04-01

    In the past few years, more and more pieces of evidence have been presented for a revision of the widely accepted unified model of active galactic nuclei. A model based solely on orientation cannot explain all the observed phenomenology. In the following, we will present evidence that accretion rate is also a key parameter for the presence of hidden broad line regions (HBLRs) in Seyfert 2 galaxies. Our sample consists of 21 sources with polarized hidden broad lines and 18 sources without hidden broad lines. We use stellar velocity dispersions from several studies on the Ca II and Mg b triplets in Seyfert 2 galaxies to estimate the mass of the central black holes via the M BH-σsstarf relation. The ratio between the bolometric luminosity, derived from the intrinsic (i.e., unabsorbed) X-ray luminosity, and the Eddington luminosity is a measure of the rate at which matter accretes onto the central supermassive black hole. A separation between Compton-thin HBLR and non-HBLR sources is clear, both in accretion rate (log L bol/L Edd = -1.9) and in luminosity (log L bol = 43.90). When properly luminosity-corrected Compton-thick sources are included, the separation between HBLR and non-HBLR is less sharp but no HBLR source falls below the Eddington ratio threshold. We speculate that non-HBLR Compton-thick sources with accretion rate higher than the threshold do possess a BLR, but something, probably related to their heavy absorption, is preventing us from observing it even in polarized light. Our results for Compton-thin sources support theoretical expectations. In a model presented by Nicastro, the presence of broad emission lines is intrinsically connected with disk instabilities occurring in proximity of a transition radius, which is a function of the accretion rate, becoming smaller than the innermost stable orbit for very low accretion rates and therefore luminosities.

  12. THE LINK BETWEEN THE HIDDEN BROAD LINE REGION AND THE ACCRETION RATE IN SEYFERT 2 GALAXIES

    SciTech Connect

    Marinucci, Andrea; Bianchi, Stefano; Matt, Giorgio; Nicastro, Fabrizio; Goulding, Andy D.

    2012-04-01

    In the past few years, more and more pieces of evidence have been presented for a revision of the widely accepted unified model of active galactic nuclei. A model based solely on orientation cannot explain all the observed phenomenology. In the following, we will present evidence that accretion rate is also a key parameter for the presence of hidden broad line regions (HBLRs) in Seyfert 2 galaxies. Our sample consists of 21 sources with polarized hidden broad lines and 18 sources without hidden broad lines. We use stellar velocity dispersions from several studies on the Ca II and Mg b triplets in Seyfert 2 galaxies to estimate the mass of the central black holes via the M{sub BH}-{sigma}{sub *} relation. The ratio between the bolometric luminosity, derived from the intrinsic (i.e., unabsorbed) X-ray luminosity, and the Eddington luminosity is a measure of the rate at which matter accretes onto the central supermassive black hole. A separation between Compton-thin HBLR and non-HBLR sources is clear, both in accretion rate (log L{sub bol}/L{sub Edd} = -1.9) and in luminosity (log L{sub bol} = 43.90). When properly luminosity-corrected Compton-thick sources are included, the separation between HBLR and non-HBLR is less sharp but no HBLR source falls below the Eddington ratio threshold. We speculate that non-HBLR Compton-thick sources with accretion rate higher than the threshold do possess a BLR, but something, probably related to their heavy absorption, is preventing us from observing it even in polarized light. Our results for Compton-thin sources support theoretical expectations. In a model presented by Nicastro, the presence of broad emission lines is intrinsically connected with disk instabilities occurring in proximity of a transition radius, which is a function of the accretion rate, becoming smaller than the innermost stable orbit for very low accretion rates and therefore luminosities.

  13. X-ray bumps, iron K-alpha lines, and X-ray suppression by obscuring tori in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Madau, Piero; Zycki, Piotr T.

    1994-01-01

    We investigate the X-ray spectral properties of unobscured type 1 and obscured type 2 Seyferts as predicted by the unified Seyfert scheme. We consider the reprocessing of X-ray photons by photoelectric absorption, iron fluorescence, and Compton downscattering in the obscuring tori surrounding these active nuclei, and compute by Monte Carlo methods the reprocessed spectra as a function of the viewing angle. Depending on the optical depth and shape of the torus, and on the viewing angle, the X-ray flux can be suppressed by substantial factors when our line of sight is obscured. We show that an immediate consequence of the existence of an obscuring thick torus is the production in the spectra of type 1 Seyfert galaxies of a bump in the continuum above 10-20 keV and an Fe K-alpha line with significant equivalent width. In those type 2 Seyferts for which the hard X-ray spectrum has been substantially suppressed, the equivalent width of the Fe K-alpha line in the transmitted spectrum can be very large.

  14. Intrinsic Absorption and Reddening in Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.

    2004-01-01

    We discuss the origin of the ``dusty lukewarm absorber'', which we previously identified in the reddened Seyfert 1 galaxies NGC 3227 and Akn 564. This absorber is characterized by saturated UV absorption lines (C IV, N V) near the systemic velocity of the host galaxy, and is likely responsible for reddening both the continuum and the emission lines (including those from the narrow-line region) from these Seyferts. From a large sample of Seyfert 1 galaxies, we find that continuum reddening (as measured by UV color) tends to increase with inclination of the host galaxy. Furthermore, reddened, inclined Seyfert galaxies observed at moderate to high spectral resolution all show evidence for dusty lukewarm absorbers. We suggest that these absorbers lie in the plane of the host galaxy at distances greater than about 100 pc from the nucleus, and are physically distinct from the majority of intrinsic absorbers that are outflowing from the nucleus.

  15. Universal Scattering Property of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hall, C. R.; Bruhweiler, F. C.; Madejski, G. M.

    1996-12-01

    The dusty torus model of Seyfert galaxies--the so-called Unified Model--(Antonucci & Miller 1985; Antonucci 1993) states that both type 1 and type 2 objects are intrinsically the same and share a similar overall geometry. Depending upon the observer's line of sight to the central engine, the broad lines which define the Seyfert type may be visible (Sy 1) or obscured by the torus (Sy 2), while the narrow lines are equally visible in both classes. In addition the polar regions of the torus contain an electron scattering atmosphere, extending beyond the polar openings. Via Thomson scattering of central engine photons, the broad line feature in Sy 2s can only be detected in polarized light. From an empirical analysis comparing the narrow Balmer H-beta observed in a sample of objects from both classes against the broad Balmer H-beta observed directly in Seyfert 1s, and observed in polarized light in Seyfert 2s, we find a general scattering law: the ratio of the intrinsic luminosity to the polarized luminosity in the line is approximately 300. This has strong implications on the geometry and physical properties of the scattering medium. References: Antonucci, R.R.J. 1993,ARA&A, 31, 473 Antonucci, R.R.J.,& Miller,J.S. 1985,ApJ, 297, 621

  16. H2 line emission in three Seyfert nuclei: Evidence against UV-excitation

    NASA Technical Reports Server (NTRS)

    Geballe, T. R.

    1990-01-01

    Line emission from vibrationally excited molecular hydrogen has been detected in a considerable number of active galactic nuclei (AGNs), including those generally believed to contain compact and luminous central engines (e.g., Seyfert nuclei) and those in which the luminosity is believed to arise from massive bursts of star formation (starburst nuclei). In most of these AGNs, only the bright 1-0 S(1) line (rest wavelength 2.12 microns) has been searched for and detected to date. Line-emitting H2 can be excited directly either by energetic collisions created by shock waves or by absorption of UV radiation. Each of these excitation mechanisms has been clearly identified in galactic and extragalactic regions. In active galactic nuclei strong sources of UV and (in some case) x rays are present. If the nuclear molecular matter is quiescent (i.e., isolated from the active nucleus and not set into motion by episodes of star formation) the H2 line emission will be dominated by fluorescence, or possibly by thermal emission due to heating by x rays (Krolik, this conference). However, it is expected or indeed observed that a significant fraction of the interstellar medium in and near these nuclei is undergoing rapid motions; either generated by the central engine or by a nuclear starburst, which are capable of producing strong shock phenomena in nearby molecular gas. Thus, a priori it is not obvious which mechanism is responsible for the H2 line emission from the nucleus of an active galaxy.

  17. Broad iron emission lines in Seyfert galaxies - re-condensation of gas onto an inner disk below the ADAF?

    NASA Astrophysics Data System (ADS)

    Meyer-Hofmeister, E.; Meyer, F.

    2011-03-01

    Context. The number of strong iron Kα line detections in Seyfert AGN is clearly growing in the Chandra, XMM-Newton and Suzaku era. The iron emission lines are broad, some are relativistically blurred. These relativistic disk lines have also been observed for galactic black hole X-ray binaries. Thermal components found in hard spectra were interpreted as an indication for a weak inner cool accretion disk underneath a hot corona. Aims: Accretion in low-mass X-ray binaries (LMXB) occurs during phases of high and low mass accretion rate, outburst and quiescence, soft and hard spectral state, respectively. After the soft/hard transition for some sources a thermal component is found, which can be interpreted as sustained by re-condensation of gas from an advection-dominated flow (ADAF) onto the disk. In view of the similarity of accretion flows around stellar mass and supermassive black holes we discuss whether the broad iron emission lines in Seyfert 1 AGN (active galactic nuclei) can be understood as arising from a similar accretion flow geometry as in X-ray binaries. Methods: We derive accretion rates for those Seyfert galaxies for which broad iron emission lines were observed, the "best candidates" in the investigations of Miller (2007, ARA&A, 45, 441) and Nandra et al. (2007, MNRAS, 382, 194). For the evaluation of the Eddington-scaled rates we use the observed X-ray luminosity, bolometric corrections and black hole masses from the literature. Results: The accretion rates derived for the Seyfert galaxies in our sample are less than 0.1 of the Eddington rate for more than half of the sources. For 107 to 108M⊙ black holes in Seyfert 1 AGN this limit corresponds to 0.01 to 0.2 M⊙/yr. This documents that the sources probably are in a hard spectral state and iron emission lines can arise from an inner weak accretion disk surrounded by an ADAF as predicted by the re-condensation model. Some of the remaining sources with higher accretion rates may be in a spectral

  18. Does the inner broad-line region dim down when the power turns up?. [Seyfert 1 galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Sparke, Linda S.

    1993-01-01

    The temporal correlations of continuum and broad emission-line fluxes from the Seyfert galaxy NGC 5548 as measured during the 1989 monitoring campaign show two related peculiarities: first, some of the crosscorrelations of line and continuum flux appear steeper on the negative time lag side than the continuum autocorrelation itself; then, the autocorrelation of the line flux is sometimes more sharply peaked than the continuum autocorrelation function. These are here interpreted as evidence that conditions in the inner part of the broad-line region are such that some emission lines decrease in intensity as the continuum strengthens.

  19. Does the inner broad-line region dim down when the power turns up?. [Seyfert 1 galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Sparke, Linda S.

    1993-01-01

    The temporal correlations of continuum and broad emission-line fluxes from the Seyfert galaxy NGC 5548 as measured during the 1989 monitoring campaign show two related peculiarities: first, some of the crosscorrelations of line and continuum flux appear steeper on the negative time lag side than the continuum autocorrelation itself; then, the autocorrelation of the line flux is sometimes more sharply peaked than the continuum autocorrelation function. These are here interpreted as evidence that conditions in the inner part of the broad-line region are such that some emission lines decrease in intensity as the continuum strengthens.

  20. X-ray narrow emission lines from the nuclear region of NGC 1365

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Page, M. J.

    2016-11-01

    Context. NGC 1365 is a Seyfert 2 galaxy with a starburst ring in its nuclear region. In this work we look at the XMM-Newton Reflection Grating Spectrometer (RGS) data from four 2012-13, three 2007 and two 2004 observations of NGC 1365, in order to analyse and characterise in a uniform way the soft X-ray narrow-line emitting gas in the nucleus. Aims: We characterise the narrow-line emitting gas visible by XMM-Newton RGS and make comparisons between the 2012-13 spectra and those from 2004-07, already published. Methods: This source is usually absorbed within the soft X-ray band, with a typical neutral column density of >1.5 × 1023 cm-2, and only one observation of the nine we investigate shows low enough absorption for the continuum to emerge in the soft X-rays. We stack all observations from 2004-07, and separately three of the four observations from 2012-13, analysing the less absorbed observation separately. We first model the spectra using Gaussian profiles representing the narrow line emission. We fit physically motivated models to the 2012-13 stacked spectra, with collisionally ionised components representing the starburst emission and photoionised line emission models representing the AGN line emission. The collisional and photoionised emission line models are fitted together (rather than holding either one constant), on top of a physical continuum and absorption model. Results: The X-ray narrow emission line spectrum of NGC 1365 is well represented by a combination of two collisionally ionised (kT of 220 ± 10 and 570 ± 15 eV) and three photoionised (log ξ of 1.5 ± 0.2, 2.5 ± 0.2, 1.1 ± 0.2) phases of emitting gas, all with higher than solar nitrogen abundances. This physical model was fitted to the 2012-13 stacked spectrum, and yet also fits well to the 2004-07 stacked spectrum, without changing any characteristics of the emitting gas phases. Our 2004-07 results are consistent with previous emission line work using these data, with five additional

  1. Was 49: Mirror for a hidden Seyfert 1 galaxy

    NASA Technical Reports Server (NTRS)

    Halpern, Jules; Moran, E.; Kay, L.; Antonucci, R.

    1993-01-01

    Was 49 is an interacting pair of Seyfert galaxies at z = 0.063, one of which contains a hidden Seyfert 1 nucleus as evidenced by the highly polarized broad wings on its Balmer lines. The disk of the main galaxy, Was 49a, appears to be globally photoionized by a powerful continuum source, undoubtedly the hidden Seyfert 1 companion, Was 49b. The intrinsic luminosity of Was 49b is at least 100 times larger than the observed (scattered) luminosity. A single SWP spectrum of the pair, which can be spatially resolved in the large aperture was obtained. A narrow Ly-alpha line was detected from Was 49b, the hidden Seyfert 1, at a flux level consistent with that of an unreddened Seyfert 2 galaxy. The lack of detection of a continuum is consistent with a power-law of v(sup -1) or steeper extrapolated from the optical, again consistent with the spectrum of other Seyfert 2 and hidden Seyfert 1 galaxies.

  2. Infrared coronal emission lines and the possibility of their maser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Abi

    1993-01-01

    Energetic emitting regions have traditionally been studied via x-ray, UV and optical emission lines of highly ionized intermediate mass elements. Such lines are often referred to as 'coronal lines' since the ions, when produced by collisional ionization, reach maximum abundance at electron temperatures of approx. 10(exp 5) - 10(exp 6) K typical of the sun's upper atmosphere. However, optical and UV coronal lines are also observed in a wide variety of Galactic and extragalactic sources including the Galactic interstellar medium, nova shells, supernova remnants, galaxies and QSOs. Infrared coronal lines are providing a new window for observation of energetic emitting regions in heavily dust obscured sources such as infrared bright merging galaxies and Seyfert nuclei and new opportunities for model constraints on physical conditions in these sources. Unlike their UV and optical counterparts, infrared coronal lines can be primary coolants of collisionally ionized plasmas with 10(exp 4) less than T(sub e)(K) less than 10(exp 6) which produce little or no optical or shorter wavelength coronal line emission. In addition, they provide a means to probe heavily dust obscured emitting regions which are often inaccessible to optical or UV line studies. In this poster, we provide results from new model calculations to support upcoming Infrared Space Observatory (ISO) and current ground-based observing programs involving infrared coronal emission lines in AGN. We present a complete list of infrared (lambda greater than 1 micron) lines due to transitions within the ground configurations 2s(2)2p(k) and 3s(2)3p(k) (k = 1 to 5) or the first excited configurations 2s2p and 3s3p of highly ionized (x greater than or equal to 100 eV) astrophysically abundant (n(X)/n(H) greater than or equal to 10(exp -6)) elements. Included are approximately 74 lines in ions of O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni spanning a wavelength range of approximately 1 - 280 microns. We present new

  3. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Malkan, Matthew A.; Smith, Howard A.; González-Alfonso, Eduardo; Fischer, Jacqueline

    2005-04-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 μm) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO). In addition to the seven expected ionic fine-structure emission lines, the OH rotational lines at 79, 119, and 163 μm were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 μm line, when detected, is always in absorption. The observed line intensities were modeled together with ISOShort Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the active galactic nucleus (AGN) component and the starburst component in the circumnuclear ring of ~3 kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a `` big blue bump'' is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Brγ equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low-ionization parameter (U=10-3.5) and low densities (n=100 cm-3) are derived. Combining the AGN and starburst components, we succeeded in modeling the overall UV to far-IR atomic spectrum of NGC 1068, reproducing the line fluxes to within a factor of 2.0 on average with a standard deviation of 1.3, and the overall continuum as the sum of the contribution of the thermal dust emission in the ionized and neutral components. The OH 119 μm emission indicates that the line is collisionally excited and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, nonlocal, non-LTE radiative transfer models. The models indicate that the bulk of the emission

  4. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  5. THE DIFFERENT NATURE OF SEYFERT 2 GALAXIES WITH AND WITHOUT HIDDEN BROAD-LINE REGIONS

    SciTech Connect

    Wu Yuzhong; Zhang Enpeng; Liang Yanchun; Zhang Chengmin; Zhao Yongheng E-mail: yzhao@nao.cas.cn

    2011-04-01

    We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test whether HBLR Sy2s are dominated by active galactic nuclei (AGNs) and whether non-HBLR Sy2s are dominated by starbursts. We show that (1) HBLR Sy2s have larger accretion rates than non-HBLR Sy2s; (2) HBLR Sy2s have larger [Ne V] {lambda}14.32/[Ne II] {lambda}12.81 and [O IV] {lambda}25.89/[Ne II] {lambda}12.81 line ratios than non-HBLR Sy2s; and (3) HBLR Sy2s have smaller IRAS f{sub 60}/f{sub 25} flux ratios, which show the relative strength of the host galaxy and nuclear emission, than non-HBLR Sy2s. Consequently, we suggest that HBLR Sy2s and non-HBLR Sy2s are AGN dominated and starburst dominated, respectively. In addition, non-HBLR Sy2s can be classified into luminous (L{sub [OIII]}>10{sup 41} erg s{sup -1}) and less luminous (L{sub [OIII]} < 10{sup 41} erg s{sup -1}) samples, when considering only their obscuration. We suggest that (1) the invisibility of polarized broad lines (PBLs) in the luminous non-HBLR Sy2s depends on the obscuration and (2) the invisibility of PBLs in the less luminous non-HBLR Sy2s depends on the very low Eddington ratio rather than the obscuration.

  6. X-Ray Spectrum of a Narrow-Line QSO

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1998-01-01

    During the reporting period, seven papers using ASCA data, supported in whole or in part by this grant, were published or submitted to refereed journals. Their abstracts are given in this report, and the complete bibliographic references are listed in the Appendix. Titles include (1) A Broad-Band X-ray Study of the Geminga Pulsar; (2) ASCA Observations of PSR 1920+10 and PSR 0950+08; (3) X-ray and Optical Spectroscopy of IRAS 20181-2244: Not a Type 2 QSO, but a I Zw I Object; (4) Models for X-ray Emission from Isolated Pulsars; (5) Optical and X-ray Spectroscopy of 1E 0449.4-1823: Demise of the Original Type 2 QSO; (6) The ASCA Spectrum of the Broad-Line Radio Galaxy Pictor A: A Simple Power Law with No Fe Ka Line; and (7) ASCA Spectra of NGC 4388 and ESO 103-G35: Absorption, Reflection, and Variability in Intermediate Type Seyfert Galaxies.

  7. Prospects for a narrow line MOT in YO

    NASA Astrophysics Data System (ADS)

    Collopy, Alejandra L.; Hummon, Matthew T.; Yeo, Mark; Yan, Bo; Ye, Jun

    2015-05-01

    In addition to being suitable for laser cooling and trapping in a magneto-optical trap (MOT) using a relatively broad (∼ 5 MHz) transition, the molecule YO possesses a narrow-line transition. This forbidden transition between the {{X}2}Σ and A{{\\prime }2}{{Δ }3/2} states has linewidth ∼ 2π × 160 kHz. After cooling in a MOT on the 614 nm {{X}2}Σ to {{A}2}{{\\Pi }1/2} (orange) transition, the narrow 690 nm (red) transition can be used to further cool the sample, requiring only minimal additions to the first stage system. We estimate that the narrow line cooling stage will bring the temperature from ∼1 mK to ∼10 μK, significantly advancing the frontier on direct cooling achievable for molecules.

  8. Temporal intensity interferometry for characterization of very narrow spectral lines

    NASA Astrophysics Data System (ADS)

    Tan, P. K.; Kurtsiefer, C.

    2017-08-01

    Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.

  9. HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE DOUBLE-PEAKED EMISSION LINES IN THE SEYFERT GALAXY MARKARIAN 78: MASS OUTFLOWS FROM A SINGLE ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Mushotsky, R. F.; Dunn, J. P.

    2011-02-01

    Previous ground-based observations of the Seyfert 2 galaxy Mrk 78 revealed a double set of emission lines, similar to those seen in several active galactic nuclei (AGNs) from recent surveys. Are the double lines due to two AGNs with different radial velocities in the same galaxy, or are they due to mass outflows from a single AGN? We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of Mrk 78 using observations from the Space Telescope Imaging Spectrograph (STIS) and Faint Object Camera aboard the Hubble Space Telescope as part of an ongoing project to determine the kinematics and geometries of AGN outflows. From the spectroscopic information, we determined the fundamental geometry of the outflow via our kinematics modeling program by recreating radial velocities to fit those seen in four different STIS slit positions. We determined that the double emission lines seen in ground-based spectra are due to an asymmetric distribution of outflowing gas in the NLR. By successfully fitting a model for a single AGN to Mrk 78, we show that it is possible to explain double emission lines with radial velocity offsets seen in AGN similar to Mrk 78 without requiring dual supermassive black holes.

  10. Narrow line cooling and momentum-space crystals

    SciTech Connect

    Loftus, Thomas H.; Ido, Tetsuya; Boyd, Martin M.; Ludlow, Andrew D.; Ye Jun

    2004-12-01

    Narrow line laser cooling is advancing the frontier for experiments ranging from studies of fundamental atomic physics to high precision optical frequency standards. In this paper, we present an extensive description of the systems and techniques necessary to realize 689 nm {sup 1}S{sub 0}-{sup 3}P{sub 1} narrow line cooling of atomic {sup 88}Sr. Narrow line cooling and trapping dynamics are also studied in detail. By controlling the relative size of the power broadened transition linewidth and the single-photon recoil frequency shift, we show that it is possible to smoothly bridge the gap between semiclassical and quantum mechanical cooling. Novel semiclassical cooling processes, some of which explicitly depend on the relative size of gravity and the radiative force, are also explored. Moreover, for laser frequencies tuned above the atomic resonance, we demonstrate momentum-space crystals containing up to 26 well defined lattice points. Gravitationally assisted cooling is also achieved with blue-detuned light. Theoretically, we find the blue detuned dynamics are universal to Doppler limited systems. This paper offers the most comprehensive study of narrow line laser cooling to date.

  11. Searching for Variability of NV Intrinsic Narrow Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Ganguly, Rajib

    2017-01-01

    The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 50 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.

  12. Broad-line Reverberation in the Kepler-field Seyfert Galaxy Zw 229-015

    NASA Astrophysics Data System (ADS)

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Cenko, S. Bradley; Childress, Michael; Choi, Jieun; Comerford, Julia M.; Cucciara, Antonino; da Silva, Robert; Duchêne, Gaspard; Fumagalli, Michele; Ganeshalingam, Mohan; Gates, Elinor L.; Gerke, Brian F.; Griffith, Christopher V.; Harris, Chelsea; Hintz, Eric G.; Hsiao, Eric; Kandrashoff, Michael T.; Keel, William C.; Kirkman, David; Kleiser, Io K. W.; Laney, C. David; Lee, Jeffrey; Lopez, Liliana; Lowe, Thomas B.; Moody, J. Ward; Morton, Alekzandir; Nierenberg, A. M.; Nugent, Peter; Pancoast, Anna; Rex, Jacob; Rich, R. Michael; Silverman, Jeffrey M.; Smith, Graeme H.; Sonnenfeld, Alessandro; Suzuki, Nao; Tytler, David; Walsh, Jonelle L.; Woo, Jong-Hak; Yang, Yizhe; Zeisse, Carl

    2011-05-01

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad Hβ flux. From cross-correlation measurements, we find that the Hβ light curve has a rest-frame lag of 3.86+0.69 -0.90 days with respect to the V-band continuum variations. We also measure reverberation lags for Hα and Hγ and find an upper limit to the Hδ lag. Combining the Hβ lag measurement with a broad Hβ width of σline = 1590 ± 47 km s-1 measured from the rms variability spectrum, we obtain a virial estimate of M BH = 1.00+0.19 -0.24 × 107 M sun for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  13. BROAD-LINE REVERBERATION IN THE KEPLER-FIELD SEYFERT GALAXY Zw 229-015

    SciTech Connect

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Choi, Jieun; Duchene, Gaspard; Ganeshalingam, Mohan; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Childress, Michael; Cucciara, Antonino; Comerford, Julia M.; Da Silva, Robert; Gates, Elinor L.; Gerke, Brian F.

    2011-05-10

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from H{beta} reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad H{beta} flux. From cross-correlation measurements, we find that the H{beta} light curve has a rest-frame lag of 3.86{sup +0.69}{sub -0.90} days with respect to the V-band continuum variations. We also measure reverberation lags for H{alpha} and H{gamma} and find an upper limit to the H{delta} lag. Combining the H{beta} lag measurement with a broad H{beta} width of {sigma}{sub line} = 1590 {+-} 47 km s{sup -1} measured from the rms variability spectrum, we obtain a virial estimate of M{sub BH} = 1.00{sup +0.19}{sub -0.24} x 10{sup 7} M{sub sun} for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  14. Modelling the narrow-line regions of active galaxies in the Sloan Digital Sky Survey - I. Sample selection and physical conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Liang, Y. C.; Hammer, F.

    2013-04-01

    Using spectroscopy from the Sloan Digital Sky Survey Data Release Seven, we systematically determine the electron density ne and electron temperature Te of active galaxies and star-forming galaxies, while mainly focusing on the narrow-line regions (NLRs). Herein, active galaxies refer to composites, low-ionization narrow emission-line regions (LINERs) and Seyfert galaxies, following the Baldwin-Phillips-Terlevich diagram classifications afforded by the SDSS data. The plasma diagnostics of ne and Te are determined through the I[S II] λ6716/λ6731 and I[O III] λ5007/λ4363 ratios, respectively. By simultaneously determining ne from [S II] and Te from [O III] in our [O III] λ4363 emission sample of 15 019 galaxies, we find two clear sequences: TLINER ≳ Tcomposite > TSeyfert > Tstar-forming and nLINER ≳ nSeyfert > ncomposite > nstar-forming. The typical range of ne in the NLRs of active galactic nuclei (AGNs) is 102 - 3 cm-3. The temperatures in the NLRs range from 1.0 to 2.0 × 104 K for Seyferts, and the ranges are even higher and wider for LINERs and composites. The transitions of ne and Te from the NLRs to the discs are revealed. We also present a comparative study, including stellar mass (M⋆), specific star formation rate (SFR/M⋆) and plasma diagnostic results. We propose that YL ≳ YSY > YC > YSF, where Y is the characteristic present-day star-formation time-scale. One remarkable feature of the Seyferts shown on an M⋆-SFR/M⋆ diagram, which we call the evolutionary pattern of AGNs with high ionization potential, is that the strong [O III] λ4363 Seyferts distribute uniformly with the weak Seyferts, definitely a reverse of the situation for star-forming galaxies. It is a natural and well-known consensus that strong [O III] λ4363 emissions in star-forming galaxies imply young stellar populations and thus low stellar masses. However, in the AGN case, several strong lines of evidence suggest that some supplementary energy source(s) should be

  15. Physical conditions in the narrow-line region of Markarian 3

    NASA Astrophysics Data System (ADS)

    Collins, Nicholas R.

    We used the photoionization model code CLOUDY and Hubble Space Telescope Space Telescope Imaging Spectrograph ( HST /STIS) spectroscopy to study the physical conditions in the Markarian 3 narrow-line region (NLR) gas and to infer the nature of the ionizing continuum. The position angle of the low-resolution long-slit aperture was 71° east of north, coincident with the elongated reverse-"S" shaped feature of the NLR. We modeled 11 emission line sources in 7 contiguous regions spanning the central 2" of the NLR. Most of the calculated line ratios match the reddening corrected observed ratios within the a factor of two. The NLR gas is modeled by an absorbed broken power-law continuum. The absorbers have properties similar to those directly observed in Seyfert 1 galaxies. A heterogeneous distribution of dusty and dust-free gas at a range of three different ionization states comprises the modeled NLR gas. This distribution is required to match the emission lines from electronic transitions with a wide range in critical density and from ionic species with a wide range in ionization potential. We find that the NLR gas component with the lowest ionization state lies outside the nominal, kinematically defined bi- cone. We also find that the lowest ionization state component on a given line- of-sight is illuminated by a more highly absorbed continuum than the remaining components. Furthermore, the amount of continuum absorption to the low ionization state components varies from one region to another along the slit. We conclude that the beam of the ionizing radiation does not have sharp cutoff. Instead of collimation by an opaque molecular torus the ionizing radiation might be collimated by an accretion disk wind. In such a model the ionization state of the gas decreases with increasing distance and polar angle from the symmetry axis.

  16. A Robust Test of the Unified Model for Seyfert Galaxies with Implications for the Starburst Phenomenon

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.

    1997-01-01

    My research involves detailed analysis of X-ray emission from Active Galactic Nuclei (AGN). For over a decade, the paradigm for AGN has rested soundly on the unified model hypothesis, which posits that the only difference between broad-line objects (e.g., Type 1 Seyfert galaxies) and narrow-line objects (e.g., Type 2 Seyferts) is that in the former case our line of sight evades toroidal obscuration surrounding the nucleus, while in the latter, our line of sight is blocked by the optically thick torus. It is well established that some Seyfert 2s contain Seyfert I nuclei (i.e., a hidden broad line region), but whether or not all Seyfert 2s contain obscured Seyfert 1 nuclei or whether some Seyfert 2s are intrinsically Seyfert 2s is not known. Optical, IR, and UV surveys are not appropriate to examine this hypothesis because such emissions are either anisotropic or subject to the effects of obscuration, and thus depend strongly on viewing angle. Hard X-rays, on the other hand, can penetrate gas with column densities as high as 10( exp 24.5) cm(-2) and thus provide reliable, direct probes of the cores of heavily obscured AGN. Combining NASA archival data from the Advanced Satellite of Cosmology and Astrophysics (ASCA), the Rossi X-ray Timing Explorer (RXTE), and Rosat, I am accumulating X-ray data between 0.1 and 60 keV to produce a catalog of the broad-band X-ray spectral properties of Seyfert galaxies. These data will be used to perform concrete tests of the unified model, and (compared with similar data on Starbursts) to examine a possible evolutionary connection between Seyfert and Starburst galaxies.

  17. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    NASA Technical Reports Server (NTRS)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; D'Ammando, F.; Escande, L.; Fegan, S. J.; Filippenko, A. V.; Finke, J. D.; Fuhrmann, L.; Fukazawa, Y.; Hays, E.; Healey, S. E.; Ikejiri, Y.; Itoh, R.; Kawabata, K. S.; Komatsu, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  18. MODELING THE OUTFLOW IN THE NARROW-LINE REGION OF MARKARIAN 573: BICONICAL ILLUMINATION OF A GASEOUS DISK

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Trippe, M. L.

    2010-08-15

    We present a study of the outflowing ionized gas in the resolved narrow-line region of the Seyfert 2 galaxy Mrk 573, and its interaction with an inner dust/gas disk, based on Hubble Space Telescope (HST) Wide Field Planetary Camera 2 and Space Telescope Imaging Spectrograph observations. From the spectroscopic and imaging information, we determined the fundamental geometry of the outflow and inner disk, via two modeling programs used to recreate the morphology of these regions imaged with HST. We also determined that the bicone of ionizing radiation from the active galactic nucleus intersects with the inner disk, illuminating a section of the disk including inner segments of spiral arms, fully seen through structure mapping, which appear to be outflowing and expanding. In addition, we see high velocities at projected distances of {>=}2'' ({approx}700 pc) from the nucleus, which could be due to rotation or in situ acceleration of gas off the spiral arms. We find that the true half-opening angle of the ionizing bicone (53{sup 0}) is much larger than the apparent half-opening angle (34{sup 0}) due to the above geometry, which may apply to a number of other Seyferts as well.

  19. Capping Layer Effects on Electromigration in Narrow Cu Lines

    SciTech Connect

    Hu, C.-K.; Rosenberg, R.

    2004-12-08

    Electromigration in narrow (bamboo-like) Cu Damascene lines capped with either a CoWP, Ta/TaN, SiNx, or SiCxNyHz layer is reviewed. A thin CoWP or Ta/TaN cap on top of the Cu line surface significantly reduces interface diffusion and improves the electromigration lifetime when compared with lines capped with SiNx or SiCxNyHz. Activation energies for electromigration were found to be 1.9-2.4 eV, 1.4 eV, and 0.85-1.1 eV for the Cu lines capped with CoWP, Ta/TaN, and SiNx or SiCxNyHz, respectively. Relationships between line width, diffusion path, void nucleation sites and lifetime are presented. Resistance changes in the CoWP coated lines were related to the solubility and diffusivity of Co in Cu such that void growth caused by electromigration was detectable only as a significant resistance increase over that caused by the Co. The solubility and diffusivity of Co in Cu was determined from line resistance measurements of thermally annealed Cu lines with CoWP caps. The activation energy of Co diffusion in Cu lines was found to be 2.2 eV, and the solubility limit of Co in Cu was found to be 18e(-0.57eV/kT) atomic percent.

