Sample records for narrow spectral window

  1. Acquisition and visualization techniques for narrow spectral color imaging.

    PubMed

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  2. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution, appendix 4

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1989-01-01

    The power spectrum for a stationary random process can be defined with the Wiener-Khintchine Theorem, which says that the power spectrum and the auto correlation function are a Fourier transform pair. To implement this theorem for signals that are discrete and of finite length we can use the Blackman-Tukey method. Blackman and Tukey (1958) show that a function w(tau), called a lag window, can be applied to the auto correlation estimates to obtain power spectrum estimates that are statistically stable. The Fourier transform of w(r) is called a spectral window. Typical choices for spectral windows show a distinct trade-off between the main lobe width and side lobe strength. A new idea for designing windows by taking linear combinations of the standard windows to produce hybrid windows was introduced by Smith (1985). We implement Smith's idea to obtain spectral windows with narrow main lobes and smaller (compared with typical windows) near side lobes. One of the main contributions of this thesis is that we show that Smith's problem is equivalent to a Quadratic Programming (QP) problem with linear equality and inequality constraints. A computer program was written to produce hybrid windows by setting up and solving the QP problem. We also developed and solved two variations of the original problem. The two variations involved changing the inequality constraints in both cases from non negativity on the combination coefficients to non negativity on the hybrid lag window itself. For the second variation, the window functions used to construct the hybrid window were changed to a frequency-variable set of truncated cosinusoids. A series of tests was run with the three computer programs to investigate the behavior of the hybrid spectral and lag windows. Emphasis was put on obtaining spectral windows with both relatively narrow main lobes and the lowest possible (for these algorithms) near side lobes. Some success was achieved for this goal. A 10 dB peak side lobe reduction over the rectangular spectral window without significant main lobe broadening was achieved. Also, average side lobe levels of -117 dB were reached at a cost of doubling the main lobe width (at the -3 dB point).

  3. Spectral Engineering of Slow Light, Cavity Line Narrowing, and Pulse Compression

    NASA Astrophysics Data System (ADS)

    Sabooni, Mahmood; Li, Qian; Rippe, Lars; Mohan, R. Krishna; Kröll, Stefan

    2013-11-01

    More than 4 orders of magnitude of cavity-linewidth narrowing in a rare-earth-ion-doped crystal cavity, emanating from strong intracavity dispersion caused by off-resonant interaction with dopant ions, is demonstrated. The dispersion profiles are engineered using optical pumping techniques creating significant semipermanent but reprogrammable changes of the rare-earth absorption profiles. Several cavity modes are shown within the spectral transmission window. Several possible applications of this phenomenon are discussed.

  4. Signal and noise level estimation for narrow spectral width returns observed by the Indian MST radar

    NASA Astrophysics Data System (ADS)

    Hooper, D. A.

    1999-07-01

    Use is made of five sets of multibeam observations of the lower atmosphere made by the Indian mesosphere-stratosphere-troposphere (MST) radar. Two aspects of signal processing which can lead to serious underestimates of the signal-to-noise ratio are considered. First, a comparison is made of the effects of different data weighting windows applied to the inphase and quadrature components of the radar return samples prior to Fourier transformation. The relatively high degree of spectral leakage associated with the rectangular and Hamming windows can give rise to overestimates of the noise levels by up to 28 dB for the strongest signals. Use of the Hanning window is found to be the most appropriate for these particular data. Second, a technique for removing systematic dc biases from the data in the time domain is compared with the more well-known practice of correction in the frequency domain. The latter technique, which is often used to remove the effects of ground clutter, is shown to be particularly inappropriate for the characteristically narrow spectral width signals observed by the Indian MST radar. For cases of near-zero Doppler shift it can remove up to 30 dB of signal information. The consequences of noise and signal level discrepancies for studies of refractivity structures are discussed. It is shown that neither problem has a significant effect on Doppler shift or spectral width estimates.

  5. An assessment of prewhitening in estimating power spectra of atmospheric turbulence at long wavelengths

    NASA Technical Reports Server (NTRS)

    Keisler, S. R.; Rhyne, R. H.

    1976-01-01

    Synthetic time histories were generated and used to assess the effects of prewhitening on the long wavelength portion of power spectra of atmospheric turbulence. Prewhitening is not recommended when using the narrow spectral windows required for determining power spectral estimates below the 'knee' frequency, that is, at very long wavelengths.

  6. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Kratz, David P.; Gupta, Shashi K.

    1999-01-01

    Accurate accounting of surface emissivity is essential for the retrievals of surface temperature from remote sensing measurements, and for the computations of longwave (LW) radiation budget of the Earth?s surface. Past studies of the above topics assumed that emissivity for all surface types, and across the entire LW spectrum is equal to unity. There is strong evidence, however, that emissivity of many surface materials is significantly lower than unity, and varies considerably across the LW spectrum. We have developed global maps of surface emissivity for the broadband LW region, the thermal infrared window region (8-12 micron), and 12 narrow LW spectral bands. The 17 surface types defined by the International Geosphere Biosphere Programme (IGBP) were adopted as such, and an additional (18th) surface type was introduced to represent tundra-like surfaces. Laboratory measurements of spectral reflectances of 10 different surface materials were converted to corresponding emissivities. The 10 surface materials were then associated with 18 surface types. Emissivities for the 18 surface types were first computed for each of the 12 narrow spectral bands. Emissivities for the broadband and the window region were then constituted from the spectral band values by weighting them with Planck function energy distribution.

  7. A narrow band pattern-matching model of vowel perception

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.; Houde, Robert A.

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  8. Two-step phase-shifting SPIDER

    NASA Astrophysics Data System (ADS)

    Zheng, Shuiqin; Cai, Yi; Pan, Xinjian; Zeng, Xuanke; Li, Jingzhen; Li, Ying; Zhu, Tianlong; Lin, Qinggang; Xu, Shixiang

    2016-09-01

    Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.

  9. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  10. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  11. Transparency of 2μ m window of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Rannou, P.; Seignovert, B.; Le Mouélic, S.; Maltagliati, L.; Rey, M.; Sotin, C.

    2018-02-01

    Titan's atmosphere is optically thick and hides the surface and the lower layers from the view at almost all wavelengths. However, because gaseous absorptions are spectrally selective, some narrow spectral intervals are relatively transparent and allow to probe the surface. To use these intervals (called windows) a good knowledge of atmospheric absorption is necessary. Once gas spectroscopic linelists are well established, the absorption inside windows depends on the way the far wings of the methane absorption lines are cut-off. We know that the intensity in all the windows can be explained with the same cut-off parameters, except for the window at 2 μm. This discrepancy is generally treated with a workaround which consists in using a different cut-off description for this specific window. This window is relatively transparent and surface may have specific spectral signatures that could be detected. Thus, a good knowledge of atmosphere opacities is essential and our scope is to better understand what causes the difference between the 2 μm window and the other windows. In this work, we used scattered light at the limb and transmissions in occultation observed with VIMS (Visual Infrared Mapping Spectrometer) onboard Cassini, around the 2 μm window. Data shows an absorption feature that participates to the shape of this window. Our atmospheric model fits well the VIMS data at 2 μm with the same cut-off than for the other windows, provided an additional absorption is introduced in the middle of the window around ≃ 2.065 μm. It explains well the discrepency between the cut-off used at 2 μm, and we show that a gas with a fairly constant mixing ratio, possibly ethane, may be the cause of this absorption. Finally, we studied the impact of this absorption on the retrieval of the surface reflectivity and found that it is significant.

  12. Broadband Absorbing Exciton-Plasmon Metafluids with Narrow Transparency Windows.

    PubMed

    Yang, Jihua; Kramer, Nicolaas J; Schramke, Katelyn S; Wheeler, Lance M; Besteiro, Lucas V; Hogan, Christopher J; Govorov, Alexander O; Kortshagen, Uwe R

    2016-02-10

    Optical metafluids that consist of colloidal solutions of plasmonic and/or excitonic nanomaterials may play important roles as functional working fluids or as means for producing solid metamaterial coatings. The concept of a metafluid employed here is based on the picture that a single ballistic photon, propagating through the metafluid, interacts with a large collection of specifically designed optically active nanocrystals. We demonstrate water-based metafluids that act as broadband electromagnetic absorbers in a spectral range of 200-3300 nm and feature a tunable narrow (∼100 nm) transparency window in the visible-to-near-infrared region. To define this transparency window, we employ plasmonic gold nanorods. We utilize excitonic boron-doped silicon nanocrystals as opaque optical absorbers ("optical wall") in the UV and blue-green range of the spectrum. Water itself acts as an opaque "wall" in the near-infrared to infrared. We explore the limits of the concept of a "simple" metafluid by computationally testing and validating the effective medium approach based on the Beer-Lambert law. According to our simulations and experiments, particle aggregation and the associated decay of the window effect are one example of the failure of the simple metafluid concept due to strong interparticle interactions.

  13. Dynamic chirp control of all-optical format-converted pulsed data from a multi-wavelength inverse-optical-comb injected semiconductor optical amplifier.

    PubMed

    Lin, Gong-Ru; Pan, Ci-Ling; Yu, Kun-Chieh

    2007-10-01

    By spectrally and temporally reshaping the gain-window of a traveling-wave semiconductor optical amplifier (TWSOA) with a backward injected multi- or single-wavelength inverse-optical-comb, we theoretically and experimentally investigate the dynamic frequency chirp of the all-optical 10GBit/s Return-to-Zero (RZ) data-stream format-converted from the TWSOA under strong cross-gain depletion scheme. The multi-wavelength inverse-optical-comb injection effectively depletes the TWSOA gain spectrally and temporally, remaining a narrow gain-window and a reduced spectral linewidth and provide a converted RZ data with a smaller peak-to-peak frequency chirp of 6.7 GHz. Even at high inverse-optical-comb injection power and highly biased current condition for improving the operational bit-rate, the chirp of the multi-wavelength-injection converted RZ pulse is still 2.1-GHz smaller than that obtained by using single-wavelength injection at a cost of slight pulse-width broadening by 1 ps.

  14. Triple tailored nonlinear dispersion of dressed four- and six-wave mixing

    NASA Astrophysics Data System (ADS)

    Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng

    2018-06-01

    We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.

  15. Calculation of Retention Time Tolerance Windows with Absolute Confidence from Shared Liquid Chromatographic Retention Data

    PubMed Central

    Boswell, Paul G.; Abate-Pella, Daniel; Hewitt, Joshua T.

    2015-01-01

    Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user’s system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called “retention projection” was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. PMID:26292624

  16. Calculation of retention time tolerance windows with absolute confidence from shared liquid chromatographic retention data.

    PubMed

    Boswell, Paul G; Abate-Pella, Daniel; Hewitt, Joshua T

    2015-09-18

    Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user's system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called "retention projection" was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Online frequency estimation with applications to engine and generator sets

    NASA Astrophysics Data System (ADS)

    Manngård, Mikael; Böling, Jari M.

    2017-07-01

    Frequency and spectral analysis based on the discrete Fourier transform is a fundamental task in signal processing and machine diagnostics. This paper aims at presenting computationally efficient methods for real-time estimation of stationary and time-varying frequency components in signals. A brief survey of the sliding time window discrete Fourier transform and Goertzel filter is presented, and two filter banks consisting of: (i) sliding time window Goertzel filters (ii) infinite impulse response narrow bandpass filters are proposed for estimating instantaneous frequencies. The proposed methods show excellent results on both simulation studies and on a case study using angular speed data measurements of the crankshaft of a marine diesel engine-generator set.

  18. The monaural temporal window based on masking period pattern data in school-aged children and adults.

    PubMed

    Buss, Emily; He, Shuman; Grose, John H; Hall, Joseph W

    2013-03-01

    Several lines of evidence indicate that auditory temporal resolution improves over childhood, whereas other data implicate the development of processing efficiency. The present study used the masking period pattern paradigm to examine the maturation of temporal processing in normal-hearing children (4.8 to 10.7 yrs) compared to adults. Thresholds for a brief tone were measured at 6 temporal positions relative to the period of a 5-Hz quasi-square-wave masker envelope, with a 20-dB modulation depth, as well as in 2 steady maskers. The signal was a pure tone at either 1000 or 6500 Hz, and the masker was a band of noise, either spectrally wide or narrow (21.3 and 1.4 equivalent rectangular bandwidths, respectively). Masker modulation improved thresholds more for wide than narrow bandwidths, and adults tended to receive more benefit from modulation than young children. Fits to data for the wide maskers indicated a change in window symmetry with development, reflecting relatively greater backward masking for the youngest listeners. Data for children >6.5 yrs of age appeared more adult-like for the 6500- than the 1000-Hz signal. Differences in temporal window asymmetry with listener age cannot be entirely explained as a consequence of a higher criterion for detection in children, a form of inefficiency.

  19. Multiple-taper spectral analysis: A stand-alone C-subroutine

    NASA Astrophysics Data System (ADS)

    Lees, Jonathan M.; Park, Jeffrey

    1995-03-01

    A simple set of subroutines in ANSI-C are presented for multiple taper spectrum estimation. The multitaper approach provides an optimal spectrum estimate by minimizing spectral leakage while reducing the variance of the estimate by averaging orthogonal eigenspectrum estimates. The orthogonal tapers are Slepian nπ prolate functions used as tapers on the windowed time series. Because the taper functions are orthogonal, combining them to achieve an average spectrum does not introduce spurious correlations as standard smoothed single-taper estimates do. Furthermore, estimates of the degrees of freedom and F-test values at each frequency provide diagnostics for determining levels of confidence in narrow band (single frequency) periodicities. The program provided is portable and has been tested on both Unix and Macintosh systems.

  20. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.

    PubMed

    Sawkey, D L; Faddegon, B A

    2009-03-01

    Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.

  1. Two Titans

    NASA Image and Video Library

    2017-08-11

    These two views of Saturn's moon Titan exemplify how NASA's Cassini spacecraft has revealed the surface of this fascinating world. Cassini carried several instruments to pierce the veil of hydrocarbon haze that enshrouds Titan. The mission's imaging cameras also have several spectral filters sensitive to specific wavelengths of infrared light that are able to make it through the haze to the surface and back into space. These "spectral windows" have enable the imaging cameras to map nearly the entire surface of Titan. In addition to Titan's surface, images from both the imaging cameras and VIMS have provided windows into the moon's ever-changing atmosphere, chronicling the appearance and movement of hazes and clouds over the years. A large, bright and feathery band of summer clouds can be seen arcing across high northern latitudes in the view at right. These views were obtained with the Cassini spacecraft narrow-angle camera on March 21, 2017. Images taken using red, green and blue spectral filters were combined to create the natural-color view at left. The false-color view at right was made by substituting an infrared image (centered at 938 nanometers) for the red color channel. The views were acquired at a distance of approximately 613,000 miles (986,000 kilometers) from Titan. Image scale is about 4 miles (6 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21624

  2. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization.

    PubMed

    Nisar, Shibli; Khan, Omar Usman; Tariq, Muhammad

    2016-01-01

    Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.

  3. SOSPEX, an interactive tool to explore SOFIA spectral cubes

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Chambers, Edward T.

    2018-01-01

    We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.

  4. Long-lived coherences: Improved dispersion in the frequency domain using continuous-wave and reduced-power windowed sustaining irradiation

    NASA Astrophysics Data System (ADS)

    Sadet, A.; Fernandes, L.; Kateb, F.; Balzan, R.; Vasos, P. R.

    2014-08-01

    Long-lived coherences (LLC's) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening.

  5. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  6. High resolution time-to-space conversion of sub-picosecond pulses at 1.55µm by non-degenerate SFG in PPLN crystal.

    PubMed

    Shayovitz, Dror; Herrmann, Harald; Sohler, Wolfgang; Ricken, Raimund; Silberhorn, Christine; Marom, Dan M

    2012-11-19

    We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.

  7. Characterization of Raman Scattering in Solid Samples with Different Particle Sizes and Elucidation on the Trends of Particle Size-Dependent Intensity Variations in Relation to Changes in the Sizes of Laser Illumination and Detection Area.

    PubMed

    Duy, Pham K; Chun, Seulah; Chung, Hoeil

    2017-11-21

    We have systematically characterized Raman scatterings in solid samples with different particle sizes and investigated subsequent trends of particle size-induced intensity variations. For this purpose, both lactose powders and pellets composed of five different particle sizes were prepared. Uniquely in this study, three spectral acquisition schemes with different sizes of laser illuminations and detection windows were employed for the evaluation, since it was expected that the experimental configuration would be another factor potentially influencing the intensity of the lactose peak, along with the particle size itself. In both samples, the distribution of Raman photons became broader with the increase in particle size, as the mean free path of laser photons, the average photon travel distance between consecutive scattering locations, became longer under this situation. When the particle size was the same, the Raman photon distribution was narrower in the pellets since the individual particles were more densely packed in a given volume (the shorter mean free path). When the size of the detection window was small, the number of photons reaching the detector decreased as the photon distribution was larger. Meanwhile, a large-window detector was able to collect the widely distributed Raman photons more effectively; therefore, the trends of intensity change with the variation in particle size were dissimilar depending on the employed spectral acquisition schemes. Overall, the Monte Carlo simulation was effective at probing the photon distribution inside the samples and helped to support the experimental observations.

  8. High brightness diode lasers controlled by volume Bragg gratings

    NASA Astrophysics Data System (ADS)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  9. Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window

    PubMed Central

    Shao, Wei; Chen, Guanying; Kuzmin, Andrey; Kutscher, Hilliard L.; Pliss, Artem; Ohulchanskyy, Tymish Y.; Prasad, Paras N.

    2017-01-01

    We introduce a hybrid organic–inorganic system consisting of epitaxial NaYF4:Yb3+/X3+@NaYbF4@NaYF4:Nd3+ (X = null, Er, Ho, Tm, or Pr) core/shell/shell (CSS) nanocrystal with organic dye, indocyanine green (ICG) on the nanocrystal surface. This system is able to produce a set of narrow band emissions with a large Stokes-shift (>200 nm) in the second biological window of optical transparency (NIR-II, 1000–1700 nm), by directional energy transfer from light-harvesting surface ICG, via lanthanide ions in the shells, to the emitter X3+ in the core. Surface ICG not only increases the NIR-II emission intensity of inorganic CSS nanocrystals by ~4-fold but also provides a broadly excitable spectral range (700–860 nm) that facilitates their use in bioapplications. We show that the NIR-II emission from ICG-sensitized Er3+-doped CSS nanocrystals allows clear observation of a sharp image through 9 mm thick chicken breast tissue, and emission signal detection through 22 mm thick tissue yielding a better imaging profile than from typically used Yb/Tm-codoped upconverting nanocrystals imaged in the NIR-I region (700–950 nm). Our result on in vivo imaging suggests that these ICG-sensitized CSS nanocrystals are suitable for deep optical imaging in the NIR-II region. PMID:27935695

  10. Dysfunctional Implications of Narrow Window Theory: Variability in the Intuitive Assessment of Correlation

    ERIC Educational Resources Information Center

    Cahan, Sorel; Mor, Yaniv

    2007-01-01

    Narrow Window theory, suggested by Y. Kareev ten years ago, has so far focused on one central implication of the limited capacity of working memory on intuitive correlation estimation, namely, overestimation of the distal population correlation. This paper points to additional and perhaps more dramatic implications due to the large dispersion of…

  11. Linewidth narrowing for 31Phosphorus MRI of cell membranes

    NASA Astrophysics Data System (ADS)

    Barrett, Sean; Frey, Merideth; Madri, Joseph; Michaud, Michael

    2011-03-01

    Most 31 P Magnetic Resonance Spectroscopy studies of tissues try to avoid contamination by a relatively large, but broad, spectral feature attributed to cell membrane phospholipids. MRI using this broad 31 P membrane spectrum is not even attempted, since the spatial resolution and signal-to-noise would be poor, relative to conventional MRI using the narrow 1 H water spectrum. This long-standing barrier has been overcome by a novel pulse sequence, recently discovered in fundamental quantum computation research, which narrows the broad 31 P spectrum by ~ 1000 × . Applying time-dependent gradients in synch with a repeating pulse block enables a new route to high spatial resolution, 3D 31 P MRI of the soft solid components of cells and tissues. So far, intact and sectioned samples of ex vivo fixed mouse organs have been imaged, with (sub-mm)3 voxels. Extending the reach of MRI to broad spectra in natural and artificial tissues opens a new window into cells, enabling progress in biomedical research. W.J. Thoma et al., J. MR 61, 141 (1985); E.J. Murphy et al., MR Med 12, 282 (1989); R. McNamara et al., NMR Biomed 7, 237 (1994).

  12. Batteries: Widening voltage windows

    NASA Astrophysics Data System (ADS)

    Xu, Kang; Wang, Chunsheng

    2016-10-01

    The energy output of aqueous batteries is largely limited by the narrow voltage window of their electrolytes. Now, a hydrate melt consisting of lithium salts is shown to expand such voltage windows, leading to a high-energy aqueous battery.

  13. The water vapour continuum in near-infrared windows - Current understanding and prospects for its inclusion in spectroscopic databases

    NASA Astrophysics Data System (ADS)

    Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien

    2016-09-01

    Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.

  14. Feasibility Study of LANDSAT-8 Imagery for Retrieving Sea Surface Temperature (case Study Persian Gulf)

    NASA Astrophysics Data System (ADS)

    Bayat, F.; Hasanlou, M.

    2016-06-01

    Sea surface temperature (SST) is one of the critical parameters in marine meteorology and oceanography. The SST datasets are incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-8 successfully launched and accessible with two instruments on-board: (1) the Operational Land Imager (OLI) with nine spectral bands in the visual, near infrared, and the shortwave infrared spectral regions; and (2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data using a split window algorithm (SWA). The TIRS instrument is one of the major payloads aboard this satellite which can observe the sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm) at a resolution of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW) algorithm rather than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal band on board on previous Landsat sensors. Third, TIRS is one of the best space born and high spatial resolution with 30 m. in this regards, Landsat-8 can use the Split-Window (SW) algorithm for retrieving SST dataset. Although several SWs have been developed to use with other sensors, some adaptations are required in order to implement them for the TIRS spectral bands. Therefore, the objective of this paper is to develop a SW, adapted for use with Landsat-8 TIRS data, along with its accuracy assessment. In this research, that has been done for modelling SST using thermal Landsat 8-imagery of the Persian Gulf. Therefore, by incorporating contemporary in situ data and SST map estimated from other sensors like MODIS, we examine our proposed method with coefficient of determination (R2) and root mean square error (RMSE) on check point to model SST retrieval for Landsat-8 imagery. Extracted results for implementing different SW's clearly shows superiority of utilized method by R2 = 0.95 and RMSE = 0.24.

  15. Temporal intensity interferometry for characterization of very narrow spectral lines

    NASA Astrophysics Data System (ADS)

    Tan, P. K.; Kurtsiefer, C.

    2017-08-01

    Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.

  16. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes

    NASA Astrophysics Data System (ADS)

    Armin, Ardalan; Jansen-van Vuuren, Ross D.; Kopidakis, Nikos; Burn, Paul L.; Meredith, Paul

    2015-02-01

    Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors.

  17. Narrowband Light Detection via Internal Quantum Efficiency Manipulation of Organic Photodiodes

    DOE PAGES

    Armin, A.; Jansen-van Vuuren, R. D.; Kopidakis, N.; ...

    2015-02-01

    Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (inputmore » filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is materialagnostic and applicable to other disordered and polycrystalline semiconductors.« less

  18. WINDOWS: a program for the analysis of spectral data foil activation measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)

  19. Theory and optical design of x-ray echo spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvyd'ko, Yuri

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  20. Theory and optical design of x-ray echo spectrometers

    DOE PAGES

    Shvyd'ko, Yuri

    2017-08-02

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  1. Least Squares Moving-Window Spectral Analysis.

    PubMed

    Lee, Young Jong

    2017-08-01

    Least squares regression is proposed as a moving-windows method for analysis of a series of spectra acquired as a function of external perturbation. The least squares moving-window (LSMW) method can be considered an extended form of the Savitzky-Golay differentiation for nonuniform perturbation spacing. LSMW is characterized in terms of moving-window size, perturbation spacing type, and intensity noise. Simulation results from LSMW are compared with results from other numerical differentiation methods, such as single-interval differentiation, autocorrelation moving-window, and perturbation correlation moving-window methods. It is demonstrated that this simple LSMW method can be useful for quantitative analysis of nonuniformly spaced spectral data with high frequency noise.

  2. Global mapping of the surface of Titan through the haze with VIMS onboard Cassini

    NASA Astrophysics Data System (ADS)

    Le Mouélic, Stéphane; Cornet, Thomas; Rodriguez, Sébastien; Sotin, Christophe; Barnes, Jason W.; Brown, Robert H.; Lasue, Jérémie; Baines, K. H.; Buratti, Bonnie; Clark, Roger Nelson; Nicholson, Philip D.

    2016-10-01

    The Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini observes the surface of Titan through the atmosphere in seven narrow spectral windows in the infrared at 0.93, 1.08, 1.27, 1.59, 2.01, 2.68-2.78, and 4.9-5.1 microns. We have produced a global hyperspectral mosaic at 32 pixels per degrees of the complete VIMS data set of Titan between T0 (July 2004) and T120 (June 2016) flybys. We merged all the data cubes sorted by increasing spatial resolution, with the high resolution images on top of the mosaic and the low resolution images used as background. One of the main challenge in producing global spectral composition maps is to remove the seams between individual frames taken throughout the entire mission. These seams are mainly due to the widely varying viewing angles between data acquired during the different Titan flybys. These angles induce significant surface photometric effects and a strongly varying atmospheric (absorption and scattering) contribution, the scattering of the atmosphere being all the more present than the wavelength is short. We have implemented a series of empirical corrections to homogenize the maps, by correcting at first order for photometric and atmospheric scattering effects. Recently, the VIMS' IR wavelength calibration has been observed to be drifting from a total of a few nm toward longer wavelengths, the drift being almost continuously present over the course of the mission. Whereas minor at first order, this drift has implications on the homogeneity of the maps when trying to fit images taken at the beginning of the mission with images taken near the end, in particular when using channels in the narrowest atmospheric spectral windows. A correction scheme has been implemented to account for this subtle effect.

  3. Global-scale surface spectral variations on Titan seen from Cassini/VIMS

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Soderblom, L.; Buratti, B.J.; Sotin, Christophe; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Clark, R.; Nicholson, P.

    2007-01-01

    We present global-scale maps of Titan from the Visual and Infrared Mapping Spectrometer (VIMS) instrument on Cassini. We map at 64 near-infrared wavelengths simultaneously, covering the atmospheric windows at 0.94, 1.08, 1.28, 1.6, 2.0, 2.8, and 5 ??m with a typical resolution of 50 km/pixel or a typical total integration time of 1 s. Our maps have five to ten times the resolution of ground-based maps, better spectral resolution across most windows, coverage in multiple atmospheric windows, and represent the first spatially resolved maps of Titan at 5 ??m. The VIMS maps provide context and surface spectral information in support of other Cassini instruments. We note a strong latitudinal dependence in the spectral character of Titan's surface, and partition the surface into 9 spectral units that we describe in terms of spectral and spatial characteristics. ?? 2006 Elsevier Inc. All rights reserved.

  4. Dependence of astigmatism, far-field pattern, and spectral envelope width on active layer thickness of gain guided lasers with narrow stripe geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamine, T.

    1984-06-15

    The effects of active layer thickness on the astigmatism, the angle of far-field pattern width parallel to the junction, and the spectral envelope width of a gain guided laser with a narrow stripe geometry have been investigated analytically and experimentally. It is concluded that a large level of astigmatism, a narrow far-field pattern width, and a rapid convergence of the spectral envelope width are inherent to the gain guided lasers with thin active layers.

  5. Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection

    PubMed Central

    2015-01-01

    We propose a novel femtosecond stimulated Raman spectroscopy (FSRS) technique that combines entangled photons with interference detection to select matter pathways and enhance the resolution. Following photoexcitation by an actinic pump, the measurement uses a pair of broad-band entangled photons; one (signal) interacts with the molecule and together with a third narrow-band pulse induces the Raman process. The other (idler) photon provides a reference for the coincidence measurement. This interferometric photon coincidence counting detection allows one to separately measure the Raman gain and loss signals, which is not possible with conventional probe transmission detection. Entangled photons further provide a unique temporal and spectral detection window that can better resolve fast excited-state dynamics compared to classical and correlated disentangled states of light. PMID:25177427

  6. Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Tong, Xin; Jiang, Chenyang

    2015-06-05

    In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.

  7. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows

    NASA Astrophysics Data System (ADS)

    Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.

    2017-11-01

    In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.

  8. Volume Bragg grating improves characteristic of resonantly diode-pumped Er:YAG, 1.65-μm DPSSL

    NASA Astrophysics Data System (ADS)

    Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark

    2007-02-01

    Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62%. As a result, the incident power threshold was reduced by a factor of 2.5; the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing.

  9. VEM on VERITAS - Retrieval of global infrared surface emissivity maps of Venus and expectable retrieval uncertainties

    NASA Astrophysics Data System (ADS)

    Kappel, David; Arnold, Gabriele; Haus, Rainer; Helbert, Jörn; Smrekar, Suzanne; Hensley, Scott

    2016-04-01

    Even though Venus is in many respects the most Earth-like planet we know today, its surface composition and geology are not well understood yet. The major obstacle is the extremely dense, hot, and opaque atmosphere that complicates both in situ measurements and infrared remote sensing, the wavelength range of the latter often being the range of choice due to its coverage of many spectral properties diagnostic to the surface material's composition and texture. Thermal emissions of the hot surface depend on surface temperature and on spectral surface emissivity. As this emitted radiation wells upward, it is strongly attenuated through absorption and multiple scattering by the gaseous and particulate components of the dense atmosphere, and it is superimposed by thermal atmospheric emissions. While surface information this way carried to space is completely lost in the scattered sunlight on the dayside, a few narrow atmospheric transparency windows around 1 μm allow the sounding of the surface with nightside measurements. The successfully completed VEX ('Venus Express') mission, although not dedicated to surface science, enabled a first glimpse at much of the southern hemisphere's surface through the nightside spectral transparency windows covered by VIRTIS-M-IR ('Visible and InfraRed Thermal Imaging Spectrometer, Mapping channel in the IR', 1.0-5.1 μm). Two complementary approaches, a fast semi-empiric technique on the one hand, and a more fundamental but resource-intensive method based on a fully regularized Bayesian multi-spectrum retrieval algorithm in combination with a detailed radiative transfer simulation program on the other hand, were both successfully applied to derive surface emissivity data maps. Both methods suffered from lack of spatial coverage and a small SNR as well as from surface topography maps not sufficiently accurate for the definition of suitable boundary conditions for surface emissivity retrieval. The recently proposed VERITAS mission ('Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy') comprises two instruments, VEM ('Venus Emissivity Mapper') and VISAR ('Venus Interferometric Synthetic Aperture Radar'). This mission will yield a vastly improved data basis with respect to both high SNR Venus nightside radiance measurements at all transparency windows around 1 μm as well as topography maps. The new data will enable the derivation of much more complete and reliable global surface emissivity maps that are required to answer fundamental geologic questions. Here, we discuss the selection of the wavelength ranges covered by the spectral filters of VEM as well as improved estimates of expectable emissivity retrieval errors based on this selection. For this purpose, the locations of the relevant spectral transparency windows are studied with detailed line-by-line radiative transfer simulations in dependence on different spectral line databases. Recent work on VIRTIS-M-IR/VEX measurements indicated the presence of interferences due to ever-varying atmospheric parameters that cannot be derived from radiance measurements with limited spectral information content to be a dominant source of surface emissivity retrieval errors. This work is carried over to the configuration of VEM, and the retrieval pipeline is optimized to minimize such errors. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  10. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  11. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers

    NASA Astrophysics Data System (ADS)

    Duan, J.; Huang, H.; Lu, Z. G.; Poole, P. J.; Wang, C.; Grillot, F.

    2018-03-01

    This paper reports on the spectral linewidth of InAs/InP quantum dot distributed feedback lasers. Owing to a low inversion factor and a low linewidth enhancement factor, a narrow spectral linewidth of 160 kHz (80 kHz intrinsic linewidth) with a low sensitivity to temperature is demonstrated. When using anti-reflection coatings on both facets, narrow linewidth operation is extended to high powers, believed to be due to a reduction in the longitudinal spatial hole burning. These results confirm the high potential of quantum dot lasers for increasing transmission capacity in future coherent communication systems.

  12. A novel fast optical switch based on two cascaded Terahertz Optical Asymmetric Demultiplexers (TOAD).

    PubMed

    Wang, Bing; Baby, Varghese; Tong, Wilson; Xu, Lei; Friedman, Michelle; Runser, Robert; Glesk, Ivan; Prucnal, Paul

    2002-01-14

    A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations of the cascaded TOAD switching window show relatively constant window amplitude for different window sizes. Experimental results on cascading two TOADs, each with a switching window of 8ps, but with the SOA on opposite sides of the fiber loop, show a minimum switching window of 2.7ps.

  13. Orthogonal sets of data windows constructed from trigonometric polynomials

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1989-01-01

    Suboptimal, easily computable substitutes for the discrete prolate-spheroidal windows used by Thomson for spectral estimation are given. Trigonometric coefficients and energy leakages of the window polynomials are tabulated.

  14. VizieR Online Data Catalog: ALMA survey of Lupus protoplanetary disks. I. (Ansdell+, 2016)

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; van der Marel, N.; Carpenter, J. M.; Guidi, G.; Hogerheijde, M.; Mathews, G. S.; Manara, C. F.; Miotello, A.; Natta, A.; Oliveira, I.; Tazzari, M.; Testi, L.; van Dishoeck, E. F.; van Terwisga, S. E.

    2016-11-01

    Our ALMA Cycle 2 observations (Project ID: 2013.1.00220.S) were obtained on 2015 June 14 (AGK-type sources and unknown spectral types) and 2015 June 15 (M-type sources). The continuum spectral windows were centered on 328.3, 340.0, and 341.8GHz with bandwidths of 1.875, 0.938, and 1.875 GHz and channel widths of 15.625, 0.244, and 0.977MHz, respectively. The bandwidth-weighted mean continuum frequency was 335.8GHz (890um). The spectral setup included two windows covering the 13CO and C18O 3-2 transitions; these spectral windows were centered on 330.6 and 329.3GHz, respectively, with bandwidths of 58.594MHz, channel widths of 0.122MHz, and velocity resolutions of 0.11km/s. (3 data files).

  15. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  16. Applications of Space-Time Duality

    NASA Astrophysics Data System (ADS)

    Plansinis, Brent W.

    The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms periodically at finite propagation lengths. Numerical simulations are performed for the specific case where the moving boundary is produced through cross-phase modulation. In this case, the Kerr nonlinearity causes the boundary to change during propagation, leading to unique temporal and spectral behavior.

  17. Titan's Surface Composition from Cassini VIMS Solar Occultation Observations

    NASA Astrophysics Data System (ADS)

    McCord, Thomas; Hayne, Paul; Sotin, Christophe

    2013-04-01

    Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scatter-ing in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. The narrow 2.75-mm absorption feature, dividing the window into two sub-windows, present in all on-planet measurements is not present in the occultation data, and its strength is reduced at the cloud tops, suggesting the responsible molecule is concentrated in the lower troposphere or on the sur-face. Our empirical correction to Titan's surface reflectance yields properties shifted closer to water ice for the majority of the low-to-mid latitude area covered by VIMS measurements. Four compositional units are defined and mapped on Titan's surface based on the positions of data clusters in 5-mm vs. 2.8/2.7-mm scatter plots; a simple ternary mixture of H2O, hydrocarbons and CO2 might explain the reflectance properties of these surface units. The vast equatorial "dune seas" are compositionally very homogeneous, perhaps suggesting transport and mixing of particles over very large distances and/or and very consistent formation process and source material. The composi-tional branch characterizing Tui Regio and Hotei Regio is consistent with a mixture of typical Titan hydrocarbons and CO2, or possibly methane/ethane; the concentration mechanism proposed is something similar to a terrestrial playa lake evaporate deposit, based on the fact that river channels are known to feed into at least Hotei Regio.

  18. [Study on the Spectral Characteristics of the Narrow-Band Filter in SHS].

    PubMed

    Luo, Hai-yan; Shi, Hai-liang; Li, Zhi-wei; Li, Shuang; Xiong, Wei; Hong, Jin

    2015-04-01

    The spectral response of spatial heterodyne spectroscopy (SHS) is determined by the spectrum property of narrow-band filter. As discussed in previous studies, the symmetric heterodyned interferogram of high frequency waves modulated by SHS and lack of sample lead to spectral confusion, which is associated with the true and ghost spectra. Because of the deviation from theoretical index of narrow-band filter in the process of coating, the boarded spectral response and middle wave shift are presented, and conditions in the theoretical Littrow wavelength made the effective wavelength range of SHS reduced. According to the measured curve of filter, a new wavenumber of zero spatial frequency can be reset by tunable laser, and it is easy for SHS to improve the spectral aliasing distortion. The results show that it is utilized to the maximum extent of the effective bandwidth by adjusting the grating angle of rotation to change the Littrow wavelength of the basic frequency, and the spectral region increased to 14.9 nm from original 12.9 nm.

  19. Eye movement evidence for defocused attention in dysphoria--a perceptual span analysis.

    PubMed

    Brzezicka, Aneta; Krejtz, Izabela; von Hecker, Ulrich; Laubrock, Jochen

    2012-07-01

    The defocused attention hypothesis (von Hecker and Meiser, 2005) assumes that negative mood broadens attention, whereas the analytical rumination hypothesis (Andrews and Thompson, 2009) suggests a narrowing of the attentional focus with depression. We tested these conflicting hypotheses by directly measuring the perceptual span in groups of dysphoric and control subjects, using eye tracking. In the moving window paradigm, information outside of a variable-width gaze-contingent window was masked during reading of sentences. In measures of sentence reading time and mean fixation duration, dysphoric subjects were more pronouncedly affected than controls by a reduced window size. This difference supports the defocused attention hypothesis and seems hard to reconcile with a narrowing of attentional focus. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  1. [Comparisons and analysis of the spectral response functions' difference between FY-2E's and FY2C's split window channels].

    PubMed

    Zhang, Yong; Li, Yuan; Rong, Zhi-Guo

    2010-06-01

    Remote sensors' channel spectral response function (SRF) was one of the key factors to influence the quantitative products' inversion algorithm, accuracy and the geophysical characteristics. Aiming at the adjustments of FY-2E's split window channels' SRF, detailed comparisons between the FY-2E and FY-2C corresponding channels' SRF differences were carried out based on three data collections: the NOAA AVHRR corresponding channels' calibration look up tables, field measured water surface radiance and atmospheric profiles at Lake Qinghai and radiance calculated from the PLANK function within all dynamic range of FY-2E/C. The results showed that the adjustments of FY-2E's split window channels' SRF would result in the spectral range's movements and influence the inversion algorithms of some ground quantitative products. On the other hand, these adjustments of FY-2E SRFs would increase the brightness temperature differences between FY-2E's two split window channels within all dynamic range relative to FY-2C's. This would improve the inversion ability of FY-2E's split window channels.

  2. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiede, Christian, E-mail: christian.thiede@uni-muenster.de; Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination,more » temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.« less

  3. Intensity Variations of Narrow Bands of Solar UV Radiation during Descending Phases of SACs 21-23

    NASA Astrophysics Data System (ADS)

    Gigolashvili, M.; Kapanadze, N.

    2014-12-01

    The study of variations of four narrow bands of solar spectral irradiance (SSI) in the ultraviolet (UV) range for period 1981-2008 is presented. Observational data obtained by space-flight missions SORCE, UARS, SME and daily meanings of international sunspot number (ISN) have been used. The investigated data cover the decreasing phases of the solar activity cycles (SACs) 21, 22 and 23. We have revealed a peculiar behavior of intensity variability of some solar ultraviolet spectral lines originated in the solar chromospheres for period corresponding to the declining phase of the solar cycle 23. It is found that variability of emission of different solar spectral narrow bands (289.5 nm, 300.5 nm) does not agree equally well with ISN variability during decreasing phase of the solar activity cycle 23. The negative correlations between total solar irradiance and the solar spectral narrow bands of UV emission (298.5 nm, 300.5 nm) had been revealed. The existence of the negative correlation can be explained by the sensitivity of SSI of some emission lines to the solar global magnetic field.

  4. Titan's Surface Composition from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) Investigation

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Griffith, C. A.; Hansen, G. B.; Lunine, J. I.; Baines, K. H.; Brown, R. H.; Buratti, B.; Clark, R. N.; Cruikshank, D. P.; Filacchione, G.; Jaumann, R.; Hibbitts, C. A.; Sotine, C.; Cassini VIMS

    2004-11-01

    Titan, the largest satellite of Saturn, has a thick atmosphere containing methane with high altitude haze that obscures the surface except for windows in the methane absorption bands at some IR wavelengths where scattering also is reduced. Chemistry models of the atmosphere suggest deep deposits of organic liquids and solids (1). Groundbased telescopic observations of Titan's integral disk suggest the presence of water ice (2). The Cassini VIMS obtained spectra in the 0.35 to 5.1 μm range that include narrow windows in the methane spectrum near 1.6, 2.0, 2.8, and 5.0 μm where the surface might have been observed with spatial resolution up to about 100 x 200 km during the Saturn orbit insertion phase on June 30 2004. Surface albedo features seem to appear in these windows. We have analyzed Titan's spectra in an attempt to identity the surface material(s). The VIMS spectra were averaged for several pixels for each of six regions on Titan corresponding to apparent bright and dark surface features. The spectra were calibrated to I/F as seen by VIMS and then were analyzed using radiative transfer models to remove the effects of the atmosphere (2) to estimate surface I/F values. These were then compared with candidate material reflectance at each of the spectral windows. Preliminary analysis suggests that the average results will agree with previous groundbased data analyses (2) and there is the suggestion of differences in reflectance among the surface regions analyzed so far. This work was supported by the NASA Cassini Project. (1) Lunine et al., Science, 222, 1229, 1983. (2) Coustenis et al., Icarus 118, 87, 1995; Griffith et al., Science 300, 628, 2003.

  5. Combining the Hanning windowed interpolated FFT in both directions

    NASA Astrophysics Data System (ADS)

    Chen, Kui Fu; Li, Yan Feng

    2008-06-01

    The interpolated fast Fourier transform (IFFT) has been proposed as a way to eliminate the picket fence effect (PFE) of the fast Fourier transform. The modulus based IFFT, cited in most relevant references, makes use of only the 1st and 2nd highest spectral lines. An approach using three principal spectral lines is proposed. This new approach combines both directions of the complex spectrum based IFFT with the Hanning window. The optimal weight to minimize the estimation variance is established on the first order Taylor series expansion of noise interference. A numerical simulation is carried out, and the results are compared with the Cramer-Rao bound. It is demonstrated that the proposed approach has a lower estimation variance than the two-spectral-line approach. The improvement depends on the extent of sampling deviating from the coherent condition, and the best is decreasing variance by 2/7. However, it is also shown that the estimation variance of the windowed IFFT with the Hanning is significantly higher than that of without windowing.

