Science.gov

Sample records for narrow-band tunable filter

  1. Narrow-Band WGM Optical Filters With Tunable FSRs

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Strekalov, Dmitry

    2007-01-01

    Optical resonators of the whispering-gallery-mode (WGM) type featuring DC-tunable free spectral ranges (FSRs) have been demonstrated. By making the FSR tunable, one makes it possible to adjust, during operation, the frequency of a microwave signal generated by an optoelectronic oscillator in which an WGM optical resonator is utilized as a narrow-band filter.

  2. Ultra-Narrow Band Tunable Filter

    DTIC Science & Technology

    2005-12-20

    the prototype system would require a design that would minimize the impact of cooler vibration on the filter. The cooler is nominally driven at 60 H-z...vibrations from an unbalanced cooler can be reduced in excess of 400x (26 dB) using the active vibration cancellation system (AVCS) that was developed...provide the RF feedback, and to build the system around a passively-balanced cooler , in order to complete delivery without further delays. We also had

  3. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the

  4. Narrow-band acousto-optic tunable filtering in a two-mode fiber.

    PubMed

    Ostling, D; Engan, H E

    1995-06-01

    We demonstrate an optical filter that utilizes acousto-optic coupling between the spatial modes that propagate in a two-mode elliptical-core fiber. The optical bandwidth at 1090 nm is 0.85 nm, which is in agreement with predictions based on measurement of differential group delay between the modes. The filter is slightly polarization dependent, with a 0.28-nm wavelength difference between the passband peaks for the two polarization eigenstates. The optical insertion loss is dominated by 2-4-dB bending loss in nonoptimized mode strippers, and the coupling loss is negligible. Full acousto-optic mode conversion was achieved at an 8-mW electrical input power to the acoustic transducer.

  5. Narrow-band tunable alexandrite laser with passive Q switching

    SciTech Connect

    Tyryshkin, I S; Ivanov, N A; Khulugurov, V M

    1998-06-30

    An alexandrite laser with a self-injection of narrow-band radiation into its cavity was developed. A Fabry - Perot interferometer and a diffraction grating were used as dispersive components in an additional cavity. The cavity was switched by an LiF crystal with F{sub 3}{sup -} colour centres. The laser generated a single pulse of {approx} 180 ns duration and of 1.5 mJ energy, and with a spectrum 5 x 10{sup -3} cm{sup -1} wide. The laser emitted in the spectral range 720 - 780 nm. (lasers, active media)

  6. Mechanical filtering for narrow-band hearing in the weta.

    PubMed

    Lomas, Kathryn; Montealegre-Z, Fernando; Parsons, Stuart; Field, Larry H; Robert, Daniel

    2011-03-01

    This paper constitutes a major attempt to associate tympanic deflections with the mechanoreceptor organ location in an acoustic insect. The New Zealand tree weta (Hemideina thoracica) has tympanal ears located on each of the prothoracic tibiae. The tympana exhibit a sclerotized oval plate, membranous processes bulging out from the tibial cuticle and many loosely suspended ripples. We used microscanning laser Doppler vibrometry to determine how such a tympanal membrane vibrates in response to sound and whether the sclerotized region plays a role in hearing. The tympanum displays a single resonance at the calling frequency of the male, an unusual example of an insect tympana acting as a narrow bandpass filter. Both tympana resonate in phase with the stimulus and with each other. Histological sections show that the tympanal area is divided into two distinct regions, as in other ensiferans. An oval plate lies in the middle of a thickened region and is surrounded by a transparent and uniformly thin region. It is hinged dorsally to the tympanal rim and thus resembles the model of a 'hinged flap'. The thickened region appears to act as a damping mass on the oscillation of the thin region, and vibration displacement is reduced in this area. The thinner area vibrates with higher amplitude, inducing mechanical pressure on the dorsal area adjacent to the crista acustica. We present a new model showing how the thickened region might confer a mechanical gain onto the activation of the crista acustica sensory neurons during the sound-induced oscillations.

  7. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): A Wavelength-Tunable Fiber-Coupled Narrow-Band Twin-Photon Source

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Fa; Liu, Bi-Heng; Fang, Bin; Huang, Yun-Feng; Guo, Guang-Can

    2009-07-01

    We present a wavelength-tunable narrow-band fiber-coupled source to generate correlated photon pairs at 539nm and 1550nm. Using a 10-mm PPLN crystal, we obtain more than 50mm tunable range near 1550nm. This source, given its spectral property and tunable property, is well suited for tasks in fiber-optic quantum communication and cryptography networks.

  8. Tunable narrow-band near-field thermal emitters based on resonant metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Jiayu; Liu, Baoan; Shen, Sheng

    2017-08-01

    In the near field, Planck's law of blackbody radiation breaks down, and radiative heat transfer can be enhanced by orders of magnitude when surface polaritons are supported by interacting materials. However, such thermal radiation enhancement is strongly material dependent, thus difficult to control. Here, we propose a metamaterial-based structure consisting of patterned doped silicon nanorods that exhibits tunable narrow-band thermal emission. Direct numerical simulation based on the Wiener chaos expansion (WCE) method is performed to accurately investigate the heat transfer mechanism of metamaterials in the near field. The fundamental principle of the WCE method is elucidated, and an algorithm for symmetric and periodic structures is discussed. Implementation of the WCE method with the finite-difference time-domain method using the discrete dipole approximation (DDA) is also addressed in this paper.

  9. Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities.

    PubMed

    Nakagawa, Wataru; Sun, Pang-Chen; Chen, Chyong-Hua; Fainman, Yeshaiahu

    2002-02-01

    We describe a novel approach to implementing wide-field-of-view narrow-band spectral filters, using an array of resonant nanocavities consisting of periodic defects in a two-dimensional three-material photonic-crystal nanostructure. We analyze the transmissivity of this type of filter for a range of wavelengths and in-plane incidence angles as a function of the defect's refractive index, the number of layers in the photonic-crystal reflectors, and the period of the defects and find that this structure diminishes the angular sensitivity of the resonance condition relative to that of a standard multilayer filter.

  10. Measuring large-scale structure with quasars in narrow-band filter surveys

    NASA Astrophysics Data System (ADS)

    Abramo, L. Raul; Strauss, Michael A.; Lima, Marcos; Hernández-Monteagudo, Carlos; Lazkoz, Ruth; Moles, Mariano; de Oliveira, Claudia Mendes; Sendra, Irene; Sodré, Laerte; Storchi-Bergmann, Thaisa

    2012-07-01

    We show that a large-area imaging survey using narrow-band filters could detect quasars in sufficiently high number densities, and with more than sufficient accuracy in their photometric redshifts, to turn them into suitable tracers of large-scale structure. If a narrow-band optical survey can detect objects as faint as i= 23, it could reach volumetric number densities as high as 10-4 h3 Mpc-3 (comoving) at z˜ 1.5. Such a catalogue would lead to precision measurements of the power spectrum up to z˜ 3-4. We also show that it is possible to employ quasars to measure baryon acoustic oscillations at high redshifts, where the uncertainties from redshift distortions and non-linearities are much smaller than at z≲ 1. As a concrete example we study the future impact of the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS), which is a narrow-band imaging survey in the optical over 1/5 of the unobscured sky with 42 filters of ˜100-Å full width at half-maximum. We show that J-PAS will be able to take advantage of the broad emission lines of quasars to deliver excellent photometric redshifts, σz≃ 0.002 (1 +z), for millions of objects.

  11. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Chen, Deyuan; Zhang, Gang; Wang, Juebin; Tao, Shangbin

    2016-03-01

    In this paper, a novel structure of super narrow band filter based on two-dimensional square lattice photonic crystals of silicon rods in air for 1.5 um communication is proposed and studied. COMSOL Multiphysics4.3b software is used to simulate the optical behavior of the filter. The filter consists of one point-defect-based resonator and two line-defect-based reflectors. The resonance frequency, transmission coefficient and quality factor are investigated by varying the parameters of the structure. In design, a silicon rod is removed to form the resonator; for the rows of rods above and below the resonator, a part of the rods are removed to form the reflectors. By optimizing the parameters of the filter, the quality factor and transmission coefficient of the filter at the resonance frequency of 2e14 Hz can reach 1330 and 0.953, respectively. The super narrow band filter can be integrated into optical circuit for its micron size. Also, it can be used for wavelength selection and noise filtering of optical amplifier in future communication application.

  12. A proposed interim improvement to the Tevatron beam position monitors with narrow band crystal filters

    SciTech Connect

    Cheng-Yang Tan

    2003-08-25

    Since the start of Run II, we have found that we are unable to reliably and accurately measure the beam position with the present BPM system during high energy physics (HEP). This problem can be traced back to the analogue frontend called the AM/PM module which has trouble handling coalesced beam, but works well with uncoalesced beam. In this paper, we propose a simple fix to the AM/PM module so that we can measure the beam position during HEP. The idea is to use narrow band crystal filters which ring when pinged by coalesced beam so that the AM/PM module is tricked into thinking that it is measuring uncoalesced beam.

  13. Narrow band wavelength selective filter using grating assisted single ring resonator

    SciTech Connect

    Prabhathan, P. Murukeshan, V. M.

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  14. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  15. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    SciTech Connect

    Piot, P.; Sun, Y. -E; Maxwell, T. J.; Ruan, J.; Lumpkin, A. H.; Rihaoui, M. M.; Thurman-Keup, R.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  16. Spectrophotometry: imaging with custom narrow-band filters and an automated data-reduction pipeline

    NASA Astrophysics Data System (ADS)

    Forde, Kieran P.; Butler, Raymond F.; Peat, David; Golden, Aaron; O'Tuairisg, Seathrun

    2005-06-01

    Abundance variations of carbon and nitrogen in globular star clusters provide astronomers with a means to determine a cluster's evolutionary past. Moreover, these clusters are so ancient (~13 billion years) and so well preserved that they provide an ideal diagnostic for the overall chemical history of the Milky Way Galaxy. Traditionally, spectroscopy is the preferred method to perform investigations into such theories. However, it is not without its drawbacks: spectroscopy can normally only be obtained star by star, and both large telescopes and a great deal of time is required to carry out research in this manner. As globular clusters are known to contain up to a million stars, studying each star individually would take too much time to return a true representative sample of the cluster stars. So, we opt instead for a spectrophotometric technique and a statistical approach to infer a cluster's composition variations. This has required the design and use of new custom narrow-band filters centered on the CH and CN molecular absorption bands or their adjacent continua. Two Galactic clusters (M71 & M92) with contrasting characteristics have been chosen for this study. In order to process this data a header-driven (i.e. automated) astronomical data-processing pipeline was developed for use with a family of CCD instruments known as the FOSCs. The advent of CCD detectors has allowed astronomers to generate large quantities of raw data on a nightly basis, but processing of this amount of data is extremely time and resource intensive. In our case the majority of our cluster data has been obtained using the BFOSC instrument on the 1.52m Cassini Telescope at Loiano, Italy. However, as there are a number of these FOSC instruments throughout the world, our pipeline can be easily adapted to suit any of them. The pipeline has been tested using various types of data ranging from brown dwarf stars to globular cluster images, with each new dataset providing us with new problems

  17. Development and applications of tunable, narrow band lasers and stimulated Raman scattering devices for atmospheric lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.

    1993-01-01

    The main thrust of the program was the study of stimulated Raman processes for application to atmospheric lidar measurements. This has involved the development of tunable lasers, the detailed study of stimulated Raman scattering, and the use of the Raman-shifted light for new measurements of molecular line strengths and line widths. The principal spectral region explored in this work was the visible and near-IR wavelengths between 500 nm and 1.5 microns. Recent alexandrite ring laser experiments are reported. The experiments involved diode injection-locking, Raman shifting, and frequency-doubling. The experiments succeeded in producing tunable light at 577 and 937 nm with line widths in the range 80-160 MHz.

  18. Theoretical modelling of tunable narrow band reflective spectrum using nanoscale surface plasmons

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lin, G. W.; Niu, Y. P.; Gong, S. Q.

    2017-04-01

    The spectrum width can be narrowed to a certain degree by decreasing the coupling strength for the two-level emitter coupled to the propagating surface plasmon. But the width can not be narrowed any further because of the loss of the photon out of the system by the spontaneous emission of the emitter. Here we accurately solve the single photon scattering problem for the surface plasmon coupling with a four-level tripod emitter, and propose a new scheme to obtain the reflective spectrum with tunable ultranarrow band. It is shown that the spectrum width can be narrowed avoiding the impact of the loss. Furthermore, the position of ultranarrow peak can be tunable by choosing the appropriate parameters.

  19. An ultra-narrow-band optical filter based on whispering-gallery-mode hybrid-microsphere-cavity

    NASA Astrophysics Data System (ADS)

    Wan, Hongdan; Zhu, Haohan; Liu, Linqian; Xu, Ji; Wang, Jin

    2016-10-01

    We demonstrate an ultra-narrow-band mode-selection method based on a hybrid-microsphere-cavity which consists of a coated silica microsphere. Optical field distribution and narrow-band transmission spectrum of the whispering gallery modes (WGM) are investigated by finite-difference time-domain method. WGM transmission spectra are measured for microsphere and tapered fibers with different diameters. A high refractive index layer coated on the microsphere-cavity make the Q factor increased, the transmission spectrum bandwidth compressed and the side-mode suppression ratio increased. Parameters of the hybrid-microsphere-cavity, namely, the coated shell thickness and its refractive index are optimized under different excitation light source as to investigate the whispering-gallery-modes' transmission spectrum. The 3dB bandwidth of the proposed filter can be less than MHz which will have great potential for applications in all-optical sensing and communication systems.

  20. The Least Mean Squares Adaptive FIR Filter for Narrow-Band RFI Suppression in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Głas, Dariusz

    2017-06-01

    Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.

  1. A narrow band-pass filter type Wilkinson power divider for I-Q demodulator in microwave interferometer system

    NASA Astrophysics Data System (ADS)

    Wang, X.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Ikezoe, R.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Ma, Z.; Sakagami, I.; Mase, A.

    2015-11-01

    I-Q (In-phase Quadrature) demodulator is one of key components in microwave interferometer system application. Normally, I-Q demodulator consists of amplifiers, mixers, 90 degree phase shifter, power divider and band-pass filters, and it is widely used in various microwave communication systems and measurement systems. In this paper, power divider and band-pass filters are newly designed as one single passive component, therefore, I-Q demodulator topology becomes simplified. The novel narrow band-pass filter type Wilkinson power divider not only provides extremely miniaturized circuit size, but also maintains the band-pass filter performance and power division function as well. One experimental circuit shows good agreement with the theoretical simulation.

  2. Thermal control design of the Lightning Mapper Sensor narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Flannery, Martin R.; Potter, John; Raab, Jeff R.; Manlief, Scott K.

    1992-01-01

    The performance of the Lightning Mapper Sensor is dependent on the temperature shifts of its narrowband spectral filter. To perform over a 10 degree FOV with an 0.8 nm bandwidth, the filter must be 15 cm in diameter and mounted externally to the telescope optics. The filter thermal control required a filter design optimized for minimum bandpass shift with temperature, a thermal analysis of substrate materials for maximum temperature uniformity, and a thermal radiation analysis to determine the parameter sensitivity of the radiation shield for the filter, the filter thermal recovery time after occultation, and heater power to maintain filter performance in the earth-staring geosynchronous environment.

  3. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  4. Development of narrow-band low-frequency active filters for DC railway vehicles

    SciTech Connect

    Weem, J. van der

    1994-12-31

    To avoid failures in the signalling systems of light-rail plants low frequency components of the line current may often not exceed specified limits. These limits are in the range of 0.1% of the line current. Presently the low frequency components are damped with passive filters. This paper proposes an active filter to reduce the low frequency components of the line current. A method for dimensioning a digital control algorithm for active filters, which are implemented in the railway vehicle, is presented. Time domain simulations are carried out. They predicted a good behaviour of the active filter for all kinds of vehicles and different realistic conditions. The active filter was realized with an IGBT-inverter and the filter algorithm was implemented in a microcontroller, to ensure a high flexibility. The measurements presented in this paper prove the validity of the simulations. 19 refs.

  5. A peak filtering method with improved transient response for narrow-band disturbance rejection in hard disk drives

    NASA Astrophysics Data System (ADS)

    Hong, Fan; Khiang Pang, Chee

    2014-02-01

    Peak filtering methods are commonly used in track-following control of hard disk drives (HDDs) to suppress narrow-band disturbances around a specific frequency. When there are significant plant dynamics within the bandwidth of the filter, the closed-loop system is prone to be unstable due to the lightly damped poles of the filter, as well as lightly damped poles of the plant. On the other hand, settling response of such peak filters during shock disturbances is slow, and increases tremendously with decreasing damping ratios. In this article, we present a novel design of peak filters with improved transient responses using a phase scheduling method in addition to varying gain and damping ratio. By doing so, the stability margin of the closed-loop systems during both transient stage and steady-state stage will be improved. The effectiveness of the proposed methodology is verified with extensive simulations and the proposed method is then applied in an integrative servo analysis platform to carry out a scaling exercise to evaluate and predict servo performance to support 10 Terabits/in2.

  6. Line Asymmetries and Vertical Velocities Observed with a Narrow-Band Filter

    DTIC Science & Technology

    1990-06-20

    dr,AMonrh, day) 1.PAGE COUNT Reprint FROM _ TO 1990 June 20 14 16 SUPPLEMENTARY NOTATION *Instituto di Astronomia , Firenze, Italy **National Solar... Astronomia , Firenze, Italy Peter Tamblyn and Larry November National Solar Observatory. Sacramento Peak, Sunspot, NM 88349, USA Abstract Fabry-Perot filter

  7. Narrow-band holographic optical filter using thick efficient holographic gratings

    NASA Astrophysics Data System (ADS)

    Billmers, Richard I.; Billmers, Elizabeth J.; Burzynski, Ryszard; Weibel, John F.; Heverley, L. H., III; Casstevens, Martin K.; Curran, Thomas P.; Contarino, V. Michael

    2002-06-01

    RL Associates in conjunction with Hybrid Technologies is developing a narrow linewidth optical filter employing extremely thick volume holographic diffraction gratings. The gratings are written in MEMPLEX, a new holographic materia invented by Laser Photonics Technology, Inc. and licensed to Hybrid Technologies. MEMPLEX has the following characteristics: (1) Excellent optical clarity, (2) Preparable at any thickness up to 10 mm, (3) Large dynamic range for plane wave holograms, (4) Hard, freestanding, stable, polishable and coatable. We have written and characterized numerous gratings in 1.8 mm thick samples to study the effect of writing geometry on the spectral linewidth and field-of-view of a single grating in the reflection geometry. We have succeeded in writing some very efficient gratings at 15 degrees internal write angles with external slant angles of 5 degrees. These gratings exhibit linewidths of < 0.2 nm and diffraction efficiencies of better than 70 percent. The measured angular acceptance of these gratings ranges from 0.1 to 0.24 degrees. We have also written some initial angle multiplexed gratings which include 3 efficient gratings in the same volume in an attempt to increase the angular acceptance. In this manner we hope to achieve a highly efficient optical filter with extremely narrow spectral linewidth and wide angular acceptance. Filters based on thick volume holograms show great promise in Lidar applications and should result in superior S/N ratios.

  8. Measurements of global UV irradiance at Terranova Bay, Antactica, by a home made narrow band filter radiometer

    NASA Astrophysics Data System (ADS)

    Salvatore, Scaglione; di Sarcina, Ilaria; Flori, Daniele; Menchini, Francesca

    2010-05-01

    Filter radiometers measure the solar radiation in several channels (typically 4 to 7) with a bandwith from 2 to 10 nm. They require less maintenance than the spectroradiometer and they are able to work in hostile environment as for instance the polar regions. The spectral resolution depends on the width at half maximum (FWHM) of the filters and is generally lower than the spectroradiometer resolution (0.5 nm). Other than the robustness of this instruments, the main advantage of the filter radiometers is the high frequency with which all wavelengths can be measured, making this class of instrument well suited for investigating short term irradiance variation. In this work is presented the results of UV irradiance measurements performed by a very narrow band (FWHM less than 1 nm) filter radiometer at Antarctica Italia Base, Mario Zucchelli Station, Terranova Bay, lat. 74° 41.6084' south and lon. 164° 05.9224' est. All-dielectric Fabry-Perot filters were manufactured in the laboratories of the Optical Coating Group, ENEA, by the ion beam assistance physical vapor deposition technique. Nine filters select nine different wavelengths in the UV spectral range from 296.5 nm to 377 nm with about 1 minute of measurement period, i.e. each wavelength is measured about 1250 times per day. At the moment the radiometer are permanently located near MZS and the data are daily downloaded in ENEA, Rome, by a dedicated satellite channel. During the Antarctica winter the radiometer will be in standby mode, in this season MZS is closed, and it will be start to measure again in the Antarctica spring.

  9. Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films

    SciTech Connect

    Awari, N.; Kovalev, S. E-mail: c.fowley@hzdr.de Fowley, C. E-mail: c.fowley@hzdr.de Green, B.; Yildirim, O.; Lindner, J.; Fassbender, J.; Deac, A. M.; Gensch, M.; Rode, K. E-mail: c.fowley@hzdr.de Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Coey, J. M. D.; Gallardo, R. A.

    2016-07-18

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  10. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    SciTech Connect

    Kapaev, V. V. Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.

    2013-03-15

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.

  11. FIBRE OPTICS: Narrow-band Bragg filters for the 1.5-μm spectral region based on polished-side single-mode silica fibres

    NASA Astrophysics Data System (ADS)

    Sokolov, Viktor I.; Khudobenko, A. I.

    2003-06-01

    Narrow-band reflecting filters for the telecommunication 1.5-μm wavelength region are fabricated. They consist of a single-mode silica fibre with a polished side and a periodic relief Bragg grating located in the region of the fibre-mode propagation. The filters have the reflectivity R > 98 % and an almost rectangular reflection band with a width of 0.58 — 0.78 nm. They can be used as elements of optical multiplexers/demultiplexers for combining and separating signals in high-speed multichannel fibreoptic communication lines.

  12. IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Kir'yanov, A. V.; Klimentov, S. M.; Powers, P. E.; Mel'nikov, I. V.; Korkishko, Y. N.

    2008-04-01

    We report a compact nanosecond source based on optical parametric generation in a periodically-poled Lithium Niobate slab pumped with a Nd3+:YAG/Cr4+:YAG microchip laser at the wavelength 1.064 μm and capable of generating a diffraction-limited beam widely tunable through the mid-IR. The device efficiency is shown to reach 30% at relatively low (units of μJs) pump pulse energy and its spectrum to be narrowed down to 0.2 nm using low-power CW seed provided by a DFB laser.

  13. Narrow-band 1, 2, 3, 4, 8, 16, 24, 32, 48, 64, and 96 cycles/360 degrees angular frequency filters.

    PubMed

    Simas, Maria Lúcia De Bustamante; Dos Santos, Natanael Antonio

    2006-11-01

    We measured human frequency response functions for eleven angular frequency filters using a forced-choice procedure in a supra-threshold summation paradigm. Each of the eleven functions of 17 experimental conditions was measured 4-9 times among 12 observers. Results show that, for the arbitrarily selected filter phases, maximum summation effect occurred at test frequency for all filters. These results lead to the conclusion that there are narrow-band angular frequency filters operating in human visual system mostly through summation surrounded by inhibition at the specific test frequency ranges. Our previous suggestion (Simas and Santos, 2002), arguing that summation for the higher angular frequency filters should occur if background angular frequency contrast were set to a maximum of 5 times the test frequency threshold, was supported.

  14. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  15. Narrow-band Filter Observations of the Red-Line Corona at the 29 March 2006 Eclipse

    NASA Astrophysics Data System (ADS)

    Rust, David M.; Noble, M. W.; Pasachoff, J. M.; Babcock, B. A.; Bruck, M. A.; Wittenmyer, R. A.