  20. Narrow-line Seyfert Galaxies. Connection between abundance and the large-scale structure

    NASA Astrophysics Data System (ADS)

    Ermash, A. A.; Komberg, B. V.

    2014-12-01

    Utilizing methods, developed by the author the correlations between spatial concentrations of active nuclei (NLS and BLS) and concentration of galaxies of full uniform sample were obtained. Galaxies of this uniform sample trace the large-scale structure. We used SDSS DR 7 data. The correlations obtained are linear and the NLS/BLS ratio is constant. That leads to conclusion that amounts NLS and BLS are some fixed portion of all galaxies independent on the density of large-scale environment. In order to check validity of our results we also confirmed the well known result that fraction of red galaxies increases with density of environment. Also it was confirmed that this trend is more prominent for less massive galaxies.

  1. Narrow lines from alpha-alpha reactions. [in Galaxy

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1977-01-01

    Intensities and spectral shapes of the prompt gamma-ray lines of Li-7 at 0.431 MeV and Be-7 at 0.478 MeV and of the delayed 0.478-MeV line, all resulting from alpha-alpha reactions, are calculated using recent direct measurements of the cross sections for the alpha-alpha reactions. It is found that the intensities of these lines are comparable to that of the 4.44-MeV line of C-12, so that the investigated lines should be observable in large solar flares, provided their Doppler widths are not excessively large. An evaluation of the shapes of the prompt lines indicates that for an isotropic distribution of energetic alpha-particles, the two lines merge into a broad feature which essentially cannot be distinguished from the continuum. A situation in which the delayed 0.478-MeV line could be very narrow is considered.

  2. On X-Ray Variability in Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; George, I. M.; Nandra, K.; Turcan, D.

    1999-01-01

    This paper presents a quantification of the X-ray variability amplitude for 79 ASCA observations of 36 Seyfert 1 galaxies. We find that consideration of sources with the narrowest permitted lines in the optical band introduces scatter into the established correlation between X-ray variability and nuclear luminosity. Consideration of the X-ray spectral index and variability properties together shows distinct groupings in parameter space for broad and narrow-line Seyfert 1 galaxies, confirming previous studies. A strong correlation is found between hard X-ray variability and FWHM Hbeta. A range of nuclear mass and accretion rate across the Seyfert population can explain the differences observed in X-ray and optical properties. An attractive alternative model, which does not depend on any systematic difference in central mass, is that the circumnuclear gas of NLSy1s is different to BLSy1s in temperature, optical depth, density or geometry.

  3. The "red shelf" of the Hβ line in the Seyfert 1 galaxies RXS J01177+3637 and HS 0328+05.

    NASA Astrophysics Data System (ADS)

    Véron, P.; Gonçalves, A. C.; Véron-Cetty, M.-P.

    2002-03-01

    A few Seyfert 1s have a Hβ profile with a red wing usually called the "red shelf". The most popular interpretation of this feature is that it is due to broad redshifted lines of Hβ and [O III]λλ4959, 5007; we have observed two Seyfert 1s displaying a "red shelf" and showed that in these two objects the main contributor is most probably the He I λλ4922, 5016 lines having the velocity and width of the broad Hβ component. There is no evidence for the presence of a broad redshifted component of Hβ or [O III] in any of these two objects.

  4. HST observations of NGC 4395, the least luminous Seyfert 1 nucleus - Evidence against the starburst hypothesis for broad-lined active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Filippenko, Alexei V.; Ho, Luis C.; Sargent, Wallace L. W.

    1993-01-01

    The starburst hypothesis for broad-line AGN is examined here using ultraviolet spectra and optical images of NGC 4395, the least luminous Seyfert 1 nucleus. From the evidence it is concluded that the apparent activity in the Seyfert 1 nucleus of NGC 4395 probably cannot be explained in the context of the starburst hypothesis of Terlevich et al. (1992). The strongest piece of evidence is the absence of stellar absorption lines, especially in the UV and NIR spectra. Other relevant characteristics are the UV spectral index of roughly -1, small physical size, low luminosity, and lack of obvious variability.

  5. Fermi LAT Detection of a GeV Flare from the Radio-Loud Narrow-Line Sy1 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Carpenter, Bryce; Ojha, Roopesh

    2013-08-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with 1H 0323+342 (RA=03h24m41.1613s, Dec=+34d10m45.856s, J2000; Beasley et al. 2002, ApJS, 141, 13) at z= 0.061 (Marcha et al. 1996, MNRAS, 281, 425). This is the second nearest radio-loud Narrow-Line Seyfert 1 galaxy, a small and important class of gamma-ray loud AGN (Abdo et al.

  6. Precision Fe K-Alpha and Fe K-Beta Line Spectroscopy of the Seyfert 1.9 Galaxy NGC 2992 with Suzaku

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Murphy, Kendrah D.; Griffiths, Richard E.; Haba, Yoshito; Inoue, Hajime; Itoh, Takeshi; Kelley, Richard; Kokubun, Motohide; Markowitz, Alex; Mushotzky, Richard; Okajima, Takashi; Ptak, Andrew; Reeves, James; Selemitos, Peter J.; Takahashi, Tadayuki; Terashima, Yuichi

    2006-01-01

    We present detailed time-averaged X-ray spectroscopy in the 0.5-10 keV band of the Seyfert 1.9 galaxy NGC 2992 with the Suzaku X-ray Imaging Spectrometers (XIS). The source had a factor approximately 3 higher 2-10 keV flux (approximately 1.2 x l0(exp -11) erg per square cm per s) than the historical minimum and a factor approximately 7 less than the historical maximum. The XIS spectrum of NGC 2992 can be described by several components. There is a primary continuum, modeled as a power-law with a photon index of Gamma = 1.57(sup +0.06) (sup -0.03) that is obscured by a Compton-thin absorber with a column density of 8.01(sup +0.6) (sup -0.5)x l0 (exp 21) per square cm. . There is another, weaker, unabsorbed power-law component (modeled with the same slope as the primary), that is likely to be due to the primary continuum being electron-scattered into our line-of-sight by a region extended on a scale of hundreds of parsecs. We measure the Thomson depth of the scattering zone to be Tau = 0.072 +/- 0.021. An optically-thin thermal continuum emission component, which probably originates in the same extended region, is included in the model and yields a temperature and luminosity of KT = 0.656(sup +0.088) (sup -0.0.61) keV and approximately 1.2 +/- 0.4 x l0 (exp 40) erg per s respectively. We detect an Fe K emission complex which we model with broad and narrow lines and we show that the intensities of the two components are decoupled at a confidence level > 3 sigma. The broad Fe K alpha line has an equivalent width of 118(sup +32) (sup -61) eV and could originate in an accretion disk (with inclination angle greater than approximately 30 deg) around the putative central black hole. The narrow Fe K alpha line has an equivalent width of 1632(sup +47) (sup -26) eV and is unresolved (FWHM < 4630 km per s) and likely originates in distant matter. The absolute flux in the narrow line implies that the column density out of the line-of-sight could be much higher than measured in

  7. Broad iron K emission line and spectral variability of the Seyfert 2 galaxy IRAS 18325-5926

    NASA Technical Reports Server (NTRS)

    Iwasawa, K.; Fabian, A. C.; Mushotsky, R. F.; Brandt, W. N.; Awaki, H.; Kunieda, H.

    1996-01-01

    A very broad iron K alpha emission line is observed in the Advanced Satellite for Cosmology and Astrophysics (ASCA) spectrum of the Seyfert 2 galaxy IRAS 18325-5926. The line profile is peaked at 6.9 keV and skewed down to 4 keV. The breadth and shift of the line energy can be interpreted by Doppler and relativistic effects in a cold accretion disk about a black hole with a intermediate inclination of between 40 and 50 deg. The steep spectral slope and the fast variability on a timescale of 10(exp 4) s are confirmed for this object. A study of spectral variability reveal that the X-ray flux change mainly occurred above 1 keV and the soft X-ray component below 1 keV appears to be less variable or constant and should lie outside of the nuclear obscuration.

  8. Narrow-line magneto-optical trap for dysprosium atoms.

    PubMed

    Maier, T; Kadau, H; Schmitt, M; Griesmaier, A; Pfau, T

    2014-06-01

    We present our technique to create a magneto-optical trap (MOT) for dysprosium atoms using the narrow-line cooling transition at 626 nm to achieve suitable conditions for direct loading into an optical dipole trap. The MOT is loaded from an atomic beam via a Zeeman slower using the strongest atomic transition at 421 nm. With this combination of two cooling transitions we can trap up to 2.0·10(8) atoms at temperatures down to 6 μK. This cooling approach is simpler than present work with ultracold dysprosium and provides similar starting conditions for a transfer to an optical dipole trap.

  9. Broadband X-Ray Observations of the Narrow-Line X-Ray Galaxy NGC 5506

    NASA Astrophysics Data System (ADS)

    Wang, T.; Mihara, T.; Otani, C.; Matsuoka, M.; Awaki, H.

    1999-04-01

    To address the nature of the Fe Kα line profile and the soft X-ray excess in the Seyfert 2 galaxy NGC 5506, we have performed a broadband X-ray analysis of data obtained with ASCA and ROSAT. Variations of up to 70% in the 2-10 keV band flux are detected during a 1 day ASCA observation performed in 1997 January, while no significant change in the 2-10 keV continuum shape is found. The ASCA spectrum consists of an absorbed power law, a ``soft excess'' below 2 keV, and an Fe Kα emission line at 6.4 keV. The ``soft excess'' can be well described either by thermal emission from very low-abundance material at a temperature kT~=0.8 keV or by scattered/leaking flux from the primary power law plus a small amount of thermal emission. The luminosity of the thermal emission in the former case is 1.2×1040 ergs s-1 over the 0.5-2 keV band, while the excess is ~1% of the intrinsic hard X-ray continuum in the latter case. Analysis of ROSAT HRI data confirms that the soft X-ray emission is extended on kpc scales in this object, and the extended component may account for most of the soft X-ray excess observed by the ASCA. The result suggests that in type 2 active galactic nuclei (AGNs), the ``soft excess'' comes at least partly from an extended region, causing a serious problem for the model in which the source is partially covered. We argue that the generally low abundances are a drawback for the single temperature thermal model and favor a scattering-dominated model. The scatterer is likely to be relatively cold (kT<<1 keV) in this object. The Fe Kα profile is complex and cannot be satisfactorily modeled by a single Gaussian. Models of either double Gaussians, or a narrow Gaussian plus a line from a relativistic accretion disk viewed at an inclination of about 40deg+/-10deg provide good fits to the data. However, the inclination of the disk can be substantially larger if there is a small amount of excessive Fe K edge absorption. The intermediate inclinations for narrow-line X

  10. UNSHIFTED METASTABLE He I* MINI-BROAD ABSORPTION LINE SYSTEM IN THE NARROW-LINE TYPE 1 QUASAR SDSS J080248.18+551328.9

    SciTech Connect

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Wang, Huiyuan; Liu, Wenjuan; Yang, Chenwei; Ge, Jian; Hamann, Fred; Komossa, S.; Yuan, Weimin; Zuther, Jens; Lu, Honglin; Zuo, Wenwen

    2015-02-10

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ∼ 1500 km s{sup –1} centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n {sub H} ∼ (1.0-2.5) × 10{sup 5} cm{sup –3} and a column density of N {sub H} ∼ (1.0-3.2) × 10{sup 21} cm{sup –2} and is located at R ∼100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  11. Detecting dark matter substructure with narrow line lensing

    NASA Astrophysics Data System (ADS)

    Nierenberg, Anna

    2014-10-01

    The abundance of low mass halos is one of the key predictions of LCDM and remains at apparent odds with observations of luminous structure. Strong gravitational lensing provides a straightforward means of testing this theory as it enables the detection of dark matter subhalos at cosmological distances, without requiring the structure to contain any baryons at all. The fluxes of strongly lensed, parsec scale sources in particular, are excellent probes as they are extremely sensitive to the presence of low mass subhalos, while still being extended enough to remain unaffected by microlensing by stars which is a dominant contaminant for smaller sources. Traditionally this field has been limited to the analysis of the small number of strongly lensed, radio-loud quasars. Quasar narrow-line emission offers an alternative to radio. It is also parsec scale and microlensing free, but has the benefit of detectable in a much larger sample of systems. This proposal will combine milliarcsecond astrometry, and percent level photometry attainable with WFC3 IR grism, in order to measure spatially resolved narrow line lensing in six new systems, which cannot be studied from the ground. We have demonstrated that data of this quality can be used to detect subhalos as small as a million solar masses. This proposal will double the sample of systems which can be used to detect dark, low mass substructure using flux ratio anomalies.

  12. IUE evidence on the nature of the innermost broad-line region in Seyfert 1 galaxies

    SciTech Connect

    Ptak, R.L.; Stoner, R.E.

    1988-01-01

    The continuum level at 1550 A was obtained for most of the International Ultraviolet Explorer (IUE) images available for the Seyfert 1 galaxies NGC4151, NGC5548, and Fairall 9 (F9). Major features of the IUE spectra of these three objects, and especially the C IV lambda 1550 emission (whose emission profiles imply radial motion of the emitting carbon ions at velocities approaching 15,000 km/sec), appear to be consistent with the general picture of a fast, thick, radial outflow from a hot, starlike surface, and with approximately spherical symmetry. A supermassive star appears to be a good candidate for the central power source in these objects.

  13. Narrow-line fiber-coupled modules for DPAL pumping

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; McCormick, Dan; Irvin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2015-03-01

    Recent advances in high power diode laser technologies have enabled advanced research on diode pumped alkali metal vapor lasers (DPALs). Due to their low quantum defect, DPALs offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research is being conducted on a variety of gain media species, requiring different pump wavelengths: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The biggest challenge in pumping these materials efficiently is the narrow gain media absorption band of approximately 0.01nm. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum. Gratings may be used internal or external to the cavity to reduce the spectral width to 0.5nm to 1nm for high power diode laser modules. Recently, experimental results have shown narrower line widths ranging from picometers (pm) at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is a further reduction in the spectral line width of high power diode laser bars emitting at 766nm, with full applicability to other wavelengths of interest. One factor limiting the reduction of the spectral line width is the optical absorption induced thermal gradient inside the volume Bragg grating (VBG). Simulated profiles and demonstrated techniques to minimize thermal gradients will be presented. To enable the next stage of DPAL research, a new series of fiber coupled modules is being introduced featuring greater than 400W from a 600μm core fiber of 0.22NA. The modules achieve a spectral width of <<0.1nm and wavelength tunability of +/- 0.15nm.

  14. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  15. VizieR Online Data Catalog: FeK lines in Seyfert 1 galaxies (Patrick+, 2012)

    NASA Astrophysics Data System (ADS)

    Patrick, A. R.; Reeves, J. N.; Porquet, D.; Markowitz, A. G.; Braito, V.; Lobban, A. P.

    2013-04-01

    The objects included within this sample are listed in Table 1 and are all the Seyfert 1-1.9 AGN with exposures >50ks and greater than 30000 0.6-10.0keV counts which have been observed with Suzaku with data publicly available in the Suzaku data archive (http://heasarc.gsfc.nasa.gov/) as of 2011 September. We also include data from some type 1 radio-loud (BLRGs - non-blazar) AGN, provided they fit the above exposure and count criteria. High-energy X-ray data from Swift-BAT from the 58-month BAT catalogue are also used in addition to that obtained from the HXD detector on-board Suzaku (but allowing the relative cross-normalization to vary), therefore the total energy range covered is 0.6-100.0keV. (4 data files).

  16. Near-infrared imaging of CfA Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, K. K.; Rieke, G. H.

    1995-03-01

    We present near-IR images of 43 Seyfert galaxies from the CfA Seyfert sample. The near-IR luminosity is a good tracer of luminous mass in these galaxies. Most of the Seyfert nuclei are found in hosts of mass similar to that of L* galaxies and ranging in type from S0 to Sc. In addition, there is a population of low-mass host galaxies with very low luminosity Seyfert nuclei. We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large-scale distribution of luminous mass in the galaxy. The Seyfert hosts are compared with a sample of 50 low-redshift quasar host galaxies we have also imaged. The radio-quiet quasars and the Seyfert nuclei lie in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. The low-luminosity quasars and the Seyfert nuclei both tend to lie in host galaxies seen preferentially face-on, which suggests that there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ratio approximately 1) and must cover a significant fraction of the narrow-line region (r greater than 100 pc).

  17. High-resolution spectroscopy of the extended narrow-line region of IC 5063 and NGC 7212

    NASA Astrophysics Data System (ADS)

    Congiu, E.; Contini, M.; Ciroi, S.; Cracco, V.; Berton, M.; Di Mille, F.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2017-10-01

    We studied the properties of the gas of the extended narrow-line region (ENLR) of two Seyfert 2 galaxies: IC 5063 and NGC 7212. We analysed high-resolution spectra to investigate how the main properties of this region depend on the gas velocity. We divided the emission lines in velocity bins and we calculated several line ratios. Diagnostic diagrams and suma composite models (photoionization + shocks) show that in both galaxies there might be evidence of shocks significantly contributing in the gas ionization at high |V|, even though photoionization from the active nucleus remains the main ionization mechanism. In IC 5063, the ionization parameter depends on V and its trend might be explained assuming an hollow bi-conical shape for the ENLR, with one of the edges aligned with the galaxy disc. On the other hand, NGC 7212 does not show any kind of dependence. The models show that solar O/H relative abundances reproduce the observed spectra in all the analysed regions. They also revealed an high fragmentation of the gas clouds, suggesting that the complex kinematics observed in these two objects might be caused by interaction between the interstellar medium and high-velocity components, such as jets.

  18. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  19. Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

    NASA Astrophysics Data System (ADS)

    Culliton, Christopher S.; Charlton, Jane C.; Eracleous, Michael; Roberts, Amber; Ganguly, Rajib; Misawa, Toru; Muzahid, Sowgat

    2017-01-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole. Furthermore, outflows potentially have a role in providing feedback to the galaxy, and halting star formation and infall of gas. The geometry and density of these outflows remain unknown, especially as a function of ionization and velocity. Having searched ultraviolet spectra at both high redshift (VLT/UVES; 1.4narrow absorption lines (NALs) that are intrinsic to (physically associated with) the quasar. We identify intrinsic NALs with a wide range of properties, including ejection velocity, coverage fraction, and ionization level. We also consider the incidence of intrinsic absorbers as a function of quasar properties (optical, radio and X-ray fluxes), and find that radio properties and quasar orientation are influential in determining if a quasar is likely to host an intrinsic system. We find that there is a continuum of properties within the intrinsic NAL sample, rather than discrete families, ranging from partially covered CIV systems with black Lya and with a separate low ionization gas phase to partially covered NV systems with partially covered Lya and without detected low ionization gas. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.

  20. Iron line profiles and BH spin in deep Suzaku observations of Seyfert 1 AGN

    NASA Astrophysics Data System (ADS)

    Patrick, A. R.; Reeves, J. N.; Lobban, A. P.; Porquet, D.; Markowitz, A. G.

    2012-03-01

    We present a broad-band analysis of deep Suzaku observations of nearby Seyfert 1 AGN: Fairall 9, MCG-6-30-15, NGC 3516, NGC 3783 and NGC 4051. The use of deep observations (exposures > 200 ks) with high S/N allows the complex spectra of these objects to be examined in full, taking into account features such as the soft excess, reflection continuum and complex absorption components. After a self-consistent modelling of the broad-band data (0.6-100.0 keV, also making use of BAT data from Swift), the subtle curvature which may be introduced as a consequence of warm absorbers has a measured affect upon the spectrum at energies > 3 keV and the FeK region. Forming a model (including absorption) of these AGN allows the true extent to which broadened diskline emission is present to be examined and as a result the measurement of accretion disc and black hole parameters which are consistent over the full 0.6-100.0 keV energy range.

  1. Submillimeter Line Spectrum of the Seyfert Galaxy NGC 1068 from the Herschel-SPIRE Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Schirm, Maximilien R. P.; Wilson, Christine D.; Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R.; Parkin, Tara J.; Bendo, George J.; Madden, Suzanne C.; Wolfire, Mark G.; Boselli, Alessandro; Cooray, Asantha; Page, Mathew J.

    2012-10-01

    The first complete submillimeter spectrum (190-670 μm) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J up = 4-13), lines from H2O, the fundamental rotational transition of hydrogen fluoride, two o-H2O+ lines, and one line each from CH+ and OH+ have been detected, together with the two [C I] lines and the [N II] 205 μm line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H2) = 104.5 and 102.9 cm-3 and temperatures of T kin = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H2) ~ 104 cm-3 and an X-ray flux of 9 erg s-1 cm-2, consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T kin ~ 40 K) and high density (n(H2) in the range 106.7-107.9 cm-3). The emission of H2O+ and OH+ are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N II] 205 μm line is consistent with previous photoionization models of the starburst. Herschel is an ESA space observatory with science instruments provided by

  2. SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER

    SciTech Connect

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J.; Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R.; Bendo, George J.; Madden, Suzanne C.; Boselli, Alessandro; Cooray, Asantha; Page, Mathew J.

    2012-10-20

    The first complete submillimeter spectrum (190-670 {mu}m) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J {sub up} = 4-13), lines from H{sub 2}O, the fundamental rotational transition of hydrogen fluoride, two o-H{sub 2}O{sup +} lines, and one line each from CH{sup +} and OH{sup +} have been detected, together with the two [C I] lines and the [N II] 205 {mu}m line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H{sub 2}) = 10{sup 4.5} and 10{sup 2.9} cm{sup -3} and temperatures of T {sub kin} = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H{sub 2}) {approx} 10{sup 4} cm{sup -3} and an X-ray flux of 9 erg s{sup -1} cm{sup -2}, consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T {sub kin} {approx} 40 K) and high density (n(H{sub 2}) in the range 10{sup 6.7}-10{sup 7.9} cm{sup -3}). The emission of H{sub 2}O{sup +} and OH{sup +} are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N

  3. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    SciTech Connect

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-07-20

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as K{alpha} transitions of O VII (two lines) and O VI at outflow velocities of {approx}0.1c. These lines are detected at 6.9{sigma}, 6.2{sigma}, and 4.7{sigma}, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L{sub bol} lower limit of {>=}0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.

  4. Physical conditions in the x-ray emission-line gas in the Seyfert 2 galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Sharma, Neetika

    2016-08-01

    Active Galactic Nuclei (AGN) reside in the centers of many (10%) galaxies. The nuclear spectra exhibit a broad (from radio to gamma-rays) non-stellar continuum which exceeds the luminosity of the host. AGN are thought to be powered by accretion of matter onto a supermassive black hole (BH~10 6--109 times the mass of the Sun). Since this activity takes place in a relatively small region (<< 3 light years), the central engine of even the closest AGN cannot be imaged directly with current technology. Nevertheless, spectroscopic observations can help us constrain the conditions of the gas very close to the BH. The scientific goal of my thesis is to examine the physical conditions in the circumnuclear regions of the Seyfert 2 galaxy NGC 1068. The soft X-ray spectrum comprises a multitude of emission lines including those of C, N, O, Ne, Mg, that arise in gas that is spatially extended over ~1000 light years. Radiative recombination continuum widths indicate the gas is photoionized and I model it finding a two-zone solution with unusual abundances attributed to the star formation history of the galaxy. Also of interest are the Fe K complex of em.

  5. Anatomy of the AGN in NGC 5548. V. A clear view of the X-ray narrow emission lines

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Kaastra, J. S.; Mehdipour, M.; Steenbrugge, K. C.; Bianchi, S.; Behar, E.; Ebrero, J.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Kriss, G. A.; Paltani, S.; Peterson, B. M.; Petrucci, P.-O.; Pinto, C.; Ponti, G.

    2015-09-01

    Context. Our consortium performed an extensive multi-wavelength campaign of the nearby Seyfert 1 galaxy NGC 5548 in 2013-14. The source appeared unusually heavily absorbed in the soft X-rays, and signatures of outflowing absorption were also present in the UV. He-like triplets of neon, oxygen and nitrogen, and radiative recombination continuum (RRC) features were found to dominate the soft X-ray spectrum due to the low continuum flux. Aims: Here we focus on characterising these narrow emission features using data obtained from the XMM-Newton RGS (770 ks stacked spectrum). Methods: We use spex for our initial analysis of these features. Self-consistent photoionisation models from Cloudy are then compared with the data to characterise the physical conditions of the emitting region. Results: Outflow velocity discrepancies within the O VII triplet lines can be explained if the X-ray narrow-line region (NLR) in NGC 5548 is absorbed by at least one of the six warm absorber components found by previous analyses. The RRCs allow us to directly calculate a temperature of the emitting gas of a few eV (~104 K), favouring photoionised conditions. We fit the data with a Cloudy model of log ξ = 1.45 ± 0.05 erg cm s-1, log NH = 22.9 ± 0.4 cm-2 and log vturb = 2.25 ± 0.5 km s-1 for the emitting gas; this is the first time the X-ray NLR gas in this source has been modelled so comprehensively. This allows us to estimate the distance from the central source to the illuminated face of the emitting clouds as 13.9 ± 0.6 pc, consistent with previous work.

  6. Two active states of the narrow-line gamma-ray-loud AGN GB 1310+487

    SciTech Connect

    Sokolovsky, K. V.

    2014-04-28

    Context. Previously unremarkable, the extragalactic radio source GB1310+487 showed a γ-ray flare on 2009 November 18, reaching a daily flux of ~ 10-6 photons cm-2 s-1 at energies E > 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object’s radio-to-GeV spectral energy distribution (SED) during and after the prominent γ-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at γ-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH andWISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The γ-ray/radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and γ-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during γ-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the γ-ray flux and spectral index, with the hardest spectrum observed during the brightest γ-ray state. The γ-ray flares occurred before and during a slow rising trend in the radio, but no direct association between γ-ray and radio flares could be established

  7. Two active states of the narrow-line gamma-ray-loud AGN GB 1310+487

    DOE PAGES

    Sokolovsky, K. V.

    2014-04-28

    Context. Previously unremarkable, the extragalactic radio source GB1310+487 showed a γ-ray flare on 2009 November 18, reaching a daily flux of ~ 10-6 photons cm-2 s-1 at energies E > 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object’s radio-to-GeV spectral energy distribution (SED) during and after the prominent γ-ray flare with the aim of determining the nature of the objectmore » and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at γ-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH andWISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The γ-ray/radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and γ-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during γ-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the γ-ray flux and spectral index, with the hardest spectrum observed during the brightest γ-ray state. The γ-ray flares occurred before and during a slow rising trend in the radio, but no direct association between γ-ray and radio flares could be established. Conclusions. If the

  8. FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. II. OUTFLOWS IN THE NARROW-LINE REGION OF NGC 4151

    SciTech Connect

    Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R. E-mail: fischer@astro.gsu.edu E-mail: schmitt.henrique@gmail.com

    2015-01-20

    We present a detailed study of active galactic nucleus feedback in the narrow-line region (NLR) of the Seyfert 1 galaxy NGC 4151. We illustrate the data and techniques needed to determine the mass outflow rate ( M-dot {sub out}) and kinetic luminosity (L {sub KE}) of the outflowing ionized gas as a function of position in the NLR. We find that M-dot {sub out} peaks at a value of 3.0 M {sub ☉} yr{sup –1} at a distance of 70 pc from the central supermassive black hole (SMBH), which is about 10 times the outflow rate coming from inside 13 pc, and 230 times the mass accretion rate inferred from the bolometric luminosity of NGC 4151. Thus, most of the outflow must arise from in situ acceleration of ambient gas throughout the NLR. L {sub KE} peaks at 90 pc and drops rapidly thereafter, indicating that most of the kinetic energy is deposited within about 100 pc from the SMBH. Both values exceed the M-dot {sub out} and L {sub KE} determined for the UV/X-ray absorber outflows in NGC 4151, indicating the importance of NLR outflows in providing feedback on scales where circumnuclear star formation and bulge growth occur.

  9. A POSSIBLE ULTRA STRONG AND BROAD Fe K{alpha} EMISSION LINE IN SEYFERT 2 GALAXY IRAS 00521-7054

    SciTech Connect

    Tan, Y.; Wang, J. X.; Shu, X. W.; Zhou Youyuan E-mail: jxw@ustc.edu.cn E-mail: yyzhou@ustc.edu.cn

    2012-03-15

    We present XMM-Newton spectra of the Seyfert 2 Galaxy IRAS 00521-7054. A strong feature at {approx}6 keV (observer's frame) can be formally fitted with a strong (EW = 1.3 {+-} 0.3 keV in the rest frame) and broad Fe K{alpha} line, extending down to 3 keV. The underlying X-ray continuum could be fitted with an absorbed power law (with {Gamma} = 1.8 {+-} 0.2 and N{sub H} 5.9{sup +0.6}{sub -0.7} Multiplication-Sign 10{sup 22} cm{sup -2}) plus a soft component. If due to relativistically smeared reflection by an X-ray illuminated accretion disk, the spin of the supermassive black hole (SMBH) is constrained to be 0.97{sup +0.03}{sub -0.13} (errors at 90% confidence level for one interesting parameter), and the accretion system is viewed at an inclination angle of 37 Degree-Sign {+-} 4 Degree-Sign . This would be the first type 2 active galactic nucleus reported with strong red Fe K{alpha} wing detected which demands a fast rotating SMBH. The unusually large EW would suggest that the light bending effect is strong in this source. Alternatively, the spectra could be fitted by a dual-absorber model (though with a global {chi}{sup 2} higher by {approx}6 for 283 dof) with N{sub H1} 7.0 {+-} 0.8 Multiplication-Sign 10{sup 22} cm{sup -2} covering 100% of the X-ray source, and N{sub H2} = 21.7{sup +5.6}{sub -5.4} Multiplication-Sign 10{sup 22} cm{sup -2} covering 71%, which does not require an extra broad Fe K{alpha} line.

  10. BATSE gamma-ray burst line search. 1: Search for narrow lines in spectroscopy detector data

    NASA Technical Reports Server (NTRS)

    Palmer, David M.; Teegarden, Bonnard J.; Schaefer, Bradley E.; Cline, Thomas L.; Band, David L.; Ford, Lyle A.; Matteson, James L.; Paciesas, William S.; Pendleton, Geoffrey N.; Briggs, Michael S.

    1994-01-01

    Analysis of data from the Spectroscopy Detectors (SDs) of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO) has found no convincing line features in the spectra of gamma-ray bursts (GRBs) in almost 3 years of operation, in contrast to expectations based on results from other experiments. In this Letter we discuss the visual search for narrow lines in the SD data. The search has examined 192 bursts, of which approximately 18 were intense enough that lines similar to those seen by instruments on the Ginga satellite would have been visible between approximately 20 and approximately 100 keV. A simplified calculation shows that the BATSE and Ginga results are consistent at the 13% level.

  11. Circumnuclear Star Formation in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Marquette, Melissa; Hicks, Erin K.; Mueller Sanchez, Francisco; Malkan, Matthew Arnold; Davies, Richard

    2017-01-01

    We examine a group of Seyfert 1 and Seyfert 2 galaxies to determine whether there exists a correlation between the circumnuclear starburst age and the luminosity of the active galactic nucleus. Using data from the Keck OSIRIS Nearby AGN (KONA) survey, we have a sample size of 40 Seyfert galaxies (split between Seyfert 1s and 2s), in which we measure the circumnuclear properties down to a few tens of parsecs. We determine the age of the most recent episode of circumnuclear star formation by analyzing the equivalent width of the Br Gamma 2.16 micron emission line and further constrain the age using measurements of the K-band mass to light ratio. The results of these analyses will be presented, including a comparison of the Seyfert 1 and Seyfert 2 subsamples.

  12. A new intermediate Seyfert galaxy - X-ray, optical, and radio properties

    NASA Technical Reports Server (NTRS)

    Ghigo, F. D.; Wyckoff, S.; Wardle, J. F. C.; Cohen, N. L.

    1982-01-01

    It is shown that the X-ray source X0459 + 034 is a Seyfert galaxy of intermediate type, and optical spectroscopy and radio observations were performed to study the nature of the object. The object appears almost stellar and slightly diffuse on Palomar Sky Survey prints. The source is identified as a Type 1.5 Seyfert with broad and narrow line components of redshift 0.016 + or - 0.001, according to H-Beta line profile. In addition, the broad line component H-Beta equivalent width is larger than that of the narrow line component by a factor of three. Finally, it is shown that this is a weak radio source with a steep nonthermal spectrum and an angular extent of approximately 3 in., and the composite radio-to-X-ray spectrum suggests that in different spectral regions, different relativistic electron populations or emission mechanisms are contributing factors.

  13. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    DTIC Science & Technology

    2005-04-10

    contour plots in Luhman et al. (2003), the measured [C ii] 158 and [O i] 145 m line fluxes (but not the [O i] 63 m line flux, which may be affected by...J., & Luhman , M. L. 1999, ApJ, 527, 795 Kessler, M. F., et al. 1996, A&A, 315, L27 Kriss, G. A., Davidsen, A. F., Blair, W. P., Ferguson, H. C...123, 3 Lepp, S., & Dalgarno, A. 1996, A&A, 306, L21 Luhman ,M. L., Satyapal, S., Fischer, J., Wolfire,M. G., Sturm, E., Dudley, C. C., Lutz, D

  14. Million-line failure distributions for narrow interconnects

    SciTech Connect

    Bartelt, M.C.; Hoyt, J.J.; Bartelt, N.C.; Dike, J.J.; Wolfer, W.G.