  6. Alignment and absolute wavelength calibration of imaging Bragg spectrometers.

    PubMed

    Bertschinger, G; Marchuk, O; Barnsley, R

    2016-11-01

    In the present and the next generation of fusion devices, imaging Bragg spectrometers are key diagnostics to measure plasma parameters in the hot core, especially ion temperature and plasma rotation. The latter quantities are routinely obtained using the Doppler-width and -shift of the emitted spectral lines, respectively. Line shift measurements require absolute accuracies Δλ/λ of about 10 ppm, where λ-is the observed wavelength. For ITER and the present fusion devices, spectral lines of He-and H-like argon, iron, and krypton as well as Ne-like tungsten are foreseen for the measurements. For these lines, Kα lines can be found, some in higher order, which fit into the narrow energy window of the spectrometers. For arbitrary wavelength settings, Kα lines are also used to measure the miscut of the spherical crystals; afterwards the spectrometers can be set according to the geometrical imaging properties using coordinate measurement machines. For the spectrometers measuring Lyα lines of H-like ions, fluorescence targets can provide in situ localized calibration lines on the spectra. The fluorescence targets are used best in transmission and are excited by the thermal x-ray radiation of the plasma. An analytic theory of fluorescence is worked out.

  7. Quadrilinear CCD sensors for the multispectral channel of spaceborne imagers

    NASA Astrophysics Data System (ADS)

    Materne, Alex; Gili, Bruno; Laubier, David; Gimenez, Thierry

    2001-12-01

    The PLEIADES-HR Earth Observation satellites will combine a high resolution panchromatic channel -- 0.7 m at nadir -- and a multispectral channel allowing a 2.8 m resolution. This paper presents the main specifications, design and performances of a 52 microns pitch quadrilinear CCD sensor developed by ATMEL under CNES contract, for the multispectral channel of the PLEIADES-HR instrument. The monolithic CCD device includes four lines of 1500 pixels, each line dedicated to a narrow spectral band within blue to near infra red spectrum. The design of the photodiodes and CCD registers, with larger size than those developed up to now for CNES spaceborne imagers, needed some specific structures to break the large equipotential areas where charge do not flow properly. Results are presented on the options which were experimented to improve sensitivity, maintain transfer efficiency and reduce power dissipation. The four spectral bands are achieved by four stripe filters made by SAGEM-REOSC PRODUCTS on a glass substrate, to be assembled on the sensor window. Line to line spacing on the silicon die takes into account the results of straylight analysis. A mineral layer, with high optical absorption performances is deposited between photosensitive lines to further reduce straylight.

  8. Characterization of the UV detector of Solar Orbiter/Metis

    NASA Astrophysics Data System (ADS)

    Uslenghi, Michela; Schühle, Udo H.; Teriaca, Luca; Heerlein, Klaus; Werner, Stephan

    2017-08-01

    Metis, one of the instruments of the ESA mission Solar Orbiter (to be launched in February 2019), is a coronograph able to perform broadband polarization imaging in the visible range (580-640 nm), and narrow band imaging in UV (HI Lyman-α 121.6 nm) . The detector of the UV channel is an intensified camera, based on a Star-1000 rad-hard CMOS APS coupled via a 2:1 fiber optic taper to a single stage Microchannel Plate intensifier, sealed with an entrance MgF2 window and provided with an opaque KBr photocathode. Before integration in the instrument, the UVDA (UV Detector Assembly) Flight Model has been characterized at the MPS laboratory and calibrated in the UV range using the detector calibration beamline of the Metrology Light Source synchrotron of the Physikalisch-Technische Bundesanstalt (PTB). Linearity, spectral calibration, and response uniformity at 121.6 nm have been measured. Preliminary results are reported in this paper.

  9. 9. INTERIOR LIVING ROOM DETAIL OF ONE OF TWO NARROW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR LIVING ROOM DETAIL OF ONE OF TWO NARROW 4-LIGHT OVER 4-LIGHT, DOUBLE-HUNG, WOOD-FRAMED WINDOWS ON EITHER SIDE OF FRONT DOOR SHOWING EXPOSED COUNTERBALANCE CABLE. VIEW TO SOUTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  10. A Summary of the Evaluation of PPG Herculite XP Glass in Punched Window and Storefront Assemblies

    DTIC Science & Technology

    2013-01-01

    frames for all IGU windows extruded from existing dies. The glazing was secured to the frame on all four sides with a 1/2-in bead width of DOW 995...lite and non-laminated IGU debris tests. A wood frame with a 4-in wide slit was placed behind the window to transform the debris cloud into a narrow...speed camera DIC Set-up laser deflection gauge shock tube window wood frame with slit high speed camerawell lit backdrop Debris Tracking Set-up laser

  11. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  12. Latest developments in resonantly diode-pumped Er:YAG lasers

    NASA Astrophysics Data System (ADS)

    Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark

    2007-04-01

    Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of an external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62 - 70%. As a result, the incident power threshold was reduced by a factor of 2.5, and the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23 - 30%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing. More than 180 mJ QCW pulse output energy was obtained in a stable-unstable resonator configuration with a beam quality of M2 = 1.3 in the stable direction and M2 = 1.1 in the unstable direction. The measured slope efficiency was 0.138 J/J with a threshold energy of 0.91 J.

  13. Determination of the vinyl fluoride line intensities by TDL spectroscopy: the object oriented approach of Visual Line Shape Fitting Program to line profile analysis

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi

    2010-03-01

    In this work the self-broadening coefficients and the integrated line intensities for a number of ro-vibrational transitions of vinyl fluoride have been determined for the first time by means of TDL spectroscopy. The spectra recorded in the atmospheric window around 8.7 µm appear very crowded with a density of about 90 lines per cm-1. In order to fit these spectral features a new fitting software has been implemented. The program, which is designed for laser spectroscopy, can fit many lines simultaneously on the basis of different theoretical profiles (Doppler, Lorentz, Voigt, Galatry and Nelkin-Ghatak). Details of the object oriented implementation of the application are given. The reliability of the program is demonstrated by determining the line parameters of some ro-vibrational lines of sulphur dioxide in the ν1 band region around 9 µm. Then the software is used for the line profile analysis of vinyl fluoride. The experimental line shapes show deviations from the Voigt profile, which can be well modelled by using a Dicke narrowed line shape function. This leads to the determination of the self-narrowing coefficient within the framework of the strong collision model.

  14. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-03-01

    Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.

  15. Spectral changes induced by a phase modulator acting as a time lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phasemore » shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.« less

  16. Alternative approach for management of an electrical storm in Brugada syndrome:Importance of primary ablation within a narrow time window.

    PubMed

    Talib, Ahmed Karim; Yui, Yoshiaki; Kaneshiro, Takashi; Sekiguchi, Yukio; Nogami, Akihiko; Aonuma, Kazutaka

    2016-06-01

    Placement of an implantable cardioverter-defibrillator (ICD) is the only powerful treatment modality for Brugada syndrome in patients presenting with ventricular fibrillation (VF). For those whose first presentation is an electrical storm, pharmacologic therapy is typically used to control VF followed by ICD implantation. We report an alternative approach whereby, before ICD implantation, emergency catheter ablation of the VF-triggering premature ventricular contraction (PVC) resulted in long-term VF-free survival. The results suggest that, because VF triggers appear in a narrow time window, ablation of the culprit PVCs that initiate VF before the index PVCs subside is a reasonable alternative approach.

  17. The Audiovisual Temporal Binding Window Narrows in Early Childhood

    ERIC Educational Resources Information Center

    Lewkowicz, David J.; Flom, Ross

    2014-01-01

    Binding is key in multisensory perception. This study investigated the audio-visual (A-V) temporal binding window in 4-, 5-, and 6-year-old children (total N = 120). Children watched a person uttering a syllable whose auditory and visual components were either temporally synchronized or desynchronized by 366, 500, or 666 ms. They were asked…

  18. 7. INTERIOR OF LIVING ROOM SHOWING DISTINCTIVE 6LIGHT THREEPANEL DOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR OF LIVING ROOM SHOWING DISTINCTIVE 6-LIGHT THREE-PANEL DOOR, ONE OF THE NARROW 4-LIGHT OVER 4-LIGHT, DOUBLE-HUNG WINDOWS FRAMING THE FRONT DOOR, AND THE PAIRED 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOWS. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  19. Spectral properties of rf emission from high Tc films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, G.; Konopka, J.; Vitale, S.

    1990-09-15

    Spectral properties of rf radiation from intrinsic Josephson junctions in high {Tc} Y-Ba-Cu-O thin film have been measured in the frequency range up to 1.5 GHz. Narrow emission lines with the 3 dB bandwidth of the order of 20 MHz were detected indicating that Josephson clusters radiate coherently. Synchronization conditions are determined by dc current and external magnetic field bias. Frequency locking of radiation to external resonant circuit was also observed. Spectral line narrowing due to resonant lock was distinguished from the coherence-induced narrowing by different tuning properties of the emission line. Noncoherent Josephson radiation manifests itself as a broadbandmore » background noise increase. A pronounced 1/{ital f}-like tail sensitive to dc bias and magnetic field was observed in a low frequency part of the spectrum.« less

  20. Bispectral analysis: comparison of two windowing functions

    NASA Astrophysics Data System (ADS)

    Silvagni, D.; Djerroud, C.; Réveillé, T.; Gravier, E.

    2018-02-01

    Amongst all the normalized forms of bispectrum, the bicoherence is shown to be a very useful diagnostic tool in experimental studies of nonlinear wave interactions in plasma, as it measures the fraction of wave power due to the quadratic wave coupling in a self-excited fluctuation spectrum [1, 2]. In order to avoid spectral leakage, the application of a windowing function is needed during the bicoherence computation. Spectral leakage from statistically dependent components are of crucial importance in the discrimination between coupled and uncoupled modes, as they will introduce in the bicoherence spectrum phase-coupled modes which in reality do not exist. Therefore, the windowing function plays a key role in the bicoherence estimation. In this paper, two windowing methods are compared: the multiplication of the initial signal by the Hanning function and the subtraction of the straight line which links the two extremities of the signal. The influence of these two windowing methods on both the power spectrum and the bicoherence spectrum is showed. Although both methods give precise results, the Hanning function appears to be the more suitable window.

  1. Nondestrucive analysis of fuel pins

    DOEpatents

    Stepan, I.E.; Allard, N.P.; Suter, C.R.

    1972-11-03

    Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.

  2. Broadband 19F TOCSY using BURBOP-based spin lock

    NASA Astrophysics Data System (ADS)

    Marchione, Alexander A.; Diaz, Elizabeth L.

    2018-01-01

    A train of BURBOP universal rotation pulses has been used to generate a spin lock sufficient to observe TOCSY correlations over a 46 kHz 19F spectral window (i.e. 122 ppm on a 9.4 T spectrometer). This spin lock requires lower RF field (γB1 = 15 kHz), and was employed over a wider spectral window, than previously reported DIPSI-2 spin locks. The BURBOP-based spin lock was effected for 80-160 ms periods with a 2% duty cycle without evidence of harm to the RF coil of the probehead. Spectral separation and full set of correlations were obtained for a mixture of perfluorocarbons.

  3. Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

    DTIC Science & Technology

    2014-09-04

    Multijunction solar cell efficiencies: effect of spectral window, optical environment and radiative coupling† Carissa N. Eisler ,a Ze’ev R. Abrams,b...SC0001293. C. N. Eisler was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG...Photovoltaic Specialists Conference, Tampa, FL, 2013. 20 E. M. Ellion, World Pat., 8,701,512, 1987 . 21 B. Mitchell, G. Peharz, G. Siefer, M. Peters, T

  4. Computational Spectrally Correlated Thermal Radiation through Gaseous Mixture

    NASA Astrophysics Data System (ADS)

    Lakhal, W.; Trabelsi, S.; Sediki, E.; Soufiani, A.; Moussa, M.

    2007-09-01

    The Treatment of the spectral nature of thermal radiation in absorbing emitting gases at high temperature inside a heated or cooled duct is presented with taking into account the non-gray behavior of gas. Radiative properties of the flowing gases (H2O or CO2) are modeled by using narrow-band and global models. Although the narrow-band models are considered more accurate, global model are more adequate for combined heat transfer study in complex geometry. Thus, accuracy of narrow-band and global models study is provide. In this investigation, we focus our attention on the practical way to use the Correlated-K narrow-band model in radiative transfer, as the asymptotic limit of accuracy of the global model. Results are presented in terms of radiative power fields.

  5. Application of MEMS-based x-ray optics as tuneable nanosecond choppers

    NASA Astrophysics Data System (ADS)

    Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin

    2017-08-01

    Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.

  6. Information content of IRIS spectra. [from Nimbus 4 satellite

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1974-01-01

    Spectra from the satellite instrument IRIS (infra red interferometer spectrometer) were examined to find the number of independent variables needed to describe these broadband high spectral resolution data. The radiated power in the atmospheric window from 771 to 981/cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis the residual variability (observed spectrum - best fit spectrum) in an ensemble of observations was partioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when inserted in the spectral fitting functions, was adequate to describe most spectra to within the noise level of IRIS. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel-broad field of view) scanner (window channel-small field of view) as an efficient observing instrument.

  7. Information content in Iris spectra. [Infrared Interferometer Spectrometer of Nimbus 4 satellite

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1975-01-01

    Spectra from the satellite instrument Iris (infrared interferometer spectrometer) were examined to find the number of independent variables needed to describe the broad-band high-resolution spectral data. The radiated power in the atmospheric window from 771 to 981 per cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis, the residual variability (observed spectrum minus best-fit spectrum) in an ensemble of observations was partitioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when it was inserted in the spectral-fitting functions, was adequate to describe most spectra to within the noise level of Iris. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel, broad field of view) scanner (window channel, small field of view) as an efficient observing instrument.

  8. Characterization of a swept external cavity quantum cascade laser for rapid broadband spectroscopy and sensing

    DOE PAGES

    Brumfield, Brian E.; Taubman, Matthew S.; Suter, Jonathan D.; ...

    2015-09-21

    The performance of a rapidly swept external cavity quantum cascade laser (ECQCL) system combined with an open-path Herriott cell was evaluated for time-resolved measurements of chemical species with broad and narrow absorption spectra. A spectral window spanning 1278 – 1390 cm -1 was acquired at a 200 Hz acquisition rate, corresponding to a tuning rate of 2x10 4 cm -1/s, with a spectral resolution of 0.2 cm -1. The capability of the ECQCL to measure < 100 ppbv changes in N 2O and F134A concentrations on millisecond timescales was demonstrated in simulated plume studies with releases near the open-path Herriottmore » cell. Absorbance spectra measured using the ECQCL system exhibited noise-equivalent absorption coefficients of 5x10 -9 cm -1Hz -1/2. For a spectrum acquisition time of 5 ms, noise-equivalent concentrations (NEC) for N 2O and F134A were measured to be 70 and 16 ppbv respectively, which improved to sub-ppbv levels with averaging to 100 s. Noise equivalent column densities of 0.64 and 0.25 ppmv x m in 1 sec are estimated for N 2O and F134A.« less

  9. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  10. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    NASA Astrophysics Data System (ADS)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  11. Evaluation of the Exceedance Rate of a Stationary Stochastic Process by Statistical Extrapolation Using the Envelope Peaks over Threshold (EPOT) Method

    DTIC Science & Technology

    2011-04-01

    this limitation the length of the windows needs to be shortened. It is also leads to a narrower confidence interval, see Figure 2.9. 82 The " big ...least one event will occur within the window. The windows are then grouped in sets of two and the process is reapeated for a window size twice as big ...0 505 T. Fu 1 506 D. Walden 1 508 J. Brown 1 55 T.Applebee 0 55 M. Dipper 1 551 T. Smith I 551 C. Bassler 3 3 551 V. Belenky 1 551 W. Belknap

  12. Second and third NIR optical windows for imaging of bone microfractures

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Sordillo, Peter P.; Budansky, Yury; Alfano, R. R.

    2014-05-01

    Microfractures in bone, secondary to repetitive stress, particularly in the lower extremities, are an important problem for military recruits and for athletes. They also may occur in those with brittle bones, such as the elderly, or in patients taking bisphosphonates for osteoporosis. Microfractures can be early predictors of major bone fracture and may be as important as changes in bone density in predicting where and how likely a major fracture will occur. Unlike major bone fractures, microfractures can be difficult to detect by conventional methods. We explored a second NIR spectral window from 1,100 nm to 1,350 nm, and a third spectral window from 1,600 nm to 1,870 nm to image microfractures through tissue media. Due to a reduction in scattering at longer NIR wavelengths, employment of the second and third NIR windows may allow for deeper penetration into tissue and higher contrast images of microfractures underneath the skin.

  13. A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.

    ERIC Educational Resources Information Center

    Paul, James E., Jr.

    Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…

  14. Using spectral information in forensic imaging.

    PubMed

    Miskelly, Gordon M; Wagner, John H

    2005-12-20

    Improved detection of forensic evidence by combining narrow band photographic images taken at a range of wavelengths is dependent on the substance of interest having a significantly different spectrum from the underlying substrate. While some natural substances such as blood have distinctive spectral features which are readily distinguished from common colorants, this is not true for visualization agents commonly used in forensic science. We now show that it is possible to select reagents with narrow spectral features that lead to increased visibility using digital cameras and computer image enhancement programs even if their coloration is much less intense to the unaided eye than traditional reagents. The concept is illustrated by visualising latent fingermarks on paper with the zinc complex of Ruhemann's Purple, cyanoacrylate-fumed fingerprints with Eu(tta)(3)(phen), and soil prints with 2,6-bis(benzimidazol-2-yl)-4-[4'-(dimethylamino)phenyl]pyridine [BBIDMAPP]. In each case background correction is performed at one or two wavelengths bracketing the narrow absorption or emission band of these compounds. However, compounds with sharp spectral features would also lead to improved detection using more advanced algorithms such as principal component analysis.

  15. Spectral emissivity and transmissivity measurement for zinc sulphide infrared window based on integrating-sphere reflectometry

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Feng; Dai, Jing-Min; Zhang, Lei; Pan, Wei-Dong

    2013-08-01

    The spectral emissivity and transmissivity of zinc sulphide (ZnS) infrared windows in the spectral region from 2 to 12 μm and temperature range from 20 to 700°C is measured by a facility built at the Harbin Institute of Technology (HIT). The facility is based on the integrating-sphere reflectometry. Measurements have been performed on two samples made of ZnS. The results measured at 20°C are in good agreement with those obtained by the method of radiant energy comparison using a Fourier transform infrared spectrometer. Emissivity measurements performed with this facility present an uncertainty of 5.5% (cover factor=2).

  16. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    PubMed

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Photoplethysmographic imaging via spectrally demultiplexed erythema fluctuation analysis for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander

    2016-03-01

    Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.

  18. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  19. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  20. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  1. Tunable resonator-based devices for producing variable delays and narrow spectral linewidths

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)

    2006-01-01

    Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.

  2. VizieR Online Data Catalog: MALT-45, a 7mm survey of the southern Galaxy (Jordan+, 2015)

    NASA Astrophysics Data System (ADS)

    Jordan, C. H.; Walsh, A. J.; Lowe, V.; Voronkov, M. A.; Ellingsen, S. P.; Breen, S. L.; Purcell, C. R.; Barnes, P. J.; Burton, M. G.; Cunningham, M. R.; Hill, T.; Jackson, J. M.; Longmore, S. N.; Peretto, N.; Urquhart, J. S.

    2018-03-01

    MALT-45 is an untargeted Galactic plane survey for spectral lines which are commonly bright in star-forming regions at 45GHz (7mm waveband). We have so far observed 5 square degrees within the region bounded by 330°<=l<=335°, b=+/-0.5°. MALT-45 observations were conducted on the Australia Telescope Compact Array (ATCA), which provides 2x2048MHz broad-band continuum windows for observing. Section 1.1 discusses the primary lines surveyed, and their rest frequencies dictate the positions of the broad-band windows for MALT-45. Within the frequency ranges of the broad-band windows, we survey for 12 spectral lines. (2 data files).

  3. [Application of AOTF in spectral analysis. 1. Hardware and software designs for the self-constructed visible AOTF spectrophotometer].

    PubMed

    He, Jia-yao; Peng, Rong-fei; Zhang, Zhan-xia

    2002-02-01

    A self-constructed visible spectrophotometer using an acousto-optic tunable filter(AOTF) as a dispersing element is described. Two different AOTFs (one from The Institute for Silicate (Shanghai, China) and the other from Brimrose(USA)) are tested. The software written with visual C++ and operated on a Window98 platform is an applied program with dual database and multi-windows. Four independent windows, namely scanning, quantitative, calibration and result are incorporated. The Fourier self-deconvolution algorithm is also incorporated to improve the spectral resolution. The wavelengths are calibrated using the polynomial curve fitting method. The spectra and calibration curves of soluble aniline blue and phenol red are presented to show the feasibility of the constructed spectrophotometer.

  4. Terahertz atmospheric attenuation and continuum effects

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Slingerland, Elizabeth J.; Giles, Robert H.; Nixon, William E.

    2013-05-01

    Remote sensing over long path lengths has become of greater interest in the terahertz frequency region. Applications such as pollution monitoring and detection of energetic chemicals are of particular interest. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum is lacking. The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The continuum effect gives rise to an excess absorption that is unaccounted for in just a resonant line spectrum simulation. The transmission of broadband terahertz radiation from 0.300THz - 1.5THz through air with varying relative humidity levels was recorded for multiple path lengths. From these data, the absorption coefficient as a function of frequency was determined and compared with model calculations. The intensity and location of the strong absorption lines were in good agreement with spectral databases such as the 2008 HITRAN database and the JPL database. However, a noticeable continuum effect was observed particularly in the atmospheric transmission windows. A small discrepancy still remained even after accounting for continuum absorption using the best available data from the literature. This discrepancy, when projected over a one kilometer path length, typical of distances used in remote sensing, can cause a 30dB difference between calculated and observed attenuation. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

  5. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles.

    PubMed

    Gentle, A R; Smith, G B

    2010-02-10

    Nanoparticles that have narrow absorption bands that lie entirely within the atmosphere's transparent window from 7.9 to 13 mum can be used to radiatively cool to temperatures that are well below ambient. Heating from incoming atmospheric radiation in the remainder of the Planck radiation spectrum, where the atmosphere is nearly "black", is reduced if the particles are dopants in infrared transmitting polymers, or in transmitting coatings on low emittance substrates. Crystalline SiC nanoparticles stand out with a surface phonon resonance from 10.5 to 13 mum clear of the atmospheric ozone band. Resonant SiO(2) nanoparticles are complementary, absorbing from 8 to 10 mum, which includes atmospheric ozone emissions. Their spectral location has made SiC nanoparticles in space dust a feature in ground-based IR astronomy. Optical properties are presented and subambient cooling performance analyzed for doped polyethylene on aluminum. A mixture of SiC and SiO(2) nanoparticles yields high performance cooling at low cost within a practical cooling rig.

  6. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    PubMed

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  7. Active two-phase cooling of an IR window for a hypersonic interceptor

    NASA Astrophysics Data System (ADS)

    Burzlaff, B. H.; Chivian, Jay S.; Cotten, W. D.; Hemphill, R. B.; Huhlein, Michael A.

    1993-06-01

    A novel actively cooled window for an IR sensor on a hypersonic interceptor is envisioned which achieves an IR window with high transmittance, low emittance, and low image distortion under high aerodynamic heat flux. The cooling concept employs two-phase convective boiling of liquid ammonia. Coolant is confined to narrow, parallel channels within the window to minimize obscuration of the aperture. The high latent heat of vaporization of ammonia minimizes coolant mass-flow requirements. Low boiling temperatures at projected operating pressures promote high thermal conductivity and low emissivity in the window. The concept was tested with thermal measurements on sub-mm width coolant channels in Si. High values for heat transfer coefficient and critical heat flux were obtained. Thermal gradients within the window can be controlled by the coolant channel configuration. Design options are investigated by predicting the effect of aerodynamic heat flux on the image produced by an IR sensor with a cooled window. Ammonia-cooled IR windows will function in the anticipated aerothermal environment.

  8. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution, appendix 2

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1988-01-01

    This thesis reviews the technique established to clear channels in the Power Spectral Estimate by applying linear combinations of well known window functions to the autocorrelation function. The need for windowing the auto correlation function is due to the fact that the true auto correlation is not generally used to obtain the Power Spectral Estimate. When applied, the windows serve to reduce the effect that modifies the auto correlation by truncating the data and possibly the autocorrelation has on the Power Spectral Estimate. It has been shown in previous work that a single channel has been cleared, allowing for the detection of a small peak in the presence of a large peak in the Power Spectral Estimate. The utility of this method is dependent on the robustness of it on different input situations. We extend the analysis in this paper, to include clearing up to three channels. We examine the relative positions of the spikes to each other and also the effect of taking different percentages of lags of the auto correlation in the Power Spectral Estimate. This method could have application wherever the Power Spectrum is used. An example of this is beam forming for source location, where a small target can be located next to a large target. Other possibilities extend into seismic data processing. As the method becomes more automated other applications may present themselves.

  9. Effects of mixing eggs of different initial incubation time on the hatching pattern, chick embryonic development and post-hatch performance.

    PubMed

    Zhong, Zhentao; Yu, Yue; Jin, Shufang; Pan, Jinming

    2018-01-01

    The hatch window that varies from 24 to 48 h is known to influence post-hatch performance of chicks. A narrow hatch window is needed for commercial poultry industry to acquire a high level of uniformity of chick quality. Hatching synchronization observed in avian species presents possibilities in altering hatch window in artificial incubation. Layer eggs which were laid on the same day by a single breeder flock and stored for no more than two days started incubation 12 h apart to obtain developmental distinction. The eggs of different initial incubation time were mixed as rows adjacent to rows on day 12 of incubation. During the hatching period (since day 18), hatching time of individual eggs and hatch window were obtained by video recordings. Embryonic development (day 18 and 20) and post-hatch performance up to day 7 were measured. The manipulation of mixing eggs of different initial incubation time shortened the hatch window of late incubated eggs in the manipulated group by delaying the onset of hatching process, and improved the hatchability. Compared to the control groups, chick embryos or chicks in the egg redistribution group showed no significant difference in embryonic development and post-hatch performance up to day 7. We have demonstrated that eggs that were incubated with advanced eggs performed a narrow spread of hatch with higher hatchability, normal embryonic development as well as unaffected chick quality. This specific manipulation is applicable in industrial poultry production to shorten hatch window and improve the uniformity of chick quality.

  10. Lobster eye as a collector for water window microscopy

    NASA Astrophysics Data System (ADS)

    Pina, L.; Maršíková, V.; Inneman, A.; Nawaz, M. F.; Jančárek, A.; Havlíková, R.

    2017-08-01

    Imaging in EUV, SXR and XR spectral bands of radiation is of increasing interest. Material science, biology and hot plasma are examples of relevant fast developing areas. Applications include spectroscopy, astrophysics, Soft X-ray Ray metrology, Water Window microscopy, radiography and tomography. Especially Water Window imaging has still not fully recognized potential in biology and medicine microscopy applications. Theoretical study and design of Lobster Eye (LE) optics as a collector for water window (WW) microscopy and comparison with a similar size ellipsoidal mirror condensor are presented.

  11. Transient enhancement and spectral narrowing of the photothermal effect of plasmonic nanoparticles under pulsed excitation.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Volkov, Alexey N; Wu, Xiangwei; Lapotko, Dmitri O

    2013-02-06

    The transient 100-fold enhancement and spectral narrowing to 2 nm of the photothermal conversion by solid gold nanospheres under near-infrared excitation with a short laser pulse is reported. This non-stationary effect was observed for a wide range of optical fluences starting from 10 mJ cm(-2) for single nanospheres, their ensembles and aggregated clusters in water, in vitro and in vivo. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. EIT in resonator chains: similarities and differences with atomic media

    NASA Technical Reports Server (NTRS)

    Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.

    2004-01-01

    We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.

  13. A randomized trial to determine the impact on compliance of a psychophysical peripheral cue based on the Elaboration Likelihood Model.

    PubMed

    Horton, Rachael Jane; Minniti, Antoinette; Mireylees, Stewart; McEntegart, Damian

    2008-11-01

    Non-compliance in clinical studies is a significant issue, but causes remain unclear. Utilizing the Elaboration Likelihood Model of persuasion, this study assessed the psychophysical peripheral cue 'Interactive Voice Response System (IVRS) call frequency' on compliance. 71 participants were randomized to once daily (OD), twice daily (BID) or three times daily (TID) call schedules over two weeks. Participants completed 30-item cognitive function tests at each call. Compliance was defined as proportion of expected calls within a narrow window (+/- 30 min around scheduled time), and within a relaxed window (-30 min to +4 h). Data were analyzed by ANOVA and pairwise comparisons adjusted by the Bonferroni correction. There was a relationship between call frequency and compliance. Bonferroni adjusted pairwise comparisons showed significantly higher compliance (p=0.03) for the BID (51.0%) than TID (30.3%) for the narrow window; for the extended window, compliance was higher (p=0.04) with OD (59.5%), than TID (38.4%). The IVRS psychophysical peripheral cue call frequency supported the ELM as a route to persuasion. The results also support OD strategy for optimal compliance. Models suggest specific indicators to enhance compliance with medication dosing and electronic patient diaries to improve health outcomes and data integrity respectively.

  14. A spectrally tunable calibration source using Ebert-Fastie configuration

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Li, Zhigang

    2018-03-01

    A novel spectrally tunable calibration source based on a digital micromirror device (DMD) and Ebert-Fastie optical configuration with two working modes (narrow-band mode and broad-band mode) was designed. The DMD is set on the image plane of the first spectral tuner, and controls the wavelength and intensity of the light reflected into the second spectral tuner by switching the micromirror array’s condition, which in turn controls the working mode of the spectrally tunable source. When working in narrow-band mode, the spectrally tunable source can be calibrated by a Gershun tube radiant power radiometer and a spectroradiometer. In broad-band mode, it can be used to calibrate optical instruments as a standard spectral radiance source. When using a xenon lamp as a light source, the stability of the spectrally tunable source is better than 0.5%, the minimum spectral bandwidth is 7 nm, and the uncertainty of the spectral radiance of the spectrally tunable source is estimated as 14.68% at 450 nm, 1.54% at 550 nm, and 1.48% at 654.6 nm. The uncertainty of the spectral radiance of the spectrally tunable source calibrated by the Gershun tube radiometer and spectroradiometer can be kept low during the radiometric calibration procedure so that it can meet the application requirement of optical quantitative remote sensing calibration.

  15. Nanocell with a pressure-controlled Rb atomic vapor column thickness: Critical influence of the thickness on optical processes

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Amiryan, A.; Cartaleva, S.; Sarkisyan, D.

    2017-07-01

    A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0-1 atm, the NC thickness is smoothly varied in the range L = 140-1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.

  16. Spectral region optimization for Raman-based optical biopsy of inflammatory lesions.

    PubMed

    de Carvalho, Luis Felipe das Chagas E Silva; Bitar, Renata Andrade; Arisawa, Emília Angela Loschiavo; Brandão, Adriana Aigotti Haberbeck; Honório, Kathia Maria; Cabral, Luiz Antônio Guimarães; Martin, Airton Abrahão; Martinho, Herculano da Silva; Almeida, Janete Dias

    2010-08-01

    The biochemical alterations between inflammatory fibrous hyperplasia (IFH) and normal tissues of buccal mucosa were probed by using the FT-Raman spectroscopy technique. The aim was to find the minimal set of Raman bands that would furnish the best discrimination. Raman-based optical biopsy is a widely recognized potential technique for noninvasive real-time diagnosis. However, few studies had been devoted to the discrimination of very common subtle or early pathologic states as inflammatory processes that are always present on, for example, cancer lesion borders. Seventy spectra of IFH from 14 patients were compared with 30 spectra of normal tissues from six patients. The statistical analysis was performed with principal components analysis and soft independent modeling class analogy cross-validated, leave-one-out methods. Bands close to 574, 1,100, 1,250 to 1,350, and 1,500 cm(-1) (mainly amino acids and collagen bands) showed the main intragroup variations that are due to the acanthosis process in the IFH epithelium. The 1,200 (C-C aromatic/DNA), 1,350 (CH(2) bending/collagen 1), and 1,730 cm(-1) (collagen III) regions presented the main intergroup variations. This finding was interpreted as originating in an extracellular matrix-degeneration process occurring in the inflammatory tissues. The statistical analysis results indicated that the best discrimination capability (sensitivity of 95% and specificity of 100%) was found by using the 530-580 cm(-1) spectral region. The existence of this narrow spectral window enabling normal and inflammatory diagnosis also had useful implications for an in vivo dispersive Raman setup for clinical applications.

  17. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and yield

    USDA-ARS?s Scientific Manuscript database

    Modern hyperspectral sensors permit reflectance measurements of crop canopies in hundreds of narrow spectral wavebands. While these sensors describe plant canopy reflectance in greater detail than multispectral sensors, they also suffer from issues with data redundancy and spectral autocorrelation. ...

  18. Seismic facies analysis based on self-organizing map and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian

    2015-01-01

    Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.

  19. Nonlinear whistler wave model for lion roars in the Earth's magnetosheath

    NASA Astrophysics Data System (ADS)

    Dwivedi, N. K.; Singh, S.

    2017-09-01

    In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.

  20. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    NASA Astrophysics Data System (ADS)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  1. Photonic microstructures for energy-generating clear glass and net-zero energy buildings.

    PubMed

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-23

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  2. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows.

    PubMed

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-10-16

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.

  3. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows

    PubMed Central

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-01-01

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m2 mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890

  4. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    PubMed Central

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  5. Spectral line narrowing in PPLN OPO devices for 1-μm wavelength doubling

    NASA Astrophysics Data System (ADS)

    Perrett, Brian J.; Terry, Jonathan A. C.; Mason, Paul D.; Orchard, David A.

    2004-12-01

    One route to generating mid-infrared (mid-IR) radiation is through a two-stage non-linear conversion process from the near-IR, exploiting powerful neodymium lasers operating at wavelengths close to 1 μm. In the first stage of this process non-linear conversion within a degenerate optical parametric oscillator (OPO) is used to double the wavelength of the 1 μm laser. The resultant 2 μm radiation is then used to pump a second OPO, based on a material such as ZGP, for conversion into the 3 to 5 μm mid-IR waveband. Periodically poled lithium niobate (PPLN) is a useful material for conversion from 1 to 2 μm due to its high non-linear coefficient (deff ~ 16 pm/V) and the long crystal lengths available (up to 50 mm). Slope efficiencies in excess of 40% have readily been achieved using a simple plane-plane resonator when pumped at 10 kHz with 3.5 mJ pulses from a 1.047 μm Nd:YLF laser. However, the OPO output was spectrally broad at degeneracy with a measured full-width-half-maximum (FWHM) linewidth of approximately 65 nm. This output linewidth is significantly broader than the spectral acceptance bandwidth of ZGP for conversion into the mid-IR. In this paper techniques for spectral narrowing the output from a degenerate PPLN OPO are investigated using two passive elements, a diffraction grating and an air spaced etalon. Slope efficiencies approaching 20% have been obtained using the grating in a dog-leg cavity configuration producing spectrally narrow 2 μm output with linewidths as low as 2 nm. A grating-narrowed degenerate PPLN OPO has been successfully used to pump a ZGP OPO.

  6. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.

    PubMed

    Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai

    2016-11-18

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.

  7. Distortion in the thermal noise spectrum and quality factor of nanomechanical devices due to finite frequency resolution with applications to the atomic force microscope.

    PubMed

    Sader, John E; Sanelli, Julian; Hughes, Barry D; Monty, Jason P; Bieske, Evan J

    2011-09-01

    The thermal noise spectrum of nanomechanical devices is commonly used to characterize their mechanical properties and energy dissipation. This spectrum is measured from finite time series of Brownian motion of the device, which is windowed and Fourier transformed. Here, we present a theoretical and experimental investigation of the effect of such finite sampling on the measured device quality factor. We prove that if no spectral window is used, the thermal noise spectrum retains its original Lorentzian distribution but with a reduced quality factor, indicating an apparent enhancement in energy dissipation. A simple analytical formula is derived connecting the true and measured quality factors - this enables extraction of the true device quality factor from measured data. Common windows used to reduce spectral leakage are found to distort the (true) Lorentzian shape, potentially making fitting problematic. These findings are expected to be of particular importance for devices with high quality factors, where spectral resolution can be limited in practice. Comparison and validation using measurements on atomic force microscope cantilevers are presented. © 2011 American Institute of Physics

  8. Error analysis and new dual-cosine window for estimating the sensor frequency response function from the step response data

    NASA Astrophysics Data System (ADS)

    Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun

    2018-03-01

    Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

  9. Round and Oval Window Anatomic Variability: Its Implication for the Vibroplasty Technique.

    PubMed

    Mancheño, Marta; Aristegui, Miguel; Sañudo, Jose Ramon

    2017-06-01

    The objective of this study is to evaluate the anatomical variability of round and oval window regions and its relationship with their closest structures, to determine its implication on the fitting and stabilization of the middle ear implant Vibrant Soundbridge. Variations of the anatomy of round and oval window regions were assessed in a total of 85 human dissected temporal bones. Afterward, we evaluated the adaptation and subsequent stabilization of the floating mass transducer (FMT) of the Vibrant Soundbridge in 67 cases in round window (RW) and in 22 cases in oval window (OW), and the influence that the variability of the different anatomical features examined had on this stabilization. We also assessed access and surgeon's view of the RW niche through the facial recess approach. Stabilization of the FMT in the RW was achieved in 53 (79%) of the 67 cases; we found that the less favorable anatomical conditions for stabilization were: membrane smaller than 1.5 mm, presence of a high jugular bulb and a narrow or very narrow RW niche. Frequently, two or more of these conditions happened simultaneously. In seven cases (22%) access to the RW through facial recess approach did not allow positioning the FMT in place. OW stabilization succeeded in 18 (82%) of the 22 cases. Round and oval window vibroplasty are difficult surgical techniques. To place the FMT directly on the OW may be easier as we do not have to drill the niche. In both regions there are some anatomical conditions that hinder fitting the FMT and even make it impossible. Once fitted, the main problem is to achieve good stabilization of the device.

  10. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  11. Kirkpatrick-Baez microscope for hard X-ray imaging of fast ignition experiments.

    PubMed

    Friesen, H; Tiedje, H F; Hey, D S; Mo, M Z; Beaudry, A; Fedosejevs, R; Tsui, Y Y; Mackinnon, A; McLean, H S; Patel, P K

    2013-02-01

    A Kirkpatrick-Baez X-ray microscope has been developed for use on the Titan laser facility at the Lawrence Livermore National Laboratory in Fast Ignition experiments. It was developed as a broadband alternative to narrow band Bragg crystal imagers for imaging Kα emission from tracer layers. A re-entrant design is employed which allows for alignment from outside the chamber. The mirrors are coated with Pt and operate at a grazing incident angle of 0.5° providing higher resolution than an equal brightness pinhole and sufficient bandwidth to image thermally shifted characteristic Kα emission from heated Cu tracer layers in Fast Ignition experiments. The superpolished substrates (<1 Å rms roughness) had a final visible wavelength roughness of 1.7 Å after coating, and exhibited a reflectivity corresponding to an X-ray wavelength roughness of 7 ± 1 Å. A unique feature of this design is that during experiments, the unfiltered direct signal along with the one-dimensional reflections are retained on the detector in order to enable a live indication of alignment and incident angle. The broad spectral window from 4 to 9 keV enables simultaneous observation of emission from several spectral regions of interest, which has been demonstrated to be particularly useful for cone-wire targets. An experimentally measured resolution of 15 μm has been obtained at the center of the field of view.

  12. Spectral filters for laser communications

    NASA Technical Reports Server (NTRS)

    Shaik, K.

    1991-01-01

    Optical communication systems must perform reliabily under strong background light interference. Since the transmitting lasers operate within a narrow spectral band, high signal to noise ratios can be achieved when narrowband spectral optical filters can be used to reject out of band light. Here, a set of general requirements for such filters are developed, and an overview is given of suitable spectral filter technologies for optical communication systems.

  13. Imaging using a supercontinuum laser to assess tumors in patients with breast carcinoma

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.

    2016-03-01

    The supercontinuum laser light source has many advantages over other light sources, including broad spectral range. Transmission images of paired normal and malignant breast tissue samples from two patients were obtained using a Leukos supercontinuum (SC) laser light source with wavelengths in the second and third NIR optical windows and an IR- CCD InGaAs camera detector (Goodrich Sensors Inc. high response camera SU320KTSW-1.7RT with spectral response between 900 nm and 1,700 nm). Optical attenuation measurements at the four NIR optical windows were obtained from the samples.

  14. Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.

    2004-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.

  15. Protective broadband window coatings

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Narayanan, Authi A.

    1997-06-01

    Optical windows employed in current and future airborne and ground based optical sensor systems are required to provide long service life under extreme environmental conditions including blowing sand and high speed rain. State of the art sensor systems are employing common aperture windows which must provide optical bandpasses from the TV to the LWIR. Operation Desert Storm experience indicates that current optical coatings provide limited environmental protection which adversely affects window life cycle cost. Most of these production coatings also have limited optical bandpasses (LWIR, MWIR, or TV-NIR). A family of optical coatings has been developed which provide a significant increase in rain and sand impact protection to current optical window materials. These coatings can also be tailored to provide either narrow optical bandwidth (e.g., LWIR) or broadband transmittance (TV- LWIR). They have been applied to a number of standard optical window materials. These coating have successfully completed airborne rain and sand abrasion test with minimal impact on optical window performance. Test results are presented. Low cost service life is anticipated as well as the ability to operate windows in even more taxing environments than currently feasible.

  16. Retrieving the complex refractive index of atmospheric aerosols from ratios of solar spectral extinction measurements

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.; Mease, K. D.

    1978-01-01

    The technique proposed by Fymat (1976) for retrieving the complex refractive index of atmospheric aerosols using narrowband spectral transmission ratios, taken within an overall narrow spectral interval, is investigated in the case of modelled polydispersions of rural, maritime-continental, maritime-sea spray and meteoric dust aerosols. It is confirmed that for not too broad size distributions most of the information comes from a narrow size range of 'active' aerosols so that, under these circumstances, the refractive index components can indeed be retrieved essentially independently of the size distribution. For 0.1% accurate data in three colors, the technique can provide the real and imaginary components of the index respectively within 0.07% and 0.3% accuracy.

  17. Narrow Angle Wide Spectral Range Radiometer Design FEANICS/REEFS Radiometer Design Report

    NASA Technical Reports Server (NTRS)

    Camperchioli, William

    2005-01-01

    A critical measurement for the Radiative Enhancement Effects on Flame Spread (REEFS) microgravity combustion experiment is the net radiative flux emitted from the gases and from the solid fuel bed. These quantities are measured using a set of narrow angle, wide spectral range radiometers. The radiometers are required to have an angular field of view of 1.2 degrees and measure over the spectral range of 0.6 to 30 microns, which presents a challenging design effort. This report details the design of this radiometer system including field of view, radiometer response, radiometric calculations, temperature effects, error sources, baffling and amplifiers. This report presents some radiometer specific data but does not present any REEFS experiment data.

  18. Simulator spectral characterization using balloon calibrated solar cells with narrow band pass filters

    NASA Technical Reports Server (NTRS)

    Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.

    1981-01-01

    The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.

  19. Spectral and spread-spectral teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  20. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  1. Spectral definition of the ArTeMiS instrument

    NASA Astrophysics Data System (ADS)

    Haynes, Vic; Maffei, Bruno; Pisano, Giampaolo; Dubreuil, Didier; Delisle, Cyrille; Le Pennec, Jean; Hurtado, Norma

    2014-07-01

    ArTeMiS is a sub-millimetre camera to be operated, on the Atacama Pathfinder Experiment Telescope (APEX). The ultimate goal is to observe simultaneously in three atmospheric spectral windows in the region of 200, 350 and 450 microns. We present the filtering scheme, which includes the cryostat window, thermal rejection elements, band separation and spectral isolation, which has been adopted for this instrument. This was achieved using a combination of scattering, Yoshinaga filters, organic dyes and Ulrich type embedded metallic mesh devices. Design of the quasi-optical mesh components has been developed by modelling with an in-house developed code. For the band separating dichroics, which are used with an incidence angle of 35 deg, further modelling has been performed with HFSS (Ansoft). Spectral characterization of the components for the 350 and 450 bands have been performed with a Martin-Puplett Polarizing Fourier Transform Spectrometer. While for the first commissioning and observation campaign, one spectral band only was operational (350 microns), we report on the design of the 200, 350 and 450 micron bands.