    2006-06-01

    We report on observations of the corona above active region NOAA 10866, which was on the solar east limb at S 06 on 29 March 2006. Filtergrams were obtained at six 0.22 Å steps across the profile of the Fe X line at 6374.5 Å during the total solar eclipse, starting at about 1052 UT. The telescope was a 35-cm Schmidt-Cassegrain Meade RCX400 with the solar image relayed to a 512 x 512-pixel Andor Ixon DV887 CCD camera via telecentric optics and two narrow-bandpass filters: (1) a 2 Å thin-film Andover Corp. blocker and (2) a 0.16 Å tunable Fabry-Perot etalon, made by the CSIRO Australian Centre for Precision Optics. The F-P etalon is a Y-cut lithium niobate wafer of 0.200-mm thickness coated with reflective and conductive thin-film layers. Application of a voltage to the etalon produces a passband shift of 0.0011 Å/volt. Calibration at the eclipse site in Kastellorizo, Greece, was maintained by reference to a WSTech thermo-electrically stabilized diode laser tuned to 6375.16 Å. The profile and Doppler shifts of the Fe X line will be discussed.The expedition was supported by NSF (ATM-0552116), the Committee for Research and Exploration of the National Geographic Society, NASA's Planetary Astronomy Division for the CCD cameras (NNG04GE48G), Sigma Xi, and the Rob Spring Fund and the Ryan Patrick Gaishin Fund at Williams College.

  16. Multilayer dielectric narrow band mangin mirror

    NASA Astrophysics Data System (ADS)

    Ahmed, K.; Khan, A. N.; Rauf, A.; Gul, A.

    2014-06-01

    The design of multilayer stack of dielectric films for narrow band mirror is developed using thin film coating software. The proposed design is materialized by employing thin film coating (PVD) method and reflectance in narrow band spectrum range is achieved. Thickness of high and low refractive index material is taken precisely up to nanometer level. The curved coated substrate is cemented with another K9 matching substrate that forms a Mangin mirror for wavelength 650nm. Narrow band mirrors with reflectivity more than 90% has been produced by properly stacking of 21 layers and advantage of the use of this type of mirror as an interference filter is discussed.

  17. Optically tunable optical filter

    NASA Astrophysics Data System (ADS)

    James, Robert T. B.; Wah, Christopher; Iizuka, Keigo; Shimotahira, Hiroshi

    1995-12-01

    We experimentally demonstrate an optically tunable optical filter that uses photorefractive barium titanate. With our filter we implement a spectrum analyzer at 632.8 nm with a resolution of 1.2 nm. We simulate a wavelength-division multiplexing system by separating two semiconductor laser diodes, at 1560 nm and 1578 nm, with the same filter. The filter has a bandwidth of 6.9 nm. We also use the same filter to take 2.5-nm-wide slices out of a 20-nm-wide superluminescent diode centered at 840 nm. As a result, we experimentally demonstrate a phenomenal tuning range from 632.8 to 1578 nm with a single filtering device.

  18. Narrow band fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements.

    PubMed

    Vann, Lelia B; DeYoung, Russell J; Mihailov, Stephen J; Lu, Ping; Grobnic, Dan; Walker, Robert

    2005-12-01

    A unique ultranarrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filter for atmospheric water vapor lidar measurements was designed, fabricated, and successfully tested. Customized optical fiber Bragg gratings were fabricated so that two transmission filter peaks occurred: one (89% transmission, 8 pm FWHM) near the 946-nm water vapor absorption line and the other peak (80% transmission, 4 pm FWHM) at a region of no absorption. Both transmission peaks were within a 2.66-nm stop band. Demonstration of tension tuning to the 946.0003-nm water vapor line was achieved, and the performance characterization of custom-made optical fiber Bragg grating filters are presented. These measurements are successfully compared to theoretical calculations using a piecewise-matrix form of the coupled-mode equations.

  19. Narrow-band multi-filter radiometer for total ozone content measurements: Mario Zucchelli Station (Antarctica) campaign.

    PubMed

    Scaglione, Salvatore; Zola, Danilo; Menchini, Francesca; Sarcina, Ilaria Di

    2017-02-01

    The importance of ground-based measurements of ultraviolet radiation has increased since the discovery of the stratospheric ozone layer depletion. Spectroradiometers are the most widely used class of instruments, although the requirement to work in attended stations is sometimes limiting. In this work we present a filter radiometer, named F-RAD, with good optical stability, very short sampling time (1 min), and proven reliability. The instrument is based on a stand-alone functioning, making it suitable for operation in hostile environments. The total ozone column (TOC) was estimated by the irradiance ratio at wavelengths where the ozone absorbs the solar radiation and where the radiation is not absorbed. Direct correlation between the TOC values estimated by F-RAD and by the Ozone Monitoring Instrument (OMI) was found, and the standard deviations of the ratios between such values were calculated. Three wavelength ratios were identified to take into account the dependence of the measurements from the Solar Zenith Angle, AF-RAD (306.0 nm/325.3 nm) for SZA<50°, BF-RAD (309.9 nm/325.3 nm) and CF-RAD (317.5 nm/325.3 nm) for SZA>50°. Considering the OMI ozone data as the reference values, the accuracy of the filter radiometer is estimated to be ±4%. The data collected during the calibration campaign in Lampedusa (June-July 2009, Italy) and during the first Antarctica winter of the 2009-2013 measurement campaign at Mario Zucchelli Station (MZS) are reported. The TOC measured by the F-RAD instrument, by the OMI on board of EOS-Aura satellite (NASA), and by the NOAA UV Monitoring Station in McMurdo (USA) are compared to assess the appropriateness of F-RAD for a long-term measurement campaign.

  20. Tunable Microwave Transversal Filters.

    DTIC Science & Technology

    1984-05-01

    GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER AFOSR-TR. 84-0977 S4. TI TLE (and Subtitle) 5. TYP ?FE&T&PEO OEE U!NABLE MICROWAVE TRANSVERSAL FILTERS...this goal through magnetostatic waves MSW propagating at microwave frequency in magnetically biased, liquid phase epitaxial films of yttrium iron...garnet (YIG) grown on gadolinium gallium garnet (GGG). This technology has a number of advantages; low loss (greater than 30db/usec at xband), tunable by

  1. Tunable, nondispersive optical filter using photonic Hilbert transformation.

    PubMed

    Bazargani, Hamed Pishvai; Fernández-Ruiz, María del Rosario; Azaña, José

    2014-09-01

    We propose and numerically demonstrate a new design concept for implementing nondispersive complementary (band-pass/band-reject) optical filters with a wide range of bandwidth tunability. The device consists of two photonic Hilbert transformers (PHTs) incorporated into a Michelson interferometer (MI). By controlling the central frequency of PHTs with respect to each other, both the central frequency and the spectral width of the rejection/pass bands of the filter are proved to be tunable. Bandwidth tuning from 260 MHz to 60 GHz is numerically demonstrated using two readily feasible fiber Bragg grating-based PHTs. The designed filter offers a high extinction ratio between the pass band and rejection band (>20  dB in the narrow-band filtering case) with a very sharp transition with a slope of 170  dB/GHz from rejection to pass band.

  2. Narrow band binary phase locked loops

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    Very high Q digital filtering circuits for audio frequencies in the range of 1Hz to 15 KHz are implemented in simple CMOS hardware using a binary local reference clock frequency. The circuits have application to VLF navigation receivers and other narrow band audio range tracking problems.

  3. The Irkutsk Barium filter for narrow-band wide-field high-resolution solar images at the Dutch Open Telescope

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Skomorovsky, Valery I.; Bettonvil, Felix C. M.; Kushtal, Galina I.; Olshevsky, Vyacheslav L.; Rutten, Robert J.; Jägers, Aswin P. L.; Sliepen, Guus; Snik, Frans

    2010-07-01

    A wide-field birefringent filter for the barium II line at 455.4nm is developed in Irkutsk. The Barium line is excellent for Doppler-shift measurements because of low thermal line-broadening and steep flanks of the line profile. The filter width is 0.008nm and the filter is tunable over 0.4nm through the whole line and far enough in the neighboring regions. A fast tuning system with servomotor is developed at the Dutch Open Telescope (DOT). Observations are done in speckle mode with 10 images per second and Keller-VonDerLühe reconstruction using synchronous images of a nearby bluecontinuum channel at 450.5nm. Simultaneous observation of several line positions, typically 3 or 5, are made with this combination of fast tuning and speckle. All polarizers are birefringent prisms which largely reduced the light loss compared to polarizing sheets. The advantage of this filter over Fabry-Perot filters is its wide field due to a large permitted entrance angle and no need of polishing extremely precise surfaces. The BaII observations at the DOT occur simultaneously with those of a fast-tunable birefringent H-alpha filter. This gives the unique possibility of simultaneous speckle-reconstructed observations of velocities in photosphere (BaII) and chromosphere (H-alpha).

  4. Electrothermally tunable MEMS filters

    NASA Astrophysics Data System (ADS)

    Prasad, A. V. S. S.; K. P., Venkatesh; Bhat, Navakanta; Pratap, Rudra

    2014-03-01

    MEMS resonators have potential application in the area of frequency selective devices (e.g., gyroscopes, mass sensors, etc.). In this paper, design of electro thermally tunable resonators is presented. SOIMUMPs process is used to fabricate resonators with springs (beams) and a central mass. When voltage is applied, due to joule heating, temperature of the conducting beams goes up. This results in increase of electrical resistance due to mobility degradation. Due to increase in the temperature, springs start softening and therefore the fundamental frequency decreases. So for a given structure, one can modify the original fundamental frequency by changing the applied voltage. Coupled thermal effects result in non-uniform heating. It is observed from measurements and simulations that some parts of the beam become very hot and therefore soften more. Consequently, at higher voltages, the structure (equivalent to a single resonator) behaves like coupled resonators and exhibits peak splitting. In this mode, the given resonator can be used as a band rejection filter. This process is reversible and repeatable. For the designed structure, it is experimentally shown that by varying the voltage from 1 to 16V, the resonant frequency could be changed by 28%.

  5. Comparison of Two 1550 nm Ultra Narrow-Band Optical Infinite Impulse Response Filters for High-Speed Optical Signal Processing

    DTIC Science & Technology

    2000-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1856 TITLE: Comparison of Two 1550 nm Ultra Narrow-Band Optical...etc. However, the component should be considered within [he context of the overall compilation report and not as a stand-alone technical report. The...parametric amplification: Demonstration of single-shot loading", Technical Digest of Conference on Optical Fiber Communication, pp. 201-202, 1998. 12

  6. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  7. Tunable birefringent filters

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Rosenberg, W. J.

    1981-01-01

    This article reviews the types and capabilities of birefringent filters. The general operating principles of Lyot (perfect polarizers), partial polarizing, and Solc (no internal polarizers) filters are introduced. Appropriate techniques for tuning each filter type are presented. Field of view of birefringent filters is discussed and is compared to Fabry-Perot and interference filters. The transmission and throughput advantages of birefringent filters are shown. Finally, the current state of the art in practical filters is reviewed.

  8. Numerical study of tunable band-pass filter made of one dimensional composite periodic structure

    NASA Astrophysics Data System (ADS)

    Anusha N., P.; Sharan, Alok

    2017-06-01

    Band-pass filters are used to allow transmission of certain range of frequencies and attenuate the rest. In this report we propose a 1-D periodic structure made of alternate layer of single negative index medium and zero index medium which works as band-pass filter. We have numerically simulated the band-pass filter using Finite Difference Time Domain (FDTD) method in Matlab. Entire range of frequency is reflected back when the light is incident on a single negative index medium slab. We were able to create a tunable narrow band-pass filter using the proposed periodic structure by choosing the appropriate values of permittivity and permeability.

  9. Tunable acoustical optical filter

    NASA Technical Reports Server (NTRS)

    Lane, A. L.

    1977-01-01

    Solid state filter with active crystal element increases sensitivity and resolution of passive and active spectrometers. Filter is capable of ranging through infrared and visible spectra, can be built as portable device for field use, and is suitable for ecological surveying, for pollution detection, and for pollutant classification.

  10. A Lyman-alpha tunable acousto-optic filter for detecting superthermal flare protons

    NASA Technical Reports Server (NTRS)

    Mickey, Donald L.

    1994-01-01

    The goal of this project was to develop and characterize a narrow-band, tunable filter for use near the Lyman-alpha line of hydrogen at 121.6 nm. Such a filter could form the critical component of an instrument to observe asymmetries in the solar Lyman-alpha line, caused by energetic protons accelerated during the impulsive phase of solar flares. Characteristic charge-exchange nonthermal emission at Lyman alpha should be produced when sub-MeV protons are injected into the chromosphere, but no instrument suitable for their detection has been developed. Such an instrument would require a narrow-band (less than 0.01 nm) tunable filter with aperture and throughput consistent with imaging a solar active region at 0.1 second intervals. The development of acousto-optic tunable filters (AOTF) suitable for use as compact, simple tunable filters for astronomical work suggested an investigation into the use of an AOTF at Lyman-alpha.

  11. JWST tunable filter imager: etalon prototype test results

    NASA Astrophysics Data System (ADS)

    Touahri, D.; Cameron, P.; Evans, C.; Greenberg, E.; Rowlands, N.; Scott, A.; Doyon, R.; Beaulieu, M.; Djazovski, O.

    2008-07-01

    We present the prototyping results and laboratory characterization of a narrow band Fabry-Perot etalon flight model which is one of the wavelength selecting elements of the Tunable Filter Imager. The latter is a part of the Fine Guidance Sensor which represents the Canadian contribution to NASA's James Webb Space Telescope. The unique design of this etalon provides the JWST observatory with the ability to image at 30 Kelvin, a 2.2'x2.2' portion of its field of view in a narrow spectral bandwidth of R~100 at any wavelength ranging between 1.6 and 4.9 μm (with a gap in coverage between 2.5 and 3.2 μm). Extensive testing has resulted in better understanding of the thermal properties of the piezoelectric transducers used as an actuation system for the etalon gap tuning. Good throughput, spectral resolution and contrast have been demonstrated for the full wavelength range.

  12. Optical-mechanical operation of the F2T2 filter: a tunable filter designed to search for First Light

    NASA Astrophysics Data System (ADS)

    Mentuch, Erin; Scott, Alan; Abraham, Roberto; Barton, Elizabeth; Bershady, Matthew; Bland-Hawthorn, Joss; Crampton, David; Doyon, René; Eikenberry, Steve; Gladders, Mike; Glazebrook, Karl; Jenson, Joe; Julian, Jeff; Julian, Roger; Kneib, Jean-Paul; Loop, David; Raines, Nick; Rowlands, Neil; Smith, J. D.

    2008-07-01

    The Flamingos-2 Tandem Tunable filter is a tunable, narrow-band filter, consisting of two Fabry-Perot etalons in series, capable of scanning to any wavelength from 0.95 to 1.35 microns with a spectral resolution of R~800. It is an accessory mode instrument for the near-IR Flamingos-2 imaging-spectrograph designed for the Gemini South 8m Observatory and will be fed through the upcoming Multi-Conjugate Adaptive Optics feed. The primary science goal of the F2T2 filter is to perform a ground-based search for the first star forming regions in the universe at redshifts of 7 < z < 11. The construction of the F2T2 filter is complete and it is currently in its calibration and commissioning phases. In this proceeding, we describe the calibration and performance of the instrument.

  13. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  14. The Brazilian Tunable Filter Imager for the SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Mendes de Oliveira, Cláudia; Taylor, Keith; Quint, Bruno; Andrade, Denis; Ferrari, Fabrício; Laporte, Rene; Ramos, Giseli de A.; Dani Guzman, Christian; Cavalcanti, Luiz; de Calasans, Alvaro; Ramirez Fernandez, Javier; Gutierrez Castañeda, Edna Carolina; Jones, Damien; Fontes, Fernando Luis; Molina, Ana Maria; Fialho, Fábio; Plana, Henri; Jablonski, Francisco J.; Reitano, Luiz; Daigle, Olivier; Scarano, Sergio; Amram, Philippe; Balard, Philippe; Gach, Jean-Luc; Carignan, Claude

    2013-04-01

    This article presents a description of a new Tunable Filter Instrument for the SOAR telescope. The Brazilian Tunable Filter Imager (BTFI) is a highly versatile new technology to be used both in seeing-limited mode and at higher spatial fidelity using the SAM Ground-Layer Adaptive Optics facility (SOAR Adaptive Module) which is being deployed at the SOAR telescope. Such an instrument presents important new science capabilities for the SOAR astronomical community, from studies of the centers of nearby galaxies and the insterstellar medium to statistical cosmological investigations. The BTFI concept takes advantage of three new technologies. The imaging Bragg Tunable Filter (iBTF) concept utilizes Volume Phase Holographic Gratings in a double-pass configuration as a tunable filter, while a new Fabry-Perot (FP) concept involves the use of commercially available technologies which allow a single FP etalon to act over a very large range of interference orders and hence spectral resolutions. Both of these filter technologies will be used in the same instrument. The combination allows for highly versatile capabilities. Spectral resolutions spanning the range between 25 and 30,000 can be achieved in the same instrument through the use of iBTF at low resolution and scanning FPs beyond R ∼ 2,000 with some overlap in the mid-range. The third component of the new technologies deployed in BTFI is the use of EMCCDs, which allow for rapid and cyclical wavelength scanning thus mitigating the damaging effect of atmospheric variability through the acquisition of the data cube. An additional important feature of the instrument is that it has two optical channels which allow for the simultaneous recording of the narrow-band, filtered image with the remaining (complementary) broadband light. This avoids the otherwise inevitable uncertainties inherent in tunable filter imaging using a single detector, which is subject to temporal variability of the atmospheric conditions. The system

  15. Investigation of Electronically Tunable Optical Filters.

    DTIC Science & Technology

    aperture characteristics, and the investigation of possibilities of its use to construct an electronically tunable laser. A separate paper is included, titled: CaMoO4 Electronically Tunable Optical Filter.

  16. Adaptive linear predictor FIR filter based on the Cyclone V FPGA with HPS to reduce narrow band RFI in AERA radio detection of cosmic rays

    SciTech Connect

    Szadkowski, Zbigniew

    2015-07-01

    We present the new approach to a filtering of radio frequency interferences (RFI) in the Auger Engineering Radio Array (AERA) which study the electromagnetic part of the Extensive Air Showers. The radio stations can observe radio signals caused by coherent emissions due to geomagnetic radiation and charge excess processes. AERA observes frequency band from 30 to 80 MHz. This range is highly contaminated by human-made RFI. In order to improve the signal to noise ratio RFI filters are used in AERA to suppress this contamination. The first kind of filter used by AERA was the Median one, based on the Fast Fourier Transform (FFT) technique. The second one, which is currently in use, is the infinite impulse response (IIR) notch filter. The proposed new filter is a finite impulse response (FIR) filter based on a linear prediction (LP). A periodic contamination hidden in a registered signal (digitized in the ADC) can be extracted and next subtracted to make signal cleaner. The FIR filter requires a calculation of n=32, 64 or even 128 coefficients (dependent on a required speed or accuracy) by solving of n linear equations with coefficients built from the covariance Toeplitz matrix. This matrix can be solved by the Levinson recursion, which is much faster than the Gauss procedure. The filter has been already tested in the real AERA radio stations on Argentinean pampas with a very successful results. The linear equations were solved either in the virtual soft-core NIOSR processor (implemented in the FPGA chip as a net of logic elements) or in the external Voipac PXA270M ARM processor. The NIOS processor is relatively slow (50 MHz internal clock), calculations performed in an external processor consume a significant amount of time for data exchange between the FPGA and the processor. Test showed a very good efficiency of the RFI suppression for stationary (long-term) contaminations. However, we observed a short-time contaminations, which could not be suppressed either by the

  17. Adaptive Linear Predictor FIR Filter Based on the Cyclone V FPGA With HPS to Reduce Narrow Band RFI in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Głas, Dariusz

    2016-06-01

    We are presenting a new approach to a filtering of radio frequency interference (RFI) in the Auger Engineering Radio Array (AERA), which studies the electromagnetic part of the extensive air showers. Radio stations can observe radio signals caused by coherent emissions due to geomagnetic radiation and charge excess processes. AERA observes the frequency band from 30 to 80 MHz. This range is highly contaminated by human-made RFI. In order to improve the signal to noise ratio RFI filters are used in AERA to suppress this contamination. The filter has already been tested with real AERA radio stations in the Argentinean Pampas with very successful results. The linear equations were solved either in the virtual soft-core NIOS® processor (implemented in the FPGA chip as a net of logic elements) or in the external Voipac PXA270M ARM processor. The NIOS® processor is relatively slow (50 MHz internal clock), and the calculations performed in an external processor consume a significant amount of time for data exchange between the FPGA and the processor. Tests showed very good efficiency of the RFI suppression for stationary (long-term) contaminations. However, we observed short-time contaminations, which could not be suppressed either by the IIR-notch filter or by the FIR filter based on the linear predictions. For the LP FIR filter, the refresh time of the filter coefficients was too long and the filter did not keep up with the changes in the contamination structure, mainly due to a long calculation time in a slow processors. We propose to use the Cyclone® V SE chip with an embedded micro-controller operating with a 925 MHz internal clock to significantly reduce the refreshment time of the FIR coefficients. First results in the laboratory are very promising.

  18. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    SciTech Connect

    De Diego, J. A.; De Leo, M. A.; Cepa, J.; Bongiovanni, A.; Verdugo, T.; Sánchez-Portal, M.

    2013-10-01

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. We compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.

  19. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light

  20. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses

  1. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.

    PubMed

    Khodaee, M; Banakermani, M; Baghban, H

    2015-10-10

    Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34  THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.

  2. Large Aperture, Narrow-Band Detectors for Optical Communication Systems.

    DTIC Science & Technology

    The patent application provides a sensitive detector means for the reception and detection of optical communication signals which are accompanied by...onto a detector. A provision of a large aperture narrow-band detector for optical communication systems is made for receiving and detecting optical ... communication with self-filtering to selectively detect the information while discriminating or rejecting background radiation.

  3. An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Fraenkel, E. D.; Glas, Dariusz; Legumina, Remigiusz

    2013-12-01

    The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages.

  4. Reducing Contrast Contamination in Radial Turbo-Spin-Echo Acquisitions by Combining a Narrow-Band KWIC Filter With Parallel Imaging

    PubMed Central

    Neumann, Daniel; Breuer, Felix A.; Völker, Michael; Brandt, Tobias; Griswold, Mark A.; Jakob, Peter M.; Blaimer, Martin

    2014-01-01

    Purpose Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Methods Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting data set is undersampled and therefore an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Results Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared to Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. Conclusion The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. PMID:24436227

  5. Tunable Optical Filters for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crandall, Charles; Clark, Natalie; Davis, Patricia P.

    2007-01-01

    Spectrally tunable liquid crystal filters provide numerous advantages and several challenges in space applications. We discuss the tradeoffs in design elements for tunable liquid crystal birefringent filters with special consideration required for space exploration applications. In this paper we present a summary of our development of tunable filters for NASA space exploration. In particular we discuss the application of tunable liquid crystals in guidance navigation and control in space exploration programs. We present a summary of design considerations for improving speed, field of view, transmission of liquid crystal tunable filters for space exploration. In conclusion, the current state of the art of several NASA LaRC assembled filters is presented and their performance compared to the predicted spectra using our PolarTools modeling software.

  6. Tunable multimode-interference bandpass fiber filter.

    PubMed

    Antonio-Lopez, J E; Castillo-Guzman, A; May-Arrioja, D A; Selvas-Aguilar, R; Likamwa, P

    2010-02-01

    We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.

  7. A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chang, Sheng-jiang; Wang, Xiang-hui; Lin, Lie; Bai, Jin-jun

    2014-05-01

    A terahertz bandpass filter with the sandwich structure consisting of thermally tunable vanadium dioxide (VO2) thin film, silica substrate and subwavelength rectangular Cu hole arrays is designed and theoretically analyzed. The results show that the transmittance of the filter can be actively tuned by controlling the temperature of VO2, the narrow band terahertz (THz) waves with the transmittance from 85.2% to 10.5% can be well selected at the frequency of 1.25 THz when the temperature changes from 50 °C to 80 °C, and the maximum modulation depth of this terahertz bandpass filter can achieve 74.7%.