    1997-12-01

    The authors examine the distribution of failure times in a simple and computationally efficient, yet reasonably authentic, model of interconnect reliability that allows consideration of statistically significant samples. The model includes an approximate description of the distribution of grain sizes and texture in narrow interconnects, an effective treatment of stress evolution associated with mass transport along grain boundaries, and local relaxation of stresses due to void formation. Failure time distributions for populations of idealized structures are analyzed to aid in interpretation of model behavior.

  15. Narrow line diode laser stacks for DPAL pumping

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; Irwin, David; Stapleton, Dean; Pandey, Rajiv; Guiney, Tina; Patterson, Steve

    2014-02-01

    Diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality, making them an attractive candidate for future defense applications. A variety of gain media are used and each requires a different pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The biggest challenge in pumping these materials efficiently is the narrow gain media absorption band of approximately 0.01nm. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum. With state of the art locking techniques, either internal to the cavity or externally mounted gratings, the spectral width can typically be reduced to 0.5nm to 1nm for kW-class, high power stacks. More narrow spectral width has been achieved at lower power levels. The diode's inherent wavelength drift over operating temperature and output power is largely, but not completely, eliminated. However, standard locking techniques cannot achieve the required accuracy on the location of the spectral output or the spectral width for efficient DPAL pumping. Actively cooled diode laser stacks with continuous wave output power of up to 100W per 10mm bar at 780nm optimized for rubidium pumping will be presented. Custom designed external volume holographic gratings (VHGs) in conjunction with optimized chip material are used to narrow and stabilize the optical spectrum. Temperature tuning on a per-bar-level is used to overlap up to fifteen individual bar spectra into one narrow peak. At the same time, this tuning capability can be used to adjust the pump wavelength to match the absorption band of the active medium. A spectral width of <0.1nm for the entire stack is achieved at <1kW optical output power. Tuning of the peak wavelength is demonstrated for up to 0.15nm. The technology can easily be adapted to other diode laser wavelengths to pump different materials.

  16. The broad-line region and dust torus size of the Seyfert 1 galaxy PGC 50427

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, F.; Ramolla, M.; Westhues, C.; Haas, M.; Chini, R.; Steenbrugge, K.; Barr Domínguez, A.; Kaderhandt, L.; Hackstein, M.; Kollatschny, W.; Zetzl, M.; Hodapp, K. W.; Murphy, M.

    2015-04-01

    We present the results of three-year monitoring campaigns of the z = 0.024 type 1 active Galactic nucleus (AGN) PGC 50427. Using robotic telescopes of the Universitätssternwarte Bochum near Cerro Armazones in Chile, we monitored PGC 50427 in the optical and near-infrared (NIR). Through the use of photometric reverberation mapping with broad- and narrowband filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the Hα emission line. The Hα emission line responds to blue continuum variations with an average rest frame lag of 19.0 ± 1.23 days. Using single epoch spectroscopy obtained with the Southern African Large Telescope (SALT) we determined a broad-line Hα velocity width of 1020 km s-1 and in combination with the rest frame lag and adoption of a geometric scaling factor f = 5.5, we calculate a black hole mass of MBH ~ 17 × 106 M⊙. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100 Å luminosity at the time of our monitoring campaign. We measured small luminosity variations in the AGN (~10%) accross the three years of the monitoring campaign. The rest frame lag and the host-subtracted luminosity permit us to derive the position of PGC 50427 in the BLR size - AGN luminosity diagram, which is remarkably close to the theoretically expected relation of R ∝ L0.5. The simultaneous optical and NIR (J and Ks) observations allow us to determine the size of the dust torus through the use of dust reverberation mapping method. We find that the hot dust emission (~1800 K) lags the optical variations with an average rest frame lag of 46.2 ± 2.60 days. The dust reverberation radius and the nuclear NIR luminosity permit us to derive the position of PGC 50427 on the known τ - MV diagram. The simultaneous observations for the broad-line region and dust thermal emission demonstrate that the innermost dust

  17. Determination of Electronic Temperature and Density in Narrow Line Regions

    NASA Astrophysics Data System (ADS)

    Quintero, S.; Higuera-G., Mario A.

    2017-07-01

    We use observations of forbidden emission lines: [SII], [OII], N[II] and [OIII] from a sample of objects located in the Sloan Digital Sky Survey (SDSS) and determined the electronic temperature and densities.

  18. Space Telescope Imaging Spectrograph Long-Slit Spectroscopy of the Narrow-Line Region of NGC 4151. 1; Kinematics and Emission-Line Ratios

    NASA Technical Reports Server (NTRS)

    Nelson, C. H.; Weistrop, D.; Hutchinson, J. B.; Crenshaw, D. M.; Gull, T. R.; Kaiser, M. E.; Kraemer, S. B.; Lindler, D.

    2003-01-01

    Long-slit spectra of the Seyfert galaxy NGC 4151 from the UV to the near-infrared have been obtained with the Space Telescope Imaging Spectrograph (STIS) to study the kinematics and physical conditions in the narrow-line region (NLR). The kinematics shows evidence for three components, a low-velocity system in normal disk rotation, a high-velocity system in radial outflow at a few hundred kilometers per second relative to the systemic velocity, and an additional high-velocity system also in outflow with velocities up to 1400 km s(-l), in agreement with results from STIS slitless spectroscopy. We have explored two simple kinematic models and suggest that radial outflow in the form of a wind is the most likely explanation. We also present evidence indicating that the wind may be decelerating with distance from the nucleus. We find that the emission-line ratios along our slits are all entirely consistent with photoionization from the nuclear continuum source. A decrease in the ratios [O III] lambda 5007/H beta and [O III] lambda 5007/[O II] lambda 3727 suggests that the density decreases with distance from the nucleus. This trend is borne out by the [S II] ratios as well. We find no strong evidence for interaction between the radio jet and the NLR gas in either the kinematics or the emission-line ratios, in agreement with the recent results of Kaiser et al., who found no spatial coincidence of NLR clouds and knots in the radio jet. These results are in contrast to other recent studies of nearby active galactic nuclei that find evidence for significant interaction between the radio source and the NLR gas.

  19. Long-Lived Coherences for Homogeneous Line Narrowing in Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Riddhiman; Ahuja, Puneet; Vasos, Paul R.; Bodenhausen, Geoffrey

    2010-02-01

    Line broadening, which can arise from inhomogeneities or homogeneous relaxation effects that lead to finite lifetimes of quantum states, is the Achilles’ heel of many forms of spectroscopy. We show that line broadening may be considerably reduced by exploiting long lifetimes associated with superpositions of quantum states with different symmetry, termed long-lived coherences. In proton NMR of arbitrary molecules (including proteins) in isotropic solution, the slow oscillatory decays of long-lived coherences can yield spectra with very high resolution. This improvement opens the way to high-field magnetic resonance of molecular assemblies that are almost an order of magnitude larger than could be hitherto studied. Coherences between states of different symmetry may be useful in other forms of spectroscopy to cancel unwanted line broadening effects.

  20. A MULTI-WAVELENGTH STUDY OF THE NATURE OF TYPE 1.8/1.9 SEYFERT GALAXIES

    SciTech Connect

    Trippe, M. L.; Crenshaw, D. M.; Deo, R. P.; Dietrich, M.; Kraemer, S. B.; Rafter, S. E.; Turner, T. J.

    2010-12-20

    We focus on determining the underlying physical cause of a Seyfert galaxy's appearance as type 1.8 or 1.9. Are these 'intermediate' Seyfert types typical Seyfert 1 nuclei with reddened broad-line regions? Or are they objects with intrinsically weak continua and broad emission lines? We compare measurements of the optical reddening of the narrow and broad-line regions with each other and with the X-ray column derived from XMM-Newton 0.5-10 keV spectra to determine the presence and location of dust in the line of sight. We also searched the literature to see if the objects showed evidence for broad-line variability, and determined if the changes were consistent with a change in reddening or a change in the intrinsic ionizing continuum flux. We find that 10 of 19 objects previously classified as Seyfert 1.8/1.9s received this designation due to their low continuum flux. In four objects, the classification was due to broad emission-line region reddening, either by the torus or dust structures in the vicinity of the narrow emission-line region; in the remaining five objects there is not sufficient evidence to favor one scenario over the other. These findings imply that, in general, samples of 1.8/1.9s are not suitable for use in studies of gas and dust in the central torus.

  1. The Emission-Line Spectrum of KUG 1031+398 and the Intermediate Line Region Controversy

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Véron, P.; Véron-Cetty, M.-P.

    We present results based on the analysis of optical spectra of the Narrow-Line Seyfert 1 (NLS1) galaxy KUG 1031+398, for which evidence was reported of a line-emitting region "intermediate" (both in terms of velocity and density) between the conventional Broad and Narrow Line Regions (BLR and NLR, respectively). From our observations and modeling of the spectra, we get a consistent decomposition of the line profiles into four components: an extended H II region with unresolved lines, two distinct Seyfert-type clouds identified with the NLR, and a relatively narrow "broad line" component emitting only Balmer lines but no forbidden lines. Therefore, although we find this object to be exceptional in having line-emission from the BLR with almost the same width as the narrow lines, our interpretation of the data does not support the existence of an "intermediate" line region (ILR).

  2. Seyfert galaxies and ``Unified Scheme''

    NASA Astrophysics Data System (ADS)

    Pashchenko, I. N.; Pilipenko, S. V.; Vitrishchak, V. M.

    2011-01-01

    From spectroscopic point of view Seyfert galaxies (as other Active Galactic Nuclei --- AGN) basically are subdivided into two types: with and without broad permitted emission lines in their optical spectra (so called type I and type II Seyfert galaxies or AGNs). One of the most fundumental idea concerning AGN is that observed AGN type (I or II) is determined by inclination angle of AGN to the line of sight (LOS). At high inclination angles LOS crosses dusty torus which absorbs and scatters line emission. But in some recent papers the differences in close (<100 kpc) environment of SyI and SyII (SyII have more close companions), which are incompatible with Unification Scheme, were found and the possibility of physical (intrinsic) differences between Seyfert I and II was discussed. It was shown that this difference could be due to selection effects caused by the sample criteria. We sampled SyI and SyII galaxies from the Sloan Digital Sky Survey (SDSS) on the basis of their emission line properties thus excluding selection and discuss the properties of the environment of Seyfert galaxies.

  3. Hour-timescale profile variations in the broad Balmer lines of the Seyfert galaxy Hour-timescale profile variations in the broad Balmer lines of the Seyfert galaxy Markarian 6

    NASA Astrophysics Data System (ADS)

    Asatrian, Norayr S.

    2014-07-01

    Part of results of the multi-epoch intranight optical spectroscopic monitoring of the Markarian 6 nucleus carried out at the telescopes of 6-m of the Special Astrophysical Observatory (Russia), 2.6-m of the Byurakan Astrophysical Observatory (Armenia) and 2-m of the Tautenburg Observatory (Germany) is presented. Observations were made in 1979, 1986, 1988-1991 and 2007-2009 during a total of 33 nights with an average sampling rate of 4 spectra per night. TV-scanner and long-slit spectrographs equipped with Image Tube and CCD detector arrays were used. Altogether we analyzed 110 Hβ and 58 Hα region spectra to search for intranight variability in the broad hydrogen emission line profiles. The typical spectral resolutions were 4 Å for scanner spectra, 6 Å for photographic spectra, and 5 Å and 10 Å for CCD spectra. The S/N ratio at the continuum level near the Hβ and Hα lines was in the range 15-50. The purpose of the search was to look for the characteristic variability signatures of different kinematical models of the broad emission-line region. We considered the centering and guiding errors which can result in differences between spectra. We found variations in the broad Balmer line difference profiles on time scale of hour with the level of significance of 3.6 σ to 5.0 σ. Variations take the form of narrow, small bumps located at the blue and red sides or only at the blue side of the lines. In the intermediate level of broad line flux, the Hβ and Hα profiles show fine structure. Detected profile changes occurred at the same radial velocity shifts as the details in the fine structure. The variability is at least 2 orders of magnitude more rapid than any observed for broad Balmer line profiles in AGNs that we are aware of in the literature. Discovered extremely rapid line-profile variability may be associated with reverberation effects. Two-sided profile changes may indicate the response of circularly rotating hydrogen clouds in the BLR to a light pulse

  4. VizieR Online Data Catalog: [OIII] of radio-emitting narrow-line Seyfert 1 (Berton+, 2016)

    NASA Astrophysics Data System (ADS)

    Berton, M.; Foschini, L.; Ciroi, S.; Cracco, V.; La Mura, G.; di Mille, F.; Rafanelli, P.

    2016-08-01

    We decided to use the sample created by Cracco et al. (2016, MNRAS, submitted) to have a uniformly selected sample of RQNLS1s that is not contaminated by any spurious source. They found 9 RLNLS1s, which we included in our second sample, and 59 RQNLS1s. To further increase the number of sources, we decided to add also the RQNLS1s from Berton et al. (2015A&A...578A..28B), which were not already included in their sample because of the selection criteria and had a suitable spectra to analyze. Our RQNLS1s sample in conclusion is made of 68 RQNLS1s. For the RLNLS1s sample, besides the nine sources we already found with the previous selection, we decided to use all the sources analyzed by Foschini et al. (2015A&A...575A..13F) and Berton et al. (2015A&A...578A..28B) for which an optical spectrum was available in SDSS DR12, in the NED archive, or observable with the Asiago 1.22m telescope (Sect. 3.1). Our sample is comprised of 56 RLNLS1s. (4 data files).

  5. X-ray Variability Characteristics of the Narrow line SEYFERT 1 MKN 766 I: Energy Dependent Timing Properties

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  6. The Energy-Dependent X-Ray Timing Characteristics of the Narrow Line Seyfert 1 MKN 766

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Papadakis, I.; Arevalo, P.; Turner, T. J.; Miller, L.; Reeves, J. N.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  7. Searching for Narrow Emission Lines in X-ray Spectra: Computation and Methods

    NASA Astrophysics Data System (ADS)

    Park, Taeyoung; van Dyk, David A.; Siemiginowska, Aneta

    2008-12-01

    The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task. The Poisson nature of the photon counts leads to local random fluctuations in the observed spectrum that often result in excess emission in a narrow band of energy resembling a weak narrow line. From a formal statistical perspective, this leads to a (sometimes highly) multimodal likelihood. Many standard statistical procedures are based on (asymptotic) Gaussian approximations to the likelihood and simply cannot be used in such settings. Bayesian methods offer a more direct paradigm for accounting for such complicated likelihood functions, but even here multimodal likelihoods pose significant computational challenges. The new Markov chain Monte Carlo (MCMC) methods developed in 2008 by van Dyk and Park, however, are able to fully explore the complex posterior distribution of the location of a narrow line, and thus provide valid statistical inference. Even with these computational tools, standard statistical quantities such as means and standard deviations cannot adequately summarize inference and standard testing procedures cannot be used to test for emission lines. In this paper, we use new efficient MCMC algorithms to fit the location of narrow emission lines, we develop new statistical strategies for summarizing highly multimodal distributions and quantifying valid statistical inference, and we extend the method of posterior predictive p-values proposed by Protassov and coworkers to test for the presence of narrow emission lines in X-ray spectra. We illustrate and validate our methods using simulation studies and apply them to the Chandra observations of the high-redshift quasar PG 1634+706.

  8. IUE Spectra and photoionization models of the Seyfert 2 glaxies NGC 7674 and I Zw 92

    NASA Technical Reports Server (NTRS)

    Kraemer, Steven B.; Wu, Chi-Chao; Crenshaw, D. Michael; Harrington, J. Patrick

    1994-01-01

    The physical conditions in the narrow-line regions of two Seyfert 2 galaxies, NGC 7674 and I Zw 92, are examined using IUE spectra, published optical spectra and multifrequency observations, and photoionization models. For each Seyfert galaxy, the emission-line fluxes were dereddened using the He II lambda(1640)/lambda(4686) ratio. Photoionization models were calculated using a power-law index determined from the He II lambda(4686)/H-beta ratio; the index is very similar to that obtained from a fit to the observed multifrequency continuum from the infrared to the X-rays. The models were calculated in a way that minimized the number of assumptions, and given the uncertainties in the reddening corrections, the calculated ratios match nearly all of the dereddened ratios successfully. a multicomponent model (three components with different densities and ionization parameters) was required to fit the spectrum of I Zw 92, whereas a single component was sufficient for NGC 7674. The CNO abundances are close to solar, although a reduced abundance of up to one-third solar for one or more of the heavy elements is possible. In contrast to a previous study of Mrk 3, dust inside the narrow-line region (NLR) louds was not required to fit the spectra of these two Seyfert galaxies, although the emission lines experience considerable reddening from external dust. Higher signal-to-noise spectra in the UV are essential for placing further restrictions on the reddening and physical conditions in the narrow-line regions of Seyfert galaxies.

  9. Tailored slice selection in solid-state MRI by DANTE under magic-echo line narrowing.

    PubMed

    Matsui, Shigeru; Masumoto, Hidefumi; Hashimoto, Takeyuki

    2007-06-01

    We propose a method of slice selection in solid-state MRI by combining DANTE selective excitation with magic-echo (ME) line narrowing. The DANTE RF pulses applied at the ME peaks practically do not interfere with the ME line narrowing in the combined ME DANTE sequence. This allows straightforward tailoring of the slice profile simply by introducing an appropriate modulation, such as a sinc modulation, into the flip angles of the applied DANTE RF pulses. The utility of the method has been demonstrated by preliminary experiments performed on a test sample of adamantane.

  10. INDECENT EXPOSURE IN SEYFERT 2 GALAXIES: A CLOSE LOOK

    SciTech Connect

    Tran, Hien D.; Lyke, J. E.; Mader, Jeff A.

    2011-01-10

    NGC 3147, NGC 4698, and 1ES 1927+654 are active galaxies that are classified as Seyfert 2s, based on the line ratios of strong narrow emission lines in their optical spectra. However, they exhibit rapid X-ray spectral variability and/or little indication of obscuration in X-ray spectral fitting, contrary to expectation from the active galactic nucleus (AGN) unification model. Using optical spectropolarimetry with LRIS and near-infrared spectroscopy with NIRSPEC at the W. M. Keck Observatory, we conducted a deep search for hidden polarized broad H{alpha} and direct broad Pa{beta} or Br{gamma} emission lines in these objects. We found no evidence for any broad emission lines from the active nuclei of these galaxies, suggesting that they are unobscured, completely 'naked' AGNs that intrinsically lack broad-line regions.

  11. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    NASA Astrophysics Data System (ADS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  12. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms.

    PubMed

    Berglund, Andrew J; Hanssen, James L; McClelland, Jabez J

    2008-03-21

    Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin polarized with temperatures reaching below 2 muK. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.

  13. Red-blue-green solid state light sources using a narrow line-width green phosphor.

    PubMed

    Liu, A; Khanna, A; Dutta, P S; Shur, M

    2015-04-06

    We demonstrate that using a narrow line-width green phosphor with the peak wavelength closely aligned with the peak in the human eye sensitivity significantly improves the Luminous Efficacy of Radiation (LER) for Red-Green-Blue (RGB) emitters. Compared to the traditional RGB sources, the improvement in LER of 20 lm/W can be achieved. Combining the narrow band green phosphor with conventional wide band red and blue phosphors allows for trading off these improvements against the deviation from the Planckian locus for even higher LER. The light sources with the narrow line green phosphor are particularly promising for high energy efficiency and high intensity illumination, where somewhat compromises can be made in the color quality such as in automotive, outdoor spaces, industrial ware-houses, public places (train stations, airports) etc..

  14. Comparing Narrow- and Broad-line AGNs in a New Diagnostic Diagram for Emission-line Galaxies Based on WISE Data

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Andernach, H.

    2015-06-01

    Using a new color-color diagnostic diagram in the mid-infrared (MIR) built from WISE data, the MIRDD, we compare narrow-emission-line galaxies (NELGs) that exhibit different activity types (star-forming galaxies (SFGs) and active galactic nuclei (AGNs), i.e., LINERs, Seyfert 2 galaxies (Sy2s), and Transition-type Objects (TOs)), as determined using one standard diagnostic diagram in the optical (BPT-VO), with broad-line AGNs (QSOs and Sy1s) and BL Lac objects at low redshift (z≤slant 0.25). We show that the BL Lac objects occupy the same region as the LINERs in the MIRDD, whereas the QSOs and Sy1s occupy an intermediate region between the LINERs and the Sy2s. In the MIRDD these galaxies trace a sequence that can be reproduced by a power law, {{F}ν }={{ν }α }, where the spectral index, α, varies from 0 to -2, which is similar to what is observed in the optical/ultraviolet part of the spectra of AGNs with different luminosities. For the NELGs with different activity types, we perform a stellar-population synthesis analysis, confirming that their specific positions in the MIRD depend on their star formation histories (SFH) and demonstrating that the W2-W3 color is tightly correlated with the level of star formation in their host galaxies. In good agreement with the SFH analysis, a comparison of their MIR colors with the colors yielded by spectral energy distributions (SEDs) of galaxies with different activity types shows that the SED of the LINERs is similar to the SEDs of the QSOs and Sy1s, consistent with AGN galaxies with mild star formation, whereas the SEDs of the Sy2s and TOs are consistent with AGN galaxies with strong star formation components. For the BL Lac objects, we show that their blue MIR colors can only be fitted with an SED that has no star formation component, consistent with AGNs in elliptical-type galaxies. From their similarities in MIR colors and SEDs, we infer that, in the nearby universe, the level of star formation activity most probably

  15. SUZAKU VIEW OF THE SWIFT/BAT ACTIVE GALACTIC NUCLEI. IV. NATURE OF TWO NARROW-LINE RADIO GALAXIES (3C 403 AND IC 5063)

    SciTech Connect

    Tazaki, Fumie; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.

    2011-09-01

    We report the results of Suzaku broadband X-ray observations of the two narrow-line radio galaxies, 3C 403 and IC 5063. Combined with the Swift/Burst Alert Telescope (BAT) spectra averaged for 58 months, we are able to accurately constrain their spectral properties over the 0.5-200 keV band. The spectra of both nuclei are well represented with an absorbed cutoff power law, an absorbed reflection component from cold matter with an iron-K emission line, and an unabsorbed soft component, which gives a firm upper limit for the scattered emission. The reflection strength normalized to the averaged BAT flux is R {identical_to} {Omega}/2{pi} {approx} 0.6 in both targets, implying that their tori have a sufficiently large solid angle to produce the reprocessed emission. A numerical torus model with an opening angle of {approx}50{sup 0} well reproduces the observed spectra. We discuss the possibility that the amount of the normal gas responsible for Thomson scattering is systematically smaller in radio galaxies compared with Seyfert galaxies.

  16. Near-Infrared Properties of Quasar and Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, Kim Katris

    1995-01-01

    We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z\\<= 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host-galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type S0 to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. We also detect a population of low-mass host galaxies with very low-luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ~1) and must cover a significant fraction of the narrow line region (r>100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large scale

  17. Near-infrared properties of quasar and Seyfert host galaxies

    NASA Astrophysics Data System (ADS)

    McLeod, Kim Katris

    1994-01-01

    We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z less than or equal to 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type SO to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L(*). However, for the most luminous quasars, there is a correlation between the minimum host galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L(*) galaxy. We also detect a population of low mass host galaxies with very low luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius approximately 1) and must cover a significant fraction of the narrow line region (r greater than 100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is

  18. The complex, dusty narrow-line region of NGC 4388: gas-jet interactions, outflows and extinction revealed by near-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Mason, R. E.; Martins, L.; Ramos Almeida, C.; Riffel, R. A.; Riffel, R.; Lira, P.; González Martín, O.; Dametto, N. Z.; Flohic, H.; Ho, L. C.; Ruschel-Dutra, D.; Thanjavur, K.; Colina, L.; McDermid, R. M.; Perlman, E.; Winge, C.

    2017-02-01

    We present Gemini/GNIRS (Gemini Near-Infrared Spectrograph) spectroscopy of the Seyfert 2 galaxy NGC 4388, with simultaneous coverage from 0.85 to 2.5 μm. Several spatially extended emission lines are detected for the first time, both in the obscured and unobscured portion of the optical narrow-line region (NLR), allowing us to assess the combined effects of the central continuum source, outflowing gas and shocks generated by the radio jet on the central 280 pc gas. The H I and [Fe II] lines allow us to map the extinction affecting the NLR. We found that the nuclear region is heavily obscured, with E(B - V) ˜ 1.9 mag. To the NE of the nucleus and up to ˜150 pc, the extinction remains large, ˜1 mag or larger, consistent with the system of dust lanes seen in optical imaging. We derived position-velocity diagrams for the most prominent lines as well as for the stellar component. Only the molecular gas and the stellar component display a well-organized pattern consistent with disc rotation. Other emission lines are kinematically perturbed or show little evidence of rotation. Extended high-ionization emission of sulphur, silicon and calcium is observed to distances of at least 200 pc both NE and SW of the nucleus. We compared flux ratios between these lines with photoionization models and conclude that radiation from the central source alone cannot explain the observed high-ionization spectrum. Shocks between the radio jet and the ambient gas are very likely an additional source of excitation. We conclude that NGC 4388 is a prime laboratory to study the interplay between all these mechanisms.

  19. Birefringence of solid-state laser media: broadband tuning discontinuities and application to laser line narrowing

    SciTech Connect

    Krasinski, J.S.; Band, Y.B.; Chin, T.; Heller, D.F.; Morris, R.C.; Papanestor, P.

    1989-04-15

    Spectral consequences that result from using birefringent media with broadband gain inside of laser cavities containing polarizing elements are described. We show that the laser intensity is modulated as a function of the output frequency unless the cavity elements are carefully aligned so that their polarization axis coincides with a principal optical axis of the gain medium. Analysis of the tuning characteristics of a birefringent polarization-dependent gain medium is exploited to provide a simple method for line narrowing the laser output. By introduction of an intracavity birefringent compensator the narrow-band output can be continuously tuned. Experimental results for alexandrite lasers are presented.

  20. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  1. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  2. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    SciTech Connect

    Roberts, Kenneth Paul

    2001-01-01

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonance (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.

  3. UV Observations of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Boggess, Albert

    We propose to obtain high-quality, broadened (equivalent to trailed) spectra for 9 Type I and 2 Type 2 Seyfert galaxies. Only broadened spectra have sufficient signal-to-noise ratios to allow detailed fitting of line profiles needed to investigate both the kinematics and dynamics of the emitting regions and their stratification. These spectra will also allow more accurate measurements of weak spectral features, such as: OI 1304 and He II 1640, needed to estimate reddening; N IV] 1486, O III] 1663 and N III] 1749, for abundance analyses; absorption lines such as Si IV l400 and C IV 1550, for estimating the covering factor of the broad line region (BLR); and Galactic halo absorption lines of Si II 1260, C II 1335 and Fe II 1608. There are broad features superposed on the spectrum of Seyfert galaxies: the 2200A dust absorption feature, the emission hump at 3200A and several other unidentified bumps and wiggles. Their detection, measurement and quantitative study also require spectra recorded with high signal-to-noise ratios. X-ray spectra are already available for all 9 Type 1 Seyferts, and these data will be combined with our UV continua to estimate the amounts of available ionizing radiation. We also plan to measure the fluxes of the prominent emission lines: L-alpha, SI IV 1400, C IV 1550, C III] 1900 and Mg II 2800, to extend our investigation of the L-alpha/H-beta ratio and to provide a homogeneous set of high quality data to allow the evaluation of models for individual objects instead of, as in the past, for an assumed "typical" Seyfert or quasar.

  4. Probing the Physics of Narrow-line Regions in Active Galaxies. III. Accretion and Cocoon Shocks in the LINER NGC 1052

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Ho, I.-Ting; Dressel, Linda L.; Sutherland, Ralph; Kewley, Lisa; Davies, Rebecca; Hampton, Elise; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-01

    We present Wide Field Spectrograph integral field spectroscopy and Hubble Space Telescope Faint Object Spectrograph spectroscopy for the low-ionization nuclear emission line region (LINER) galaxy NGC 1052. We infer the presence of a turbulent accretion flow forming a small-scale accretion disk. We find a large-scale outflow and ionization cone along the minor axis of the galaxy. Part of this outflow region is photoionized by the active galactic nucleus and shares properties with the extended narrow-line region of Seyfert galaxies, but the inner (R≲ 1.0″) accretion disk and the region around the radio jet appear shock excited. The emission-line properties can be modeled by a “double-shock” model in which the accretion flow first passes through an accretion shock in the presence of a hard X-ray radiation, and the accretion disk is then processed through a cocoon shock driven by the overpressure of the radio jets. This model explains the observation of two distinct densities (˜104 and ˜106 cm-3) and provides a good fit to the observed emission-line spectrum. We derive estimates for the velocities of the two shock components and their mixing fractions, the black hole mass, and the accretion rate needed to sustain the LINER emission and derive an estimate for the jet power. Our emission-line model is remarkably robust against variation of input parameters and hence offers a generic explanation for the excitation of LINER galaxies, including those of spiral type such as NGC 3031 (M81).

  5. THE MID-INFRARED CONTINUA OF SEYFERT GALAXIES

    SciTech Connect

    Deo, Rajesh P.; Richards, Gordon T.; Crenshaw, D. M.; Kraemer, S. B. E-mail: gtr@physics.drexel.ed E-mail: kraemer@yancey.gsfc.nasa.go

    2009-11-01

    An analysis of archival mid-infrared (mid-IR) spectra of Seyfert galaxies from the Spitzer Space Telescope observations is presented. We characterize the nature of the mid-IR active nuclear continuum by subtracting a template starburst spectrum from the Seyfert spectra. The long wavelength part of the spectrum contains a strong contribution from the starburst-heated cool dust; this is used to effectively separate starburst-dominated Seyferts from those dominated by the active nuclear continuum. Within the latter category, the strength of the active nuclear continuum drops rapidly beyond approx20 mum. On average, type 2 Seyferts have weaker short-wavelength active nuclear continua as compared to type 1 Seyferts. Type 2 Seyferts can be divided into two types, those with strong polycyclic aromatic hydrocarbon (PAH) bands and those without. The latter type show polarized broad emission lines in their optical spectra. The PAH-dominated type 2 Seyferts and Seyfert 1.8/1.9s show very similar mid-IR spectra. However, after the subtraction of the starburst component, there is a striking similarity in the active nuclear continuum of all Seyfert optical types. PAH-dominated Seyfert 2s and Seyfert 1.8/1.9s tend to show weak active nuclear continua in general. A few type 2 Seyferts with weak/absent PAH bands show a bump in the spectrum between 15 and 20 mum. We suggest that this bump is the peak of a warm (approx200 K) blackbody dust emission, which becomes clearly visible when the short-wavelength continuum is weaker. This warm blackbody emission is also observed in other Seyfert optical subtypes, suggesting a common origin in these active galactic nuclei.

  6. Metallicity In Narrow Line Regions Go High-Z Type-2 AGN

    NASA Astrophysics Data System (ADS)

    Mignoli, Marco; Feltre, A.; Bongiorno, A.; Gilli, R.; Calura, F.; Vanzella, E.; Bolzonella, M.; Comastri, A.; Vignali, C.; Brusa, M.; Cappelluti, N.

    2016-10-01

    The physics and demographics of high redshift obscured active galactic nuclei is still scarcely studied, and new samples of such objects, selected with different techniques, can provide useful insights into their physical nature. A sample of 90 narrow-line with 1.5< z < 3.0 was selected from the zCOSMOS-deep galaxy sample by detection of the high-ionization CIV 1549A emission line. The presence of this feature in a galaxy spectrum is indicative of nuclear activity, and the selection effectiveness has been also confirmed by ultraviolet emission line diagnostic diagrams. Taking advantage of the large amount of data available in the COSMOS field, the properties of the CIV-selected Type 2 AGN were analyzed, focusing on their host galaxies, X-ray emission, and UV emission line characteristics. Finally, the physical properties of the ionized gas in the Narrow Line Region have been investigated, combining the analysis of strong UV emission lines with the prediction from photoionization models.

  7. Fluorescence line-narrowing spectrometry: Application to the study of benzo(a)pyrene metabolic pathways

    SciTech Connect

    Zamzow, D.S.

    1988-07-01

    The application of fluorescence line-narrowing spectrometry (FLNS) to the study of the pathways involved in the metabolic activation of the environmental contaminant and carcinogen benzo(a)pyrene is described. Fluorescence line-narrowed (FLN) spectra of benzo(a)pyrene, 6-methyl-benzo(a)pyrene, and a number of benzo(a)pyrene-nucleoside adducts are presented. The activation of benzo(a)pyrene (BP) to metabolites capable of binding to DNA in the in vitro horseradish peroxidase-catalyzed binding of BP to DNA, the DNA from mice exposed (in vivo) to BP, and the DNA from fish exposed (in vivo) to a number of polycyclic aromatic hydrocarbons, including BP, is investigated by the analysis of the FLN spectra obtained from these samples. 65 refs., 22 figs., 4 tabs.