  2. Near-infrared spectra of the Martian surface: Reading between the lines

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Bell, J. F., III

    1993-01-01

    Moderate-resolution near-infrared (NIR) spectra of Mars have been widely used in studies of the Martian surface because many candidate surface materials have distinctive absorption features at these wavelengths. Recent advances in NIR detector technology and instrumentation have also encouraged studies in this spectral region. The use of moderate spectral resolution has often been justified for NIR surface observations because the spectral features produced by most surface materials are relatively broad, and easily discriminated at this resolution. In spite of this, NIR spectra of Mars are usually very difficult to interpret quantitatively. One problem is that NIR surface absorption features are often only a few percent deep, requiring observations with great signal-to-noise ratios. A more significant problem is that gases in the Martian atmosphere contribute numerous absorption features at these wavelengths. Ground-based observers must also contend with variable absorption by several gases in the Earth's atmosphere (H2O, CO2, O3, N2O, CH4, O2). The strong CO2 bands near 1.4, 1.6, 2.0, 2.7, 4.3, and 4.8 micrometers largely preclude the analysis of surface spectral features at these wavelengths. Martian atmospheric water vapor also contributes significant absorption near 1.33, 1.88, and 2.7 micrometers, but water vapor in the Earth's atmosphere poses a much larger problem to ground-based studies of these spectral regions. The third most important NIR absorber in the Martian atmosphere is CO. This gas absorbs most strongly in the relatively-transparent spectral windows near 4.6 and 2.3 micrometers. It also produces 1-10 percent absorption in the solar spectrum at these NIR wavelengths. This solar CO absorption cannot be adequately removed by dividing the Martian spectrum by that of a star, as is commonly done to calibrate ground-based spectroscopic observations, because most stars do not have identical amounts of CO absorption in their spectra. Here, we describe tow effective methods for eliminating contamination of Martian surface spectra by absorption in the solar, terrestrial, and Martian atmospheres. Both methods involve the use of very-high-resolution spectra that completely resolve the narrow atmospheric absorption lines.

  3. Interior of the second floor dance hall showing tall and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of the second floor dance hall showing tall and narrow window openings with 10-foot scale near center, looking south. - Bower Building, 409-413 East Weber Avenue, Stockton, San Joaquin County, CA

  4. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  5. Semiclassical spatial correlations in chaotic wave functions.

    PubMed

    Toscano, Fabricio; Lewenkopf, Caio H

    2002-03-01

    We study the spatial autocorrelation of energy eigenfunctions psi(n)(q) corresponding to classically chaotic systems in the semiclassical regime. Our analysis is based on the Weyl-Wigner formalism for the spectral average C(epsilon)(q(+),q(-),E) of psi(n)(q(+))psi(*)(n)(q(-)), defined as the average over eigenstates within an energy window epsilon centered at E. In this framework C(epsilon) is the Fourier transform in the momentum space of the spectral Wigner function W(x,E;epsilon). Our study reveals the chord structure that C(epsilon) inherits from the spectral Wigner function showing the interplay between the size of the spectral average window, and the spatial separation scale. We discuss under which conditions is it possible to define a local system independent regime for C(epsilon). In doing so, we derive an expression that bridges the existing formulas in the literature and find expressions for C(epsilon)(q(+),q(-),E) valid for any separation size /q(+)-q(-)/.

  6. Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study.

    PubMed

    Blocquet, M; Guo, F; Mendez, M; Ward, M; Coudert, S; Batut, S; Hecquet, C; Blond, N; Fittschen, C; Schoemaecker, C

    2018-05-01

    The characteristics of indoor light (intensity, spectral, spatial distribution) originating from outdoors have been studied using experimental and modeling tools. They are influenced by many parameters such as building location, meteorological conditions, and the type of window. They have a direct impact on indoor air quality through a change in chemical processes by varying the photolysis rates of indoor pollutants. Transmittances of different windows have been measured and exhibit different wavelength cutoffs, thus influencing the potential of different species to be photolysed. The spectral distribution of light entering indoors through the windows was measured under different conditions and was found to be weakly dependent on the time of day for indirect cloudy, direct sunshine, partly cloudy conditions contrary to the light intensity, in agreement with calculations of the transmittance as a function of the zenithal angle and the calculated outdoor spectral distribution. The same conclusion can be drawn concerning the position within the room. The impact of these light characteristics on the indoor chemistry has been studied using the INCA-Indoor model by considering the variation in the photolysis rates of key indoor species. Depending on the conditions, photolysis processes can lead to a significant production of radicals and secondary species. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO{sub 2} electron blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Xiaoming; Long, Hao; Wang, Haoning

    2014-08-11

    We demonstrated the capability of realizing enhanced ZnO-related UV emissions by using the low-cost and solution-processable ZnO quantum dots (QDs) with the help of a high-k HfO{sub 2} electron blocking layer (EBL) for the ZnO QDs/p-GaN light-emitting diodes (LEDs). Full-width at half maximum of the LED devices was greatly decreased from ∼110 to ∼54 nm, and recombinations related to nonradiative centers were significantly suppressed with inserting HfO{sub 2} EBL. The electroluminescence of the ZnO QDs/HfO{sub 2}/p-GaN LEDs demonstrated an interesting spectral narrowing effect with increasing HfO{sub 2} thickness. The Gaussian fitting revealed that the great enhancement of the Zn{sub i}-related emissionmore » at ∼414 nm whereas the deep suppression of the interfacial recombination at ∼477 nm should be the main reason for the spectral narrowing effect.« less

  8. Directly Imaged L-T Transition Exoplanets in the Mid-infrared

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Marley, Mark S.; Hinz, Philip M.; Morzinski, Katie M.; Skrutskie, Michael F.; Leisenring, Jarron M.; Close, Laird M.; Saumon, Didier; Bailey, Vanessa P.; Briguglio, Runa; Defrere, Denis; Esposito, Simone; Follette, Katherine B.; Hill, John M.; Males, Jared R.; Puglisi, Alfio; Rodigas, Timothy J.; Xompero, Marco

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (gsim3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  9. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  10. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets withmore » luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.« less

  11. Optical fiber micro-displacement sensor using a refractive index modulation window-assisted reflection fiber taper

    NASA Astrophysics Data System (ADS)

    Bao, Weijia; Qiao, Xueguang; Yin, Xunli; Rong, Qiangzhou; Wang, Ruohui; Yang, Hangzhou

    2017-12-01

    We demonstrate a compact fiber-optic quasi-Michelson interferometer (QMI) for micro-displacement measurement. The sensor comprises a micro-structure of a reflection taper tip containing a refractive index modification (RIM) as a coupling window over the interface between core and cladding of the fiber. Femtosecond laser-based direct inscription technique is used to achieve this window inscription and to induce large refractive index change. The RIM acts as a window for the strong coupling and recoupling of core-to-cladding modes. As the core and cladding modes are reflected at the taper tip and coupled back to lead-in fiber, a well-defined interference spectrum is achieved. The spectral intensity exhibits a high micro-bending sensitivity of 4 . 94 dB / μm because of the sensitivity to bending of recoupled intensity of cladding modes. In contrast, the spectral wavelength is insensitive to bending but linearly responds to temperature. The simultaneous measurements, including power-referenced for displacement and wavelength-referenced for temperature, were achieved by selective interference dip monitoring.

  12. Self-Sustained Mode-3 Tear Controls Dynamics of Narrow Retreating Subduction Zones

    NASA Astrophysics Data System (ADS)

    Munch, J.; Gerya, T.; Ueda, K.

    2017-12-01

    The Caribbean oroclinal basin exhibits several narrow retreating slabs in an oceanic domain. The slabs show a curved shape associated to a bent topography (trench). We propose that the curvature of the topography depends on slab retreat mechanisms following mode-3 tearing at the edges of the slab (out of the plane fracture propagation). While first-order characteristics have been principally reproduced in self-sustained subduction initiation models (Gerya et al., 2015, Nature, 527, 221-225), the relevant observations have not been quantified and the exact mechanism is not understood. In this work, we study the long-term 3D evolution of narrowing oceanic subduction zones during retreat, and investigate the link between mode-3 tear and orocline formation. Numerical experiments are carried out with a thermo-mechanical 3D finite-difference code. To allow the observation of developing topography, the precise location of the internal surface and its evolution by material diffusion is tracked. Retreating subduction is facilitated via a strong age contrast between a young lithosphere window enclosed by shear zones and the surrounding lithosphere. By varying the length and thickness of the shear zones and location of the age transition, the influence of these parameters on the tearing process and the development of topography is assessed. Experiments trigger subduction initiation and slab retreat via fracture zone collapse and spontaneous paired mode-3 tear propagation within the oceanic plate interior. Narrow retreating subducting slabs form as a natural result of the spontaneous paired tearing process. A curved trench forms along with slab retreat. Topography evolution and tearing trajectory appear to be dependent on the initial shear zones and young window dimensions. We also note a strong narrowing of the slab during the retreat (several tens of kilometers over 800 km of retreat). Overall, results indicate that narrowing of retreating slabs is a self-consistent consequence of tear propagation dynamics. This plate tearing mechanism may control dynamics of other narrow retreating subduction zones worldwide.

  13. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    NASA Astrophysics Data System (ADS)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  14. Temporal measurement on and using pulses from spectrally narrowed emission in styrylpyridinium cyanine dye

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Bhowmik, Achintya K.; Ahyi, Ayayi C.; Thakur, Mrinal

    2001-11-01

    Highly efficient spectrally narrowed emission (SNE) was observed in the solution of strylpyridinium cyanine dye (SPCD) pumped by fundamental and second harmonic of a picosecond Nd:YAG laser in two separate arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of the SNE was measured by background free SHG intensity autocorrelation technique. The measured duration of the pulses was 40 ps. These pulses, having a spectral linewidth of 10 nm (full width at half maximum), were used as a probe to measure the transient changes in the transmission in SPCD solution using a pump-probe setup. The transient optical transmission indicated a gain at the overlap and no gain was observed beyond a delay of 40 ps.

  15. Characterization of Window Functions for Regularization of Electrical Capacitance Tomography Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Peng, Lihui; Xiao, Deyun

    2007-06-01

    This paper presents a regularization method by using different window functions as regularization for electrical capacitance tomography (ECT) image reconstruction. Image reconstruction for ECT is a typical ill-posed inverse problem. Because of the small singular values of the sensitivity matrix, the solution is sensitive to the measurement noise. The proposed method uses the spectral filtering properties of different window functions to make the solution stable by suppressing the noise in measurements. The window functions, such as the Hanning window, the cosine window and so on, are modified for ECT image reconstruction. Simulations with respect to five typical permittivity distributions are carried out. The reconstructions are better and some of the contours are clearer than the results from the Tikhonov regularization. Numerical results show that the feasibility of the image reconstruction algorithm using different window functions as regularization.

  16. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    NASA Astrophysics Data System (ADS)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  17. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... View Larger Image Within that narrow window during a solar eclipse where an observer on Earth can watch the Moon's shadow obscure ... of the imagery acquired during Terra orbit 20920. The panels cover an area of about 380 kilometers x 2909 kilometers and use data ...

  18. 28. ROOM 211, VIEW TO THE SOUTHEAST. THE LONG NARROW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. ROOM 211, VIEW TO THE SOUTHEAST. THE LONG NARROW SPACE HAS EXPOSED TRUSSWORK IN UNPAINTED WOOD AS DID ALL UPSTAIRS ROOMS IN THEIR ORIGINAL CONDITION. CLERESTORY WINDOWS ARE INTERSPERSED WITH VENTS ALONG BOTH LONG SIDES OF THE ROOM. WALLS HAVE WIDE WOOD PANELING THAT IS PAINTED, FLOORS ARE WOOD. DOORWAY IN SOUTHWEST WALL LEADS TO UNFINISHED ATTIC SPACE. - Presidio of San Francisco, Cavalry Stables, Cowles Street, between Lincoln Boulevard & McDowell Street, San Francisco, San Francisco County, CA

  19. Fourth near-infrared optical window for assessment of bone and other tissues

    NASA Astrophysics Data System (ADS)

    Sordillo, Diana C.; Sordillo, Laura A.; Sordillo, Peter P.; Alfano, Robert R.

    2016-02-01

    Recently, additional near-infrared (NIR) optical windows beyond the conventional first therapeutic window have been utilized for deep tissue imaging through scattering media. Biomedical applications using a second optical window (1100 to 1300 nm) and a third (1600 to 1870 nm) are emerging. A fourth window (2100 to 2300 nm) has been largely ignored due to high water absorption and a lack of high sensitivity imaging detectors and ultrafast laser sources. In this study, optical properties of bone in this fourth NIR optical window, were investigated. Results were compared to those seen at the first, second and third windows, and are consistent with our previous work on malignant and benign breast and prostate tissues. Bone and malignant tissues showed highest uptake in the third and fourth windows. As collagen is a major chromophore with prominent spectral peaks between 2100 and 2300 nm, it may be that the fourth optical window is particularly useful for studying tissues with a higher collagen content, such as bone or malignant tumors.

  20. Sound transmission loss of windows on high speed trains

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  1. Tuning the emission of aqueous Cu:ZnSe quantum dots to yellow light window

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Hu, Zhiyang; Xu, Shuhong; Wang, Yanbin; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-07-01

    Synthesis of internally doped Cu:ZnSe QDs in an aqueous solution still suffers from narrow tunable emissions from the blue to green light window. In this work, we extended the emission window of aqueous Cu:ZnSe QDs to the yellow light window. Our results show that high solution pH, multiple injections of Zn precursors, and nucleation doping strategy are three key factors for preparing yellow emitted Cu:ZnSe QDs. All these factors can depress the reactivity of CuSe nuclei and Zn monomers, promoting ZnSe growth outside CuSe nuclei rather than form ZnSe nuclei separately. With increased ZnSe QD size, the conduction band and nearby trap state energy levels shift to higher energy sites, causing Cu:ZnSe QDs to have a much longer emission.

  2. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  3. Narrow linewidth operation of a spectral beam combined diode laser bar.

    PubMed

    Zhu, Zhanda; Jiang, Menghua; Cheng, Siqi; Hui, Yongling; Lei, Hong; Li, Qiang

    2016-04-20

    Our experiment is expected to provide an approach for realizing ultranarrow linewidth for a spectral beam combined diode laser bar. The beams of a diode laser bar are combined in a fast axis after a beam transformation system. With the help of relay optics and a transform lens with a long focal length of 1.5 m, the whole wavelength of a spectral combined laser bar can be narrowed down to 0.48 nm from more than 10 nm. We have achieved 56.7 W cw from a 19-element single bar with an M2 of 1.4  (in horizontal direction)×11.6  (in vertical direction). These parameters are good evidence that all the beams from the diode laser bar are combined together to increase the brightness.

  4. NASA Space Laser Technology

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  5. Narrow and Deep Fano Resonances in a Rod and Concentric Square Ring-Disk Nanostructures

    PubMed Central

    Huo, Yanyan; Jia, Tianqing; Zhang, Yi; Zhao, Hua; Zhang, Shian; Feng, Donghai; Sun, Zhenrong

    2013-01-01

    Localized surface plasmon resonances (LSPRs) in metallic nanostructures have been studied intensely in the last decade. Fano interference is an important way to decrease the resonance linewidth and enhance the spectral detection resolution, but realizing a Fano lineshape with both a narrow linewidth and high spectral contrast-ratio is still challenging. Here we propose a metallic nanostructure consisting of a concentric square ring-disk (CSRD) nanostructure and an outside nanorod. Fano linewidth and spectral contrast ratio can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to 5 nm, the quadrupolar Fano linewidth is of 0.025 eV, with a contrast ratio of 80%, and the figure of merit reaches 15. PMID:24064596

  6. Design of a modified endoscope illuminator for spectral imaging of colorectal tissues

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    The gold standard for locating colonic polyps is a white light endoscope in a colonoscopy, however, polyps smaller than 5 mm can be easily missed. Modified procedures such as narrow band imaging have shown only marginal increases in detection rates. Spectral imaging is a potential solution to improve the sensitivity and specificity of colonoscopies by providing the ability to distinguish molecular fluorescence differences in tissues. The goal of this work is to implement a spectral endoscopic light source to acquire spectral image data of colorectal tissues. A beta-version endoscope light source was developed, by retrofitting a white light endoscope light source (Olympus, CLK-4) with 16 narrow band LEDs. This redesigned, beta-prototype uses high-power LEDs with a minimum output of 500 mW to provide sufficient spectral output (0.5 mW) through the endoscope. A mounting apparatus was designed to provide sufficient heat dissipation. Here, we report recent results of our tests to characterize the intensity output through the light source and endoscope to determine the flat spectral output for imaging and intensity losses through the endoscope. We also report preliminary spectral imaging data from transverse pig colon that demonstrates the ability to result in working practical spectral data. Preliminary results of this revised prototype spectral endoscope system demonstrate that there is sufficient power to allow the imaging process to continue and potentially determine spectral differences in cancerous and normal tissue from imaging ex vivo pairs. Future work will focus on building a spectral library for the colorectal region and refining the user interface the system for in vivo use.

  7. Spectrum Analyzers Incorporating Tunable WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2009-01-01

    A photonic instrument is proposed to boost the resolution for ultraviolet/ optical/infrared spectral analysis and spectral imaging allowing the detection of narrow (0.00007-to-0.07-picometer wavelength resolution range) optical spectral signatures of chemical elements in space and planetary atmospheres. The idea underlying the proposal is to exploit the advantageous spectral characteristics of whispering-gallery-mode (WGM) resonators to obtain spectral resolutions at least three orders of magnitude greater than those of optical spectrum analyzers now in use. Such high resolutions would enable measurement of spectral features that could not be resolved by prior instruments.

  8. Hybrid optical and electronic laser locking using slow light due to spectral holes

    NASA Astrophysics Data System (ADS)

    Tay, Jian Wei; Farr, Warrick G.; Ledingham, Patrick M.; Korystov, Dmitry; Longdell, Jevon J.

    2013-06-01

    We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The large group delay of the spectral hole leads to a laser with very low phase noise. The laser has proved useful for quantum optics and sensing applications involving cryogenic rare-earth-ion dopants.

  9. Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe

    2018-02-01

    We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

  10. Method for enhancing signals transmitted over optical fibers

    DOEpatents

    Ogle, James W.; Lyons, Peter B.

    1983-01-01

    A method for spectral equalization of high frequency spectrally broadband signals transmitted through an optical fiber. The broadband signal input is first dispersed by a grating. Narrow spectral components are collected into an array of equalizing fibers. The fibers serve as optical delay lines compensating for material dispersion of each spectral component during transmission. The relative lengths of the individual equalizing fibers are selected to compensate for such prior dispersion. The output of the equalizing fibers couple the spectrally equalized light onto a suitable detector for subsequent electronic processing of the enhanced broadband signal.

  11. Novel methodologies for spectral classification of exon and intron sequences

    NASA Astrophysics Data System (ADS)

    Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.

    2012-12-01

    Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.

  12. Q estimation of seismic data using the generalized S-transform

    NASA Astrophysics Data System (ADS)

    Hao, Yaju; Wen, Xiaotao; Zhang, Bo; He, Zhenhua; Zhang, Rui; Zhang, Jinming

    2016-12-01

    Quality factor, Q, is a parameter that characterizes the energy dissipation during seismic wave propagation. The reservoir pore is one of the main factors that affect the value of Q. Especially, when pore space is filled with oil or gas, the rock usually exhibits a relative low Q value. Such a low Q value has been used as a direct hydrocarbon indicator by many researchers. The conventional Q estimation method based on spectral ratio suffers from the problem of waveform tuning; hence, many researchers have introduced time-frequency analysis techniques to tackle this problem. Unfortunately, the window functions adopted in time-frequency analysis algorithms such as continuous wavelet transform (CWT) and S-transform (ST) contaminate the amplitude spectra because the seismic signal is multiplied by the window functions during time-frequency decomposition. The basic assumption of the spectral ratio method is that there is a linear relationship between natural logarithmic spectral ratio and frequency. However, this assumption does not hold if we take the influence of window functions into consideration. In this paper, we first employ a recently developed two-parameter generalized S-transform (GST) to obtain the time-frequency spectra of seismic traces. We then deduce the non-linear relationship between natural logarithmic spectral ratio and frequency. Finally, we obtain a linear relationship between natural logarithmic spectral ratio and a newly defined parameter γ by ignoring the negligible second order term. The gradient of this linear relationship is 1/Q. Here, the parameter γ is a function of frequency and source wavelet. Numerical examples for VSP and post-stack reflection data confirm that our algorithm is capable of yielding accurate results. The Q-value results estimated from field data acquired in western China show reasonable comparison with oil-producing well location.

  13. Fluorescence and phosphorescence of photomultiplier window materials under electron irradiation

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Bredekamp, J. H.

    1974-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation were investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV grade, optical grade, and electron-irradiated samples of MGF2 and LiF, CaF2, BaF2, sapphire, fused silica, and UV transmitting glasses were obtained over the spectral range of 200 nm to 650 nm. Fluorescence yields, expressed as the number of counts in a solid angle of 2 pi steradian per 1MeV of incident electron energy deposited, were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively.

  14. Performance of special radiation-hardened optical fibers intended for use in the telecom spectral windows at a megagray level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomashuk, A.L.; Dianov, E.M.; Golant, K.M.

    Gamma-radiation-induced absorption spectra (2.15 MGy(Si)) are compared in N-doped and pure silica fibers fabricated by surface plasma CVD-process under different regimes with the aim to reveal the chief absorption mechanisms in the telecom spectral windows and to work out an optimum fiber design. The long wavelength absorption edge is shown to be the main absorption mechanism at megagray doses. Its value increases with increasing bonded hydrogen concentration in the fiber glass network and is slightly greater in N-doped fibers. No nitrogen-related color centers have been revealed in the short wavelength loss edge, which is determined by chlorine impurity in silica.

  15. Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinh, Thanh-Hung, E-mail: dinh@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei; Arai, Goki

    2015-09-21

    We have characterized the spectral structure and the temporal history of the laser-produced high-Z multi-charged ion plasmas for the efficient water window soft x-ray sources. Strong unresolved transition array emission was observed due to 4d–4f and 4f–5g transitions from Au, Pb, and Bi plasmas in the 280–700 eV photon energy region. The temporal behavior of the emission was essentially similar of that of the laser pulse with a slight delay between different transitions. These results provide feedback for accurate modeling of the atomic processes with the radiative hydrodynamic simulations.

  16. 1-kW monolithic narrow linewidth linear-polarized fiber laser at 1030 nm

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Fang, Qiang; Cui, Xuelong; Hou, Bowen; Fu, Shijie; Xie, Zhaoxin; Shi, Wei

    2018-02-01

    We demonstrate an all-fiberized, linear-polarized, narrow spectral linewidth laser system with kilowatts-level output power at 1030 nm in master oscillator-power amplifier (MOPA) configuration. The laser system consists of a linear-polarized, narrow linewidth ( 28 GHz) fiber laser oscillator and two stages of linear-polarized fiber amplifiers. A 925 W linear-polarized fiber laser with a polarization extinction ratio (PER) of 15.2 dB and a spectral width of 60 GHz at the central wavelength of 1030.1 nm is achieved. Owing to the setting of the appropriate parameters for the laser, no indication of Stimulate Brillouin Scattering (SBS) is observed in the system. Moreover, thanks to the excellent quantum efficiency of the laser and the thightly coiling of the active fiber in the main amplifier, the mode instability (MI) is successfully avoided. As a result, the near diffraction-limited beam quality (M2<1.3) is achieved.

  17. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    PubMed

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  18. Monte Carlo modeling of light-tissue interactions in narrow band imaging.

    PubMed

    Le, Du V N; Wang, Quanzeng; Ramella-Roman, Jessica C; Pfefer, T Joshua

    2013-01-01

    Light-tissue interactions that influence vascular contrast enhancement in narrow band imaging (NBI) have not been the subject of extensive theoretical study. In order to elucidate relevant mechanisms in a systematic and quantitative manner we have developed and validated a Monte Carlo model of NBI and used it to study the effect of device and tissue parameters, specifically, imaging wavelength (415 versus 540 nm) and vessel diameter and depth. Simulations provided quantitative predictions of contrast-including up to 125% improvement in small, superficial vessel contrast for 415 over 540 nm. Our findings indicated that absorption rather than scattering-the mechanism often cited in prior studies-was the dominant factor behind spectral variations in vessel depth-selectivity. Narrow-band images of a tissue-simulating phantom showed good agreement in terms of trends and quantitative values. Numerical modeling represents a powerful tool for elucidating the factors that affect the performance of spectral imaging approaches such as NBI.

  19. Cavity mode-width spectroscopy with widely tunable ultra narrow laser.

    PubMed

    Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman

    2013-12-02

    We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.

  20. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

    PubMed

    Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro

    2015-12-01

    An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of 2.29%. Additional evaluation of SRSNV was carried out using diffuse reflection NIR spectra of marzipan and corn samples, and PLSR models based on SRSNV spectra showed good prediction results. These evaluation results indicate that SRSNV is effective in baseline correction of diffuse reflection NIR spectra and provides regression models with good prediction accuracy.

  1. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  2. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    PubMed

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  3. Short time Fourier analysis of the electromyogram - Fast movements and constant contraction

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake; Lehman, Steven

    1986-01-01

    Short-time Fourier analysis was applied to surface electromyograms (EMG) recorded during rapid movements, and during isometric contractions at constant forces. A portion of the data to be transformed by multiplying the signal by a Hamming window was selected, and then the discrete Fourier transform was computed. Shifting the window along the data record, a new spectrum was computed each 10 ms. The transformed data were displayed in spectograms or 'voiceprints'. This short-time technique made it possible to see time-dependencies in the EMG that are normally averaged in the Fourier analysis of these signals. Spectra of EMGs during isometric contractions at constant force vary in the short (10-20 ms) term. Short-time spectra from EMGs recorded during rapid movements were much less variable. The windowing technique picked out the typical 'three-burst pattern' in EMG's from both wrist and head movements. Spectra during the bursts were more consistent than those during isometric contractions. Furthermore, there was a consistent shift in spectral statistics in the course of the three bursts. Both the center frequency and the variance of the spectral energy distribution grew from the first burst to the second burst in the same muscle. The analogy between EMGs and speech signals is extended to argue for future applicability of short-time spectral analysis of EMG.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kewley, Lisa J.; Dopita, Michael A.; Sutherland, Ralph

    We use the chemical evolution predictions of cosmological hydrodynamic simulations with our latest theoretical stellar population synthesis, photoionization, and shock models to predict the strong line evolution of ensembles of galaxies from z = 3 to the present day. In this paper, we focus on the brightest optical emission-line ratios, [N II]/H{alpha} and [O III]/H{beta}. We use the optical diagnostic Baldwin-Phillips-Terlevich (BPT) diagram as a tool for investigating the spectral properties of ensembles of active galaxies. We use four redshift windows chosen to exploit new near-infrared multi-object spectrographs. We predict how the BPT diagram will appear in these four redshiftmore » windows given different sets of assumptions. We show that the position of star-forming galaxies on the BPT diagram traces the interstellar medium conditions and radiation field in galaxies at a given redshift. Galaxies containing active galactic nucleus (AGN) form a mixing sequence with purely star-forming galaxies. This mixing sequence may change dramatically with cosmic time, due to the metallicity sensitivity of the optical emission-lines. Furthermore, the position of the mixing sequence may probe metallicity gradients in galaxies as a function of redshift, depending on the size of the AGN narrow-line region. We apply our latest slow shock models for gas shocked by galactic-scale winds. We show that at high redshift, galactic wind shocks are clearly separated from AGN in line ratio space. Instead, shocks from galactic winds mimic high metallicity starburst galaxies. We discuss our models in the context of future large near-infrared spectroscopic surveys.« less

  5. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.

    PubMed

    Jiang, Wen; Feng, Songjie; Huang, Shisheng; Yu, Wenxia; Li, Guanglei; Yang, Guang; Liu, Yajing; Zhang, Yu; Zhang, Lei; Hou, Yu; Chen, Jia; Chen, Jieping; Huang, Xingxu

    2018-06-06

    Base editor (BE), containing a cytidine deaminase and catalytically defective Cas9, has been widely used to perform base editing. However, the narrow editing window of BE limits its utility. Here, we developed a new editing technology named as base editor for programming larger C to U (T) scope (BE-PLUS) by fusing 10 copies of GCN4 peptide to nCas9(D10A) for recruiting scFv-APOBEC-UGI-GB1 to the target sites. The new system achieves base editing with a broadened window, resulting in an increased genome-targeting scope. Interestingly, the new system yielded much fewer unwanted indels and non-C-to-T conversions. We also demonstrated its potential use in gene disruption across the whole genome through induction of stop codons (iSTOP). Taken together, the BE-PLUS system offers a new editing tool with increased editing window and enhanced fidelity.

  6. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip

    2017-10-20

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders ofmore » magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.« less

  7. Transient photothermal spectra of plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Sassaroli, Elisabetta; Jones, Alicia; Lapotko, Dmitri O

    2012-03-13

    The photothermal efficacy of near-infrared gold nanoparticles (NP), nanoshells, and nanorods was studied under pulsed high-energy optical excitation in plasmonic nanobubble (PNB) mode as a function of the wavelength and duration of the excitation laser pulse. PNBs, transient vapor nanobubbles, were generated around individual and clustered overheated NPs in water and living cells. Transient PNBs showed two photothermal features not previously observed for NPs: the narrowing of the spectral peaks to 1 nm and the strong dependence of the photothermal efficacy upon the duration of the laser pulse. Narrow red-shifted (relative to those of NPs) near-infrared spectral peaks were observed for 70 ps excitation laser pulses, while longer sub- and nanosecond pulses completely suppressed near-infrared peaks and blue shifted the PNB generation to the visual range. Thus, PNBs can provide superior spectral selectivity over gold NPs under specific optical excitation conditions.

  8. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre

    PubMed Central

    Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.

    2015-01-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290

  9. Electrochemical Synthesis of Bismuth Particles: Tuning Particle Shape through Substrate Type within a Narrow Potential Window

    PubMed Central

    Bilican, Doga; Fornell, Jordina; Sort, Jordi; Pellicer, Eva

    2017-01-01

    Bismuth (Bi) electrodeposition was studied on Si/Ti/Au, FTO-, and ITO-coated glasses from acidic nitrate solutions with and without gluconate within a narrow potential window (ΔE = 80 mV). This potential range was sufficient to observe a change in particle shape, from polyhedrons (including hexagons) to dendrites, the trend being slightly different depending on substrate activity. In all cases, though, the formation of dendrites was favoured as the applied potential was made more negative. Bi particles were more uniformly distributed over the substrate when sodium gluconate was added to the electrolyte. X-ray diffraction analyses of dendrites grown at −0.28 V indicated that they exhibit the rhombohedral phase of Bi and are predominantly oriented along the (003) plane. This orientation is exacerbated at the lowest applied potential (−0.20 V vs. Ag|AgCl) on glass/ITO substrate, for which completed and truncated hexagons are observed from the top view scanning electron microscopy images. PMID:28772402

  10. Effects of temporal variability in ground data collection on classification accuracy

    USGS Publications Warehouse

    Hoch, G.A.; Cully, J.F.

    1999-01-01

    This research tested whether the timing of ground data collection can significantly impact the accuracy of land cover classification. Ft. Riley Military Reservation, Kansas, USA was used to test this hypothesis. The U.S. Army's Land Condition Trend Analysis (LCTA) data annually collected at military bases was used to ground truth disturbance patterns. Ground data collected over an entire growing season and data collected one year after the imagery had a kappa statistic of 0.33. When using ground data from only within two weeks of image acquisition the kappa statistic improved to 0.55. Potential sources of this discrepancy are identified. These data demonstrate that there can be significant amounts of land cover change within a narrow time window on military reservations. To accurately conduct land cover classification at military reservations, ground data need to be collected in as narrow a window of time as possible and be closely synchronized with the date of the satellite imagery.

  11. Effect of narrow spectral filter position on the characteristics of active similariton mode-locked femtosecond fiber laser.

    PubMed

    Kotb, Hussein; Abdelalim, Mohamed A; Anis, Hanan

    2015-11-16

    A significant change in active similariton characteristics, both numerically and experimentally, is observed as a function of the location of the lumped spectral filter. The closer the spectral filter is to the input of the Yb(3+)-doped fiber, the shorter the de-chirped pulse width. The peak power of the de-chirped pulse has its maximum value at a certain location of the spectral filter. Four different positions of the spectral filter inside the laser cavity have been theoretically studied and two of them have been verified experimentally.

  12. Method for enhancing signals transmitted over optical fibers

    DOEpatents

    Ogle, J.W.; Lyons, P.B.

    1981-02-11

    A method for spectral equalization of high frequency spectrally broadband signals transmitted through an optical fiber is disclosed. The broadband signal input is first dispersed by a grating. Narrow spectral components are collected into an array of equalizing fibers. The fibers serve as optical delay lines compensating for material dispersion of each spectral component during transmission. The relative lengths of the individual equalizing fibers are selected to compensate for such prior dispersion. The output of the equalizing fibers couple the spectrally equalized light onto a suitable detector for subsequent electronic processing of the enhanced broadband signal.

  13. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.

  14. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease

    DTIC Science & Technology

    2016-09-01

    Six methods: Single value decomposition (SVD), wavelet, sliding window, sliding window with Gaussian weighting, spline and spectral improvements...comparison of a range of different denoising methods for dynamic MRS. Six denoising methods were considered: Single value decomposition (SVD), wavelet...project by improving the software required for the data analysis by developing six different denoising methods. He also assisted with the testing

  15. On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis.

    PubMed

    Pedersen, Mangor; Omidvarnia, Amir; Zalesky, Andrew; Jackson, Graeme D

    2018-06-08

    Correlation-based sliding window analysis (CSWA) is the most commonly used method to estimate time-resolved functional MRI (fMRI) connectivity. However, instantaneous phase synchrony analysis (IPSA) is gaining popularity mainly because it offers single time-point resolution of time-resolved fMRI connectivity. We aim to provide a systematic comparison between these two approaches, on both temporal and topological levels. For this purpose, we used resting-state fMRI data from two separate cohorts with different temporal resolutions (45 healthy subjects from Human Connectome Project fMRI data with repetition time of 0.72 s and 25 healthy subjects from a separate validation fMRI dataset with a repetition time of 3 s). For time-resolved functional connectivity analysis, we calculated tapered CSWA over a wide range of different window lengths that were temporally and topologically compared to IPSA. We found a strong association in connectivity dynamics between IPSA and CSWA when considering the absolute values of CSWA. The association between CSWA and IPSA was stronger for a window length of ∼20 s (shorter than filtered fMRI wavelength) than ∼100 s (longer than filtered fMRI wavelength), irrespective of the sampling rate of the underlying fMRI data. Narrow-band filtering of fMRI data (0.03-0.07 Hz) yielded a stronger relationship between IPSA and CSWA than wider-band (0.01-0.1 Hz). On a topological level, time-averaged IPSA and CSWA nodes were non-linearly correlated for both short (∼20 s) and long (∼100 s) windows, mainly because nodes with strong negative correlations (CSWA) displayed high phase synchrony (IPSA). IPSA and CSWA were anatomically similar in the default mode network, sensory cortex, insula and cerebellum. Our results suggest that IPSA and CSWA provide comparable characterizations of time-resolved fMRI connectivity for appropriately chosen window lengths. Although IPSA requires narrow-band fMRI filtering, we recommend the use of IPSA given that it does not mandate a (semi-)arbitrary choice of window length and window overlap. A code for calculating IPSA is provided. Copyright © 2018. Published by Elsevier Inc.

  16. Characterization and Analysis of InGaAsSb Detectors

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Joshi, Ravindra P.; Sulima, Oleg V.; Mauk, Michael; Singh, Upendra N.

    2003-01-01

    Profiling of atmospheric CO2 at 2 micron wavelength using the LIDAR technique, has recently gained interest. Although several detectors might be suitable for this application, an ideal device would have high gain, low noise and narrow spectral response peaking around the wavelength of interest. This increases the detector signal-to-noise ratio and minimizes the background signal, thereby increasing the device sensitivity and dynamic range. Detectors meeting the above idealized criteria are commercially unavailable for this particular wavelength. In this paper, the characterization and analysis of Sb-based detectors for 2 micron lidar applications are presented. The detectors were manufactured by AstroPower, Inc., with an InGaAsSb absorbing layer and AlGaAsSb passivating layer. The characterization experiments included spectral response, current versus voltage and noise measurements. The effect of the detectors bias voltage and temperature on its performance, have been investigated as well. The detectors peak responsivity is located at the 2 micron wavelength. Comparing three detector samples, an optimization of the spectral response around the 2 micron wavelength, through a narrower spectral period was observed. Increasing the detector bias voltage enhances the device gain at the narrow spectral range, while cooling the device reduces the cut-off wavelength and lowers its noise. Noise-equivalent-power analysis results in a value as low as 4 x 10(exp -12) W/Hz(exp 1/2) corresponding to D* of 1 x 10(exp 10) cmHz(exp 1/2)/W, at -1 V and 20 C. Discussions also include device operational physics and optimization guidelines, taking into account peculiarity of the Type II heterointerface and transport mechanisms under these conditions.

  17. Low-frequency random telegraphic noise and 1/f noise in the rare-earth manganite Pr0.63Ca0.37MnO3 near the charge-ordering transition

    NASA Astrophysics Data System (ADS)

    Bid, Aveek; Guha, Ayan; Raychaudhuri, A. K.

    2003-05-01

    We have studied low-frequency resistance fluctuations (noise) in a single crystal of the rare-earth perovskite manganite Pr0.63Ca0.37MnO3, which shows a charge-ordering transition at a temperature TCO≈245 K. The measurements were made across the charge-ordering transition covering the temperature range 200 K

  18. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applicationsmore » and other topics in quantum electronics)« less

  19. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  20. Potential of the Thermal Infrared Wavelength Region to predict semi-arid Soil Surface Properties for Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann

    2014-05-01

    Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models using the LWIR-window (sand content: R2 = 0.84 and RMSECV = 1.09 %, and for clay content: R2 = 0.77 and RMSECV = 1.0 %, both with 3 factor models). In comparison, the quantification from the solar-reflective window showed its limitations in its relative complex PLSR models and a lower prediction accuracy (sand content: R2 = 0.69 and RMSECV = 1.5 % with 7 factors, and for clay content: R2 = 0.64 and RMSECV = 1.26 % with 9 factors). The prediction of the SOC content, on the other hand, showed minor disparity between the two atmospheric windows (LWIR: R2 = 0.73 and RMSECV = 0.1 % with 6 factors, VNIR-SWIR: R2 = 0.69 and RMSECV = 0.11 %, with 9 factors). The prospect of the LWIR for determining soil texture was demonstrated to be even more impressive when reduced to the spectral band specifications of airborne (TASI-600) and spaceborne (ASTER) sensors. The results demonstrate the high potential of the LWIR to detect and quantify soil surface properties in the future for a monitoring via LWIR hyperspectral remote sensing.

  1. Deep UV Narrow-Band Photodetector Based on Ion Beam Synthesized Indium Oxide Quantum Dots in Al2O3 Matrix.

    PubMed

    Rajamani, Saravanan; Arora, Kanika; Konakov, Anton; Belov, Alexey; Korolev, Dmitry; Nikolskaya, Alyona; Mikhaylov, Alexey N; Surodin, Sergey; Kryukov, Ruslan; Nikolichev, Dmitri; Sushkov, Artem; Pavlov, Dmitry; Tetelbaum, David; Kumar, Mukesh; Kumar, Mahesh

    2018-04-20

    Semiconductor quantum dots (QDs) have attracted tremendous attention owing to their novel electrical and optical properties due to the size dependent quantum confinement effects. This provides an advantage of tunable wavelength detection, which is essential to realize spectrally selective photodetectors. We report the fabrication and characterization of high performance narrow band ultraviolet photodetector (UV-B) based on In2O3 nanocrystals embedded in Al2O3 matrices. The In2O3 nanocrystals are synthesized in Al2O3 matrix by sequential implantation of In+ and N2+ ions and post-implantation annealing. The photodetector exhibits excellent optoelectronic performances with high spectral responsivity and external quantum efficiency. The spectral response showed a band-selective nature with a full width half maximum of ∼ 60 nm, and the responsivity reaches up to 70 A/W under 290 nm at 5 V bias. The corresponding rejection ratio to visible region was as high as 8400. The high performance of this photodetector makes it highly suitable for practical applications such as narrow-band spectrum-selective photodetectors. The device design based on ion-synthesized nanocrystals would provide a new approach for realizing a visible-blind photodetector. © 2018 IOP Publishing Ltd.

  2. Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window.

    PubMed

    Chen, Ruiqi Y; Charlton, Martin D B; Lagoudakis, Pavlos G

    2009-04-01

    We report on the dispersion of the third-order nonlinear susceptibility (chi(3) or "Chi 3") in planar Ta2O5 waveguides in the telecommunications spectral window. We utilize the observation of third-harmonic generation under ultrashort pulsed excitation as a reference-free characterization method of chi(3) and obtain a large nonlinear coefficient, 2x10(-13) esu, at 1550 nm. Our observation of efficient third-harmonic generation in Ta2O5 waveguides in the telecoms window reveals the potential of this material system in high-speed integrated nonlinear optical switches.

  3. Optical Characterization of Window Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.

    2013-01-01

    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.

  4. Mass Spectral Library with Search Program, Data Version: NIST v17

    National Institute of Standards and Technology Data Gateway

    SRD 1A NIST/EPA/NIH Mass Spectral Library with Search Program, Data Version: NIST v17 (PC database for purchase)   Available with full-featured NIST MS Search Program for Windows integrated tools, the NIST '98 is a fully evaluated collection of electron-ionization mass spectra. (147,198 Compounds with Spectra; 147,194 Chemical Structures; 174,948 Spectra )

  5. Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows

    NASA Astrophysics Data System (ADS)

    Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.

  6. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography.

    PubMed

    Kim, Sangmin; Raphael, Patrick D; Oghalai, John S; Applegate, Brian E

    2016-04-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms.

  7. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  8. An infrared search for extraterrestrial laser signals

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1986-01-01

    The focus of project SETI is on microwave frequencies, where receivers fundamentally have the best sensitivity for the detection of narrow band signals. Such receivers, when coupled to existing radio telescopes, form an optimum system for broad area searches over the sky. Detection of narrow band infrared signals is best done with a laser heterodyne reciever similar in function to a microwave spectral line receiver. A receiver was built for astrophysical observations at 30 THz (10 microns) and the spectrometer is being adapted for SETI work. The receiver uses a small CO2 laser as the local oscillator, a HgCdTe diode as the photomixer, and a multichannel intermediate frequency (IF) filterbank. An advanced multichannel IF processor is now being built to detect infrared line radiation in 1000 spectral channels each 1 MHz wide. When completed this processor will be used with a ground based telescope next year for a survey of several hundred selected stars for narrow band CO2 laser signals at 30 THz.

  9. Profitability of integrated management of fusarium head blight in North Carolina winter wheat

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) is one of the most difficult small-grain diseases to manage, due to the partial effectiveness of management techniques and the narrow window of time within which to apply fungicides profitably. The most effective management approach is to integrate cultivar resistance wit...