  8. Combined tunable filters based swept laser source for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Minghui; Ding, Zhihua; Wang, Cheng; Huang, Yimei; Chen, Rong; Song, Chengli

    2013-03-01

    We demonstrate a novel ultra-broad tunable bandwidth and narrow instantaneous line-width swept laser source using combined tunable filters working at 1290 nm center wavelength for application in optical coherence tomography. The combined filters consist of a fiber Fabry-Perot tunable filter (FFP-TF) and a polygon mirror with scanning grating based filter. The FFP-TF has the narrow free spectral range (FSR) but ultra-high spectral resolution (narrow instantaneous bandwidth) driven at high frequency far from resonant frequency. The polygon filter in the Littrow configuration is composed of fiber collimator, polygon mirror driven by function generator, and diffractive grating with low groove. Polygon filter coarsely tunes with wide turning range and then FFP-TF finely tunes with narrow band-pass filtering. In contrast to traditional method using single tunable filter, the trade-off between bandwidth and instantaneous line-width is alleviated. The combined filters can realize ultra wide scan range and fairly narrow instantaneous bandwidth simultaneously. Two semiconductor optical amplifiers (SOA) in the parallel manner are used as the gain medium. The wide bandwidth could be obtained by these parallel SOAs to be suitable for sufficient wide range of the polygon filter's FSR because each SOA generates its own spectrum independently. The proposed swept laser source provides an edge-to-edge scanning range of 180 nm covering 1220 to 1400 nm with instantaneous line-width of about 0.03 nm at sweeping rate of 23.3 kHz. The swept laser source with combined filters offers broadband tunable range with narrow instantaneous line-width, which especially benefits for high resolution and deep imaging depth optical frequency domain imaging.

  9. Tunable Filter Made From Three Coupled WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey

    2006-01-01

    A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering

  10. Young's interference fringes with narrow-band light.

    PubMed

    Wolf, E

    1983-05-01

    The changes in the interference pattern in Young's interference experiment, produced by placing two identical narrow-band filters in front of the pinholes, are analyzed. It is shown theoretically that, in general, the fringes will not become sharp (i.e., their maximum visibility will not tend to unity) even when the filters have arbitrarily narrow passbands. The analysis brings out a relationship between the complex degree of coherence in the space-time and the space-frequency domains. When the passbands of the filters are narrow enough, the filtered light is found to be cross-spectrally pure.

  11. Electronically Tunable Filter and Dye Laser.

    DTIC Science & Technology

    CaMoO4 filter was constructed, evaluated, and used to tune a flashlamp pumped dye laser. A total electronic tuning range of 6800 to 4735 was achieved...theoretical study of an electronically tunable CaMoO4 filter for use in the near infrared portion of the spectrum. (Author)

  12. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  13. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  14. Tunable filters for JWST Fine Guidance Sensor

    NASA Astrophysics Data System (ADS)

    Rowlands, Neil; Evans, Clinton; Greenberg, Elliot; Gregory, Phil; Scott, Alan; Thibault, Simon; Poirier, Michel; Doyon, Rene; Hutchings, John B.; Alexander, Russ

    2004-10-01

    The Canadian contribution to the James Webb Space Telescope (JWST) mission will be the Fine Guidance Sensor (FGS), incorporating a science-observing mode using tunable filters. We describe here the requirements, the opto-mechanical design concept and bread-board test results for the JWST FGS tunable filters. The FGS requires two continuously tunable filters over the wavelength ranges 1.2 - 2.4 microns and 2.4 - 4.8 microns each having a spectral resolution in the range of R~70 to 200. The selected implementation uses dielectric coated Fabry-Perot etalon plates with a small air gaps. The design finesse is ~30 and the filters are used in 3rd order. The operating temperature is ~35K. Current coating designs provide implementations that require only five blocking filters in each wavelength range to suppress unwanted orders. The filters will be scanned via the use of low voltage piezo-electric transducers. We present results from cryogenic tests of coating samples, PZT actuators and a structural model. The PZT actuators were found have a displacement of ~3.3 microns at 30K with an applied voltage of 125V, more than sufficient for the required scan of the Fabry-Perot plate spacing. The prototype etalon coating was found to be very stable cryogenically, having a measured change of transmission of only ~1% at 77K. The same coating on a 12.7 mm thick substrate, similar to that planned for the filter, was found to have a 18 nm peak-to-valley surface figure change when cooled to 30K. These results demonstrate that the development of tunable filters for the JWST FGS is on track to meet the technology readiness requirements of the program.

  15. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  16. Design of multistack Fabry-Perot structure with defect as tunable transmission filter for CWDM using FDTD method

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Rajorshi; Chakraborty, Rajib

    2015-06-01

    The translational symmetry of the periodicity in a photonic crystal can be disturbed by introducing a controlled defect in its periodicity. The photon localization causes a pass band in the photonic bandgap. Based on this concept, we are proposing the design of a tunable narrow band filter for multiple wavelengths used for coarse wave length division multiplexing (CWDM) system. To achieve that, a multiple stack Fabry Perot structure with suitable stack materials and controllable defect is considered. The proposed Fabry Perot structure consists of periodic layers of electro optic material Lithium Niobate (nH) and Magnesium Fluoride (nL). The optical length of each such layer is their corresponding quarter wave length width at the design wavelength λ0 (1.55 μm). The reflection band of the quarter wavelength multilayer structure is formed due to the periodic repetition of the (LH)NL, where L and H are the quarter wavelength width of the nL and nH material respectively and N is the number of bilayers. A quarter wave layer L is then inserted between the groups of (LH)N and (HL)N to form the Fabry Perot resonator structure which can be used for narrow band transmission filter. The simulation has been carried out in both FDTD and TMM method and compared. As the refractive index of the Lithium Niobate can be tuned electro-optically, the filter can also be made tunable.

  17. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    NASA Astrophysics Data System (ADS)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  18. Tunable photonic filters: a digital signal processing design approach.

    PubMed

    Binh, Le Nguyen

    2009-05-20

    Digital signal processing techniques are used for synthesizing tunable optical filters with variable bandwidth and centered reference frequency including the tunability of the low-pass, high-pass, bandpass, and bandstop optical filters. Potential applications of such filters are discussed, and the design techniques and properties of recursive digital filters are outlined. The basic filter structures, namely, the first-order all-pole optical filter (FOAPOF) and the first-order all-zero optical filter (FOAZOF), are described, and finally the design process of tunable optical filters and the designs of the second-order Butterworth low-pass, high-pass, bandpass, and bandstop tunable optical filters are presented. Indeed, we identify that the all-zero and all-pole networks are equivalent with well known principles of optics of interference and resonance, respectively. It is thus very straightforward to implement tunable optical filters, which is a unique feature.

  19. Demonstration of optical interference filters utilizing tunable refractive index layers.

    PubMed

    Poxson, David J; Mont, Frank W; Schubert, Martin F; Kim, Jong Kyu; Cho, Jaehee; Schubert, E Fred

    2010-11-08

    Optical interference filters utilizing tunable refractive index layers are shown to have higher spectral fidelity as compared to conventional filters consisting of non-tunable refractive index layers. To demonstrate this increase in spectral fidelity, we design and compare a variety of optical interference filters employing both tunable and non-tunable refractive index layers. Additionally, a five-layer optical interference filter utilizing tunable refractive index layers is designed and fabricated for use with a Xenon lamp to replicate the Air Mass 0 solar irradiance spectrum and is shown to have excellent spectral fidelity.

  20. Acousto-optic tunable filter imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Reyes, George; Rider, David; Cheng, Li-Jen

    1991-01-01

    A remote sensing multispectral imaging instrument is being developed that uses a high resolution, fast programmable acoustooptic tunable filter (AOTF) as the spectral bandpass filter. A compact and fully computer controllable AOTF-based imaging spectrometer that operates in the visible wavelength range (0.5-0.8 microns) has been built and tested with success. A second imaging spectrometer operating in the near-infrared wavelength range (1.2-2.4 microns) is also under experimental investigation. The design criteria meeting various system issues, such as imaging quality, spectral response, and field of view (FOV), are discussed. An experiment using this AOTF imaging spectrometer breadboard is described.

  1. Electro-optical tunable birefringent filter

    SciTech Connect

    Levinton, Fred M

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  2. Narrow-Band Processing and Fusion Approach for Explosive Hazard Detection in FLGPR

    DTIC Science & Technology

    2011-01-01

    Gabor filter texture feature The features that we measure for each alarm location in each of the 15 images are Gabor filter -based. The Gabor filter ...with a classifier that uses complex-valued Gabor filter responses as the features. We then fuse 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...explosive hazards detection, ground-penetrating radar, narrow-band processing, false alarm rejection, fusion, Gabor filters Timothy C. Havens, James M

  3. Diluted magnetic semiconductors with narrow band gaps

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Maekawa, Sadamichi

    2016-10-01

    We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.

  4. DICOM extensions for narrow-band networks.

    PubMed

    Riesmeier, J; Eichelberg, M; Lemoine, D; Punys, V; Balogh, N; Jensch, P

    2000-01-01

    DICOM is today's de-facto standard for exchanging medical images. Since new image acquisition devices produce more and more image and non-image data, image compression has become an important part of the standard. However, the compression of non-pixel data also stored in DICOM data sets has been disregarded up to now. In the scope of an EU research project we have examined a large amount of real-world DICOM images to test whether or not there is a potential for compressing the non-pixel attributes. Especially for use with narrow-band networks extensions as proposed in this paper could be a solution to save valuable bandwidth.

  5. Magnetically tunable wideband microwave filter using ferrite-based metamaterials

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Zhu, Wenting; Lei, Ming; Zhou, Ji

    2015-04-01

    Magnetically tunable wideband microwave filters have been designed and prepared by using ferrite-based metamaterial structures. The microwave properties of the filters have been investigated by experiments and simulations. The negative permeability appears around the ferromagnetic resonance frequency, which leads to a remarkable stopband for the bandstop filter. The bandpass filter is composed of two kinds of ferrite rods with different saturation magnetization. The bandwidth of the passband can be tuned by adjusting the saturation magnetization of the ferrite rods. Both the experimental and the simulated results show that those filters possess magnetically tunable property. This approach opens a way for designing tunable wideband microwave filters.

  6. Tunable Bragg filters with a phase transition material defect layer

    DOE PAGES

    Wang, Xi; Gong, Zilun; Dong, Kaichen; ...

    2016-01-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  7. Electronically Tunable Fractional Order All Pass Filter

    NASA Astrophysics Data System (ADS)

    Verma, Rakesh; Pandey, Neeta; Pandey, Rajeshwari

    2017-08-01

    In this paper, an electronically tunable fractional order all pass filter (FOAPF) based on operational transconductance amplifier (OTA) is presented. It uses two OTAs and single fractional order capacitor (FC) of non-integer order α to provide FOAPF of α order. Two different values of α, in particular 0.5 and 0.9, for FC are taken for investigation. The functionality of the proposal is verified through SPICE simulations using TSMC 0.18 μm Complementary Metal Oxide Semiconductor (CMOS) process parameters. Simulated and theoretical frequency and time domain responses are found to be in close agreement.

  8. Narrow band 3 × 3 Mueller polarimetric endoscopy

    PubMed Central

    Qi, Ji; Ye, Menglong; Singh, Mohan; Clancy, Neil T.; Elson, Daniel S.

    2013-01-01

    Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information. PMID:24298405

  9. Tunable blocking filter for laser bigarmonic spectrometer

    NASA Astrophysics Data System (ADS)

    Kulikov, G. E.

    2004-01-01

    The tunable blocking filter for the laser bigarmonic spectrometer is described. The filter prevents damage of the photoreciever CCD cells by the power optical beam. The calibration of the filter is performed by the automated procedure that speed - up the process and give the ability to check the adjustement of the interferometer of the filter avoiding it"s disassembling from the optical installation of the spectrometer. A group of laser spectroscopy specialists of the Institute of Atmospheric Optics has developed a laser spectrometer with a bigarmonic source for experimental investigation of the responce of molecular media exitied by bigarmonic optical field and verification of the hypothese about generation an optical field in these media. The spectrometer consists of: a) tunable laser based on two alumoittrium heads and frequency multiplicators, b) optical installation and gas probing cell, c) diffraction spectrograph (symbols available in paper) and linear CCD photoreceiver ILX-511, d) CAMAC modules, the computer and proper software. Peculiarity of described scheme consist in the necessity to register reemission coaxial with the pumping field. The wavelength of investigated reemission signal is close of the halfsum of the wavelength of the pumping bigarmonic. To avoid falling intense light on CCD device, which can physically damage photorecieving cells or, as minimum, completely mask usefull signal, it is necessary to mount an blocking optical filter into optical installation of the spectrometer. The filter have to provide continiuous blocking (when laser emitter tunes in diapasone of Δλ1,2 ≈ 18526 +/- 4 cm-1) of the baffled components of the bigarmonic pumping. The present work is aimed to developing, preparing and testing such tunable rejecting filter. The Fabri - Perout interferometer was choosed as base element of the optical filter. The interferometer must be tuned to place next transmission maximum near the frequency of the investigating signal. In

  10. Imaging spectroscopy using tunable filters: a review

    NASA Astrophysics Data System (ADS)

    Gat, Nahum

    2000-04-01

    Major spin-offs from NASA's multi- and hyper spectral imaging remote sensing technology developed for Earth resources monitoring, are creative techniques that combine and integrate spectral with spatial methods. Such techniques are finding use in medicine, agriculture, manufacturing, forensics, and an e er expanding list of other applications. Many such applications are easier to implement using a sensor design different from the pushbroom or whiskbroom air- or space-borne counterparts. This need is met by using a variety of electronically tunable filters that are mounted in front of a monochrome camera to produce a stack of images at a sequence of wavelengths, forming the familiar 'image cube'. The combined spectral/spatial analysis offered by such image cubes takes advantage of tools borrowed form spatial image processing, chemometrics and specifically spectroscopy, and new custom exploitation tools developed specifically for these applications. Imaging spectroscopy is particularly useful for non homogeneous samples or scenes. examples include spatial classification based on spectral signatures, use of spectral libraries for material identification, mixture composition analysis, plume detection, etc. This paper reviews available tunable filters ,system design considerations, general analysis techniques for retrieving the intrinsic scene properties from the measurements, and applications and examples.

  11. InP tunable ring resonator filters

    NASA Astrophysics Data System (ADS)

    Tauke-Pedretti, A.; Vawter, G. A.; Skogen, E. J.; Peake, G.; Overberg, M.; Alford, C.; Torres, D.; Cajas, F.

    2013-03-01

    Optical channelizing filters with narrow linewidth are of interest for optical processing of microwave signals. Fabrication tolerances make it difficult to place exactly the optical resonance frequency within the microwave spectrum as is required for many applications. Therefore, efficient tuning of the filter resonance is essential. In this paper we present a tunable ring resonator filter with an integrated semiconductor optical amplifier (SOA) fabricated on an InP based photonic integrated circuit (PIC) platform. The ring resonance is tuned over 37 GHz with just 0.2 mA of current injection into a passive phase section. The use of current injection is often more efficient than thermal tuning using heaters making them useful for low-power applications. The single active ring resonator has an electrical FWHM of 1.5 GHz and shows greater than 16 dB of extinction between on and off resonance. The effects of SOA internal ring gain and induced passive loss on extinction and linewidth will be shown. Agreement between experimentally demonstrated devices and simulations are shown. The integration of the active and passive regions is done using quantum well intermixing and the resonators utilize buried heterostructure waveguides. The fabrication process of these filters is compatible with the monolithic integration of DBR lasers and high speed modulators enabling single chip highly functional PICs for the channelizing of RF signals.

  12. Imaging Spectrometer Using a Liquid Crystal Tunable Filter

    NASA Technical Reports Server (NTRS)

    Chrien, Tomas G.; Chovit, Christopher; Miller, Peter J.

    1993-01-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design.

  13. Imaging Spectrometer Using a Liquid Crystal Tunable Filter

    NASA Technical Reports Server (NTRS)

    Chrien, Tomas G.; Chovit, Christopher; Miller, Peter J.

    1993-01-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design.

  14. Narrow-band Imagery of the ISM using the RCT

    NASA Astrophysics Data System (ADS)

    Walter, D. K.; Gelderman, R.; Guinan, E.; Howell, S.; Mattox, J. R.; McGruder, C. H., III; Davis, D.; Everett, M.

    2003-05-01

    We present the first results of imaging the Interstellar Medium (ISM) using narrow-band filters with the Robotically Controlled Telescope (RCT). The RCT is the recently refurbished 1.3-meter telescope at the Kitt Peak National Observatory. Details regarding the RCT can be found elsewhere at this meeting (Gelderman, R. et al.). Our filters are centered on diagnostic, nebular emission lines of the ions H+, He+, S+, N+ and O++. Objects of interest in the galactic and extragalactic ISM were observed including the starburst galaxy NGC 4449. Ionization ratio maps include [OIII]/Hβ, [NII]/Hα and the C(Hβ) extinction map from the ratio of Hα/Hβ. Electron densities are derived from the ratio of images taken through filters centered on the sulfur lines at 671.7 and 673.1 nm. Refurbishment of the RCT has been made possible by NASA NAG 58-762. Funding for filters and additional equipment has been made possible by NASA OSS NAG 5-10145 and NASA MU-SPIN NCC 5-534.

  15. Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter.

    PubMed

    Xie, Xiaopeng; Zhang, Cheng; Sun, Tao; Guo, Peng; Zhu, Xiaoqi; Zhu, Lixin; Hu, Weiwei; Chen, Zhangyuan

    2013-03-01

    A widely tunable optoelectronic oscillator (OEO) based on a broadband phase modulator and a tunable optical bandpass filter is proposed and experimentally demonstrated. A tunable range from 4.74 to 38.38 GHz is realized by directly tuning the bandwidth of the optical bandpass filter. To the best of our knowledge, this is the widest fundamental frequency tunable range ever achieved by an OEO. The phase noise performance of the generated signal is also investigated. The single-sideband phase noise is below -120 dBc/Hz at an offset of 10 KHz within the whole tunable range.

  16. Adaptive sparsest narrow-band decomposition method and its applications to rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao

    2017-02-01

    Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.

  17. Acousto-optic tunable filter as a notch filter

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2016-05-01

    An acousto-optic tunable filter (AOTF) is an all solid-state robust device with no-moving parts that has been used in the development of hyperspectral imagers from the ultraviolet to the longwave infrared. Such a device is developed by bonding a piezoelectric transducer on a specially cut prism in a birefringent crystal. When broadband white light is incident on the prism input facet, two orthogonally polarized diffracted beams at a wavelength with a narrowband bandpass are transmitted. The transmitted wavelength can be tuned by varying the applied radio frequency (RF). This is what is done in a hyperspectral imager. An AOTF can also be used with multiple RFs applied at the same time to diffract a number of different wavelengths. This mode can be exploited to design a tunable optical notch filter where multiple RFs are applied simultaneously such that all wavelength in a specific range can transmit except for a specific wavelength which is notched. We designed an optical system using a TeO2 AOTF with telecentric confocal optics operating in the shortwave infrared (SWIR) with a 16-channel RF driver where both the amplitude and frequency can be controlled independently for each channel. We will discuss the optical system, its characterization and present results obtained.

  18. The Brazilian tunable filter imager for SOAR

    NASA Astrophysics Data System (ADS)

    Taylor, Keith; Mendes de Oliveira, Cláudia; Laporte, Rene; Guzman, Christian D.; Ramirez Fernandez, Javier; Scarano, Sergio, Jr.; Ramos, Giseli; Plana, Henri; Lourenco, Fernando E.; Gach, Jean-Luc; Fontes, Fernando L.; Ferrari, Fabricio; Cavalcanti, Luiz; Gutierrez Castañeda, Edna C.; de Calasans, Alvaro; Balard, Philippe; Amram, Philippe; Andrade, Denis

    2010-07-01

    A scientific and engineering team led by the Department of Astronomy of the IAG, at the University of São Paulo, is engaged in the development of a highly versatile, new technology, optical imaging interferometer to be used both in seeing-limited mode and at high spatial resolution using the SOAR Adaptive Optics Module (SAM: the GLAO facility for the SOAR telescope). Such an instrument opens up important new science capabilities for the SOAR astronomical community: from studies of nearby galaxies and the ISM to statistical cosmological investigations. The Brazilian Tunable Filter Imager (BTFI) concept takes advantage of two new technologies that have been successfully demonstrated in the laboratory environment but have yet to be deployed in any astronomical instrument. The iBTF (imaging Bragg Tunable Filter) concept utilizes a Volume Phase Holographic Grating in double-pass configuration (Blais-Ouellette et al. 20061) while the new Fabry-Perot concept involves the use of commercially available technology allowing a single etalon to act over a very large range of interference orders. Both technologies will be used in the same instrument. The combination allows for highly versatile capabilities. Spectral resolutions spanning the full range between 5 and 35,000 can be achieved in the same instrument through the use of iBTF at low resolution and scanning Fabry-Perots beyond R ~2,000 with some overlap in the mid-range. The instrument is being developed in collaboration with several other Brazilian Institutions (Poli/USP, INPE, LNA and Unipampa) and international collaborations with the Laboratoire d'Astrophysique de Marseille and the University of Montreal. The reader is directed to the URL http://www.astro.iag.usp.br/~btfi/index.php for a full representation of the project and its current status. The instrument should see first light, mounted on the SOAR telescope, as a visiting instrument, on semester 2010B.

  19. Survey of Narrow Band Vocoder Technology.

    DTIC Science & Technology

    1984-12-01

    A microprocessor analyzer/ synthesizer is smaller, lighter, and has a lower power consumption than a filter bank system . The brassboard system tested...envelope (the vocal tract filter response) of the speech wave. The pitch extraction technique forms an intergral part of the analysis system . The... Systems Based Upon Inverse Filter Matching," IEEE Trans Comm, Vol. COM-30, pp. 711-720, (1982) 87. McAuly, R. J., "A Low-Rate Vocoder Based on an Adaptive

  20. Optical Filter Assembly for Interplanetary Optical Communications

    NASA Technical Reports Server (NTRS)

    Chen, Yijiang; Hemmati, Hamid

    2013-01-01

    Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.

  1. The Narrow-Band Model and Semi-Conductor Theory

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1976-01-01

    Applies the narrow-band model to the instruction of intrinsic and extrinsic semiconductors along with the phenomenon of compensation. Advocates the model for undergraduate instruction due to its intuitive appeal and mathematical simplicity. (CP)

  2. The Narrow-Band Model and Semi-Conductor Theory

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1976-01-01

    Applies the narrow-band model to the instruction of intrinsic and extrinsic semiconductors along with the phenomenon of compensation. Advocates the model for undergraduate instruction due to its intuitive appeal and mathematical simplicity. (CP)

  3. Compact tunable microwave filter using retroreflective acousto-optic filtering and delay controls.

    PubMed

    Riza, Nabeel A; Ghauri, Farzan N

    2007-03-01

    Programmable broadband rf filters are demonstrated using a compact retroreflective optical design with an acousto-optic tunable filter and a chirped fiber Bragg grating. This design enables fast 34 micros domain analog-mode control of rf filter time delays and weights. Two proof-of-concept filters are demonstrated including a two-tap notch filter with >35 dB notch depth and a four-tap bandpass filter. Both filters have 2-8 GHz tunability and a 34 micros reset time.

  4. Narrow-band processing and fusion approach for explosive hazard detection in FLGPR

    NASA Astrophysics Data System (ADS)

    Havens, Timothy C.; Keller, James M.; Ho, K. C.; Ton, Tuan T.; Wong, David C.; Soumekh, Mehrdad

    2011-06-01

    This paper proposes an effective anomaly detection algorithm for a forward-looking ground-penetrating radar(FLGPR). One challenge for threat detection using FLGPR is its high dynamic range in response to different kinds of targets and clutter objects. The application of a fixed threshold for detection in a full-band radar image often yields a large number of false alarms. We propose a method that uses both narrow-band and full-band radar processing, coupled with a classifier that uses complex-valued Gabor filter responses as the features. We then fuse the narrow-band and fullband images into a composite confidence map and detect local maxima in this map to produce candidate alarm locations. Full-band radar images provide a high degree of image resolution, while narrow-band images provide a means to detect targets which have a unique narrow-band signature. Experimental results for our improved detection techniques are demonstrated on data sets collected at a US Army test site.