  8. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  9. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    SciTech Connect

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    2015-07-31

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applications and other topics in quantum electronics)

  10. The Seyfert 2 Galaxy NGC 2110: Hard X-Ray Emission Observed by NuStar and Variability of the Iron K-Alpha Line

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Bianchi, S.; Lu, T. N.; Arevalo, P.; Balokovic, M.; Ballantyne, D.; Bauer, F. E.; Boggs, S. E.; Stern, D.; hide

    2014-01-01

    We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad band spectra (in the 3-80 keV range) indicate a cutoff energy E(sub c) greater than 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton thick scattering is found and, by using temporal information collected over more than a decade, we investigate variations of the iron K(alpha) line on time scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole).

  11. The Seyfert 2 galaxy NGC 2110: hard X-ray emission observed by NuSTAR and variability of the iron Kα line

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Matt, G.; Bianchi, S.; Lu, T. N.; Arevalo, P.; Baloković, M.; Ballantyne, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Harrison, F.; Puccetti, S.; Rivers, E.; Walton, D. J.; Stern, D.; Zhang, W.

    2015-02-01

    We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad-band spectra (in the 3-80 keV range) indicate a cutoff energy Ec > 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton-thick scattering is found and, by using temporal information collected over more than a decade, we investigate variations of the iron Kα line on time-scales of years. The Fe Kα line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole).

  12. Rapid trench initiated recrystallization and stagnation in narrow Cu interconnect lines

    SciTech Connect

    O'Brien, Brendan B.; Rizzolo, Michael; Prestowitz, Luke C.; Dunn, Kathleen A.

    2015-10-26

    Understanding and ultimately controlling the self-annealing of Cu in narrow interconnect lines has remained a top priority in order to continue down-scaling of back-end of the line interconnects. Recently, it was hypothesized that a bottom-up microstructural transformation process in narrow interconnect features competes with the surface-initiated overburden transformation. Here, a set of transmission electron microscopy images which captures the grain coarsening process in 48 nm lines in a time resolved manner is presented, supporting such a process. Grain size measurements taken from these images have demonstrated that the Cu microstructural transformation in 48 nm interconnect lines stagnates after only 1.5 h at room temperature. This stubborn metastable structure remains stagnant, even after aggressive elevated temperature anneals, suggesting that a limited internal energy source such as dislocation content is driving the transformation. As indicated by the extremely low defect density found in 48 nm trenches, a rapid recrystallization process driven by annihilation of defects in the trenches appears to give way to a metastable microstructure in the trenches.

  13. The luminous infrared composite Seyfert 2 galaxy NGC 7679 through the [O III] λ 5007 emission line

    NASA Astrophysics Data System (ADS)

    Yankulova, I. M.; Golev, V. K.; Jockers, K.

    2007-07-01

    Context: NGC 7679 (Mrk 534) is a nearby (z = 0.0177) nearly face-on SB0 luminous infrared Sy2 galaxy in which starburst and AGN activities co-exist. The ionization structure is maintained by both the AGN power-law continuum and starburst. The galaxy is a bright X-ray source possessing a low X-ray column density NH < 4 × 1020 cm-2. Aims: The Compton-thin nature of such unabsorbed objects infers that the simple formulation of the Unified model for SyGs is not applicable in their case. The absorption is likely to originate at larger scales instead of the pc-scale molecular torus. The main goal of this article is to investigate both gas distribution and ionization structure in the circumnuclear region of NGC 7679 in search for the presence of a hidden Sy1-type nucleus, using the [O III]λ5007 luminosity as a tracer of AGN activity. Methods: NGC 7679 was observed with the 2m RCC reflector of the Ukraine National Astronomical Observatory at peak Terskol, Caucasus, Russia. The observations were carried out in October 1996 with the Focal Reducer of the Max-Planck-Institut für Sonnensystemforschung, Germany. All observations were taken with tunable Fabry-Perot narrow-band imaging with spectral FWHM of the Airy profile δλ between 3 and 4 Å depending on the used wavelength. Results: The [O III]λ5007 emission-line image of the circumnuclear region of NGC 7679 shows elliptical isophotes extended along the PA ≈ 80° in the direction of the counterpart galaxy NGC 7682. There is a maximum of this emission which is shifted ~4 arcsec from the center as defined by the continuum emission. The maximum of ionization by the AGN power-law continuum traced by [O III]λ5007/Hα ratio is displaced by ~13 arcsec eastward from the nucleus. The direction where high ionization is observed at PA ≈ 80° ± 10° coincides with the direction to the companion galaxy NGC 7682 (PA ≈ 72°). On the contrary, at PA ~ 0° the ionization in the circumnuclear region is entirely due to hot stars

  14. Spectroscopic Properties of Selected Narrow Emission Line Galaxies from the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Colon, Amy M.; Carroll, P.; Roberts, R.; Wong, N.; Liu, C.

    2007-12-01

    We present properties of seven blue narrow emission line galaxies (NELGs) in the redshift range 0.25 < z < 0.73, initially selected as QSO candidates in the COSMOS 2-degree survey field. These galaxies have been selected for the high signal-to-noise of their spectra, as indicated by the presence of the emission line [NeIII] 3869 Angstroms. Emission line diagnostics are used to measure metallicities and star formation rates, and to test the presence of AGN. Hubble ACS images are used to measure their surface brightness distributions and quantitative morphologies. Preliminary results indicate that these objects are forming stars at a rate of 4 to 20 solar masses per year; and their metallicity appears not to vary with the galaxy's concentration index which ranges 0.42 to 0.63.

  15. Line Narrowing in Mössbauer Spectra of Superparamagnetic Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hah, H.-Y.; Gray, S.; Johnson, C. E.; Johnson, J. A.; Kolesnichenko, V.; Kucheryavy, P.; Goloverda, G.

    2014-11-01

    Nanoparticles of magnetic crystals below a critical size are single domain and exhibit superparamagnetism. If there are N atoms or molecules with magnetic moment μ in each particle, the magnetic moment of the particle is Nν. At high temperatures the thermal fluctuations of the magnetic moments give an ensemble average moment of zero and the Mössbauer spectrum is a single line. As the temperature, T, is lowered the fluctuations slow down and the sample acquires a magnetization and the Mossbauer line broadens and eventually shows magnetic hyperfine splitting. We have observed 57Fe line broadening in nanoparticles of ferrimagnetic Fe3O4 with diameters of 5.3 and 10.6 nm. The results have been analyzed using the motional narrowing equation familiar in nuclear magnetic resonance to determine the superparamagnetic fluctuation time and magnetic anisotropy.

  16. The unusual emission line spectrum of I Zw 1

    NASA Astrophysics Data System (ADS)

    Joly, Monique; Véron-Cetty, M.-P.; Véron, P.

    2004-11-01

    A detailed analysis of the spectrum of I Zw 1 shows that the Narrow Line Region, unlike that of most Seyfert 1 galaxies, is a very low excitation region dominated by both permitted and forbidden Fe II lines. The physical conditions in this region are discussed.

  17. CONSTRAINING JET PRODUCTION SCENARIOS BY STUDIES OF NARROW-LINE RADIO GALAXIES

    SciTech Connect

    Sikora, Marek; Stasinska, Grazyna; Koziel-Wierzbowska, Dorota; Madejski, Greg M.; Asari, Natalia V.

    2013-03-01

    We study a large sample of narrow-line radio galaxies (NLRGs) with extended radio structures. Using 1.4 GHz radio luminosities L {sub 1.4}, narrow optical emission line luminosities L {sub [OIII]} and L{sub H{sub {alpha}}}, as well as black hole masses M {sub BH} derived from stellar velocity dispersions measured from the optical spectra obtained with the Sloan Digital Sky Survey, we find that (1) NLRGs cover about four decades of the Eddington ratio, {lambda} {identical_to} L {sub bol}/L {sub Edd}{proportional_to}L {sub line}/M {sub BH}; (2) L {sub 1.4}/M {sub BH} strongly correlates with {lambda}; and (3) radio loudness, R{identical_to}L{sub 1.4}/L{sub line}, strongly anti-correlates with {lambda}. A very broad range of the Eddington ratio indicates that the parent population of NLRGs includes both radio-loud quasars (RLQs) and broad-line radio galaxies (BLRGs). The correlations they obey and their high jet production efficiencies favor a jet production model which involves the so-called magnetically choked accretion scenario. In this model, production of the jet is dominated by the Blandford-Znajek mechanism, and the magnetic fields in the vicinity of the central black hole are confined by the ram pressure of the accretion flow. Since large net magnetic flux accumulated in central regions of the accretion flow required by the model can take place only via geometrically thick accretion, we speculate that the massive, 'cold' accretion events associated with luminous emission-line active galactic nucleus can be accompanied by an efficient jet production only if preceded by a hot, very sub-Eddington accretion phase.

  18. NGC 4388 - A Seyfert 2 galaxy in the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Phillips, M. M.; Malin, D. F.

    1982-06-01

    Direct photographic data and preliminary spectroscopy of the spiral galaxy NGC 4388 are presented. The galaxy appears to be a barred spiral of morphological class SB(s)b pec and is almost certainly a member of the Virgo cluster. The nucleus was studied with a photon-counting image intensifier/reticon scanner and was found to emit a high-excitation, narrow emission-line spectrum of relatively low luminosity. Image-tube spectrograms and spectroscopy using an image photon-counting system revealed optical, X-ray, and radio nuclear properties consistent with a classical Seyfert 2 galaxy. The radial velocity of the peaks of the asymmetric nuclear emission lines is 55 km/s less than the H I 21 cm systemic velocity.

  19. IRAS 09149-6206, a new Seyfert I galaxy

    NASA Astrophysics Data System (ADS)

    Perez, E.; Manchado, A.; Garcia-Lario, P.; Pottasch, S. R.

    1989-05-01

    The serendipitous discovery of a new type I Seyfert galaxy, IRAS 09149-6206, found during a search for planetary nebulae using the IRAS Point Source Catalog is reported. The optical spectrum of this galaxy shows very strong broad Balmer and Fe II emission, indicating the existence of large optical depths, while the emission spectrum from the narrow line region is relatively weak, with only the high excitation lines present. The object presents extended forbidden O III emission, and from the rotation curve, a mass of 8 x 10th the 9th solar masses is calculated within a radius of 3 kpc. It is suggested that the activity could have been triggered by interaction with a close faint companion.

  20. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  1. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  2. Narrow-line-width UV Bursts in the Transition Region above Sunspots Observed by IRIS

    NASA Astrophysics Data System (ADS)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-10-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ˜10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15-18 km s-1, while the NUB found in sit-and-stare data possesses an additional component at ˜50 km s-1 found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  3. Gas to crystal Effect on the Spectral Line Narrowing of MEH-PPV.

    PubMed

    Familia, Aziz M; Sarangan, Andrew; Nelson, Thomas R

    2007-06-25

    We report two emission bands corresponding to the spectral line narrowing (SLN) of the conjugated polymer [2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) in films. The SLN emission coming from the polymer chains closer to the glass substrate are at a different spectral position compared to the chains that lay further away from the glass substrate. We explain this phenomenon as a direct consequence of the "gas-to-crystal" effect. In solution form, as concentration was increased, and thus the proportion of aggregates, a decrease in the SLN bandwidth and a red shift of the emission peak was observed.

  4. THE PHYSICAL CONDITIONS OF THE INTRINSIC N V NARROW ABSORPTION LINE SYSTEMS OF THREE QUASARS

    SciTech Connect

    Wu Jian; Charlton, Jane C.; Misawa, Toru; Eracleous, Michael; Ganguly, Rajib E-mail: misawatr@shinshu-u.ac.j

    2010-10-20

    We employ detailed photoionization models to infer the physical conditions of intrinsic narrow absorption line systems found in high-resolution spectra of three quasars at z = 2.6-3.0. We focus on a family of intrinsic absorbers characterized by N V lines that are strong relative to the Ly{alpha} lines. The inferred physical conditions are similar for the three intrinsic N V absorbers, with metallicities greater than 10 times the solar value (assuming a solar abundance pattern), and with high ionization parameters (log U {approx} 0). Thus, we conclude that the unusual strength of the N V lines results from a combination of partial coverage, a high ionization state, and high metallicity. We consider whether dilution of the absorption lines by flux from the broad emission line region can lead us to overestimate the metallicities and we find that this is an unlikely possibility. The high abundances that we infer are not surprising in the context of scenarios in which metal enrichment takes place very early on in massive galaxies. We estimate that the mass outflow rate in the absorbing gas (which is likely to have a filamentary structure) is less than a few M{sub sun} yr{sup -1} under the most optimistic assumptions, although it may be embedded in a much hotter, more massive outflow.

  5. Narrow line-width phosphors for phosphor-converted white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Khanna, Aloka

    The luminous efficacy of present day phosphor-converted white LEDs is limited by phosphors with broad spectral emission in the long wavelength visible range (600-700 nm). The light output from the cool-white LEDs that do not use a red phosphor is 30-35% higher than the warm white LEDs fabricated with a red phosphor in addition to the yellow phosphor. However, the CRI of cool-white LEDs is significantly lower (~60-70) than the CRI of the warm white LEDs (~80-95) due to lack of the red photons in the emission spectrum. Therefore, a trade-off exists between luminous efficacy and color rendering capability of light generated by phosphor-converted white LEDs. In order to solve this problem, an efficient red phosphor with considerably narrow full width of half maxima (~5-10 nm) and emission in the 600-650 nm wavelength range is required. The narrow spectral line-width can be achieved by introducing trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) in oxide host lattices although the high energy gaps of these hosts makes these phosphors unsuitable for excitation with near-UV/Blue (380-470 nm) LED sources. Therefore, the goal of this project is two-fold- to develop new material systems which can serve as potential hosts for trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) with strong excitation bands in the near-UV/blue wavelength region (380-470 nm) and improve the efficiency of the known oxide phosphors doped with trivalent lanthanide ions and the novel phosphors via crystal growth processes. Moreover, phosphors in the green-yellow wavelength region with a narrow emission line-width have the potential of improving the luminous efficacy of the phosphor-converted LEDs as the human eye sensitivity curve peaks at 555 nm. Thus, in parallel with the narrow line-width red phosphor research, new compositions doped with Tb3+ (550 nm), Dy3+ (575 nm), etc. are being explored with strong excitation bands in near

  6. Measuring the Cold Dust Content of Broad and Narrow-Line Optically Luminous QSOs

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2015-08-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the overwhelming majority of spheroidal glaxies in the local Universe contain massive BHs and that, wiht some important caveats, the masses of those central BH correlate with the velocity dispersions of the stars in the sheroid and the bulge luminosities. An impressive body of research has been dedicated to understanding the mechanisms responsible for such a fundamental perhaps causal relation.An important component pertinent to those investigations is an accurate census of the basic properties of the cold interstellar medium (ISM) in AGN hosts. The motivation for this is that the cold molecular gas is the basic fuel for star-formation and black hole growth.We present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z ≤ 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample and in a complementary sample of 85 narrow-line QSOs chosen to match the redshift and optical luminosity distribution of the broad-line targets.The FIR data are combined with near-infrared and mid-infrared measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess aggregate dust properties. We estimate dust temperatures that range between ~20 and 70 K with a median temperature of 45 K respectively, and dust masses between 9 × 10 4M⊙ and 5 × 10 8M⊙ with a median mass of 3 × 10 7M⊙. We investigate the relation between star-formation rates (SFRs) estimated from the IR luminosities and SFRs determined from measurements of the 11.3 micron PAH. We also compare indicators of AGN strength such as the [OIII] 5007 Angstroms and 5100 Angstroms luminosities

  7. The Fading of the Narrow-Line Region in 3C 390.3: Erratum

    NASA Astrophysics Data System (ADS)

    Clavel, J.; Wamsteker, W.

    1988-07-01

    The Letter "The Fading of the Narrow-Line Region in 3C 390.3" by J. Clavel and W. Wamsteker (Ap. J. [Letters], 320, L9 [1987]) contains an error in the last two sentences of section IIIb: The density we compute for the broad line region (BLR) gas is wrong by a factor of 10 exactly and should read 10^11^ cm^-3^ instead of 10^10^. Such a density is about 30 times larger than the canonical 10^9.5^ cm^-3^ value generally used in model calculations but similar to the density inferred for the BLR in NGC 4151 by J. Clavel et al. (Ap. J., 321, 251 [1987]). The authors are grateful to Paolo Padovani from STScI for bringing this error to their attention.

  8. Low intensity noise and narrow line-width diode laser light at 540 nm

    NASA Astrophysics Data System (ADS)

    Wang, Lirong; Tamaki, Ryo; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2015-05-01

    We present a convenient method to generate high quality single-frequency green light at a wavelength of 540 nm. It consists of a noise suppressed external cavity diode laser at a wavelength of 1080 nm by optical filtering and resonant optical feedback, and a frequency doubling of the fundamental light with an a-cut KTP crystal. Highly efficient conversion is realized by type II non-critical phase matching. A stable single-frequency operation with a maximum power of about 20 mW is performed for more than 3 h. Both the intensity noise and line-width reach the level of a monolithic nonplanar ring laser, which is well known for its extraordinarily narrow line-width and extremely low noise among available single-frequency operating lasers.

  9. Spatially Resolved Narrow-Line Region Kinematics in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Rice, Melissa S.; Martini, Paul; Greene, Jenny E.; Pogge, Richard W.; Shields, Joseph C.; Mulchaey, John S.; Regan, Michael W.

    2006-01-01

    We have analyzed Hubble Space Telescope spectroscopy of 24 nearby active galactic nuclei (AGNs) to investigate spatially resolved gas kinematics in the narrow-line region (NLR). These observations effectively isolate the nuclear line profiles on less than 100 pc scales and are used to investigate the origin of the substantial scatter between the widths of strong NLR lines and the stellar velocity dispersion σ* of the host galaxy, a quantity that relates with substantially less scatter to the mass of the central, supermassive black hole and more generally characterize variations in the NLR velocity field with radius. We find that line widths measured with STIS at a range of spatial scales systematically underestimate both σ* and the line width measured from ground-based observations, although they do have comparably large scatter to the relation between ground-based NLR line width and σ*. There are no obvious trends in the residuals when compared with a range of host galaxy and nuclear properties. The widths and asymmetries of [O III] λ5007 and [S II] λλ6716, 6731 as a function of radius exhibit a wide range of behavior. Some of the most common phenomena are substantial width increases from the STIS to the large-scale, ground-based aperture and almost no change in line profile between the unresolved nuclear spectrum and ground-based measurements. We identify asymmetries in a surprisingly large fraction of low-ionization [S II] line profiles and several examples of substantial red asymmetries in both [O III] and [S II]. These results underscore the complexity of the circumnuclear material that constitutes the NLR and suggest that the scatter in the NLR width and σ* correlation cannot be substantially reduced with a simple set of empirical relations.

  10. The Cold Dust Content of Broad and Narrow-Line, Optically Luminous, nearby QSO

    NASA Astrophysics Data System (ADS)

    Petric, A.

    2015-09-01

    Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the overwhelming majority of spheroidal galaxies in the local Universe contain massive BHs and that, with some important caveats, the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosities. Much research has been dedicated to understanding the mechanisms responsible for such a fundamental perhaps causal relation. An accurate census of the basic properties of the cold interstellar medium (ISM) in AGN host is pertinent to those investigations because cold molecular gas is the basic fuel for star-formation and black hole growth. We present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample and in a complementary sample of 85 narrow-line QSOs chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with near-infrared and mid-infrared measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess aggregate dust properties. We investigate the relation between star-formation rates (SFRs) estimated from the IR luminosities and SFRs determined from measurements of the 11.3 micron PAH. The differences between the cold dust properties of narrow and broad line AGN will be discussed in the context of models that envision that quasar activity is triggered by gas-rich galaxy mergers.

  11. High-average-power narrow-line-width sum frequency generation 589 nm laser

    NASA Astrophysics Data System (ADS)

    Lu, Yanhua; Fan, Guobin; Ren, Huaijin; Zhang, Lei; Xu, Xiafei; Zhang, Wei; Wan, Min

    2015-10-01

    An 81 W average-power all-solid-state sodium beacon laser at 589 nm with a repetition rate of 250 Hz is introduced, which is based on a novel sum frequency generation idea between two high-energy, different line widths, different beam quality infrared lasers (a 1064 nm laser and a 1319 nm laser). The 1064 nm laser, which features an external modulated CW single frequency seed source and two stages of amplifiers, can provide average-power of 150 W, beam quality M2 of ~1.8 with ultra-narrow line width (< 100 kHz). The 1319 nm laser can deliver average-power of 100 W, beam quality M2 of ~3.0 with a narrow line width of ~0.3 GHz. By sum frequency mixing in a LBO slab crystal (3 mm x 12 mm x 50 mm), pulse energy of 325 mJ is achieved at 589 nm with a conversion efficiency of 32.5 %. Tuning the center wavelength of 1064 nm laser by a PZT PID controller, the target beam's central wavelength is accurately locked to 589.15910 nm with a line width of ~0.3 GHz, which is dominated mainly by the 1319 nm laser. The beam quality is measured to be M2 < 1.3. The pulse duration is measured to be 150 μs in full-width. To the best of our knowledge, this represents the highest average-power for all-solid-state sodium beacon laser ever reported.

  12. Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Hokin, M.S.; McCammon, D.; Morgan, K.M.; Bandler, Simon Richard; Lee, S.J.; Moseley, S.H.; Smith, S.J.

    2013-01-01

    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 electronvolts fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nanometers (3 electronvolts) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 electronvolts spacing, so detectors with energy resolution better than 2 electronvolts are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nanometer, giving a 300 electronvolt event a Full width at half maximum (FWHM) less than 0.1 electronvolts. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime.

  13. Ginga observations of Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Awaki, H.; Koyama, K.

    1993-01-01

    We observed twenty-eight Seyfert 2 galaxies with the Japanese X-ray satellite, Ginga, and found Seyfert 2 galaxies, in general, have the X-ray spectral characteristics of obscured Seyfert 1 nuclei. This results agrees with the predictions from the Unified Seyfert model proposed by Antonucci and Miller. However, among the observed Seyfert 2 galaxies, there are a few galaxies with no evidence of an obscuration, contrary to the general predictions of the unified model. We note that type 2 active galactic nuclei (AGN) will contribute to the Cosmic Diffuse X-ray Background, if the unified Seyfert model can be extended to the far distant AGN such as quasars.

  14. Physical Properties of the Narrow-line Region of Low-mass Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ludwig, Randi R.; Greene, Jenny E.; Barth, Aaron J.; Ho, Luis C.

    2012-09-01

    We present spectroscopic observations of 27 active galactic nuclei (AGNs) with some of the lowest black hole (BH) masses known. We use the high spectral resolution and small aperture of our Keck data, taken with the Echellette Spectrograph and Imager, to isolate the narrow-line regions (NLRs) of these low-mass BHs. We investigate their emission-line properties and compare them with those of AGNs with higher-mass BHs. While we are unable to determine absolute metallicities, some of our objects plausibly represent examples of the low-metallicity AGNs described by Groves et al., based on their [N II]/Hα ratios and their consistency with the Kewley & Ellison mass-metallicity relation. We find tentative evidence for steeper far-UV spectral slopes in lower-mass systems. Overall, NLR emission lines in these low-mass AGNs exhibit trends similar to those seen in AGNs with higher-mass BHs, such as increasing blueshifts and broadening with increasing ionization potential. Additionally, we see evidence of an intermediate-line region whose intensity correlates with L/L Edd, as seen in higher-mass AGNs. We highlight the interesting trend that, at least in these low-mass AGNs, the [O III] equivalent width (EW) is highest in symmetric NLR lines with no blue wing. This trend of increasing [O III] EW with line symmetry could be explained by a high covering factor of lower-ionization gas in the NLR. In general, low-mass AGNs preserve many well-known trends in the structure of the NLR, while exhibiting steeper ionizing continuum slopes and somewhat lower gas-phase metallicities.

  15. All-optical production of a lithium quantum gas using narrow-line laser cooling

    SciTech Connect

    Duarte, P. M.; Hart, R. A.; Hitchcock, J. M.; Corcovilos, T. A.; Yang, T.-L.; Reed, A.; Hulet, R. G.

    2011-12-15

    We have used the narrow 2S{sub 1/2}{yields}3P{sub 3/2} transition in the ultraviolet (uv) to laser cool and magneto-optically trap (MOT) {sup 6}Li atoms. Laser cooling of lithium is usually performed on the 2S{sub 1/2}{yields}2P{sub 3/2} (D2) transition, and temperatures of {approx}300 {mu}K are typically achieved. The linewidth of the uv transition is seven times narrower than the D2 line, resulting in lower laser cooling temperatures. We demonstrate that a MOT operating on the uv transition reaches temperatures as low as 59 {mu}K. Furthermore, we find that the light shift of the uv transition in an optical dipole trap at 1070 nm is small and blueshifted, facilitating efficient loading from the uv MOT. Evaporative cooling of a two spin-state mixture of {sup 6}Li in the optical trap produces a quantum degenerate Fermi gas with 3x10{sup 6} atoms in a total cycle time of only 11 s.

  16. Stress migration risk on electromigration reliability in advanced narrow line copper interconnects

    NASA Astrophysics Data System (ADS)

    Heryanto, A.; Pey, K. L.; Lim, Y. K.; Raghavan, N.; Liu, W.; Wei, J.; Gan, C. L.; Tan, J. B.

    2011-10-01

    The influence of stress migration (SM) on the electromigration (EM) reliability is studied here for very fine line interconnects, fabricated using the 45-nm Cu/low-κ interconnect process flow. As opposed to the current understanding that SM is not a concern for the narrow metal lines because of limited availability of vacancies for voiding, we found that SM does have serious wear-out effects. The EM lifetime distribution was severely degraded by around 38% for the samples that had been subjected to a 1000-h SM-only test, with a drastic reduction in the slope of the EM lognormal fitting distribution, from 0.548 to 0.193. The current density exponent of Black's equation for SM+EM stressed samples is ˜1, suggesting that void had already been nucleated because of the SM-only test. The high intrinsic tensile stress in the line is suspected to be responsible for this early void nucleation. In the second part, we developed a Monte Carlo simulation model to estimate the void nucleation and growth time using the EM-only and SM+EM degradation tests. We found that at low percentile failures overall failure time is mainly growth dominated, whereas at high percentile failures overall failure time is nucleation dominated. Stress migration was found to shorten the nucleation time for all the samples.

  17. Anatomy of the AGN in NGC 5548: the X-ray narrow emission lines

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Kaastra, J.; Mehdipour, M.; Bianchi, S.; NGC 5548 Collaboration

    2014-07-01

    After a very successful multi-satellite campaign on Mrk 509 in 2009, we conducted a similar campaign on the AGN NGC 5548 in 2013. During the latter the source appeared unusually strongly absorbed in the soft X-rays, and signatures of strong outflows were also present in the UV. While a talk giving an overview of the campaign (PI: J. Kaastra) is also proposed at this conference, we will focus here on the data obtained from the XMM-RGS, resulting in a stacked spectrum of 660 ks. Narrow emission lines, including He-like triplets of Oxygen, Nitrogen and Neon, and radiative recombination (RRC) features dominate this spectrum due to the low soft X-ray continuum flux. All emission features are consistent with having constant flux over our campaign. The O VII triplet has been one focus of our analysis, especially due to unexpected differences of ˜300 km s^{-1} among the measured outflow velocities of its individual lines. The RRCs allow us to directly calculate a temperature of the emitting gas of a few eV (˜10^{4}K), favouring photoionised conditions. We have modelled the emission lines and features using the photoionisation code Cloudy, to attempt to construct a self-consistent picture of the physical environment of the AGN.

  18. Fluorescence line-narrowing studies of rare earths in disordered solids

    SciTech Connect

    Hall, D.W.

    1982-08-10

    This dissertation is made up of two experimental studies dealing with apparently diverse topics within the subject of rare earths (RE) in solids. The first study, described in Part II, concerns the vibrations of a disordered host material about an optically active rare-earth ion as manifested by vibrationally-assisted-electronic, or vibronic transitions. Part III of the dissertation describes an investigation of the influence of site anisotropy on the purely electronic, laser transition of Nd/sup 3 +/ in glass. These two studies are bound together by the common experimental technique of laser-induced fluorescence line narrowing (FLN). By exciting fluorescence with monochromatic light of well-characterized polarization, one may select and observe the response of a single subset of the optically active ions and obtain information that is usually masked by the inhomogeneous nature of disordered solids.

  19. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  20. Investigations of glass structure using fluorescence line narrowing and moleuclar dynamics simulations

    SciTech Connect

    Weber, M.J.; Brawer, S.A.

    1982-07-02

    The local structure at individual ion sites in simple and multicomponent glasses is simulated using methods of molecular dynamics. Computer simulations of fluoroberyllate glasses predict a range of ion separations and coordination numbers that increases with increasing complexity of the glass composition. This occurs at both glass forming and glass modifying cation sites. Laser-induced fluorescence line-narrowing techniques provide a unique probe of the local environments of selected subsets of ions and are used to measure site to site variations in the electronic energy levels and transition probabilities of rare earth ions. These and additional results from EXAFS, neutron and x-ray diffraction, and NMR experiments are compared with simulated glass structures.

  1. PHL 1092: A narrow-line quasar emerging from the darkness

    NASA Astrophysics Data System (ADS)

    Gallo, Luigi

    2013-10-01

    The radio quiet, narrow line quasar, PHL1092 exhibits the extreme behaviour associated with 1H0707 and IRAS13224, but at a high redshift (z=0.396) and with high luminosity (~10^45 erg/s). From a short, bright state observation of PHL1092 we discovered a super soft excess, possible relativistically broadened FeL and K emission, high radiative efficiency, and possible high velocity outflow. Follow up observations between 2008-10 caught the quasar in a deep minimum that could be attributed to disruption of the corona. We will monitor PHL1092 with Swift to catch the quasar emerging from its current low-flux state so that we can study the bright state of the AGN with a triggered 130ks XMM observation.

  2. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  3. Development of 5-kHz ultra-line-narrowed F2 laser for dioptric projection system

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nohdomi, Ryoichi; Ariga, Tatsuya; Hotta, Kazuaki; Nakao, Kiyoharu; Kasuya, Koichi

    2003-11-01

    The roadmap of semiconductor fabrication predicts that the semiconductor market will demand 65 nm node devices from 2004/2005. Therefore, an Ultra-Line-Narrowed F2 laser for dioptric projection systems has been developed under the ASET project of "The F2 Laser Lithography Development Project". The target of this project is to achieve a F2 laser spectral bandwidth below 0.2 pm (FWHM) and an average power of 25 W at a repetition rate of 5 kHz. The energy stability (3-sigma) target is less than 10%. Simultaneously, it is also required to establish the technology of evaluating the optical performance. An Oscillator-Amplifier arrangement at 2 kHz was developed as a first step of an Ultra-Line-Narrowed F2 laser system. With this laser system, we achieved the basic study of the synchronization technology for line narrowing operation using two system arrangements: MOPA (Master Oscillator/Power Amplifier) and Injection Locking. Based on this experience we have developed the 5 kHz system. With the 5 kHz Line-Narrowed Injection Locking system, we have achieved a spectral bandwidth of <0.2 pm with an output energy of >5 mJ and a pulse to pulse energy stability of <10%. The feasibility of a 5 kHz Ultra-Line-Narrowed F2 Laser for Dioptric Projection Systems has been demonstrated.

  4. HIDDEN DOUBLE-PEAKED EMITTERS IN SEYFERT 2 GALAXIES

    SciTech Connect

    Tran, Hien D.

    2010-03-10

    We present the detection of extremely broad, double-peaked, highly polarized Halpha emission lines in the nuclei of the well-known Seyfert 2 galaxies NGC 2110 and NGC 5252. These hidden broad Halpha emission lines, visible only in scattered light, are shown to display significant variability in strength and profile on timescales of {approx}<1 yr. That the broad emission line exhibits variability in polarized flux also suggests that the scattering region must be very compact, possibly confined in a small number of electron clouds {approx}<1 lt-yr in size. Our observational constraints place these clouds within {approx}10 pc of the nucleus with temperatures T{sub e} {approx}< 10{sup 6} K and densities n{sub e} {approx} 10{sup 7} cm{sup -3}, consistent with a region just outside the obscuring torus between the broad-line region and narrow-line region. These scattering clouds could arise from the clumpy torus itself. These findings and other properties indicate that NGC 2110 and NGC 5252 are the hidden counterparts to the broad-line double-peaked emission-line active galactic nuclei, whose examples include Arp 102B and 3C 332.

  5. Microvariability in Seyfert galaxies

    USGS Publications Warehouse

    Carini, M.T.; Noble, J.C.; Miller, H.R.

    2003-01-01

    We present the results of a search for microvariability in a sample of eight Seyfert galaxies. Microvariability (i.e., variations occurring on timescales of tens of minutes to hours) has been conclusively demonstrated to exist in the class of active galactic nuclei (AGNs) known as blazars. Its existence in other classes of AGNs is far less certain. We present the results of a study of eight Seyfert 1 galaxies, which were intensively monitored in order to determine whether such variations exist in these objects. Only one object, Ark 120, displayed any evidence of microvariations. The implications of these results with respect to current models of the mechanisms responsible for the observed emission in Seyfert galaxies are discussed. We compare our results with those obtained from other studies of microvariability in different classes of AGNs.

  6. New metallicity calibration for Seyfert 2 galaxies based on the N2O2 index

    NASA Astrophysics Data System (ADS)

    Castro, C. S.; Dors, O. L.; Cardaci, M. V.; Hägele, G. F.