  10. A VLA Search for Radio Signals from M31 and M33

    NASA Astrophysics Data System (ADS)

    Gray, Robert H.; Mooley, Kunal

    2017-03-01

    Observing nearby galaxies would facilitate the search for artificial radio signals by sampling several billions of stars simultaneously, but few efforts have been made to exploit this opportunity. An added attraction is that the Milky Way is the second largest member of the Local Group, so our galaxy might be a probable target for hypothetical broadcasters in nearby galaxies. We present the first relatively high spectral resolution (<1 kHz) 21 cm band search for intelligent radio signals of complete galaxies in the Local Group with the Jansky VLA, observing the galaxies M31 (Andromeda) and M33 (Triangulum)—the first and third largest members of the group, respectively—sampling more stars than any prior search of this kind. We used 122 Hz channels over a 1 MHz spectral window in the target galaxy velocity frame of reference, and 15 Hz channels over a 125 kHz window in our local standard of rest. No narrowband signals were detected above a signal-to-noise ratio of 7, suggesting the absence of continuous narrowband flux greater than approximately 0.24 and 1.33 Jy in the respective spectral windows illuminating our part of the Milky Way during our observations in 2014 December and 2015 January. This is also the first study in which the upgraded VLA has been used for SETI.

  11. Dependence of Surface Contrast on Emission Angle in Cassini ISS 938-nm Images of Titan

    NASA Technical Reports Server (NTRS)

    Fussner, S.; McEwen, A.; Perry, J.; Turtle, E.; Dawson, D.; Porco, C.; West, R.

    2005-01-01

    Titan, the largest of Saturn s moons, is one of the most difficult solid surfaces in the Solar System to study. It is shrouded in a thick atmosphere with fine haze particles extending up to 500 km. [1] The atmosphere itself is rich in methane, which allows clear viewing of the surface only through narrow "windows" in the methane spectrum. Even in these methane windows, the haze absorbs and scatters light, blurring surface features and reducing the contrast of images. The haze optical depth is high at visible wavelengths, and decreases at longer (infrared) wavelengths. [2

  12. Free-breathing 3D Cardiac MRI Using Iterative Image-Based Respiratory Motion Correction

    PubMed Central

    Moghari, Mehdi H.; Roujol, Sébastien; Chan, Raymond H.; Hong, Susie N.; Bello, Natalie; Henningsson, Markus; Ngo, Long H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Manning, Warren J.; Nezafat, Reza

    2012-01-01

    Respiratory motion compensation using diaphragmatic navigator (NAV) gating with a 5 mm gating window is conventionally used for free-breathing cardiac MRI. Due to the narrow gating window, scan efficiency is low resulting in long scan times, especially for patients with irregular breathing patterns. In this work, a new retrospective motion compensation algorithm is presented to reduce the scan time for free-breathing cardiac MRI that increasing the gating window to 15 mm without compromising image quality. The proposed algorithm iteratively corrects for respiratory-induced cardiac motion by optimizing the sharpness of the heart. To evaluate this technique, two coronary MRI datasets with 1.3 mm3 resolution were acquired from 11 healthy subjects (7 females, 25±9 years); one using a NAV with a 5 mm gating window acquired in 12.0±2.0 minutes and one with a 15 mm gating window acquired in 7.1±1.0 minutes. The images acquired with a 15 mm gating window were corrected using the proposed algorithm and compared to the uncorrected images acquired with the 5 mm and 15 mm gating windows. The image quality score, sharpness, and length of the three major coronary arteries were equivalent between the corrected images and the images acquired with a 5 mm gating window (p-value>0.05), while the scan time was reduced by a factor of 1.7. PMID:23132549

  13. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    NASA Astrophysics Data System (ADS)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal transfert function of the DTGS has to be qualified and taken into account. The usual way is to measure it directly by means of an optical shopper and a locking amplifier for different shopping frequencies. We present here an alternative method to estimate this DTGS transfer function, based on the fact that a FTIR continuous scan interfergram contains the different spectral frequencies of interest. Such a calibration method doesn't need a specific setup as it can be performed in standard configuration, playing only with spectrometer parameters. It allows for the precise estimation of detector spectral shapes. However, this measurement is not absolute and the peak response needs therefore to be estimated using a calibrated black body cavity. The method, its results and limits is presented and discussed for a set of different DTGS cells.

  14. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less

  15. First laboratory high-temperature emissivity measurements of Venus analog measurements in the near-infrared atmospheric windows

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.

    2014-12-01

    The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering new instrument designs for future Venus missions.

  16. Large Format Narrow-Band, Multi-Band, and Broad-Band LWIR QWIP Focal Planes for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2004-01-01

    A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.

  17. The minimum bandwidths of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Baumback, M. M.; Calvert, W.

    1987-01-01

    The bandwidths of the discrete spectral components of the auroral kilometric radiation can sometimes be as narrow as 5 Hz. Since this would imply an apparent source thickness of substantially less than the wavelength, it is inconsistent with the previous explanation for such discrete components based simply upon vertical localization of a cyclotron source. Instead, such narrow bandwidths can only be explained by radio lasing.

  18. Characterization on Smart Optics Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.

    2002-01-01

    Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.

  19. The effect of spectral smearing on the identification of pure F0 intonation contours in vocoder simulations of cochlear implants.

    PubMed

    van de Velde, Daan J; Dritsakis, Giorgos; Frijns, Johan H M; van Heuven, Vincent J; Schiller, Niels O

    2015-03-01

    Performance of cochlear implant (CI) users on linguistic intonation recognition is poorer than that of normal-hearing listeners, due to the limited spectral detail provided by the implant. A higher spectral resolution is provided by narrow rather than by broad filter slopes. The corresponding effect of the filter slope on the identification of linguistic intonation conveyed by pitch movements alone was tested using vocoder simulations. Re-synthesized intonation variants of naturally produced phrases were processed by a 15-channel noise vocoder using a narrow (40 dB/octave) and a broad (20 dB/octave) filter slope. There were three different intonation patterns (rise/fall/rise-fall), differentiated purely by pitch and each associated to a different meaning. In both slope conditions as well as a condition with unprocessed stimuli, 24 normally hearing Dutch adults listened to a phrase, indicating which of two meanings was associated to it (i.e. a counterbalanced selection of two of the three contours). As expected, performance for the unprocessed stimuli was better than for the vocoded stimuli. No overall difference between the filter conditions was found. These results are taken to indicate that neither the narrow (20 dB/octave) nor the shallow (40 dB/octave) slope provide enough spectral detail to identify pure F(0) intonation contours. For users of a certain class of CIs, results could imply that their intonation perception would not benefit from steeper slopes. For them, perception of pitch movements in language requires more extreme filter slopes, more electrodes, and/or additional (phonetic/contextual) cues.

  20. Narrowband supercontinuum control using phase shaping

    NASA Astrophysics Data System (ADS)

    Austin, Dane R.; Bolger, Jeremy A.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Brown, Thomas G.

    2006-12-01

    We study theoretically, numerically and experimentally the effect of self-phase modulation of ultrashort pulses with spectrally narrow phase features. We show that spectral enhancement and depletion is caused by changing the relative phase between the initial field and the nonlinearly generated components. Our theoretical results explain observations of supercontinuum enhancement by fiber Bragg gratings, and predict similar enhancements for spectrally shaped pulses in uniform fiber. As proof of principle, we demonstrate this effect in the laboratory using a femtosecond pulse shaper.

  1. Devices based on surface plasmon interference filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2001-01-01

    Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.

  2. Connections between Narrow Line Seyfert 1 Galaxies and Stellar Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    Negoro, H.

    Connections between narrow line Seyfert 1 galaxies (NLS1s) and black hole candidates are described. It has been pointed out that X-ray properties of NLS1s are simlar to those of stellar black hole candidates (BHCs). It is, however, not clear that NLS1s are corresponding to what `state' in the BHCs. Recently, rapid spectral variations during X-ray flares in a few NLS1s have been discovered using ASCA data. The properties of the spectral variations are very similar to those seen in stellar black hole candidates in the hard state. Such temporal variability accompanying the spectral change has not been recognized in black hole candidates in other states. These and recent theoretical progress based on a time variability model of the BHCs in the hard state imply that the advection plays an important role in the accretion process not only in the BHCs in the hard state, but also in NLS1s.

  3. Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Ayaka, E-mail: tamura.ayaka.88m@st.kyoto-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya

    We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of themore » optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines.« less

  4. Temporal measurement on and using pulses from laser-like emission obtained from styrylpyridinium cyanine dye

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya; Bhowmik, Achintya; Ahyi, Ayayi; Thakur, Mrinal

    2000-03-01

    We have recently reported observation of spectral narrowing and high-conversion laser-like emission in a solution of styrylpyridinium cynanine dye (SPCD) at a low threshold energy, pumped with the second-harmonic of a picosecond Nd:YAG laser. Fundamental and second-harmonic pulses from a Nd:YAG laser of 80 ps duration at 10 Hz repetition rate were used to pump 0.1 mol/l concentration of SPCD in methanol in two separate pumping arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of spectrally narrowed emission in both cases was measured by background-free SHG intensity autocorrelation technique. A BBO crystal was used for the autocorrelation measurement. The measured duration of the pulses was 40 ps. These pulses having a spectral linewidth of 10 nm (FWHM) were used as a probe to measure the gain in SPCD solution in a pump-probe set up. The results will be discussed.

  5. Technical Note: Display window setting: An important factor for detecting subtle but clinically relevant artifacts in daily CT quality control.

    PubMed

    Long, Zaiyang; Bruesewitz, Michael R; Sheedy, Emily N; Powell, Michele A; Kramer, Jacqualynn C; Supalla, Randall R; Colvin, Chance M; Bechel, Jessica R; Favazza, Christopher P; Kofler, James M; Leng, Shuai; McCollough, Cynthia H; Yu, Lifeng

    2016-12-01

    This study aimed to investigate the influence of display window setting on technologist performance detecting subtle but clinically relevant artifacts in daily computed tomography (CT) quality control (dQC) images. Fifty three sets of dQC images were retrospectively selected, including 30 sets without artifacts, and 23 with subtle but clinically relevant artifacts. They were randomized and shown to six CT technologists (two new and four experienced). Each technologist reviewed all images in each of two sessions, one with a display window width (WW) of 100 HU, which is currently recommended by the American College of Radiology, and the other with a narrow WW of 40 HU, both at a window level of 0 HU. For each case, technologists rated the presence of image artifacts based on a five point scale. The area under the receiver operating characteristic curve (AUC) was used to evaluate the artifact detection performance. At a WW of 100 HU, the AUC (95% confidence interval) was 0.658 (0.576, 0.740), 0.532 (0.429, 0.635), and 0.616 (0.543, 0.619) for the experienced, new, and all technologists, respectively. At a WW of 40 HU, the AUC was 0.768 (0.687, 0.850), 0.546 (0.433, 0.658), and 0.694 (0.619, 0.769), respectively. The performance significantly improved at WW of 40 HU for experienced technologists (p = 0.009) and for all technologists (p = 0.040). Use of a narrow display WW significantly improved technologists' performance in dQC for detecting subtle but clinically relevant artifacts as compared to that using a 100 HU display WW.

  6. The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition.

    PubMed

    Zhang, Ying; Bilbao, Aivett; Bruderer, Tobias; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard; Varesio, Emmanuel

    2015-10-02

    As tryptic peptides and metabolites are not equally distributed along the mass range, the probability of cross fragment ion interference is higher in certain windows when fixed Q1 SWATH windows are applied. We evaluated the benefits of utilizing variable Q1 SWATH windows with regards to selectivity improvement. Variable windows based on equalizing the distribution of either the precursor ion population (PIP) or the total ion current (TIC) within each window were generated by an in-house software, swathTUNER. These two variable Q1 SWATH window strategies outperformed, with respect to quantification and identification, the basic approach using a fixed window width (FIX) for proteomic profiling of human monocyte-derived dendritic cells (MDDCs). Thus, 13.8 and 8.4% additional peptide precursors, which resulted in 13.1 and 10.0% more proteins, were confidently identified by SWATH using the strategy PIP and TIC, respectively, in the MDDC proteomic sample. On the basis of the spectral library purity score, some improvement warranted by variable Q1 windows was also observed, albeit to a lesser extent, in the metabolomic profiling of human urine. We show that the novel concept of "scheduled SWATH" proposed here, which incorporates (i) variable isolation windows and (ii) precursor retention time segmentation further improves both peptide and metabolite identifications.

  7. A mean-based filter to remove power line harmonic noise from seismic reflection data

    NASA Astrophysics Data System (ADS)

    Karslı, Hakan; Dondurur, Derman

    2018-06-01

    Power line harmonic noise generated by power lines during the seismic data acquisition in land and marine seismic surveys generally appears as a single frequency with 50/60 Hz (or multiples of these frequencies) and contaminates seismic data leading to complicate the identification of fine details in the data. Commonly applied method during seismic data processing to remove the harmonic noise is classical notch filter (or very narrow band-stop filter), however, it also attenuates all recorded data around the notch frequencies and results in a complete loss of available information which corresponds to fine details in the seismic data. In this study, we introduce an application of the algorithm of iterative trimmed and truncated mean filter method (ITTM) to remove the harmonic noise from seismic data, and here, we name the method as local ITTM (LITTM) since we applied it to the seismic data locally in spectral domain. In this method, an optimal value is iteratively searched depending on a threshold value by trimming and truncating process for the spectral amplitude samples within the specified spectral window. Therefore, the LITTM filter converges to the median, but, there is no need to sort the data as in the case of conventional median filters. On the other hand, the LITTM filtering process doesn't require any reference signal or a precise estimate of the fundamental frequency of the harmonic noise, and only approximate frequency band of the noise within the amplitude spectra is considered. The only required parameter of the method is the width of this frequency band in the spectral domain. The LITTM filter is first applied to synthetic data and then we analyze a real marine dataset to compare the quality of the output after removing the power line noise by classical notch, median and proposed LITTM filters. We observe that the power line harmonic noise is completely filtered out by LITTM filter, and unlike the conventional notch filter, without any damage on the available frequencies around the notch frequency band. It also provides a more balanced amplitude spectrum since it does not produce amplitude notches in the spectrum.

  8. Spectral characteristics of Shuttle glow

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Mende, S. B.; Murad, E.; Swenson, G. R.; Pike, C. P.; Culbertson, F. L.; Springer, R. C.

    1992-01-01

    The glowing cloud near the ram surfaces of the Space Shuttle was observed with a hand-held, intensified spectrograph operated by the astronauts from the aft-flight-deck of the Space Shuttle. The spectral measurements were made between 400 and 800 nm with a resolution of 3 nm. Analysis of the spectral response of the instrument and the transmission of the Shuttle window was performed on orbit using earth-airglow OH Meinel bands. This analysis resulted in a correction of the Shuttle glow intensity in the spectral region between 700 and 800 nm. The data presented in this report is in better agreement with laboratory measurements of the NO2 continuum.

  9. Polarization leakage in epoch of reionization windows - III. Wide-field effects of narrow-field arrays

    NASA Astrophysics Data System (ADS)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; de Bruyn, A. G.; Pandey, V. N.; Gehlot, B. K.

    2018-05-01

    Leakage of polarized Galactic diffuse emission into total intensity can potentially mimic the 21-cm signal coming from the epoch of reionization (EoR), as both of them might have fluctuating spectral structure. Although we are sensitive to the EoR signal only in small fields of view, chromatic side-lobes from further away can contaminate the inner region. Here, we explore the effects of leakage into the `EoR window' of the cylindrically averaged power spectra (PS) within wide fields of view using both observation and simulation of the 3C196 and North Celestial Pole (NCP) fields, two observing fields of the LOFAR-EoR project. We present the polarization PS of two one-night observations of the two fields and find that the NCP field has higher fluctuations along frequency, and consequently exhibits more power at high-k∥ that could potentially leak to Stokes I. Subsequently, we simulate LOFAR observations of Galactic diffuse polarized emission based on a model to assess what fraction of polarized power leaks into Stokes I because of the primary beam. We find that the rms fractional leakage over the instrumental k-space is 0.35 {per cent} in the 3C196 field and 0.27 {per cent} in the NCP field, and it does not change significantly within the diameters of 15°, 9°, and 4°. Based on the observed PS and simulated fractional leakage, we show that a similar level of leakage into Stokes I is expected in the 3C196 and NCP fields, and the leakage can be considered to be a bias in the PS.

  10. Gamma-Ray Imager With High Spatial And Spectral Resolution

    NASA Technical Reports Server (NTRS)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  11. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  12. Hemispherical-field-of-view, nonimaging narrow-band spectral filter.

    PubMed

    Miles, R B; Webb, S G; Griffith, E L

    1981-12-01

    Two compound parabolic concentrators are used to create a 180 degrees -field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  13. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, whichmore » leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10 -5 .« less

  14. An Experiment in American Educational Philosophy

    ERIC Educational Resources Information Center

    Zahner, Mary

    2016-01-01

    The nineteenth century educational experiment by Amos Bronson Alcott and Elizabeth Palmer Peabody at the Temple School in Boston from 1834-1836 was generally considered a failure. Nevertheless, a narrow window of the experiment planted the seed for future interest in early childhood education by means of Peabody's (1836) "Record of a School:…

  15. Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yongsuk; Kang, Junmo; Jariwala, Deep

    2016-03-22

    Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm-2) and on/off current ratios (>104) in a narrow voltage window (<3 V).

  16. Equity and Excellence in Education Reform: An Unfinished Agenda.

    ERIC Educational Resources Information Center

    Sadker, Myra; Sadker, David

    This paper argues that the recent wave of school reform literature has neglected females, thereby threatening to close already narrowing windows of opportunity for their advanced education beyond high school. A line-by-line content analysis of 138 articles on educational reform published in nine influential professional journals between 1983 and…

  17. 21. INTERIOR OF UTILITY ROOM SHOWING OPEN REAR DOOR AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR OF UTILITY ROOM SHOWING OPEN REAR DOOR AT PHOTO CENTER, PAIRED NARROW 1-LIGHT OVER 1-LIGHT, DOUBLE-HUNG, WOOD-FRAMED WINDOWS AT PHOTO LEFT. OPEN DOOR AT PHOTO RIGHT LEADS TO BATHROOM. VIEW TO SOUTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  18. Clinical recommendation for treatment planning of sinus augmentation procedures by using presurgical CAT scan images: a preliminary report.

    PubMed

    Kutkut, Ahmad M; Andreana, Sebastiano; Kim, Hyeong-Ll; Monaco, Edward

    2011-12-01

    To propose a clinical recommendation based on anatomy of maxillary sinus before sinus augmentation procedure using presurgical computerized axial tomography (CAT) scan images. CAT scan images were randomly selected from previous completed implant cases. Proposed area for the lateral window osteotomy was outlined on the panorex image of the CAT scan. Sagittal section on the CAT scan that was in the center of the outlined window was selected for sinus measurement analysis. On CAT scan, 2 lines were drawn to measure the dimensions of sinus. One line measured the horizontal width and the other line measured the vertical height. Based on the measurement data, a classification of the maxillary sinus anatomy was proposed. Narrow sinus cavity indicates favorable type anatomy in terms of bone regeneration healing and wide sinus cavity as less favorable anatomy for patient treatment planning. A narrow sinus and greater exposure to the blood supply should require shorter healing times after grafting. Conversely, wider sinus cavities and less exposure to the blood supply would require a longer healing time before implant placement.

  19. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  20. Discovery of Peculiar Periodic Spectral Modulations in a Small Fraction of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.; Trottier, Eric

    2016-11-01

    A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal-to-noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines, and signals generated by extraterrestrial intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally, we consider the possibility, predicted in a previous published paper, that the signals are caused by light pulses generated by ETI to makes us aware of their existence. We find that the detected signals have exactly the shape of an ETI signal predicted in the previous publication and are therefore in agreement with this hypothesis. The fact that they are only found in a very small fraction of stars within a narrow spectral range centered near the spectral type of the Sun is also in agreement with the ETI hypothesis. However, at this stage, this hypothesis needs to be confirmed with further work. Although unlikely, there is also a possibility that the signals are due to highly peculiar chemical compositions in a small fraction of galactic halo stars.

  1. Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; O'Neill, J. F.

    2013-12-01

    Spectrographs provide a unique window into plasma parameters in the solar atmosphere. In fact spectrographs provide the most accurate measurements of plasma parameters such as density, temperature, and flow speed. However, traditionally spectrographic instruments have suffered from the inability to cover large spatial regions of the Sun quickly. To cover an active region sized spatial region, the slit must be rastered over the area of interest with an exposure taken at each pointing location. Because of this long cycle time, the spectra of dynamic events like flares, CME initiations, or transient brightening are obtained only rarely. And even if spectra are obtained they are either taken over an extremely small spatial region, or the spectra are not co-temporal across the raster. Either of these complicates the interpretation of the spectral raster results. Imagers are able to provide high time and spatial resolution images of the full Sun but with limited spectral resolution. The telescopes onboard the Solar Dynamics Observatory (SDO) normally take a full disk solar image every 10 seconds with roughly 1 arcsec spatial resolution. However the spectral resolution of the multilayer imagers on SDO is of order 100 times less than a typical spectrograph. Because of this it is difficult to interpret multilayer imaging data to accurately obtain plasma parameters like temperature and density from these data, and there is no direct measure of plasma flow velocity. SERTS and EIS partially addressed this problem by using a wide slit to produce monochromatic images with limited FOV to limit overlapping. However dispersion within the wide slit image remained a problem which prevented the determination of intensity, Doppler shift, and line width in the wide slit. Kankelborg and Thomas introduced the idea of using multiple images -1, 0, and +1 spectral orders of a single emission line. This scheme provided three independent images to measure the three spectral line parameters in each pixel with the Multi-Order Solar EUV Spectrograph (MOSES) instrument. We suggest a reconstruction approach based on tomographic methods with regularization. Preliminary results show that the typical Doppler shift and line width error introduced by the reconstruction method is of order a few km/s at 300 A. This is on the order of the error obtained in narrow slit spectrographs but with data obtained over a two-dimensional field of view.

  2. An analytical X-ray CdTe detector response matrix for incomplete charge collection correction for photon energies up to 300 keV

    NASA Astrophysics Data System (ADS)

    Kurková, Dana; Judas, Libor

    2018-05-01

    Gamma and X-ray energy spectra measured with semiconductor detectors suffer from various distortions, one of them being so-called "tailing" caused by an incomplete charge collection. Using the Hecht equation, a response matrix of size 321 × 321 was constructed which was used to correct the effect of incomplete charge collection. The correction matrix was constructed analytically for an arbitrary energy bin and the size of the energy bin thus defines the width of the spectral window. The correction matrix can be applied separately from other possible spectral corrections or it can be incorporated into an already existing response matrix of the detector. The correction was tested and its adjustable parameters were optimized on the line spectra of 57Co measured with a cadmium telluride (CdTe) detector in a spectral range from 0 up to 160 keV. The best results were obtained when the values of the free path of holes were spread over a range from 0.4 to 1.0 cm and weighted by a Gauss function. The model with the optimized parameter values was then used to correct the line spectra of 152Eu in a spectral range from 0 up to 530 keV. An improvement in the energy resolution at full width at half maximum from 2.40 % ± 0.28 % to 0.96 % ± 0.28 % was achieved at 344.27 keV. Spectra of "narrow spectrum series" beams, N120, N150, N200, N250 and N300, generated with tube voltages of 120 kV, 150 kV, 200 kV, 250 kV and 300 kV respectively, and measured with the CdTe detector, were corrected in the spectral range from 0 to 160 keV (N120 and N150) and from 0 to 530 keV (N200, N250, N300). All the measured spectra correspond both qualitatively and quantitatively to the available reference data after the correction. To obtain better correspondence between N150, N200, N250 and N300 spectra and the reference data, lower values of the free paths of holes (range from 0.16 to 0.65 cm) were used for X-ray spectra correction, which suggests energy dependence of the phenomenon.

  3. First Light from the Far-Infrared Spectroscopy of the Troposphere (FIRST) Instrument

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Johnson, David G.; Latvakoski, Harri; Jucks, Kenneth; Watson, Mike; Bingham, Gail; Kratz, David P.; Traub, Wesley A.; Wellard, Stanley J.; Hyde, Charles R.; hide

    2005-01-01

    We present first light spectra from the new Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument. FIRST is a Fourier Transform Spectrometer developed to measure accurately the far-infrared (15 to 100 micrometers; 650 to 100 wavenumbers) emission spectrum of the Earth and its atmosphere. The observations presented here were obtained during a high altitude balloon flight from Ft. Sumner, New Mexico on 7 June 2005. The flight data demonstrate the instrument's ability to observe the entire energetically significant infrared emission spectrum (50 to 2000 wavenumbers) at high spectral and spatial resolution on a single focal plane in an instrument with one broad spectral bandpass beamsplitter. Comparisons with radiative transfer calculations demonstrate that FIRST accurately observes the very fine spectral structure in the far-infrared. Comparisons of the atmospheric window radiances measured by FIRST and by instruments on the NASA Aqua satellite that overflew FIRST are in excellent agreement. FIRST opens a new window on the spectrum that can be used for studying atmospheric radiation and climate, cirrus clouds, and water vapor in the upper troposphere.

  4. Narrow-linewidth, quasi-continuous-wave ASE source based on a multiple-pass Nd:YAG zigzag slab amplifier configuration.

    PubMed

    Chen, Xiaoming; Lu, Yanhua; Hu, Hao; Tong, Lixin; Zhang, Lei; Yu, Yi; Wang, Juntao; Ren, Huaijin; Xu, Liu

    2018-03-05

    We present investigations into a narrow-linewidth, quasi-continuous-wave pulsed all-solid-state amplified spontaneous emission (ASE) source by use of a novel multiple-pass zigzag slab amplifier. The SE fluorescence emitted from a Nd:YAG slab active medium acts as the seed and is amplified back and forth 8 times through the same slab. Thanks to the angular multiplexing nature of the zigzag slab, high-intensity 1064-nm ASE output can be produced without unwanted self-lasing in this configuration. Experimentally, the output energy, optical conversion efficiency, pulse dynamics, spectral property, and beam quality of the ASE source are studied when the Nd:YAG slab end-pumped by two high-brightness laser diode arrays. The maximum single pulse energy of 347 mJ is generated with an optical efficiency of ~5.9% and a beam quality of 3.5/17 in the thickness/width direction of the slab. As expected, smooth pulses without relaxing spikes and continuous spectra are achieved. Moreover, the spectral width of the ASE source narrows versus the pump energy, getting a 3-dB linewidth of as narrow as 20 pm (i.e. 5.3 GHz). Via the sum frequency generation, high-intensity, smooth-pulse, and narrow-linewidth ASE sources are preferred for solving the major problem of saturation of the mesospheric sodium atoms and can create a much brighter sodium guide star to meet the needs of adaptive imaging applications in astronomy.

  5. Concorde noise-induced building vibrations, Sully Plantation - Report no. 2, Chantilly, Virginia

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Noise-induced building vibrations associated with Concorde operations were studied. The approach is to record the levels of induced vibrations and associated indoor/outdoor noise levels in selected homes, historic and other buildings near Dulles International Airport. Representative data are presented which were recorded at Sully Plantation, Chantilly, Virginia during the periods of May 20 through May 28, 1976, and June 14 through June 17, 1976. Recorded data provide relationships between the vibration levels of windows, walls, floors, and the noise associated with Concorde operations, other aircraft, and nonaircraft events. The results presented are drawn from the combined May-June data base which is considerably larger than the May data base covered. The levels of window, wall and floor vibratory response resulting from Concorde operations are higher than the vibratory levels associated with conventional aircraft. Furthermore, the vibratory responses of the windows are considerably higher than those of the walls and floors. The window response is higher for aircraft than recorded nonaircraft events and exhibits a linear response relationship with the overall sound pressure level. For a given sound pressure level, the Concorde may cause more vibration than a conventional aircraft due to spectral or other differences. However, the responses associated with Concorde appear to be much more dependent upon sound pressure level than spectral or other characteristics of the noise.

  6. KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  7. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  8. Thermohydraulic behavior of the liquid metal target of a spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Y.

    1996-06-01

    The author presents work done on three main problems. (1) Natural circulation in double coaxial cylindircal container: The thermohydraulic behaviour of the liquid metal target of the spallation neutron source at PSI has been investigated. The configuration is a natural-circulation loop in a concentric double-tube-type container. The results show that the natural-circulation loop concept is valid for the design phase of the target construction, and the current specified design criteria will be fulfilled with the proposed parameter values. (2) Flow around the window: Water experiments were performed for geometry optimisation of the window shape of the SINQ container for avoidingmore » generating recirculation zones at peripheral area and the optimal cooling of the central part of the beam entrance window. Flow visualisation technique was mainly used for various window shapes, gap distance between the window and the guide tube edge. (3) Flow in window cooling channels: Flows in narrow gaps of cooling channels of two different types of windows were studied by flow visualisation techniques. One type is a slightly curved round cooling channel and the other is hemispherical shape, both of which have only 2 mm gap distance and the water inlet is located on one side and flows out from the opposite side. In both cases, the central part of the flow area has lower velocity than peripheral area.« less

  9. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kilgour, David P. A.; Hughes, Sam; Kilgour, Samantha L.; Mackay, C. Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K.; Clarke, David J.; Goodlett, David R.

    2017-02-01

    We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks.

  10. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry.

    PubMed

    Kilgour, David P A; Hughes, Sam; Kilgour, Samantha L; Mackay, C Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K; Clarke, David J; Goodlett, David R

    2017-02-01

    We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks. Graphical Abstract ᅟ.

  11. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  12. Multi-spectral window radiance observations of Cirrus from satellite and aircraft, November 2, 1986 Project FIRE

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Revercomb, H. E.; Howell, H. B.; Lin, M.-X.

    1990-01-01

    High resolution infrared radiance spectra achieved from the NASA ER2 airborne HIS experiment are used to analyze the spectral emissivity properties of cirrus clouds within the 8 to 12 micron atmospheric window region. Observations show that the cirrus emissivity generally decreases with increasing wavenumber (i.e., decreasing wavelength) within this band. A very abrupt decrease in emissivity (increase in brightness temperature) exists between 930/cm (10.8 microns) and 1000/cm (10.0 microns), the magnitude of the change being associated with the cirrus optical thickness as observed by lidar. The HIS observations are consistent with theoretical calculations of the spectral absorption coefficient for ice. The HIS observations imply that cirrus clouds can be detected unambiguously from the difference in brightness temperatures observed within the 8.2 and 11.0 micron window regions of the HIRS sounding radiometer flying on the operational NOAA satellites. This ability is demonstrated using simultaneous 25 km resolution HIRS observations and 1 km resolution AVHRR imagery achieved from the NOAA-9 satellite. Finally, the cirrus cloud location estimates combined with the 6.7 micron channel moisture imagery portray the boundaries of the ice/vapor phase of the upper troposphere moisture. This phase distinction is crucial for infrared radiative transfer considerations for weather and climate models, since upper tropospheric water vapor has little effect on the Earth's outgoing radiation whereas cirrus clouds have a very large attenuating effect.

  13. CONSTRAINING POLARIZED FOREGROUNDS FOR EoR EXPERIMENTS. I. 2D POWER SPECTRA FROM THE PAPER-32 IMAGING ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, S. A.; Aguirre, J. E.; Moore, D. F.

    2016-06-01

    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge ) and spectrally structured 21 cm background emission (the EoR window ). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window.more » In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.« less

  14. Fermentation process tracking through enhanced spectral calibration modeling.

    PubMed

    Triadaphillou, Sophia; Martin, Elaine; Montague, Gary; Norden, Alison; Jeffkins, Paul; Stimpson, Sarah

    2007-06-15

    The FDA process analytical technology (PAT) initiative will materialize in a significant increase in the number of installations of spectroscopic instrumentation. However, to attain the greatest benefit from the data generated, there is a need for calibration procedures that extract the maximum information content. For example, in fermentation processes, the interpretation of the resulting spectra is challenging as a consequence of the large number of wavelengths recorded, the underlying correlation structure that is evident between the wavelengths and the impact of the measurement environment. Approaches to the development of calibration models have been based on the application of partial least squares (PLS) either to the full spectral signature or to a subset of wavelengths. This paper presents a new approach to calibration modeling that combines a wavelength selection procedure, spectral window selection (SWS), where windows of wavelengths are automatically selected which are subsequently used as the basis of the calibration model. However, due to the non-uniqueness of the windows selected when the algorithm is executed repeatedly, multiple models are constructed and these are then combined using stacking thereby increasing the robustness of the final calibration model. The methodology is applied to data generated during the monitoring of broth concentrations in an industrial fermentation process from on-line near-infrared (NIR) and mid-infrared (MIR) spectrometers. It is shown that the proposed calibration modeling procedure outperforms traditional calibration procedures, as well as enabling the identification of the critical regions of the spectra with regard to the fermentation process.

  15. Laser window with annular grooves for thermal isolation

    DOEpatents

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  16. The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute P-wave windows

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2007-01-01

    The rupture process of the Mw 9.1 Sumatra-Andaman earthquake lasted for approximately 500 sec, nearly twice as long as the teleseismic time windows between the P and PP arrival times generally used to compute radiated energy. In order to measure the P waves radiated by the entire earthquake, we analyze records that extend from the P-wave to the S-wave arrival times from stations at distances ?? >60??. These 8- to 10-min windows contain the PP, PPP, and ScP arrivals, along with other multiply reflected phases. To gauge the effect of including these additional phases, we form the spectral ratio of the source spectrum estimated from extended windows (between TP and TS) to the source spectrum estimated from normal windows (between TP and TPP). The extended windows are analyzed as though they contained only the P-pP-sP wave group. We analyze four smaller earthquakes that occurred in the vicinity of the Mw 9.1 mainshock, with similar depths and focal mechanisms. These smaller events range in magnitude from an Mw 6.0 aftershock of 9 January 2005 to the Mw 8.6 Nias earthquake that occurred to the south of the Sumatra-Andaman earthquake on 28 March 2005. We average the spectral ratios for these four events to obtain a frequency-dependent operator for the extended windows. We then correct the source spectrum estimated from the extended records of the 26 December 2004 mainshock to obtain a complete or corrected source spectrum for the entire rupture process (???600 sec) of the great Sumatra-Andaman earthquake. Our estimate of the total seismic energy radiated by this earthquake is 1.4 ?? 1017 J. When we compare the corrected source spectrum for the entire earthquake to the source spectrum from the first ???250 sec of the rupture process (obtained from normal teleseismic windows), we find that the mainshock radiated much more seismic energy in the first half of the rupture process than in the second half, especially over the period range from 3 sec to 40 sec.

  17. Persistent optical hole-burning spectroscopy of nano-confined dye molecules in liquid at room temperature: Spectral narrowing due to a glassy state and extraordinary relaxation in a nano-cage

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroshi

    2018-04-01

    Persistent optical hole-burning spectroscopy has been conducted for a dye molecule within a very small (˜1 nm) reverse micelle at room temperature. The spectra show a spectral narrowing due to site-selective excitation. This definitely demonstrates that the surroundings of the dye molecule are in a glassy state regardless of a solution at room temperature. On the other hand, the hole-burning spectra exhibit large shifts from excitation frequencies, and their positions are almost independent of excitation frequencies. The hole-burning spectra have been theoretically calculated by taking account of a vibronic absorption band of the dye molecule under the assumption that the surroundings of the dye molecule are in a glassy state. The calculated results agree with the experimental ones that were obtained for the dye molecule in a polymer glass for comparison, where it has been found that the ratio of hole-burning efficiencies of vibronic- to electronic-band excitations is quite high. On the other hand, the theoretical results do not explain the large spectral shift from the excitation frequency and small spectral narrowing observed in the hole-burning spectra measured for the dye-containing reverse micelle. It is thought that the spectral shift and broadening occur within the measurement time owing to the relaxation process of the surroundings that are hot with the thermal energy deposited by the dye molecule optically excited. Furthermore, the relaxation should be temporary because the cooling of the inside of the reverse micelle takes place with the dissipation of the excess thermal energy to the outer oil solvent, and so the surroundings of the dye molecule return to the glassy state and do not attain the thermal equilibrium. These results suggest that a very small reverse micelle provides a unique reaction field in which the diffusional motion can be controlled by light in a glassy state.

  18. Narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using multimode interference filter.

    PubMed

    Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S

    2017-05-01

    A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240  ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.

  19. Investigation on the Frequency Allocation for Radio Astronomy at the L Band

    NASA Astrophysics Data System (ADS)

    Abidin, Z. Z.; Umar, R.; Ibrahim, Z. A.; Rosli, Z.; Asanok, K.; Gasiprong, N.

    2013-09-01

    In this paper, the frequency allocation reserved for radio astronomy in the L band set by the International Telecommunication Union (ITU), which is between 1400 and 1427 MHz, is reviewed. We argue that the nearby frequencies are still very important for radio astronomers on the ground by investigating radio objects (H i sources) around 1300-1500 MHz. The L-band window is separated into a group of four windows, namely 1400-1427 MHz (window A), 1380-1400 MHz (window B), 1350-1380 MHz (window C), and 1300-1350 MHz (window D). These windows are selected according to their redshifts from a rest frequency for hydrogen spectral line at 1420.4057 MHz. Radio objects up to z ≈ 0.1 or frequency down to 1300 MHz are examined. We argue that since window B has important radio objects within the four windows, this window should also be given to radio astronomy. They are galaxies, spiral galaxies, and galaxy clusters. This underlines the significance of window B for radio astronomers on the ground. By investigating the severeness of radio frequency interference (RFI) within these windows, we have determined that window B still has significant, consistent RFI. The main RFI sources in the four windows have also been identified. We also found that the Department of Civil Aviation of Malaysia is assigned a frequency range of 1215-1427 MHz, which is transmitted within the four windows and inside the protected frequency for radio astronomy. We also investigated the RFI in the four windows on proposed sites of future radio astronomy observatories in Malaysia and Thailand and found the two best sites as Universiti Pendidikan Sultan Idris (UPSI) and Ubon Ratchathani, respectively. It has also been determined that RFI in window B increases with population density.

  20. Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.

    PubMed

    Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D

    2016-08-03

    Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods.

  1. Wide-Field Optic for Autonomous Acquisition of Laser Link

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit

    2011-01-01

    An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to reduce the incident angle down to only a few degrees. In the presented embodiment, the filter diameter is more than ten times larger than the entrance aperture. Specifically, the filter has a clear aperture of about 51 mm. The optical design is refractive, and is comprised of nine custom refractive elements and an interference filter. The restricted maximum angle through the narrow-band filter ensures the efficient use of a 2-nm noise equivalent bandwidth spectral width optical filter at low elevation angles (where the range is longest), at the expense of less efficiency for high elevations, which can be tolerated because the range at high elevation angles is shorter. The image circle is 12 mm in diameter, mapped to 80 x 360 of sky, centered on the zenith.

  2. Broadband spectral shaping in regenerative amplifier based on modified polarization-encoded chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Wang, Xinliang; Lu, Xiaoming; Liu, Yanqi; Xu, Yi; Wang, Cheng; Li, Shuai; Yu, Linpeng; Liu, Xingyan; Liu, Keyang; Xu, Rongjie; Leng, Yuxin

    2018-06-01

    We present an intra-cavity spectral shaping method to suppress the spectral narrowing in a Ti:sapphire (Ti:Sa) regenerative amplifier. The spectral shaping is realized by manipulating the stored energies of two Ti:Sa crystals with orthogonal c-axes, changing the length of a quartz plate, and rotating a broadband achromatic half-wave plate. Using this method, in our proof-of-concept experiment, an 84-nm-(FWHM)-broadband amplified pulse with an energy gain larger than 106 is obtained, which supports a 17.8 fs Fourier-transform-limited pulse duration. The pulse is compressed to 18.9 fs.

  3. Slitless Solar Spectroscopy

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Jones, Sahela

    2011-01-01

    Spectrographs have traditionally suffered from the inability to obtain line intensities, widths, and Doppler shifts over large spatial regions of the Sun quickly because of the narrow instantaneous field of view. This has limited the spectroscopic analysis of rapidly varying solar features like, flares, CME eruptions, coronal jets, and reconnection regions. Imagers have provided high time resolution images of the full Sun with limited spectral resolution. In this paper we present recent advances in deconvolving spectrally dispersed images obtained through broad slits. We use this new theoretical formulation to examine the effectiveness of various potential observing scenarios, spatial and spectral resolutions, signal to noise ratio, and other instrument characteristics. This information will lay the foundation for a new generation of spectral imagers optimized for slitless spectral operation, while retaining the ability to obtain spectral information in transient solar events.

  4. Contribution of LANDSAT-4 thematic mapper data to geologic exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas.

  5. Is There Spectral Variation in the Polarized Reflectance of Leaves?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  6. Influence of the cubic spectral phase of high-power laser pulses on their self-phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, V N; Kochetkov, A A; Yakovlev, I V

    2016-02-28

    Spectral broadening of high-power transform-limited laser pulses under self-phase modulation in a medium with cubic nonlinearity is widely used to reduce pulse duration and to increase its power. It is shown that the cubic spectral phase of the initial pulse leads to a qualitatively different broadening of its spectrum: the spectrum has narrow peaks and broadening decreases. However, the use of chirped mirrors allows such pulses to be as effectively compressed as transform-limited pulses. (nonlinear optical phenomena)

  7. Is there Spectral Variation in the Polarized Reflectance of Leaves?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  8. The Effect of Working Memory Capacity Limitations on the Intuitive Assessment of Correlation: Amplification, Attenuation, or Both?

    ERIC Educational Resources Information Center

    Cahan, Sorel; Mor, Yaniv

    2007-01-01

    This article challenges Yaakov Kareev's (1995a, 2000) argument regarding the positive bias of intuitive correlation estimates due to working memory capacity limitations and its adaptive value. The authors show that, under narrow window theory's primacy effect assumption, there is a considerable between-individual variability of the effects of…

  9. Estimating fuel consumption for the upper coastal plain of South Carolina

    Treesearch

    S.L. Goodrick; D. Shea; J. Blake

    2010-01-01

    Recent changes in air quality regulations present a potential obstacle to continued use of prescribed fire as a land management tool. towering of the acceptable daily concentration of particulate matter from 6510 35 jig/m' will bring much closer scrutiny of prescribed burning practices from the air quality community. To work within this narrow window, land...

  10. Optical Filter Assembly for Interplanetary Optical Communications

    NASA Technical Reports Server (NTRS)

    Chen, Yijiang; Hemmati, Hamid

    2013-01-01

    Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.

  11. Feasibility study of spectral pattern recognition reveals distinct classes of volcanic tremor

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Jellinek, A. M.

    2017-04-01

    Systematic investigations of the similarities and differences among volcanic tremor at a range of volcano types may hold crucial information about the plausibility of inferred source mechanisms, which, in turn, may be important for eruption forecasting. However, such studies are rare, in part because of an intrinsic difficulty with identifying tremor signals within very long time series of volcano seismic data. Accordingly, we develop an efficient tremor detection algorithm and identify over 12,000h of volcanic tremor on 24 stations at Kīlauea, Okmok, Pavlof, and Redoubt volcanoes. We estimate spectral content over 5-minute tremor windows, and apply a novel combination of Principal Component Analysis (PCA) and hierarchical clustering to identify patterns in the tremor spectra. Analyzing several stations from a given volcano together reveals different styles of tremor within individual volcanic settings. In addition to identifying tremor properties common to all stations in a given network, we find localized tremor signals including those related to processes such as lahars or dike intrusions that are only observed on some of the stations within a network. Subsequent application of our analysis to a combination of stations from the different volcanoes reveals that at least three main tremor classes can be detected across all settings. Whereas a regime with a ridge of high power distributed over 1-2Hz and a gradual decay of spectral power towards higher frequencies is observed dominantly at three volcanoes (Kīlauea, Okmok, Redoubt) with magma reservoirs centered at less than 5km below sea level (b.s.l.), a spectrum with a steeper slope and a narrower peak at 1-2Hz is observed only in association with open vents (Kīlauea and Pavlof). A third regime with a peak at approximately 3Hz is confined to two stratovolcanoes (Pavlof and Redoubt). These observations suggest generic relationships between the spectral character of the observed signals and volcano characteristics such as magma viscosity, storage depths, and the physical properties of volcanic edifices. Similarities among the spectral patterns detected at stations 4km and 8-10km distance from the centers of volcanic activity, respectively, indicate that path effects do not strongly influence spectral shapes at distances of a few kilometers from the inferred source of the signals. Our preliminary work shows that a global comparison of tremor is feasible. Our results suggest that further work on data from a larger sample and diverse range of volcano types will reveal additional classes of tremor signals and plausibly identify fingerprints of source processes that are specific to volcano type, but independent of volcano location.