  5. Thin-film tunable filters for hyperspectral fluorescence microscopy

    PubMed Central

    Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow; Alvarez, Diego F.; Rich, Thomas; Prabhat, Prashant

    2013-01-01

    Abstract. Hyperspectral imaging is a powerful tool that acquires data from many spectral bands, forming a contiguous spectrum. Hyperspectral imaging was originally developed for remote sensing applications; however, hyperspectral techniques have since been applied to biological fluorescence imaging applications, such as fluorescence microscopy and small animal fluorescence imaging. The spectral filtering method largely determines the sensitivity and specificity of any hyperspectral imaging system. There are several types of spectral filtering hardware available for microscopy systems, most commonly acousto-optic tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). These filtering technologies have advantages and disadvantages. Here, we present a novel tunable filter for hyperspectral imaging—the thin-film tunable filter (TFTF). The TFTF presents several advantages over AOTFs and LCTFs, most notably, a high percentage transmission and a high out-of-band optical density (OD). We present a comparison of a TFTF-based hyperspectral microscopy system and a commercially available AOTF-based system. We have characterized the light transmission, wavelength calibration, and OD of both systems, and have then evaluated the capability of each system for discriminating between green fluorescent protein and highly autofluorescent lung tissue. Our results suggest that TFTFs are an alternative approach for hyperspectral filtering that offers improved transmission and out-of-band blocking. These characteristics make TFTFs well suited for other biomedical imaging devices, such as ophthalmoscopes or endoscopes. PMID:24077519

  6. Narrow-band Imagery with the 1.3-meter Robotically Controlled Telescope (RCT)

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Gelderman, Richard; Campbell, R.; Carini, Michael T.; Davis, Donald R.; Engle, Scott G.; Guinan, Edward F.; McGruder, Charles H., III; Strolger, Louis-Gregory; Tedesco, Edward F.

    2011-03-01

    The Robotically Controlled Telescope (RCT) has two filter wheels in the optical path, providing a choice of up to 16 filters (plus a clear position) for any given observation. Each circular, 113 mm (~4.5 inches) diameter filter is custom made for the RCT. The standard observing configuration is to have one filter wheel in place at all times, loaded with medium-band and standard UBVRI broad-band filters. The second slot gets filled with one of two wheels containing interference filters. One of these filter wheels contains narrow-band filters centered on diagnostic, nebular emission lines of ionized hydrogen, doubly ionized helium, [S II], [N II], [O III], and adjacent regions of the spectrum for continuum subtraction. The other wheel includes a second set of narrow-band filters centered on molecular emission lines important to the study of comets; such as OH, CN, C2, C3, and adjacent regions of the spectrum for continuum subtraction. We discuss how the number and variety of readily available filters provides powerful flexibility for the research programs undertaken by users of the 1.3-m Robotically Controlled Telescope.

  7. Recovering physical properties from narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  8. A simplified scheme for generating narrow-band mid-ultraviolet laser radiation

    SciTech Connect

    Almog, G.; Scholz, M. Weber, W.; Leisching, P.; Kaenders, W.; Udem, Th.

    2015-03-15

    We report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6{sup 1}S{sub 0} → 6{sup 3}P{sub 1} intercombination line at 253.7 nm. We could perform Doppler-free saturation spectroscopy on this line and were able to lock our laser to the transition frequency on long time scales.

  9. Tunable filters for multispectral imaging of aeronomical features

    NASA Astrophysics Data System (ADS)

    Goenka, C.; Semeter, J. L.; Noto, J.; Dahlgren, H.; Marshall, R.; Baumgardner, J.; Riccobono, J.; Migliozzi, M.

    2013-10-01

    Multispectral imaging of optical emissions in the Earth's upper atmosphere unravels vital information about dynamic phenomena in the Earth-space environment. Wavelength tunable filters allow us to accomplish this without using filter wheels or multiple imaging setups, but with identifiable caveats and trade-offs. We evaluate one such filter, a liquid crystal Fabry-Perot etalon, as a potential candidate for the next generation of imagers for aeronomy. The tunability of such a filter can be exploited in imaging features such as the 6300-6364 Å oxygen emission doublet, or studying the rotational temperature of N2+ in the 4200-4300 Å range, observations which typically require multiple instruments. We further discuss the use of this filter in an optical instrument, called the Liquid Crystal Hyperspectral Imager (LiCHI), which will be developed to make simultaneous measurements in various wavelength ranges.

  10. CMOS-integrated geometrically tunable optical filters.

    PubMed

    Lerose, Damiana; Hei, Evie Kho Siaw; Ching, Bong Ching; Sterger, Martin; Yaw, Liau Chu; Schulze, Frank Michael; Schmidt, Frank; Schmidt, Andrei; Bach, Konrad

    2013-03-10

    We present a method for producing monolithically integrated complementary metal-oxide-semiconductor (CMOS) optical filters with different and customer-specific responses. The filters are constituted by a Fabry-Perot resonator formed by two Bragg mirrors separated by a patterned cavity. The filter response can be tuned by changing the geometric parameters of the patterning, and consequently the cavity effective refractive index. In this way, many different filters can be produced at once on a single chip, allowing multichanneling. The filter has been designed, produced, and characterized. The results for a chip with 24 filters are presented.

  11. Narrow-band imaging bronchoscopy in tracheobronchial amyloidosis.

    PubMed

    Serrano-Fernández, Martha L; Alvarez-Maldonado, Pablo; Aristi-Urista, Gerardo; Valero-Gómez, Alfredo; Cicero-Sabido, Raúl; Redondo, Carlos Núñez-Pérez

    2014-07-01

    Primary tracheobronchial amyloidosis (TBA) is a rare disease characterized by extracellular focal or diffuse submucosal deposits of amyloid proteins. Various types of endobronchial lesions have been described in TBA when bronchoscopy is performed using white light. Narrow-band imaging bronchoscopy has been mainly employed for detecting preneoplastic and neoplastic endobronchial lesions as it provides more detailed images of the microvasculature reflective of an altered angiogenesis process. Here, we describe bronchoscopic findings with white light and narrow-band imaging in 2 patients presenting with central airway obstructive disease later confirmed as having primary TBA.

  12. General formulation for the calibration and characterization of narrow-gap etalons: the OSIRIS/GTC tunable filters case

    NASA Astrophysics Data System (ADS)

    González, J. J.; Cepa, J.; González-Serrano, J. I.; Sánchez-Portal, M.

    2014-10-01

    Tunable filters (TFs) are a powerful way of implementing narrow-band imaging mode over wide wavelength ranges, without the need of purchasing a large number of narrow-band filters covering all strong emission or absorption lines at any redshift. However, one of its main features is a wavelength variation across the field of view, sometimes termed the phase effect. In this work, an anomalous phase effect is reported and characterized for the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) instrument at the 10.4 m Gran Telescopio Canarias. The transmitted wavelength across the field of view of the instrument depends, not only on the distance to the optical centre, but on wavelength. This effect is calibrated for the red TF of OSIRIS by measuring both normal-incidence light at laboratory and spectral lamps at the telescope at non-normal incidence. This effect can be explained by taking into account the inner coatings of the etalon. In a high spectral resolution etalon, the gap between plates is much larger than the thickness of the inner reflective coatings. In the case of a TF, like that in OSIRIS, the coatings thickness could be of the order of the cavity, which changes drastically the effective gap of the etalon. We show that by including thick and dispersive coatings into the interference equations, the observed anomalous phase effect can be perfectly reproduced. In fact, we find that, for the OSIRIS red TF, a two-coatings model fits the data with an rms of 0.5 Å at all wavelengths and incidence angles. This is a general physical model that can be applied to other TF instruments.

  13. Tunable reflecting terahertz filter based on chirped metamaterial structure.

    PubMed

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-12-12

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping.

  14. Imaging spectrometer using a liquid crystal tunable filter

    NASA Astrophysics Data System (ADS)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  15. Tunable reflecting terahertz filter based on chirped metamaterial structure

    PubMed Central

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  16. An approach for mechanically tunable, dynamic terahertz bandstop filters

    NASA Astrophysics Data System (ADS)

    Li, Quan; Zhang, Xueqian; Cao, Wei; Lakhtakia, Akhlesh; O'Hara, John F.; Han, Jiaguang; Zhang, Weili

    2012-05-01

    Theoretical and experimental work was carried out on a terahertz metamaterial bandstop filter comprising an array of identical subwavelength resonators, each formed by fusing a pair of printable metallic U-shapes that have their openings pointing in opposite directions. Linear frequency tunability of the stopband electromagnetic response can be achieved by altering the overlap distance between the two fused shapes. Tuning does not significantly affect the strength or quality factor of the resonance. An approach to create mechanically tunable, dynamic terahertz filters is thereby suggested, with several functional advantages. Meanwhile, an effective equivalent circuit model based on self-inductance, mutual inductance, and capacitance has been proposed.

  17. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  18. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    DTIC Science & Technology

    1994-05-01

    Acousto - Optic Tunable Filter--Fiber Bragg Grating (AOTF-FBG) system. This analysis was targeted to investigate the measurement error in the AOTF-FBG system...Fiber bragg grating, Wavelength division multiplexing, Acousto - optic tunable filter.

  19. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  20. Electronically Tunable High Input Impedance Voltage-Mode Multifunction Filter

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Pin; Yang, Wan-Shing

    A novel electronically tunable high input impedance voltage-mode multifunction filter with single inputs and three outputs employing two single-output-operational transconductance amplifiers, one differential difference current conveyor and two capacitors is proposed. The presented filter can be realized the highpass, bandpass and lowpass functions, simultaneously. The input of the filter exhibits high input impedance so that the synthesized filter can be cascaded without additional buffers. The circuit needs no any external resistors and employs two grounded capacitors, which is suitable for integrated circuit implementation.

  1. A narrow band pattern-matching model of vowel perception.

    PubMed

    Hillenbrand, James M; Houde, Robert A

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a "flooring" procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  2. A narrow band pattern-matching model of vowel perception

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.; Houde, Robert A.

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  3. Tunable metamaterial bandstop filter based on ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Wang, Qingmin; Zeng, Lingyu; Lei, Ming; Bi, Ke

    2015-07-01

    Tunable wideband microwave bandstop filters have been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance frequency which can be influenced by the demagnetization factor of the ferrite rods. For the filter composed of two ferrite rods with different size, it exhibits a -3 db stop bandwidth as large as 500 MHz, peak absorption of -40 db and an out-of-stopband insertion loss of -1.5 db. This work provides a new way to fabricate the microwave bandstop filters.

  4. Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities.

    PubMed

    Alboon, Shadi A; Lindquist, Robert G

    2008-01-07

    In this paper, a coupled Fabry-Perot cavities filter, using the liquid crystal as the tunable medium, is investigate to achieve tunable flat top filtering performance across the C and L bands. A tandem coupled Fabry-Perot is presented for a tunable passband filter with flat top and minimum ripple in the passband. The overall tuning range of the filter is 172 nm. Several designs are shown with comparable performance to the commercial available 100 GHz fixed single channel filters.

  5. The detection of gratings in narrow-band visual noise*

    PubMed Central

    Carter, Barbara E.; Henning, G. Bruce

    1971-01-01

    1. The detectability of sinusoidal gratings comprised of either one or many cycles was measured in veiling luminances the spatial frequencies of which were either narrow- or broad-band. 2. In narrow-band noise, the single-cycle grating was detected with approximately 0·6 log units less contrast than the many-cycle grating. On the other hand when both broad-band and narrow-band noise were present, there was no measurable difference in the detectability of the two types of grating. 3. The results are interpreted as supporting the hypothesis of Campbell & Robson (1968) that spatially varying luminance patterns are processed by mechanisms selectively sensitive to limited ranges of spatial frequencies. PMID:5158393

  6. A tunable microwave plasma photonic crystal filter

    SciTech Connect

    Wang, B.; Cappelli, M. A.

    2015-10-26

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.

  7. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Liu, Yumin; Li, Ruifang; Chen, Lei; Ma, Rui; Liu, Chang; Ye, Han

    2016-11-01

    We propose and numerically investigate a novel perfect ultra-narrow band absorber based on a metal-dielectric-metal-dielectric-metal periodic structure working at near-infrared region, which consists of a dielectric layer sandwiched by a metallic nanobar array and a thin gold film over a dielectric layer supported by a metallic film. The absorption efficiency and ultra-narrow band of the absorber are about 98 % and 0.5 nm, respectively. The high absorption is contributed to localized surface plasmon resonance, which can be influenced by the structure parameters and the refractive index of dielectric layer. Importantly, the ultra-narrow band absorber shows an excellent sensing performance with a high sensitivity of 2400 nm/RIU and an ultra-high figure of merit of 4800. The FOM of refractive index sensor is significantly improved, compared with any previously reported plasmonic sensor. The influences of structure parameters on the sensing performance are also investigated, which will have a great guiding role to design high-performance refractive index sensors. The designed structure has huge potential in sensing application.

  8. Design of Hilbert transformers with tunable THz bandwidths using a reconfigurable integrated optical FIR filter

    NASA Astrophysics Data System (ADS)

    Ngo, Nam Quoc; Song, Yufeng; Lin, Bo

    2011-02-01

    We present the design and analysis of a wideband and tunable optical Hilbert transformer (OHT) using a tunable waveguide-based finite-impulse response (FIR) filter structure by using the digital filter design method and the Remez algorithm. The tunable Nth-order waveguide-based FIR filter, which simply consists of N delay lines, N tunable couplers, N tunable phase shifters and a combiner, can be tuned, by thermally adjusting the tunable couplers and tunable phase shifters, to tune the bandwidth of an OHT using silica-based planar lightwave circuit (PLC) technology. To demonstrate the effectiveness of the method, the simulation results have an excellent agreement with the theoretical predictions. The tunable OHT can function as a wideband and tunable 90° phase shifter and thus has many potential applications. The two unique features of wideband characteristic (up to ~ 2 THz) and tunable bandwidth (THz tuning range) of the proposed OHT cannot be obtained from the existing OHTs.

  9. Construction of narrow-band regenerative amplifier for momentum imaging spectroscopy of lithium dimer

    SciTech Connect

    Matsuoka, Leo; Hashimoto, Masashi; Yokoyama, Keiichi

    2012-07-11

    We constructed a Ti:Sapphire narrow-band regenerative amplifier as the probe laser of the experiment of momentum imaging spectroscopy of lithium dimer. The spectral profile of the regenerative cavity was designed by three birefringent filters and a plate of etalon. With 1.1-mJ pumping by the second harmonics of Nd:YLF laser, mode-locked seed pulses were amplified to {approx}25 {mu}J at 1-kHz repetition, with the bandwidth of {approx}0.7 cm{sup -1}.

  10. Some results of the narrow-band photometry of Comet Halley (1986 III)

    SciTech Connect

    Churiumov, K.I.; Rozenbush, V.K.; Rspaev, F.K.; Gorodetskii, D.I. Glavnaia Astronomicheskaia Observatoriia, Goloseevo Astrofizicheskii Institut, Alma-Ata )

    1990-06-01

    Narrow-band photometric observations of Comet Halley in the CN, C3, C2, H2O(+), CU, CB, and CR filters during October-November 1985 are presented. Molecular column densities and production rates for gases and dust particles are obtained. Photometric parameters n for CN, C3, C2, and dust particles in the Q of about r exp -n law are determined. The analysis of the gas and dust ratio as a function of the heliocentric distance is given. 19 refs.

  11. Gelled colloidal crystals as tunable optical filters for spectrophotometers

    NASA Astrophysics Data System (ADS)

    Sugao, Yukihiro; Onda, Sachiko; Toyotama, Akiko; Takiguchi, Yoshihiro; Sawada, Tsutomu; Hara, Shigeo; Nishikawa, Suguru; Yamanaka, Junpei

    2016-08-01

    We examined the performance of charged colloidal crystals immobilized in a polymer gel as tunable optical filters. The colloidal crystals of charged silica particles (particle diameter = 121 nm; particle concentration = 3.5 vol %; and Bragg wavelength λB = 630-720 nm) were produced by unidirectional crystallization under a temperature gradient. Photocurable gelation reagents were dissolved in the sample beforehand; this enabled gel immobilization of the crystals under ultraviolet illumination. The crystals had dimensions of more than 25 mm2 in area and 1 mm in thickness, and spatial λB variations of less than 1%. Upon mechanical compression, λB values shifted linearly and reversibly over almost the entire visible spectrum. Using the gelled crystals as tunable optical filters, we measured the transmittance spectra of various samples and found them to be in close agreement with those determined using a spectrophotometer equipped with optical gratings.

  12. Imaging Spectrometer With Liquid-Crystal Tunable Filter

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.

    1996-01-01

    Imaging spectrometer constructed from charged-coupled-device video camera; liquid-crystal tunable filter (LCTF) placed in front of camera lens; and associated digital and analog control, signal-processing, and data-processing circuits. To enable operation of instrument in specific application for which designed (balloon flights in cold weather), camera and LCTF surrounded by electric heating pad. Total operating power, excluding that consumed by heating pad, 16 W. Instrument weighs 4.5 kg.

  13. Tunable high-q superconducting notch filter

    DOEpatents

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  14. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  15. Emerging role of narrow band imaging in duodenum

    PubMed Central

    Dutta, Amit Kumar; Chacko, Ashok

    2015-01-01

    Endoscopy using magnification narrow band imaging (mNBI) allows detailed assessment of mucosal surface and vascular pattern. This may help in better identification and prediction of the nature of the lesion. The role of this technology in duodenum is still evolving. Studies have shown that mNBI has high accuracy in predicting villous atrophy in the duodenum. Limited data suggests that this technique can provide additional information on duodenal polyps, nodules and ampullary tumour which can help guide their management. In this paper we describe the technique for duodenal assessment using NBI and review the existing literature evaluating its role in diagnosis of various duodenal pathologies. PMID:26566428

  16. Fatigue failure of materials under narrow band random vibrations. I.

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Hubbard, R. B.; Lanz, R. W.

    1971-01-01

    A novel approach for the study of fatigue failure of materials under the multifactor influence of narrow band random vibrations is developed. The approach involves the conduction of an experiment in conjunction with various statistical techniques. Three factors including two statistical properties of the excitation or response are considered and varied simultaneously. A minimum of 6 tests for 3 variables is possible for a fractional f actorial design. The four coefficients of the predicting equation can be independently estimated. A look at 3 predicting equations shows the predominant effect of the root mean square stress of the first order equation.

  17. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  18. Decomposing a signal into short-time narrow-banded modes

    NASA Astrophysics Data System (ADS)

    McNeill, S. I.

    2016-07-01

    An algorithm for nonparametric decomposition of a signal into the sum of short-time narrow-banded modes (components) is introduced. Specifically, the signal data is augmented with its Hilbert transform to obtain the analytic signal. Then the set of constituent amplitude and frequency modulated (AM-FM) analytic sinusoids, each with slowly varying amplitude and frequency, is sought. The method for obtaining the short-time narrow-banded modes is derived by minimizing an objective function comprised of three criteria: smoothness of the instantaneous amplitude envelope, smoothness of the instantaneous frequency and complete reconstruction of the signal data. A minimum of the objective function is approached using a sequence of suboptimal updates of amplitude and phase. The updates are intuitive, efficient and simple to implement. For a given mode, the amplitude and phase are extracted from the band-pass filtered residual (signal after the other modes are removed), where the band-pass filter is applied about the previous modal instantaneous frequency estimate. The method is demonstrated by application to random output-only vibration data and order tracking data. It is demonstrated that vibration modal responses can be estimated from single channel data and order tracking can be performed without measured tachometer data.

  19. Narrow-band imaging and velocity maps of young stellar objects - Initial results

    NASA Technical Reports Server (NTRS)

    Morgan, J. S.; Wolff, S. C.; Strom, S. E.; Strom, K. M.

    1984-01-01

    The first trials of a new technique, designed to map low-excitation ionized gas surrounding young stellar objects, are reported. The region surrounding the T Tau stars HL Tau and XZ Tau, that near HH 101, and that near IRS 5 in L1551 have been imaged through a narrow-band (4.7 A FWHM) forbidden S II filter; three-phase CCD chip was used as the detector. By tilting the narrow-band filter, it is possible to vary the wavelength of peak transmission and thus to detect high-velocity radial flows as well as map the morphology of the excited gas near these young stars. Evidence of an apparently helical outflow is found for HH 101. Redshifted gas appears to extend southward from HL Tau toward HH 30; a blueshifted jet extends northeastward of HL Tau. A series of forbidden S II knots is seen to extend along a jet directed southwestward from the infrared source IRS 5; the knot chain appears to delineate a blueshifted outflow that decelerates as it recedes from IRS 5.

  20. The danger of using narrow-band noise maskers to measure "suppression".

    PubMed

    Moore, B C; Glasberg, B R

    1985-06-01

    These experiments investigated whether perceptual cueing plays a role in the "unmasking" effects which have been observed in forward masking for narrow-band noise maskers and brief signals. The forward masking produced by a 100-Hz-wide noise masker at a level of 60 dB SPL was measured for a 1-kHz sinusoidal signal with a raised-cosine envelope and a duration of 10 ms at the 6-dB-down points, both for the masker alone, and with various components added to the masker (and gated synchronously with the masker). Unmasking was found to occur even for components which were extremely unlikely to produce a significant suppression of the masker: these included a 75-dB SPL 4-kHz sinusoid, a 50-dB SPL 1.4-kHz sinusoid, a noise low-pass filtered at 4 kHz with a spectrum level of 0 dB, and a noise low-pass filtered at 4 kHz with a spectrum level of 20 dB presented in the opposite ear to the masker-plus-signal. It is concluded that perceptual cueing can play a significant role in producing unmasking for brief signals following narrow-band noise maskers, and that it is unwise to interpret the unmasking solely in terms of suppression.

  1. Novel schemes for the optimization of the SPARC narrow band THz source

    SciTech Connect

    Marchetti, B. Zagorodnov, I.; Bacci, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Spataro, B.; Cianchi, A.; Mostacci, A.; Ronsivalle, C.

    2015-07-15

    A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-band and acting as a longitudinal phase space linearizer.

  2. High brightness, narrow-band, Ti:Al2O3 oscillator

    NASA Astrophysics Data System (ADS)

    Brown, A. J. W.; Kangas, K. W.; Fisher, C. H.

    The injection-seeding of a short (about 30 cm) Ti:Al2O3 power oscillator with the output from a short-pulse, narrow-band, tunable, Ti:Al2O3 oscillator is reported. The frequency-doubled output from a Continuum YG681C Nd:YAG laser was used as the common pump source for both the seed laser and power oscillator. Good injection-seeding was observed with more than 20 ns delay; less delay than this resulted in poorer seeding. Minimizing the seed laser turn on time allowed harder pumping of the power oscillator, hence higher output energy, while maining good seeding. The spectral output from the power oscillator was analyzed using both an etalon and a 1-m MacPherson spectrometer. The seeded power oscillator is shown to closely replicate the seed laser output, operating on 2 or 3 longitudinal modes.

  3. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    SciTech Connect

    Nong, Hanond Markmann, Sergej; Hekmat, Negar; Jukam, Nathan; Pal, Shovon; Mohandas, Reshma A.; Dean, Paul; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Wieck, Andreas D.

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunes the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.

  4. Subwavelength-Sized Narrow-Band Anechoic Waveguide Terminations

    NASA Astrophysics Data System (ADS)

    Santillán, Arturo; Ćrenlund, Emil; Bozhevolnyi, Sergey I.