    2017-01-01

    We derive a new relation between the metallicity of Seyfert 2 Active Galactic Nuclei (AGNs) and the intensity of the narrow emission-lines ratio N2O2=log([N II]λ6584/[O II]λ3727). The calibration of this relation was performed determining the metallicity (Z) of a sample of 58 AGNs through a diagram containing the observational data and the results of a grid of photoionization models obtained with the CLOUDY code. We find the new Z/Z⊙-N2O2 relation using the obtained metallicity values and the corresponding observational emission line intensities for each object of the sample. Estimations derived through the use of this new calibration indicate that narrow line regions of Seyfert 2 galaxies exhibit a large range of metallicities (0.3 ≲ Z/Z_{⊙} ≲ 2.0), with a median value Z ≈ Z⊙. Regarding the possible existence of correlations between the luminosity L(Hβ), the electron density, and the color excess E(B-V) with the metallicity in this kind of objects, we do not find correlations between them.

  7. New metallicity calibration for Seyfert 2 galaxies based on the N2O2 index

    NASA Astrophysics Data System (ADS)

    Castro, C. S.; Dors, O. L.; Cardaci, M. V.; Hägele, G. F.

    2017-05-01

    We derive a new relation between the metallicity of Seyfert 2 active galactic nuclei (AGNs) and the intensity of the narrow emission-lines ratio N2O2 = log([N ii] λ6584/[O ii] λ3727). The calibration of this relation was performed by determining the metallicity (Z) of a sample of 58 AGNs through a diagram containing the observational data and the results of a grid of photoionization models obtained with the cloudy code. We find the new Z/Z⊙-N2O2 relation using the obtained metallicity values and the corresponding observational emission-line intensities for each object of the sample. Estimations derived through the use of this new calibration indicate that the narrow-line regions of Seyfert 2 galaxies exhibit a large range of metallicities (0.3 ≲ Z/Z⊙ ≲ 2.0), with a median value Z ≈ Z⊙. Regarding the possible existence of correlations between the luminosity L(Hβ), the electron density and the colour excess E(B - V) with the metallicity in this kind of objects, we do not find correlations between them.

  8. Multi-Sightline Observation of Narrow Absorption Lines in Lensed Quasar SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Saez, Cristian; Charlton, Jane C.; Eracleous, Michael; Chartas, George; Bauer, Franz E.; Inada, Naohisa; Uchiyama, Hisakazu

    2016-07-01

    We exploit the widely separated images of the lensed quasar SDSS J1029+2623 ({z}{em} = 2.197, θ = 22.″5) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February and 2014 April, separated by four years, and one with the Very Large Telescope, separated from the second Subaru observation by ˜2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of {v}{ej} ˜ 59,000, 43,000, and 29,000 km s-1, which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of {v}{ej} > 1000 km s-1, we also detect broader proximity absorption lines (PALs) at {z}{abs} ˜ {z}{em}. The PALs are likely to arise in outflowing gas at a distance of r ≤ 620 pc from the central black hole with an electron density of n e ≥8.7 × 103 cm-3. These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow.

  9. Continuously current-tunable, narrow line-width miniaturized external cavity diode laser at 633 nm

    NASA Astrophysics Data System (ADS)

    Sumpf, B.; Bawamia, A.; Blume, G.; Eppich, B.; Ginolas, A.; Spießberger, S.; Thomas, M.; Erbert, G.

    2012-03-01

    Red emitting diode lasers with a narrow spectral line-width and continuous tuning are requested as light sources for interferometric measurements with nm-accuracy. Tuning ranges of about 25 GHz together with a spectral line-width smaller than 10 MHz are necessary. A current-tunable miniaturized 633 nm external cavity diode laser (ECDL) will be presented. The resonator is formed without moving parts between the front facet of a semiconductor gain medium and a reflection Bragg grating (RBG). The RBG has a high reflectivity larger than 95% in a small spectral bandwidth, which is approximately equal to the targeted tuning range. Within this bandwidth, the ECDL is tunable by changing the injection current of the gain medium. The length of the resonator is selected so short, that the distance between the laser modes is larger than the tuning range. Herewith, single mode operation should be guaranteed. The device is mounted on an aluminum nitride bench with a footprint of 5 mm x 10 mm. ECDLs using gain media with different front facet reflectivities of 30% and 70% will be compared. Moreover, results for a device encapsulated in a silicon based gel will be presented. For a device with 30% front facet reflectivity in air, a maximal output power of 10 mW was achieved. The tuning range without any mode-hops was 34 pm, i.e. 25 GHz. The line-width was smaller than 10 MHz. The emitted beam was approximately diffraction limited with a M2 ~ 1.1 in both directions.

  10. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    SciTech Connect

    Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen; Lewellen, IV, John W.; Marksteiner, Quinn R.

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  11. Narrow-line waveguide terahertz time-domain spectroscopy of aspirin and aspirin precursors.

    PubMed

    Laman, N; Harsha, S Sree; Grischkowsky, D

    2008-03-01

    Low frequency vibrational modes of pharmaceutical molecules are dependent on the molecule as a whole and can be used for identification purposes. However, conventional Fourier transform far-infrared spectroscopy (FT-IR) and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper spectral features. Waveguide THz-TDS consists of forming an ordered polycrystalline film on a metal plate and incorporating that plate in a parallel-plate waveguide, where the film is probed by THz radiation. The planar order of the film on the metal surface strongly reduces the inhomogeneous broadening, while cooling the waveguide to 77 K reduces the homogeneous broadening. This combination results in sharper absorption lines associated with the vibrational modes of the molecule. Here, this technique has been demonstrated with aspirin and its precursors, benzoic acid and salicylic acid, as well as the salicylic acid isomers 3- and 4-hydroxybenzoic acid. Linewidths as narrow as 20 GHz have been observed, rivaling single crystal measurements.

  12. An ytterbium quantum gas microscope with narrow-line laser cooling

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ryuta; Kobayashi, Jun; Kuno, Takuma; Kato, Kohei; Takahashi, Yoshiro

    2016-02-01

    We demonstrate site-resolved imaging of individual bosonic {}174{Yb} atoms in a Hubbard-regime two-dimensional optical lattice with a short lattice constant of 266 nm. To suppress the heating by probe light with the 1S0-1P1 transition of the wavelength λ = 399 nm for high-resolution imaging and preserve atoms at the same lattice sites during the fluorescence imaging, we simultaneously cool atoms by additionally applying narrow-line optical molasses with the 1S0-3P1 transition of the wavelength λ = 556 nm. We achieve a low temperature of T=7.4(13) μ {{K}}, corresponding to a mean oscillation quantum number along the horizontal axes of 0.22(4) during the imaging process. We detect, on average, 200 fluorescence photons from a single atom within a 400 ms exposure time, and estimate a detection fidelity of 87(2)%. The realization of a quantum gas microscope with enough fidelity for Yb atoms in a Hubbard-regime optical lattice opens up the possibilities for studying various kinds of quantum many-body systems such as Bose and Fermi gases, and their mixtures, and also long-range-interacting systems such as Rydberg states.

  13. Fluorescence line narrowing spectroscopy of Eu{sup 3+} in zinc-thallium-tellurite glass

    SciTech Connect

    Tuyen, V.P.; Hayakawa, T.; Nogami, M.; Duclere, J.R-.; Thomas, P.

    2010-11-15

    The environment of Eu{sup 3+} in zinc-thallium-tellurite glass of the molar composition 60TeO{sub 2}-30TlO{sub 0.5}-9.9ZnO-0.1Eu{sub 2}O{sub 3} was investigated by laser-induced fluorescence line narrowing (FLN) techniques using Eu{sup 3+} as a local site probe. From the site selective luminescence spectra of Eu{sup 3+} at 7 K, the energies of the Stark components of the {sup 7}F{sub 1} and {sup 7}F{sub 2} states were recorded and then the crystal field parameters B{sub nm} were calculated assuming a C{sub 2v} site symmetry. The ratios B{sub 22}/B{sub 20} and B{sub 44}/B{sub 40} for each excitation energy within {sup 7}F{sub 0}-{sup 5}D{sub 0} transition were obtained and compared with the values calculated for Eu{sup 3+} in other types of glasses. -- Graphical abstract: Crystal fields parameters B{sub nm} of Eu{sup 3+} ions (strength, distribution) in novel TeO{sub 2}-TlO{sub 0.5}-ZnO glass system. Display Omitted

  14. High-resolution spectra of distant compact narrow emission line galaxies: Progrenitors of spheroidal galaxies

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Guzman, Rafael; Faber, S. M.; Illingworth, Garth D.; Bershady, Matthew A.; Kron, Richard G.; Takamiya, Marianne

    1995-01-01

    Emission-line velocity widths have been determined for 17 faint (B approximately 20-23) very blue, compact galaxies whose redshifts range from z = 0.095 to 0.66. The spectra have a resolution of 8 Km/s and were taken with the HIRES echelle spectrograph of the Keck 10 m telescope. The galaxies are luminous with all but two within 1 mag of M(sub B) approximately -21. Yet they exhibit narrow velocity widths between sigma = 28-157 km/s, more consistent with typical values of extreme star-forming galaxies than with those of nearby spiral galaxies of similar luminosity. In particular, objects with sigma is less than or equal to 65 km/s follow the same correlations between sigma and both blue and H beta luminosities as those of nearby H II galaxies. These results strengthen the identification of H II glaxies as thier local counterparts. The blue colors and strong emission lines suggest these compact galaxies are undergoing a recent, strong burst of star formation. Like those which characterize some H II galaxies, this burst could be a nuclear star-forming event within a much larger, older stellar population. If the burst is instead a major episode in the total star-forming history, these distant galaxies could fade enough to match the low luminosities and surface brightnesses typical of nearby spheroidals like NGC 185 or NGC 205. Together with evidence for recent star formation, exponential light profiles, and subsolar metallicities, the postfading correlations between luminosity and velocity width and bewtween luminosity and surface brightness suggest that among the low-sigma galaxies, we may be witnessing, in situ, the progenitors of today's spheroidal galaxies.

  15. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  16. THE INCOMPATIBILITY OF RAPID ROTATION WITH NARROW PHOTOSPHERIC X-RAY LINES IN EXO 0748-676

    SciTech Connect

    Lin Jinrong; Chakrabarty, Deepto; Oezel, Feryal; Psaltis, Dimitrios E-mail: deepto@mit.ed E-mail: dpsaltis@email.arizona.ed

    2010-11-10

    X-ray observations of EXO 0748-676 during thermonuclear bursts revealed a set of narrow ({Delta}{lambda}/{lambda} = 0.018) absorption lines that potentially originate from the stellar photosphere. The identification of these lines with particular atomic transitions led to the measurement of the surface gravitational redshift of the neutron star and to constraints on its mass and radius. However, the recent detection of 552 Hz oscillations at 15% rms amplitude revealed the spin frequency of the neutron star and brought into question the consistency of such a rapid spin with the narrow width of the absorption lines. Here, we calculate the amplitudes of burst oscillations and the width of absorption lines emerging from the surface of a rapidly rotating neutron star for a wide range of model parameters. We show that no combination of neutron star and geometric parameters can simultaneously reproduce the narrowness of the absorption lines, the high amplitude of the oscillations, and the observed flux at the time the oscillations were detected. We, therefore, conclude that the observed absorption lines are unlikely to originate from the surface of this neutron star.

  17. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  18. IRAS observations of Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Miley, G. K.; Neugebauer, G.; Soifer, B. T.

    1985-01-01

    Infrared Astronomy Satellite measurements at 25, 60 and 100 microns were used to analyze the infrared properties of Seyfert galaxies from the Markarian and NGC Catalogs. One hundred and sixteen of 186 Seyfert galaxies were detected. About 50% of all Seyfert galaxies in the sample have 60 micron luminosities in excess of 10 to the 10th power solar luminosity, and the mean 60 micron luminosity increase with the optical B absolute magnitude. The luminosity functions of the Seyfert 1 and Seyfert 2 galaxies appear quite similar. It is possible, however, to statistically separate the two types of galaxies in color-color plots. The 100- to 60- micron energy distributions flatten systematically with increasing 60- micron luminosity. The infrared measurements provide a measure of the bolometric luminosity of the Seyfert galaxies, but do not discriminate between the physical processes involved.

  19. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    NASA Technical Reports Server (NTRS)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  20. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy Mrk 573: In Situ Acceleration of Ionized and Molecular Gas off Fueling Flows

    NASA Astrophysics Data System (ADS)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; Revalski, M.; Pope, C. L.

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ˜700 × 2100 pc2 circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  1. Outflows from Seyfert galaxies: a challenge to current models

    NASA Astrophysics Data System (ADS)

    Proga, Daniel

    2004-07-01

    We propose to continue our study of outflows from active galactic nuclei {AGN}. This phenomenon has been extensively observed with HST as well as modeled. The overall result from previous studies, including our own ongoing HST program, is that broad absorption lines {BAL} in QSOs can be well understood and reproduced within the framework of radiation-driven disk wind models. It is also very likely that the same model is capable of explaining broad emission lines. However, this model is less successful in explaining narrow absorption lines {NAL} observed in Seyfert galaxies. Therefore, we propose to extend the model by including magnetic field effects. Hydromagnetic propulsion is a likely mechanism responsible for producing low velocity outflows from larger radii and thus explaining NAL and their lack of short-term variability. We will continue to use the multi-dimensional, time-dependent, magnetohydrodynamical code ZEUS to compute the wind structure. We will also compute synthetic line profiles and continuum spectra based on the theoretical model and compare the results with HST/STIS and other observations. In general, we propose to follow the procedure which we successfully applied to winds in cataclysmic variables and BAL QSOs.

  2. Laser-induced line-narrowing effects in coupled Doppler-broadened transitions. II - Standing-wave features.

    NASA Technical Reports Server (NTRS)

    Feldman, B. J.; Feld, M. S.

    1972-01-01

    Previous theoretical results on the influence of a laser on the line shape of a coupled transition (laser-induced line narrowing) have been restricted to the case where the laser is detuned from the center of its atomic gain profile or is in the form of a traveling wave. The present paper extends these results to the case where the laser is an intense standing-wave field tunable to the center of its atomic gain profile (conditions for Lamb dip). A theoretical solution of the problem is developed, and a detailed discussion of line shapes and physical processes involved is included.

  3. Note: Efficient diode laser line narrowing using dual, feed-forward + feed-back laser frequency control

    NASA Astrophysics Data System (ADS)

    Lintz, M.; Phung, D. H.; Coulon, J.-P.; Faure, B.; Lévèque, T.

    2017-02-01

    We have achieved distributed feedback laser diode line narrowing by simultaneously acting on the diode current via a feed-back loop and on an external electrooptic phase modulator in feed-forward actuator. This configuration turns out to be very efficient in reaching large bandwidth in the phase correction: up to 15 MHz with commercial laser control units. About 98% of the laser power undergoes narrowing. The full width at half maximum of the narrowed optical spectrum is of less than 4 kHz. This configuration appears to be very convenient as the delay in the feed-forward control electronics is easily compensated for by a 20 m optical fiber roll.

  4. Constraining the AGN contribution in a multiwavelength study of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Melendez Hernandez, Marcio Baal

    I have studied the relationship between high- and low-ionization mid-infrared emission lines with the aim of constraining the active galactic nuclei (AGN) and star formation contributions for a sample of 100 Seyfert galaxies. I investigated the correlation between the [O IV] l25.89 μm emission line luminosities, obtained from Spitzer spectra, with the X-ray continua in the 14- 195 keV band, obtained with the SWIFT /Burst Alert Telescope (BAT). I find the [O IV] to be an accurate and truly isotropic indicator of the power of the AGN. Consequently, I have used the [O IV] to deconvolve the contributions of the AGN and star formation in the low-ionization [Ne II] l12.81 μm emission line, and mid- and far-infrared continuum luminosities of Seyfert 1 and Seyfert 2 galaxies. I investigated the ionization state of the emission-line gas in Seyfert galaxies using the [O IV]/[Ne II] emission ratio. I find that Seyfert 2 galaxies have, on average, lower ratios than those of Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGN, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. Although I cannot dismiss the former, I find that Seyfert 1 and Seyfert 2 galaxies have similar luminosity distributions. Using [Ne II] as a tracer of star formation I find a higher average star formation rate for Seyfert 2 galaxies, 7.7±0.3M[Special characters omitted.] yr-1, than for Seyfert 1 galaxies, 5.0±0.4M[Special characters omitted.] yr -1 . For comparison, I examined the mid- and far-infrared continua and find that Seyfert 1 and Seyfert 2 galaxies are dominated by hot dust and cool dust components, respectively. Overall, these results test the unified model of AGN, and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.

  5. A narrow-line Erbium-doped fiber laser and its application for testing fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Guzmán-Chávez, A. D.; Barmenkov, Yu. O.; Kir'yanov, A. V.; Mendoza-Santoyo, F.

    2009-09-01

    We inspect the spectral features of a diode-pumped Erbium-doped fiber laser (EDFL) with a Fabry-Perot cavity composed of a wavelength-selective coupler in the form of fiber Bragg grating (FBG) and wavelength-insensitive Faraday rotator mirror (FRM). High accuracy for the spectral measurements is provided with the use of an optical heterodyne scheme where the EDFL output is mixed with radiation from a narrow-line semiconductor laser, allowing the detection of the EDFL spectra with a sub-pm resolution. The heterodyne scheme permits precise measurements of the EDFL line-width as a function of the cavity length and pump power. It is worth noticing a narrow-line (a few pm) operation of the EDFL with a short length (<3 m) cavity and low (<5) excess of pump power over the laser threshold. The spectral response of the EDFL to a slow sinusoidal modulation of a physical length of the FBG coupler is analyzed and it is shown that as high as ˜1-nm modulation of the EDFL optical spectrum is attainable at maximal modulation amplitudes. The narrow-line EDFL with a modulated generation wavelength is hereby demonstrated to be a tool for high-resolution measurements of reflection spectra of FBGs, which is to the best of our knowledge a novel application of the EDFL.

  6. The host galaxies and narrow-line regions of four double-peaked [OIII] AGNs

    SciTech Connect

    Villforth, Carolin; Hamann, Fred

    2015-03-01

    Major gas-rich mergers of galaxies are expected to play an important role in triggering and fueling luminous active galactic nuclei (AGNs). The mechanism of AGN fueling during mergers, however, remains poorly understood. We present deep multi-band (u/r/z) imaging and long-slit spectroscopy of four double-peaked [OIII] emitting AGNs. This class of object is likely associated with either kiloparsec-separated binary AGNs or final stage major mergers, although AGNs with complex narrow-line regions (NLRs) are known contaminants. Such objects are of interest since they represent the onset of AGN activity during the merger process. Three of the four double-peaked [OIII] emitters studied have been confirmed as major mergers using near-infrared imaging and one is a confirmed X-ray binary AGN. All AGNs are luminous, radio-quiet to radio-intermediate, and have redshifts of 0.1

  7. Monitoring MRK 509: The Origin of the Reprocessor and Broad Band X-ray Spectrum of Narrow Line Seyfert 1 AKN 564

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Leighly, Karen M.

    1998-01-01

    The ten monitoring observations of Mrk 509 were made successfully between October 20 and November 26 last year. These observations were simultaneously with RXTE observations. A preliminary analysis of the RXTE observations has been done, and the light curve is shown in figure 1. Our aim in this experiment is to determine the location of the emission region of the reflection component by reverberation mapping. This component could be emitted from the accretion disk, within 100 Scwartzschild radii (R(sub s)) from the source. Note that the monitoring interval of 2.5 days corresponds to 100 R(sub s) for a 2 x 10(exp 8) solar mass black hole, which may be appropriate for this luminous object. In that case, we would expect the reflected component to vary along the direct flux, and there should be no spectral variability between observations. Alternatively, the reflected emission could come from the molecular torus, several parsecs from the nucleus. In that case, the reflection component flux should not vary. The light curve in figure 1 shows that during the monitoring period, the target varied in an ideal way, since significant variability was observed between observations and yet the most rapid variability is apparently sampled. The analysis of this data is not yet completed. The measurement of the reflection component in the combined ASCa and RXTE spectra depends critically on the RXTE background subtraction and calibration, but these have not yet progressed to the point where the analysis can be done.

  8. Polarimetric view of the changing type Seyfert galaxy ESO 362-G018.

    NASA Astrophysics Data System (ADS)

    Agís-González, B.; Bagnulo, S.; Hutsemékers, D.; Montesinos, B.; Miniutti, G.; Sanfrutos, M.

    2017-03-01

    ESO362-G018 is an active galactic nucleus (AGN) which is classified as a Seyfert 1.5 galaxy e.g. by Bennert et al. (2006), (black data set on figure 1). However, Parisi et. al (2009) found an optical spectrum of this source which was taken during the 6dF Galaxy Survey, but it does not show the broad Balmer lines required to classify it as Seyfert 1 galaxy (red data set on figure 1). On the other hand, the results obtained by Agis-Gonzalez et al. (2014❩ in a X-ray analysis of this same source reveal that the inclination of ESO362- G018 i = 53° ± 5° is consistent with the picture of an AGN looked through the upper layers of a clumpy, dusty torus. Thus, according to the Unification Models of AGN and the clumpy nature of the torus, our interpretation of the different spectra is the following one. On 30th of January of 2003 (when the spectrum belonging to the 6dF survey was obtained), our line of sight intercepted a (or several aligned) torus clump(s) with much greater column density than its environment. Accordingly, the nucleus and the broad line region (❨BLR)❩ would be obscured. This allowed only the narrow emission lines to emerge from the narrow line region (NRL). Otherwise, on 18th of September of 2004 (when the spectrum by Bennert et al. 2006 was obtained) there is no clump to intercept and the BLR is not obscured so that the broad Balmer emission lines could be detected.

  9. Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping

    DOE PAGES

    Liu, Bo; Tong, Xin; Jiang, Chenyang; ...

    2015-06-05

    In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.

  10. PROBING SPECTROSCOPIC VARIABILITY OF GALAXIES AND NARROW-LINE ACTIVE GALACTIC NUCLEI IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Yip, C. W.; Szalay, A. S.; Taghizadeh-Popp, M.; Budavari, T.; Wyse, R. F. G.; Connolly, A. J.; Krughoff, S.; Ivezic, Z.; Vanden Berk, D. E.; Scranton, R.; Dobos, L.; Csabai, I.; Tremonti, C.

    2009-06-15

    Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGNs to be composed mainly of stellar light and nonvariable on the timescales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multiepoch data in the Sloan Digital Sky Survey Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of {approx}700 days) covering a wavelength range of 3900-8900 A. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of 2. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average-the spectroscopic variability of the continuum is 0.07 {+-} 0.26 mag in the g band and, for the emission-line ratios log{sub 10}([N II]/H{alpha}) and log{sub 10}([O III]/H{beta}), the variability is 0.02 {+-} 0.03 dex and 0.06 {+-} 0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of the varying spectral component, presumably related to AGN activities, and that of the host galaxy to be {approx}30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars, and quasars.

  11. High-brightness narrow-line laser diode source with volume Bragg-grating feedback

    NASA Astrophysics Data System (ADS)

    Venus, George B.; Sevian, Armen; Smirnov, Vadim I.; Glebov, Leonid B.

    2005-03-01

    Results of a long-term research in spectral narrowing and transverse mode selection in semiconductor lasers by means of volume Bragg gratings recorded in a photo-thermo-refractive (PTR) glass are described. PTR glass is a multicomponent silicate optical glass which changes its refractive index after UV exposure followed by thermal development. This feature enables recording of volume holograms with efficiency exceeding 97% in visible and near IR spectral regions which tolerate high temperatures up to 400°C, high power laser radiation. Transmitting and reflecting volume Bragg gratings recorded in such manner have spectral and angular selectivity down to 0.01 nm and 0.1 mrad, respectively. These spectral and angular selectors were used as transmitting and reflecting elements of external resonators for high-power semiconductor laser diodes (LDs). Transmitting Bragg gratings provide tunability of LDs in the range up to 60 nm, spectral narrowing down to 200 pm, stabilization of wavelength within 500 pm. Reflecting Bragg gratings allow spectral narrowing down to 20 pm, stabilization of wavelength below 100 pm at temperature variations up to 75 K. A single transverse mode emission for wide stripe LDs is observed at pumping currents exceeding 10 thresholds. Narrowing and stabilization of emission spectra of LD bars is demonstrated. It is important that all these features are achieved by passive elements with efficiency exceeding 97% and unlimited lifetime while actual brightness increase exceeded two orders of magnitude.

  12. Time-dependent effects in the radially streaming particle model. [quasars and Seyfert galaxy emission

    NASA Technical Reports Server (NTRS)

    Hubbard, R.

    1975-01-01

    The radially streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results seem to correlate with reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  13. The emission-line spectrum of KUG 1031+398 and the intermediate line region

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Véron, P.; Véron-Cetty, M.-P.

    1999-01-01

    We present results based on the analysis of optical spectra of KUG 1031+398, a Narrow Line Seyfert 1 (NLS1) galaxy for which Mason et al. (1996) reported evidence for a line-emitting region ``intermediate'' (both in terms of velocity and density) between the conventional broad and narrow line regions (BLR and NLR, respectively). From our observations and modelling of the spectra, we get a consistent decomposition of the line profiles into four components: an extended H Ii region with unresolved lines, two distinct Seyfert-type clouds identified with the NLR, and a relatively narrow ``broad line'' component emitting only Balmer lines but no forbidden lines. Therefore, and although we find this object to be exceptional in having line-emission from the BLR with almost the same width as the narrow lines, our interpretation of the data does not support the existence of an ``intermediate'' line region (ILR). Based on observations collected at the Observatoire de Haute-Provence (CNRS), France.

  14. DOUBLE-PEAKED NARROW EMISSION-LINE GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. I. SAMPLE AND BASIC PROPERTIES

    SciTech Connect

    Ge Junqiang; Hu Chen; Wang Jianmin; Zhang Shu; Bai Jinming

    2012-08-01

    Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we find that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.

  15. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice.

    PubMed

    Beardsley, R P; Akimov, A V; Henini, M; Kent, A J

    2010-02-26

    The bias voltage applied to a weakly coupled n-doped GaAs/AlAs superlattice increases the amplitude of the coherent hypersound oscillations generated by a femtosecond optical pulse. This bias-induced amplitude increase and experimentally observed spectral narrowing of the superlattice phonon mode with a frequency 441 GHz provides the evidence for hypersound amplification by stimulated emission of phonons in a system where the inversion of the electron populations for phonon-assisted transitions exists.

  16. Microscopic nature of inhomogeneous line broadening: Analysis of the excitation-line-narrowing spectra of Cf4+ in CeF4

    NASA Astrophysics Data System (ADS)

    Liu, G. K.; Huang, Jin; Beitz, James V.

    1993-11-01

    Optical transitions between 5f states of tetravalent californium ion doped (1 metal-atom %) into CeF4 exhibit unusually large inhomogeneous broadening. The nature of the inhomogeneous broadening in this system has been studied by using fluorescence line narrowing and excitation line narrowing (ELN). It is shown that the energy distributions of different electronic states of Cf4+ in this system are correlated. In the ELN experiments, reduced excitation linewidth was obtained when selectively monitoring fluorescence emission. A linear relation was observed between the excitation energies of crystal-field states of the G54' manifold and the fluorescence wavelength monitored across the inhomogeneous profile of a G56'-F76' transition. Analysis of these results by means of a microscopic theory proposed by Laird and Skinner [J. Chem. Phys. 90, 3880 (1989)] has provided insights into the structural properties of this disordered system.

  17. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    SciTech Connect

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  18. Black Holes Masses in Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Macchetto, F. D.

    2004-01-01

    There is increasing evidence for the existence of supermassive black holes at the centers of all galaxies, and much work is being devoted to understand the process that lead to their formation, the duty cycle for the active phase of these black holes and the relevant fueling mechanisms. Seyfert galaxies determined by HST high spatial resolution observations of the kinematics of the central regions. The study of the gas kinematics provides a unique tool to probe the gravitational potential of the nuclear regions of Seyfert galaxies down to a limit radius of a few parsecs. This is particularly important to detect and measure the mass associated with any central massive black hole. We have obtained high spatial resolution spectra of a number of Seyfert galaxies, with the STIS G430M and G750M gratings, and we have been able to separate the emission line components associated with different velocity systems. We have derived two-dimensional velocity fields and determined the mass of the central black hole with good precision for each of the galaxies.

  19. Black Holes Masses in Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Macchetto, F. D.

    2004-01-01

    There is increasing evidence for the existence of supermassive black holes at the centers of all galaxies, and much work is being devoted to understand the process that lead to their formation, the duty cycle for the active phase of these black holes and the relevant fueling mechanisms. Seyfert galaxies determined by HST high spatial resolution observations of the kinematics of the central regions. The study of the gas kinematics provides a unique tool to probe the gravitational potential of the nuclear regions of Seyfert galaxies down to a limit radius of a few parsecs. This is particularly important to detect and measure the mass associated with any central massive black hole. We have obtained high spatial resolution spectra of a number of Seyfert galaxies, with the STIS G430M and G750M gratings, and we have been able to separate the emission line components associated with different velocity systems. We have derived two-dimensional velocity fields and determined the mass of the central black hole with good precision for each of the galaxies.

  20. Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.

    2008-01-01

    We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.

  1. Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.

    2008-01-01

    We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.

  2. Spectral line narrowing in PPLN OPO devices for 1-μm wavelength doubling

    NASA Astrophysics Data System (ADS)

    Perrett, Brian J.; Terry, Jonathan A. C.; Mason, Paul D.; Orchard, David A.

    2004-12-01

    One route to generating mid-infrared (mid-IR) radiation is through a two-stage non-linear conversion process from the near-IR, exploiting powerful neodymium lasers operating at wavelengths close to 1 μm. In the first stage of this process non-linear conversion within a degenerate optical parametric oscillator (OPO) is used to double the wavelength of the 1 μm laser. The resultant 2 μm radiation is then used to pump a second OPO, based on a material such as ZGP, for conversion into the 3 to 5 μm mid-IR waveband. Periodically poled lithium niobate (PPLN) is a useful material for conversion from 1 to 2 μm due to its high non-linear coefficient (deff ~ 16 pm/V) and the long crystal lengths available (up to 50 mm). Slope efficiencies in excess of 40% have readily been achieved using a simple plane-plane resonator when pumped at 10 kHz with 3.5 mJ pulses from a 1.047 μm Nd:YLF laser. However, the OPO output was spectrally broad at degeneracy with a measured full-width-half-maximum (FWHM) linewidth of approximately 65 nm. This output linewidth is significantly broader than the spectral acceptance bandwidth of ZGP for conversion into the mid-IR. In this paper techniques for spectral narrowing the output from a degenerate PPLN OPO are investigated using two passive elements, a diffraction grating and an air spaced etalon. Slope efficiencies approaching 20% have been obtained using the grating in a dog-leg cavity configuration producing spectrally narrow 2 μm output with linewidths as low as 2 nm. A grating-narrowed degenerate PPLN OPO has been successfully used to pump a ZGP OPO.

  3. Narrow-line diode laser packaging and integration in the NIR and MIR spectral range

    NASA Astrophysics Data System (ADS)

    Jimenez, Alvaro; Milde, Tobias; Staacke, Niklas; Assmann, Christian; O'Gorman, James; Sacher, Joachim R.

    2017-02-01

    Narrow linewidth tunable diode lasers are an important tool for spectroscopic instrumentation. Conventional external cavity diode lasers are designed as laboratory instrument and do not allow hand-held operation for portable instruments. A new miniaturized type of tunable external cavity tunable diode laser will be presented. The presentation will focus on requirements on the assembly technology of micro-optic components as well as on the physical properties of such devices. Examples for the realization of this new technology will be given in the NIR for Alkaline Spectroscopy as well as in the MIR at 1908nm.

  4. Tracing quasar narrow-line regions across redshift: a library of high-S/N optical spectra

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Richards, Gordon

    2015-04-01

    In a single optical spectrum, the quasar narrow-line region (NLR) reveals low-density, photoionized gas in the host galaxy interstellar medium (ISM), while the immediate vicinity of the central engine generates the accretion disc continuum and broad emission lines. To isolate these two components, we construct a library of high-S/N optical composite spectra created from the Sloan Digital Sky Survey Data Release 7. We divide the sample into bins of continuum luminosity and Hβ full width at half-maximum that are used to construct median composites at different redshift steps up to 0.75. We measure the luminosities of the narrow-emission lines [Ne V] λ3427, [Ne III] λ3870, [O III] λ5007, and [O II] λ3728 with ionization potentials (IPs) of 97, 40, 35, and 13.6 eV, respectively. The high IP lines' luminosities show no evidence of increase with redshift consistent with no evolution in the AGN spectral energy distribution or the host galaxy ISM illuminated by the continuum. In contrast, we find that the [O II] line becomes stronger at higher redshifts, and we interpret this as a consequence of enhanced star formation contributing to the [O II] emission in host galaxies at higher redshifts. The SFRs estimated from the [O II] luminosities show a flatter increase with z than non-AGN galaxies given our assumed AGN contribution to the [O II] luminosity. Finally, we confirm an inverse correlation between the strength of the Fe II λ4570 complex and both the [O III] equivalent width (though not the luminosity) and the width of the Hβ line as known from the eigenvector 1 correlations.

  5. Type 2 Active Galactic Nuclei with Double-Peaked [O III] Lines: Narrow-Line Region Kinematics or Merging Supermassive Black Hole Pairs?

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shen, Yue; Strauss, Michael A.; Greene, Jenny E.