  12. Computational model for behavior shaping as an adaptive health intervention strategy.

    PubMed

    Berardi, Vincent; Carretero-González, Ricardo; Klepeis, Neil E; Ghanipoor Machiani, Sahar; Jahangiri, Arash; Bellettiere, John; Hovell, Melbourne

    2018-03-01

    Adaptive behavioral interventions that automatically adjust in real-time to participants' changing behavior, environmental contexts, and individual history are becoming more feasible as the use of real-time sensing technology expands. This development is expected to improve shortcomings associated with traditional behavioral interventions, such as the reliance on imprecise intervention procedures and limited/short-lived effects. JITAI adaptation strategies often lack a theoretical foundation. Increasing the theoretical fidelity of a trial has been shown to increase effectiveness. This research explores the use of shaping, a well-known process from behavioral theory for engendering or maintaining a target behavior, as a JITAI adaptation strategy. A computational model of behavior dynamics and operant conditioning was modified to incorporate the construct of behavior shaping by adding the ability to vary, over time, the range of behaviors that were reinforced when emitted. Digital experiments were performed with this updated model for a range of parameters in order to identify the behavior shaping features that optimally generated target behavior. Narrowing the range of reinforced behaviors continuously in time led to better outcomes compared with a discrete narrowing of the reinforcement window. Rapid narrowing followed by more moderate decreases in window size was more effective in generating target behavior than the inverse scenario. The computational shaping model represents an effective tool for investigating JITAI adaptation strategies. Model parameters must now be translated from the digital domain to real-world experiments so that model findings can be validated.

  13. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging of the full vector magnetic field at the height of maximum magnetic influence (minimum plasma beta) can be accomplished, albeit difficult, by measuring the Zeeman splitting of the CIV resonance pair. Designs of multiple VUV FPIs can be developed for integration into future orbiting solar observatories to obtain rapid cadence, spectral imaging of the transition region.

  14. Polarization modeling and predictions for DKIST part 2: application of the Berreman calculus to spectral polarization fringes of beamsplitters and crystal retarders

    NASA Astrophysics Data System (ADS)

    Harrington, David M.; Snik, Frans; Keller, Christoph U.; Sueoka, Stacey R.; van Harten, Gerard

    2017-10-01

    We outline polarization fringe predictions derived from an application of the Berreman calculus for the Daniel K. Inouye Solar Telescope (DKIST) retarder optics. The DKIST retarder baseline design used six crystals, single-layer antireflection coatings, thick cover windows, and oil between all optical interfaces. This tool estimates polarization fringes and optic Mueller matrices as functions of all optical design choices. The amplitude and period of polarized fringes under design changes, manufacturing errors, tolerances, and several physical factors can now be estimated. This tool compares well with observations of fringes for data collected with the spectropolarimeter for infrared and optical regions at the Dunn Solar Telescope using bicrystalline achromatic retarders as well as laboratory tests. With this tool, we show impacts of design decisions on polarization fringes as impacted by antireflection coatings, oil refractive indices, cover window presence, and part thicknesses. This tool helped DKIST decide to remove retarder cover windows and also recommends reconsideration of coating strategies for DKIST. We anticipate this tool to be essential in designing future retarders for mitigation of polarization and intensity fringe errors in other high spectral resolution astronomical systems.

  15. Ultrawide Spectral Response of CIGS Solar Cells Integrated with Luminescent Down-Shifting Quantum Dots.

    PubMed

    Jeong, Ho-Jung; Kim, Ye-Chan; Lee, Soo Kyung; Jeong, Yonkil; Song, Jin-Won; Yun, Ju-Hyung; Jang, Jae-Hyung

    2017-08-02

    Conventional Cu(In 1-x ,Ga x )Se 2 (CIGS) solar cells exhibit poor spectral response due to parasitic light absorption in the window and buffer layers at the short wavelength range between 300 and 520 nm. In this study, the CdSe/CdZnS core/shell quantum dots (QDs) acting as a luminescent down-shifting (LDS) layer were inserted between the MgF 2 antireflection coating and the window layer of the CIGS solar cell to improve light harvesting in the short wavelength range. The LDS layer absorbs photons in the short wavelength range and re-emits photons in the 609 nm range, which are transmitted through the window and buffer layer and absorbed in the CIGS layer. The average external quantum efficiency in the parasitic light absorption region (300-520 nm) was enhanced by 51%. The resulting short circuit current density of 34.04 mA/cm 2 and power conversion efficiency of 14.29% of the CIGS solar cell with the CdSe/CdZnS QDs were improved by 4.35 and 3.85%, respectively, compared with those of the conventional solar cells without QDs.

  16. Virtual Monoenergetic Images From a Novel Dual-Layer Spectral Detector Computed Tomography Scanner in Portal Venous Phase: Adjusted Window Settings Depending on Assessment Focus Are Essential for Image Interpretation.

    PubMed

    Hickethier, Tilman; Iuga, Andra-Iza; Lennartz, Simon; Hauger, Myriam; Byrtus, Jonathan; Luetkens, Julian A; Haneder, Stefan; Maintz, David; Doerner, Jonas

    We aimed to determine optimal window settings for conventional polyenergetic (PolyE) and virtual monoenergetic images (MonoE) derived from abdominal portal venous phase computed tomography (CT) examinations on a novel dual-layer spectral-detector CT (SDCT). From 50 patients, SDCT data sets MonoE at 40 kiloelectron volt as well as PolyE were reconstructed and best individual window width and level values manually were assessed separately for evaluation of abdominal arteries as well as for liver lesions. Via regression analysis, optimized individual values were mathematically calculated. Subjective image quality parameters, vessel, and liver lesion diameters were measured to determine influences of different W/L settings. Attenuation and contrast-to-noise values were significantly higher in MonoE compared with PolyE. Compared with standard settings, almost all adjusted W/L settings varied significantly and yielded higher subjective scoring. No differences were found between manually adjusted and mathematically calculated W/L settings. PolyE and MonoE from abdominal portal venous phase SDCT examinations require appropriate W/L settings depending on reconstruction technique and assessment focus.

  17. Composition of Titan's surface from Cassini VIMS

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; D'Aversa, E.; Griffith, C.A.; Baines, E.K.H.; Brown, R.H.; Dalle, Ore C.M.; Filacchione, G.; Formisano, V.; Hibbitts, C.A.; Jaumann, R.; Lunine, J.I.; Nelson, R.M.; Sotin, Christophe

    2006-01-01

    Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 ??m were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 ??m in the poorly understood 2.8-??m methane window is ignored. The spectra for brighter regions are not matched by the spectrum of water ice or unoxidized tholin, in pure form or in mixtures with sufficient ice or tholin present to allow the water ice or tholin spectral features to be discerned. We find that the 2.8-??m methane absorption window is complex and seems to consist of two weak subwindows at 2.7 and 2.8 ??m that have unknown opacities. A ratio image at these two wavelengths reveals an anomalous region on Titan that has a reflectance unlike any material so far identified, but it is unclear how much the reflectances in these two subwindows pertain to the surface. ?? 2006 Elsevier Ltd. All rights reserved.

  18. Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature.

    PubMed

    Chen, Qun-Feng; Troshyn, Andrei; Ernsting, Ingo; Kayser, Steffen; Vasilyev, Sergey; Nevsky, Alexander; Schiller, Stephan

    2011-11-25

    Using an ultrastable continuous-wave laser at 580 nm we performed spectral hole burning of Eu(3+):Y(2)SiO(5) at a very high spectral resolution. The essential parameters determining the usefulness as a macroscopic frequency reference, linewidth, temperature sensitivity, and long-term stability, were characterized using a H-maser stabilized frequency comb. Spectral holes with a linewidth as low as 6 kHz were observed and the upper limit of the drift of the hole frequency was determined to be 5±3 mHz/s. We discuss the necessary requirements for achieving ultrahigh stability in laser frequency stabilization to these spectral holes.

  19. Spectral Doppler interrogation of the patent foramen ovale-a window to left heart hemodynamics.

    PubMed

    Fadel, Bahaa M; Husain, Aysha; Bakarman, Hatem; Dahdouh, Ziad; Salvo, Giovanni Di; Mohty, Dania

    2015-02-01

    Spectral Doppler interrogation of flow across a patent foramen ovale (PFO) allows recording of the instantaneous pressure gradient between left and right atrium (RA). The assessment of RA pressure using the size and collapsibility of the inferior vena cava would thus allow estimation of left atrial (LA) pressure. In this article, we illustrate the value of spectral Doppler interrogation of flow across the PFO by transthoracic echocardiography as a novel and simple tool for the assessment of LA pressure and left cardiac hemodynamics in addition to the conventional noninvasive parameters. © 2014, Wiley Periodicals, Inc.

  20. The concept of the set to objectification of LLLT exposure

    NASA Astrophysics Data System (ADS)

    Gryko, Lukasz; Gilewski, Marian; Szymanska, Justyna; Zajac, Andrzej; Rosc, Danuta

    2013-01-01

    In this article authors present the developed optoelectronic set for controlled, repeatable exposure by electromagnetic radiation of biological structures in the spectral band of tissue transmission window 600-1000 nm. The set allows for an objective selection and control of exposure parameters and comparison of results for variable energetic, spectral and polarization parameters of radiation beam. Possibility of objective diagnostics of tissue state during laser treatment was provided in the presented optoelectronic set.

  1. Direct link of a mid-infrared QCL to a frequency comb by optical injection.

    PubMed

    Borri, S; Galli, I; Cappelli, F; Bismuto, A; Bartalini, S; Cancio, P; Giusfredi, G; Mazzotti, D; Faist, J; De Natale, P

    2012-03-15

    A narrow-linewidth comb-linked nonlinear source is used as master radiation to injection lock a room-temperature mid-infrared quantum cascade laser (QCL). This process leads to a direct lock of the QCL to the optical frequency comb, providing the unique features of narrow linewidth, absolute frequency, higher output power, and wide mode-hop-free tunability. The QCL reproduces the injected radiation within more than 94%, with a reduction of the frequency-noise spectral density by 3 to 4 orders of magnitude up to about 100 kHz, and a linewidth narrowing from a few MHz to 20 kHz.

  2. Combining Temporal and Spectral Information with Spatial Mapping to Identify Differences between Phonological and Semantic Networks: A Magnetoencephalographic Approach.

    PubMed

    McNab, Fiona; Hillebrand, Arjan; Swithenby, Stephen J; Rippon, Gina

    2012-01-01

    Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bands were analyzed in pre-selected time windows of 350-550 and 500-700 ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700 ms for the phonological task and 350-550 ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550 ms for the phonological task and 500-700 ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains.

  3. Color discrimination with broadband photoreceptors.

    PubMed

    Schnaitmann, Christopher; Garbers, Christian; Wachtler, Thomas; Tanimoto, Hiromu

    2013-12-02

    Color vision is commonly assumed to rely on photoreceptors tuned to narrow spectral ranges. In the ommatidium of Drosophila, the four types of so-called inner photoreceptors express different narrow-band opsins. In contrast, the outer photoreceptors have a broadband spectral sensitivity and were thought to exclusively mediate achromatic vision. Using computational models and behavioral experiments, we demonstrate that the broadband outer photoreceptors contribute to color vision in Drosophila. The model of opponent processing that includes the opsin of the outer photoreceptors scored the best fit to wavelength discrimination data. To experimentally uncover the contribution of individual photoreceptor types, we restored phototransduction of targeted photoreceptor combinations in a blind mutant. Dichromatic flies with only broadband photoreceptors and one additional receptor type can discriminate different colors, indicating the existence of a specific output comparison of the outer and inner photoreceptors. Furthermore, blocking interneurons postsynaptic to the outer photoreceptors specifically impaired color but not intensity discrimination. Our findings show that receptors with a complex and broad spectral sensitivity can contribute to color vision and reveal that chromatic and achromatic circuits in the fly share common photoreceptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Estimation of sea surface temperature from remote measurements in the 11-13 micron window region

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Conrath, B. J.; Kunde, V. G.

    1972-01-01

    The Nimbus-4 IRIS data was examined in the spectral region 775 to 1250/cm (8-13 microns) for useful information to determine the sea surface temperature. The high spectral resolution data of IRIS was degraded to low resolution by averaging to simulate a multi-channel radiometer in the window region. These simulated data show that within the region 775-975/cm (12.9-10.25 microns) the brightness temperatures are linearly related to the absorption parameters. Such a linear relationship is observed over cloudy as well as clear regions and over a wide range of latitudes. From this linear relationship it is feasible to correct for the atmospheric attenuation and get the sea surface temperature, accurate to within 1 K, in a cloud free field of view. The information about the cloud cover is taken from the TV pictures and BUV albedo measurements on board the Nimbus-4 satellite.

  5. Estimation of sea surface temperature from remote sensing in the 11-13 micron window region

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.; Kunde, V. G.

    1974-01-01

    The Nimbus 3 and 4 IRIS spectral data in the 11-13 micron water vapor window region are analyzed to determine the sea surface temperature (SST). The high spectral resolution data of IRIS are averaged over approximately 1 micron wide intervals to simulate channels of a radiometer to measure the SST. Three channels are utilized to measure SST over cloud-free oceans. However, two of these channels are sufficient in routine SST determination. The differential absorption properties of water vapor in the two channels enable one to determine the water vapor absorption correction without detailed knowledge of the vertical profiles of temperature and water vapor. The feasibility of determining the SST is demonstrated globally with Nimbus 3 data where cloud-free areas can be selected with the help of albedo data from the MRIR experiment on board the same satellite.

  6. Infrared radiation from explosions in a spark-ignition engine

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Caldwell, Frank R; Steele, Sydney

    1935-01-01

    This report presents the results of an investigation to determine the variations in intensity and spectral distribution of the radiant energy emitted by the flames during normal and knocking explosions in an engine. Radiation extending into the infrared was transmitted by a window of fluorite, placed either near the spark plug or over the detonation zone at opposite ends of the combustion chamber. Concave, surface-silvered mirrors focused the beam, first at the slit of a stroboscope which opened for about 2 degrees of crank angle at any desired point in the engine cycle, and then upon the target of a sensitive thermocouple for measuring radiation intensity. Spectral distribution of the radiant energy was determined by placing over the window, one at a time, a series of five filters selected with a view to identifying, as far as possible without the use of a spectrograph, the characteristic emissions of water vapor, carbon dioxide, and incandescent carbon.

  7. Seasonal discrimination of C3 and C4 grasses functional types: An evaluation of the prospects of varying spectral configurations of new generation sensors

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Mutanga, Onisimo

    2017-10-01

    The present study assessed the potential of varying spectral configuration of Landsat 8 Operational Land Imager (OLI), Sentinel 2 MultiSpectal Instrument (MSI) and Worldview 2 sensors in the seasonal discrimination of Festuca costata (C3) and Themeda Triandra (C4) grass species in the Drakensberg, South Africa. This was achieved by resampling hyperspectral measurements to the spectral windows corresponding to the three sensors at two distinct seasonal periods (summer peak and end of winter), using the Discriminant Analysis (DA) classification ensemble. In summer, standard bands of the Worldview 2 produced the highest overall classification accuracy (98.61%), followed by Sentinel 2 (97.52%), whereas the Landsat 8 spectral configuration was the least performer, using vegetation indices (95.83%). In winter, Sentinel 2 spectral bands produced the highest accuracy (96.18%) for the two species, followed by Worldview 2 (94.44%) and Landsat 8 yielded the least (91.67%) accuracy. Results also showed that maximum separability between C3 and C4 grasses was in summer, while at the end of winter considerable overlaps were noted, especially when using the spectral settings of the Landsat 8 OLI and Sentinel 2 shortwave infrared bands. Test of significance in species reflectance further confirmed that in summer, there were significant differences (P < 0.05), whereas in winter, most of the spectral windows of all sensors yielded insignificant differences (P > 0.05) between the two species. In this regard, the peak summer period presents a promising opportunity for the spectral discrimination of C3 and C4 grass species functional types, than the end of winter, when using multispectral sensors. Results from this study highlight the influence of seasonality on discrimination and therefore provide the basis for the successful discrimination and mapping of C3 and C4 grass species.

  8. Displacement and frequency analyses of vibratory systems

    NASA Astrophysics Data System (ADS)

    Low, K. H.

    1995-02-01

    This paper deals with the frequency and response studies of vibratory systems, which are represented by a set of n coupled second-order differential equations. The following numerical methods are used in the response analysis: central difference, fourth-order Runge-Kutta and modal methods. Data generated in the response analysis are processed to obtain the system frequencies by using the fast Fourier transform (FFT) or harmonic response methods. Two types of the windows are used in the FFT analysis: rectangular and Hanning windows. Examples of two, four and seven degrees of freedom systems are considered, to illustrate the proposed algorithms. Comparisons with those existing results confirm the validity of the proposed methods. The Hanning window attenuates the results that give a narrower bandwidth around the peak if compared with those using the rectangular window. It is also found that in free vibrations of a multi-mass system, the masses will vibrate in a manner that is the superposition of the natural frequencies of the system, while the system will vibrate at the driving frequency in forced vibrations.

  9. Spectrally-Narrowed Emissions from Organic Crystals Having a One-Dimensional Grating on Their Surface.

    PubMed

    Yamamoto, Hiroyuki; Obara, Keiji; Higashihara, Shohei; Obama, Yuki; Yamao, Takeshi; Hotta, Shu

    2016-04-01

    We have succeeded in directly engraving one-dimensional diffraction gratings on the surface of organic semiconducting oligomer crystals by using focused ion beam (FIB) lithography and laser ablation (LA) methods. The FIB method enabled us to shape the gratings with varying periods down to ~150 nm. With the LA method a large-area grating with a ~500-nm period was readily accessible. All the above crystals indicated spectrally-narrowed emission (SNE) lines even in the case of shallow groove depths ~2-4 nm. In particular, we definitively observed the SNE pertinent to the first-order diffraction with the crystal having the diffraction grating of a 148.3-nm average period. The present results indicate utility of the built-in gratings that can directly be fabricated on the surface of the crystals.

  10. Impact of Raman scattering on pulse dynamics in a fiber laser with narrow gain bandwidth

    NASA Astrophysics Data System (ADS)

    Uthayakumar, T.; Alsaleh, M.; Igbonacho, J.; Tchomgo Felenou, E.; Tchofo Dinda, P.; Grelu, Ph; Porsezian, K.

    2018-06-01

    We examine theoretically the multi-pulse dynamics in a dispersion-managed fiber laser, in which the pulse’s spectral width is controlled by a pass-band filter. We show that in the domain of stable states with very narrow spectral width, i.e. which is one order of magnitude smaller than the bandwidth of the Raman gain of the intra-cavity fiber system, the Raman scattering (RS) significantly alters the multi-pulse dynamics. RS is found to have a greater impact in the immediate vicinity of some critical values of the pump power of the intra-cavity gain medium, where processes of pulse fragmentation occur. As a result, all the borders between the zones of stability of the multi-pulse states are altered, i.e. either shifted or suppressed.

  11. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra

    PubMed Central

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.

    2016-01-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contributes to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), that enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the following iterations. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. PMID:26419769

  12. Laser damage threshold measurements of microstructure-based high reflectors

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.

    2008-10-01

    In 2007, the pulsed laser induced damage threshold (LIDT) of anti-reflecting (AR) microstructures built in fused silica and glass was shown to be up to three times greater than the LIDT of single-layer thin-film AR coatings, and at least five times greater than multiple-layer thin-film AR coatings. This result suggested that microstructure-based wavelength selective mirrors might also exhibit high LIDT. Efficient light reflection over a narrow spectral range can be produced by an array of sub-wavelength sized surface relief microstructures built in a waveguide configuration. Such surface structure resonant (SSR) filters typically achieve a reflectivity exceeding 99% over a 1-10nm range about the filter center wavelength, making SSR filters useful as laser high reflectors (HR). SSR laser mirrors consist of microstructures that are first etched in the surface of fused silica and borosilicate glass windows and subsequently coated with a thin layer of a non-absorbing high refractive index dielectric material such as tantalum pent-oxide or zinc sulfide. Results of an initial investigation into the LIDT of single layer SSR laser mirrors operating at 532nm, 1064nm and 1573nm are described along with data from SEM analysis of the microstructures, and spectral reflection measurements. None of the twelve samples tested exhibited damage thresholds above 3 J/cm2 when illuminated at the resonant wavelength, indicating that the simple single layer, first order design will need further development to be suitable for high power laser applications. Samples of SSR high reflectors entered in the Thin Film Damage Competition also exhibited low damage thresholds of less than 1 J/cm2 for the ZnS coated SSR, and just over 4 J/cm2 for the Ta2O5 coated SSR.

  13. Ultra-low input power long-wavelength GaSb type-I laser diodes at 2.7-3.0 μm

    NASA Astrophysics Data System (ADS)

    Vizbaras, Augustinas; Greibus, Mindaugas; Dvinelis, Edgaras; Trinkūnas, Augustinas; Kovalenkovas, Deividas; Šimonytė, Ieva; Vizbaras, Kristijonas

    2014-02-01

    Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, environmental and defense applications. Major requirement for these applications is the availability of laser sources in this spectral window. Type-I GaSb-based laser diodes are ideal candidates for these applications being compact, electrically pumped, power efficient and able to operate at room temperature in continuous-wave. Moreover, due to the nature of type-I transition; these devices have a characteristic low operation voltage, typically below 1 V, resulting in low power consumption, and high-temperature of operation. In this work, we present recent progress of 2.7 μm - 3.0 μm wavelength single-spatial mode GaSb type-I laser diode development at Brolis Semiconductors. Experimental device structures were grown by solid-source multi-wafer MBE, consisting of an active region with 2 compressively strained (~1.3 %-1.5 %) GaInAsSb quantum wells with GaSb barriers for 2.7 μm devices and quinternary AlGaInAsSb barriers for 3.0 μm devices. Epi-wafers were processed into a narrow-ridge (2-4 μm) devices and mounted p-side up on CuW heatsink. Devices exhibited very low CW threshold powers of < 100 mW, and single spatial mode (TE00) operation with room-temperature output powers up to 40 mW in CW mode. Operating voltage was as low as 1.2 V at 1.2 A. As-cleaved devices worked CW up to 50 deg C.

  14. reSpect: software for identification of high and low abundance ion species in chimeric tandem mass spectra.

    PubMed

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W; Moritz, Robert L

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. Graphical Abstract ᅟ.

  15. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra

    NASA Astrophysics Data System (ADS)

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website.

  16. Dual THz comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Yasui, Takeshi

    2017-08-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  17. Selected issues connected with determination of requirements of spectral properties of camouflage patterns

    NASA Astrophysics Data System (ADS)

    Racek, František; Jobánek, Adam; Baláž, Teodor; Krejčí, Jaroslav

    2017-10-01

    Traditionally spectral reflectance of the material is measured and compared with permitted spectral reflectance boundaries. The boundaries are limited by upper and lower curve of spectral reflectance. The boundaries for unique color has to fulfil the operational requirements as a versatility of utilization through the all year seasons, day and weather condition on one hand and chromatic and spectral matching with background as well as the manufacturability on the other hand. The interval between the boundaries suffers with ambivalent feature. Camouflage pattern producer would be happy to see it much wider, but blending effect into its particular background could be better with narrower tolerance limits. From the point of view of long time user of camouflage pattern battledress, there seems to be another ambivalent feature. Width of the tolerance zone reflecting natural dispersion of spectral reflectance values allows the significant distortions of shape of the spectral curve inside the given boundaries.

  18. TU-H-CAMPUS-IeP3-04: Evaluation of Changes in Quantitative Ultrasound Parameters During Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, M; El Kaffas, A; Han, B

    Purpose: Clarity Autoscan ultrasound monitoring system allows acquisition of raw radiofrequency (RF) ultrasound data prior and during radiotherapy. This enables the computation of 3D Quantitative Ultrasound (QUS) tissue parametric maps from. We aim to evaluate whether QUS parameters undergo changes with radiotherapy and thus potentially be used as early predictors and/or markers of treatment response in prostate cancer patients. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. QUS spectroscopy analysis was carried out by computing a tissue power spectrummore » normalized to the power spectrum obtained from a quartz to remove system transfer function effects. A ROI was selected within the 3D image volume of the prostate. Because longitudinal registration was optimal, the same features could be used to select ROIs at roughly the same location in images acquired on different days. Parametric maps were generated within the rectangular ROIs with window sizes that were approximately 8 times the wavelength of the ultrasound. The mid-band fit (MBF), spectral slope (SS) and spectral intercept (SI) QUS parameters were computed for each window within the ROI and displayed as parametric maps. Quantitative parameters were obtained by averaging each of the spectral parameters over the whole ROI. Results: Data was acquired for over 21 treatment fractions. Preliminary results show changes in the parametric maps. MBF values decreased from −33.9 dB to −38.7 dB from pre-treatment to the last day of treatment. The spectral slope increased from −1.1 a.u. to −0.5 a.u., and spectral intercept decreased from −28.2 dB to −36.3 dB over the 21 treatment regimen. Conclusion: QUS parametric maps change over the course of treatment which warrants further investigation in their potential use for treatment planning and predicting treatment outcomes. Research was supported by Elekta.« less

  19. Application of Methods of Numerical Analysis to Physical and Engineering Data.

    DTIC Science & Technology

    1980-10-15

    directed algorithm would seem to be called for. However, 1(0) is itself a random process, making its gradient too unreliable for such a sensitive algorithm...radiation energy on the detector . Active laser systems, on the other hand, have created now the possibility for extremely narrow path band systems...emitted by the earth and its atmosphere. The broad spectral range was selected so that the field of view of the detector could be narrowed to obtain

  20. Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial

    NASA Astrophysics Data System (ADS)

    Yan, Zhendong; Qian, Lina; Zhan, Peng; Wang, Zhenlin

    2018-07-01

    We proposed the excitation of double Fano resonances by the destructive interference between the narrow electric symmetric/antisymmetric resonant modes formed by plasmon hybridization and a broad magnetic dipole resonance in a novel hybrid metamaterial composed of periodically patterned stacked graphene–ribbon pairs and gold split-ring resonators. The double Fano transparency windows in this hybrid metamaterial can be actively controlled by tuning the Fermi energy of graphene through the use of electric gating and its electronic mobility. Our designed dual Fano resonances exhibit a large group index associated with the resonance response in the transparency windows, suggesting promising applications in nanophotonics, such as a slow light device.

  1. Needle detection in ultrasound using the spectral properties of the displacement field: a feasibility study

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Salcudean, Tim; Rohling, Robert; Lessoway, Victoria A.; Ng, Gary C.

    2015-03-01

    This paper presents a new needle detection technique for ultrasound guided interventions based on the spectral properties of small displacements arising from hand tremour or intentional motion. In a block-based approach, the displacement map is computed for each block of interest versus a reference frame, using an optical flow technique. To compute the flow parameters, the Lucas-Kanade approach is used in a multiresolution and regularized form. A least-squares fit is used to estimate the flow parameters from the overdetermined system of spatial and temporal gradients. Lateral and axial components of the displacement are obtained for each block of interest at consecutive frames. Magnitude-squared spectral coherency is derived between the median displacements of the reference block and each block of interest, to determine the spectral correlation. In vivo images were obtained from the tissue near the abdominal aorta to capture the extreme intrinsic body motion and insertion images were captured from a tissue-mimicking agar phantom. According to the analysis, both the involuntary and intentional movement of the needle produces coherent displacement with respect to a reference window near the insertion site. Intrinsic body motion also produces coherent displacement with respect to a reference window in the tissue; however, the coherency spectra of intrinsic and needle motion are distinguishable spectrally. Blocks with high spectral coherency at high frequencies are selected, estimating a channel for needle trajectory. The needle trajectory is detected from locally thresholded absolute displacement map within the initial estimate. Experimental results show the RMS localization accuracy of 1:0 mm, 0:7 mm, and 0:5 mm for hand tremour, vibrational and rotational needle movements, respectively.

  2. Spectral manipulation and complementary spectra with birefringence polarization control

    NASA Astrophysics Data System (ADS)

    Ding, Pan-Feng; Han, Pin

    2017-03-01

    A polarization control method using crystal birefringence is suggested to manipulate polychromatic light. This scheme can be used with narrower bandwidth to produce various spectral effects, such as a notch filter, a flat top, and triangle-type, nipple-type, and central-frequency-dominant distributions. A modulated spectrum with greater bandwidth can be used as an optical frequency ruler, and phenomena called complementary spectra are also proposed, where the two spectral distributions, produced by rotating the polarizer, complement each other in the sense that the peaks and valleys in one spectrum are the reverse in the other. These results benefit the controlling of the spectral shape and the measurement of an unknown optical frequency.

  3. Optimizing the location of fuel treatments over time at landscape scales

    Treesearch

    Greg Jones; Woodam Chung

    2011-01-01

    Fuel treatments are a vital part of forest management - but when faced with limited budgets, narrow burning windows, and air quality restrictions, it can be challenging to prioritize where, when, and how fuel treatments should be applied across the landscape to achieve the most benefi t. To help ease this process, land managers can turn to various standalone models,...

  4. Cortical Development, Plasticity and Re-Organization in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Sharma, Anu; Nash, Amy A.; Dorman, Michael

    2009-01-01

    A basic tenet of developmental neurobiology is that certain areas of the cortex will re-organize, if appropriate stimulation is withheld for long periods. Stimulation must be delivered to a sensory system within a narrow window of time (a sensitive period) if that system is to develop normally. In this article, we will describe age cut-offs for a…

  5. Applications of a Next-Generation MDAC Discrimination Procedure Using Two-Dimensional Grids of Regional P/S Spectral Ratios

    DTIC Science & Technology

    2008-09-01

    explosions (UNEs) at the Semipalatinsk Test Site and regional earthquakes recorded by station WMQ (Urumchi, China). Measurements from the grids are... Semipalatinsk , Lop Nor, Novaya Zemlya, and Nevada Test Sites (STS, LNTS, NZTS, NTS, respectively) and regional earthquakes. We used phase-specific window...stations (triangles) within 2000 km of STS and LNTS. Semipalatinsk Test Site Figure 2 shows Pn/Lg spectral ratios, corrected for site and distance

  6. Charge Transfer Nanocomposites: The Effects of Scale-Hierarchy

    DTIC Science & Technology

    2006-12-31

    of nanoparticles in the polymer. Further, the active electrochromic spectral window showed a bias dependant tuning and a broadened spectral response...750 1000 X(nm)X(nm) Figure 4.8. a) The bias dependant electrochromic properties of Ag+ PEDOT:PSS composite and b) that of Au+ PEDOT:PSS This report...these is intimately dependent on the local ordering of host and nanophase, as well as the meso- ordering of host and nanophase. And, each of these, self

  7. FURTHER CONSTRAINTS ON THE OPTICAL TRANSMISSION SPECTRUM OF HAT-P-1b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montalto, M.; Santos, N. C.; Martins, J. H. C.

    We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo. Our measurements imply an average planet to star radius ratio equal to R{sub p}/R{sub *} = (0.1159 ± 0.0005). This result is consistent with the value obtained from recent near-infrared measurements of this object, but differs from previously reported optical measurements, being lower by around 4.4 exoplanet scale heights. Analyzing the data over five different spectral bins of ∼600 Åmore » wide, we observed a single peaked spectrum (3.7 σ level) with a blue cutoff corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in-between 6180 and 7400 Å. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.« less

  8. Novel diffraction gratings for next generation spectrographs with high spectral dispersion

    NASA Astrophysics Data System (ADS)

    Ebizuka, N.; Okamoto, T.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2016-07-01

    As a transmission grating, a surface-relief (SR) grating with sawtooth shaped ridges and volume phase holographic (VPH) grating are widely used for instruments of astronomical observations. However the SR grating is difficult to achieve high diffraction efficiency at high angular dispersion, and the VPH grating has low diffraction efficiency in high diffraction orders. We propose novel gratings that solve these problems. We introduce the hybrid grism which combines a high refractive index prism with a replicated transmission grating, which has sawtooth shaped ridges of an acute apex angle. The birefringence VPH (B-VPH) grating which contains an anisotropic medium, such as a liquid crystal, achieves diffraction efficiency up to 100% at the first diffraction order for natural polarization and for circular polarization. The quasi-Bragg (QB) grating which consists of long rectangular mirrors aligned in parallel precisely, like a window blind, achieves diffraction efficiency of 60% or more in higher than the 4th diffraction order. The volume binary (VB) grating with narrow grooves also achieves diffraction efficiency of 60% or more in higher than the 6th diffraction order. The reflector facet transmission (RFT) grating which is a SR grating with sawtooth shaped ridges of an acute apex angle achieves diffraction efficiency up to 80% in higher than the 4th diffraction order.

  9. Surface Emissivity Maps for Satellite Retrieval of the Longwave Radiation Budget

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Wilber, Anne C.; Kratz, David P.

    1999-01-01

    This paper presents a brief description of the procedure used to produce global surface emissivity maps for the broadband LW, the 8-12 micrometer window, and 12 narrow LW bands. For a detailed description of the methodology and the input data, the reader is referred to Wilber et al. (1999). These maps are based on a time-independent surface type map published by the IGBP, and laboratory measurements of spectral reflectances of surface materials. These maps represent a first attempt to characterize emissivity based on surface types, and many improvements to the methodology presented here are already underway. Effects of viewing zenith angle and sea state on the emissivity of ocean surface (Smith et al. 1996, Wu and Smith 1997, Masuda et al. 1988) will be taken into account. Measurements form ASTER and MODIS will be incorporated as they become available. Seasonal variation of emissivity based on changes in the characteristics of vegetation will be considered, and the variability of emissivity of barren land areas will be accounted for with the use of Zobler World Soil Maps (Zobler 1986). The current maps have been made available to the scientific community from the web site: http://tanalo.larc.nasa.gov:8080/surf_htmls/ SARB_surf.html

  10. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki

    NASA Astrophysics Data System (ADS)

    Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.

    2017-09-01

    The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's nightside escapes to space at narrow spectral windows of the near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m s-1 at low to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m s-1 using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide clues to the dynamics of Venus's atmospheric superrotation.

  11. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki.

    PubMed

    Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F

    2017-01-01

    The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's night-side escapes to space at narrow spectral windows of near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low- to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide new challenges and clues to the dynamics of Venus's atmospheric superrotation.

  12. Further Constraints on the Optical Transmission Spectrum of HAT-P-1b

    NASA Astrophysics Data System (ADS)

    Montalto, M.; Iro, N.; Santos, N. C.; Desidera, S.; Martins, J. H. C.; Figueira, P.; Alonso, R.

    2015-09-01

    We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo. Our measurements imply an average planet to star radius ratio equal to Rp/R* = (0.1159 ± 0.0005). This result is consistent with the value obtained from recent near-infrared measurements of this object, but differs from previously reported optical measurements, being lower by around 4.4 exoplanet scale heights. Analyzing the data over five different spectral bins of ∼600 Å wide, we observed a single peaked spectrum (3.7 σ level) with a blue cutoff corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in-between 6180 and 7400 Å. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.

  13. Nanophotonics-enabled smart windows, buildings and wearables

    NASA Astrophysics Data System (ADS)

    Smith, Geoff; Gentle, Angus; Arnold, Matthew; Cortie, Michael

    2016-06-01

    Design and production of spectrally smart windows, walls, roofs and fabrics has a long history, which includes early examples of applied nanophotonics. Evolving nanoscience has a special role to play as it provides the means to improve the functionality of these everyday materials. Improvement in the quality of human experience in any location at any time of year is the goal. Energy savings, thermal and visual comfort indoors and outdoors, visual experience, air quality and better health are all made possible by materials, whose "smartness" is aimed at designed responses to environmental energy flows. The spectral and angle of incidence responses of these nanomaterials must thus take account of the spectral and directional aspects of solar energy and of atmospheric thermal radiation plus the visible and color sensitivity of the human eye. The structures required may use resonant absorption, multilayer stacks, optical anisotropy and scattering to achieve their functionality. These structures are, in turn, constructed out of particles, columns, ultrathin layers, voids, wires, pure and doped oxides, metals, polymers or transparent conductors (TCs). The need to cater for wavelengths stretching from 0.3 to 35 μm including ultraviolet-visible, near-infrared (IR) and thermal or Planck radiation, with a spectrally and directionally complex atmosphere, and both being dynamic, means that hierarchical and graded nanostructures often feature. Nature has evolved to deal with the same energy flows, so biomimicry is sometimes a useful guide.

  14. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both daytime and nighttime conditions showing improved surface and atmospheric soundings under partial cloud cover resulted from not using R(sub i) in the retrieval process for any longwave channels sensitive to cloud effects. This improvement is made possible because AIRS NEDT in the shortwave portion of the spectrum is extremely low.

  15. Systematic analysis of nonlinear ground motion and temporal changes of material properties produced by small and medium earthquakes

    NASA Astrophysics Data System (ADS)

    Wu, C.; Peng, Z.; Ben-Zion, Y.

    2009-12-01

    Recent studies based on spectral ratio analysis have found clear temporal changes of material properties in the shallow crust and around active fault zones during large earthquakes with peak ground acceleration (PGA) larger than 100-200 gals (e.g., Sawazaki et al., GRL, 2006; Rubenstein et al., JGR, 2007; Wu et al., GJI, 2009). The temporal evolution of properties is generally characterized by a clear drop of resonant frequency and increased damping, followed by logarithmic recoveries with time. The shift in resonant frequency and damping are considered two hallmarks of nonlinear response associated with increasing material damage. However, an existing damage can produce similar changes in resonance curves with increasing wave amplitude, even in cases when the material damage does not increase (Lyakhovsky et al., GJI, 2009). In such cases the recovery of resonance properties with reduced source amplitude should be essentially instantaneous. It is important to distinguish with in situ seismic data nonlinear wave propagation effects that reflect fixed vs. evolving material damage. Here we systematically analyze temporal changes of material properties and nonlinear response associated with small and medium earthquakes, using seismic data recorded by the Japanese Strong Motion Network KIK-Net, a temporary 10-station PASSCAL seismic network along the North Anatolian Fault in Turkey, and the borehole and surface stations around the Parkfield section of the San Andreas fault. We compute the spectral ratios of windowed records from a pair of target and reference stations, and apply the sliding-window to the entire seismic records including the pre-event noise, P and S waves, and the early and late S-coda waves. We choose small and medium events to reduce the effects from additional material damage and use small sliding-window size to capture the subtle changes in the spectral ratios. The spectral ratio traces from windows within certain PGA ranges are then stacked to enhance the stability of the results. The preliminary results from the KIK-Net data suggest that the resonant frequency starts to decrease for PGA levels of several tens of gals, followed by near instantaneous recovery. Updated results from analysis of all the datasets will be presented in the meeting.

  16. Studying Titan's surface photometry in the 5 microns atmospheric window with the Cassini/VIMS instrument

    NASA Astrophysics Data System (ADS)

    Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2014-12-01

    Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on Titan, has been decomposed into a MySQL relational database in order to perform the present study looking at both spatial and temporal (seasonal) aspects.

  17. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less

  18. Development of a Near-Ir Cavity Enhanced Absorption Spectrometer for the Detection of Atmospheric Oxidation Products and Organoamines

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily

    2014-06-01

    An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.

  19. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    NASA Astrophysics Data System (ADS)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  20. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  1. Spectral linewidth of spin-current nano-oscillators driven by nonlocal spin injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidov, V. E., E-mail: demidov@uni-muenster.de; Divinskiy, B.; Urazhdin, S.

    2015-11-16

    We study experimentally the auto-oscillation characteristics of magnetic nano-oscillators driven by pure spin currents generated by nonlocal spin injection. By combining micro-focus Brillouin light scattering spectroscopy with electronic microwave spectroscopy, we are able to simultaneously perform both the spatial and the high-resolution spectral analyses of auto-oscillations induced by spin current. We find that the devices exhibit a highly coherent dynamics with the spectral linewidth of a few megahertz at room temperature. This narrow linewidth can be achieved over a wide range of operational frequencies, demonstrating a significant potential of nonlocal oscillators for applications.

  2. Spectral analysis for GNSS coordinate time series using chirp Fourier transform

    NASA Astrophysics Data System (ADS)

    Feng, Shengtao; Bo, Wanju; Ma, Qingzun; Wang, Zifan

    2017-12-01

    Spectral analysis for global navigation satellite system (GNSS) coordinate time series provides a principal tool to understand the intrinsic mechanism that affects tectonic movements. Spectral analysis methods such as the fast Fourier transform, Lomb-Scargle spectrum, evolutionary power spectrum, wavelet power spectrum, etc. are used to find periodic characteristics in time series. Among spectral analysis methods, the chirp Fourier transform (CFT) with less stringent requirements is tested with synthetic and actual GNSS coordinate time series, which proves the accuracy and efficiency of the method. With the length of series only limited to even numbers, CFT provides a convenient tool for windowed spectral analysis. The results of ideal synthetic data prove CFT accurate and efficient, while the results of actual data show that CFT is usable to derive periodic information from GNSS coordinate time series.

  3. Simultaneous two-wavelength tri-window common-path digital holography

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Shan, Mingguang; Zhong, Zhi

    2018-06-01

    Two-wavelength common-path off-axis digital holography is proposed with a tri-window in a single shot. It is established using a standard 4f optical image system with a 2D Ronchi grating placed outside the Fourier plane. The input plane consists of three windows: one for the object and the other two for reference. Aided by a spatial filter together with two orthogonal linear polarizers in the Fourier plane, the two-wavelength information is encoded into a multiplexed hologram with two orthogonal spatial frequencies that enable full separation of spectral information in the digital Fourier space without resolution loss. Theoretical analysis and experimental results illustrate that our approach can simultaneously perform quantitative phase imaging at two wavelengths.

  4. Science objectives and performance of a radiometer and window design for atmospheric entry experiments

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.; Davy, William C.; Whiting, Ellis E.

    1994-01-01

    The Radiative Heating Experiment, RHE, aboard the Aeroassist Flight Experiment, AFE, (now cancelled) was to make in-situ measurements of the stagnation region shock layer radiation during an aerobraking maneuver from geosynchronous to low earth orbit. The measurements were to provide a data base to help develop and validate aerothermodynamic computational models. Although cancelled, much work was done to develop the science requirements and to successfully meet RHE technical challenges. This paper discusses the RHE scientific objectives and expected science performance of a small sapphire window for the RHE radiometers. The spectral range required was from 170 to 900 nm. The window size was based on radiometer sensitivity requirements including capability of on-orbit solar calibration.

  5. Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters

    NASA Technical Reports Server (NTRS)

    Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.

  6. AM CAS - Spectral variations during the eruption cycles

    NASA Astrophysics Data System (ADS)

    Richter, G. A.; Notni, P.; Tiersch, H.

    Spectroscopic investigations of AM Cas, the Z Camelopardalis star with the shortest known mean cycle length, were performed during quiescence and eruption. It is shown that, although the cycle length is very small, the spectral behavior of AM Cas during an eruption cycle is similar to that of other Z Camelopardalis stars and other U Geminorum stars. During an outburst, the Balmer emissions are narrower and the Balmer decrement is steeper than during quiescence.