    2016-11-01

    We propose and demonstrate the use of a pair of detuned acoustic resonators to efficiently absorb narrow-band sound waves in a terminated waveguide. The suggested configuration is relatively simple and advantageous for usage at low frequencies, since the dimensions of the resonators are very small compared to the wavelength. We present a theoretical description based on lumped parameters to calculate the absorption coefficient, which agrees very well with experimental data. The experimental results verify that the anechoic (reflection approximately -38 dB ) narrow-band (Δ f /f ˜0.1 ) termination with deeply subwavelength (<λ /10 ) sizes can be realized at a target frequency, suggesting thereby applications for noise control and sensing. As an illustration of possible applications for sound absorption in a room, we demonstrate by use of numerical simulations that a given axial resonant excitation in a room can be practically eliminated. Thus, a reduction of approximately 24 dB in the average acoustic energy is achieved in the room when using only four Helmholtz resonators. We also discuss various scenarios of noise control in rooms.

  5. Narrow-band Jovian Kilometric Radiation: a New Radio Component

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.

    1980-01-01

    A new component of Jupiter's radio spectrum is investigated. The component emits in a very narrow bandwidth (less than or equal to 40 kHz) near 100 kHz. Its waveform is a very smooth and gradual rise and subsequent fall in intensity, usually over two hours. The emission is polarized with left hand polarization associated with the Jovian northern magnetic hemisphere and right hand with the south. The emissions deviation from a strict system 3 rotation period repetition rate is examined. The emission source of the narrow band component which rotates 3 to 5 percent slower than all other forms of Jovian radio emission is determined from propagation considerations, coupled with the observed lack of corotation, to a source region near the equatorial plane at the outer edge of the Io plasma torus. The narrow band KOM (nKOM) form is examined using observations from the PRA instrument. The spectrum and occurrence statistics are described and contrasted with the tapered or broadband KOM (bKOM) characteristics.

  6. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination. © 2012 American Academy of Forensic Sciences.

  7. Development of a tunable filter for coronal polarimetry

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Mathew, S. K.; Gallagher, D.

    2016-07-01

    Measuring magnetic fields in the solar corona is crucial to understanding and predicting the Sun's generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory Large Coronagraph (COSMO LC) is a proposed 1.5 m aperture coronagraph designed to synoptically observe magnetic fields and plasma properties in the large-scale corona to improve our understanding of solar processes that cause space weather. The LC will observe coronal emission lines over the wavelength range from 500 to 1100 nm with a field of view of 1° and a spatial resolution of 2 arcsec. A spectral resolution greater than 8000 over the wavelength range is needed to resolve the polarization signatures of magnetic fields in the emission line profiles. The aperture and field of view of the LC set an étendue requirement of 1.39 m2 deg2 for the postfocus instrumentation. We find that a tunable wide-field birefringent filter using Lithium Niobate crystals can meet the étendue and spectral resolution requirements for the LC spectrometer. We have tested a number of commercially available crystals and verify that crystals of the required size and birefringence uniformity are available. We also evaluate electro-optical tuning of a Lithium Niobate birefringent filter by the application of high voltage. This tunable filter represents a key enabling technology for the COSMO LC.

  8. Tracing the B[e] Phenomenon with the Narrow-Band Δ a Photometric System

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Janík, J.; Kurfürst, P.; Liška, J.; Netopil, M.; Skarka, M.; Zejda, M.

    2017-02-01

    We present a case study and first results of the 3 filter narrow-band Δ a photometric system to detect B[e] stars in an efficient way. One filter measures the flux at 5200 Å where several Fe II emission lines are located. On the basis of available spectra, we investigated the expected area in the diagnostic tool of the Δ a system, the so-called normality line, where these objects are located. They are well separated from all other known non-standard stars in the corresponding Teff (color) region. The first results of our photometric survey in the Magellanic Clouds are very promising and show the high potential of Δ a photometry to significantly contribute to this research field.

  9. Infrared fiber coupled acousto-optic tunable filter spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.

    1990-01-01

    A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.

  10. Infrared fiber coupled acousto-optic tunable filter spectrometer

    NASA Astrophysics Data System (ADS)

    Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.

    A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.

  11. Infrared fiber coupled acousto-optic tunable filter spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.

    1990-01-01

    A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.

  12. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications.

    PubMed

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-04-05

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10(-4) × (λres/n)(3). Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics.

  13. The Cosmic Infrared Background Experiment: Flight Characterization Of The Ciber Narrow Band Spectrometer.

    NASA Astrophysics Data System (ADS)

    Levenson, Louis R.; Battle, J.; Bock, J. J.; Cooray, A.; Hristov, V.; Keating, B.; Lee, D.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Wada, T.; Zemcov, M.

    2011-01-01

    Subtraction of the Zodiacal light foreground is the dominant source of uncertainty in absolute photometric measurements of the extra-galactic background at near-infrared to optical wavelengths. The second flight of the Cosmic Infrared Background ExpeRiment (CIBER) occurred on July 10th, 2010. CIBER is a NASA sounding rocket experiment carrying four co-aligned instruments including two imaging telescopes with wide passbands centered at 1 and 1.6 microns, respectively, as well as a low resolution spectrometer and a narrow-band spectrometer. THE CIBER spectrometers are absolutely calibrated in collaboration with NIST. The narrow-band spectrometer filter is centered on the Ca II solar Fraunhofer line at 854.2 nm and is designed to measure the equivalent width of the solar line reflected by the interplanetary dust in order to obtain an absolute measurement of the Zodiacal contribution to the infrared sky at that wavelength. In conjunction with measured low resolution spectrum from 700 to 1900 nm, this will provide an accurate independent check of the DIRBE Zodiacal light models. Here we describe the NBS instrument, calibration and in-flight characterization.

  14. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    PubMed Central

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  15. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    NASA Astrophysics Data System (ADS)

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-04-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10-4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics.

  16. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-06-01

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.

  17. Statistics of narrow-band partially polarized light

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail

    2017-09-01

    A complete single-point statistical description of a narrow-band partially polarized optical field is developed in terms of the 2D period-averaged probability density function (PA-PDF) of the electrical field vector. This statistic can be measured using the coherent (heterodyne) detection. PA-PDF carries more information about the partially polarized light than the traditional Stokes vector. For a simple Gaussian partially polarized field the PA-PDF depends on 13 real parameters in contrast to the four parameters of the Stokes vector or coherence tensor. We show on several examples that the polarization state of the wave, as described by PA-PDF can vary significantly even while Stokes vector remains fixed.

  18. Shining a new narrow band of light on old problems.

    PubMed

    Chan, Daniel K; Wang, Kenneth K

    2014-06-01

    Improvements in narrow band imaging (NBI) may provide an improved view of colonic mucosa for detection of polyps and adenomas. In this issue, Leung et al. report findings to suggest that this next-generation NBI technology is superior to conventional high-definition white light endoscopy in polyp detection. These findings are based on brighter illumination, which has been a problem with older generations of NBI, which did not increase polyp detection but were useful for polyp characterization. Although these findings are very promising for this new role of second-generation NBI in polyp detection, the study must be viewed with consideration of the history of the older NBI system, the analysis of which through multiple positive and negative studies ultimately led to the conclusion that it was not beneficial for detection.

  19. Narrow Band Imaging: Technology Basis and Research and Development History.

    PubMed

    Gono, Kazuhiro

    2015-11-01

    The first launch of narrow band imaging (NBI) was in 2005. Since then, in most countries where gastrointestinal endoscopies are performed, NBI is the most commonly used optical digital method of performing image-enhanced endoscopy. Thanks to the outstanding efforts of many endoscopists, many clinical studies have been performed and clinical evidence has been gathered. In Japan, since 2010, NBI has been reimbursed under the Japanese national health insurance system. This is owing to the establishment of clinical evidence by physicians. However, even though endoscope systems with NBI function have been widely used outside of Japan, dissemination of knowledge on how to use NBI is insufficient. In this review paper, the technology basis of NBI and its research and development history are described. I hope this information will be helpful for updating physicians' knowledge of NBI.

  20. Noise measurement on thermal systems with narrow band

    NASA Astrophysics Data System (ADS)

    Burks, Stephen D.; Haefner, David P.; Doe, Joshua M.

    2016-05-01

    Thermal systems with a narrow spectral bandpass and mid-wave thermal imagers are useful for a variety of imaging applications. Additionally, the sensitivity for these classes of systems is increasing along with an increase in performance requirements when evaluated in a lab. Unfortunately, the uncertainty in the blackbody temperature along with the temporal instability of the blackbody could lead to uncontrolled laboratory environmental effects which could increase the measured noise. If the temporal uncertainty and accuracy of a particular blackbody is known, then confidence intervals could be adjusted for source accuracy and instability. Additionally, because thermal currents may be a large source of temporal noise in narrow band systems, a means to mitigate them is presented and results are discussed.

  1. High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter.

    PubMed

    Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P

    2015-01-01

    A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz.

  2. Narrow-band imaging: a new tool for evaluation of head and neck squamous cell carcinomas. Review of the literature.

    PubMed

    Piazza, C; Dessouky, O; Peretti, G; Cocco, D; De Benedetto, L; Nicolai, P

    2008-04-01

    Head and neck squamous cell carcinoma of the upper aerodigestive tract is well known for its frequently late presentation and diagnosis at an advanced stage. In addition, it is well recognized that it may arise in multiple sites, either synchronously or metachronously. Thus it should be imperative to endoscopically screen the upper aerodigestive tract of patients at risk for head and neck squamous cell carcinoma with a new diagnostic tool, especially due to the fact that early lesions are very difficult to detect even by multiple passes with a standard endoscopy, if they are < or = 1 cm in diameter. Lugol chromoendoscopy, which is mainly used in the oesophagus, is not suitable for the head and neck region due to severe mucosal irritation. Herein, narrow-band imaging is described, a diagnostic tool already proved as a useful screening method in other endoscopic fields, and its application in the early detection of head and neck squamous cell carcinoma is reviewed, as reported by previous studies in the otolaryngologic literature. Narrow-band imaging relies on the principle of depth of penetration of light, with the narrow-band blue light having a short wavelength (415 nm) penetrating into the mucosa and highlighting the superficial vasculature. Furthermore, the blue filter is designed to correspond to the peak absorption spectrum of haemoglobin to enhance the image of capillary vessels on surface mucosa. Thus, superficial mucosal lesions that would be missed by regular white light endoscopy, are identified, in view of their neoangiogenetic pattern of vasculature, using the blue light of the narrow-band imaging. Narrow-band imaging has been used extensively in the lower aerodigestive system, yet there are only 2 reports of applications in the region of the head and neck, specifically the oropharynx and the hypopharynx. However, these are not the only sites that can benefit from narrow-band imaging. Herewith, the uses and importance are highlighted of narrow-band

  3. MEMS tunable optical filter based on multi-ring resonator

    SciTech Connect

    Dessalegn, Hailu E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T. E-mail: tsrinu@ece.iisc.ernet.in

    2014-10-15

    We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenability as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.

  4. Acousto-optic tunable filter multispectral imaging system

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    This paper discusses recent activities of Jet Propulsion Laboratory in the development of a new type of remote sensing multispectral imaging instruments using acousto-optic tunable filter (AOTF) as programmable bandpass filter. This remote sensor provides real-time operation; observational flexibility; measurements of spectral, spatial, and polarization information using a single instrument; and compact, solid state structure without moving parts. Two microcomputer-controlled AOTF imaging spectrometer breadboard systems were designed and built. One operates in the wavelength range of 0.48-0.76 micron and the other in the range of 1.2-2.5 micron. Experiments were performed using these two systems to observe geological and botanical objects in laboratory and outdoor environment. Results have demonstrated the feasibility of using the AOTF multispectral imaging system as a real-time versatile remote sensor with operational flexibility for future Army tactical applications.

  5. Acousto-optic tunable filter multispectral imaging system

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    This paper discusses recent activities of Jet Propulsion Laboratory in the development of a new type of remote sensing multispectral imaging instruments using acousto-optic tunable filter (AOTF) as programmable bandpass filter. This remote sensor provides real-time operation; observational flexibility; measurements of spectral, spatial, and polarization information using a single instrument; and compact, solid state structure without moving parts. Two microcomputer-controlled AOTF imaging spectrometer breadboard systems were designed and built. One operates in the wavelength range of 0.48-0.76 micron and the other in the range of 1.2-2.5 micron. Experiments were performed using these two systems to observe geological and botanical objects in laboratory and outdoor environment. Results have demonstrated the feasibility of using the AOTF multispectral imaging system as a real-time versatile remote sensor with operational flexibility for future Army tactical applications.

  6. Fluid-controlled tunable infrared filtering in hollow plasmonic nanofin cavities

    NASA Astrophysics Data System (ADS)

    Ho, Ya-Lun; Abasaki, Minoru; Yin, Shichen; Liu, Xin; Delaunay, Jean-Jacques

    2016-10-01

    Subwavelength structures sustaining surface plasmons have been employed in numerous fields due to their small size and ability to manipulate light beyond the diffraction limit. Light filtering using small-size plasmonic devices is a promising means of portable spectroscopy for purposes such as on-site chemical analyses. However, most plasmonic filters can only tune the resonance band by modifying the geometry of the structure or changing the incident light angle. Here, we present a plasmonic nanofin-cavity structure having a narrow band with its resonance wavelength controlled by varying the fluid in the hollow cavities of the filter. Control of the narrow-band resonance is realized over a wide range because of the coupling between the stationary surface plasmons generated from the nanofin-cavity mode and the propagating surface plasmons. The hollow cavity design enables fluid to be easily injected and removed, so that the filtered band can be controlled without the need for a complex and bulky structure or application of an external voltage.

  7. Tunable rejection filters with ultra-wideband using zeroth shear mode plate wave resonators

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Sannomiya, Toshio; Tanaka, Shuji

    2017-07-01

    This paper reports wide band rejection filters and tunable rejection filters using ultra-wideband zeroth shear mode (SH0) plate wave resonators. The frequency range covers the digital TV band in Japan that runs from 470 to 710 MHz. This range has been chosen to meet the TV white space cognitive radio requirements of rejection filters. Wide rejection bands were obtained using several resonators with different frequencies. Tunable rejection filters were demonstrated using Si diodes connected to the band rejection filters. Wide tunable ranges as high as 31% were measured by applying a DC voltage to the Si diodes.

  8. In situ calibration of tunable filters: Lyot and Michelson.

    PubMed

    Mudge, Jason; Tarbell, Theodore

    2014-08-01

    Solar imaging optical filter technology has progressed significantly over the past 75 years, and the ability to tune narrowband filters is particularly valuable for solar atmosphere sensing. For example, imaging while tuning over a narrow solar spectral line (emission or absorption) provides two-dimensional measurements of Doppler shifts and magnetic fields. While tuning ability has improved significantly, tuning accuracy can be a challenge over time given system actuator drifts. For many cases, the ability to calibrate these actuators in situ is convenient and cost effective (e.g., ground-based observatories), and for other cases it is required (e.g., in a spacecraft). It is ideal to calibrate in situ without the need for additional hardware such as a spectrometer, and if that cannot be achieved, the next best thing is to do so with minimum additional hardware. Two examples of solar filters that need to be calibrated periodically are: (1) a liquid crystal variable retarder Lyot filter and (2) a tunable Michelson interferometer. For the first, the filter can have a number of stages back-to-back to achieve the desired finesse. Within each stage there is a liquid crystal variable retarder that adds some amount of retardance to the stage's fixed birefringent crystal; this provides wavelength bandpass tuning. For the second, there can be several Michelson interferometers in series each with an actuator to adjust the optical path length in one of its optical paths for tuning. The stacking of these filters implies there is a need to calibrate more than one actuator. An algorithm has been developed to calibrate these types of stacked and nonstacked filters in situ with minimal, if any, hardware additions.

  9. Research on imaging spectrometer using LC-based tunable filter

    NASA Astrophysics Data System (ADS)

    Shen, Zhixue; Li, Jianfeng; Huang, Lixian; Luo, Fei; Luo, Yongquan; Zhang, Dayong; Long, Yan

    2012-09-01

    A liquid crystal tunable filter (LCTF) with large aperture is developed using PDLC liquid crystal. A small scale imaging spectrometer is established based on this tunable filter. This spectrometer can continuously tuning, or random-access selection of any wavelength in the visible and near infrared (VNIR) band synchronized with the imaging processes. Notable characteristics of this spectrometer include the high flexibility control of its operating channels, the image cubes with high spatial resolution and spectral resolution and the strong ability of acclimation to environmental temperature. The image spatial resolution of each tuning channel is almost near the one of the same camera without the LCTF. The spectral resolution is about 20 nm at 550 nm. This spectrometer works normally under 0-50°C with a maximum power consumption of 10 Watts (with exclusion of the storage module). Due to the optimization of the electrode structure and the driving mode of the Liquid Crystal cell, the switch time between adjacent selected channels can be reduced to 20 ms or even shorter. Spectral imaging experiments in laboratory are accomplished to verify the performance of this spectrometer, which indicate that this compact imaging spectrometer works reliably, and functionally. Possible applications of this imaging spectrometer include medical science, protection of historical relics, criminal investigation, disaster monitoring and mineral detection by remote sensing.

  10. A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.-L.; Liu, H.-N.; Tan, P.-H.

    2017-08-01

    Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.

  11. Tunable color filters based on metal-insulator-metal resonators.

    PubMed

    Diest, Kenneth; Dionne, Jennifer A; Spain, Merrielle; Atwater, Harry A

    2009-07-01

    We report a method for filtering white light into individual colors using metal-insulator-metal resonators. The resonators are designed to support photonic modes at visible frequencies, and dispersion relations are developed for realistic experimental configurations. Experimental results indicate that passive Ag/Si(3)N(4)/Au resonators exhibit color filtering across the entire visible spectrum. Full field electromagnetic simulations were performed on active resonators for which the resonator length was varied from 1-3 microm and the output slit depth was systematically varied throughout the thickness of the dielectric layer. These resonators are shown to filter colors based on interference between the optical modes within the dielectric layer. By careful design of the output coupling, the resonator can selectively couple to intensity maxima of different photonic modes and, as a result, preferentially select any of the primary colors. We also illustrate how refractive index modulation in metal-insulator-metal resonators can yield actively tunable color filters. Simulations using lithium niobate as the dielectric layer and the top and bottom Ag layers as electrodes, indicate that the output color can be tuned over the visible spectrum with an applied field.

  12. Micromachined Tunable Fabry-Perot Filters for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Barclay, Richard; Bier, Alexander; Chen, Tina; DiCamillo, Barbara; Deming, Drake; Greenhouse, Matthew; Henry, Ross; Hewagama, Tilak; Jacobson, Mindy; Loughlin, James; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Micromachined Fabry-Perot tunable filters with a large clear aperture (12.5 to 40 mm) are being developed as an optical component for wide-field imaging 1:1 spectroscopy. This program applies silicon micromachining fabrication techniques to miniaturize Fabry-Perot filters for astronomical science instruments. The filter assembly consists of a stationary etalon plate mated to a plate in which the etalon is free to move along the optical axis on silicon springs attached to a stiff silicon support ring. The moving etalon is actuated electrostatically by electrode pairs on the fixed and moving etalons. To reduce mass, both etalons are fabricated by applying optical coatings to a thin freestanding silicon nitride film held flat in drumhead tension rather than to a thick optical substrate. The design, electro-mechanical modeling, fabrication, and initial results will be discussed. The potential application of the miniature Fabry-Perot filters will be briefly discussed with emphasis on the detection of extra-solar planets.

  13. Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses,

    DTIC Science & Technology

    The application of acousto - optic tunable filters for shaping of ultra-fast pulses in the time domain is analyzed and demonstrated. With the rapid...advance of acousto - optic tunable filter (AOTF) technology, the opportunity for sophisticated signal processing capabilities arises. AOTFs offer unique

  14. All-fiber tunable filter and laser based on two-mode fiber.

    PubMed

    Yun, S H; Hwang, I K; Kim, B Y

    1996-01-01

    We demonstrate an all-fiber acousto-optic tunable filter based on two-spatial-mode coupling, with improved ruggedness and efficiency, by using a new acoustic-transducer design. We use a rigorous modeling of the flexural acoustic wave to analyze the mode coupling with better accuracy. Using the acousto-optic tunable filter, we demonstrate a novel all-fiber tunable laser with a tuning range of more than 20 nm and a linewidth of 0.2 nm.

  15. Switchable and Tunable Ferroelectric Bulk Acoustic Wave Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Saddik, George Nabih

    Ferroelectric materials such as barium titanate (BaTiO 3 or BTO), strontium titanate (SrTiO3 or STO), and their solid solution barium strontium titanate (BaxSr1-xTiO 3 or BST) have been under investigation for over 50 years. BTO, STO, and BST are high-k dielectric materials, with a field dependent permittivity and a perovskite crystal structure. At room temperature BTO is a ferroelectric with a ferroelectric to paraelectric transition temperature of about 116°C (Curie temperature), while STO has no ferroelectric phase. The formation of a solid solution between BTO and STO allows for the engineering of the Curie temperature; the Curie temperature decreses as the mole ratio of barium decreases. Extensive research went into understanding the properties of BST and developing RF circuits such as tunable capacitors, tunable matching networks, tunable filters, phase shifters and harmonic generators. BST tunable capacitors have always had anomalous resonances in the one port scattering parameter measurements, although they are very small they degrade the quality factor of the device, and research went into reducing these resonances as much as possible. The goal of this thesis is to investigate these anomalous resonances and exploit them into RF devices and circuits. Careful investigation showed that these resonances were field induced piezoelectric resonance. Piezoelectric materials such as AlN, ZnO, and PZT are used in many applications, such as resonators, and filters. Thin film bulk acoustic wave resonators (FBAR) have been in use by research and industry since the early 1980s, and in high volume production for cell phone duplexers since early 2000s. FBAR filters and duplexers have several advantages over surface acoustic wave (SAW) and ceramic devices such as high quality factors necessary for sharp filter skirts, small size, high performance, and ease of integration. There are two approaches to designing bulk acoustic wave resonators. The first is an FBAR where a

  16. Five years of comet narrow band photometry and imaging with TRAPPIST

    NASA Astrophysics Data System (ADS)

    Opitom, Cyrielle; Jehin, Emmanuel; Manfroid, Jean; Hutsemékers, Damien; Gillon, Michaël; Magain, Pierre

    2015-11-01

    TRAPPIST is a 60-cm robotic telescope in La Silla Observatory [1] mainly dedicated to the study of exoplanets and comets. The telescope is equipped with a set of narrow band cometary filters designed by the NASA for the Hale-Bopp observing campaign [2]. Since its installation in 2010, we gathered a high quality and homogeneous data set of more than 30 bright comets observed with narrow band filters. Some comets were only observed for a few days but others have been observed weekly during several months on both sides of perihelion. From the images, we derived OH, NH, CN, C2, and C3 production rates using a Haser [3] model in addition to the Afρ parameter as a proxy for the dust production. We computed production rates ratios and the dust color for each comet to study their composition and followed the evolution of these ratios and colors with the heliocentric distance.The TRAPPIST data set, rich of more than 10000 images obtained and reduced in an homogeneous way, allows us to address several fundamental questions such as the pristine or evolutionary origin of composition differences among comets. The evolution of comet activity with the heliocentric distance, the differences between species, and from comet to comet, will be discussed. Finally, the first results about the one year campaign on comet C/2013 US10 (Catalina) and our recent work on the re-determination of Haser scalelengths will be presented.[1] Jehin et al., The Messenger, 145, 2-6, 2011[2] Farnham et al., Icarus, 147, 180-204, 2000[3] Haser, Bulletin de l’Académie Royal des Sciences de Belgique,63, 739, 1957

  17. Role of narrow band imaging in endoscopic submucosal dissection

    PubMed Central

    Nonaka, Kouichi; Nishimura, Makoto; Kita, Hiroto

    2012-01-01

    Narrow band imaging (NBI) is a new image enhancement system employing optic digital methods to enhance images of blood vessels on mucosal surfaces, allowing improved visualization of mucosal surface structures. Studies have progressed over the last several years, and the clinical usefulness has been demonstrated. NBI has become frequently applied for preoperative diagnosis before endoscopic submucosal dissection (ESD) of digestive tract cancers, as well as for assessment of the range of ESD for en-bloc resection of large lesions. Consensus has been reached with regard to the usefulness of NBI for detecting micro-lesions of esophageal squamous cell carcinoma indicated for ESD, for the diagnosis of the range and depth. NBI has also been attracting attention for diagnosing gastric cancer based on the observation of micro blood vessels on the mucosal surface and mucosal surface microstructures. The usefulness of NBI has been reported in relation to various aspects of colon cancer, including diagnoses of the presence, quality, range, and depth of lesions. However, as NBI has not surpassed diagnostic methods based on magnifying observation combined with the established and widely employed dye method, its role in ESD is limited at present. Although NBI is very useful for the diagnosis of digestive tract cancers, comprehensive endoscopic diagnosis employing the combination of conventional endoscopy including dye spraying, EUS, and NBI may be important and essential for ESD. PMID:23125896

  18. Use of narrow band imaging in assessing duodenal villous atrophy.

    PubMed

    Goswami, Amitava; Dadhich, Sunil; Bhargava, Narendra

    2014-09-01

    Narrow band imaging endoscopy with magnification (NBI-ME) has already been established in Barrett's esophagus, stomach, and colonic mucosa, but limited work has been done in the mucosal evaluation of duodenum. A study was done to determine the correlation between NBI and histology in grading villous architecture in varied etiology. A prospective observational study comprising 105 subjects with suspected malabsorption. The presence of a diagnosed celiac disease, severe life threatening comorbidity, or pregnancy was considered as exclusion criteria. Standard endoscopy (SE), NBI-ME, multiple duodenal biopsies with histopathological examination were done in all. Fifty-one patients had celiac disease while 54 patients comprised mainly functional dyspepsia, iron deficiency anemia, tropical malabsorption syndrome, and irritable bowel syndrome. Four NBI-ME image subtypes of villous morphology have been proposed (NBI type I/II/III/IV). NBI-ME had 95 % sensitivity, 90.2 % specificity, 91.2 % positive predictive value, and 94.2 % negative predictive value for diagnosing altered villous morphology. Intraobserver kappa agreement coefficient (κ) for NBI-ME was 0.83 while interobserver agreement was 0.89 (95 % CI 0.8-0.97). NBI-ME has good performance characteristics and very good kappa intra/interobserver agreement coefficient for varied subtypes of villous morphology. NBI-ME is most useful for obtaining a targeted biopsy which can be missed by conventional white light endoscopy.