    2010-01-01

    We present a sample of 167 type 2 active galactic nuclei (AGNs) with double-peaked [O III] λλ4959,5007 narrow emission lines, selected from the Seventh Data Release of the Sloan Digital Sky Survey. The double-peaked profiles can be well modeled by two velocity components, blueshifted and redshifted from the systemic velocity. Half of these objects have a more prominent redshifted component. In cases where the Hβ emission line is strong, it also shows two velocity components whose line-of-sight (LOS) velocity offsets are consistent with those of [O III]. The relative LOS velocity offset between the two components is typically a few hundred km s-1, larger by a factor of ~1.5 than the line full width at half maximum of each component. The offset correlates with the host stellar velocity dispersion σ*. The host galaxies of this sample show systematically larger σ*, stellar masses, and concentrations, and older luminosity-weighted mean stellar ages than a regular type 2 AGN sample matched in redshift, [O III] λ5007 equivalent width, and luminosity; they show no significant difference in radio properties. These double-peaked features could be due to narrow-line region kinematics, or binary black holes. The statistical properties do not show strong preference for or against either scenario, and spatially resolved optical imaging, spectroscopy, radio or X-ray follow-up are needed to draw firm conclusions.

  6. First Detection of the [O III] 88 μm Line at High Redshifts: Characterizing the Starburst and Narrow-line Regions in Extreme Luminosity Systems

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-05-01

    We have made the first detections of the 88 μm [O III] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z = 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities ~1011 L sun. For APM 08279, the [O III] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T eff > 36,000 K, similar to the starburst found in M82. The model implies ~35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 88 μm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cm-3. For SMM J02399, the [O III] line likely arises from H II regions formed by hot (T eff > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O III] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.

  7. A luminescence line-narrowing spectroscopic study of the uranium(VI) interaction with cementitious materials and titanium dioxide.

    PubMed

    Tits, Jan; Walther, Clemens; Stumpf, Thorsten; Macé, Nathalie; Wieland, Erich

    2015-01-21

    Non-selective luminescence spectroscopy and luminescence line-narrowing spectroscopy were used to study the retention of UO2(2+) on titanium dioxide (TiO2), synthetic calcium silicate hydrate (C-S-H) phases and hardened cement paste (HCP). Non-selective luminescence spectra showed strong inhomogeneous line broadening resulting from a strongly disordered UO2(2+) bonding environment. This problem was largely overcome by using luminescence line-narrowing spectroscopy. This technique allowed unambiguous identification of three different types of UO2(2+) sorbed species on C-S-H phases and HCP. Comparison with spectra of UO2(2+) sorbed onto TiO2 further allowed these species to be assigned to a surface complex, an incorporated species and an uranate-like surface precipitate. This information provides the basis for mechanistic models describing the UO2(2+) sorption onto C-S-H phases and HCP and the assessment of the mobility of this radionuclide in a deep geological repository for low and intermediate level radioactive waste (L/ILW) as this kind of waste is often solidified with cement prior to storage.

  8. Fluorescence line narrowing spectrometry of nucleoside-polycyclic aromatic hydrocarbon adducts on thin-layer chromatographic plates

    SciTech Connect

    Cooper, R.S.; Jankowiak, R.; Hayes, J.M.; Pei-qi, L.; Small, G.J.

    1988-12-15

    Fluorescence line narrowing spectrometry (FLNS) is applied to a polycyclic aromatic hydrocarbon-nucleoside adduct sorbed on a thin-layer chromatography (TLC) plate. A calibration curve over more than 5 decades of concentration is presented and yields a detection limit of /approximately/ 10 fmol. The effects of nonphotochemical hole burning (NPHB) are investigated and discussed. Results indicate that FLN spectrometry can be interfaced with the /sup 32/P-postlabeling procedure to provide for high sensitivity and selectivity analysis of TLC spots associated with fluorescing nucleotide adducts.

  9. Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Lobach, Ivan A.; Kablukov, Sergey I.; Podivilov, Evgeniy V.; Babin, Sergey A.

    2011-08-01

    The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1 pm) Yb-doped fiber laser has been demonstrated experimentally. It is found that the effect arises from the self-sustained relaxation oscillations. As a result, the sweeping rate increases as square root of the laser power and decreases with increasing cavity length. Based on these results we propose a model describing dynamics of the laser frequency. The model takes into account the effects of gain saturation at the laser transition and spatial hole burning in the self-pulsing regime.

  10. Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser.

    PubMed

    Lobach, Ivan A; Kablukov, Sergey I; Podivilov, Evgeniy V; Babin, Sergey A

    2011-08-29

    The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1 pm) Yb-doped fiber laser has been demonstrated experimentally. It is found that the effect arises from the self-sustained relaxation oscillations. As a result, the sweeping rate increases as square root of the laser power and decreases with increasing cavity length. Based on these results we propose a model describing dynamics of the laser frequency. The model takes into account the effects of gain saturation at the laser transition and spatial hole burning in the self-pulsing regime.

  11. Shocked Post-starbust Galaxy Survey: Candidate Post-Starbust Galaxies with Narrow Emission Line Ratios Arising from Shocks

    NASA Astrophysics Data System (ADS)

    Cales, Sabrina; Alatalo, Katherine A.; Appleton, Philip N.; Lisenfeld, Ute; Rich, Jeffrey; Nyland, Kristina; Lacy, Mark; Kewley, Lisa J.

    2015-01-01

    As galaxies age they move from the blue cloud (star forming) to the red sequence (`dead' galaxies) in the color-magnitude diagram of galaxies. Galaxies between the blue cloud and red sequence (i.e., the green valley) are caught in the act of transitioning and they show large Balmer jump and high order Balmer absorption lines in their optical spectra. These galaxies answer to many names (i.e., E+A, K+A, Hdelta-strong, post-starburst), all with similar but slightly different selection criteria. Many studies of transitioning galaxies invoke strong constraints on emission lines in order to guarantee a dominant post-starburst (rather that actively star bursting) stellar population, however these constraints bias the sample against narrow-line emission not arising from star formation, namely active galactic nuclei, low-ionization nuclear emission regions and shocks. Using the Oh-Sarzi-Schawinski-Yi (OSSY) emission and absorption line measurements for SDSS DR7 galaxies we study the intersection between transitioning galaxies and those with shock line ratios. We show that a significant fraction of transitioning galaxies have emission-line ratios indicative of shocks. We postulate that these shocks may be in part responsible for the shepherding of blue star forming galaxies to passive early-types.

  12. Manipulation of electrical flicker-noise and line narrowing in free-running quantum cascade-lasers

    NASA Astrophysics Data System (ADS)

    Yamanishi, Masamichi; Hirohata, Toru

    2015-01-01

    Intrinsic linewidths of quantum-cascade lasers are found to be extremely narrow, ~100 Hz. However, the free running linewidths (usually ~1 MHz) of existing quantum-cascade lasers are governed by flicker frequency-noise that is identified to originate from electrical flicker-noise in the devices. Obviously, substantial suppression of the electrical flicker noise is required for substantial narrowing of free-running LWs. In this presentation, we show systematic experimental results of flicker voltage-noise power-spectral density obtained with mid-infrared quantum-cascade lasers of designed positioning of impurities in injectors. The measured noise-levels depending strongly on impurity position as well as device-temperature are evaluated with an ad hoc model based on fluctuating charge-dipoles induced by trapping and de-trapping at impurity states in their injectors. It is shown that quasi-delta doping of impurities leads to strong suppression of electrical flicker noise by minimization of the dipole-length at a certain temperature, for instance ~300 K and, in turn, is expected to narrow astonishingly the free-running line-width down below 10 kHz without assistances of any types of feedback schemes.

  13. Unification Model of Seyfert Galaxies: Are all Seyfert 2 Galaxies Created Equal?

    NASA Astrophysics Data System (ADS)

    Tran, H. D.

    The AGN unified model proposes that Seyfert 2 (S2) galaxies are basically the same class of object as Seyfert 1 (S1) galaxies but viewed from a different direction. Direct evidence supporting this picture came from spectropolarimetric observations that showed broad, polarized permitted lines in many S2s, indicating that the broad-line region (BLR) characteristic of S1 is obscured from direct view, visible only in reflected light. Many other S2s, however, failed to show any signs of broad emission lines in their polarized flux spectra, suggesting that either the BLR could not exist, or other extranuclear factors (obscuration, starburst, geometry...) had rendered the polarization signals too weak to be detectable. Based on the analysis of a large spectropolarimetric survey of S2s from the CfA and 12 micron samples conducted at Lick, Palomar and Keck Observatories, we present evidence supporting the contention that S2s with hidden BLR (HBLRs) are intrinsically more powerful than non-HBLR S2s. The positive detection of BLR in HBLR S2s appears to be due largely to the intrinsic strength of the hidden AGN nucleus rather than the lower level of nuclear obscuration or reduced dominance of circumnuclear starburst. When the intrinsic difference between HBLR and non-HBLR S2s is taken into account, it is shown that the former share many similar large-scale characteristics with Seyfert 1 galaxies, as would be expected if the unified model is correct, while the latter do not. The incidence of HBLR is also found to have a tendency to increase with AGN strength, suggesting a temporal development of the obscuring torus opening angle. Thus, not all Seyfert 2 galaxies are intrinsically similar in nature, and we speculate that evolutionary processes may be at work.

  14. Probing the active galactic nucleus unified model torus properties in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Audibert, Anelise; Riffel, Rogério; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel

    2017-01-01

    We studied the physical parameters of a sample comprising of all Spitzer/Infrared Spectrograph public spectra of Seyfert galaxies in the mid-infrared (5.2-38 μm range) under the active galactic nucleus (AGN) unified model. We compare the observed spectra with ˜106 CLUMPY model spectral energy distributions, which consider a torus composed of dusty clouds. We find a slight difference in the distribution of line-of-sight inclination angle, i, requiring larger angles for Seyfert 2 (Sy 2) and a broader distribution for Seyfert 1 (Sy 1). We found small differences in the torus angular width, σ, indicating that Sy 1 may host a slightly narrower torus than Sy 2. The torus thickness, together with the bolometric luminosities derived, suggests a very compact torus up to ˜6 pc from the central AGN. The number of clouds along the equatorial plane, N, as well the index of the radial profile, q, is nearly the same for both types. These results imply that the torus cloud distribution is nearly the same for type 1 and type 2 objects. The torus mass is almost the same for both types of activity, with values in the range of Mtor ˜ 104-107 M⊙. The main difference appears to be related to the clouds' intrinsic properties: type 2 sources present higher optical depths τV. The results presented here reinforce the suggestion that the classification of a galaxy may also depend on the intrinsic properties of the torus clouds rather than simply on their inclination. This is in contradiction with the simple geometric idea of the unification model.

  15. VizieR Online Data Catalog: QSOs narrow absorption line variability (Hacker+, 2013)

    NASA Astrophysics Data System (ADS)

    Hacker, T. L.; Brunner, R. J.; Lundgren, B. F.; York, D. G.

    2013-06-01

    Catalogues of 2,522 QAL systems and 33 variable NAL systems detected in SDSS DR7 quasars with repeat observations. The object identifiers, position coordinates, and plate-MJD-fibre designations are taken from the SpecObjAll table in the SDSS Catalogue Archive Server (CAS) while the quasar redshifts (zqso) are from Hewett & Wild (2010, Cat. J/MNRAS/405/2302). The absorption system redshift (zabs), system grade, and detected lines are outputs of the York et al. (2013, in. prep.) QAL detection pipeline. Some absorption lines are flagged based on alternate identifications (a), proximity of masked pixels (b), or questionable continuum fits (c). (3 data files).

  16. An XMM-Newton Study of the Bright Ultrasoft Narrow-Line Quasar NAB 0205+024

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    The broad-band X-ray continuum of NAB 0205424 is well constrained due to the excellent photon statistics obtained (about 97,700 counts), and its impressive soft X-ray excess is clearly apparent. The hard X-ray power law has become notably steeper than when NAB 0205424 was observed with ASCA, attesting to the presence of significant X-ray spectral variability. A strong and broad emission feature is detected from about 5 to 6.4 keV, and we have modeled this as a relativistic line emitted close to the black hole from a narrow annulus of the accretion disk. Furthermore, a strong X-ray flare is detected with a hard X-ray spectrum; this flare may be responsible for illuminating the inner line-emitting part of the accretion disk. The combined observational results can be broadly interpreted in terms of the "thundercloud model proposed by Merloni & Fabian (2001).

  17. THE GEOMETRY OF MASS OUTFLOWS AND FUELING FLOWS IN THE SEYFERT 2 GALAXY MRK 3

    SciTech Connect

    Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Jaffe, Y. L.; Deo, R. P.; Collins, N. R.

    2010-03-15

    We present a study of the resolved emission-line regions and an inner dust/gas disk in the Seyfert 2 galaxy Mrk 3, based on Hubble Space Telescope observations. We show that the extended narrow-line region (ENLR), spanning {approx}4 kpc, is defined by the intersection of the ionizing bicone of radiation from the active galactic nucleus (AGN) and the inner disk, which is not coplanar with the large-scale stellar disk. This intersection leads to different position and opening angles of the ENLR compared to the narrow-line region (NLR). A number of emission-line arcs in the ENLR appear to be continuations of dust lanes in the disk, supporting this geometry. The NLR, which consists of outflowing emission-line knots spanning the central {approx}650 pc, is in the shape of a backward S. This shape may arise from rotation of the gas, or it may trace the original fueling flow close to the nucleus that was ionized after the AGN turned on.

  18. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  19. S7 : Probing the physics of Seyfert Galaxies through their ENLR & HII Regions

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Shastri, Prajval; Scharwächter, Julia; Kewley, Lisa J.; Davies, Rebecca; Sutherland, Ralph; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Hampton, Elise; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; Srivastava, Shweta; James, Bethan

    2015-02-01

    Here we present the first results from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) which aims to investigate the physics of ~140 radio-detected southern active Galaxies with z<0.02 through Integral Field Spectroscopy using the Wide Field Spectrograph (WiFeS). This instrument provides data cubes of the central 38×25 arc sec. of the target galaxies in the waveband 340-710nm with the unusually high resolution of R=7000 in the red (530-710nm), and R=3000 in the blue (340-560nm). These data provide the morphology, kinematics and the excitation structure of the extended narrow-line region, probe relationships with the black hole characteristics and the host galaxy, measures host galaxy abundance gradients and the determination of nuclear abundances from the HII regions. From photoionisation modelling, we may determine the shape of the ionising spectrum of the AGN, discover whether AGN metallicities differ from nuclear abundances determined from HII regions, and probe grain destruction in the vicinity of the AGN. Here we present some preliminary results and modelling of both Seyfert galaxies observed as part of the survey.

  20. HST/FOC imaging of the narrow-line region of NGC 1068

    NASA Astrophysics Data System (ADS)

    Macchetto, F.; Capetti, A.; Sparks, W. B.; Axon, D. J.; Boksenberg, A.

    1994-11-01

    We present imaging observations of NGC 1068 taken with the COSTAR-corrected (Corrective-Optics Space Telescope Axial Replacement) Faint Object Camera (FOC) on board the Hubble Space Telescope (HST) in the UV and optical continuum and (O III) emission lines. From these observations the structure of the nuclear region of NGC 1068 is shown to be very complex. Bright filamentary and patchy structures are intermingled with dark lanes. Other interesting features are identified, including the location of the UV peak with respect to the peak of line emission, the existence of an unusual 'twin-crescent' object near the nucleus, and point sources in the field. In the UV to optical flux ratio image, an extended conical region stands out for its blue color which may be tracing reflected nuclear light.

  1. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Lv, Shasha; Liu, Fang; Bi, Jin; Li, Liufeng; Chen, Lisheng

    2014-08-01

    We present the development of a dye-laser-based spectrometer operating at 550-600 nm. The spectrometer will be used to detect an ultra-narrow clock transition (1S0-3P0) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO4-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 × 10-15 (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision.

  2. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser.

    PubMed

    Wang, Chun; Lv, Shasha; Liu, Fang; Bi, Jin; Li, Liufeng; Chen, Lisheng

    2014-08-01

    We present the development of a dye-laser-based spectrometer operating at 550-600 nm. The spectrometer will be used to detect an ultra-narrow clock transition ((1)S0-(3)P0) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO4-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 × 10(-15) (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision.

  3. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser

    SciTech Connect

    Wang, Chun; Lv, Shasha; Bi, Jin; Liu, Fang; Li, Liufeng; Chen, Lisheng

    2014-08-15

    We present the development of a dye-laser-based spectrometer operating at 550–600 nm. The spectrometer will be used to detect an ultra-narrow clock transition ({sup 1}S{sub 0}-{sup 3}P{sub 0}) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO{sub 4}-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 × 10{sup −15} (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision.

  4. Hyperfine Interactions of Narrow-line Trityl Radical with Solvent Molecules

    PubMed Central

    Trukhan, S.N.; Yudanov, V.F.; Tormyshev, V.M.; Rogozhnikova, O.Yu.; Trukhin, D.V.; Bowman, M.K.; Krzyaniak, M.D.; Chen, H.; Martyanov, O.N.

    2013-01-01

    The electron nuclear dipolar interactions responsible for some dynamic nuclear polarization (DNP) mechanisms also are responsible for the presence formally in CW EPR spectra of forbidden satellite lines in which both the electron spin and a nuclear spin flip. Such lines arising from 1H nuclei are easily resolved in CW EPR measurements of trityl radicals, a popular family of DNP reagents. The satellite lines overlap some of the hyperfine features from 13C in natural abundance in the trityl radical, but their intensity can be easily determined by simple simulations of the EPR spectra using the hyperfine parameters of the trityl radical. Isotopic substitution of 2H for 1H among the hydrogens of the trityl radical and/or the solvent allows the dipolar interactions from the 1H on the trityl radical and from the solvent to be determined. The intensity of the dipolar interactions, integrated over all the 1H in the system, is characterized by the traditional parameter called reff. For the so-called Finland trityl in methanol, the reff values indicate that collectively the 1H in the unlabeled solvent have a stronger integrated dipolar interaction with the unpaired electron spin of the Finland trityl than do the 1H in the radical and consequently will be a more important DNP route. Although reff has the dimensions of distance, it does not correspond to any simple physical dimension in the trityl radical because the details of the unpaired electron spin distribution and the hydrogen distribution are important in the case of trityls. PMID:23722184

  5. Phase noise measurement of a narrow linewidth CW laser using delay line approaches.

    PubMed

    Llopis, O; Merrer, P H; Brahimi, H; Saleh, K; Lacroix, P

    2011-07-15

    Two different laser phase noise measurement techniques are compared. One of these two techniques is based on a conventional and low-cost delay line system, which is usually set up for the linewidth measurement of semiconductor lasers. The results obtained with both techniques on a high-spectral-purity laser agree well and confirm the interest of the low-cost technique. Moreover, an extraction of the laser linewidth using computer-aided design tools is performed. © 2011 Optical Society of America

  6. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  7. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  8. Jet cocoons in rotating Seyfert galaxies: adaptive three-dimensional hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lim, Andrew J.; Steffen, Wolfgang

    2001-03-01

    The narrow-line regions of some Seyfert galaxies show evidence for nuclear jets interacting with the rotating interstellar gas; this is shown by point-symmetric emission-line structures in, for example, Mrk 573 and NGC 3393. We study this situation with numerical simulations of a jet in a sidewind of uniform density but linearly increasing velocity as one moves from the source. We use a new three-dimensional hydrodynamic code on a binary adaptive grid. We consider two different models, one with a cocoon expansion speed higher and one with expansion speed lower than the ISM speed. We find that the model with high cocoon expansion speed is similar to results from previous calculations without a sidewind, except for minor asymmetries. However, model B with the slow expansion speed and fast wind speed shows considerable qualitative differences. The jet hits and bounces off the dense cooling envelope, which is dragged by the sidewind into the straight path of the jet. The path of the jet within the cocoon is straight as long as the extended hot cocoon acts as a shield. Once the jet hits the cold envelope of the cocoon it is bent directly by the ram pressure of the ambient medium and follows a parabola of the third degree, which we derive as an analytical approximation for the path. The region where the jet hits the envelope is the start of strong radio emission. This point moves towards the source with age of the jet and its bending angle. We therefore find a possible observable correlation between the distance of the first strong radio knot and the overall bending of jets in Seyfert galaxies. A comparison of our results with observations of Mrk 573 shows that the essential structural and spectral features can be reproduced by choosing an appropriate viewing angle and evolutionary stage. Looking approximately along the original jet direction a structure is found which strongly resembles an ionization cone. Hence caution should prevail when interpreting these sorts of

  9. Active Galactic Nuclei with a Low-metallicity Narrow-line Region

    NASA Astrophysics Data System (ADS)

    Kawasaki, Kota; Nagao, Tohru; Toba, Yoshiki; Terao, Koki; Matsuoka, Kenta

    2017-06-01

    Low-metallicity active galactic nuclei (AGNs) are interesting to study for the early phase of AGN evolution. However, most AGNs are chemically matured, and accordingly, low-metallicity AGNs are extremely rare. One approach to search for low-metallicity AGNs systematically is utilizing the so-called BPT diagram that consists of the [O iii]λ5007/Hβ λ 4861 and [N ii]λ 6584/Hα λ 6563 flux ratios. Specifically, photoionization models predict that low-metallicity AGNs show a high [O iii]λ5007/Hβλ4861 ratio and a relatively low [N ii]λ6584/Hαλ6563 ratio that corresponds to the location between the sequence of star-forming galaxies and that of usual AGNs on the BPT diagram (hereafter “the BPT valley”). However, other populations of galaxies such as star-forming galaxies and AGNs with a high electron density or a high-ionization parameter could be also located in the BPT valley, not only low-metallicity AGNs. In this paper, we examine whether most of the emission-line galaxies at the BPT valley are low-metallicity AGNs or not. We select 70 BPT-valley objects from 212,866 emission-line galaxies obtained by the Sloan Digital Sky Survey. Among the 70 BPT-valley objects, 43 objects show firm evidence of the AGN activity, i.e., the He ii λ4686 emission and/or weak but significant broad Hα emission. Our analysis shows that those 43 BPT-valley AGNs are not characterized by a very high gas density nor ionization parameter, inferring that at least 43 among 70 BPT-valley objects (i.e., > 60%) are low-metallicity AGNs. This suggests that the BPT diagram is an efficient tool to search for low-metallicity AGNs.

  10. 140 W high power all-fiber laser at 1940 nm with narrow spectral line-width by MOPA configuration

    NASA Astrophysics Data System (ADS)

    Yang, C.; Ju, Y. L.; Yao, B. Q.; Dai, T. Y.; Duan, X. M.; Zhang, Z. G.; Liu, W.

    2016-08-01

    We report a diode-pumped Tm3+-doped double-clad all-fiber laser operating at 1940 nm with a master oscillator power amplifier configuration; 50 W of seed was generated in master oscillator with 144 W pump power, corresponding to a slope efficiency of 40.1 %. With 212 W pump power, the seed was amplified to 140.9 W in power amplifier, corresponding to a slope efficiency of 47.1 %. The peak wavelength was 1939.57 nm with a narrow spectral line-width of 0.09 nm. The beam quality factor of M 2 was 1.29. Neither amplified spontaneous emission nor parasitic lasing was observed during the amplification process. The output power was only limited by the pump power.

  11. Investigation of Line Width Narrowing and Spectral Jumps of Single Stable Defect Centers in ZnO at Cryogenic Temperature.

    PubMed

    Neitzke, Oliver; Morfa, Anthony; Wolters, Janik; Schell, Andreas W; Kewes, Günter; Benson, Oliver

    2015-05-13

    Finding new solid state defect centers in novel host materials is crucial for realizing integrated hybrid quantum photonic devices. We present a preparation method for defect centers with photostable bright single photon emission in zinc oxide, a material with promising properties in terms of processability, availability, and applications. A detailed optical study reveals a complex dynamic of intensity fluctuations at room temperature. Measurements at cryogenic temperatures show very sharp (<60 GHz) zero phonon lines (ZPLs) at 580 nm to  620 nm (≈ 2.0 eV) with frozen out fast fluctuations. Remaining discrete jumps of the ZPL, which depend on the excitation power, are observed. The low temperature results will narrow down speculations on the origin of visible-near-infrared (NIR) wavelength defect emission in zinc oxide and provide a basis for improved theoretical models.

  12. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  13. Spectropolarimetry and variability of Seyfert 1.8 and 1.9 galaxies

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.

    1989-01-01

    The phenomenon which produces the spectra classified as Seyfert 1.8 or 1.9 is investigated through CCD spectropolarimetry and through analysis of three highly variable objects. The Seyfert 1.9 galaxy IRAS 1958-183 has a highly polarized continuum and a broad H-alpha line which is 30 percent polarized. The variability of NGC 2622, NGC 7603 (= Mrk 530), and Mrk 1018 are studied. The changes in flux of the broad lines and the continuum near H-alpha and H-beta are consistent with changes in the extinction in all cases. Improved IRAS photometry supports the conclusion that most Seyfert 1.8s and 1.9s are normal Seyfert 1s seen through a screen of dust located in or just outside of the broad-line regions. Variability is due to changes in the optical depth of this screen.

  14. ADAPTIVE OPTICS IMAGING OF QUASI-STELLAR OBJECTS WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Rosario, D. J.; McGurk, R. C.; Max, C. E.; Shields, G. A.; Smith, K. L.; Ammons, S. M. E-mail: mcgurk@ucsc.edu E-mail: shieldsga@mail.utexas.edu E-mail: ammons@as.arizona.edu

    2011-09-20

    Active galaxies hosting two accreting and merging supermassive black holes (SMBHs)-dual active galactic nuclei (AGNs)-are predicted by many current and popular models of black-hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on near-infrared laser guide star adaptive optics imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet quasi-stellar objects (QSOs) drawn from the Sloan Digital Sky Survey (SDSS), which show double-peaked narrow AGN emission lines. Of the 12 AGNs imaged, we find 6 with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host dual accreting black holes separated on kiloparsec scales: {approx}0.3%-0.65%. We derive from this fraction the time spent in a QSO phase during a typical merger and find a value that is much lower than estimates that arise from QSO space densities and galaxy merger statistics. We discuss possible reasons for this difference. Finally, we compare the SMBH mass distributions of single and dual AGNs and find little difference between the two within the limited statistics of our program, hinting that most SMBH growth happens in the later stages of a merger process.

  15. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  16. All-fiber designed narrow line-width 1.55μm double cladding fiber lasers

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Wu, Zhiyang; Xu, Lijing

    2014-11-01

    To develop 1.55μm high power lasers with compactness, narrow spectral line-width and high wavelength stability suitable for practical applications, EY-DCFLs built in all-fiber configuration are investigated. The experimental setups are composed of Er3+/Yb3+ co-doped double-clad gain fiber, multimode 976nm pump laser diode, double-clad fiber Bragg gratings (FBGs) and (1+1)x1 side pump couplers. FBGs with different reflectivity are applied as output reflectors, and forward-pump scheme and backward-pump scheme are performed respectively. As the efficiency and the spectral stability are considered simultaneously, EY-DCFL with low reflective FBG mirror and in backward-pump manner is more desirable. In the optimized all-fiber EY-DCFL, the maximum output power with an optical-optical efficiency of more than 17% is up to 1.5 W, and the wavelength is defined at 1550.8nm with a line-width about 0.03nm.

  17. BAT AGN Spectroscopic Survey - III. An observed link between AGN Eddington ratio and narrow-emission-line ratios

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Soto, Kurt T.; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro

    2017-01-01

    We investigate the observed relationship between black hole mass (MBH), bolometric luminosity (Lbol) and Eddington ratio (λEdd) with optical emission-line ratios ([N II] λ6583/Hα, [S II] λλ6716, 6731/Hα, [O I] λ6300/Hα, [O III] λ5007/Hβ, [Ne III] λ3869/Hβ and He II λ4686/Hβ) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] λ6583/Hα ratio exhibits a significant correlation with λEdd (RPear = -0.44, p-value = 3 × 10-13, σ = 0.28 dex), and the correlation is not solely driven by MBH or Lbol. The observed correlation between [N II] λ6583/Hα ratio and MBH is stronger than the correlation with Lbol, but both are weaker than the λEdd correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] λ6583/Hα is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure λEdd and thus MBH from the measured Lbol, even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  18. Type Ia supernovae with and without blueshifted narrow Na I D lines - how different is their structure?

    NASA Astrophysics Data System (ADS)

    Hachinger, S.; Röpke, F. K.; Mazzali, P. A.; Gal-Yam, A.; Maguire, K.; Sullivan, M.; Taubenberger, S.; Ashall, C.; Campbell, H.; Elias-Rosa, N.; Feindt, U.; Greggio, L.; Inserra, C.; Miluzio, M.; Smartt, S. J.; Young, D.

    2017-10-01

    In studies on intermediate- and high-resolution spectra of Type Ia supernovae (SNe Ia), some objects exhibit narrow Na I D absorptions often blueshifted with respect to the rest wavelength within the host galaxy. The absence of these in other SNe Ia may reflect that the explosions have different progenitors: blueshifted Na I D features might be explained by the outflows of 'single-degenerate' systems (binaries of a white dwarf with a non-degenerate companion). In this work, we search for systematic differences among SNe Ia for which the Na I D characteristics have been clearly established in previous studies. We perform an analysis of the chemical abundances in the outer ejecta of 13 'spectroscopically normal' SNe Ia (five of which show blueshifted Na lines), modelling time series of photospheric spectra with a radiative-transfer code. We find only moderate differences between 'blueshifted-Na', 'redshifted-Na' and 'no-Na' SNe Ia, so that we can neither conclusively confirm a 'one-scenario' nor a 'two-scenario' theory for normal SNe Ia. Yet, some of the trends we see should be further studied using larger observed samples: models for blueshifted-Na SNe tend to show higher photospheric velocities than no-Na SNe, corresponding to a higher opacity of the envelope. Consistently, blueshifted-Na SNe show hints of a somewhat larger iron-group content in the outer layers with respect to the no-Na subsample (and also to the redshifted-Na subsample). This agrees with earlier work where it was found that the light curves of no-Na SNe - often appearing in elliptical galaxies - are narrower, that is, decline more rapidly.

  19. Narrow line-width single-longitudinal-mode fiber laser using silicon-on-insulator based micro-ring-resonator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hsu, Yung; Hsu, Chin-Wei; Yang, Ling-Gang; Chow, Chi-Wai; Yeh, Chien-Hung; Lai, Yin-Chieh; Tsang, Hon-Ki

    2016-02-01

    In this work, we propose and demonstrate a stable single-longitudinal-mode (SLM) fiber laser with narrow line-width by using an integrated silicon-on-insulator micro-ring resonator (SOI MRR) and two subsidiary fiber rings for the first time, to the best of our knowledge. The laser is tunable over the wavelength range from 1546 to 1570 nm, with only step tuning of 2 nm steps. A maximum 49 dB side mode suppression ratio (SMSR) can be achieved. The compact SOI MRR provides a large free-spectral-range (FSR), while the subsidiary rings provide Vernier effect producing a single lasing mode. The FSR of the SOI MRR can be very large and controllable (since it is easy to fabricate small SOI MRR when compared with making small fiber-rings) using the complementary-metal-oxide-semiconductor (CMOS) compactable SOI fabrication processes. In our proposed laser, the measured single sideband (SSB) spectrum shows that the densely spaced longitudinal modes can be significantly suppressed to achieve SLM. The laser linewidth is only 3.5 kHz measured by using the self-heterodyne method. 30 min stability evaluation in terms of lasing wavelength and optical power is performed; showing the optical wavelength and power are both very stable, with fluctuations of only 0.02 nm and 0.8 dB, respectively.

  20. Searching for the influence radius of AGN in nearby narrow emission-line galaxies using the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Robleto-Orús, A. C.; Torres-Papaqui, J. P.; Coziol, R.; Morales-Vargas, A.; Romero-Cruz, F. J.; Ortega-Minakata, R. A.; Chow-Martinez, M.; Trejo-Alonso, J. J.

    2017-07-01

    In narrow emission-line galaxies, one important problem consists in discriminating gas ionization due to an AGN and gas ionization due to OB stars in active star-forming regions. This problem becomes more acute in case of AGNs classified as transition-type objects (TO), where star formation is relatively intense, and for LINERs, where the AGN is very weak. Thanks to the integral field spectroscopy, we have a new way to attack this problem. By definition, OB stars ionize a definite portion of space, the Strömgren's sphere, which size depends on the total luminosity of the star, its temperature, and the density of the surrounding gas. Therefore one expects gas ionized by OB stars to cover limited areas in a galaxy. On the other hand, due to the huge amount of ionizing photons emitted by an AGN, its "influence radius" is expected do be much more extended, in the order of kpc. Using a sample of galaxies from included in the CALIFA survey DR3, we will test a new way to measure the characteristic "influence radius" of AGN with different intensities.

  1. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2010-07-01

    Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (ΔFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Fünfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Rätsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model ΔFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the ΔFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of ΔFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.

  2. Analytical formulas for low-fluence non-line-narrowed hole-burned spectra in an excitonically coupled dimer

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2009-12-01

    We present exact equations for the low-fluence non-line-narrowed (NLN) nonphotochemical hole-burning (NPHB) spectrum of an excitonically coupled dimer (for arbitrary coupling strength) under the assumption that postburn and preburn site energies are independent. The equations provide a transparent view into the contributions of various effects to the NPHB spectrum. It is demonstrated that the NPHB spectrum in dimers is largely dominated by the statistical reshuffling of site energies and by altered excitonic transition energies of both excitonic states (in contrast with only the lowest state). For comparison of these results with those from larger excitonically coupled systems, the low-fluence NLN NPHB spectrum obtained for the CP47 complex (a 16-pigment core antenna complex of Photosystem II) is also calculated using Monte Carlo simulations. In this larger system it is shown that the NPHB spectra for individual excitonic states are not entirely conservative (although the changes in average oscillator strength for the higher excitonic states are in most cases less than 1%), a feature which we argue is due primarily to reordering of the contributions of various pigments to the excitonic states. We anticipate that a better understanding of NPHB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (e.g., absorption, emission, and circular dichroism spectra) will provide more insight into the underlying electronic structures of various photosynthetic systems.