  7. Broadband External-Cavity Diode Laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.

    2005-01-01

    A broadband external-cavity diode laser (ECDL) has been invented for use in spectroscopic surveys preparatory to optical detection of gases. Heretofore, commercially available ECDLs have been designed, in conjunction with sophisticated tuning assemblies, for narrow- band (and, typically, single-frequency) operation, as needed for high sensitivity and high spectral resolution in some gas-detection applications. However, for preparatory spectroscopic surveys, high sensitivity and narrow-band operation are not needed; in such cases, the present broadband ECDL offers a simpler, less-expensive, more-compact alternative to a commercial narrowband ECDL.

  8. Tunable high-power blue external cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun

    2017-09-01

    A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.

  9. Spectroscopy by joint spectral and time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2015-03-01

    We present the methodology for spectroscopic examination of absorbing media being the combination of Spectral Optical Coherence Tomography and Fourier Transform Spectroscopy. The method bases on the joint Spectral and Time OCT computational scheme and simplifies data analysis procedure as compared to the mostly used windowing-based Spectroscopic OCT methods. The proposed experimental setup is self-calibrating in terms of wavelength-pixel assignment. The performance of the method in measuring absorption spectrum was checked with the use of the reflecting phantom filled with the absorbing agent (indocyanine green). The results show quantitative accordance with the controlled exact results provided by the reference method.

  10. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs

    PubMed Central

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10−7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy. PMID:24448604

  11. POST-HARVEST EMBRYO DEVELOPMENT IN GINSENG SEEDS INCREASES DESICCATION SENSITIVITY AND NARROWS THE HYDRATION WINDOW FOR CRYOPRESERVATION.

    PubMed

    Han, E; Popova, E; Cho, G; Park, S; Lee, S; Pritchard, H W; Kim, H H

    Despite its self-pollinating characteristics, Korean ginseng germplasm is mainly maintained in clonal gene banks as there is no defined approach to the long-term conservation of its seed, including the most appropriate stage of embryo development for storage. The aim of this study was to reveal the effect of embryo development on desiccation tolerance and cryopreservation success in ginseng seeds. Seeds of Korean ginseng (Panax ginseng C.A. Meyer) at three post-harvest stages (immediately after harvesting and following treatments to enable internal growth of the embryo) were desiccated and cryopreserved. The hydration window for the >80% dehiscence and germination of cryopreserved ginseng seeds varied with embryo developmental stage: 3-9% moisture content (MC) for both unpulped and undehisced seeds when the embryo was 0.1 the length of the endosperm, 7-10% MC for dehisced seeds (0.5 embryo:endosperm) and 9-11% MC for seeds with fully developed embryos (0.9 embryo:endosperm). Whilst dried (4-8% moisture content) and undehisced seeds within fruits (unpulped seeds) lost more than half their viability during 1 year's storage at room temperature, cryopreservation enabled germination levels of c. 90%. Overall, 432 accessions of Korean ginseng landraces have been cryopreserved using undehisced seeds with or without fruits. Post-harvest treatment of Korean ginseng seeds to enable embryo development decreases tolerance of very low MCs, and thus narrows the hydration window for cryopreservation. Fresh-harvested and unpulped seeds that have been dried to c. 5% MC are recommended for long-term cryogenic storage.

  12. Optical effect of the contamination of infrared windows by the outgassing of materials in outer space

    NASA Technical Reports Server (NTRS)

    Silberman, E.

    1975-01-01

    The composition and evaporation rate of the outgassing of a space vehicle thermal control paint as a function of temperature were studied. A contamination chamber was designed, constructed, and tested. Samples of thermal control paint were tested to determine if heating to moderate temperatures causes them to release outgassing products which can be collected on a cooled cesium iodide window for identification by IR analysis. Results showed that outgassing of surfaces other than the sample was a problem. Spectral bands of the deposits collected were compared.

  13. Comparison of Measured Galactic Background Radiation at L-Band with Model

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten

    2004-01-01

    Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;

  14. Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Covas, P. B.; Effler, A.; Goetz, E.; Meyers, P. M.; Neunzert, A.; Oliver, M.; Pearlstone, B. L.; Roma, V. J.; Schofield, R. M. S.; Adya, V. B.; Astone, P.; Biscoveanu, S.; Callister, T. A.; Christensen, N.; Colla, A.; Coughlin, E.; Coughlin, M. W.; Crowder, S. G.; Dwyer, S. E.; Eggenstein, H.-B.; Hourihane, S.; Kandhasamy, S.; Liu, W.; Lundgren, A. P.; Matas, A.; McCarthy, R.; McIver, J.; Mendell, G.; Ormiston, R.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Rao, K.; Riles, K.; Sammut, L.; Schlassa, S.; Sigg, D.; Strauss, N.; Tao, D.; Thorne, K. A.; Thrane, E.; Trembath-Reichert, S.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Austin, C.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bejger, M.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Blair, R. M.; Bork, R.; Brooks, A. F.; Cao, H.; Ciani, G.; Clara, F.; Clearwater, P.; Cooper, S. J.; Corban, P.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Edo, T. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Galiana, A. Fernández; Ferreira, E. C.; Fisher, R. P.; Fong, H.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gateley, B.; Giaime, J. A.; Giardina, K. D.; Goetz, R.; Goncharov, B.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Inta, R.; Izumi, K.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kennedy, R.; Kijbunchoo, N.; Kim, W.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Laxen, M.; Liu, J.; Lockerbie, N. A.; Lormand, M.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Marsh, P.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McClelland, D. E.; McCormick, S.; McCuller, L.; McIntyre, G.; McRae, T.; Merilh, E. L.; Miller, J.; Mittleman, R.; Mo, G.; Mogushi, K.; Moraru, D.; Moreno, G.; Mueller, G.; Mukund, N.; Mullavey, A.; Munch, J.; Nelson, T. J. N.; Nguyen, P.; Nuttall, L. K.; Oberling, J.; Oktavia, O.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Parker, W.; Pele, A.; Penn, S.; Perez, C. J.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Radkins, H.; Raffai, P.; Ramirez, K. E.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Romel, C. L.; Romie, J. H.; Ross, M. P.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sanchez, L. E.; Sandberg, V.; Savage, R. L.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shoemaker, D. H.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Spencer, A. P.; Staley, A.; Strain, K. A.; Sun, L.; Tanner, D. B.; Tasson, J. D.; Taylor, R.; Thomas, M.; Thomas, P.; Toland, K.; Torrie, C. I.; Traylor, G.; Tse, M.; Tuyenbayev, D.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Wade, M.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Wofford, J.; Worden, J.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zhu, S.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2018-04-01

    Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning.

  15. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor

    NASA Astrophysics Data System (ADS)

    Schmitt, Simon; Gefen, Tuvia; Stürner, Felix M.; Unden, Thomas; Wolff, Gerhard; Müller, Christoph; Scheuer, Jochen; Naydenov, Boris; Markham, Matthew; Pezzagna, Sebastien; Meijer, Jan; Schwarz, Ilai; Plenio, Martin; Retzker, Alex; McGuinness, Liam P.; Jelezko, Fedor

    2017-05-01

    Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.

  16. Space telescope optical telescope assembly/scientific instruments. Phase B: Preliminary design and program definition study. Volume 2A(3): Astrometry

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Wide field measurements, namely, measurements of relative angular separations between stars over a relatively wide field for parallax and proper motion determinations, were made with the third fine guidance sensor. Narrow field measurements, i.e., double star measurements, are accomplished primarily with the area photometer or faint object camera at f/96. The wavelength range required can be met by the fine guidance sensor which has a spectral coverage from 3000 to 7500 A. The field of view of the fine guidance sensor also exceeds that required for the wide field astrometric instrument. Requirements require a filter wheel for the wide field astrometer, and so one was incorporated into the design of the fine guidance sensor. The filter wheel probably would contain two neutral density filters to extend the dynamic range of the sensor and three spectral filters for narrowing effective double star magnitude difference.

  17. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Chieh; Huang, Li; Nogan, John; Chen, Hou-Tong

    2018-05-01

    We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importance for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.

  18. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun-Chieh; Huang, Li; Nogan, John

    We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importancemore » for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.« less

  19. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures

    DOE PAGES

    Chang, Chun-Chieh; Huang, Li; Nogan, John; ...

    2018-02-01

    We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importancemore » for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.« less

  20. A Martian PFS average spectrum: Comparison with ISO SWS

    NASA Astrophysics Data System (ADS)

    Formisano, V.; Encrenaz, T.; Fonti, S.; Giuranna, M.; Grassi, D.; Hirsh, H.; Khatuntsev, I.; Ignatiev, N.; Lellouch, E.; Maturilli, A.; Moroz, V.; Orleanski, P.; Piccioni, G.; Rataj, M.; Saggin, B.; Zasova, L.

    2005-08-01

    The evaluation of the planetary Fourier spectrometer performance at Mars is presented by comparing an average spectrum with the ISO spectrum published by Lellouch et al. [2000. Planet. Space Sci. 48, 1393.]. First, the average conditions of Mars atmosphere are compared, then the mixing ratios of the major gases are evaluated. Major and minor bands of CO 2 are compared, from the point of view of features characteristics and bands depth. The spectral resolution is also compared using several solar lines. The result indicates that PFS radiance is valid to better than 1% in the wavenumber range 1800-4200 cm -1 for the average spectrum considered (1680 measurements). The PFS monochromatic transfer function generates an overshooting on the left-hand side of strong narrow lines (solar or atmospheric). The spectral resolution of PFS is of the order of 1.3 cm -1 or better. A large number of narrow features to be identified are discovered.

  1. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths

    NASA Astrophysics Data System (ADS)

    Jantzen, Uwe; Kurz, Andrea B.; Rudnicki, Daniel S.; Schäfermeier, Clemens; Jahnke, Kay D.; Andersen, Ulrik L.; Davydov, Valery A.; Agafonov, Viatcheslav N.; Kubanek, Alexander; Rogers, Lachlan J.; Jelezko, Fedor

    2016-07-01

    Colour centres in nanodiamonds are an important resource for applications in quantum sensing, biological imaging, and quantum optics. Here we report unprecedented narrow optical transitions for individual colour centres in nanodiamonds smaller than 200 nm. This demonstration has been achieved using the negatively charged silicon vacancy centre, which has recently received considerable attention due to its superb optical properties in bulk diamond. We have measured an ensemble of silicon-vacancy centres across numerous nanodiamonds to have an inhomogeneous distribution of 1.05 nm at 5 K. Individual spectral lines as narrower than 360 MHz were measured in photoluminescence excitation, and correcting for apparent spectral diffusion yielded an homogeneous linewidth of about 200 MHz which is close to the lifetime limit. These results indicate the high crystalline quality achieved in these nanodiamond samples, and advance the applicability of nanodiamond-hosted colour centres for quantum optics applications.

  2. Spectrally narrowed laserlike emission in a novel organic salt, DEST: cooperative emission

    NASA Astrophysics Data System (ADS)

    Tan, Shida; Mishra, Alpana; Ahyi, Ayayi; Bhowmik, Achintya; Dharmadhikari, Aditya; Thakur, Mrinal

    2001-03-01

    We have synthesized a novel organic salt, 4'-diethylamino-N-methyl-4-stilbazolium p-toluenesulfonate (DEST). Frequency-doubled pulses (55 ps) from a Nd:YAG laser at 10 Hz repetition rate were used to pump DEST solution in methanol and a 20% conversion efficiency in laserlike emission was observed without external mirrors. The low energy PL quantum efficiency of DEST is very low. The peak of the emission spectrum was at 617 nm and the threshold pump energy for spectral-narrowing was less than 1 μJ. Beyond the threshold, the FWHM of the spectrum was found to have reduced from 70 nm to 14 nm The characteristics are similar to that of another organic salt, SPCD^1, which has been recently reported. Cooperative emission appears to play a dominant role in this emission process. 1. A. K. Bhowmik, A. Dharmadhikari, and M. Thakur, OSA Technical Digest, 467, CLEO (1999).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less

  4. Modeled and Measured Partially Coherent Illumination Speckle Effects from Sloped Surfaces for Tactical Tracking

    DTIC Science & Technology

    2015-03-26

    long-wave infrared ( LWIR ) passive imaging, or eliminating dependence upon target emission and solar reflection. Figure 1.1 shows one example of a...levels of illumination nonuniformity were still present in each IFOV. Thus, further expansion of the beam such that the minimum diffraction- limited... LWIR – long-wave infrared, sometimes defined as the 8 to 12 µm spectral window MWIR – mid-wave infrared, sometimes defined as the 3 to 5 µm spectral

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. R. Marshall

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  6. Evaluation and Improvement of Spectral Features for the Detection of Buried Explosive Hazards Using Forward-Looking Ground-Penetrating Radar

    DTIC Science & Technology

    2012-07-01

    cross track direction is calculated. This is accomplished by taking a 101 point horizontal slice of pixels centered on the alarm. Then, a 101 point...Hamming window, is the 101 -length row vector of FLGPR image pixels surrounding alarm A. We then store the first 50 frequency values (excluding the...Figure 3. Illustration of spectral features in the cross track direction and the difference between actual targets and FAs. Eleven rows of 101

  7. Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges

    NASA Astrophysics Data System (ADS)

    Tibuleac, Sorin

    In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.

  8. Opto-mechanical design of optical window for aero-optics effect simulation instruments

    NASA Astrophysics Data System (ADS)

    Wang, Guo-ming; Dong, Dengfeng; Zhou, Weihu; Ming, Xing; Zhang, Yan

    2016-10-01

    A complete theory is established for opto-mechanical systems design of the window in this paper, which can make the design more rigorous .There are three steps about the design. First, the universal model of aerodynamic environment is established based on the theory of Computational Fluid Dynamics, and the pneumatic pressure distribution and temperature data of optical window surface is obtained when aircraft flies in 5-30km altitude, 0.5-3Ma speed and 0-30°angle of attack. The temperature and pressure distribution values for the maximum constraint is selected as the initial value of external conditions on the optical window surface. Then, the optical window and mechanical structure are designed, which is also divided into two parts: First, mechanical structure which meet requirements of the security and tightness is designed. Finally, rigorous analysis and evaluation are given about the structure of optics and mechanics we have designed. There are two parts to be analyzed. First, the Fluid-Solid-Heat Coupled Model is given based on finite element analysis. And the deformation of the glass and structure can be obtained by the model, which can assess the feasibility of the designed optical windows and ancillary structure; Second, the new optical surface is fitted by Zernike polynomials according to the deformation of the surface of the optical window, which can evaluate imaging quality impact of spectral camera by the deformation of window.

  9. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE PAGES

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; ...

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  10. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    NASA Astrophysics Data System (ADS)

    Lechevallier, Loic; Vasilchenko, Semen; Grilli, Roberto; Mondelain, Didier; Romanini, Daniele; Campargue, Alain

    2018-04-01

    The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2) of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies), which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm-1) and 2.0 µm (5000 cm-1) by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS) and cavity ring-down spectroscopy (CRDS), respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  11. Oxygen--a limiting factor for brain recovery.

    PubMed

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  12. Sharpening of the 6.8 nm peak in an Nd:YAG laser produced Gd plasma by using a pre-formed plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yong; Song, Xiaolin; Xie, Zhuo

    For effective use of a laser-produced-plasma (LPP) light source, an LPP is desired to emit a narrow spectral peak because the reflection spectrum of multilayer mirrors for guiding emission from the source is very narrow. While a Gd plasma has been studied extensively as an extreme ultraviolet (EUV) light source at around 6.8 nm, where La/B{sub 4}C multilayer is reported to have a high reflectivity with a bandwidth of about 0.6 %, all previous works using an Nd:YAG laser reported very broad spectra. This paper reports the first narrowing of the 6.8 nm peak in the case of using anmore » Nd:YAG laser to generate a Gd plasma by using a pre-pulse. The best peak narrowing is observed when a pre-formed plasma is heated by a 1064 nm main laser pulse with a duration of 10 ns at the irradiation density of 4x 10{sup 11} W/cm{sup 2} at a delay time of 50 ns after the pre-pulse irradiation. The observed spectral width of about 0.3 nm is about one fifth of the value for no pre-formed plasma. The peak wavelength of the 6.8 nm band shifted to a longer wavelength side and the peak was broadened both for lower and higher laser irradiation density. It is discussed that this robustness of the peak position of the 6.8 nm Gd peak against temperature change is suitable to achieve a narrow bandwidth from an LPP generated on solid. The observed spectra are compared with those previously reported in various conditions.« less

  13. Multispectral Imager With Improved Filter Wheel and Optics

    NASA Technical Reports Server (NTRS)

    Bremer, James C.

    2007-01-01

    Figure 1 schematically depicts an improved multispectral imaging system of the type that utilizes a filter wheel that contains multiple discrete narrow-band-pass filters and that is rotated at a constant high speed to acquire images in rapid succession in the corresponding spectral bands. The improvement, relative to prior systems of this type, consists of the measures taken to prevent the exposure of a focal-plane array (FPA) of photodetectors to light in more than one spectral band at any given time and to prevent exposure of the array to any light during readout. In prior systems, these measures have included, variously the use of mechanical shutters or the incorporation of wide opaque sectors (equivalent to mechanical shutters) into filter wheels. These measures introduce substantial dead times into each operating cycle intervals during which image information cannot be collected and thus incoming light is wasted. In contrast, the present improved design does not involve shutters or wide opaque sectors, and it reduces dead times substantially. The improved multispectral imaging system is preceded by an afocal telescope and includes a filter wheel positioned so that its rotation brings each filter, in its turn, into the exit pupil of the telescope. The filter wheel contains an even number of narrow-band-pass filters separated by narrow, spoke-like opaque sectors. The geometric width of each filter exceeds the cross-sectional width of the light beam coming out of the telescope. The light transmitted by the sequence of narrow-band filters is incident on a dichroic beam splitter that reflects in a broad shorter-wavelength spectral band that contains half of the narrow bands and transmits in a broad longer-wavelength spectral band that contains the other half of the narrow spectral bands. The filters are arranged on the wheel so that if the pass band of a given filter is in the reflection band of the dichroic beam splitter, then the pass band of the adjacent filter is in the longer-wavelength transmission band of the dichroic beam splitter (see Figure 2). Each of the two optical paths downstream of the dichroic beam splitter contains an additional broad-band-pass filter: The filter in the path of the light transmitted by the dichroic beam splitter transmits and attenuates in the same bands that are transmitted and reflected, respectively, by the beam splitter; the filter in the path of the light reflected by the dichroic beam splitter transmits and attenuates in the same bands that are reflected and transmitted, respectively, by the dichroic beam splitter. In each of these paths, the filtered light is focused onto an FPA. As the filter wheel rotates at a constant angular speed, its shaft angle is monitored, and the shaft-angle signal is used to synchronize the exposure times of the two FPAs. When a single narrowband-pass filter on the wheel occupies the entire cross section of the beam of light coming out of the telescope, the spectrum of light that reaches the dichroic beam splitter lies entirely within the pass band of that filter. Therefore, the beam in its entirety is either transmitted by the dichroic beam splitter and imaged on the longer-wavelength FPA or reflected by the beam splitter and imaged onto the shorter-wavelength FPA.

  14. BERKELEY LAB WINDOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offersmore » the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less

  15. Combined optical coherence tomography and hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Attendu, Xavier; Guay-Lord, Robin; Strupler, Mathias; Godbout, Nicolas; Boudoux, Caroline

    2017-02-01

    In this proceeding we demonstrate a system combining optical coherence tomography (OCT) and hyper-spectral imaging (HSI) into a single dual-clad fiber (DCF). Combining these modalities gives access to the sample morphology through OCT and to its molecular content through HSI. Both modalities have their illumination through the fiber core. The OCT is then collected through the core while the HSI is collected through the inner cladding of the DCF. A double-clad fiber coupler (DCFC) is used to address both channels separately. A scanning spectral filter was developed to successively inject narrow spectral bands of visible light into the fiber core and sweep across the entire visible spectrum. This allows for rapid HSI acquisition and high miniaturization potential.

  16. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    NASA Technical Reports Server (NTRS)

    Schwemmer, G.; Yakshin, M.; Prasad, C.; Hanisco, T.; Mylapore, A. R.; Hwang, I. H.; Lee, S.

    2016-01-01

    We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO) fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  17. Narrow bandpass steep edge optical filter for the JAST/T80 telescope instrumentation

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Brauneck, U.; Bourquin, S.; Marín-Franch, A.

    2013-09-01

    The Observatorio Astrofisico de Javalambre in Spain observes with its JAST/T80 telescope galaxies in the Local Universe in a systematic study. This is accomplished with a multi-band photometric all sky survey called Javalambre Photometric Local Universe Survey (J-PLUS). A wide field camera receives the signals from universe via optical filters. In this presentation the development and design of a narrow bandpass steep edge filter with wide suppression will be shown. The filter has a full width half maximum in the range of 13-15 nm (with <1 nm tolerance) with central wavelengths in the range 350-860nm and an average transmission larger than 90% in the passband. Signals beyond the passband (blocking range) have to be suppressed down to 250nm and up to 1050nm (spectral regime), where a blocking of OD 5 (transmission < 10-5) is required. The edges have to be steep for a small transition width from 5% to 80%. The spectral requirements result in a large number of layers which are deposited with magnetron sputtering. The transmitted wavefront error of the optical filter must be less than lambda/2 over the 100mm aperture and the central wavelength uniformity must be better than +/- 0.4% over the clear aperture. The filter consists of optical filter glass and a coated substrate in order to reach the spectral requirements. The substrate is coated with more than 120 layers. The total filter thickness was specified to be 8.0mm. Results of steep edge narrow bandpass filters will be demonstrated fulfilling all these demanding requirements.

  18. SO2 Spectroscopy with A Tunable UV Laser

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Penney, C. M.; Lapp, M.

    1973-01-01

    A portion of the fluorescence spectrum of SO2 has been studied using a narrow wavelength doubled dye laser as the exciting source. One purpose of this study is to evaluate the use of SO2 resonance re-emission as a probe of SO2 in the atmosphere. When the SO2 is excited by light at 300.2 nm, for example, a strong reemission peak is observed which is Stokes-shifted from the incident light wavelength by the usual Raman shift (the VI symmetric vibration frequency 1150.5/cm ). The intensity of this peak is sensitive to small changes (.01 nm) in the incident wavelength. Measurements of the N2 quenching and self quenching of this re-emission have been obtained. Preliminary analysis of this data indicates that the quenching is weak but not negligible. The dye laser in our system is pumped by a pulsed N2 laser. Tuning 'and spectral narrowing are accomplished using a telescope-echelle grating combination. In a high power configuration the resulting pulses have a spectral width of about 5 x 10(exp -3) nm and a time duration of about 6 nsec. The echelle grating is rotated by a digital stepping motor, such that each step shifts the wavelength by 6 x 10(exp -4) nm. In addition to the tunable, narrow wavelength uv source and spectral analysis of the consequent re-emission, the system also provides time resolution of the re-emitted light to 6 nsec resolution. This capability is being used to study the lifetime of low pressure S02 fluorescence at different wavelengths and pressures.

  19. Sensitivity improvement of one-shot Fourier spectroscopic imager for realization of noninvasive blood glucose sensors in smartphones

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-11-01

    The use of the wide-field-stop and beam-expansion method for sensitivity enhancement of one-shot Fourier spectroscopy is proposed to realize health care sensors installed in smartphones for daily monitoring. When measuring the spectral components of human bodies noninvasively, diffuse reflected light from biological membranes is too weak for detection using conventional hyperspectral cameras. One-shot Fourier spectroscopy is a spatial phase-shift-type interferometer that can determine the one-dimensional spectral characteristics from a single frame. However, this method has low sensitivity, so that only the spectral characteristics of light sources with direct illumination can be obtained, because a single slit is used as a field stop. The sensitivity of the proposed spectroscopic method is improved by using the wide-field-stop and beam-expansion method. The use of a wider field stop slit width increases the detected light intensity; however, this simultaneously narrows the diffraction angle. The narrower collimated objective beam diameter degrades the visibility of interferograms. Therefore, a plane-concave cylindrical lens between the objective plane and the single slit is introduced to expand the beam diameter. The resulting sensitivity improvement achieved when using the wide-field-stop and beam-expansion method allows the spectral characteristics of hemoglobin to be obtained noninvasively from a human palm using a midget lamp.

  20. The Crista Fenestra and Its Impact on the Surgical Approach to the Scala Tympani during Cochlear Implantation.

    PubMed

    Angeli, Roberto D; Lavinsky, Joel; Setogutti, Enio T; Lavinsky, Luiz

    2017-01-01

    The aim of this work was to describe the dimensions of the crista fenestra and determine its presence by means of high-resolution computed tomography (CT) for the purpose of cochlear implantation via the round window approach. A series of 10 adult human temporal bones underwent high-resolution CT scanning and were further dissected for microscopic study of the round window niche. In all of the specimens, the round window membrane was fully visualized after the complete removal of bony overhangs. The crista fenestra was identified as a sharp bony crest located in the anterior and inferior borders of the niche; its area ranged from 0.28 to 0.80 mm2 (mean 0.51 ± 0.18). The proportion of the area occupied by the crista fenestra in the whole circumference of the round window ranged from 23 to 50% (mean 36%). We found a moderate positive correlation between the area of the niche and the dimensions of the crista fenestra (Spearman rho: 0.491). In every case, high-resolution CT scanning was unable to determine the presence of the crista fenestra. The crista fenestra occupies a variable but expressive area within the bony round window niche. Narrower round window niches tended to house smaller crests. The presence of the crista fenestra is an important obstacle to adequate access to the scala tympani. Nevertheless, a high-resolution CT scan provides no additional preoperative information with regard to its presence for the purpose of surgical access to the scala tympani via the round window niche. © 2017 S. Karger AG, Basel.

  1. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED/XPS, and RHESSI, as well as the SphinX observations during the deep solar minimum of 2009. Using newly-developed computational methods, we analyze the differential emission measure (DEM) of the solar corona, and discuss the possible implications for X-ray-producing physical processes in the quiescent corona.

  2. Spectrum slicer for snapshot spectral imaging

    NASA Astrophysics Data System (ADS)

    Tamamitsu, Miu; Kitagawa, Yutaro; Nakagawa, Keiichi; Horisaki, Ryoichi; Oishi, Yu; Morita, Shin-ya; Yamagata, Yutaka; Motohara, Kentaro; Goda, Keisuke

    2015-12-01

    We propose and demonstrate an optical component that overcomes critical limitations in our previously demonstrated high-speed multispectral videography-a method in which an array of periscopes placed in a prism-based spectral shaper is used to achieve snapshot multispectral imaging with the frame rate only limited by that of an image-recording sensor. The demonstrated optical component consists of a slicing mirror incorporated into a 4f-relaying lens system that we refer to as a spectrum slicer (SS). With its simple design, we can easily increase the number of spectral channels without adding fabrication complexity while preserving the capability of high-speed multispectral videography. We present a theoretical framework for the SS and its experimental utility to spectral imaging by showing real-time monitoring of a dynamic colorful event through five different visible windows.

  3. Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0-14.0 μm)

    USGS Publications Warehouse

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2007-01-01

    In contrast to visible and short-wave infrared data, thermal infrared spectra of broad leaf plants show considerable spectral diversity, suggesting that such data eventually could be utilized to map vegetation composition. However, remotely measuring the subtle emissivity features of leaves still presents major challenges. To be successful, sensors operating in the 8–14 μm atmospheric window must have high signal-to-noise and a small enough instantaneous field of view to allow measurements of only a few leaf surfaces. Methods for atmospheric compensation, temperature–emissivity separation, and spectral feature analysis also will need to be refined to allow the recognition, and perhaps, exploitation of leaf thermal infrared spectral properties.

  4. Temporal dynamics of figure-ground segregation in human vision.

    PubMed

    Neri, Peter; Levi, Dennis M

    2007-01-01

    The segregation of figure from ground is arguably one of the most fundamental operations in human vision. Neural signals reflecting this operation appear in cortex as early as 50 ms and as late as 300 ms after presentation of a visual stimulus, but it is not known when these signals are used by the brain to construct the percepts of figure and ground. We used psychophysical reverse correlation to identify the temporal window for figure-ground signals in human perception and found it to lie within the range of 100-160 ms. Figure enhancement within this narrow temporal window was transient rather than sustained as may be expected from measurements in single neurons. These psychophysical results prompt and guide further electrophysiological studies.

  5. Latency as a region contrast: Measuring ERP latency differences with Dynamic Time Warping.

    PubMed

    Zoumpoulaki, A; Alsufyani, A; Filetti, M; Brammer, M; Bowman, H

    2015-12-01

    Methods for measuring onset latency contrasts are evaluated against a new method utilizing the dynamic time warping (DTW) algorithm. This new method allows latency to be measured across a region instead of single point. We use computer simulations to compare the methods' power and Type I error rates under different scenarios. We perform per-participant analysis for different signal-to-noise ratios and two sizes of window (broad vs. narrow). In addition, the methods are tested in combination with single-participant and jackknife average waveforms for different effect sizes, at the group level. DTW performs better than the other methods, being less sensitive to noise as well as to placement and width of the window selected. © 2015 Society for Psychophysiological Research.

  6. Arcjet exploratory tests of ARC optical window design for the AFE vehicle

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.; Terrazas-Salinas, Imelda; Craig, Roger A.; Sobeck, Charles K.; Sarver, George L., III; Salerno, Louis J.; Love, Wendell; Maa, Scott; Covington, AL

    1991-01-01

    Tests were made in the 20 MW arc jet facility at the NASA ARC to determine the suitability of sapphire and fused silica as window materials for the Aeroassist Flight Experiment (AFE) entry vehicle. Twenty nine tests were made; 25 at a heating rate about 80 percent of that expected during the AFE entry and 4 at approximately the full, 100 percent AFE heating rate profile, that produces a temperature of about 2900 F on the surface of the tiles that protect the vehicle. These tests show that a conductively cooled window design using mechanical thermal contacts and sapphire is probably not practical. Cooling the window using mechanical thermal contacts produces thermal stresses in the sapphire that cause the window to crack. An insulated design using sapphire, that cools the window as little as possible, appears promising although some spectral data in the vacuum-ultra-violet (VUV) will be lost due to the high temperature reached by the sapphire. The surface of the insulated sapphire windows, tested at the 100 percent AFE heating rate, showed some slight ablation, and cracks appeared in two of three test windows. One small group of cracks were obviously caused by mechanical binding of the window in the assembly, which can be eliminated with improved design. Other cracks were long, straight, thin crystallographic cracks that have very little effect on the optical transmission of the window. Also, the windows did not fall apart along these crystallographic cracks when the windows were removed from their assemblies. Theoretical results from the thermal analysis computer program SINDA indicate that increasing the window thickness from 4 to 8 mm may enable surface ablation to be avoided. An insulated design using a fused silica window tested at the nominal AFE heating rate experienced severe ablation, thus fused silica is not considered to be an acceptable window material.

  7. Development of thin-film tunable band-pass filters based hyper-spectral imaging system applied for both surface enhanced Raman scattering and plasmon resonance Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Iga, Mitsuhiro; Kakuryu, Nobuyuki; Tanaami, Takeo; Sajiki, Jiro; Isozaki, Katsumi; Itoh, Tamitake

    2012-10-01

    We describe the development of a hyper-spectral imaging (HSI) system composed of thin-film tunable band-pass filters (TF-TBPFs) and its application to inhomogeneous sample surfaces. Compared with existing HSI systems, the system has a simpler optical arrangement and has an optical transmittance of up to 80% owing to polarization independence. The HSI system exhibits a constant spectral resolution over a spectral window of 80 nm (530 to 610 nm) and tunable spectral resolution from 1.5 to 3.0 nm, and requires only 5.4 s per measurement. Plasmon resonance and surface enhanced Raman scattering (SERS) from inhomogeneous surfaces dispersed with Ag nanoparticles (NP) have been measured with the HSI system. The measurement of multiple Ag NPs is consistent with conventional isolated NP measurements as explained by the electromagnetic mechanism of SERS, demonstrating the validity of the HSI system.

  8. Mesospheric nightglow spectral survey taken by the ISO spectral spatial imager on ATLAS 1

    NASA Technical Reports Server (NTRS)

    Owens, J. K.; Torr, D. G.; Torr, M. R.; Chang, T.; Fennelly, J. A.; Richards, P. G.; Morgan, M. F.; Baldridge, T. W.; Fellows, C. W.; Dougani, H.

    1993-01-01

    This paper reports the first comprehensive spectral survey of the mesospheric airglow between 260 and 832 nm taken by the Imaging Spectrometric Observatory on the ATLAS 1 mission. We select data taken in the spectral window between 275 and 300 nm to determine the variation with altitude of the Herzberg I bands originating from the vibrational levels v-prime = 3 to 8. These data provide the first spatially resolved spectral measurements of the system. The data are used to demonstrate that to within an uncertainty of +/- 10 percent, the vibrational distribution remains invariant with altitude. The deficit reported previously for the v-prime = 5 level is not observed although there is a suggestion of depletion in v-prime = 6. The data could be used to place tight constraints on the vibrational dependence of quenching rate coefficients, and on the abundance of atomic oxygen.

  9. Mesospheric nightglow spectral survey taken by the ISO spectral spatial imager on Atlas 1

    NASA Technical Reports Server (NTRS)

    Owens, J. K.; Torr, D. G.; Torr, M. R.; Chang, T.; Fennelly, J. A.; Richards, P. G.; Morgan, M. F.; Baldridge, T. W.; Dougani, H.; Swift, W.

    1993-01-01

    This paper reports the first comprehensive spectral survey of the mesospheric airglow between 260 and 832 nm taken by the Imaging Spectrometric Observatory (ISO) on the ATLAS I mission. We select data taken in the spectral window between 275 and 300 nm to determine the variation with altitude of the Herzberg I bands originating from the vibrational levels v' = 3 to 8. These data provide the first spatially resolved spectral measurements of the system. The data are used to demonstrate that to within an uncertainty of + 10%, the vibrational distribution remains invariant with altitude. The deficit reported previously for the v' = 5 level is not observed although there is a suggestion of depletion in v' = 6. The data could be used to place tight constraints on the vibrational dependence of quenching rate coefficients, and on the abundance of atomic oxygen.

  10. Differentiating Obstructive from Central and Complex Sleep Apnea Using an Automated Electrocardiogram-Based Method

    PubMed Central

    Thomas, Robert Joseph; Mietus, Joseph E.; Peng, Chung-Kang; Gilmartin, Geoffrey; Daly, Robert W.; Goldberger, Ary L.; Gottlieb, Daniel J.

    2007-01-01

    Study Objectives: Complex sleep apnea is defined as sleep disordered breathing secondary to simultaneous upper airway obstruction and respiratory control dysfunction. The objective of this study was to assess the utility of an electrocardiogram (ECG)-based cardiopulmonary coupling technique to distinguish obstructive from central or complex sleep apnea. Design: Analysis of archived polysomnographic datasets. Setting: A laboratory for computational signal analysis. Interventions: None. Measurements and Results: The PhysioNet Sleep Apnea Database, consisting of 70 polysomnograms including single-lead ECG signals of approximately 8 hours duration, was used to train an ECG-based measure of autonomic and respiratory interactions (cardiopulmonary coupling) to detect periods of apnea and hypopnea, based on the presence of elevated low-frequency coupling (e-LFC). In the PhysioNet BIDMC Congestive Heart Failure Database (ECGs of 15 subjects), a pattern of “narrow spectral band” e-LFC was especially common. The algorithm was then applied to the Sleep Heart Health Study–I dataset, to select the 15 records with the highest amounts of broad and narrow spectral band e-LFC. The latter spectral characteristic seemed to detect not only periods of central apnea, but also obstructive hypopneas with a periodic breathing pattern. Applying the algorithm to 77 sleep laboratory split-night studies showed that the presence of narrow band e-LFC predicted an increased sensitivity to induction of central apneas by positive airway pressure. Conclusions: ECG-based spectral analysis allows automated, operator-independent characterization of probable interactions between respiratory dyscontrol and upper airway anatomical obstruction. The clinical utility of spectrographic phenotyping, especially in predicting failure of positive airway pressure therapy, remains to be more thoroughly tested. Citation: Thomas RJ; Mietus JE; Peng CK; Gilmartin G; Daly RW; Goldberger AL; Gottlieb DJ. Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method. SLEEP 2007;30(12):1756-1769. PMID:18246985

  11. Lessons Learned from Radiative Transfer Simulations of the Venus Atmosphere

    NASA Technical Reports Server (NTRS)

    Arney, G.; Meadows, V. S.; Lincowski, A.

    2017-01-01

    The Venus atmosphere is extremely complex, and because of this the spectrum of Earths sister planet is likewise intricate and a challenge to model accurately. However, accurate modeling of Venus spectrum opens up multiple opportunities to better understand the planet next door, and even for understanding Venus-like planets beyond our solar system. Near-infrared (1-2.5 um, NIR) spectral windows observable on the Venus nigthside present the opportunity to probe beneath the Venusian cloud deck and measure thermal emission from the surface and lower atmosphere remotely from Earth or from orbit. These nigthside spectral windows were discovered by Allen and Crawford (1984) and have since been used measure trace gas abundances in the Venus lower atmosphere (less than 45 km), map surface emissivity varisions, and measure properties of the lower cloud deck. These windows sample radiation from below the cloud base at roughly 45 km, and pressures in this region range from roughly Earthlike (approx. 1 bar) up to 90 bars at the surface. Temperatures in this region are high: they range from about 400 K at the base of the cloud deck up to about 740 K at the surface. This high temperature and pressure presents several challenges to modelers attempting radiative transfer simulations of this region of the atmosphere, which we will review. Venus is also important to spectrally model to predict the remote observables of Venus-like exoplanets in anticipation of data from future observatories. Venus-like planets are likely one of the most common types of terrestrial planets and so simulations of them are valuable for planning observatory and detector properties of future telescopes being designed, as well as predicting the types of observations required to characterize them.

  12. Spectral filtering using active metasurfaces compatible with narrow bandgap III-V infrared detectors

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Kim, Jin; ...

    2016-01-01

    Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in amore » focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. Lastly, we further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.« less

  13. Exploring the spectral variability of the Seyfert 1.5 galaxy Markarian 530 with Suzaku

    NASA Astrophysics Data System (ADS)

    Ehler, H. J. S.; Gonzalez, A. G.; Gallo, L. C.

    2018-05-01

    A 2012 Suzaku observation of the Seyfert 1.5 galaxy Markarian 530 was analysed and found to exhibit two distinct modes of variability, which were found to be independent from one another. Firstly, the spectrum undergoes a smooth transition from a soft to a hard spectrum. Secondly, the spectrum displays more rapid variability seemingly confined to a very narrow energy band (˜1 - 3 keV). Three physical models (blurred reflection, partial covering, and soft Comptonisation) were explored to characterise the average spectrum of the observation as well as the spectral state change. All three models were found to fit the average spectrum and the spectral changes equally well. The more rapid variability appears as two cycles of a sinusoidal function, but we cannot attribute this to periodic variability. The Fe Kα band exhibits a narrow 6.4 keV emission line consistent with an origin from the distant torus. In addition, features blueward of the neutral iron line are consistent with emission from He-like and H-like iron that could be originating from the highly ionised layer of the torus, but a broad Gaussian profile at ˜6.7 keV also fits the spectrum well.

  14. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  15. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses.

    PubMed

    Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn

    2018-03-01

    Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.

  16. Oil droplets of bird eyes: microlenses acting as spectral filters

    PubMed Central

    Stavenga, Doekele G.; Wilts, Bodo D.

    2014-01-01

    An important component of the cone photoreceptors of bird eyes is the oil droplets located in front of the visual-pigment-containing outer segments. The droplets vary in colour and are transparent, clear, pale or rather intensely yellow or red owing to various concentrations of carotenoid pigments. Quantitative modelling of the filter characteristics using known carotenoid pigment spectra indicates that the pigments’ absorption spectra are modified by the high concentrations that are present in the yellow and red droplets. The high carotenoid concentrations not only cause strong spectral filtering but also a distinctly increased refractive index at longer wavelengths. The oil droplets therefore act as powerful spherical microlenses, effectively channelling the spectrally filtered light into the photoreceptor's outer segment, possibly thereby compensating for the light loss caused by the spectral filtering. The spectral filtering causes narrow-band photoreceptor spectral sensitivities, which are well suited for spectral discrimination, especially in birds that have feathers coloured by carotenoid pigments. PMID:24395968

  17. Polarization gating of high harmonic generation in the water window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Ren, Xiaoming; Yin, Yanchun

    2016-06-06

    We implement the polarization gating (PG) technique with a two-cycle, 1.7 μm driving field to generate an attosecond supercontinuum extending to the water window spectral region. The ellipticity dependence of the high harmonic yield over a photon energy range much broader than previous work is measured and compared with a semi-classical model. When PG is applied, the carrier-envelope phase (CEP) is swept to study its influence on the continuum generation. PG with one-cycle (5.7 fs) and two-cycle (11.3 fs) delay are tested, and both give continuous spectra spanning from 50 to 450 eV under certain CEP values, strongly indicating the generation ofmore » isolated attosecond pulses in the water window region.« less

  18. Imaging of tissue using a NIR supercontinuum laser light source with wavelengths in the second and third NIR optical windows

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Lindwasser, Lukas; Budansky, Yury; Leproux, Philippe; Alfano, R. R.

    2015-03-01

    Supercontinuum light (SC) at wavelengths in the second (1,100 nm to 1,350 nm) and third (1,600 nm to 1,870 nm) NIR optical windows can be used to improve penetration depths of light through tissue and produce clearer images. Image quality is increased due to a reduction in scattering (inverse wavelength power dependence 1/λn, n≥1). We report on the use of a compact Leukos supercontinuum laser (model STM-2000-IR), which utilizes the spectral range from 700 nm to 2,400 nm and offers between 200 - 500 microwatt/nm power in the second and third NIR windows, with an InGaAs detector to image abnormalities hidden beneath thick tissue.

  19. Neural Correlates of Multisensory Perceptual Learning

    PubMed Central

    Powers, Albert R.; Hevey, Matthew A.; Wallace, Mark T.

    2012-01-01

    The brain’s ability to bind incoming auditory and visual stimuli depends critically on the temporal structure of this information. Specifically, there exists a temporal window of audiovisual integration within which stimuli are highly likely to be perceived as part of the same environmental event. Several studies have described the temporal bounds of this window, but few have investigated its malleability. Recently, our laboratory has demonstrated that a perceptual training paradigm is capable of eliciting a 40% narrowing in the width of this window that is stable for at least one week after cessation of training. In the current study we sought to reveal the neural substrates of these changes. Eleven human subjects completed an audiovisual simultaneity judgment training paradigm, immediately before and after which they performed the same task during an event-related 3T fMRI session. The posterior superior temporal sulcus (pSTS) and areas of auditory and visual cortex exhibited robust BOLD decreases following training, and resting state and effective connectivity analyses revealed significant increases in coupling among these cortices after training. These results provide the first evidence of the neural correlates underlying changes in multisensory temporal binding and that likely represent the substrate for a multisensory temporal binding window. PMID:22553032

  20. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Junran; Flagg, Cody; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-12-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS-NIR, 350-2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400-700 nm) and the short-wavelength infrared (SWIR) area (1100-2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  1. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  2. Image sharpening for mixed spatial and spectral resolution satellite systems

    NASA Technical Reports Server (NTRS)

    Hallada, W. A.; Cox, S.