  19. Superscattering-enhanced narrow band forward scattering antenna

    NASA Astrophysics Data System (ADS)

    Hu, De-Jiao; Zhang, Zhi-You; Du, Jing-Lei

    2015-10-01

    We present a narrow band forward scattering optical antenna which is based on the excitation of distinctive whispering gallery modes (WGMs). The antenna is composed of three coaxial cylinder layers: a dielectric layer is sandwiched between a metallic core and cladding. Owing to the destructive interference between the scattering of the outer metallic cladding and the WGM in the backward direction, the power flow in the forward direction is increased. Simulation and analysis show that in proper geometry conditions, the cavity can be tuned into a superscattering state. At this state, both the zeroth and the first order of WGM are excited and contribute to the total scattering. It is shown that the power ratio (power towards backward divided by power towards forward) can be enhanced to about 27 times larger than that for a non-resonant position by the superscattering. Owing to the confinement of the cladding to WGMs, the wavelength range of effective forward scattering is considerably narrow (about 15 nm). Project supported by the National Natural Science Foundation of China (Grant No. 61377054), the Collaborative Innovation Foundation of Sichuan University, China (Grant No. XTCX 2013002), and the International Cooperation and Exchange of Science and Technology Project in Sichuan Province, China (Grant No. 2013HH0010).

  20. Narrow-band ELF events observed from South Pole Station

    NASA Astrophysics Data System (ADS)

    Heavisides, J.; Weaver, C.; Lessard, M.; Weatherwax, A. T.

    2012-12-01

    Extremely Low Frequency (ELF) waves are typically in the range of 3 Hz - 3 kHz and can play a role in acceleration and pitch-angle scattering of energetic particles in the radiation belts. Observations of a not uncommon, but not well studied ELF phenomenon are presented with ground-based data from South Pole Station. The narrow-band waves last approximately one or two minutes maintaining bandwidth over the course of the event, begin around 100 Hz, decrease to about 70 Hz, and typically show a higher frequency harmonic. The waves have only been documented at four locations - Heacock, 1974 (Alaska); Sentman and Ehring, 1994 (California); Wang et al, 2005 and Wang et al, 2011 (Taiwan); and Kim et al, 2006 (South Pole). The waves observed at the South Pole are not detected when the Sun drops below a 10 degree elevation angle, which is not true for the other locations. We extend the study of Kim et al, 2006, and explore possible generation mechanisms including sunlit ionosphere and ion cyclotron wave modes, as well as correspondence with energetic particle precipitation.

  1. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas.

    PubMed

    Zhao, H Y; Zhao, H W; Sun, L T; Zhang, X Z; Wang, H; Ma, B H; Li, X X; Zhu, Y H; Sheng, L S; Zhang, G B; Tian, Y C

    2008-02-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources -- LECR2M and SECRAL -- was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied.

  2. Narrow band gap conjugated polymers for emergent optoelectronic technologies

    NASA Astrophysics Data System (ADS)

    Azoulay, Jason D.; Zhang, Benjamin A.; London, Alexander E.

    2015-09-01

    Conjugated organic molecules effectively produce and harvest visible light and find utility in a variety of emergent optoelectronic technologies. There is currently interest in expanding the scope of these materials to extend functionality into the infrared (IR) spectral regions and endow functionality relevant in emergent technologies. Developing an understanding of the interplay between chemical and electronic structure in these systems will require control of the frontier orbital energetics (separation, position, and alignment), ground state electronic configurations, interchain arrangements, solid-state properties, and many other molecular features with synthetic precision that has yet to be demonstrated. Bridgehead imine substituted 4H-cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) structural units, in combination with strong acceptors with progressively delocalized π-systems, afford modular donor-acceptor copolymers with broad and long wavelength absorption that spans technologically relevant wavelength (λ) ranges from 0.7 < λ < 3.2 μm.1 Here we demonstrate that electronic and structural manipulation play a major role in influencing the energetics of these systems and ultimately controlling the band gap of the materials. These results bear implication in the development of very narrow band gap systems where precise control will be necessary for achieving desired properties such as interactions with longer wavelength light.

  3. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  4. Materials for imaging acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2014-05-01

    Research and development of robust compact hyperspectral imagers that can acquire both spectral and spatial features from a scene of interest is of utmost importance for standoff detection of targets as well as chemical and biological agents and backgrounds. Hyperspectral imagers can acquire images with a large number of narrow spectral bands and take advantage of the characteristic spectral signatures of different materials making up the scene. At the Army Research Laboratory (ARL), we are developing hyperspectral imagers based on acousto-optic tunable filters (AOTFs) that can provide adaptive no-moving-parts imagers from the ultraviolet (UV) to the long wave infrared (LWIR) to acquire a two-dimensional spectral image and build up a two-dimensional image cube as a function of time instead of using traditional grating or prism based approach that requires relative motion between sensor and scene. Here, we will review the development of different imaging AOTFs operating from the UV to the LWIR based on a variety of birefringent materials and include the spectral imaging carried out with these filters including both with single and double piezoelectric transducers. We will also include the theoretical background needed to carry out the filter design and discuss development of mercurous halide crystals that can be used to develop AOTFs operating over a wide spectral region from the visible to the LWIR.

  5. Enabling tunable micromechanical bandpass filters through phase-change materials

    NASA Astrophysics Data System (ADS)

    Cao, Yunqi; Torres, David; Wang, Tongyu; Tan, Xiaobo; Sepúlveda, Nelson

    2017-08-01

    Vanadium dioxide (VO2), one of the most promising phase-change smart materials, has shown strong frequency tuning capabilities in MEMS resonators. In this paper, we demonstrate the potential use of VO2-based MEMS devices as second-order kilohertz (kHz) bandpass filters with tunable band selectivity and adjustable bandwidth (BW). Two identical on-chip micro resonators are actuated using mechanical excitation and measured using optical detection. One of the resonators is not actuated while the other is tuned by applying electric currents across an integrated resistive heater, which induces the phase transition of the VO2, and consequently a large stress to the mechanical structure. The responses of both MEMS resonators are combined, resulting in a resonant peak of tunable BW controlled by the input current. The BW can be extended to 2.62 times by using two bridges or 2.39 times by implementing one pair of cantilevers. The results for both devices are discussed.

  6. Tunable thin film filters for intelligent WDM networks

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bartolini, Glenn; Lourie, Mark; Domash, Lawrence

    2006-08-01

    Optical transmission systems have evolved rapidly in recent years with the emergence of new technologies for gain management, wavelength multiplexing, tunability, and switching. WDM networks are increasingly expected to be agile, flexible, and reconfigurable which in turn has led to a need for monitoring to be more widely distributed within the network. Automation of many actions performed on these networks, such as channel provisioning and power balancing, can only be realized by the addition of optical channel monitors (OCMs). These devices provide information about the optical transmission system including the number of optical channels, channel identification, wavelength, power, and in some cases optical signal-to-noise ratio (OSNR). Until recently OCMs were costly and bulky and thus the number of OCMs used in optical networks was often kept to a minimum. We describe a family of tunable thin film filters which have greatly reduced the cost and physical footprint of channel monitors, making possible 'monitoring everywhere' for intelligent optical networks which can serve long haul, metro and access requirements from a single technology platform. As examples of specific applications we discuss network issues such as auto provisioning, wavelength collision avoidance, power balancing, OSNR balancing, gain equalization, alien wavelength recognition, interoperability, and other requirements assigned to the emerging concept of an Optical Control Plane.

  7. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1993-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  8. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1995-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  9. Optically tunable acoustic wave band-pass filter

    SciTech Connect

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-15

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  10. Optically tunable acoustic wave band-pass filter

    NASA Astrophysics Data System (ADS)

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-01

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  11. Bioimaging system using acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Kasili, Paul M.; Mobley, Joel; Cullum, Brian M.; Vo-Dinh, Tuan

    2000-05-01

    The interaction of light with tissue has ben used to recognize disease since the mid-1800s. The recent developments of light sources, detectors, and fiber optic probes provide opportunities to measure these interactions, which yield information for tissue diagnosis at the biochemical, structural, or physiological level. In this paper, we describe a bioimaging system designed for biomedical applications and show laser-indued fluorescence (LIF) images mammalian brain tissue. The LIF imaging of tissue was carried out in vitro using two laser excitations: 488 nm and 514 nm. Images were recorded through an acousto- optic tunable filter over the range 500 nm-650 nm with a charged coupled device camera. Background subtracted images were generated across the fluorescent wavelength. Subtraction allowed a safe comparison to be made with well- contrasted images. Of the two tested excitation wavelengths, 488 nm excitation gave the more distinctive contrast.

  12. The Origin of Narrow Band Cyclotron Wave Emissions Called Chorus

    NASA Astrophysics Data System (ADS)

    Skoug, Ruth Marie

    1995-01-01

    On May 6, 1993, a sounding rocket experiment designed to study microburst electron precipitation was launched from Poker Flat, Alaska, into a morningside auroral event. This was the first sounding rocket to simultaneously detect microburst electrons and associated very low frequency (VLF) waves. Both microbursts and narrow band VLF chorus (risers) were observed throughout the flight. Waves and electron bursts were observed in association with each other, but no one-to-one correlations were seen between the two phenomena. The association between waves and particles suggests that both phenomena may be produced by a wave -particle interaction. This dissertation discusses the design of the VLF wave antenna, a magnetic search coil, and the analysis of data from this instrument. The data are compared to chorus production theories to determine the source location and mechanism of the observed waves. In this work, the observed chorus emissions are interpreted in terms of a cyclotron resonance interaction. This is the first comprehensive test of the cyclotron resonance theory applied to chorus associated with microburst precipitation. The frequency range of the risers and the observed electron energy range agree with those required to satisfy the cyclotron resonance condition. Using a criterion derived from the conservation of energy during an interaction, it is determined that a cold plasma cyclotron resonance interaction could have produced only the lower frequency portions of the observed chorus risers. We present an extension of the cyclotron resonance theory which uses a warm plasma model of the wave-particle interaction. This model assumes a two-component plasma, with an isotropic cold component and a bi-Maxwellian warm component. The addition of the warm component produces sufficient changes in the wave dispersion relation that the interaction can produce the highest frequencies observed in our data set. As predicted by theory, an anisotropic plasma is required to

  13. Tunable transportable spectroradiometer based on an acousto-optical tunable filter: Development and optical performance

    NASA Astrophysics Data System (ADS)

    Kozlova, O.; Sadouni, A.; Truong, D.; Briaudeau, S.; Himbert, M.

    2016-12-01

    We describe a high-performance, transportable, versatile spectroradiometer based on an acousto-optical tunable filter (AOTF). The instrument was developed for temperature metrology, namely, to determine the thermodynamic temperature of black bodies above the Ag freezing point (961.78 °C). Its main design feature is the attenuation of the diffraction side lobes (and, thus, out-of-band stray light) thanks to the use of a double-pass configuration. The radiofrequency tuning of the AOTF allows continuous, fine, and rapid wavelength control over a wide spectral range (650 nm-1000 nm). The instrument tunability can be easily calibrated with an Ar spectral lamp with reproducibility within 10 pm over one week. The instrument was characterised in terms of relative signal stability (few 10-4) and wavelength stability (1 pm) over several hours. The spectral responsivity of the instrument was calibrated with two complementary methods: tuning of the wavelength of the optical source or tuning the radiofrequency of the AOTF. Besides the application for thermodynamic temperature determination at the lowest uncertainty level, this instrument can also be used for multispectral non-contact thermometry of processed materials of non-grey and non-unitary emissivity (in the glass or metallurgical industries).

  14. Effects of sidelobes on acousto-optic tunable filter imaging

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Suhre, Dennis R.

    2017-07-01

    An acousto-optic tunable filter (AOTF) is used in the development of hyperspectral imagers from the ultraviolet to the longwave infrared. The spectral response of the transmitted intensity from an AOTF with a rectangular transducer has a sinc2(x) distribution and so far the light leakage from the sidelobes is ignored in hyperspectral imagers. When unpolarized white light is incident on an AOTF, two orthogonally polarized diffracted beams at a specific wavelength with a narrow bandpass filter are transmitted for an applied radio frequency (RF), and an image cube is obtained by tuning the applied RF. We carried out a detailed study of light transmitted through the sidelobes of a TeO2 AOTF operating in the shortwave infrared region from 0.9 to 1.7 μm to image a scene containing a laser. The AOTF imaging system used telecentric confocal optics that compensate for AOTF aberrations. We used a 16-channel RF driver with independent amplitude and frequency control. By switching off specific RF signals applied to the AOTF, the detailed sidelobe structure for the transmitted intensity was measured and compared with theory. We found that close to 10% of the transmitted light is leaked through the sidelobes. Here, we present our experiment and analysis of the results.

  15. Tunable-optical-filter-based white-light interferometry for sensing.

    PubMed

    Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng

    2005-06-15

    We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.

  16. Broad- and Narrow-Band Wide-Field Imaging with pODI

    NASA Astrophysics Data System (ADS)

    Salzer, John J.; Janowiecki, S.

    2013-06-01

    We present preliminary results of two distinct "science verification" observing programs that make use of the pODI instrument on the WIYN 3.5m telescope. This new camera covers a ~0.2 square degree field of view, has a fine pixel scale (0.11"/pixel), and delivers excellent image quality across the entire one-degree field. The first program consisted of observations of an extremely low HI-mass object to search for an optical counterpart (using gri filters) and signs of current star formation (using an Hα filter). This object was detected in 21-cm HI emission by the ALFALFA survey and appears as a blue low-surface-brightness galaxy in our deep observations. Second, we have used multiple narrow-band filters to carry out wide field surveys for emission-line sources at various redshifts. We surveyed fields with existing spectroscopic follow-up (COSMOS, DEEP2) and also new fields to detect previously unknown emission-line sources at high redshift. Finally, we demonstrate our use of the ODI Pipeline Portal and Archive system in customizing the reduction and performing some of the data analysis in these projects.

  17. Narrow-band Imaging In Ihe Cn Band Head

    NASA Astrophysics Data System (ADS)

    Uitenbroek, Han; Tritschler, A.

    2006-06-01

    We report on results of an observing campaign intended to revive an old CN Lyot filter originally built by Bernhard Lyot himself, but modified at Sacramento Peak. The filter has two band-width settings of 0.025 nm and 0.05 nm which can be fine tuned thermally. We characterise the passband of the Lyot filter and the employed prefilter based on osbervations performed with a spectrograph. We also performed an imaging experiment in an attempt to obtain data visualizing the imaging capability of the filter. Our results show that the CN filter is in a surprisingly good condition and is most suited for observations to verify theoretical predictions about the brightness of magnetic elements in the CN bandhead at 388.3\\,nm.

  18. All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter.

    PubMed

    Yu, Jianhui; Han, Yuqi; Huang, Hankai; Li, Haozi; Hsiao, Vincent K S; Liu, Weiping; Tang, Jieyuan; Lu, Huihui; Zhang, Jun; Luo, Yunhan; Zhong, Yongchun; Zang, Zhigang; Chen, Zhe

    2014-03-10

    A fiber surface grating (FSG) formed from a photosensitive liquid crystal hybrid (PLCH) film overlaid on a side-polished fiber (SPF) is studied and has been experimentally shown to be able to function as an all-optically reconfigurable and tunable fiber device. The device is all-optically configured to be a short period fiber surface grating (SPFSG) when a phase mask is used, and then reconfigured to be a long period FSG (LPFSG) when an amplitude mask is used. Experimental results show that both the short and long period FSGs can function as an optically tunable band-rejection filter and have different performances with different pump power and different configured period of the FSG. When configured as a SPFSG, the device can achieve a high extinction ratio (ER) of 21.5dB and a wideband tunability of 31nm are achieved. When configured as a LPFSG, the device can achieve an even higher ER of 23.4dB and a wider tunable bandwidth of 60nm. Besides these tunable performances of the device, its full width at half maximum (FWHM) can also be optically tuned. The reconfigurability and tunability of the fiber device open up possibilities for other all-optically programmable and tunable fiber devices.

  19. Swept laser source based on acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Chen, Minghui; Li, Hao; Chen, Rong

    2014-12-01

    The design and development of the swept laser for optical coherence tomography is presented. It is manifested by a semiconductor optical amplifier, a fiber coupler, two fiber isolators, a semiconductor optical amplifier (SOA) and an acousto-optic tunable filter (AOTF) for frequency tuning within a unidirectional all-fiber ring cavity. Light output from the coupler is further amplified and spectral shaped by a booster SOA terminated at both ends with two isolators. The total loss in ring cavity is 8.2 dB. The gain SOA provides fiber-to-fiber small signal gain of 22.2 dB with saturation output power of 9.0 dBm. The developed laser source provides up to 100 kHz over a full-width wavelength tuning range of 140 nm at center wavelength of 1308 nm with an average power of 8 mW, yielding an axial resolution of 5.4 μm in air for OCT imaging. Theoretically, the measurement principle and the feasibility of the system are analyzed. Implementing the laser source in swept source based OCT (SS-OCT) system, real-time structural imaging of biological tissue is realized.

  20. Tunable filter imaging of high-redshift quasar fields

    NASA Astrophysics Data System (ADS)

    Swinbank, John; Baker, Joanne; Barr, Jordi; Hook, Isobel; Bland-Hawthorn, Joss

    2012-06-01

    We have used the Taurus Tunable Filter to search for Lyα emitters in the fields of three high-redshift quasars: two at z˜ 2.2 (MRC B1256-243 and MRC B2158-206) and one at z˜ 4.5 (BR B0019-1522). Our observations had a field of view of around 35 arcmin2, and reached AB magnitudes of ˜21 (MRC B1256-243), ˜22 (MRC B2158-206) and ˜22.6 (BR B0019-1522) depending on wavelength. We have identified candidate emission-line galaxies in all the three fields, with the higher redshift field being by far the richest. By combining our observations with simulations of the instrumental response, we estimate the total density of emission-line galaxies in each field. 17 candidate emission-line galaxies were found within 1.5 Mpc of BR B0019-1522, a number density of (4.9 ± 1.2) × 10-3 Mpc-3, suggesting a significant galaxy overdensity at z˜ 4.5.

  1. Performance analysis on cascaded asymmetric photonic crystal Mach-Zehnder tunable filter

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Zhao, Zhiyong; Liu, Teng; He, Lei; di, Yuanjian; Cui, Xingning

    2017-02-01

    A cascaded asymmetric photonic crystal Mach-Zehnder filter structure is proposed to improve the quality factor (Q value) and the sensitivity of the tunable optical filter. The mathematical relationship between the output wavelength of M-Z filter and the voltage applied on the multilayer PZT is established. The simulation results show that the full width at half maximum can be decreased from 17 nm to 9 nm, in addition, the transmission peak wavelength varies by adjusting the applied voltage and the sensitivity can attain to 0.7 nm/V by using the multilayer PZT, which can achieve tunable filtering effectively.

  2. A method to design tunable quadrature filters in phase shifting interferometry.

    PubMed

    Mosiño, J F; Doblado, D Malacara; Hernández, D Malacara

    2009-08-31

    The main purpose of this paper is to present a method to design tunable quadrature filters in phase shifting interferometry. The algorithm is obtained from a generalized Fourier transform of a symmetrical quadrature filter. This formalism allows us to represent the detuning phase shift error and bias modulation as geometrical conditions. Therefore, the design of the filter becomes a set of solvable linear equations. Hence, to prove our method, several general tunable filters, like three and four frame algorithms, are obtained. Finally, from our results we reproduce particular symmetrical four frame algorithms reported in literature.

  3. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2017-02-01

    In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.

  4. Discovery of a high-z protocluster with tunable filters: the case of 6C0140+326 at z= 4.4

    NASA Astrophysics Data System (ADS)

    Kuiper, E.; Hatch, N. A.; Venemans, B. P.; Miley, G. K.; Röttgering, H. J. A.; Kurk, J. D.; Overzier, R. A.; Pentericci, L.; Bland-Hawthorn, J.; Cepa, J.

    2011-10-01

    We present the first results obtained using a tunable narrow-band filter in the search for high-z protoclusters. Using the recently commissioned red tunable filter on the Gran Telescopio Canarias, we have searched for Lyα emitters in a 75 arcmin2 field centred on the z= 4.413 radio galaxy 6C0140+326. With three different wavelength tunings, we find a total of 27 unique candidate Lyα emitters. The availability of three different wavelength tunings allows us to make estimates of the redshifts for each of the objects. It also allows us to separate a possible protocluster from a structure in the immediate foreground. This division shows that the foreground region contains significantly fewer Lyα emitters. Also, the spatial distribution of the objects in the protocluster field deviates from a random distribution at the 2.5σ level. The observed redshift distribution of the emitters is different from the expected distribution of a blank field at the ˜3σ level, with the Lyα emitters concentrated near the radio galaxy at z > 4.38. The 6C0140+326 field is denser by a factor of 9 ± 5 than a blank field, and the number density of Lyα emitters close to the radio galaxy is similar to that of the z˜ 4.1 protocluster around TN J1338-1942. We thus conclude that there is an overdensity of Lyα emitters around the radio galaxy 6C0140+326. This is one of few known overdensities at such a high redshift.

  5. Narrow band photometry of comet Kohoutek. [made at the Cassegrain focus of a 36-inch astronomical telescope

    NASA Technical Reports Server (NTRS)

    Brown, L. W.