  3. Near-infrared Hubble Space Telescope polarimetry of a complete sample of narrow-line radio galaxies

    NASA Astrophysics Data System (ADS)

    Ramírez, E. A.; Tadhunter, C. N.; Axon, D.; Batcheldor, D.; Packham, C.; Lopez-Rodriguez, E.; Sparks, W.; Young, S.

    2014-10-01

    We present an analysis of 2.05 μm Hubble Space Telescope polarimetric data for a sample of 13 nearby Fanaroff-Riley type II (FRII) 3CR radio sources (0.03 < z < 0.11) that are classified as narrow-line radio galaxies (NLRG) at optical wavelengths. We find that the compact cores of the NLRG in our sample are intrinsically highly polarized in the near-infrared (near-IR) (6 < P2.05 μm < 60 per cent), with the electric vector (E-vector) perpendicular to the radio axis in 54 per cent of the sources. The levels of extinction required to produce near-IR polarization by the dichroic extinction mechanism are consistent with the measured values recently reported in Ramírez et al., provided that this mechanism has its maximum efficiency. This consistency suggests that the nuclear polarization could be due to dichroic extinction. In this case, toroidal magnetic fields that are highly coherent would be required in the circumnuclear tori to align the elongated dust grains responsible for the dichroic extinction. However, it is not entirely possible to rule out other polarization mechanisms (e.g. scattering, synchrotron emission) with our observations at only one near-IR wavelength. Therefore, further polarimetry observations at mid-IR and radio wavelengths will be required to test whether all the near-IR polarization is due to dichroic extinction.

  4. Modeling of fluorescence line-narrowed spectra in weakly coupled dimers in the presence of excitation energy transfer

    SciTech Connect

    Lin, Chen; Reppert, Mike; Feng, Ximao; Jankowiak, Ryszard

    2014-07-21

    This work describes simple analytical formulas to describe the fluorescence line-narrowed (FLN) spectra of weakly coupled chromophores in the presence of excitation energy transfer (EET). Modeling studies for dimer systems (assuming low fluence and weak coupling) show that the FLN spectra (including absorption and emission spectra) calculated for various dimers using our model are in good agreement with spectra calculated by: (i) the simple convolution method and (ii) the more rigorous treatment using the Redfield approach [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)]. The calculated FLN spectra in the presence of EET of all three approaches are very similar. We argue that our approach provides a simplified and computationally more efficient description of FLN spectra in the presence of EET. This method also has been applied to FLN spectra obtained for the CP47 antenna complex of Photosystem II reported by Neupane et al. [J. Am. Chem. Soc. 132, 4214 (2010)], which indicated the presence of uncorrelated EET between pigments contributing to the two lowest energy (overlapping) exciton states, each mostly localized on a single chromophore. Calculated and experimental FLN spectra for CP47 complex show very good qualitative agreement.

  5. A Comparison of Intermediate Redshift Compact Blue Galaxies: Blue Nucleated Galaxies and Compact Narrow Emission-Line Galaxies

    NASA Astrophysics Data System (ADS)

    Jangren, A.; Bershady, M. A.

    1997-12-01

    We present results of the photometric analysis of two samples of compact blue emission-line galaxies at intermediate redshift (0.1Narrow Emission-Line Galaxies (CNELGs, Koo et al. 1994) and Blue Nucleated Galaxies (BNGs, Schade et al. 1995). Using a parameter space defined by fundamental photometric properties -- surface brightness, color, image concentration, and luminosity -- we then explore the relationship of BNGs and CNELGs to local samples. Both BNGs and CNELGs are classes of faint field galaxies with very blue colors and irregular morphologies; the preponderance of evidence indicates they are undergoing a major starburst. The CNELGS are distinguished by their small sizes (half-light radii of order 0.3 arcsec), and may constitute a subclass of extremely compact BNGs. Starbursts triggered by mergers temporarily produce blue, strongly concentrated galaxies (Mihos & Hernquist 1994). Given their morphology, both CNELGs and BNGs are plausibly examples of recent mergers or interactions -- perhaps tracers of a physical process driving the evolution of blue galaxies. We explore what will happen to the BNG and CNELG samples if their star formation ceases; using galaxy evolution models to predict the reddening and fading of aging stellar populations, we infer the photometric properties of BNGs and CNELGs as they fade until the current time.

  6. BAT AGN Spectroscopic Survey - III. An Observed Link Between AGN Eddington Ratio and Narrow-Emission-Line Ratios

    NASA Technical Reports Server (NTRS)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; hide

    2016-01-01

    We investigate the observed relationship between black hole mass (M(sub BH)), bolometric luminosity (L(sub bol)) and Eddington ratio (lambda(sub Edd)) with optical emission-line ratios ([N II] lambda6583/Halpha, [S II]lambda-lamda6716, 6731/Halpha, [O I] lamda6300/Halpha, [O III] lamda5007/Hbeta, [Ne III] lamda3869/Hbeta and He II lamda4686/Hbeta) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] lamda6583/Halpha ratio exhibits a significant correlation with lamda(sub Edd) (R(sub Pear) = -0.44, p-value 3 x 10(exp. -13) sigma = 0.28 dex), and the correlation is not solely driven by M(sub BH) or L(sub bol). The observed correlation between [N II] lamda6583/Halpha ratio and M(sub BH) is stronger than the correlation with L(sub bol), but both are weaker than the lamda(sub Edd) correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] lamda6583/Halpha is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure lambda(sub Edd) and thus M(sub BH) from the measured L(sub bol), even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  7. Narrow-band Filter Observations of the Red-Line Corona at the 29 March 2006 Eclipse

    NASA Astrophysics Data System (ADS)

    Rust, David M.; Noble, M. W.; Pasachoff, J. M.; Babcock, B. A.; Bruck, M. A.; Wittenmyer, R. A.

    2006-06-01

    We report on observations of the corona above active region NOAA 10866, which was on the solar east limb at S 06 on 29 March 2006. Filtergrams were obtained at six 0.22 Å steps across the profile of the Fe X line at 6374.5 Å during the total solar eclipse, starting at about 1052 UT. The telescope was a 35-cm Schmidt-Cassegrain Meade RCX400 with the solar image relayed to a 512 x 512-pixel Andor Ixon DV887 CCD camera via telecentric optics and two narrow-bandpass filters: (1) a 2 Å thin-film Andover Corp. blocker and (2) a 0.16 Å tunable Fabry-Perot etalon, made by the CSIRO Australian Centre for Precision Optics. The F-P etalon is a Y-cut lithium niobate wafer of 0.200-mm thickness coated with reflective and conductive thin-film layers. Application of a voltage to the etalon produces a passband shift of 0.0011 Å/volt. Calibration at the eclipse site in Kastellorizo, Greece, was maintained by reference to a WSTech thermo-electrically stabilized diode laser tuned to 6375.16 Å. The profile and Doppler shifts of the Fe X line will be discussed.The expedition was supported by NSF (ATM-0552116), the Committee for Research and Exploration of the National Geographic Society, NASA's Planetary Astronomy Division for the CCD cameras (NNG04GE48G), Sigma Xi, and the Rob Spring Fund and the Ryan Patrick Gaishin Fund at Williams College.

  8. Sizes and Kinematics of Extended Narrow-line Regions in Luminous Obscured AGN Selected by Broadband Images

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei; Greene, Jenny E.; Zakamska, Nadia L.

    2017-02-01

    To study the impact of active galactic nuclei (AGN) feedback on their galactic ISM, we present Magellan long-slit spectroscopy of 12 luminous nearby obscured AGN ({L}{bol}∼ {10}45.0-46.5 {erg} {{{s}}}-1, z ∼ 0.1). These objects are selected from a parent sample of spectroscopically identified AGN to have high [O iii]λ5007 and Wide-field Infrared Survey Explorer mid-IR luminosities and extended emission in the Sloan Digital Sky Survey r-band images, suggesting the presence of extended [O iii]λ5007 emission. We find spatially resolved [O iii] emission (2–35 kpc) in 8 out of 12 of these objects. Combined with samples of higher luminosity obscured AGN, we confirm that the size of the narrow-line region (RNLR) scales with the mid-IR luminosity until the relation flattens at RNLR ∼ 10 kpc. Nine out of 12 objects in our sample have regions with broad [O iii] line widths (w80 > 600 km s‑1), indicating outflows. We define these regions as the kinematically disturbed region (KDR). The size of the KDR ({R}{KDR}) is typically smaller than RNLR by few kiloparsecs but also correlates strongly with the AGN mid-IR luminosity. Given the uncertain outflow mass, we derive a loose constraint on the outflow energy efficiency {η }{med}=\\dot{E}/{L}{bol}∼ 0.007 % {--}7 % . We find no evidence for an AGN luminosity threshold below which outflows are not launched. To explain the sizes, velocity profiles, and high occurrence rates of the outflows in the most luminous AGN, we propose a scenario in which energy-conserving outflows are driven by AGN episodes with ∼108 year durations. Within each episode, the AGN is unlikely to be constantly luminous but could flicker on shorter timescales (≲107 yr) with a moderate duty cycle (∼10%).

  9. THE ORIGIN OF DOUBLE-PEAKED NARROW LINES IN ACTIVE GALACTIC NUCLEI. I. VERY LARGE ARRAY DETECTIONS OF DUAL AGNs AND AGN OUTFLOWS

    SciTech Connect

    Müller-Sánchez, F.; Comerford, J. M.; Nevin, R.; Barrows, R. S.; Cooper, M. C.; Greene, J. E.

    2015-11-10

    We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have 2 optical AGN emission components separated by >0.″2, and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kiloparsec-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission line galaxies based on optical long-slit spectroscopy and high-resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect 2 compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 and 1.6 kpc in 3 galaxies: J1023+3243, J1158+3231, and J1623+0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼15% (3/18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼75% (13/18) of the double-peaked narrow emission lines, distributed in the following way: seven AGN wind-driven outflows, five radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% (2/18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high-resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.″18.

  10. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Bowyer, S.; Grewing, M.

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations.

  11. SUBMILLIMETER ARRAY/PLATEAU DE BURE INTERFEROMETER MULTIPLE LINE OBSERVATIONS OF THE NEARBY SEYFERT 2 GALAXY NGC 1068: SHOCK-RELATED GAS KINEMATICS AND HEATING IN THE CENTRAL 100 pc?

    SciTech Connect

    Krips, M.; Neri, R.; Martin, S. E-mail: neri@iram.fr

    2011-07-20

    We present high angular resolution (0.''5-2.''0) observations of the millimeter continuum and the {sup 12}CO(J = 3-2), {sup 13}CO(J = 3-2), {sup 13}CO(J = 2-1), C{sup 18}O(J = 2-1), HCN(J = 3-2), HCO{sup +}(J = 4-3), and HCO{sup +}(J = 3-2) line emission in the circumnuclear disk (r {approx}< 100 pc) of the prototypical Seyfert 2 galaxy NGC 1068, carried out with the Submillimeter Array. We also include in our analysis new {sup 13}CO(J = 1-0) and improved {sup 12}CO(J = 2-1) observations of NGC 1068 at high angular resolution (1.''0-2.''0) and sensitivity, conducted with the Institute de Radioastronomie Millimetrique Plateau de Bure Interferometer. Based on the complex dynamics of the molecular gas emission indicating non-circular motions in the central {approx}100 pc, we propose a scenario in which part of the molecular gas in the circumnuclear disk of NGC 1068 is blown radially outward as a result of shocks. This shock scenario is further supported by quite warm (T{sub kin} {>=} 200 K) and dense (n(H{sub 2}) {approx_equal} 10{sup 4} cm{sup -3}) gas constrained from observed molecular line ratios. The HCN abundance in the circumnuclear disk is found to be [HCN]/[{sup 12}CO] {approx} 10{sup -3.5}. This is slightly higher than the abundances derived for Galactic and extragalactic star-forming/starbursting regions. This result lends further support to X-ray-enhanced HCN formation in the circumnuclear disk of NGC 1068 as suggested by earlier studies. The HCO{sup +} abundance ([HCO{sup +}]/[{sup 12}CO] {approx} 10{sup -5}) appears to be somewhat lower than that of Galactic and extragalactic star-forming/starbursting regions. When trying to fit the centimeter-to-millimeter continuum emission by different thermal and non-thermal processes, it appears that electron-scattered synchrotron emission yields the best results while thermal free-free emission seems to overpredict the millimeter continuum emission.

  12. Embedded star formation in the extended narrow line region of Centaurus A: Extreme mixing observed by MUSE

    NASA Astrophysics Data System (ADS)

    Santoro, F.; Oonk, J. B. R.; Morganti, R.; Oosterloo, T. A.; Tadhunter, C.

    2016-05-01

    We present a detailed study of the complex ionization structure in a small (~250 pc) extended narrow line region (ENLR) cloud near Centaurus A using the Multi Unit Spectroscopic Explorer. This cloud is located in the so-called outer filament of ionized gas (about 15 kpc from the nucleus) where jet-induced star formation has been suggested to occur by different studies. We find that, despite the small size, a mixture of ionization mechanisms is operating, resulting in considerable complexity in the spatial ionization structure. The area includes two H ii regions where star formation is occurring and another location where star formation must have ceased very recently. Interestingly, the extreme Balmer decrement of one of the star forming regions (Hα/Hβobs ~ 6) indicates that it is still heavily embedded in its natal cocoon of gas and dust. At all three locations a continuum counterpart is found with spectra matching those of O/B stars local to Centaurus A. The H ii regions are embedded in a larger gas complex which is photoionized by the radiation of the central active galactic nucleus (AGN), but the O/B stars affect the spatial ionization pattern in the ENLR cloud very locally. In particular, in the surroundings of the youngest star forming region, we can isolate a tight mixing sequence in the diagnostic diagram going from gas with ionization due to a pure stellar continuum to gas only photoionized by the AGN. These results emphasize the complexity and the mixture of processes occurring in star forming regions under the influence of an AGN radiation. This is relevant for our understanding of AGN-induced star formation suggested to occur in a number of objects, including this region of Centaurus A. They also illustrate that these young stars influence the gas over only a limited region.

  13. A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2-4

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael; Ganguly, Rajib; Tytler, David; Kirkman, David; Suzuki, Nao; Lubin, Dan

    2007-07-01

    We use Keck HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL systems, which contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5000 km s-1 of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10%-17% of C IV systems at blueshifts of 5000-70,000 km s-1 relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption and those with negligible absorption in N V but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally. The data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  14. Balmer Absorption Lines in FeLoBALs

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.

    2007-10-01

    We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.

  15. Infrared spectroscopy of Seyfert 2 galaxies: A look through the obscuring Torus?

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Veilleux, Sylvain; Hill, Gary J.

    1994-01-01

    We present both high-resolution (R = 1260) and low-resolution (R = 345 and 425) J-band spectra of a sample of 15 Seyfert 2 galaxies. Our goal is to look for broad Pa beta lines, indicating broad-line regions which are hidden by dust from our view at optical wavelengths. Of the 15 objects studied here, three have broad Pa beta lines: MCG-05.23.16, Mrk 463E, and NGC 2992. Mrk 176 and NGC 5728 may also have weak broad lines. In NGC 5506, previously reported to have broad Pa beta and hydrogen alpha lines, we find that the Pa beta line profile is continuous and has the same shape as the nearby line (Fe II) lambda 1.2567, which should not have a broad component. We interpret these observations as gas from the narrow-line region (NLR) with no broad component. In NGC 5506, however, the NLR profiles become broader with increasing wavelength, indicating that highly reddened wings are becoming more readily visible at the longer wavelengths. We confirm the correlation of (O I) lambda 6300/hydrogen alpha and (Fe II) lambda 1.644/Br gamma (the latter transformed to (Fe II) lambda 1.2567/Pa beta to compare with our data) found by previous authors when comparing active galactic nuclei (AGNs), supernova remnants, starbursts, and H II regions. The correlation confirms that in all of these objects both (O I) lambda 6300 and the (Fe II) lines come from partially ionized regions in which hydrogen is mostly neutral. Comparison of the infrared optical depths with column depths determined from X-ray data show a general tendency for the objects with detected broad Pa beta to have lower X-ray columns.

  16. Infrared spectroscopy of Seyfert 2 galaxies: A look through the obscuring Torus?

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Veilleux, Sylvain; Hill, Gary J.

    1994-01-01

    We present both high-resolution (R = 1260) and low-resolution (R = 345 and 425) J-band spectra of a sample of 15 Seyfert 2 galaxies. Our goal is to look for broad Pa beta lines, indicating broad-line regions which are hidden by dust from our view at optical wavelengths. Of the 15 objects studied here, three have broad Pa beta lines: MCG-05.23.16, Mrk 463E, and NGC 2992. Mrk 176 and NGC 5728 may also have weak broad lines. In NGC 5506, previously reported to have broad Pa beta and hydrogen alpha lines, we find that the Pa beta line profile is continuous and has the same shape as the nearby line (Fe II) lambda 1.2567, which should not have a broad component. We interpret these observations as gas from the narrow-line region (NLR) with no broad component. In NGC 5506, however, the NLR profiles become broader with increasing wavelength, indicating that highly reddened wings are becoming more readily visible at the longer wavelengths. We confirm the correlation of (O I) lambda 6300/hydrogen alpha and (Fe II) lambda 1.644/Br gamma (the latter transformed to (Fe II) lambda 1.2567/Pa beta to compare with our data) found by previous authors when comparing active galactic nuclei (AGNs), supernova remnants, starbursts, and H II regions. The correlation confirms that in all of these objects both (O I) lambda 6300 and the (Fe II) lines come from partially ionized regions in which hydrogen is mostly neutral. Comparison of the infrared optical depths with column depths determined from X-ray data show a general tendency for the objects with detected broad Pa beta to have lower X-ray columns.

  17. Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Wandel, Amri

    2000-01-01

    Emission-line variability data for Seyfert 1 galaxies provide strong evidence for the existence of supermassive black holes in the nuclei of these galaxies and that the line-emitting gas is moving in the gravitational potential of that black hole. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, which is then combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. la the case of the best-studied galaxy, NGC 5548, various emission lines spanning an order of magnitude in distance from the central source show the expected V proportional to r(sup -l/2) correlation between distance and line width and are thus consistent with a single value for the mass. Two other Seyfert galaxies, NGC 7469 and 3C 390.3, show a similar relationship. We compute the ratio of luminosity to mass for these three objects and the narrow-line Seyfert I galaxy NGC 4051 and find that the gravitational force on the line-emitting gas is much stronger than radiation pressure. These results strongly support the paradigm of gravitationally bound broad emission line region clouds.

  18. Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Wandel, Amri

    2000-01-01

    Emission-line variability data for Seyfert 1 galaxies provide strong evidence for the existence of supermassive black holes in the nuclei of these galaxies and that the line-emitting gas is moving in the gravitational potential of that black hole. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, which is then combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. la the case of the best-studied galaxy, NGC 5548, various emission lines spanning an order of magnitude in distance from the central source show the expected V proportional to r(sup -l/2) correlation between distance and line width and are thus consistent with a single value for the mass. Two other Seyfert galaxies, NGC 7469 and 3C 390.3, show a similar relationship. We compute the ratio of luminosity to mass for these three objects and the narrow-line Seyfert I galaxy NGC 4051 and find that the gravitational force on the line-emitting gas is much stronger than radiation pressure. These results strongly support the paradigm of gravitationally bound broad emission line region clouds.

  19. Perfiles de luminosidad en galaxias con núcleo tipo Seyfert 1

    NASA Astrophysics Data System (ADS)

    Boris, N.; Rodriguez-Ardilla, A. A.; Pastoriza, M. G.

    Presentamos imágenes CCD en los filtros BVI y Hα de una muestra de 10 galaxias Seyfert 1 y Narrow Line Seyfert 1. Recientes observaciones muestran que hay una diferencia significante en el índice espectral óptico entre NLS1s y Sy1 normales, siendo para las primeras del orden de 2. Otra característica importante es que la mayor parte de las NLS1s muestran tasas de FeII/Hβ mayores que las observadas en otras Sy1s. Desde el punto de vista fotométrico, estas galaxias no tienenningún tipo de estudio previo. Presentamos magnitudes totales, perfiles de luminosidad y mapas de color junto con un detallado análisis de la formación estelar en estos objetos. Encontramos que la descomposición en bulbo + disco representa adecuadamente los perfiles de luminosidad de las galaxias de la muestra. Sin embargo, en todos los casos es necesario que el disco tenga un agujero en su centro. El radio de este agujero va desde los 3 a los 9 kpc. Si bien no tenemos aún una explicación para este hecho, los agujeros parecen estar asociados a anillos circumnucleares de alto oscurecimiento E(B-V) ~1. Los perfiles presentan también un fuerte gradiente de color, siendo notablemente más azules hacia la región nuclear. Los objetos de la muestra cubren todo el rango de tipos morfológicos, no obstante, no encontramos regiones de formación estelar en las regiones exteriores de las galaxias. La formación estelar está confinada a la región nuclear y se data en alrededor de 5 x 107 años.

  20. Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.; hide

    2007-01-01

    We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.

  1. A GMRT study of Seyfert galaxies NGC 4235 and NGC 4594: evidence of episodic activity?

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Srivastava, S.; Singh, V.; Gallimore, J. F.; Ishwara-Chandra, C. H.; Ananda, Hota

    2016-06-01

    Low-frequency observations at 325 and 610 MHz have been carried out for two `radio-loud' Seyfert galaxies, NGC 4235 and NGC 4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325-610 MHz spectral index images of NGC 4235 tentatively suggest the presence of a `relic' radio lobe, most likely from a previous episode of active galactic nucleus (AGN) activity. This makes NGC 4235 only the second known Seyfert galaxy after Mrk 6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the CLUMPYDREAM code predicts star formation rates (SFRs) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (˜0.13-0.23 M⊙ yr-1 compared to the required SFR of ˜2.0-2.7 M⊙ yr-1 in NGC 4594 and NGC 4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support the suggestion that Seyfert lobes are AGN powered. SED modelling supports the `true' type 2 classification of NGC 4594: this galaxy lacks significant dust obscuration as well as a prominent broad-line region. Between the two Seyfert galaxies, there is an inverse relation between their radio-loudness and Eddington ratio and a direct relation between their Eddington-scaled jet power and bolometric power.

  2. Discovery Of Transient Iron Fluorescence In The Bare Seyfert Ark 120

    NASA Astrophysics Data System (ADS)

    Nardini, Emanuele; Porquet, D.; Reeves, J.; Braito, V.; Lobban, A.; Matt, G.

    2016-10-01

    We present the results from an X-ray observational campaign on the bare Seyfert galaxy Ark 120 jointly carried out with XMM- Newton, Chandra, and NuSTAR. The favourable line of sight to this source, devoid of any significant absorbing material, provides an incomparably clean view to the nuclear regions of an AGN, down to the the immediate surroundings of the radiatively efficient, accreting supermassive black hole. Here we focus on the nature, properties, and variability of the emission-line complex due to iron fluorescence detected in the 6-7 keV band. The narrow K-alpha feature from neutral iron at 6.4 keV is resolved by Chandra/HETG to a width of 5000 km/s, consistent with origin from the optical broad-line region. However, excess components are seen on both sides of this core. The excess emission map computed over the 7.5 days of XMM-Newton monitoring and the following, time-resolved spectral analysis show that both the red and blue features are highly variable on timescales of 10-15 hours. Any explanation (orbiting hotspots, coronal clumps, disc instabilities) requires a highly dynamic, inhomogeneous disc/coronal system. These observations thus prove the unique potential of a bare source like Ark 120 to better understand the physics of the accretion disc/X-ray corona system in AGN.

  3. Narrow components in the profiles of ultraviolet resonance lines - Evidence for a two-component stellar wind for O and B stars

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Gathier, R.; Snow, T. P., Jr.

    1982-01-01

    The presence of narrow, shifted absorption features superposed on the wide P Cygni profiles of the UV resonance lines in the spectra of O and B stars is studied and possible explanations of the narrow components are discussed. Spectra from 26 stars of spectral types O4f to B1 Ib were examined for the presence of narrow components in the absorption part of the profiles, and positive evidence was detected in 17. The central velocities of the features are found to be similar for different ions of the same star, and typically equal to 0.75 times the terminal velocity of the stellar wind. The width of the narrow absorptions is about 18% of the terminal stellar wind velocity, with a column density generally not correlated with the effective temperature or mass loss rate. Possible explanations for the narrow components include peaks in the degree of ionization, a stationary stellar shell, a plateau in the stellar wind velocity law, a decelerating stellar wind, a variable mass loss rate or a two component stellar wind with low-velocity, low-density material found at a distance greater than 2 stellar radii, which explanation appears most likely.

  4. Seyfert 1 composite spectrum using SDSS Legacy survey data

    NASA Astrophysics Data System (ADS)

    Pol, Nihan; Wadadekar, Yogesh

    2017-02-01

    We present a rest-frame composite spectrum for Seyfert 1 galaxies using spectra obtained from the 12th Data Release of the Sloan Digital Sky Survey. The spectrum is constructed by combining data from a total of 10112 galaxies, spanning a redshift range of 0-0.793. We produce an electronic table of the median and geometric mean composite Seyfert 1 spectrum. We measure the spectral index of the composite spectrum, and compare it with that of the composite quasar spectrum. We also measure the flux and width of the strong emission lines present in the composite spectrum. We compare the entire spectrum with the quasar spectrum in the context of the unification model for active galactic nuclei. The two composite spectra match extremely well in the blue part of the spectrum, while there is an offset in flux in the red portion of the spectrum.

  5. HNC, HCN and CN in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, J. P.; Aalto, S.; Gerebro, H.

    2007-12-01

    Aims:Bright HNC 1-0 emission, rivalling that of HCN 1-0, has been found towards several Seyfert galaxies. This is unexpected since traditionally HNC is a tracer of cold (10 K) gas, and the molecular gas of luminous galaxies like Seyferts is thought to have bulk kinetic temperatures surpassing 50 K. There are four possible explanations for the bright HNC: (a) large masses of hidden cold gas; (b) chemistry dominated by ion-neutral reactions; (c) chemistry dominated by X-ray radiation; and (d) HNC enhanced through mid-IR pumping. In this work, we distinguish the cause of the bright HNC and to model the physical conditions of the HNC and HCN emitting gas. Methods: We have used SEST, JCMT and IRAM 30 m telescopes to observe HNC 3-2 and HCN 3-2 line emission in a selection of 5 HNC-luminous Seyfert galaxies. We estimate and discuss the excitation conditions of HCN and HNC in NGC 1068, NGC 3079, NGC 2623 and NGC 7469, based on the observed 3-2/1-0 line intensity ratios. We also observed CN 1-0 and 2-1 emission and discuss its role in photon and X-ray dominated regions. Results: HNC 3-2 was detected in 3 galaxies (NGC 3079, NGC 1068 and NGC 2623). Not detected in NGC 7469. HCN 3-2 was detected in NGC 3079, NGC 1068 and NGC 1365, it was not detected in NGC 2623. The HCN 3-2/1-0 ratio is lower than 0.3 only in NGC 3079, whereas the HNC 3-2/1-0 ratio is larger than 0.3 only in NGC 2623. The HCN/HNC 1-0 and 3-2 line ratios are larger than unity in all the galaxies. The HCN/HNC 3-2 line ratio is lower than unity only in NGC 2623, which makes it comparable to galaxies like Arp 220, Mrk 231 and NGC 4418. Conclusions: We conclude that in three of the galaxies the HNC emissions emerge from gas of densities n ⪉ 105 cm-3, where the chemistry is dominated by ion-neutral reactions. The line shapes observed in NGC 1365 and NGC 3079 show that these galaxies have no circumnuclear disk. In NGC 1068 the emission of HNC emerges from lower (<105 cm-3) density gas than HCN (>105 cm-3

  6. XMM-Newton Observations of the Heavily Absorbed Seyfert 1 Galaxy IC 4329A

    SciTech Connect

    Steenbrugge, K.

    2005-01-05

    We detect seven distinct absorbing systems in the high-resolution X-ray spectrum of the Seyfert 1 galaxy IC 4329A, taken with XMM-Newton. Firstly we detect absorption due to cold gas in our own Galaxy and warm gas in the Galactic halo or the Local Group. This local warm gas is only detected through O VII absorption, from which we deduce a temperature between 0.03 and 0.2 keV. In IC 4329A we detect absorption from the host galaxy as well as from a warm absorber, close to the nucleus, which has 4 components. The absorption from the host galaxy is well modeled by neutral material. The warm absorber detected in IC 4329A is photoionized and has an ionization range between log {xi} = -1.37 and log {xi} = 2.7. A broad excess is measured at the O VIII Ly{alpha} and N VII Ly{alpha} emission lines, which can be modeled by either disklines or multiple Gaussians. From the lightcurve we find that the source changed luminosity by about 20 % over the 140 ks observation, while the spectral shape, i.e. the softness ratio did not vary. In the EPIC spectra a narrow Fe K{alpha} and Fe XXVI Ly{alpha} emission line are detected. The narrowness of the Fe K{alpha} line and the fact that there is no evidence for flux variability between different observations leads us to conclude that the Fe K{alpha} line is formed at a large distance from the central black hole.

  7. A self-injection locked, Q-switched, line-narrowed Ti:Al/sub 2/O/sub 3/ laser

    SciTech Connect

    Barnes, N.P.; Williams, J.A.; Barnes, J.C.; Lockard, G.E.

    1988-06-01

    Line-narrowing, Q-switched, and self-injection locking are studied independently and as a system. Line narrowing is shown both theoretically and experimentally to depend on the inverse square root of the pulse evolution time interval. Q switching of the Ti:Al/sub 2/O/sub 3/ laser is demonstrated and the laser output energy as a function of the Q-switch delay is investigated. Self-injection is demonstrated and the operation of the laser is explored as a function of loss and the Q-switch delay. Finally, self-injection locking is demonstrated and the performance as a function of the Q-switch delay is determined.

  8. Circumnuclear molecular gas in starburst and Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Kameya, Osamo; Nakai, Naomasa

    1990-01-01

    In order to investigate circumnuclear molecular gaseous contents and their relation to the nuclear activity, researchers made a search for circumnuclear (12)CO (J=1-0) emission from 28 starburst-nucleus galaxies (SBNs) and 12 Seyfert galaxies with the recession velocities less than 5000 km/s, using the Nobeyama Radio Observatory 45-m telescope. The full half-power beam width of 17 arcsec covers a region of less than about 5 kpc in diameter for the sample galaxies. The circumnuclear CO emission was detected from twelve SBNs (one is marginal) and four Seyfert galaxies. The main results and conclusions are summarized. Researchers derived the circumnuclear surface density of molecular gas which is corrected for inclination of the galaxies. This analysis shows that the surface density spans a wide range over two orders of magnitude. Further, there is no significant difference in the surface densities between types 1 and 2 Seyfert galaxies. Thus, we may conclude that the circumnuclear molecular content is not a key parameter producing the dichotomy of the Seyfert galaxies. It is also shown that there is no significant difference in the circumnuclear surface densities of molecular gas among the Seyfert, starburst, and normal galaxies. This implies that the circumnuclear gaseous content is not a key parameter determining which activity occurs in nuclei. We may conclude that more centrally condensed (i.e., less than 10 - 100 pc in diameter) gas components play an essential role on the occurrence of nuclear activities. Comparing results with the previous ones, researchers deduced radial distribution of surface density of molecular gases. They cannot obtain evidence for strong central concentration of molecular gas in the sample Seyfert galaxies except for NGC 3227. This is consistent with the previous result by Blitz, Mathieu, and Bally (1986). Comparing the CO emission line profiles with the previous ones taken with the larger beams, researchers discovered circumnuclear

  9. The Origin of Double-peaked Narrow Lines in Active Galactic Nuclei. I. Very Large Array Detections of Dual AGNs and AGN Outflows

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Comerford, J. M.; Nevin, R.; Barrows, R. S.; Cooper, M. C.; Greene, J. E.

    2015-11-01

    We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have 2 optical AGN emission components separated by >0.″2, and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kiloparsec-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission line galaxies based on optical long-slit spectroscopy and high-resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect 2 compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 and 1.6 kpc in 3 galaxies: J1023+3243, J1158+3231, and J1623+0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼15% (3/18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼75% (13/18) of the double-peaked narrow emission lines, distributed in the following way: seven AGN wind-driven outflows, five radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% (2/18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high-resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.″18. Based on observations at the NRAO Karl G. Jansky VLA (program 12A-103).