    1983-01-01

    Two methods of image sharpening (reconstruction) are compared. The first, a spatial filtering technique, extrapolates edge information from a high spatial resolution panchromatic band at 10 meters and adds it to the low spatial resolution narrow spectral bands. The second method, a color normalizing technique, is based on the ability to separate image hue and brightness components in spectral data. Using both techniques, multispectral images are sharpened from 30, 50, 70, and 90 meter resolutions. Error rates are calculated for the two methods and all sharpened resolutions. The results indicate that the color normalizing method is superior to the spatial filtering technique.

  3. Observation of superradiant synchrotron radiation in the terahertz region

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2013-06-01

    We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.

  4. Performance of 4x5120 Element Visible and 2x2560 Element Shortwave Infrared Multispectral Focal Planes

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Cope, A. D.; Pellion, L. E.; McCarthy, B. M.; Strong, R. T.; Kinnard, K. F.; Moldovan, A. G.; Levine, P. A.; Elabd, H.; Hoffman, D. M.

    1985-12-01

    Performance measurements of two Multispectral Linear Array focal planes are presented. Both pushbroom sensors have been developed for application in remote sensing instruments. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a but-table, two-spectral-band, linear-format, shortwave infrared charge coupled device (IRCCD) have been developed under NASA funding. These silicon integrated circuits may be butted end to end to provide very-high-resolution multispectral focal planes. The visible CCD is organized as four sensor lines of 1024 pixels each. Each line views the scene in a different spectral window defined by integral optical bandpass filters. A prototype focal plane with five devices, providing 4x5120-pixel resolution has been demonstrated. The high quantum efficiency of the backside-illuminated CCD technology provides excellent signal-to-noise performance and unusually high MTF across the entire visible and near-IR spectrum. The shortwave infrared (SWIR) sensor is organized as two line sensors of 512 detectors each. The SWIR (1-2.5 μm) spectral windows may be defined by bandpass filters placed in close proximity to the devices. The dual-band sensor consists of Schottky barrier detectors read out by CCD multiplexers. This monolithic sensor operates at 125°K with radiometric performance. A prototype five-device focal plane providing 2x2560 detectors has been demonstrated. The devices provide very high uniformity, and excellent MTF across the SWIR band.

  5. Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles.

    PubMed

    Grewal, D S; Brar, G S; Jain, R; Grewal, S P S

    2011-05-01

    To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898-0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm(3), ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4-10.0) and 0.11 (95% CI=0.03-0.4), respectively. ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using SD-ASOCT for detecting narrow angles.

  6. Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost

    DOE PAGES

    James, S. R.; Knox, H. A.; Abbott, R. E.; ...

    2017-04-13

    Cross correlations of seismic noise can potentially record large changes in subsurface velocity due to permafrost dynamics and be valuable for long-term Arctic monitoring. We applied seismic interferometry, using moving window cross-spectral analysis (MWCS), to 2 years of ambient noise data recorded in central Alaska to investigate whether seismic noise could be used to quantify relative velocity changes due to seasonal active-layer dynamics. The large velocity changes (>75%) between frozen and thawed soil caused prevalent cycle-skipping which made the method unusable in this setting. We developed an improved MWCS procedure which uses a moving reference to measure daily velocity variationsmore » that are then accumulated to recover the full seasonal change. This approach reduced cycle-skipping and recovered a seasonal trend that corresponded well with the timing of active-layer freeze and thaw. Lastly, this improvement opens the possibility of measuring large velocity changes by using MWCS and permafrost monitoring by using ambient noise.« less

  7. Window Glasses: State and Prospects

    NASA Astrophysics Data System (ADS)

    Maiorov, V. A.

    2018-04-01

    Analysis and generalization of the results of investigations devoted to the improvement of optical properties have been carried out, and descriptions of a structure and a reaction mechanism of available and promising window glasses with solar radiation are presented. All devices are divided into groups with static constant and dynamic regulated spectral characteristics. The group of static glasses includes heat-protective and spectrally selective glasses with low-emissivity coatings and infrared filters with dispersed plasmonic nanoparticles. Electrochromic glasses, nanostructured dynamic infrared filters, and glasses with separated regulation of the transmission of visible-light and near-infrared radiation are dynamic devices. It is noted that the use of mesoporous films made of plasmonic nanoparticles open up especially wide possibilities. Their application allows one to realize a dynamic separated regulation of the transmission of visible light and nearinfrared radiation in which, under the gradual increase in the electric potential on the glass, mechanisms of plasmon and polaron reduction of solar radiation gradually change the glass' condition from light warm to light cold and then to dark cold consecutively.

  8. Accumulating pyramid spatial-spectral collaborative coding divergence for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Zou, Huanxin; Zhou, Shilin

    2016-03-01

    Detection of anomalous targets of various sizes in hyperspectral data has received a lot of attention in reconnaissance and surveillance applications. Many anomaly detectors have been proposed in literature. However, current methods are susceptible to anomalies in the processing window range and often make critical assumptions about the distribution of the background data. Motivated by the fact that anomaly pixels are often distinctive from their local background, in this letter, we proposed a novel hyperspectral anomaly detection framework for real-time remote sensing applications. The proposed framework consists of four major components, sparse feature learning, pyramid grid window selection, joint spatial-spectral collaborative coding and multi-level divergence fusion. It exploits the collaborative representation difference in the feature space to locate potential anomalies and is totally unsupervised without any prior assumptions. Experimental results on airborne recorded hyperspectral data demonstrate that the proposed methods adaptive to anomalies in a large range of sizes and is well suited for parallel processing.

  9. A high resolution spectroscopic study of the oxygen molecule. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ritter, K. J.

    1984-01-01

    A high resolution spectrometer which incorporates a narrow line width tunable dye laser was used to make absorption profiles of 57 spectral lines in the Oxygen A-Band at pressures up to one atmosphere in pure O2. The observed line profiles are compared to the Voigt, and a collisionally narrowed, profile using a least squares fitting procedure. The collisionally narrowed profile compares more favorable to the observed profiles. Values of the line strengths and self broadening coeffiencients, determined from the least square fitting process, are presented in tabular form. It is found that the experssion by Watson are in closest agreement with the experimentally determined strengths. The self broadening coefficients are compared with the measurements of several other investigators.

  10. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.

    PubMed

    Tombez, L; Schilt, S; Hofstetter, D; Südmeyer, T

    2013-12-01

    We report on a technique for frequency noise reduction and linewidth-narrowing of a distributed-feedback mid-IR quantum cascade laser (QCL) that does not involve any optical frequency reference. The voltage fluctuations across the QCL are sensed, amplified and fed back to the temperature of the QCL at a fast rate using a near-IR laser illuminating the top of the QCL chip. A locking bandwidth of 300 kHz and a reduction of the frequency noise power spectral density by a factor of 10 with respect to the free-running laser are achieved. From 2 MHz for the free-running QCL, the linewidth is narrowed below 700 kHz (10 ms observation time).

  11. Spectral amplification models for response spectrum addressing the directivity effect

    NASA Astrophysics Data System (ADS)

    Moghimi, Saed; Akkar, Sinan

    2017-04-01

    Ground motions with forward directivity effects are known with their significantly large spectral ordinates in medium-to-long periods. The large spectral ordinates stem from the impulsive characteristics of the forward directivity ground motions. The quantification of these spectral amplifications requires the identification of major seismological parameters that play a role in their generation. After running a suite of probabilistic seismic hazard analysis, Moghimi and Akkar (2016) have shown that fault slip rate, fault characteristic magnitude, fault-site geometry as well as mean annual exceedance rate are important parameters that determine the level of spectral amplification due to directivity. These parameters are considered to develop two separate spectral amplification equations in this study. The proposed equations rely on Shahi and Baker (SHB11; 2011) and Chiou and Spudich (CHS13; Spudic et al., 2013) narrow-band forward directivity models. The presented equations only focus on the estimation of maximum spectral amplifications that occur at the ends of the fault segments. This way we eliminate the fault-site parameter in our equations for simplification. The proposed equations show different trends due to differences in the narrow-band directivity models of SHB11 and CHS13. The equations given in this study can form bases for describing forward directivity effects in seismic design codes. REFERENCES Shahi. S., Baker, J.W. (2011), "An Empirically Calibrated Framework for Including the Effects of Near-Fault Directivity in Probabilistic Seismic Hazard Analysis", Bulletin of the Seismological Society of America, 101(2): 742-755. Spudich, P., Watson-Lamprey, J., Somerville, P., Bayless, J., Shahi, S. K., Baker, J. W., Rowshandel, B., and Chiou, B. (2013), "Final Report of the NGA-West2 Directivity Working Group", PEER Report 2013/09. Moghimi. S., Akkar, S. (2016), "Implications of Forward Directivity Effects on Design Ground Motions", Seismological Society of America, Annual meeting, 2016, Reno, Nevada, 87:2B Pg. 464

  12. Combining Temporal and Spectral Information with Spatial Mapping to Identify Differences between Phonological and Semantic Networks: A Magnetoencephalographic Approach

    PubMed Central

    McNab, Fiona; Hillebrand, Arjan; Swithenby, Stephen J.; Rippon, Gina

    2012-01-01

    Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14–30 Hz) and gamma (30–50 Hz) frequency bands were analyzed in pre-selected time windows of 350–550 and 500–700 ms In left temporal regions, both tasks elicited power changes in the same time window (350–550 ms), but with different spectral characteristics, low beta (14–20 Hz) for the phonological task and high beta (20–30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30–50 Hz), but in different time windows, 500–700 ms for the phonological task and 350–550 ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20–30 Hz beta frequency band but in different time windows, 350–550 ms for the phonological task and 500–700 ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains. PMID:22908001

  13. Optical Tamm states in one-dimensional magnetophotonic structures.

    PubMed

    Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B

    2008-09-12

    We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.

  14. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  15. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Sun, Y. -E; Maxwell, T. J.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  16. Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator.

    PubMed

    Thackray, Benjamin D; Thomas, Philip A; Auton, Gregory H; Rodriguez, Francisco J; Marshall, Owen P; Kravets, Vasyl G; Grigorenko, Alexander N

    2015-05-13

    We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 μm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.

  17. Experiment-specific cosmic microwave background calculations made easier - Approximation formula for smoothed delta T/T windows

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.

    1993-01-01

    Simple and easy to implement elementary function approximations are introduced to the spectral window functions needed in calculations of model predictions of the cosmic microwave backgrond (CMB) anisotropy. These approximations allow the investigator to obtain model delta T/T predictions in terms of single integrals over the power spectrum of cosmological perturbations and to avoid the necessity of performing the additional integrations. The high accuracy of these approximations is demonstrated here for the CDM theory-based calculations of the expected delta T/T signal in several experiments searching for the CMB anisotropy.

  18. Seismic signal time-frequency analysis based on multi-directional window using greedy strategy

    NASA Astrophysics Data System (ADS)

    Chen, Yingpin; Peng, Zhenming; Cheng, Zhuyuan; Tian, Lin

    2017-08-01

    Wigner-Ville distribution (WVD) is an important time-frequency analysis technology with a high energy distribution in seismic signal processing. However, it is interfered by many cross terms. To suppress the cross terms of the WVD and keep the concentration of its high energy distribution, an adaptive multi-directional filtering window in the ambiguity domain is proposed. This begins with the relationship of the Cohen distribution and the Gabor transform combining the greedy strategy and the rotational invariance property of the fractional Fourier transform in order to propose the multi-directional window, which extends the one-dimensional, one directional, optimal window function of the optimal fractional Gabor transform (OFrGT) to a two-dimensional, multi-directional window in the ambiguity domain. In this way, the multi-directional window matches the main auto terms of the WVD more precisely. Using the greedy strategy, the proposed window takes into account the optimal and other suboptimal directions, which also solves the problem of the OFrGT, called the local concentration phenomenon, when encountering a multi-component signal. Experiments on different types of both the signal models and the real seismic signals reveal that the proposed window can overcome the drawbacks of the WVD and the OFrGT mentioned above. Finally, the proposed method is applied to a seismic signal's spectral decomposition. The results show that the proposed method can explore the space distribution of a reservoir more precisely.

  19. Titan's icy scar

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Penteado, P. F.; Turner, J. D.; Neish, C. D.; Mitri, G.; Montiel, M. J.; Schoenfeld, A.; Lopes, R. M. C.

    2017-09-01

    We conduct a Principal Components Analysis (PCA) of Cassini/VIMS [1] infrared spectral windows to identify and quantify weak surface features, with no assumptions on the haze and surface characteris- tics. This study maps the organic sediments, supplied by past atmospheres, as well as ice-rich regions that constitute Titan's bedrock.

  20. Window and Overlap Processing Effects on Power Estimates from Spectra

    NASA Astrophysics Data System (ADS)

    Trethewey, M. W.

    2000-03-01

    Fast Fourier transform (FFT) spectral processing is based on the assumption of stationary ergodic data. In engineering practice, the assumption is often violated and non-stationary data processed. Data windows are commonly used to reduce leakage by decreasing the signal amplitudes near the boundaries of the discrete samples. With certain combinations of non-stationary signals and windows, the temporal weighting may attenuate important signal characteristics to adversely affect any subsequent processing. In other words, the window artificially reduces a significant section of the time signal. Consequently, spectra and overall power estimated from the affected samples are unreliable. FFT processing can be particularly problematic when the signal consists of randomly occurring transients superimposed on a more continuous signal. Overlap processing is commonly used in this situation to improve the estimates. However, the results again depend on the temporal character of the signal in relation to the window weighting. A worst-case scenario, a short-duration half sine pulse, is used to illustrate the relationship between overlap percentage and resulting power estimates. The power estimates are shown to depend on the temporal behaviour of the square of overlapped window segments. An analysis shows that power estimates may be obtained to within 0.27 dB for the following windows and overlap combinations: rectangular (0% overlap), Hanning (62.5% overlap), Hamming (60.35% overlap) and flat-top (82.25% overlap).

  1. Accurate identification of microseismic P- and S-phase arrivals using the multi-step AIC algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Mengbo; Wang, Liguan; Liu, Xiaoming; Zhao, Jiaxuan; Peng, Ping'an

    2018-03-01

    Identification of P- and S-phase arrivals is the primary work in microseismic monitoring. In this study, a new multi-step AIC algorithm is proposed. This algorithm consists of P- and S-phase arrival pickers (P-picker and S-picker). The P-picker contains three steps: in step 1, a preliminary P-phase arrival window is determined by the waveform peak. Then a preliminary P-pick is identified using the AIC algorithm. Finally, the P-phase arrival window is narrowed based on the above P-pick. Thus the P-phase arrival can be identified accurately by using the AIC algorithm again. The S-picker contains five steps: in step 1, a narrow S-phase arrival window is determined based on the P-pick and the AIC curve of amplitude biquadratic time-series. In step 2, the S-picker automatically judges whether the S-phase arrival is clear to identify. In step 3 and 4, the AIC extreme points are extracted, and the relationship between the local minimum and the S-phase arrival is researched. In step 5, the S-phase arrival is picked based on the maximum probability criterion. To evaluate of the proposed algorithm, a P- and S-picks classification criterion is also established based on a source location numerical simulation. The field data tests show a considerable improvement of the multi-step AIC algorithm in comparison with the manual picks and the original AIC algorithm. Furthermore, the technique is independent of the kind of SNR. Even in the poor-quality signal group which the SNRs are below 5, the effective picking rates (the corresponding location error is <15 m) of P- and S-phase arrivals are still up to 80.9% and 76.4% respectively.

  2. Efficient quasi-monoenergetic ion beams up to 18 MeV/nucleon via self-generated plasma fields in relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Hamilton, Christopher; Santiago, Miguel; Kreuzer, Christian; Shah, Rahul; Fernandez, Juan; Los Alamos National Laboratory Team; Ludwig-Maximilian-University Team

    2015-11-01

    Table-top laser-plasma ion accelerators seldom achieve narrow energy spreads, and never without serious compromises in efficiency, particle yield, etc. Using massive computer simulations, we identify a self-organizing scheme that exploits persisting self-generated plasma electric (~ TV/m) and magnetic (~ 104 Tesla) fields to reduce the ion energy spread after the laser exits the plasma - separating the ion acceleration from the energy spread reduction. Consistent with the scheme, we experimentally demonstrate aluminum and carbon ion beams with narrow spectral peaks at energies up to 310 MeV (11.5 MeV/nucleon) and 220 MeV (18.3 MeV/nucleon), respectively, with high conversion efficiency (~ 5%, i.e., 4J out of 80J laser). This is achieved with 0.12 PW high-contrast Gaussian laser pulses irradiating planar foils with optimal thicknesses of up to 250 nm that scale with laser intensity. When increasing the focused laser intensity fourfold (by reducing the focusing optic f/number twofold), the spectral-peak energy increases twofold. These results pave the way for next generation compact accelerators suitable for applications. For example, 400 MeV (33.3 MeV/nucleon) carbon-ion beam with narrow energy spread required for ion fast ignition could be generated using PW-class lasers.

  3. Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm

    NASA Astrophysics Data System (ADS)

    Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad

    2016-03-01

    Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.

  4. Fano resonances of a ring-shaped "hexamer" cluster at near-infrared wavelength

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Tong; Xia, Feng; Sun, Peng; Liu, Li-Li; Du, Wei; Li, Meng-Xue; Kong, Wei-Jin; Wan, Yong; Dong, Li-Feng; Yun, Mao-Jin

    2018-03-01

    Fano resonances have been studied intensely in the last decade, since it is an important way to decrease the resonance line width and enhance local electric field. However, achieving a Fano line-shape with both narrow line width and high spectral contrast ratio is still a challenge. In this paper, we theoretically predict the Fano resonance induced by the extinction of normal plane wave in a ring-shaped hexamer cluster at near-infrared wavelength. In order to obtain the narrow Fano line width and high spectral contrast ratio, the relationships between the Fano line-shape and the parameters of the nanostructure are analyzed in detail. The nanostructure is simulated by using commercial software based on finite element method. The simulation results show that when the structural parameters are optimized, the Fano line width can be narrowed down 0.028 eV with a contrast ratio of 86%, and the local electric field enhancement factor at the Fano resonance wavelength can reach to 36. Furthermore, the effective mode volume of the structure is 3.9 ×10-23m3 which is lower than the available literature. These results indicate many potential applications of the Fano resonance in multiwavelength surface-enhanced Raman scattering and biosensing.

  5. A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Irvine, Tom

    2013-01-01

    A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.

  6. Study on multispectral imaging detection and recognition

    NASA Astrophysics Data System (ADS)

    Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng

    2009-07-01

    Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.

  7. Optimal wavelength band clustering for multispectral iris recognition.

    PubMed

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  8. Distortion Representation of Forecast Errors for Model Skill Assessment and Objective Analysis

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    2001-01-01

    We completed the formulation of the smoothness penalty functional this past quarter. We used a simplified procedure for estimating the statistics of the FCA solution spectral coefficients from the results of the unconstrained, low-truncation FCA (stopping criterion) solutions. During the current reporting period we have completed the calculation of GEOS-2 model-equivalent brightness temperatures for the 6.7 micron and 11 micron window channels used in the GOES imagery for all 10 cases from August 1999. These were simulated using the AER-developed Optimal Spectral Sampling (OSS) model.

  9. A New View of Earthquake Ground Motion Data: The Hilbert Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Norden; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    A brief description of the newly developed Empirical Mode Decomposition (ENID) and Hilbert Spectral Analysis (HSA) method will be given. The decomposition is adaptive and can be applied to both nonlinear and nonstationary data. Example of the method applied to a sample earthquake record will be given. The results indicate those low frequency components, totally missed by the Fourier analysis, are clearly identified by the new method. Comparisons with Wavelet and window Fourier analysis show the new method offers much better temporal and frequency resolutions.

  10. AOTF microscope for imaging with increased speed and spectral versatility.

    PubMed Central

    Wachman, E S; Niu, W; Farkas, D L

    1997-01-01

    We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289

  11. Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.

    PubMed

    Basano, L; Canepa, F; Ottonello, P

    1998-01-01

    We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.

  12. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Hellmig, Ortwin; Baev, Valery M.

    2018-04-01

    A broadband tunable Tm/Ho-doped fiber laser is developed for sensitive in situ measurements of intracavity absorption spectra in the spectral range of 4780-5560 cm-1. This spectral range includes an atmospheric transmission window enabling sensitive measurements of various species. The spectral bandwidth of laser emission varies from 20 to 60 cm-1 and is well suitable for multicomponent spectroscopy. The sensitivity achieved in cw operation corresponds to an effective absorption path length of L eff = 20 km, with a spectral noise of less than 1%. The spectroscopic system is applied for measurements of absorption spectra of H2O, NH3 and for simultaneous in situ detection of three isotopes of CO2 in human breath, which is important for medical diagnostics procedures.

  13. Optical Evaluation of Digital Micromirror Devices (DMDs) with UV-Grade Fused Silica, Sapphire, and Magnesium Fluoride Windows and Longterm Reflectance of Bare Devices

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Robberto, Massimo; Heap, Sara

    2016-01-01

    Digital micromirror devices (DMDs) are commercial micro-electromechanical systems, consisting of millions of mirrors which can be individually addressed and tilted into one of two states (+/-12deg). These devices were developed to create binary patterns in video projectors, in the visible range. Commercially available DMDs are hermetically sealed and extremely reliable. Recently, DMDs have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of the proposed Galactic Evolution Spectroscopic Explorer (GESE) uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, low-absorption optical sapphire (LAOS) and magnesium fluoride (MgF2). We present transmission measurements of the antireflection coated windows and the reflectance of bare (window removed) DMDs. Furthermore, we investigated the long-term stability of the DMD reflectance and experiments for coating DMD active area with a layer of pure aluminum (Al) to boost reflectance performance in the UV spectral range (200-400 nm).

  14. Optical evaluation of digital micromirror devices (DMDs) with UV-grade fused silica, sapphire, and magnesium fluoride windows and long-term reflectance of bare devices

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Robberto, Massimo; Heap, Sara

    2016-07-01

    Digital micromirror devices (DMDs) are commercial micro-electromechanical systems, consisting of millions of mirrors which can be individually addressed and tilted into one of two states (+/-12°). These devices were developed to create binary patterns in video projectors, in the visible range. Commercially available DMDs are hermetically sealed and extremely reliable. Recently, DMDs have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of the proposed Galactic Evolution Spectroscopic Explorer (GESE) uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, low-absorption optical sapphire (LAOS) and magnesium fluoride (MgF2). We present transmission measurements of the antireflection coated windows and the reflectance of bare (window removed) DMDs. Furthermore, we investigated the long-term stability of the DMD reflectance and experiments for coating DMD active area with a layer of pure aluminum (Al) to boost reflectance performance in the UV spectral range (200-400 nm).

  15. The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus

    NASA Astrophysics Data System (ADS)

    Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team

    2017-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S.E., et al., Science, 2010. 328(5978): p. 605-8.2. Helbert, J., et al., GRL, 2008. 35(11).3. Mueller, N., et al., JGR, 2008. 113.4. Helbert, J., et al. 2016. San Diego, CA: SPIE.5. Mueller, N.T., et al., JGR, 2017.

  16. The software and algorithms for hyperspectral data processing

    NASA Astrophysics Data System (ADS)

    Shyrayeva, Anhelina; Martinov, Anton; Ivanov, Victor; Katkovsky, Leonid

    2017-04-01

    Hyperspectral remote sensing technique is widely used for collecting and processing -information about the Earth's surface objects. Hyperspectral data are combined to form a three-dimensional (x, y, λ) data cube. Department of Aerospace Research of the Institute of Applied Physical Problems of the Belarusian State University presents a general model of the software for hyperspectral image data analysis and processing. The software runs in Windows XP/7/8/8.1/10 environment on any personal computer. This complex has been has been written in C++ language using QT framework and OpenGL for graphical data visualization. The software has flexible structure that consists of a set of independent plugins. Each plugin was compiled as Qt Plugin and represents Windows Dynamic library (dll). Plugins can be categorized in terms of data reading types, data visualization (3D, 2D, 1D) and data processing The software has various in-built functions for statistical and mathematical analysis, signal processing functions like direct smoothing function for moving average, Savitzky-Golay smoothing technique, RGB correction, histogram transformation, and atmospheric correction. The software provides two author's engineering techniques for the solution of atmospheric correction problem: iteration method of refinement of spectral albedo's parameters using Libradtran and analytical least square method. The main advantages of these methods are high rate of processing (several minutes for 1 GB data) and low relative error in albedo retrieval (less than 15%). Also, the software supports work with spectral libraries, region of interest (ROI) selection, spectral analysis such as cluster-type image classification and automatic hypercube spectrum comparison by similarity criterion with similar ones from spectral libraries, and vice versa. The software deals with different kinds of spectral information in order to identify and distinguish spectrally unique materials. Also, the following advantages should be noted: fast and low memory hypercube manipulation features, user-friendly interface, modularity, and expandability.

  17. Toward high fidelity spectral sensing and RF signal processing in silicon photonic and nano-opto-mechanical platforms

    NASA Astrophysics Data System (ADS)

    Siddiqui, Aleem; Reinke, Charles; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter

    2017-05-01

    The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.

  18. A TALE OF TWO NARROW-LINE REGIONS: IONIZATION, KINEMATICS, AND SPECTRAL ENERGY DISTRIBUTIONS FOR A LOCAL PAIR OF MERGING OBSCURED ACTIVE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting

    2016-05-20

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (∼23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirmmore » the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton . These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”.« less

  19. Radiation heat transfer simulation in a window for a small particle solar receiver using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Whitmore, Alexander Jason

    Concentrating solar power systems are currently the predominant solar power technology for generating electricity at the utility scale. The central receiver system, which is a concentrating solar power system, uses a field of mirrors to concentrate solar radiation onto a receiver where a working fluid is heated to drive a turbine. Current central receiver systems operate on a Rankine cycle, which has a large demand for cooling water. This demand for water presents a challenge for the current central receiver systems as the ideal locations for solar power plants have arid climates. An alternative to the current receiver technology is the small particle receiver. The small particle receiver has the potential to produce working fluid temperatures suitable for use in a Brayton cycle which can be more efficient when pressurized to 0.5 MPa. Using a fused quartz window allows solar energy into the receiver while maintaining a pressurized small particle receiver. In this thesis, a detailed numerical investigation for a spectral, three dimensional, cylindrical glass window for a small particle receiver was performed. The window is 1.7 meters in diameter and 0.0254 meters thick. There are three Monte Carlo Ray Trace codes used within this research. The first MCRT code, MIRVAL, was developed by Sandia National Laboratory and modified by a fellow San Diego State University colleague Murat Mecit. This code produces the solar rays on the exterior surface of the window. The second MCRT code was developed by Steve Ruther and Pablo Del Campo. This code models the small particle receiver, which creates the infrared spectral direction flux on the interior surface of the window used in this work. The third MCRT, developed for this work, is used to model radiation heat transfer within the window itself and is coupled to an energy equation solver to produce a temperature distribution. The MCRT program provides a source term to the energy equation. This in turn, produces a new temperature field for the MCRT program; together the equations are solved iteratively. These iterations repeat until convergence is reached for a steady state temperature field. The energy equation was solved using a finite volume method. The window's thermal conductivity is modeled as a function of temperature. This thermal model is used to investigate the effects of different materials, receiver geometries, interior convection coefficients and exterior convection coefficients. To prevent devitrification and the ultimate failure of the window, the window needs to stay below the devitrification temperature of the material. In addition, the temperature gradients within the window need to be kept to a minimum to prevent thermal stresses. A San Diego State University colleague E-Fann Saung uses these temperature maps to insure that the mounting of the window does not produce thermal stresses which can cause cracking in the brittle fused quartz. The simulations in this thesis show that window temperatures are below the devitrification temperature of the window when there are cooling jets on both surfaces of the window. Natural convection on the exterior window surface was explored and it does not provide adequate cooling; therefore forced convection is required. Due to the low thermal conductivity of the window, the edge mounting thermal boundary condition has little effect on the maximum temperature of the window. The simulations also showed that the solar input flux absorbed less than 1% of the incoming radiation while the window absorbed closer to 20% of the infrared radiation emitted by the receiver. The main source of absorbed power in the window is located directly on the interior surface of the window where the infrared radiation is absorbed. The geometry of the receiver has a large impact on the amount of emitted power which reached the interior surface of the window, and using a conical shaped receiver dramatically reduced the receiver's infrared flux on the window. The importance of internal emission is explored within this research. Internal emission produces a more even emission field throughout the receiver than applying radiation surface emission only. Due to a majority of the infrared receiver re-radiation being absorbed right at the interior surface, the surface emission only approximation method produces lower maximum temperatures.

  20. Spectral Indices of Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su

    2015-01-01

    The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.

  1. Performance and Results from a Space Borne, Uncooled Microbolometer Array Spectral Radiometric Imager

    NASA Technical Reports Server (NTRS)

    Spinhirne, James M; Scott, V. Stan; Lancaster, Redgie S.; Manizade, Kathrine; Palm, Steven P.

    2000-01-01

    The Infrared Spectral Imaging Radiometer experiment was flown on a space shuttle mission as a shuttle hitchhiker experiment in August of 1997. The goals of the experiment were to test uncooled array detectors for infrared spectral imaging from space and to apply for the first time retrieval from space of brightness temperatures of cloud, land and sea along with direct laser measurements of cloud top height. The instrument operates in 3 narrow and one broad spectral band, all between 7 and 13 microns in either stare or time-delay and integration mode. The nominal spatial resolution was 1/4 kilometer. Using onboard calibrations along with periodic views of deep space, radiometric calibration of imagery was carried out and performance analyzed. The noise equivalent temperature difference and absolute accuracy reported here varied with operating mode, spectral band and scene temperature but were within requirements. This paper provides a description of the instrument, its operating modes, the method of brightness temperature retrieval, the method of spectral registration and results from the flight.

  2. A toy model that predicts the qualitative role of bar bend in a push jerk.

    PubMed

    Santos, Aaron; Meltzer, Norman E

    2009-11-01

    In this work, we describe a simple coarse-grained model of a barbell that can be used to determine the qualitative role of bar bend during a jerk. In simulations of this model, we observed a narrow time window during which the lifter can leverage the elasticity of the bar in order to lift the weight to a maximal height. This time window shifted to later times as the weight was increased. In addition, we found that the optimal time to initiate the drive was strongly correlated with the time at which the bar had reached a maximum upward velocity after recoiling. By isolating the effect of the bar, we obtained a generalized strategy for lifting heavy weight in the jerk.

  3. Distributed Bragg reflector tapered diode lasers emitting more than 10 W at 1154 nm

    NASA Astrophysics Data System (ADS)

    Feise, D.; Bugge, F.; Matalla, M.; Thies, A.; Ressel, P.; Blume, G.; Hofmann, J.; Paschke, K.

    2018-02-01

    Distributed Bragg reflector tapered diode lasers (DBR-TPL) emitting at 1154 nm are ideal light sources to be implemented into medical devices and hand-held tools for treatment in dermatology and ophthalmology at 577 nm due to their high spectral radiance enabling second harmonic generation from near infrared to yellow. In this work, we present DBR-TPLs which are able to emit more than 10 W in continuous-wave operation with a narrow spectral emission at 1154 nm and a very good beam quality providing excellent spectral radiance. The investigated DBRTPLs are based on three different epitaxial structures with varying vertical far field angles of 35°, 26°, and 17°. To optimize the coupling efficiency into non-linear crystals we studied DBR-TPL with a vertical far field angle of approx. 17° based on an asymmetrical super large optical cavity epitaxial structure. At a pump current of 18 A these devices are able to emit more than 9 W at 25°C and nearly 11 W at 10°C. The spectral emission is very narrow (ΔλFWHM = 18 pm) and single mode over the entire current range. While the beam quality factor M2 according to the 1/e2-level remains 1.1, the M2 according to second order moments deteriorates when the laser is pumped with higher currents. Therefore, the power content in the central lobe increases somewhat less rapidly than the total power.

  4. Scientific and Engineering Studies: Spectral Estimation

    DTIC Science & Technology

    1989-08-11

    PROBLEM SOLUTION Four different constrained problems will be addressed in this section: con- strained window duration L ; constrained equivalent...sm(frtp + C, ^ smk ) » 0. (B_18) (B-19) The simultaneous solution of (B-ll) and (B-18), with smallest *< , is then given by q =.?0n l^fi

  5. Cloud tolerance of remote sensing technologies to measure land surface temperature

    USDA-ARS?s Scientific Manuscript database

    Conventional means to estimate land surface temperature (LST) from space relies on the thermal infrared (TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave (MW) obse...

  6. Systemic Nicotine Increases Gain and Narrows Receptive Fields in A1 via Integrated Cortical and Subcortical Actions

    PubMed Central

    Intskirveli, Irakli

    2017-01-01

    Abstract Nicotine enhances sensory and cognitive processing via actions at nicotinic acetylcholine receptors (nAChRs), yet the precise circuit- and systems-level mechanisms remain unclear. In sensory cortex, nicotinic modulation of receptive fields (RFs) provides a model to probe mechanisms by which nAChRs regulate cortical circuits. Here, we examine RF modulation in mouse primary auditory cortex (A1) using a novel electrophysiological approach: current-source density (CSD) analysis of responses to tone-in-notched-noise (TINN) acoustic stimuli. TINN stimuli consist of a tone at the characteristic frequency (CF) of the recording site embedded within a white noise stimulus filtered to create a spectral “notch” of variable width centered on CF. Systemic nicotine (2.1 mg/kg) enhanced responses to the CF tone and to narrow-notch stimuli, yet reduced the response to wider-notch stimuli, indicating increased response gain within a narrowed RF. Subsequent manipulations showed that modulation of cortical RFs by systemic nicotine reflected effects at several levels in the auditory pathway: nicotine suppressed responses in the auditory midbrain and thalamus, with suppression increasing with spectral distance from CF so that RFs became narrower, and facilitated responses in the thalamocortical pathway, while nicotinic actions within A1 further contributed to both suppression and facilitation. Thus, multiple effects of systemic nicotine integrate along the ascending auditory pathway. These actions at nAChRs in cortical and subcortical circuits, which mimic effects of auditory attention, likely contribute to nicotinic enhancement of sensory and cognitive processing. PMID:28660244

  7. Systemic Nicotine Increases Gain and Narrows Receptive Fields in A1 via Integrated Cortical and Subcortical Actions.

    PubMed

    Askew, Caitlin; Intskirveli, Irakli; Metherate, Raju

    2017-01-01

    Nicotine enhances sensory and cognitive processing via actions at nicotinic acetylcholine receptors (nAChRs), yet the precise circuit- and systems-level mechanisms remain unclear. In sensory cortex, nicotinic modulation of receptive fields (RFs) provides a model to probe mechanisms by which nAChRs regulate cortical circuits. Here, we examine RF modulation in mouse primary auditory cortex (A1) using a novel electrophysiological approach: current-source density (CSD) analysis of responses to tone-in-notched-noise (TINN) acoustic stimuli. TINN stimuli consist of a tone at the characteristic frequency (CF) of the recording site embedded within a white noise stimulus filtered to create a spectral "notch" of variable width centered on CF. Systemic nicotine (2.1 mg/kg) enhanced responses to the CF tone and to narrow-notch stimuli, yet reduced the response to wider-notch stimuli, indicating increased response gain within a narrowed RF. Subsequent manipulations showed that modulation of cortical RFs by systemic nicotine reflected effects at several levels in the auditory pathway: nicotine suppressed responses in the auditory midbrain and thalamus, with suppression increasing with spectral distance from CF so that RFs became narrower, and facilitated responses in the thalamocortical pathway, while nicotinic actions within A1 further contributed to both suppression and facilitation. Thus, multiple effects of systemic nicotine integrate along the ascending auditory pathway. These actions at nAChRs in cortical and subcortical circuits, which mimic effects of auditory attention, likely contribute to nicotinic enhancement of sensory and cognitive processing.

  8. RATIO_TOOL - SOFTWARE FOR COMPUTING IMAGE RATIOS

    NASA Technical Reports Server (NTRS)

    Yates, G. L.

    1994-01-01

    Geological studies analyze spectral data in order to gain information on surface materials. RATIO_TOOL is an interactive program for viewing and analyzing large multispectral image data sets that have been created by an imaging spectrometer. While the standard approach to classification of multispectral data is to match the spectrum for each input pixel against a library of known mineral spectra, RATIO_TOOL uses ratios of spectral bands in order to spot significant areas of interest within a multispectral image. Each image band can be viewed iteratively, or a selected image band of the data set can be requested and displayed. When the image ratios are computed, the result is displayed as a gray scale image. At this point a histogram option helps in viewing the distribution of values. A thresholding option can then be used to segment the ratio image result into two to four classes. The segmented image is then color coded to indicate threshold classes and displayed alongside the gray scale image. RATIO_TOOL is written in C language for Sun series computers running SunOS 4.0 and later. It requires the XView toolkit and the OpenWindows window manager (version 2.0 or 3.0). The XView toolkit is distributed with Open Windows. A color monitor is also required. The standard distribution medium for RATIO_TOOL is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation is included on the program media. RATIO_TOOL was developed in 1992 and is a copyrighted work with all copyright vested in NASA. Sun, SunOS, and OpenWindows are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.

  9. Systematic measurements of opacity dependence on temperature, density, and atomic number at stellar interior conditions

    NASA Astrophysics Data System (ADS)

    Nagayama, Taisuke

    2017-10-01

    Model predictions for iron opacity are notably different from measurements performed at matter conditions similar to the boundary between the solar radiation and convection zones. The calculated iron opacities have narrower spectral lines, weaker quasi-continuum at short wavelength, and deeper opacity windows than the measurements. If correct, these measurements help resolve a decade old problem in solar physics. A key question is therefore: What is responsible for the model-data discrepancy? The answer is complex because the experiments are challenging and opacity theories depend on multiple entangled physical processes such as the influence of completeness and accuracy of atomic states, line broadening, contributions from myriad transitions from excited states, and multi-photon absorption processes. To help determine the cause of this discrepancy, a systematic study of opacity variation with temperature, density, and atomic number is underway. Measurements of chromium, iron, and nickel opacities have been performed at two different temperatures and densities. The collection of measured opacities provides constraints on hypotheses to explain the discrepancy. We will discuss implications of measured opacities, experimental errors, and possible opacity model refinements. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  10. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki

    PubMed Central

    Horinouchi, Takeshi; Murakami, Shin-ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.

    2018-01-01

    The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet’s rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet’s night-side escapes to space at narrow spectral windows of near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low- to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide new challenges and clues to the dynamics of Venus’s atmospheric superrotation. PMID:29887914

  11. Application of wide selected-ion monitoring data-independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor

    PubMed Central

    Martin, Laetitia B. B.; Sherwood, Robert W.; Nicklay, Joshua J.; Yang, Yong; Muratore-Schroeder, Tara L.; Anderson, Elizabeth T.; Thannhauser, Theodore W.; Rose, Jocelyn K. C.; Zhang, Sheng

    2017-01-01

    We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications. PMID:27089858

  12. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  13. Active spectral shaping with polarization-encoded Ti:sapphire amplifiers for sub-20 fs multi-terawatt systems

    NASA Astrophysics Data System (ADS)

    Cao, H.; Kalashnikov, M.; Osvay, K.; Khodakovskiy, N.; Nagymihaly, R. S.; Chvykov, V.

    2018-04-01

    A combination of a polarization-encoded (PE) and a conventional multi-pass amplifier was studied to overcome gain narrowing in the Ti:sapphire active medium. The seed spectrum was pre-shaped and blue-shifted during PE amplification and was then further broadened in a conventional, saturated multi-pass amplifier, resulting in an overall increase of the amplified bandwidth. Using this technique, seed pulses of 44 nm were amplified and simultaneously spectrally broadened to 57 nm without the use of passive spectral corrections. The amplified pulse after the PE amplifier was recompressed to 19 fs. The supported simulations confirm all aspects of experimental operation.

  14. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  15. The demodulated band transform

    PubMed Central

    Kovach, Christopher K.; Gander, Phillip E.

    2016-01-01

    Background Windowed Fourier decompositions (WFD) are widely used in measuring stationary and non-stationary spectral phenomena and in describing pairwise relationships among multiple signals. Although a variety of WFDs see frequent application in electrophysiological research, including the short-time Fourier transform, continuous wavelets, band-pass filtering and multitaper-based approaches, each carries certain drawbacks related to computational efficiency and spectral leakage. This work surveys the advantages of a WFD not previously applied in electrophysiological settings. New Methods A computationally efficient form of complex demodulation, the demodulated band transform (DBT), is described. Results DBT is shown to provide an efficient approach to spectral estimation with minimal susceptibility to spectral leakage. In addition, it lends itself well to adaptive filtering of non-stationary narrowband noise. Comparison with existing methods A detailed comparison with alternative WFDs is offered, with an emphasis on the relationship between DBT and Thomson's multitaper. DBT is shown to perform favorably in combining computational efficiency with minimal introduction of spectral leakage. Conclusion DBT is ideally suited to efficient estimation of both stationary and non-stationary spectral and cross-spectral statistics with minimal susceptibility to spectral leakage. These qualities are broadly desirable in many settings. PMID:26711370

  16. Advances in Raman Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.

  17. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer.

    PubMed

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-20

    This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0  μϵ to 12,000  μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12  pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.

  18. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    USGS Publications Warehouse

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  19. Single cell analysis using surface enhanced Raman scattering (SERS) tags

    PubMed Central

    Nolan, John P.; Duggan, Erika; Liu, Er; Condello, Danilo; Dave, Isha; Stoner, Samuel A.

    2013-01-01

    Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis. PMID:22498143

  20. Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.; Kim, Tae-Kuk

    1993-01-01

    Nongray gas radiation in a plane parallel slab bounded by gray, diffusely reflecting walls is studied using the discrete ordinates method. The spectral equation of transfer is averaged over a narrow wavenumber interval preserving the spectral correlation effect. The governing equations are derived by considering the history of multiple reflections between two reflecting wails. A closure approximation is applied so that only a finite number of reflections have to be explicitly included. The closure solutions express the physics of the problem to a very high degree and show relatively little error. Numerical solutions are obtained by applying a statistical narrow-band model for gas properties and a discrete ordinates code. The net radiative wail heat fluxes and the radiative source distributions are obtained for different temperature profiles. A zeroth-degree formulation, where no wall reflection is handled explicitly, is sufficient to predict the radiative transfer accurately for most cases considered, when compared with increasingly accurate solutions based on explicitly tracing a larger number of wail reflections without any closure approximation applied.

  1. LETTER TO THE EDITOR: Green emission and bandgap narrowing due to two-photon excitation in thin film CdS formed by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Schroeder, R.

    2001-08-01

    Thin (10 µm) film CdS on Pyrex® formed by spray pyrolysis is excited below the gap at 804 nm with 200 fs laser pulses at room temperature. Excitation intensities up to 250 GW cm-2 evoke green bandgap emission due to two-photon transitions. This two-photon photoluminescence does not show a red emission contribution in contrast to the single-photon excited emission, which is dominated by broad emission in the red spectral range. It is demonstrated that two-photon excitation causes photo-induced bandgap narrowing due to Debye screening. At 250 GW cm-2 bandgap narrowing of 47 meV is observed, which corresponds to an excited electron density of 1.6×1018 cm-3.

  2. Derivative Analysis of AVIRIS Data for Crop Stress Detection

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Carter, Gregory A.; Berglund, Judith

    2003-01-01

    Low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery of a cornfield in Nebraska was used to determine whether derivative analysis methods provided enhanced plant stress detection compared with narrow-band ratios. The field was divided into 20 plots representing 4 replicates each of 5 nitrogen (N) fertilization treatments that ranged from 0 to 200 kg N/ha in 50 kg/ha increments. The imagery yielded a 3 m ground pixel size for 224 spectral bands. Derivative analysis provided no advantage in stress detection compared with the performance of narrow-band indices derived from the literature. This result was attributed to a high leaf area index at the time of overflight (LAI approx. equal to 5 to 6t) and the high signal-to-noise character of the narrow AVIRIS bands.