    1976-01-01

    Photometric observations of the coma of comet Kohoutek were made at the Cassegrain focus of a 36-inch telescope. The observations consisted of one wide (visual, 5454 A) and six narrow (CN, 3879 A; C3, 4057 A; C2, 4732 A, 5165 A, 5634 A; continuum, 5200 A) band interference filters. In addition each filter was used with six diaphragms. Good quality data were obtained on 13 days between November 1973 and February 1974. A small flare was observed on 1 December for all filters, a CN flare on 13 January, and a visual flare on 28 January. The data were reduced to absolute narrow band magnitudes of the comet for the 13 days. The radial dependence of the surface brightness was derived from the set of diaphragms and future work will be directed toward using these results for modeling density distributions for the coma.

  6. Tunable first-order resistorless all-pass filter with low output impedance.

    PubMed

    Beg, Parveen

    2014-01-01

    This paper presents a voltage mode cascadable single active element tunable first-order all-pass filter with a single passive component. The active element used to realise the filter is a new building block termed as differential difference dual-X current conveyor with a buffered output (DD-DXCCII). The filter is thus realized with the help of a DD-DXCCII, a capacitor, and a MOS transistor. By exploiting the low output impedance, a higher order filter is also realized. Nonideal and parasitic study is also carried out on the realised filters. The proposed DD-DXCCII filters are simulated using TSMC the 0.25 µm technology.

  7. Can narrow-band imaging be used to determine the surgical margin of superficial hypopharyngeal cancer?

    PubMed

    Orita, Yorihisa; Kawabata, Kazuyoshi; Mitani, Hiroki; Fukushima, Hirofumi; Tanaka, Shiro; Yoshimoto, Seiichi; Yamamoto, Noriko

    2008-06-01

    Narrow-band imaging (NBI) is a novel optical technique that uses narrow bandwidth filters in a video endoscope system to improve the diagnostic capability of endoscopes in characterizing tissues. It is well known that early identification of neoplasia in the gastrointestinal tract using this technique might make it possible to reduce the suffering of patients caused by loss of function or severe complications after radical surgery. Several reports have introduced this system as a preoperative examination to evaluate the lateral spread of the neoplastic lesions in the oropharynx or hypopharynx. We experienced a case with hypopharyngeal cancer in which we were able to avoid underestimating cancer lesions following insufficient resection using the NBI system. A 62-year-old female underwent partial hypopharyngectomy with the margin estimated by an NBI view coupled with reconstruction of the hypopharynx while preserving the larynx. The resected specimen was cut into serial sections for a detailed pathology examination. The surgical margin seemed to be wide enough and it could be assumed that if possible we should observe these cancers with conventional electroendoscopy and NBI before treatment.

  8. Narrow band pulses as stimuli in an auditory brain stem recording study with a harbor porpoise

    NASA Astrophysics Data System (ADS)

    Beedholm, Kristian; Miller, Lee A.

    2005-04-01

    We have studied several aspects of hearing by a harbor porpoise using the ABR method with pulsed stimuli. Experiments were conducted on a male porpoise in collaboration with Fjord and Baelt, Kerteminde, Denmark. The animal had suction cups containing silver electrodes placed near the blowhole and near the dorsal fin. When fitted with the electrodes he moved to an underwater listening post where his outgoing sonar signal could be used to trigger a phantom echo. EEG signals were amplified differentially and averaged over a variable number of presentations depending on trial duration and experiment. For studying the frequency/intensity response, narrow band pulsed stimuli were generated and presented in several ways. One way was to use the impulse response of a B&K 1/3 octave filter bank (set to 80, 100, 125, or 160 kHz) as a stimulus. This stimulus was presented in both a passive hearing task, when a signal generator triggered the echo, and in an active experiment, where the echo was time locked to the animals emitted signal. Our results show the best response at 125 kHz and indicate a slight, but significantly higher response in the active mode. The latter has a methodological explanation. [Work supported by ONR.

  9. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  10. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    PubMed

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  11. Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter.

    PubMed

    Errando-Herranz, Carlos; Niklaus, Frank; Stemme, Göran; Gylfason, Kristinn B

    2015-08-01

    We experimentally demonstrate a microelectromechanically (MEMS) tunable photonic ring resonator add-drop filter, fabricated in a simple silicon-on-insulator (SOI) based process. The device uses electrostatic parallel plate actuation to perturb the evanescent field of a silicon waveguide, and achieves a 530 pm resonance wavelength tuning, i.e., more than a fourfold improvement compared to previous MEMS tunable ring resonator add-drop filters. Moreover, our device has a static power consumption below 100 nW, and a tuning rate of -62  pm/V, i.e., the highest reported rate for electrostatic tuning of ring resonator add-drop filters.

  12. High-efficiency microwave photonic harmonic down-conversion with tunable and reconfigurable filtering.

    PubMed

    Liao, Jinxin; Zheng, Xiaoping; Li, Shangyuan; Zhang, Hanyi; Zhou, Bingkun

    2014-12-01

    A new optical-frequency comb-based microwave photonic harmonic down-convertor with tunable and reconfigurable filtering is proposed and experimentally demonstrated. The coherent evenly spaced optical carriers offer harmonic down-conversion for ultrahigh radio frequency signals with low-frequency local oscillator, and construct a tunable and reconfigurable bandpass filter for the intermediate-frequency (IF) signal combined with dispersion. This implementation features high conversion efficiency. Experimental results show the filtered output IF signal has a clean spectrum with high quality. Measured conversion loss is 8.3 dB without extra electrical amplification.

  13. Widely tunable mode-locked fiber laser using carbon nanotube and LPG W-shaped filter.

    PubMed

    Wang, Jie; Zhang, A Ping; Shen, Yong Hang; Tam, Hwa-yaw; Wai, P K A

    2015-09-15

    A widely tunable mode-locked fiber laser using a carbon nanotube absorber and a fiber-optic W-shaped spectral filter is presented. The W-shaped filter is constructed by sandwiching a phase-shifted long-period grating between two LPGs of different periods. By adjusting the temperature of the W-shaped filter from 23°C to 100°C, the central wavelength of the mode-locked fiber laser can be continuously tuned from 1597 to 1553 nm. The tuning range is further extended to 1531.6 nm when a shorter erbium-doped fiber is used in the fiber oscillator. The experimental results reveal that the large thermal tunability of the proposed LPG filter provides an effective approach to achieve compact widely tunable mode-locked fiber lasers covering both C and L bands.

  14. Tolerability of magnifying narrow band imaging endoscopy for esophageal cancer screening

    PubMed Central

    Yamasaki, Yasushi; Takenaka, Ryuta; Hori, Keisuke; Takemoto, Koji; Kawano, Seiji; Kawahara, Yoshiro; Okada, Hiroyuki; Fujiki, Shigeatsu; Yamamoto, Kazuhide

    2015-01-01

    AIM: To compare the tolerability of magnifying narrow band imaging endoscopy for esophageal cancer screening with that of lugol chromoendoscopy. METHODS: We prospectively enrolled and analyzed 51 patients who were at high risk for esophageal cancer. All patients were divided into two groups: a magnifying narrow band imaging group, and a lugol chromoendoscopy group, for comparison of adverse symptoms. Esophageal cancer screening was performed on withdrawal of the endoscope. The primary endpoint was a score on a visual analogue scale for heartburn after the examination. The secondary endpoints were scale scores for retrosternal pain and dyspnea after the examinations, change in vital signs, total procedure time, and esophageal observation time. RESULTS: The scores for heartburn and retrosternal pain in the magnifying narrow band imaging group were significantly better than those in the lugol chromoendoscopy group (P = 0.004, 0.024, respectively, ANOVA for repeated measures). The increase in heart rate after the procedure was significantly greater in the lugol chromoendoscopy group. There was no significant difference between the two groups with respect to other vital sign. The total procedure time and esophageal observation time in the magnifying narrow band imaging group were significantly shorter than those in the lugol chromoendoscopy group (450 ± 116 vs 565 ± 174, P = 0.004, 44 ± 26 vs 151 ± 72, P < 0.001, respectively). CONCLUSION: Magnifying narrow band imaging endoscopy reduced the adverse symptoms compared with lugol chromoendoscopy. Narrow band imaging endoscopy is useful and suitable for esophageal cancer screening periodically. PMID:25759551

  15. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Luo, Huan; Bao, Shiwei; Zhou, Yifan; Chen, Sihai

    2011-02-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  16. Multifunctional tunable multiwavelength erbium-doped fiber laser based on tunable comb filter and intensity-dependent loss modulation

    NASA Astrophysics Data System (ADS)

    Quan, Mingran; Li, Yuan; Tian, Jiajun; Yao, Yong

    2015-04-01

    A multiwavelength erbium-doped fiber laser based on tunable comb spectral filter and intensity-dependent loss modulation is proposed and experimentally demonstrated. The laser allows fine and multifunctional tunable operations of channel-spacing, peak-location, spectral-range, and wavelength-number. More specifically, channel-spacing switch from 0.4 nm to 0.2 nm and peak-location adjustment within half of free spectrum range are obtained via controlling the tunable comb filter. The wavelength-number and the spectral-range of the lasing lines can be accurately controlled by intensity-dependent loss modulation in the laser cavity, enabled by a power-symmetric nonlinear optical loop mirror. In addition, fine control over the wavelength-number at fixed spectral-range is realized by simply adjusting the pump power. More important, the tunable operation process for every type of specific parameter is individual, without influences for other output parameters. Such features of this fiber laser make it useful and convenient for the practical application.

  17. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  18. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  19. Recent progress in improving low-temperature stability of infrared thin-film interference filters.

    PubMed

    Li, B; Zhang, S; Jiang, J; Liu, D Q; Zhang, F

    2005-08-22

    The degeneration of performance of an optical thin-film interference filter associated with the change of temperature is not acceptable. In this letter, we report a new progress in improving low-temperature performance of infrared narrow-band filters by using Pb(1-x)Ge(x)Te initial bulk alloy with appropriate Ge concentration x. It can be found that there exists a critical temperature for the investigated narrow-band filter, at which the temperature coefficient of filter is exactly zero. Therefore, by means of controlling the composition in (Pb(1-x)Ge(x))(1-y)Te(y) layers, the temperature coefficient of filter can be tunable at the designated low-temperature. In our present investigation, when temperature varies from 300 to 85 K, a shift of peak wavelength of 0.05935 nm.K-1 has been achieved.

  20. Tunable chromatic dispersion and dispersion slope compensator using a planar lightwave circuit lattice-form filter.

    PubMed

    Takiguchi, K; Takahashi, H; Shibata, T

    2008-06-01

    A tunable chromatic dispersion and dispersion slope compensator is proposed that has a single lattice-form filter configuration. Wavelength dependence is intentionally added to its tunable couplers, which produces dispersion slope compensation in addition to the dispersion compensation. Dispersion tunability of +/- 500 ps/nm and a slope of -4.9 ps/nm(2) over 40 GHz are successfully demonstrated, thus meeting the requirement for 40 Gbits/s differential quadrature phase shift keying transmission with an 80 km long nonzero dispersion-shifted fiber.

  1. RF-MEMS tunable interdigitated capacitor and fixed spiral inductor for band pass filter applications

    NASA Astrophysics Data System (ADS)

    Bade, Ladon Ahmed; Dennis, John Ojur; Khir, M. Haris Md; Wen, Wong Peng

    2016-11-01

    This research presents the tunable Radio Frequency Micro Electromechanical Systems (RF-MEMS) coupled band-pass filter (BPF), which possess a wide tuning range and constructed by using the Chebyshev fourth degree equivalent circuit consisting of fixed inductors and interdigitated tunable capacitors. The suggested method was authenticated by designing a new tunable BPF with a 100% tuning range from 3.1 GHz to 4.9 GHz. The Metal Multi-User MEMS Process (Metal MUMPs) was involved in the process of design of this band-pass filter. It aimed to achieve the reconfiguration of frequencies and show high efficiency of RF in the applications that using Ultra Wide Band (UWB) such as wireless sensor networks. The RF performance of this filter was found to be very satisfactory due to its simple fabrication. Moreover, it showed less insertion loss of around 4 dB and high return loss of around 20 dB.

  2. Note: Tunable notch filter based on liquid crystal technology for microwave applications

    NASA Astrophysics Data System (ADS)

    Urruchi, V.; Marcos, C.; Torrecilla, J.; Sánchez-Pena, J. M.; Garbat, K.

    2013-02-01

    In this work, a compact design of an electrically tunable notch filter, based on liquid crystal (LC) technology, has been designed, manufactured, and characterized. The proposal has been achieved through particular configuration schemes with low cost inverted-microstrip structures and conventional spurlines structures due to its ease of integration. Central frequency tunability has been induced by applying low ac voltages, thus involving low power consumption. For these devices, filter responses have been approached specifically at microwave C-band frequency allocated for many satellite communications applications. Also, it has taken advantage of new highly anisotropic nematic LC mixtures at those frequency ranges.

  3. Polarization-Insensitive Tunable Optical Filters based on Liquid Crystal Polarization Gratings

    NASA Astrophysics Data System (ADS)

    Nicolescu, Elena

    Tunable optical filters are widely used for a variety of applications including spectroscopy, optical communication networks, remote sensing, and biomedical imaging and diagnostics. All of these application areas can greatly benefit from improvements in the key characteristics of the tunable optical filters embedded in them. Some of these key parameters include peak transmittance, bandwidth, tuning range, and transition width. In recent years research efforts have also focused on miniaturizing tunable optical filters into physically small packages for compact portable spectroscopy and hyperspectral imaging applications such as real-time medical diagnostics and defense applications. However, it is important that miniaturization not have a detrimental effect on filter performance. The overarching theme of this dissertation is to explore novel configurations of Polarization Gratings (PGs) as simple, low-cost, polarization-insensitive alternatives to conventional optical filtering technologies for applications including hyperspectral imaging and telecommunications. We approach this goal from several directions with a combination of theory and experimental demonstration leading to, in our opinion, a significant contribution to the field. We present three classes of tunable optical filters, the first of which is an angle-filtering scheme where the stop-band wavelengths are redirected off axis and the passband is transmitted on-axis. This is achieved using a stacked configuration of polarization gratings of various thicknesses. To improve this class of filter, we also introduce a novel optical element, the Bilayer Polarization Grating, exhibiting unique optical properties and demonstrating complex anchoring conditions with high quality. The second class of optical filter is analogous to a Lyot filter, utilizing stacks of static or tunable waveplates sandwiched with polarizing elements. However, we introduce a new configuration using PGs and static waveplates to replace

  4. Back-to-back tunable ferroelectric resonator filters on flexible organic substrates.

    PubMed

    Courrèges, Stanis; Lacroix, Benjamin; Amadjikpe, Arnaud; Phillips, Stan; Zhao, Zhiyong; Choi, Kwang; Hunt, Andrew; Papapolymerou, John

    2010-06-01

    This paper presents the design and the fabrication of two low-loss X-band back-to-back tunable ferroelectric resonator filters on flexible liquid crystal polymer substrates using wire-bonded BST capacitors as analog tuning elements. The back-to-back topology consists of three resonators on both sides of the substrate coupled by apertures in their common ground plane, allowing the overall size of the filter to be reduced. BST varactors made on a sapphire substrate are easily diced and mounted on the polymer substrates to achieve the desired tuning. Both 3-pole tunable filters show a 1-dB bandwidth of 8 to 10%, low insertion loss (3.6 to 1.95 dB for the best one) with bias voltages from 0 to 35 V, a better compactness compared with classical tunable structures (reduced footprint area by 30% for the best filter) and a frequency tuning of about 11 to 13% at 8 GHz. The demonstrated feasibility opens interesting prospects for the fabrication of compact tunable filters with more resonators.

  5. Tunable Fabry-Perot filter and grating hybrid modulator to improve dispersive spectrometer resolution

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Li, Guojun; Yang, Huan; Zhou, Chongxi

    2016-05-01

    We describe a tunable Fabry-Perot filter and grating hybrid modulator to achieve a higher spectral resolution compared with that produced by a single grating with the same period. In the hybrid modulator, a tunable Fabry-Perot filter is designed with a long cavity to accommodate a multi-order narrowband pre-filter. A grating is then utilized to separate these multi-orders spatially. Scanning the air gap of the tunable Fabry-Perot filter within 1/2 wavelength, the entire spectrogram can be achieved by compositing each group of transmitted multi-orders. Light passes first through the Fabry-Perot cavity and then into the grating. Thus, all of the light is incident on the Fabry-Perot cavity at a given angle, which can reduce the requirement for incident beam alignment and simplify the operation of the hybrid modulator. The structural matching conditions of the tunable Fabry-Perot filter and grating were presented based on the operating law of the hybrid modulator. In terms of the Rayleigh criterion, the practical spectral resolution of the hybrid modulator can be increased by at least twice that of the single grating. Experiments with a neon lamp revealed that the spectral resolution of the hybrid modulator was nearly double that of a single grating.

  6. Narrow-band Imager for Multi-Application Solar Telescope (MAST) at Udaipur Solar Observatory

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, A.; Mathew, Shibu K.; Venkatakrishnan, Parameswaran; Srivastava, Nandita

    2013-04-01

    Multi-Application Solar Telescope (MAST) is an off-axis Gregorian solar telescope of 50 cm clear aperture installed at the lake site of Udaipur solar observatory (USO). A narrow band imager is being developed for near simultaneous observations of the solar atmosphere at different heights. The heart of the system is two Fabry-Perot (FP) etalons working in tandem. The substrate of the etalons is made of Lithium Niobate electro-optic crystal. The filter is tuned by changing the refractive index of the crystal with the application of the voltage. It is important to know the voltage required per unit wavelength shift to tune the system for different wavelength regions for near simultaneous observations. A littrow spectrograph was set up to calibrate the FP etalons. The achieved spectral resolution with the spectrograph at 6173 Å is 35 mÅ. Calibration is carried-out for the Fe I 6173 Å, H-alpha 6563 Å and Ca K 8542 Å. Free spectral range (FSR) obtained for FP1 and FP2 in tandem for 6173 Å is 6.7Å and 150 mÅ respectively. Voltage range of the system allows us to scan the entire line profile of 6173 in the range of ±220 mÅ with a sampling of 20 mÅ. We also performed temperature tuning and voltage tuning of the system. Similar exercise is performed for other two wavelengths. Here we present the details of the calibration set-up and obtained parameters and first-light results of the system.

  7. Correlation of Electric Field and Critical Design Parameters for Ferroelectric Tunable Microwave Filters

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred W.; Miranda, Felix A.; Canedy, Chadwick L.; Aggarwal, Sanjeev; Venkatesan, Thirumalai; Ramesh, Ramamoorthy

    2000-01-01

    The correlation of electric field and critical design parameters such as the insertion loss, frequency ability return loss, and bandwidth of conductor/ferroelectric/dielectric microstrip tunable K-band microwave filters is discussed in this work. This work is based primarily on barium strontium titanate (BSTO) ferroelectric thin film based tunable microstrip filters for room temperature applications. Two new parameters which we believe will simplify the evaluation of ferroelectric thin films for tunable microwave filters, are defined. The first of these, called the sensitivity parameter, is defined as the incremental change in center frequency with incremental change in maximum applied electric field (EPEAK) in the filter. The other, the loss parameter, is defined as the incremental or decremental change in insertion loss of the filter with incremental change in maximum applied electric field. At room temperature, the Au/BSTO/LAO microstrip filters exhibited a sensitivity parameter value between 15 and 5 MHz/cm/kV. The loss parameter varied for different bias configurations used for electrically tuning the filter. The loss parameter varied from 0.05 to 0.01 dB/cm/kV at room temperature.

  8. An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter.

    PubMed

    Jiang, Fan; Wong, Jia Haur; Lam, Huy Quoc; Zhou, Junqiang; Aditya, Sheel; Lim, Peng Huei; Lee, Kenneth Eng Kian; Shum, Perry Ping; Zhang, Xinliang

    2013-07-15

    An optoelectronic oscillator (OEO) with wideband frequency tunability and stable output based on a bandpass microwave photonic filter (MPF) has been proposed and experimentally demonstrated. Realized by cascading a finite impulse response (FIR) filter and an infinite impulse response (IIR) filter together, the tunable bandpass MPF successfully replaces the narrowband electrical bandpass filter in a conventional single-loop OEO and serves as the oscillating frequency selector. The FIR filter is based on a tunable multi-wavelength laser and dispersion compensation fiber (DCF) while the IIR filter is simply based on an optical loop. Utilizing a long length of DCF as the dispersion medium for the FIR filter also provides a long delay line for the OEO feedback cavity and as a result, optical tuning over a wide frequency range can be achieved without sacrificing the quality of the generated signal. By tuning the wavelength spacing of the multi-wavelength laser, the oscillation frequency can be tuned from 6.88 GHz to 12.79 GHz with an average step-size of 0.128 GHz. The maximum frequency drift of the generated 10 GHz signal is observed to be 1.923 kHz over 1 hour and its phase noise reaches the -112 dBc/Hz limit of our measuring equipment at 10 kHz offset frequency.

  9. Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    SciTech Connect

    Bedair, Salah M.; Hauser, John R.; Elmasry, Nadia; Colter, Peter C.; Bradshaw, G.; Carlin, C. Z.; Samberg, J.; Edmonson, Kenneth

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  10. Production of intense, coherent, tunable narrow-band lyman-alpha radiation

    SciTech Connect

    Turley, R.S.; McFarlane, R.A. ); Steel, D.G.; Remillard, J.

    1988-10-01

    Nearly transform limited pulses of 1216 A radiation have been generated by sum frequency generation in 0.1 to 10 torr of mercury vapor. The summed input beams, consisting of photons at 3127 A and 5454 A originate in 1 MHz band-width ring-dye laser oscillators. The beams are amplified in pulsed-dye amplifiers pumped by the frequency doubled output of a Nd:YAG laser. The 3127 A photons are tuned to be resonant with the two-photon 6{sup 1}S to 7{sup 1}S mercury transition. The VUV radiation can be tuned by varying the frequency of the third non-resonant photon. We have also observed difference frequency generation at 2193 A and intense fluorescence from the 6{sup 1}P state at 1849 A. We have studied the intensity and linewidth dependence of the 1849 A fluorescence and 1216 A sum frequency signals on input beam intensity, mercury density, and buffer gas pressure and composition.

  11. Liquid crystal tunable light filters for surveillance and remote sensing applications

    NASA Astrophysics Data System (ADS)

    Foukal, Peter V.; Miller, Peter J.; Hoyt, Clifford C.

    1993-11-01

    In this paper we put forward some conceptual designs for liquid crystal tunable filters (LCTF's) that offer improved wavelength flexibility, tuning speed, power consumption and reliability, over the mechanical filter wheels presently baselined for the High Resolution Earth Processing Imager (HEPI) and Advanced Lightning Mapper (ALM) geosynchronous remote sensing experiments. We also point out advantages that accrue from the extremely wide acceptance angle (F 1) achievable with birefringent filters. Thermal vacuum testing and radiation damage analysis will be required to investigate the space hardening of these new filters.

  12. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    PubMed

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  13. HIGH DEFINITION ENDOSCOPY AND "NARROW BAND IMAGING" IN THE DIAGNOSIS OF GASTROESOPHAGEAL REFLUX DISEASE

    PubMed Central

    ASSIRATI, Frederico Salvador; HASHIMOTO, Cláudio Lyoiti; DIB, Ricardo Anuar; FONTES, Luiz Henrique Souza; NAVARRO-RODRIGUEZ, Tomás

    2014-01-01

    Introduction The gastroesophageal reflux disease is a common condition in the western world but less than half of patients present endoscopic abnormalities, making a standard procedure unsuitable for diagnosis. High definition endoscopy coupled with narrow band imaging has shown potential for differentiation of lesions and possible biopsy, allowing early diagnosis and treatment. Methods This review describes the principles of biotic and their influence in obtaining images with better definition of the vessels in the mucosa, through the narrow band imaging. Selected papers using it in patients with reflux disease and Barrett's esophagus are analyzed in several ways, highlighting the findings and limitations. Conclusion The meaning of the narrow band imaging in the endoscopic diagnosis of reflux disease will be defined by large scale studies, with different categories of patients, including assessment of symptoms and response to treatment. PMID:24676302

  14. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  15. Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films

    NASA Astrophysics Data System (ADS)

    Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi

    2017-07-01

    We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.