  10. Importance of the chin in achieving a feminine lower face: narrowing the chin by the "mini V-line" surgery.

    PubMed

    Lee, Tae Sung; Kim, Hye Young; Kim, Takho; Lee, Ji Hyuck; Park, Sanghoon

    2014-11-01

    Surgery to narrow the chin is usually combined with mandible reduction, both of which may greatly improve the aesthetics of the lower face. However, some patients have a disproportionately wide chin without an excessive mandible angle. In these cases, it is possible to achieve a harmonic and well-balanced lower face by simply narrowing the anterior portion of the mandible, including the chin, and leaving the posterior part of the mandible untouched. Patients with a wide chin not willing to undergo mandible angle reduction or those with no indications for mandible reduction were considered primary candidates for the surgery. Patients with unsatisfactory results after previous mandible contouring surgeries were also considered eligible for this procedure. Narrowing genioplasty was performed by the T-osteotomy technique followed by further reduction of the bony steps at the chin-mandible junction. Among the 248 patients, 64.9% were primary cases that had a wide lower face mainly because of prominence in the chin region. The other 35.1% of the cases were patients with a prior surgical history of mandible reduction with dissatisfactory results, especially from the frontal view. All patients showed improved lower face contours after surgery, and patients were satisfied with their surgical outcomes. Balance between the chin and the lower face is essential to obtain an aesthetically pleasing face. Surgeons planning lower face contouring surgery should consider their options carefully, as chin narrowing surgery alone without mandible angle reduction can be used to achieve aesthetically pleasing results in selected cases.

  11. Transient Relativistically-Shifted Lines as a Probe of Black Hole Systems

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; Reeves, J. N.

    2003-01-01

    X-ray spectra of Seyfert-type Active Galaxies have revealed a new type of X-ray spectral feature, one which appears to offer important new insight into the black hole system. XMM revealed several narrow emission lines redward of Fe Kalpha in NGC 3516. Since that discovery in NGC 3516, the phenomenon has been observed in other Seyfert galaxies, e.g. NGC 7314 and ESO 198-G24. We present new evidence for a redshifted Fe line in XMM spectra of Mrk 766. These data reveal the first evidence for a significant shift in the energy of a redshift Fe line, the shift occurs over just a few tens of kiloseconds. This shift may be interpreted as deceleration of ejected gas, the velocity of the material lies just above the escape velocity at the implied radial location of the emitter.

  12. Transient Relativistically Shifted Lines as a Probe of Black Hole Systems

    NASA Astrophysics Data System (ADS)

    Turner, T. J.; Kraemer, S. B.; Reeves, J. N.

    2004-03-01

    X-ray spectra of Seyfert galaxies have revealed a new type of X-ray spectral feature, one that appears to offer important new insight into the black hole system. XMM revealed several narrow emission lines redward of Fe Kα in NGC 3516. Since that discovery the phenomenon has been observed in other Seyfert galaxies, e.g., NGC 7314 and ESO 198-G24. We present new evidence for a redshifted Fe line in XMM spectra of Mrk 766. These data reveal the first evidence for a significant shift in the energy of such a line, occurring over a few tens of kiloseconds. This shift may be interpreted as deceleration of an ejected blob of gas traveling close to the escape velocity.

  13. Detection of Ni 2 lambda 7378 in six Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Oke, J. B.

    1985-01-01

    A line due to Ni 2 7378 in the Seyfert galaxies NGC 1068, 2110, 3227, 4151, 5506, and Arp 102 B was detected. The average Ni abundance is about 2 times solar, which is 5 times less than in the filaments of the Crab Nebula. This argues for nucleosynthetic processing in the latter. The Ni 2 line is spatially revolved in NGC 1068, and shows at least a factor of 4 enhancement in the Ni abundance away from the nucleus. The off-nuclear abundance of Ni in NGC 1068 approaches that of the Crab, which strongly suggests that type supernovae enriched the off-nuclear gas clouds.

  14. The circumnuclear environment of the Seyfert 1 galaxy NGC 3516

    SciTech Connect

    Pogge, R.W.; McDonald Observatory, Austin, TX )

    1989-07-01

    Results of an emission-line imaging and spectrophotometric study of the ionized gas in the circumnuclear regions of the Seyfert 1 galaxy NGC 3516 are reported. The morphology and ionization of the gas are consistent with excitation by the power law continuum from the active nucleus. The optical emission-line gas is well aligned with the extended 6 cm radio-continuum emission. The ionization, structure, and published kinematical data are strongly suggestive of an outflow origin for the circumnuclear gas, although important details are missing to firmly establish outflow as the origin of all of the ionized gas. 31 refs.

  15. The Spectral Energy Distribution of the Seyfert Galaxy Ton S180

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.; hide

    2001-01-01

    We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.

  16. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  17. ROSAT Position Sensitive Proportional Counter spectra of six Seyfert 1 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; George, I. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT Position Sensitive Proportional Counter observations of six Seyfert 1 galaxies in the soft (0.1-2.0 keV) X-ray band. The sources (Mrk 335, ESO 198-G24, ESO 141-G55, Mrk 509, NGC 7469, and MCG-2-58-22) were chosen to have low absorbing column densities along the line of sight. As expected, it is found that all the sources possess significantly steeper spectra below about 1 keV than observed at higher X-ray energies. Assuming a simple absorbed power-law spectral model, the mean (photon) spectral index for the sample is Gamma = 2.38 +/- 0.25, compared to the canonical 1.7 typically observed in the 2-10 keV band. Furthermore, we find strong evidence for soft X-ray spectral features in half the sources. In NGC 7469 and ESO 198-G24, we find that the addition of a narrow emission line or an absorption edge to the underlying continuum is a significant improvement to the parameterization of the spectra. Mrk 335 also shows evidence for spectral complexity, but from these data it is not possible to unambiguously distinguish between an absorption edge and a steepening of the spectrum at low energies. We examine these results in the light of the accuracy of the PSPC spectral calibration.

  18. The Seyfert II Nature of the IRAS Source FSC10214+4724

    NASA Astrophysics Data System (ADS)

    Eisenhardt, P.; Elston, R.; McCarthy, P.; Dickinson, M.; Spinrad, H.; Jannuzi, B.; Maloney, P.

    1993-05-01

    We (Elston et al. 1993) have observed the rest frame optical and UV spectra of the luminous, high redshift IRAS galaxy FSC10214+4724. We find the [NII]/Hα and [OIII]/Hβ emission line ratios to be typical of those found in Seyfert II galaxies. The large Hα /Hβ ratio suggests substantial reddening of the narrow line region. The rest-frame optical emission is unpolarized (P=2.6+/-3.0%). These properties are very similar to those of the infrared luminous galaxies found at lower redshift, suggesting that FSC10214+4724 is the luminous extreme of the same population. A deep 1.6microns image of the field shows FSC10214+4724 to be unresolved with two nearby companions and several other faint objects within 10('') of the point source. These could be a a foreground group of galaxies or galaxies physically associated with FSC10214+4724. This aggregate of objects may have contributed some of the far-infrared flux detected within the large beam of IRAS. If there is a foreground group gravitational lensing may contribute to the large luminosity of FSC10214+4724.

  19. Las Estructuras centrales de la galaxia Seyfert NGC 7582

    NASA Astrophysics Data System (ADS)

    Celiz, D.; Gaspar, G.; Díaz, R.; D'Ambra, A.

    2017-10-01

    We present the first stage of the study of the Seyfert Galaxy NGC 7582 through high spatial resolution NIR images obtained with the instrument Flamingos-2 of Gemini South. NGC 7582 harbours a Seyfert 2 nucleus that in 1998 experienced an unusual change in its optical emission line spectrum, remaining as a Seyfert 1 nucleus for some months. Moreover, variations in its X-ray spectrum have been interpreted as evidence of the clumpy nature of the circumnuclear absorbing material, conceived as a torus in the Unified Model. These peculiarities plus the high inclination of the galaxy make it a suitable candidate for deep infrared observations. In this work we present high resolution images of the galaxy, from which we caracterized the most central regions, specially the circumnuclear ring and a "box-type" structure, little studied to date. We performed aperture photometry of the nucleus for different radii. We find that the measured magnitudes are consistent with those reported in the literature for previous epochs, indicating that the nucleus has not suffered dramatic variations during this observation epoch.

  20. THE DUST SUBLIMATION RADIUS AS AN OUTER ENVELOPE TO THE BULK OF THE NARROW Fe Kα LINE EMISSION IN TYPE 1 AGNs

    SciTech Connect

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-20

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (R{sub Fe}) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (R{sub dust}) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. R{sub Fe} matches R{sub dust} well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, R{sub Fe} is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of R{sub Fe}, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.

  1. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; Milde, T.; Staacke, N.; Aßmann, C.; Carpintero, G.; Sacher, J.

    2017-07-01

    Narrow-linewidth tunable diode lasers are an important tool for spectroscopic instrumentation. Conventional external cavity diode lasers offer high output power and narrow linewidth. However, most external cavity diode lasers are designed as laboratory instrument and do not allow portability. In comparison, other commonly used lasers, like distributed feedback lasers (DFB) that are capable of driving a handheld device, are limited in power and show linewidths which are not sufficiently narrow for certain applications. We present new miniaturized types of tunable external cavity diode laser which overcome the drawbacks of conventional external cavity diode lasers and which preserve the advantages of this laser concept. Three different configurations are discussed in this article. The three types of miniaturized external cavity diode laser systems achieve power values of more than 50 mW within the 1.4 μm water vapor absorption band with excellent side-mode suppression and linewidth below 100 kHz. Typical features outstand with respect to other type of laser systems which are of extended use such as DFB laser diodes. The higher output power and the lower linewidth will enable a higher sensitivity and resolution for a wide range of applications.

  2. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    PubMed

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  3. Observation of narrow states in nuclei beyond the proton drip line: {sup 15}F and {sup 16}Ne

    SciTech Connect

    Mukha, I.; Timofeyuk, N. K.; Suemmerer, K.; Chatillon, A.; Geissel, H.; Hofmann, J.; Kurz, N.; Nociforo, C.; Ott, W.; Roeckl, E.; Weick, H.; Acosta, L.; Garcia-Ramos, J. E.; Martel, I.; Alvarez, M. A. G.; Espino, J. M.; Gomez-Camacho, J.; Casarejos, E.; Cortina-Gil, D.; Rodriguez-Tajes, C.

    2009-06-15

    Two high-lying states in {sup 15}F and {sup 16}Ne, unbound with respect to one-proton (1p) and two-proton (2p) emissions, have been observed in the fragmentation of {sup 17}Ne at intermediate energies. They undergo mainly sequential emissions of protons via intermediate states in {sup 14}O and {sup 15}F and have decay energies of 7.8(2) and 7.6(2) MeV, respectively. The widths of the newly observed states in {sup 15}F and {sup 16}Ne are much smaller than the Wigner limits for single-particle configurations, of 0.4(4) and 0.8({sub +8}{sup -4}) MeV, respectively. In addition, narrow widths of 0.2(2) MeV are derived for two other high-lying states in {sup 15}F with Q{sub p} of 4.9 and 6.4 MeV, which match features of the recently predicted narrow odd-parity {sup 15}F states with two valence protons in the sd shell. All energies and widths have been obtained by analyzing angular correlations of the decay products, p-p-{sup 14}O and p-p-{sup 13}N, whose trajectories have been measured by a tracking technique with silicon microstrip detectors.

  4. The Origin of Double-peaked Narrow Lines in Active Galactic Nuclei. II. Kinematic Classifications for the Population at z < 0.1

    NASA Astrophysics Data System (ADS)

    Nevin, R.; Comerford, J.; Müller-Sánchez, F.; Barrows, R.; Cooper, M.

    2016-11-01

    We present optical long-slit observations of the complete sample of 71 Type 2 active galactic nuclei (AGNs) with double-peaked narrow emission lines at z < 0.1 in the Sloan Digital Sky Survey. Double-peaked emission lines are produced by a variety of mechanisms including disk rotation, kiloparsec-scale dual AGNs, and narrow-line region (NLR) kinematics (outflows or inflows). We develop a novel kinematic classification technique to determine the nature of these objects using long-slit spectroscopy alone. We determine that 86% of the double-peaked profiles are produced by moderate-luminosity AGN outflows, 6% are produced by rotation, and 8% are ambiguous. While we are unable to directly identify dual AGNs with long-slit data alone, we explore their potential kinematic classifications with this method. We also find a positive correlation between the NLR size and luminosity of the AGN NLRs (R {}{NLR}\\propto {L}[{{O} {{III}}]}0.21+/- 0.05), indicating a clumpy two-zone ionization model for the NLR.

  5. Ultraviolet spectropolarimetry of Seyfert 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Hurt, Todd

    Spectropolarimetry has proven to be a useful technique in clarifying the relationship between the two types of Seyfert galaxies. In practice, interstellar polarization and contamination from host galaxy starlight complicate the interpretation of optical spectropolarimetry. Fortunately, both of these difficulties can be overcome by observing at shorter wavelengths. For this reason, we (Cohen R., Hurt T., Antonucci R., Kay L. and Krolik J.) are pursuing a program of ultraviolet spectropolarimetry of Seyfert 2s with HST.

  6. Diffuse emission and pathological Seyfert spectra

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.

  7. KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES

    SciTech Connect

    Comerford, Julia M.; Gerke, Brian F.; Cooper, Michael C.; Weiner, Benjamin J.; Newman, Jeffrey A.; Madsen, Kristin; Barrows, R. Scott

    2012-07-01

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 {<=} z {<=} 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with {approx}kpc projected spatial separations on the sky (0.2 h{sup -1}{sub 70} kpc <{Delta}x < 5.5 h{sup -1}{sub 70} kpc; median {Delta}x = 1.1 h{sup -1}{sub 70} kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58{sup +5}{sub -6}%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42{sup +6}{sub -5}%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32{sup +8}{sub -6}% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational

  8. Kiloparsec-scale Spatial Offsets in Double-peaked Narrow-line Active Galactic Nuclei. I. Markers for Selection of Compelling Dual Active Galactic Nucleus Candidates

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Gerke, Brian F.; Stern, Daniel; Cooper, Michael C.; Weiner, Benjamin J.; Newman, Jeffrey A.; Madsen, Kristin; Barrows, R. Scott

    2012-07-01

    Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 <= z <= 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with ~kpc projected spatial separations on the sky (0.2 h -1 70 kpc <Δx < 5.5 h -1 70 kpc median Δx = 1.1 h -1 70 kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58+5 - 6%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42+6 - 5%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32+8 - 6% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational criteria for selecting the most promising dual AGN candidates from the full sample of

  9. The unusual emission line spectrum of I Zw 1

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Joly, M.; Véron, P.

    2004-04-01

    Most Seyfert 1 galaxies show strong Fe II lines in their spectrum having the velocity and width of the broad emission lines. To remove the Fe II contribution in these objects, an accurate template is necessary. We used very high signal-to-noise, medium resolution archive optical spectra of I Zw 1 to build such a template. I Zw 1 is a bright narrow-line Seyfert 1 galaxy. As such it is well suited for a detailed analysis of its emission line spectrum. Furthermore it is known to have a very peculiar spectrum with, in addition to the usual broad and narrow line regions, two emission regions emitting broad and blue shifted [O III] lines making it a peculiarly interesting object. While analysing the spectra, we found that the narrow-line region is, unlike the NLR of most Seyfert 1 galaxies, a very low excitation region dominated by both permitted and forbidden Fe II lines. It is very similar to the emission spectrum of a blob in η Carinae which is a low temperature (Te˜6500 K), relatively high density (Ne= 106 cm-3) cloud. The Fe II lines in this cloud are mainly due to pumping via the stellar continuum radiation field (Verner et al. \\cite{verner02}). We did not succeed in modelling the spectrum of the broad-line region, and we suggest that a non radiative heating mechanism increases the temperature in the excited H I region, thus providing the necessary additional excitation of the Fe II lines. For the low-excitation narrow-line region, we are able to apply boundaries to the physical conditions accounting for the forbidden and permitted Fe II lines (106lines} and \\ref{N3} are only available in electronic form at http://www.edpsciences.org Figure 8 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/515

  10. Are there two populations of X-ray absorbers in Seyfert 2 galaxies?

    NASA Astrophysics Data System (ADS)

    Gelbord, J. M.; Weaver, K. A.

    1998-12-01

    The canonical unified model for Seyfert galaxies (Antonucci, 1993, ARA&A 31, 473) posits the existance of a nuclear torus which blocks the direct line of sight to the central engine of type 2 Seyferts. However, another possibility would be that in at least some Seyfert galaxies the obscuring body could be the disk of the host galaxy (Schmitt et al., 1997, ApJ 477, 623). The column densities of the putative tori should be a few orders of magnitude larger than those of the host galaxy planes, so we would expect a bimodal distribution of NH columns if either of these absorbers could be responsible. Starting with the subset of the Schmitt et al. sample for which ASCA data is available, we are measuring the NH column densities using a variety of spectral models. The resulting distribution of column densities is then interpreted with consideration of both optically observed galactic inclinations and possible nuclear torus orientations implied from observed radio elongation axes. This work is being done as a part of a thesis project to examine the emission and absorption features in the X-ray spectra of a large sample of Seyfert galaxies, and to combine this data with observations made in other wavebands in order to put constraints on the unified model of Seyfert galaxies.

  11. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  12. Stabilization and line narrowing of a frequency comb locked to an acetylene stabilized fibre laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Talvard, Thomas; Mortensen, Nicolai F.; Gøth, Bjarke; Westergaard, Philip G.; DePalatis, Michael V.; Drewsen, Michael; Hald, Jan

    2017-02-01

    We demonstrate a significant improvement when referencing a frequency comb to an acetylene stabilized fiber laser as compared to a GPS-disciplined Rb clock reference. The Stabilaser 1542 is a compact, maintenance-free stand-alone acetylene stabilized fiber laser with a narrow linewidth and an Allan deviation of 3E-13 and 4E-14 in 1 s and 10000 s, respectively. Switching the comb reference from the Rb clock to the Stabilaser 1542 improves both comb linewidth and Allan deviation by about two orders of magnitude. Furthermore, long-term measurements of the Stabilaser 1542 frequency with reference to the GPS-disciplined clock indicate a potential accuracy of 1E-12.

  13. Preliminary results on the study of the environment of a complete sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Rafanelli, P.

    1997-07-01

    The results of the study of the environment of a complete sample of Seyfert galaxies taken from the CfA Redshift Survey (Davis et al. 1983; Huchra et al. 1983) are shown. In particular we compare the distribution of the positions of all galaxies located within five diameters from each Seyfert galaxy of our sample with the analogous distribution observed in a control sample of normal galaxies taken from the Merged Catalogue of Galaxies (hereafter MERCG) (Kogoshvili 1986). This research is based on the analysis of the digitized images of the "Digitized Sky Survey" and on the on--line catalogues APM (Automatic Plate Measuring System) and APS (Automated Plate Scanner).

  14. Einstein SSS+MPC observations of Seyfert type galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Turner, T. J.; Mushotzky, R. F.; Weaver, K.

    1989-01-01

    The X-ray spectra of 27 Seyfert galaxies measured with the Solid State Spectrometer (SSS) onboard the Einstein Observatory is investigated. This new investigation features the utilization of simultaneous data from the Monitor Proportional Counter (MPC) and automatic correction for systematic effects in the SSS. The new results are that the best-fit single power law indices agree with those previously reported, but that soft excesses are inferred for at least 20 percent of the measured spectra. The soft excesses are consistent with either an approximately 0.25 keV black body or Fe-L line emission.

  15. Eye in the Sky: A New Look at the Seyfert Connection

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1997-01-01

    Observations obtained under this ASCA grant have been fully reduced. We have also extracted data from the ROSAT archive to complement the ASCA spectrum, and demonstrate that the source is time variable, a key clue to its nature. These results are nearly ready for submission. To reconcile the high soft X-ray luminosity of IRAS 00317-2142 with its properties at other wavelengths, we observed the galaxy with the ASCA satellite on 12/12/95 for 37 ks with these SIS and 41 ks with the GIS; a fit to the combined spectra. In combination with an archived 9.3 ks ROSAT PSPC observation, obtained 6/23/92 these data reveal significant spectral and flux variability. Although somewhat prosaic, these results are very significant in the context of the so called 'narrow-line X-ray galaxies' which are being discovered with increasing frequency in surveys of faint ROSAT sources. It may well be that these too are unremarkable and are included in current counts of Seyfert galaxies, meaning they are not the long-sought new component of the cosmic X-ray background.

  16. The Seyfert II Nature of the IRAS Source FSC10214+4724

    NASA Technical Reports Server (NTRS)

    Eisenhardt, P.; Elston, R.; McCarthy, P.; Dickinson, M.; Spinrad, H.; Jannuzi, B.; Maloney, P.

    1994-01-01

    We have observed the rest-frame optical and UV spectra of the luminous, high redshift IRAS source FSC10214+4724. We find the optical emission lines to be characterized by ratios similar to those found in Seyfert II galaxies.

  17. The Seyfert II Nature of the IRAS Source FSC10214+4724

    NASA Technical Reports Server (NTRS)

    Eisenhardt, P.; Elston, R.; McCarthy, P.; Dickinson, M.; Spinrad, H.; Jannuzi, B.; Maloney, P.

    1994-01-01

    We have observed the rest-frame optical and UV spectra of the luminous, high redshift IRAS source FSC10214+4724. We find the optical emission lines to be characterized by ratios similar to those found in Seyfert II galaxies.

  18. Investigating the Gas Kinematics of High-Redshift Active Galactic Nuclei with Double-Peaked Narrow Emission Lines

    NASA Astrophysics Data System (ADS)

    Barrows, Robert S.; Stern, D.; Lacy, C. H. S.; Kennefick, J.; Kennefick, D.; Seigar, M.

    2012-05-01

    Pairs of supermassive black holes (SMBHs) are a natural consequence of galaxy mergers, and these systems are observable when both SMBHs are accreting as active galactic nuclei (AGN). Observational evidence for these AGN pairs (dual AGN) has dramatically increased recently through a combination of spectroscopic selection of candidates from double-peaked optical emission lines and follow-up morphological data. The primary motivation for compiling a sample of dual AGN is for their use in tracing galaxy mergers and in constraining the link between galaxy mergers and AGN enhancement. Therefore, this phenomenon should be investigated at higher redshifts when galaxy mergers were more frequent. Motivated by our detailed analysis of a candidate dual AGN at a relatively high redshift (z=1.175), we have compiled a sample of analogous sources at z>0.80 identified from double-peaked UV emission lines in the Sloan Digital Sky Survey (SDSS). The double-peaked profile can be mimicked by gas-kinematics around a single AGN, including large-scale outflows, which are known to affect the velocity profiles of high-ionization UV emission lines. Through emission line diagnostics, we have taken advantage of access to rest-frame UV emission lines in SDSS quasar spectra, allowing us to investigate the kinematics of the ionized gas. In particular, for each of these sources we have put constraints on the likelihood of a correlation between peak velocity-offset and ionization potential. Such tests will aid in determining which double-peaked emission line sources are most likely the result of an outflow and which are strong dual AGN candidates. This study will both increase the sample size of candidate dual AGN for follow-up observations and extend the sample to higher redshifts.

  19. Spectral variability of the 3C 390.3 nucleus for more than 20 yr - I. Variability of the broad and narrow emission line fluxes

    NASA Astrophysics Data System (ADS)

    Sergeev, S. G.; Nazarov, S. V.; Borman, G. A.

    2017-02-01

    We summarize results of the analysis of the optical variability of the continuum and emission-line fluxes in the 3C 390.3 nucleus during 1992-2014. The [O III] λ5007 flux increases monotonically by ≈30 per cent in 2003-2014. The narrow Balmer lines show similar monotonic increase, while the variability patterns of the [O I] λ6300 narrow line are completely different from that of [O III]. The reverberation lags are found to be 88.6 ± 8.4, 161 ± 15, and 113 ± 14 d for the Hβ, Hα, and Hγ broad emission lines, respectively. The reverberation mass of the central black hole equals to (1.87 ± 0.26) × 109 M⊙ and (2.81 ± 0.38) × 109 M⊙, for the Hβ and Hα lines and assuming a scaling factor which converts the virial product to a mass to be f = 5.5. A difference between both masses can point to a difference between kinematics of the Hα and Hβ emission regions. We show that the reverberation mapping can only be applied to the entire period of observations of the 3C 390.3 nucleus after removing a long-term trend. This trend has been expressed by a slowly varying scalefactor c(t) in the power-law relationship between the line and continuum fluxes: F_{line}∝ c(t) F_{cont}^a. We find that the power-law index a equals to 0.77 and 0.54 for the Hβ and Hα lines, respectively. The observed relationship between the Balmer decrement and the optical continuum flux is as follows: F(Hα)/F(H β ) ∝ F_{cont}^{-0.20} and F(Hβ)/F(H γ ) ∝ F_{cont}^{-0.18}. The 3C 390.3 nucleus is an 'outsider' in the relationship between optical luminosity and black hole mass. Its Eddington ratio is Ebol/EEdd = 0.0037.

  20. Optical and ultraviolet observations of the narrow-lined type Ia SN 2012fr in NGC 1365

    SciTech Connect

    Zhang, Ju-Jia; Bai, Jin-Ming; Wang, Bo; Liu, Zheng-Wei; Wang, Xiao-Feng; Zhao, Xu-Lin; Chen, Jun-Cheng; Zhang, Tian-Meng E-mail: baijinming@ynao.ac.cn

    2014-07-01

    Extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2012fr are presented in this paper. It has a relatively high luminosity, with an absolute B-band peak magnitude of about –19.5 mag and a smaller post-maximum decline rate than normal SNe Ia (e.g., Δm {sub 15}(B) =0.85 ± 0.05 mag). Based on the UV and optical light curves, we derived that a {sup 56}Ni mass of about 0.88 M {sub ☉} was synthesized in the explosion. The earlier spectra are characterized by noticeable high-velocity features of Si II λ6355 and Ca II with velocities in the range of ∼22, 000-25, 000 km s{sup –1}. At around the maximum light, these spectral features are dominated by the photospheric components which are noticeably narrower than normal SNe Ia. The post-maximum velocity of the photosphere remains almost constant at ∼12,000 km s{sup –1} for about one month, reminiscent of the behavior of some luminous SNe Ia like SN 1991T. We propose that SN 2012fr may represent a subset of the SN 1991T-like SNe Ia viewed in a direction with a clumpy or shell-like structure of ejecta, in terms of a significant level of polarization reported in Maund et al. in 2013.

  1. VizieR Online Data Catalog: Double-peaked narrow lines in AGN. II. z<0.1 (Nevin+, 2016)

    NASA Astrophysics Data System (ADS)

    Nevin, R.; Comerford, J.; Muller-Sanchez, F.; Barrows, R.; Cooper, M.

    2017-02-01

    To determine the nature of 71 Type 2 AGNs with double-peaked [OIII] emission lines in SDSS that are at z<0.1 and further characterize their properties, we observe them using two complementary follow-up methods: optical long-slit spectroscopy and Jansky Very Large Array (VLA) radio observations. We use various spectrographs with similar pixel scales (Lick Kast Spectrograph; Palomar Double Spectrograph; MMT Blue Channel Spectrograph; APO Dual Imaging Spectrograph and Keck DEep Imaging Multi-Object Spectrograph. We use a 1200 lines/mm grating for all spectrographs; see table 1. In future work, we will combine our long-slit observations with the VLA data for the full sample of 71 galaxies (O. Muller-Sanchez+ 2016, in preparation). (4 data files).

  2. RX J1301.9+2747: A HIGHLY VARIABLE SEYFERT GALAXY WITH EXTREMELY SOFT X-RAY EMISSION

    SciTech Connect

    Sun Luming; Shu Xinwen; Wang Tinggui E-mail: xwshu@mail.ustc.edu.cn

    2013-05-10

    In this paper we present a temporal and spectral analysis of X-ray data from XMM-Newton and Chandra observations of the ultrasoft and variable Seyfert galaxy RX J1301.9+2747. In both observations the source clearly displays two distinct states in the X-ray band: a long quiescent state and a short flare (or eruptive) state which differs in count rates by a factor of 5-7. The transition from the quiescent to the flare state occurs in 1-2 ks. We have observed that the quiescent state spectrum is unprecedentedly steep with a photon index {Gamma} {approx} 7.1, and the spectrum of the flare state is flatter with {Gamma} {approx} 4.4. X-rays above 2 keV were not significantly detected in either state. In the quiescent state, the spectrum appears to be dominated by a blackbody component of temperature about {approx}30-40 eV, which is comparable to the expected maximum effective temperature from the inner accretion disk. The quiescent state, however, requires an additional steep power law, presumably arising from Comptonization by transient heated electrons. The optical spectrum from the Sloan Digital Sky Survey shows Seyfert-like narrow lines for RX J1301.9+2747, while Hubble Space Telescope imaging reveals a central point source for the object. In order to precisely determine the hard X-ray component, future longer X-ray observations are required. This will help constrain the accretion disk model for RX J1301.9+2747, and shed new light on the characteristics of the corona and accretion flows around black holes.

  3. Gas inflows towards the nucleus of the Seyfert 2 galaxy NGC 1667

    NASA Astrophysics Data System (ADS)

    Schnorr-Müller, Allan; Storchi-Bergmann, Thaisa; Ferrari, Fabricio; Nagar, Neil M.

    2017-01-01

    We use optical spectra from the inner 2 × 3 kpc2 of the Seyfert 2 galaxy NGC 1667, obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈ 240 pc, to assess the feeding and feedback processes in this nearby AGN. We have identified two gaseous kinematical components in the emission line profiles: a broader component (σ ≈ 400 km s-1) which is observed in the inner 1-2″ and a narrower component (σ ≈ 200 km s-1) which is present over the entire field-of-view. We identify the broader component as due to an unresolved nuclear outflow. The narrower component velocity field shows strong isovelocity twists relative to a rotation pattern, implying the presence of strong non-circular motions. The subtraction of a rotational model reveals that these twists are caused by outflowing gas in the inner ≈ 1″, and by inflows associated with two spiral arms at larger radii. We calculate an ionized gas mass outflow rate of dot{M}_{out} ≈ 0.16 M⊙ yr-1. We calculate the net gas mass flow rate across a series of concentric rings, obtaining a maximum mass inflow rate in ionized gas of ≈ 2.8 M⊙ year-1 at 800 pc from the nucleus, which is two orders of magnitude larger than the accretion rate necessary to power this AGN. However, as the mass inflow rate decreases at smaller radii, most of the gas probably will not reach the AGN, but accumulate in the inner few hundred parsecs. This will create a reservoir of gas that can trigger the formation of new stars.

  4. Gas inflows towards the nucleus of the Seyfert 2 galaxy NGC 1667

    NASA Astrophysics Data System (ADS)

    Schnorr-Müller, Allan; Storchi-Bergmann, Thaisa; Ferrari, Fabricio; Nagar, Neil M.

    2017-04-01

    We use optical spectra from the inner 2 × 3 kpc2 of the Seyfert 2 galaxy NGC 1667, obtained with the Gemini Multi-Object Spectrograph integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈240 pc, to assess the feeding and feedback processes in this nearby active galactic nucleus (AGN). We have identified two gaseous kinematical components in the emission line profiles: a broader component (σ ≈ 400 km s-1) that is observed in the inner 1-2 arcsec and a narrower component (σ ≈ 200 km s-1) that is present over the entire field of view. We identify the broader component as due to an unresolved nuclear outflow. The narrower component velocity field shows strong isovelocity twists relative to a rotation pattern, implying the presence of strong non-circular motions. The subtraction of a rotational model reveals that these twists are caused by outflowing gas in the inner ≈1 arcsec, and by inflows associated with two spiral arms at larger radii. We calculate an ionized gas mass outflow rate of \\dot{M}_{out} ≈ 0.16 M⊙ yr-1. We calculate the net gas mass flow rate across a series of concentric rings, obtaining a maximum mass inflow rate in ionized gas of ≈2.8 M⊙ yr-1 at 800 pc from the nucleus, which is two orders of magnitude larger than the accretion rate necessary to power this AGN. However, as the mass inflow rate decreases at smaller radii, most of the gas probably will not reach the AGN, but accumulate in the inner few hundred parsecs. This will create a reservoir of gas that can trigger the formation of new stars.

  5. THE MID-INFRARED HIGH-IONIZATION LINES FROM ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES

    SciTech Connect

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Diamond-Stanic, Aleksandar M.; Rieke, George H.

    2010-12-20

    We used Spitzer/Infrared Spectrograph spectroscopic data on 426 galaxies including quasars, Seyferts, LINERs, and H II galaxies to investigate the relationship among the mid-IR emission lines. There is a tight linear correlation between the [Ne V]14.3 {mu}m and 24.3 {mu}m (97.1 eV) and the [O IV]25.9 {mu}m (54.9 eV) high-ionization emission lines. The correlation also holds for these high-ionization emission lines and the [Ne III]15.56 {mu}m (41 eV) emission line, although only for active galaxies. We used these correlations to calculate the [Ne III] excess due to star formation in Seyfert galaxies. We also estimated the [O IV] luminosity due to star formation in active galaxies and determined that it dominates the [O IV] emission only if the contribution of the active nucleus to the total luminosity is below 5%. We find that the active galactic nucleus dominates the [O IV] emission in most Seyfert galaxies, whereas star formation adequately explains the observed [O IV] emission in optically classified H II galaxies. Finally, we computed photoionization models to determine the physical conditions of the narrow-line region where these high-ionization lines originate. The estimated ionization parameter range is -2.8 < log U < -2.5 and the total hydrogen column density range is 20 < log n{sub H} (cm{sup -2}) < 21.

  6. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495.

    PubMed

    Fabian, A C; Zoghbi, A; Ross, R R; Uttley, P; Gallo, L C; Brandt, W N; Blustin, A J; Boller, T; Caballero-Garcia, M D; Larsson, J; Miller, J M; Miniutti, G; Ponti, G; Reis, R C; Reynolds, C S; Tanaka, Y; Young, A J

    2009-05-28

    Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG-6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the