  3. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry.

    PubMed

    Brocks, Jochen J; Banfield, Jillian

    2009-08-01

    Our window into the Earth's ancient microbial past is narrow and obscured by missing data. However, we can glean information about ancient microbial ecosystems using fossil lipids (biomarkers) that are extracted from billion-year-old sedimentary rocks. In this Opinion article, we describe how environmental genomics and related methodologies will give molecular fossil research a boost, by increasing our knowledge about how evolutionary innovations in microorganisms have changed the surface of planet Earth.

  4. Management of Temporal Constraints for Factory Scheduling.

    DTIC Science & Technology

    1987-06-01

    consistency of scheduling decisions were implemented in both the ISIS [Fox 84] and SOJA [LePape 85a] scheduling systems. More recent work with the...kinds of time propagation systems: the symbolic and the numeric ones. Symbolic systems combine relationships with a temporal logic a la Allen [Allen 81...maintains consistency by narrowing time windows associated with activities as decisions are made, and SOJA [LePape 85b] guarantees a schedule’s

  5. Propagation of spectral characterization errors of imaging spectrometers at level-1 and its correction within a level-2 recalibration scheme

    NASA Astrophysics Data System (ADS)

    Vicent, Jorge; Alonso, Luis; Sabater, Neus; Miesch, Christophe; Kraft, Stefan; Moreno, Jose

    2015-09-01

    The uncertainties in the knowledge of the Instrument Spectral Response Function (ISRF), barycenter of the spectral channels and bandwidth / spectral sampling (spectral resolution) are important error sources in the processing of satellite imaging spectrometers within narrow atmospheric absorption bands. The exhaustive laboratory spectral characterization is a costly engineering process that differs from the instrument configuration in-flight given the harsh space environment and harmful launching phase. The retrieval schemes at Level-2 commonly assume a Gaussian ISRF, leading to uncorrected spectral stray-light effects and wrong characterization and correction of the spectral shift and smile. These effects produce inaccurate atmospherically corrected data and are propagated to the final Level-2 mission products. Within ESA's FLEX satellite mission activities, the impact of the ISRF knowledge error and spectral calibration at Level-1 products and its propagation to Level-2 retrieved chlorophyll fluorescence has been analyzed. A spectral recalibration scheme has been implemented at Level-2 reducing the errors in Level-1 products below the 10% error in retrieved fluorescence within the oxygen absorption bands enhancing the quality of the retrieved products. The work presented here shows how the minimization of the spectral calibration errors requires an effort both for the laboratory characterization and for the implementation of specific algorithms at Level-2.

  6. Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.

    2013-03-01

    Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.

  7. Field-Sensitive Materials for Optical Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Little, Mark

    2002-01-01

    The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.

  8. Real time standoff gas detection and environmental monitoring with LWIR hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis

    2012-10-01

    MR-i is a dual band Hyperspectral Imaging Spectro-radiometer. This field instrument generates spectral datacubes in the MWIR and LWIR. MR-i is modular and can be configured in different ways. One of its configurations is optimized for the standoff measurements of gases in differential mode. In this mode, the instrument is equipped with a dual-input telescope to perform optical background subtraction. The resulting signal is the differential between the spectral radiance entering each input port. With that method, the signal from the background is automatically removed from the signal of the target of interest. The spectral range of this configuration extends in the VLWIR (cut-off near 14 μm) to take full advantage of the LW atmospheric window.

  9. A portable spectrometer for use from 5 to 15 micrometers

    NASA Technical Reports Server (NTRS)

    Hoover, G.; Kahle, A. B.

    1986-01-01

    A field portable spectrometer suitable for collecting data relevant to remote sensing applications in the 8 to 12 micrometer atmospheric window has been built at the Jet Propulsion Laboratory. The instrument employs a single cooled HgCdTe detector and a continuously variable filter wheel analyzer. The spectral range covered is 5 to 14.5 micrometers and the resolution is approximately 1.5 percent of the wavelength. A description of the hardware is followed by a discussion of the analysis of the spectral data leading to finished emissivity and radiance spectra. A section is devoted to the evaluation of the instrument performance with respect to spectral resolution, radiometric precision, and accuracy. Several examples of spectra acquired in the field are included.

  10. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    NASA Astrophysics Data System (ADS)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the absorption and fluorescence. The optimum resolution of the fluorescent image is predicted by simulation. Radiation trapping is also shown to be useful for the generation of ultra-narrow linewidth light from an atomic vapor flash lamp. A 2 nanosecond, high voltage pulse is used to excite low pressure mercury vapor mixed with noble gases, producing high intensity emission at the mercury resonant line at 253.7 nm. With a nanosecond pumping time and high electrical current, the radiation intensity of the mercury discharge is increased significantly compared to a normal glow discharge lamp, while simultaneously suppressing the formation of an arc discharge. By avoiding the arc discharge, discrete spectral lines of mercury were kept at narrow bandwidth. Due to radiation trapping, the emission linewidth from the nanosecond mercury lamp decreases with time and produces ultra-narrow linewidth emission 100 ns after of the excitation, this linewidth is verified by absorption measurements through low pressure mercury absorption filter. The lamp is used along with mercury absorption filters for spectroscopic applications, including Filtered Rayleigh Scattering with different CO2 pressures and Raman scattering from methanol.

  11. Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion

    NASA Astrophysics Data System (ADS)

    Mu, Hongqian; Wang, Muguang; Tang, Yu; Zhang, Jing; Jian, Shuisheng

    2018-03-01

    A novel scheme for the generation of FCC-compliant UWB pulse is proposed based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. The modified Gaussian quadruplet is synthesized based on linear sum of a broad Gaussian pulse and two narrow Gaussian pulses with the same pulse-width and amplitude peak. Within specific parameter range, FCC-compliant UWB with spectral power efficiency of higher than 39.9% can be achieved. In order to realize the designed waveform, a UWB generator based on spectral shaping and incoherent wavelength-to-time mapping is proposed. The spectral shaper is composed of a Gaussian filter and a programmable filter. Single-mode fiber functions as both dispersion device and transmission medium. Balanced photodetection is employed to combine linearly the broad Gaussian pulse and two narrow Gaussian pulses, and at same time to suppress pulse pedestals that result in low-frequency components. The proposed UWB generator can be reconfigured for UWB doublet by operating the programmable filter as a single-band Gaussian filter. The feasibility of proposed UWB generator is demonstrated experimentally. Measured UWB pulses match well with simulation results. FCC-compliant quadruplet with 10-dB bandwidth of 6.88-GHz, fractional bandwidth of 106.8% and power efficiency of 51% is achieved.

  12. Forest tree species discrimination in western Himalaya using EO-1 Hyperion

    NASA Astrophysics Data System (ADS)

    George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.

    2014-05-01

    The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.

  13. Spectral Coefficient Analyses of Word-Initial Stop Consonant Productions Suggest Similar Anticipatory Coarticulation for Stuttering and Nonstuttering Adults.

    PubMed

    Maruthy, Santosh; Feng, Yongqiang; Max, Ludo

    2018-03-01

    A longstanding hypothesis about the sensorimotor mechanisms underlying stuttering suggests that stuttered speech dysfluencies result from a lack of coarticulation. Formant-based measures of either the stuttered or fluent speech of children and adults who stutter have generally failed to obtain compelling evidence in support of the hypothesis that these individuals differ in the timing or degree of coarticulation. Here, we used a sensitive acoustic technique-spectral coefficient analyses-that allowed us to compare stuttering and nonstuttering speakers with regard to vowel-dependent anticipatory influences as early as the onset burst of a preceding voiceless stop consonant. Eight adults who stutter and eight matched adults who do not stutter produced C 1 VC 2 words, and the first four spectral coefficients were calculated for one analysis window centered on the burst of C 1 and two subsequent windows covering the beginning of the aspiration phase. Findings confirmed that the combined use of four spectral coefficients is an effective method for detecting the anticipatory influence of a vowel on the initial burst of a preceding voiceless stop consonant. However, the observed patterns of anticipatory coarticulation showed no statistically significant differences, or trends toward such differences, between the stuttering and nonstuttering groups. Combining the present results for fluent speech in one given phonetic context with prior findings from both stuttered and fluent speech in a variety of other contexts, we conclude that there is currently no support for the hypothesis that the fluent speech of individuals who stutter is characterized by limited coarticulation.

  14. A three-dimensional QP imaging of the shallowest subsurface of Campi Flegrei offshore caldera, southern Italy

    NASA Astrophysics Data System (ADS)

    Serlenga, Vincenzo; de Lorenzo, Salvatore; Russo, Guido; Amoroso, Ortensia; Virieux, Jean; Garambois, Stephane; Zollo, Aldo

    2017-04-01

    We build a three-dimensional attenuation image of the shallowest subsurface of Campi Flegrei caldera, a resurgent caldera located 15 km west of Naples, southern Italy. Extracting tstar (t*) measurements from an active seismic dataset can be achieved by a spectral ratio method which has been intensively used for earthquakes. The applicability of such measurement has to be validated for active seismic datasets which have a narrower frequency band compared to frequency band of quakes. The validation, as well as the robustness, of such extraction for narrow Ricker source wavelet has been checked through many synthetic and realistic tests. These tests allow us to conclude that this measurement is valid as long as 1) short signal time window are chosen to perform the spectral analysis; 2) the effects caused by heterogeneities of the sampled medium on the seismic spectra have to be taken into account in the description of elastic Green's function. Through such a deconvolution strategy, contributions of the fine velocity structure on signal amplitudes have been significantly removed: in case of suspicious behavior of the spectrum ratio, the measurement is disregarded. This procedure, a kind of deconvolution of the phase propagation imprint, is expected to leave nearly untouched the attenuation signature of seismic traces we are interested in. Such refined measurement approach based on the spectral ratio method has been applied to the real active seismic SERAPIS database providing us a reasonable dataset of 11,873 differential t* measurements (dt*). These data are used for imaging anelastic properties of Campi Flegrei caldera through a linearized, iterative, damped attenuation tomography. Based on configuration of sources and receivers, an attenuating volume as large as 13 x 13 x 1.5 km3 has been imaged. The tomography, with a resolution of 1 km in the horizontal directions and 0.5 km in the vertical direction, allowed to image important features whose reliability has been assessed by means of a proper resolution study. Mainly, the off-shore part of Campi Flegrei caldera turns out to be characterized by an average QP about 70, interpreted as water-saturated volcanic and marine sediments. An arc-like, low-QP structure at 0.5-1 km depths well matches the buried rim of Campi Flegrei caldera, already imaged by previous geophysical investigation studies. The retrieved anelastic properties lead to interpret the rim of caldera as a densely fractured, fluid-saturated rock volume. Several high-QP bodies, overlapping submerged volcanic edifices as Miseno Bank and Pentapalummo Bank, are interpreted as the combination of consolidated volcanic materials and magma-cooled material. Finally, the spatial, heterogeneous distribution of high- and low-QP bodies in the inner caldera is correlated with low-VP values and may reflect either differences in the percentage of fluid saturation of sediments or the presence of vapor state fluids beneath fumarole manifestations.

  15. Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.

    2016-07-01

    The analysis of 34 cloudless fragments of Landsat 5, 7, and 8 images (1985-2014) on the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast has been performed. It is shown that bare soil surface on the RED-NIR plots derived from the images cannot be described in the form of a sector of spectral plane as it can be done for the NDVI values. The notion of spectral neighborhood of soil line (SNSL) is suggested. It is defined as the sum of points of the RED-NIR spectral space, which are characterized by spectral characteristics of the bare soil applied for constructing soil lines. The way of the SNSL separation along the line of the lowest concentration density of points on the RED-NIR spectral space is suggested. This line separates bare soil surface from vegetating plants. The SNSL has been applied to construct soil line (SL) for each of the 34 images and to delineate bare soil surface on them. Distances from the points with averaged RED-NIR coordinates to the SL have been calculated using the method of moving window. These distances can be referred to as averaged spectral deviations (ASDs). The calculations have been performed strictly for the SNSL areas. As a result, 34 maps of ASDs have been created. These maps contain ASD values for 6036 points of a grid used in the study. Then, the integral map of normalized ASD values has been built with due account for the number of points participating in the calculation (i.e., lying in the SNSL) within the moving window. The integral map of ASD values has been compared with four traditional soil maps on the studied territory. It is shown that this integral map can be interpreted in terms of soil taxa: the areas of seven soil subtypes (soddy moderately podzolic, soddy slightly podzolic, light gray forest. gray forest, dark gray forest, podzolized chernozems, and leached chernozems) belonging to three soil types (soddy-podzolic, gray forest, and chernozemic soils) can be delineated on it.

  16. An aqueous electrolyte of the widest potential window and its superior capability for capacitors.

    PubMed

    Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul

    2017-03-21

    A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO 2 and Fe 3 O 4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg -1 , which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts.

  17. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons.

    PubMed

    Huang, Congcong; Sun, Ting; Hulicova-Jurcakova, Denisa

    2013-12-01

    Phosphorus-rich carbons (PCs) were prepared by phosphoric acid activation of waste coffee grounds in different impregnation ratios. PCs were characterized by nitrogen and carbon dioxide adsorption and X-ray photoelectron spectroscopy. The results indicate that the activation step not only creates a porous structure, but also introduces various phosphorus and oxygen functional groups to the surface of carbons. As evidenced by cyclic voltammetry, galvanostatic charge/discharge, and wide potential window tests, a supercapacitor constructed from PC-2 (impregnation ratio of 2), with the highest phosphorus content, can operate very stably in 1 M H2 SO4 at 1.5 V with only 18 % degradation after 10 000 cycles at a current density of 5 A g(-1) . Due to the wide electrochemical window, a supercapacitor assembled with PC-2 has a high energy density of 15 Wh kg(-1) at a power density of 75 W kg(-1) . The possibility of widening the potential window above the theoretical potential for the decomposition of water is attributed to reversible electrochemical hydrogen storage in narrow micropores and the positive effect of phosphorus-rich functional groups, particularly the polyphosphates on the carbon surface. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An aqueous electrolyte of the widest potential window and its superior capability for capacitors

    PubMed Central

    Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul

    2017-01-01

    A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO2 and Fe3O4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg−1, which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts. PMID:28322349

  19. The Relationship of Red and Photographic Infrared Spectral Data to Grain Yield Variation Within a Winter Wheat Field

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1979-01-01

    Two band hand-held radiometer data from a winter wheat field, collected on 21 dates during the spring growing season, were correlated within field final grain yield. Significant linear relationships were found between various combinations of the red and photographic infrared radiance data collected and the grain yield. The spectral data explained approximately 64 percent of the within field grain yield variation. This variation in grain yield could not be explained using meteorological data as these were similar for all areas of the wheat field. Most importantly, data collected early in the spring were highly correlated with grain yield, a five week time window existed from stem elongation through antheses in which the spectral data were most highly correlated with grain yield, and manifestations of wheat canopy water stress were readily apparent in the spectral data.

  20. The Micro Fourier Transform Interferometer (muFTIR) - A New Field Spectrometer for Acquisition of Infrared Data of Natural Surfaces

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.

    1995-01-01

    A lightweight, rugged, high-spectral-resolution interferometer has been built by Designs and Prototypes based on a set of specifications provided by the Jet Propulsion Laboratory and Dr. J. W. Salisbury (Johns Hopkins University). The instrument, the micro Fourier Transform Interferometer (mFTIR), permits the acquisition of infrared spectra of natural surfaces. Such data can be used to validate low and high spectral resolution data acquired remotely from aircraft and spacecraft in the 3-5 mm and 8-14 mm atmospheric window. The instrument has a spectral resolutions of 6 wavenumbers, weighs 16 kg including batteries and computer, and can be operated easily by two people in the field. Laboratory analysis indicates the instrument is spectrally calibrated to better than 1 wavenumber and the radiometric accuracy is <0.5 K if the radiances from the blackbodies used for calibration bracket the radiance from the sample.

  1. a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.

    2018-04-01

    Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.

  2. UV exposure in cars.

    PubMed

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  3. SCDU (Spectral Calibration Development Unit) Testbed Narrow Angle Astrometric Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Wehmeier, Udo J.; Weilert, Mark A.; Werne, Thomas A.; Wu, Janet P.; Zhai, Chengxing

    2010-01-01

    The most stringent astrometric performance requirements on NASA's SIM(Space Interferometer Mission)-Lite mission will come from the so-called Narrow-Angle (NA) observing scenario, aimed at finding Earth-like exoplanets, where the interferometer chops between the target star and several nearby reference stars multiple times over the course of a single visit. Previously, about 20 pm NA error with various shifts was reported. Since then, investigation has been under way to understand the mechanisms that give rise to these shifts. In this paper we report our findings, the adopted mitigation strategies, and the resulting testbed performance.

  4. Narrow Quasar Absorption Lines and the History of the Universe

    NASA Astrophysics Data System (ADS)

    Liebscher, Dierck-Ekkehard

    In order to get an estimation of the parameters of the cosmological model the statistics of narrow absorption lines in quasar spectra is evaluated. To this end a phenomenological model of the evolution of the corresponding absorbers in density, size, number and dimension is presented and compared with the observed evolution in the spectral density of the lines and their column density seen in the equivalent width. In spite of the wide range of possible models, the Einstein-deSitter model is shown to be unlikely because of the implied fast evolution in mass.

  5. Fiber Bragg grating inscription in optical multicore fibers

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut

    2015-09-01

    Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.

  6. An algorithm for spatial heirarchy clustering

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Velasco, F. R. D.

    1981-01-01

    A method for utilizing both spectral and spatial redundancy in compacting and preclassifying images is presented. In multispectral satellite images, a high correlation exists between neighboring image points which tend to occupy dense and restricted regions of the feature space. The image is divided into windows of the same size where the clustering is made. The classes obtained in several neighboring windows are clustered, and then again successively clustered until only one region corresponding to the whole image is obtained. By employing this algorithm only a few points are considered in each clustering, thus reducing computational effort. The method is illustrated as applied to LANDSAT images.

  7. Tailoring mode interference in plasmon-induced transparency metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Yang, Quanlong; Xu, Quan; Chen, Xieyu; Tian, Zhen; Gu, Jianqiang; Ouyang, Chunmei; Zhang, Xueqian; Han, Jiaguang; Zhang, Weili

    2018-05-01

    We proposed an approach to tailor the mode interference effect in plasmon-induced transparency (PIT) metamaterials. Through introducing an extra coupling mode using an asymmetric structure configuration at terahertz (THz) frequencies, the well-known single-transparency-window PIT can be switched to dual-transparency-window PIT. Proof-of-concept subwavelength structures were fabricated and experimentally characterized. The measured results are in good agreement with the simulations, and well support our theoretical analysis. The presented research delivers a novel approach toward developing subwavelength devices with varies functionalities, such as ultra-slow group velocities, longitudinal pulse compression and light storage in the THz regime, which can also be extended to other spectral regimes.

  8. Soft X-ray microscope with nanometer spatial resolution and its applications

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Wegrzynski, L.; Fok, T.; Patron, Z.; Fiedorowicz, H.

    2016-12-01

    A compact size microscope based on nitrogen double stream gas puff target soft X-ray source, which emits radiation in water-window spectral range at the wavelength of λ = 2.88 nm is presented. The microscope employs ellipsoidal grazing incidence condenser mirror for sample illumination and silicon nitride Fresnel zone plate objective for object magnification and imaging. The microscope is capable of capturing water-window images of objects with 60 nm spatial resolution and exposure time as low as a few seconds. Details about the microscopy system as well as some examples of different applications from various fields of science, are presented and discussed.

  9. All-fibre optical gating system for measuring a complex-shaped periodic broadband signal with picosecond resolution in a nanosecond time window

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.

    2018-04-01

    We have developed an optical gating system for continuously monitoring a complex-shaped periodic optical signal with picosecond resolution in a nanosecond time window using an all-fibre optical gate in the form of a nonlinear loop mirror and a passively mode-locked femtosecond laser. The distinctive features of the system are the possibility of characterizing signals with a very large spectral bandwidth, the possibility of using a gating pulse source with a wavelength falling in the band of the signal under study and its all-fibre design with the use of standard fibres and telecom components.

  10. Solar Transparent Radiators by Optical Nanoantennas.

    PubMed

    Jönsson, Gustav; Tordera, Daniel; Pakizeh, Tavakol; Jaysankar, Manoj; Miljkovic, Vladimir; Tong, Lianming; Jonsson, Magnus P; Dmitriev, Alexandre

    2017-11-08

    Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces.

  11. Seismic spectral decomposition and analysis based on Wigner-Ville distribution for sandstone reservoir characterization in West Sichuan depression

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyang; Liu, Tianyou

    2010-06-01

    Reflections from a hydrocarbon-saturated zone are generally expected to have a tendency to be low frequency. Previous work has shown the application of seismic spectral decomposition for low-frequency shadow detection. In this paper, we further analyse the characteristics of spectral amplitude in fractured sandstone reservoirs with different fluid saturations using the Wigner-Ville distribution (WVD)-based method. We give a description of the geometric structure of cross-terms due to the bilinear nature of WVD and eliminate cross-terms using smoothed pseudo-WVD (SPWVD) with time- and frequency-independent Gaussian kernels as smoothing windows. SPWVD is finally applied to seismic data from West Sichuan depression. We focus our study on the comparison of SPWVD spectral amplitudes resulting from different fluid contents. It shows that prolific gas reservoirs feature higher peak spectral amplitude at higher peak frequency, which attenuate faster than low-quality gas reservoirs and dry or wet reservoirs. This can be regarded as a spectral attenuation signature for future exploration in the study area.

  12. Late Holocene climate variability from Lake Pupuke maar, Auckland, New Zealand

    NASA Astrophysics Data System (ADS)

    Striewski, B.; Shulmeister, J.; Augustinus, P. C.; Soderholm, J.

    2013-10-01

    Spectral analyses of quasi-annual organo-diatomaceous laminae couplets in an Auckland maar lake indicate brief (sub-decadal scale) episodes with strong spectral power and long periods of weak to no spectral power between c. 1700 to c. 550 cal. yr BP. Laminae couplet thickness appears to be a function of changes in wind flow over the basin, with enhanced wind flow deepening the mixing zone and providing additional nutrients for laminae formation. Aeolian dust from Australia amplifies the wind signal. Spectral signals in the high power episodes are focused in <4 years and 6-8 years windows. These are consistent with El Niño-Southern Oscillation (ENSO) periodicity. This climate system is known to play a major role in the modern Auckland climate whereby strongly negative (positive) ENSO are associated with enhanced (diminished) SW airflow over Auckland. ENSO events interact in the modern climate and the spectral results indicate that this is the case when spectral power is strong in the laminae. These results highlight strong but intermittent ENSO activity between 600 and 1400 cal. yr BP.

  13. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    PubMed Central

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide. PMID:28071681

  14. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    NASA Astrophysics Data System (ADS)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  15. Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.

    2017-01-01

    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.

  16. Compound windows of the Hénon-map

    NASA Astrophysics Data System (ADS)

    Lorenz, Edward N.

    2008-08-01

    For the two-parameter second-order Hénon map, the shapes and locations of the periodic windows-continua of parameter values for which solutions x0,x1,… can be stably periodic, embedded in larger regions where chaotic solutions or solutions of other periods prevail-are found by a random searching procedure and displayed graphically. Many windows have a typical shape, consisting of a central “body” from which four narrow “antennae” extend. Such windows, to be called compound windows, are often arranged in bands, to be called window streets, that are made up largely of small detected but poorly resolved compound windows. For each fundamental subwindow-the portion of a window where a fundamental period prevails-a stability measure U is introduced; where the solution is stable, |U|<1. Curves of constant U are found by numerical integration. Along one line in parameter space the Hénon-map reduces to the one-parameter first-order logistic map, and two antennae from each compound window intersect this line. The curves where U=1 and U=-1 that bound either antenna are close together within these intersections, but, as either curve with U=-1 leaves the line, it diverges from the curve where U=1, crosses the other curve where U=-1, and nears the other curve where U=1, forming another antenna. The region bounded by the numerically determined curves coincides with the subwindow as found by random searching. A fourth-degree equation for an idealized curve of constant U is established. Points in parameter space producing periodic solutions where x0=xm=0, for given values of m, are found to lie on Cantor sets of curves that closely fit the window streets. Points producing solutions where x0=xm=0 and satisfying a third condition, approximating the condition that xn be bounded as n→-∞, lie on curves, to be called street curves of order m, that approximate individual members of the Cantor set and individual window streets. Compound windows of period m+m‧ tend to occur near the intersections of street curves of orders m and m‧. Some exceptions to what appear to be fairly general results are noted. The exceptions render it difficult to establish general theorems.

  17. Effect of magnetic field on the optical properties of an inhomogeneously broadened multilevel Λ-system in Rb vapor

    NASA Astrophysics Data System (ADS)

    Kaur, Paramjit; Wasan, Ajay

    2017-03-01

    We present a theoretical model, using density matrix approach, to study the effect of external longitudinal and transverse magnetic fields on the optical properties of an inhomogeneously broadened multilevel Λ-system using the D2 line in 85Rb and 87Rb atoms. The presence of closely spaced multiple excited states causes asymmetry in the absorption and dispersion profiles. We observe a wide EIT window with a positive slope at the line center for a stationary atom. While for a moving atom, the linewidth of EIT window reduces and positive dispersion becomes steeper. When magnetic field is applied, our calculations show multiple EIT subwindows that are significantly narrower and shallow than single EIT window. The number of EIT subwindows depend on the orientation of the magnetic field. We also obtain multiple positive dispersive regions for subluminal propagation in the medium. The anomalous dispersion exists in between two subwindows showing the superluminal light propagation. Our theoretical analysis explain the experiments performed by Wei et al. [Phys. Rev. A 72, 023806 (2005)] and Iftiquar et al. [Phys. Rev. A 79, 013808 (2009)].

  18. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    NASA Astrophysics Data System (ADS)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  19. Absolute detector-based spectrally tunable radiant source using digital micromirror device and supercontinuum fiber laser.

    PubMed

    Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian

    2017-06-10

    High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.

  20. Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles

    PubMed Central

    Grewal, D S; Brar, G S; Jain, R; Grewal, S P S

    2011-01-01

    Purpose To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. Methods In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Results Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898–0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm3, ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4–10.0) and 0.11 (95% CI=0.03–0.4), respectively. Conclusions ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using SD-ASOCT for detecting narrow angles. PMID:21336254

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, P; Timmins, R; Wells, R G

    Dual isotope SPECT allows simultaneous measurement of two different tracers in vivo. With In111 (emission energies of 171keV and 245keV) and Tc99m (140keV), quantification of Tc99m is degraded by cross talk from the In111 photons that scatter and are detected at an energy corresponding to Tc99m. TEW uses counts recorded in two narrow windows surrounding the Tc99m primary window to estimate scatter. Iterative TEW corrects for the bias introduced into the TEW estimate resulting from un-scattered counts detected in the scatter windows. The contamination in the scatter windows is iteratively estimated and subtracted as a fraction of the scatter-corrected primarymore » window counts. The iterative TEW approach was validated with a small-animal SPECT/CT camera using a 2.5mL plastic container holding thoroughly mixed Tc99m/In111 activity fractions of 0.15, 0.28, 0.52, 0.99, 2.47 and 6.90. Dose calibrator measurements were the gold standard. Uncorrected for scatter, the Tc99m activity was over-estimated by as much as 80%. Unmodified TEW underestimated the Tc99m activity by 13%. With iterative TEW corrections applied in projection space, the Tc99m activity was estimated within 5% of truth across all activity fractions above 0.15. This is an improvement over the non-iterative TEW, which could not sufficiently correct for scatter in the 0.15 and 0.28 phantoms.« less

  2. Spectral analysis comparisons of Fourier-theory-based methods and minimum variance (Capon) methods

    NASA Astrophysics Data System (ADS)

    Garbanzo-Salas, Marcial; Hocking, Wayne. K.

    2015-09-01

    In recent years, adaptive (data dependent) methods have been introduced into many areas where Fourier spectral analysis has traditionally been used. Although the data-dependent methods are often advanced as being superior to Fourier methods, they do require some finesse in choosing the order of the relevant filters. In performing comparisons, we have found some concerns about the mappings, particularly when related to cases involving many spectral lines or even continuous spectral signals. Using numerical simulations, several comparisons between Fourier transform procedures and minimum variance method (MVM) have been performed. For multiple frequency signals, the MVM resolves most of the frequency content only for filters that have more degrees of freedom than the number of distinct spectral lines in the signal. In the case of Gaussian spectral approximation, MVM will always underestimate the width, and can misappropriate the location of spectral line in some circumstances. Large filters can be used to improve results with multiple frequency signals, but are computationally inefficient. Significant biases can occur when using MVM to study spectral information or echo power from the atmosphere. Artifacts and artificial narrowing of turbulent layers is one such impact.

  3. Options for reducing carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.; Price, Lynn

    1992-03-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of ``cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for U.S. buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefitted from energy conservation research and development (R&D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed.

  4. The NASA - Arc 10/20 micron camera

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Cooper, R.; Deutsch, L. K.; Mccreight, C.; Mckelvey, M.; Pendleton, Y. J.; Witteborn, F. C.; Yuen, L.; Mcmahon, T.; Werner, M. W.

    1994-01-01

    A new infrared camera (AIR Camera) has been developed at NASA - Ames Research Center for observations from ground-based telescopes. The heart of the camera is a Hughes 58 x 62 pixel Arsenic-doped Silicon detector array that has the spectral sensitivity range to allow observations in both the 10 and 20 micron atmospheric windows.

  5. The method for scanning reshaping the spectrum of chirped laser pulse based on the quadratic electro-optic effects

    NASA Astrophysics Data System (ADS)

    Ye, Rong; Yin, Ming; Wu, Xianyun; Tan, Hang

    2017-10-01

    T A new method for scanning reshaping the spectrum of chirped laser pulse based on quadratic electro-optic effects is proposed. The scanning reshaping scheme with a two-beam interference system is designed and the spectrum reshaping properties are analyzed theoretically. For the Gaussian chirped laser pulse with central wavelength λ0=800nm, nearly flat-topped spectral profiles with wider bandwidth is obtained with the proposed scanning reshaping method, which is beneficial to compensate for the gain narrowing effect in CPA and OPCPA. Further numerical simulations show that the reshaped spectrum is sensitive to the time-delay and deviation of the voltage applied to the crystal. In order to avoid narrowing or distorting the reshaped spectrum pointing to target, it is necessary to reduce the unfavorable deviations. With the rapid and wide applications of ultra-short laser pulse supported by some latter research results including photo-associative formation of ultra-cold molecules from ultra-cold atoms[1-3], laser-induced communications[4], capsule implosions on the National Ignition Facility(NIF)[5-6], the control of the temporal and spectral profiles of laser pulse is very important and urgently need to be addressed. Generally, the control of the pulse profiles depends on practical applications, ranging from femtosecond and picosecond to nanosecond. For instance, the basic shaping setup is a Fourier transform system for ultra-short laser pulse. The most important element is a spatially patterned mask which modulates the phase or amplitude, or sometimes the polarization after the pulse is decomposed into its constituent spectral components by usually a grating and a lens[7]. One of the generation techniques of ultra-short laser pulse is the chirped pulse amplifications(CPA), which brings a new era of development for high energy and high peak intensity ultra-short laser pulse, proposed by D. Strcik and G. Mourou from the chirping radar technology in microwave region since 1985[8]. The other generation technique of ultra-short pulse is the optical parametric chirped pulse amplification(OPCPA) invented by Dubietis et al. in 1992, which combined the respective superiorities of CPA and optical parametric amplification(OPA). However, there are disadvantages for the both technologies such as gain narrowing, gain saturation effects, and even spectrum shift. The first one among the three is the most significant which narrows the spectrum after amplification so that it limits the minimum durations of ultra-short laser pulse. This paper proposed a approach for scanning reshaping the spectrum of chirped laser pulse to compensate for the gain narrowing effect, according to the characteristics of the chirped laser pulse, i.e. the frequency varies with time linearly. The spectral characteristics of the scanning reshaping was analyzed quantitatively. Furthermore, the influence of the time-delay and deviation of the controlling voltage employed on the electro-optic crystal on the reshaped spectrum was also been discussed in detail.

  6. Estimation of sea surface temperature from remote sensing in the 11to 13-micron window region

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Kunde, V. G.; Dalu, G.

    1974-01-01

    The Nimbus 3 and 4 Iris spectral data in the 11- to 13-micron water vapor window region are analyzed to determine the sea surface temperature (SST). The high spectral resolution data of Iris are averaged over approximately 1-micron-wide intervals to simulate channels of a radiometer to measure the SST. In the present exploratory study, three such channels in the 775- to 960-per cm (12.9-10.5 micron) region are utilized to measure the SST over cloud-free oceans. However, two of these channels are sufficient in routine SST determination. The differential absorption properties of water vapor in the two channels make it possible to determine the water vapor absorption correction without detailed knowledge of the vertical profiles of temperature and water vapor. The feasibility of determining the SST is demonstrated globally with Nimbus 3 data, where cloud-free areas can be selected with the help of albedo data from the medium-resolution infrared radiometer experiment on board the same satellite. The SST derived from this technique agrees with the measurements made by ships to about 1 C.-

  7. PWV, Temperature and Wind Statistics at Sites Suitable For mm and Sub-mm Wavelengths Astronomy

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Travouillon, Tony; De Breuck, Carlos; Radford, Simon; Matsushita, Satoki; Pérez-Beaupuits, Juan P.

    2018-01-01

    Atmospheric water vapor is the main limiting factor of atmospheric transparency in the mm and sub-mm wavelength spectral windows. Thus, dry sites are needed for the installation and successful operation of radio astronomy observatories exploiting those spectral windows. Other parameters that play an important role in the mechanical response of radio telescopes exposed to the environmental conditions are: temperature, and in particular temperature gradients that induce thermal deformation of mechanical structures, as well as wind magnitude that induce pointing jitter affecting this way the required accuracy in the ability to point to a cosmic source during the observations. Temperature and wind are variables of special consideration when planning the installation and operations of large aperture radio telescopes. This work summarizes the statistics of precipitable water vapor (PWV), temperature and wind monitored at sites by the costal mountain range, as well as on t he west slope of the Andes mountain range in the region of Antofagasta, Chile. This information could prove useful for the planning of the Atacama Large-Aperture Submm/mm Telescope (AtLast).

  8. Spatial coherence measurements and x-ray holographic imaging using a laser-generated plasma x-ray source in the water window spectral region

    NASA Astrophysics Data System (ADS)

    Turcu, I. C. E.; Ross, I. N.; Schulz, M. S.; Daido, H.; Tallents, G. J.; Krishnan, J.; Dwivedi, L.; Hening, A.

    1993-06-01

    The properties of a coherent x-ray point source in the water window spectral region generated using a small commercially available KrF laser system focused onto a Mylar (essentially carbon) target have been measured. By operating the source in a low-pressure (approximately 20 Torr) nitrogen environment, the degree of monochromaticity was improved due to the nitrogen acting as an x-ray filter and relatively enhancing the radiation at a wavelength of 3.37 nm (C vi 1s-2p). X-ray pinhole camera images show a minimum source size of 12 μm. A Young's double slit coherence measurement gave fringe visibilities of approximately 62% for a slit separation of 10.5 μm at a distance of 31.7 cm from the source. To demonstrate the viability of the laser plasma as a source for coherent imaging applications a Gabor (in-line) hologram of two carbon fibers, of different sizes, was produced. The exposure time and the repetition rate was 2 min and 10 Hz, respectively.

  9. Spectral Analysis Tool 6.2 for Windows

    NASA Technical Reports Server (NTRS)

    Morgan, Feiming; Sue, Miles; Peng, Ted; Tan, Harry; Liang, Robert; Kinman, Peter

    2006-01-01

    Spectral Analysis Tool 6.2 is the latest version of a computer program that assists in analysis of interference between radio signals of the types most commonly used in Earth/spacecraft radio communications. [An earlier version was reported in Software for Analyzing Earth/Spacecraft Radio Interference (NPO-20422), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 52.] SAT 6.2 calculates signal spectra, bandwidths, and interference effects for several families of modulation schemes. Several types of filters can be modeled, and the program calculates and displays signal spectra after filtering by any of the modeled filters. The program accommodates two simultaneous signals: a desired signal and an interferer. The interference-to-signal power ratio can be calculated for the filtered desired and interfering signals. Bandwidth-occupancy and link-budget calculators are included for the user s convenience. SAT 6.2 has a new software structure and provides a new user interface that is both intuitive and convenient. SAT 6.2 incorporates multi-tasking, multi-threaded execution, virtual memory management, and a dynamic link library. SAT 6.2 is designed for use on 32- bit computers employing Microsoft Windows operating systems.

  10. Photomultiplier window materials under electron irradiation - Fluorescence and phosphorescence

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Pieper, G. F.; Bredekamp, J. H.

    1975-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation have been investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV-grade, optical-grade, and electron-irradiated samples of MgF2 and LiF, and of CaF2, BaF2, sapphire, fused silica, and UV-transmitting glasses were obtained over the 200-650-nm spectral range. Fluorescence yields were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively. Optical-grade MgF2 and LiF, as well as electron-irradiated UV-grade samples of these two materials, show enhanced fluorescence due to color-center formation and associated emission bands in the blue and red wavelength regions. Large variations in fluorescence intensities were found in UV-grade sapphire samples of different origins, particularly in the red end of the spectrum, presumably due to various amounts of chromium-ion content. Phosphorescence decay with time is best described by a sum of exponential terms, with time constants ranging from a few minutes to several days.

  11. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  12. Support Vector Data Description Model to Map Specific Land Cover with Optimal Parameters Determined from a Window-Based Validation Set.

    PubMed

    Zhang, Jinshui; Yuan, Zhoumiqi; Shuai, Guanyuan; Pan, Yaozhong; Zhu, Xiufang

    2017-04-26

    This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient ( C ) and kernel width ( s ), in mapping homogeneous specific land cover.

  13. Attosecond light sources in the water window

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu

    2018-02-01

    As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.

  14. Evaluation of Infrared Target Discrimination Algorithms.

    DTIC Science & Technology

    1983-04-01

    application of this work is embodied in a computer program called PALANTIR , which Ref. 2 also describes in some detail. From a given set of narrow band spectral...chan- nels PALANTIR chooses a prescribed number of channels, picking those that will provide the least error when used in connection with a minimum

  15. ARC-1985-AC85-0199-5

    NASA Image and Video Library

    1985-03-02

    Artist: Gebing Artist's conception of a newborne star, still hidden in visible light by the dust clouds within which it formed, shows matter in orbit around the rotating star. Such leftover debris may eventually form comets, planets, satellites, and asteroids. Material squeezed out by the formation process is thought to be ejected along the star's rotation axis in relatively narrow, high-velocity streams of matter. (ref: SIRTF borchure 'A Window on Cosmic Birth 1987) -- Milky Way with Black hole

  16. Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.; Gu, W.; Chen, W.

    2012-01-01

    We investigated thin film morphologies of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide, where the thermal alkyne/azide click reaction between the two components induced a disorder-to-order transition (DOT) of the copolymer. By controlling the composition of the neat copolymers and the mole ratio between the alkyne and azide groups, different microphase separated morphologies were achieved. At higher azide loading ratios, a perpendicular orientation of the microdomains was observed with wide accessible film thickness window. As less azide was incorporated, the microdomains have a stronger tendency to be parallel to the substrate, andmore » the film thickness window for perpendicular orientation also became narrower.« less

  17. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    PubMed

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  18. Atomistic simulations of CO2 and N2 within cage-type silica zeolites.

    PubMed

    Madison, Lindsey; Heitzer, Henry; Russell, Colin; Kohen, Daniela

    2011-03-01

    The behavior of CO(2) and N(2), both as single components and as binary mixtures, in two cage-type silica zeolites was studied using atomistic simulations. The zeolites considered, ITQ-3 and paradigm cage-type zeolite ZK4 (the all-silica analog of LTA), were chosen so that the principles illustrated can be generalized to other adsorbent/adsorbate systems with similar topology and types of interactions. N(2) was chosen both because of the potential uses of N(2)/CO(2) separations and because it differs from CO(2) most significantly in the magnitude of its Coulombic interactions with zeolites. Despite similarities between N(2) and CO(2) diffusion in other materials, we show here that the diffusion of CO(2) within cage-type zeolites is dominated by an energy barrier to diffusion located at the entrance to the narrow channels connecting larger cages. This barrier originates in Coulombic interactions between zeolites and CO(2)'s quadrupole and results in well-defined orientations for the diffusing molecules. Furthermore, CO(2)'s favorable electrostatic interactions with the zeolite framework result in preferential binding in the windows between cages. N(2)'s behavior, in contrast, is more consistent with that of molecules previously studied. Our analysis suggests that CO(2)'s behavior might be common for adsorbates with quadrupoles that interact strongly with a material that has narrow windows between cages.

  19. Fundamental resource dis/advantages, youth health and adult educational outcomes.

    PubMed

    Elman, Cheryl; Wray, Linda A; Xi, Juan

    2014-01-01

    Recent studies find lasting effects of poor youth health on educational attainment but use young samples and narrow life course windows of observation to explore outcomes. We apply a life course framework to three sets of Health and Retirement Study birth cohorts to examine early health status effects on education and skills attainment measured late in life. The older cohorts that we study were the earliest recipients of U.S. policies promoting continuing education through the GI Bill, community college expansions and new credentials such as the GED. We examine a wide range of outcomes but focus on GEDs, postsecondary school entry and adult human capital as job-related training. We find that older U.S. cohorts had considerable exposure to these forms of attainment and that the effects of youth health on them vary by outcome: health selection and ascription group effects are weak or fade, respectively, in outcomes associated with delayed or adult attainment. However, poorer health and social disadvantage in youth and barriers associated with ascription carry forward to limit attainment of key credentials such as diplomas and college degrees. We find that the human capital - health gradient is dynamic and that narrow windows of observation in existing studies miss much of it. National context also matters for studying health-education linkages over the life course. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Combining 7Li NMR field-cycling relaxometry and stimulated-echo experiments: a powerful approach to lithium ion dynamics in solid-state electrolytes.

    PubMed

    Graf, Magnus; Kresse, Benjamin; Privalov, Alexei F; Vogel, Michael

    2013-01-01

    We use (7)Li NMR to study lithium ion dynamics in a (Li2S)-(P2S5) glass. In particular, it is shown that a combination of (7)Li field-cycling relaxometry and (7)Li stimulated-echo experiments allows us to cover a time window extending over 10 orders of magnitude without any gaps. While the (7)Li stimulated-echo method proved suitable to measure correlation functions F2(t) of lithium ion dynamics in solids in recent years, we establish the (7)Li field-cycling technique as a versatile tool to ascertain the spectral density J2(ω) of the lithium ionic motion in this contribution. It is found that the dynamic range of (7)Li field-cycling relaxometry is 10(-9)-10(-5)s and, hence, it complements in an ideal way that of (7)Li stimulated-echo experiments, which amounts to 10(-5)-10(1)s. Transformations between time and frequency domains reveal that the field-cycling and stimulated-echo approaches yield results for the translational motion of the lithium ions that are consistent both with each other and with findings for the motional narrowing of (7)Li NMR spectra of the studied (Li2S)-(P2S5) glass. In the (7)Li field-cycling studies of the (Li2S)-(P2S5) glass, we observe the translational ionic motion at higher temperatures and the nearly constant loss at lower temperatures. For the former motion, the frequency dependence of the measured spectral density is well described by a Cole-Davidson function. For the latter phenomenon, which was considered as an universal phenomenon of disordered solids in the literature, we find an exponential temperature dependence. Copyright © 2013 Elsevier Inc. All rights reserved.

Top