  16. A tunable notch filter using microelectromechanical microring with gap-variable busline coupler.

    PubMed

    Ikeda, Taro; Hane, Kazuhiro

    2013-09-23

    A microelectromechanical tunable notch filter using silicon-photonic freestanding waveguides is proposed, and the basic characteristics are experimentally investigated. The proposed filter is composed of a wavelength-tunable silicon microring resonator and a busline switch. The tunable microring consists of freestanding single-mode waveguides and air-gap directional waveguide couplers. The optical path length of the microring is varied physically by a displacement of electrostatic comb-drive actuator. The busline switch consists of a gap-variable waveguide coupling mechanism, which enables coupling the tunable microring with the busline by another electrostatic comb-drive actuator. During the wavelength tuning of microring, the busline can be disconnected from the microring. Therefore, the proposed device operates as a hitless wavelength-selective switch if they are connected in series. The waveguides are 320 nm in width and 340 nm in thickness. The resonant wavelength shift of the microring is 9.96 nm at the voltage of 26 V with the actuator displacement of 1.0 μm. The coupling to busline is adjusted from the switch-off state at the gap of 600 nm to the switch-on state corresponding to the critical coupling condition at the gap of 383 nm. The whole size of the wavelength-tunable filter with hitless mechanism is about 150 μm by 80 μm. Due to the capacitive operation of the comb-drive actuators, the power consumption is negligibly small.

  17. Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui

    2016-03-01

    We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.

  18. Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering.

    PubMed

    Wise, Assaf; Tur, Moshe; Zadok, Avi

    2011-10-24

    Sharp and highly-selective tunable optical band-pass filters, based on stimulated Brillouin scattering (SBS) amplification in standard fibers, are described and demonstrated. Polarization pulling of the SBS-amplified signal wave is used to increase the selectivity of the filters to 30 dB. Pump broadening via synthesized direct modulation was used to provide a tunable, sharp and uniform amplification window: Pass-band widths of 700 MHz at half maximum and 1 GHz at the -20 dB points were obtained. The central frequency, bandwidth and shape of the filter can be arbitrarily set. Compared with scalar SBS-based filters, the polarization-enhanced design provides a higher selectivity and an elevated depletion threshold. © 2011 Optical Society of America

  19. Differential-phase-shift quantum key distribution using heralded narrow-band single photons.

    PubMed

    Liu, Chang; Zhang, Shanchao; Zhao, Luwei; Chen, Peng; Fung, C-H F; Chau, H F; Loy, M M T; Du, Shengwang

    2013-04-22

    We demonstrate the first proof of principle differential phase shift (DPS) quantum key distribution (QKD) using narrow-band heralded single photons with amplitude-phase modulations. In the 3-pulse case, we obtain a quantum bit error rate (QBER) as low as 3.06% which meets the unconditional security requirement. As we increase the pulse number up to 15, the key creation efficiency approaches 93.4%, but with a cost of increasing the QBER. Our result suggests that narrow-band single photons maybe a promising source for the DPS-QKD protocol.

  20. Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Lang, K. R.; Willson, R. F.

    1986-01-01

    Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.

  1. Application of narrow-band television to industrial and commercial communications

    NASA Technical Reports Server (NTRS)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  2. Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qiu-Shi; Zhu, Feng-Jie; Zhou, Hao-Miao

    2015-10-01

    A lumped-equivalent circuit model of a novel magnetoelectric tunable bandpass filter, which is realized in the form of multi-stage cascading between a plurality of magnetoelectric laminates, is established in this paper for convenient analysis. The multi-stage cascaded filter is degraded to the coupling microstrip filter with only one magnetoelectric laminate and then compared with the existing experiment results. The comparison reveals that the insertion loss curves predicted by the degraded circuit model are in good agreement with the experiment results and the predicted results of the electromagnetic field simulation, thus the validity of the model is verified. The model is then degraded to the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates. It is revealed that if the applied external bias magnetic or electric fields on the two magnetoelectric laminates are identical, then the passband of the filter will drift under the changed external field; that is to say, the filter has the characteristics of external magnetic field tunability and electric field tunability. If the applied external bias magnetic or electric fields on two magnetoelectric laminates are different, then the passband will disappear so that the switching characteristic is achieved. When the same magnetic fields are applied to the laminates, the passband bandwidth of the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates becomes nearly doubled in comparison with the passband filter which contains only one magnetoelectric laminate. The bandpass effect is also improved obviously. This research will provide a theoretical basis for the design, preparation, and application of a new high performance magnetoelectric tunable microwave device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285 and 11472259) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).

  3. Non-resonant parametric amplification in biomimetic hair flow sensors: Selective gain and tunable filtering

    NASA Astrophysics Data System (ADS)

    Droogendijk, H.; Bruinink, C. M.; Sanders, R. G. P.; Krijnen, G. J. M.

    2011-11-01

    We demonstrate that the responsivity of flow sensors for harmonic flows can be improved significantly by non-resonant parametric amplification. Using electrostatic spring softening by AC-bias voltages, increased responsivity and sharp filtering are achieved in our biomimetic flow sensors. Tunable filtering is obtained for non-resonant electromechanical parametric amplification, applicable at a wide range of non-resonant frequencies while achieving highly selective gain of up to 20 dB.

  4. Tunable, Strain-Controlled Nanoporous MoS₂ Filter for Water Desalination.

    PubMed

    Li, Weifeng; Yang, Yanmei; Weber, Jeffrey K; Zhang, Gang; Zhou, Ruhong

    2016-02-23

    The deteriorating state of global fresh water resources represents one of the most serious challenges that scientists and policymakers currently face. Desalination technologies, which are designed to extract potable water from the planet's bountiful stores of seawater, could serve to alleviate much of the stress that presently plagues fresh water supplies. In recent decades, desalination methods have improved via water-filtering architectures based on nanoporous graphene filters and artificial membranes integrated with biological water channels. Here, we report the auspicious performance (in simulations) of an alternative nanoporous desalination filter constructed from a MoS2 nanosheet. In striking contrast to graphene-based filters, we find that the "open" and "closed" states of the MoS2 filter can be regulated by the introduction of mechanical strain, yielding a highly tunable nanopore interface. By applying lateral strain to the MoS2 filter in our simulations, we see that the transition point between "open" and "closed" states occurs under tension that induces about 6% cross-sectional expansion in the membrane (6% strain); the open state of the MoS2 filter demonstrates high water transparency and a strong salt filtering capability even under 12% strain. Our results thus demonstrate the promise of a controllable nanoporous MoS2 desalination filter, wherein the morphology and size of the central nanopore can be precisely regulated by tensile strain. These findings support the design and proliferation of tunable nanodevices for filtration and other applications.

  5. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  6. Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite.

    PubMed

    Kriegel, Ilka; Scotognella, Francesco

    2015-01-01

    Tunable light filters are critical components for many optical applications in which light in-coupling, out-coupling or rejection is crucial, such as lasing, sensing, photovoltaics and information and communication technology. For this purpose, Bragg mirrors (band-pass filters with high reflectivity) represent good candidates. However, their optical characteristics are determined during the fabrication stage. Heavily doped semiconductor nanocrystals (NCs), on the other hand, deliver a high degree of optical tunability through the active modulation of their carrier density, ultimately influencing their plasmonic absorption properties. Here, we propose the design of an actively tunable light filter composed of a Bragg mirror and a layer of plasmonic semiconductor NCs. We demonstrate that the filtering properties of the coupled device can be tuned to cover a wide range of frequencies from the visible to the near infrared (vis-NIR) spectral region when employing varying carrier densities. As the tunable component, we implemented a dispersion of copper selenide (Cu2-xSe) NCs and a film of indium tin oxide (ITO) NCs, which are known to show optical tunablility with chemical or electrochemical treatments. We utilized the Mie theory to describe the carrier-dependent plasmonic properties of the Cu2-x Se NC dispersion and the effective medium theory to describe the optical characteristics of the ITO film. The transmission properties of the Bragg mirror have been modelled with the transfer matrix method. We foresee ease of experimental realization of the coupled device, where filtering modulation is achieved upon chemical and electrochemical post-fabrication treatment of the heavily doped semiconductor NC component, eventually resulting in tunable transmission properties of the coupled device.

  7. Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

    PubMed Central

    Kriegel, Ilka

    2015-01-01

    Summary Tunable light filters are critical components for many optical applications in which light in-coupling, out-coupling or rejection is crucial, such as lasing, sensing, photovoltaics and information and communication technology. For this purpose, Bragg mirrors (band-pass filters with high reflectivity) represent good candidates. However, their optical characteristics are determined during the fabrication stage. Heavily doped semiconductor nanocrystals (NCs), on the other hand, deliver a high degree of optical tunability through the active modulation of their carrier density, ultimately influencing their plasmonic absorption properties. Here, we propose the design of an actively tunable light filter composed of a Bragg mirror and a layer of plasmonic semiconductor NCs. We demonstrate that the filtering properties of the coupled device can be tuned to cover a wide range of frequencies from the visible to the near infrared (vis–NIR) spectral region when employing varying carrier densities. As the tunable component, we implemented a dispersion of copper selenide (Cu2−xSe) NCs and a film of indium tin oxide (ITO) NCs, which are known to show optical tunablility with chemical or electrochemical treatments. We utilized the Mie theory to describe the carrier-dependent plasmonic properties of the Cu2−x Se NC dispersion and the effective medium theory to describe the optical characteristics of the ITO film. The transmission properties of the Bragg mirror have been modelled with the transfer matrix method. We foresee ease of experimental realization of the coupled device, where filtering modulation is achieved upon chemical and electrochemical post-fabrication treatment of the heavily doped semiconductor NC component, eventually resulting in tunable transmission properties of the coupled device. PMID:25671163

  8. Effect of Selectively Etched Ferroelectric Thin-Film Layer on the Performance of a Tunable Bandpass Filter

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; Vignesparamoorthy, Sivaruban; Mueller, Carl; VanKeuls, Fred; Warner, Joseph; Miranda, Felix A.

    2001-01-01

    The main purpose of this work is to study the effect of a selectively etched ferroelectric thin film layer on the performance of an electrically tunable filter. An X-band tunable filter was designed, fabricated and tested on a selectively etched Barium Strontium Titanate (BSTO) ferroelectric thin film layer. Tunable filters with varying lengths of BSTO thin-film in the input and output coupling gaps were modeled, as well as experimentally tested. Experimental results showed that filters with coupling gaps partially filled with BSTO maintained frequency tunability and improved the insertion loss by approx. 2dB. To the best of our knowledge, these results represent the first experimental demonstration of the advantages of selective etching in the performance of thin film ferroelectric-based tunable microwave components.

  9. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGES

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; ...

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit goodmore » chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  10. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    SciTech Connect

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; Ong, Shyue Ping

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.

  11. Search for neutrino oscillations at the AGS with the narrow band beam

    SciTech Connect

    Chi, C.; Kondakis, N.; Lee, W.; O'Brien, E.; O'Halloran, T.; Reardon, K.; Salman, S.; Blumenfeld, B.; Chichura, L.; Chien, C.Y.

    1987-01-01

    We have taken neutrino data with the Narrow Band Beam (NBB) at Brookhaven National Laboratory (BNL) in the summer and fall of 1985. We are in the process of completing the analysis of the NBB data. In this paper we present preliminary results of this analysis. We observe an anomalous appearance of electron neutrinos above the expected background. 3 refs., 16 figs., 3 tabs.

  12. Analysis of optimal narrow band RVI for estimating foliar photosynthetic pigments based on PROSPECT model

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Shi, Runhe; Liu, Pudong; Ma, Mingliang; Gao, Wei

    2014-10-01

    Remote sensing is an effective tool to estimate foliar pigments contents with the analysis of vegetation index. The crucial issue is how to choose the optimal bands-combination to conduct the vegetation index. In this study, RVI, a vegetation index computed by the reflectance of Red and NIR bands, has been used to estimate the contents of chlorophyll and carotenoid. The reflectance of the two bands forming the narrow band RVI was simulated by the PROSPECT model. The possible combinations of narrow band RVI were examined from 400 nm to 800 nm. The results showed that: At the leaf level, estimation of chlorophyll content can be identified in narrow band RVI. Ranges for these bands included: (1) 549-589nm, 616-636nm or 729-735nm combined with 434-454nm; (2) 663-688nm, 710-717nm, 719-728nm or 730- 739nm combined with 549-561nm; (3) 663-688nm combined with 569-615nm. However, no valid narrow-band RVI for the estimation of carotenoid content was successfully identified. Our results also showed that two rules should be followed when choosing optimal bands-combination: (1) the selected bands must have minimal interference from other biochemical constituents; (2) there should be distinct differences between the sensitivities of the bands selected for particular pigments.

  13. Narrow band coronographic imaging of the bipolar nebula around the LBV R127

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Nota, Antonella; Golimowski, David A.; Leitherer, Claus

    1992-01-01

    New high resolution narrow band coronographic images of the R127 nebula have been recently obtained. The nebula displays a bipolar morphology and is similar in appearance to the nebula around AG Carinae. The observations improve the values for the linear dimensions (1.9 x 2.2 pc) and yield an estimated nebular mass of 3.1 solar mass.

  14. Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris

    SciTech Connect

    Lang, K.R.; Willson, R.F.

    1986-03-01

    Narrow-band slowly varying microwave radiation has been detected from the dwarf M star YZ Canis Minoris at frequencies near 1465 MHz. This quiescent, or nonflaring, emission cannot be attributed to gyroresonant radiation from coronal loops; the loops would have to be more than 200 times the stellar radius in size with magnetic field strengths of H > or = 100 G at this distance. The narrow-band structure (Delta nu/nu > or = 0.1) of the slowly varying radiation cannot be explained by continuum emission processes. These observations may be explained by coherent burst mechanisms like electron-cyclotron masers or coherent plasma radiation. Maser action at the second harmonic of the gyrofrequency implies a longitudinal magnetic field strength of 250 G and an electron density of N/sub e/ = approx. 6 x 10/sup 9//cm/sup 3/. Coherent plasma radiation at the second harmonic of the plasma frequency similarly requires N/sub e/ = approx. 6 x 10/sup 9//cm/sup 3/ but a longitudinal magnetic field strength of H/sub L/ << 250 G. The slow variation of the narrow-band emission might be explained by the stochastic nature of continued low-level, coherent burst activity. There are possible analogies with narrow-band decimetric bursts observed on the Sun.

  15. Narrow band coronographic imaging of the bipolar nebula around the LBV R127

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Nota, Antonella; Golimowski, David A.; Leitherer, Claus

    1992-01-01

    New high resolution narrow band coronographic images of the R127 nebula have been recently obtained. The nebula displays a bipolar morphology and is similar in appearance to the nebula around AG Carinae. The observations improve the values for the linear dimensions (1.9 x 2.2 pc) and yield an estimated nebular mass of 3.1 solar mass.

  16. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    SciTech Connect

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; Ong, Shyue Ping

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.

  17. Optofluidic-Tunable Color Filters And Spectroscopy Based On Liquid-Crystal Microflows

    SciTech Connect

    Cuennet, J. G.; Vasdekis, Andreas E.; Psaltis, D.

    2013-05-24

    The integration of color filters with microfluidics has attracted substantial attention in recent years, for on-chip absorption, fluorescence, or Raman analysis. We describe such tunable filters based on the micro-flow of liquid crystals. The filter operation is based on the wavelength dependent liquid crystal birefringence that can be tuned by modifying the flow velocity field in the microchannel. The latter is possible both temporally and spatially by varying the inlet pressure and the channel geometry respectively. We explored the use of these optofluidic filters for on-chip absorption spectroscopy; by integrating the distance dependent color filter with a dye-filled micro-channel, the absorption spectrum of a dye could be measured. Liquid crystal microflows simplify substantially the optofluidic integration, actuation and tuning of color filters for lab-on-a-chip spectroscopic applications.

  18. Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows.

    PubMed

    Cuennet, J G; Vasdekis, A E; Psaltis, D

    2013-07-21

    The integration of color filters with microfluidics has attracted substantial attention in recent years, for on-chip absorption, fluorescence, or Raman analysis. We describe such tunable filters based on the micro-flow of liquid crystals. The filter operation is based on the wavelength-dependent liquid crystal birefringence that can be tuned by modifying the flow velocity field in the microchannel. The latter is possible both temporally and spatially by varying the inlet pressure and the channel geometry, respectively. We explored the use of these optofluidic filters for on-chip absorption spectroscopy in poly(dimethylsiloxane) microfluidic systems; by integrating the distance-dependent color filter with a dye-filled micro-channel, the absorption spectrum of a dye could be measured. Liquid crystal microflows substantially simplify the optofluidic integration, actuation and tuning of color filters for lab-on-a-chip spectroscopic applications.

  19. Simple tunable dye laser using a dielectric multilayer filter

    SciTech Connect

    Nomura, A.; Shimomura, Y.; Saito, Y.; Kano, T.

    1982-04-01

    We describe a nitrogen laser pumped dye laser tuned by a dielectric multilayer filter. The construction is simple and the adjustment of tuning is easy. It is found that the tuning is possible over a range of 10 nm from 445 to 455 nm in alcoholic solutions of coumarin 1, that the linewidth (0.8 nm) is independent of the filter tilt angle, and that the output intensity is remarkably flat over this tuning range.

  20. Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas.

    PubMed

    Vashistha, Vishal; Vaidya, Gayatri; Gruszecki, Pawel; Serebryannikov, Andriy E; Krawczyk, Maciej

    2017-08-14

    Polarization sensitive and insensitive color filters have important applications in the area of nano-spectroscopy and CCD imaging applications. Metallic nanostructures provide an efficient way to design and engineer ultrathin color filters. These nanostructures have capability to split the white light into fundamental colors and enable color filters with ultrahigh resolution but their efficiency can be restricted due to high losses in metals especially at the visible wavelengths. In this work, we demonstrate all-dielectric color filters based on Si nanoantennas, which are sensitive to incident-wave polarization and, thus, tunable with the aid of polarization angle variation. Two different information can be encoded in two different polarization states in one nanostructure. The nanoantenna based pixels are highly efficient and can provide high quality of colors, in particular, due to low losses in Si at optical frequencies. We experimentally demonstrate that a variety of colors can be achieved by changing the physical size of the nonsymmetric cross-shaped nanoantennas. The proposed devices allow to cover an extended gamut of colors on CIE-1931 chromaticity diagram owing to the existence of high-quality resonances in Si nanoantennas. Significant tunability of the suggested color filters can be achieved by varying polarization angle in both transmission and reflection mode. Additional tunability can be obtained by switching between transmission and reflection modes.

  1. Tunable optical filters for in-plane integration on InP MEMS platform

    NASA Astrophysics Data System (ADS)

    Datta, M.; McGee, J.; Pruessner, M. W.; Amarnath, K.; Kanakaraju, S.; Ghodssi, R.

    2005-07-01

    We have demonstrated a planar waveguide-based tunable integrated optical filter in indium phosphide (InP) with on-chip micro-electro-mechanical (MEMS) actuation. An air-gap Fabry-Perot resonant microcavity is formed between two waveguides, whose facets have monolithically integrated high-reflectivity multilayer InP/air Distributed Bragg Reflector (DBR) mirrors. A suspended beam electrostatic microactuator attached to one of the DBR mirrors modulates the microcavity length, resulting in a tunable filter. The DBR mirrors provide a broad high-reflectivity spectrum, within which the transmission wavelength can be tuned. The in-plane configuration of the filter enables easy integration with other active and passive waveguide-based optoelectronic devices on a chip and simplifies fiber alignment. Experimental results from the first generation of tunable optical filters are presented. The microfabricated filter exhibited a resonant wavelength shift of 12nm (1513-1525nm) at a low operating voltage of 7V. A full-width-half-maximum (FWHM) of 33 nm was experimentally observed, and the quality factor was calculated to be 46. Several improvements of the MEMS actuator, waveguide, and optical cavity design for the future devices are discussed.

  2. Tunable Microstrip Filters Using Selectively Etched Ferroelectric Thin-Film Varactors for Coupling

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Frederick W.; Romanofsky, Robert R.; Subramanyam, Guru; Miranda, Felix A.

    2006-01-01

    We report on the use of patterned ferroelectric films to fabricate proof of concept tunable one-pole microstrip filters with excellent transmission and mismatch/reflection properties at frequencies up to 24 GHz. By controlling the electric field distribution within the coupling region between the resonator and input/output lines, sufficiently high loaded and unloaded Q values are maintained so as to be useful for microstrip filter design, with low mismatch loss. In the 23 - 24 GHz region, the filter was tunable over a 100 MHz range, the loaded and unloaded Q values were 29 and 68, respectively, and the reflection losses were below -16 dB, which demonstrates the suitability of these films for practical microwave applications.

  3. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.

    PubMed

    Machikhin, Alexander S; Pozhar, Vitold E; Viskovatykh, Alexander V; Burmak, Ludmila I

    2015-09-01

    A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.

  4. All-Optical Logic Gates Based on Semiconductor Optical Amplifiers and Tunable Filters

    NASA Astrophysics Data System (ADS)

    Zhang, Xinliang; Xu, Jing; Dong, Jianji; Huang, Dexiu

    All-optical logic gates based on semiconductor optical amplifiers (SOAs) and tunable filters are investigated in this paper. Based on single SOA and different filter detuning, five different logic gates at 40Gb/s were demonstrated and all-optical digital 2-4 encoder was also realized. All-optical generation of minterms for two input signals and three input signals are also demonstrated based on comb filters and SOAs. Advantages such as powerful function, flexible operational principle and possible integrated could help these schemes to have potential applications in optical computing and optical networks.

  5. Chemical imaging and spectroscopy using tunable filters: Instrumentation, methodology, and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Turner, John Frederick, II

    Spectral imaging has experienced tremendous growth during the past ten years and is rapidly becoming a formidable analytical tool. Recent advances in electronically tunable filters and array detectors are enabling high resolution spectral images to be acquired of chemical and biological systems that have traditionally been difficult to study non-invasively. Additionally, the development of powerful and inexpensive computer platforms is broadening the appeal of spectral imaging methods which have historically required costly and computationally adept computer workstations. The emphasis of my research has been to explore high throughput widefield imaging instrumentation and methodology using novel acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF) imaging spectrometers. In order to demonstrate the feasibility of employing multiplexed AOTFs for spectroscopy and chemical imaging applications, a near- infrared (NIR) multiplexed AOTF spectrometer employing Hadamard encoding sequences has been developed. In addition, the use of multiplexed AOTFs as adaptive filters in NIR spectroscopy and fluorescence imaging has been demonstrated. A second type of electronically tunable image filter, the liquid crystal tunable filter (LCTF) has recently been developed and is well suited to high resolution, diffraction limited imaging applications. The earliest generation of LCTFs was based on the Lyot birefringent filter and possessed small transmittances due to the use of multiple polarizers and imperfect waveplate action. An improved LCTF prototype incorporating split-element Lyot filter stages has been evaluated and compared to the earlier generation of LCTF devices. The high image fidelity, wide acceptance angle, and large clear aperture of the LCTF make it well suited to macroscopic chemical imaging applications. A macroscopic imaging fluorometer employing LCTFs for source tuning and emission filtering has been developed for high throughput microtiter plate

  6. Wavelength tunable liquid crystal imaging filters for remote sensing from geosynchronous platforms

    NASA Astrophysics Data System (ADS)

    Foukal, Peter

    1992-10-01

    Recent advances in liquid crystal technology have enabled us to construct tunable birefringent filters with bandwidths between approximately 0.1 nm and 50 nm. The center wavelength of these filters can be selected electronically, in a few tens of milliseconds, with no moving parts. These liquid crystal tunable filters (LCTF's), together with existing CCD detectors, make possible a new generation of lightweight, rugged, high-resolution imaging spectrophotometers. Such instruments would be particularly interesting for remote sensing applications from geosynchronous platforms. Important advantages exist in the aperture, absence of image shift, power consumption, size, weight, and absence of high drive frequencies, compared to current instruments used or considered for multispectral scene analysis. In the present work, we have reviewed spectral requirements of planned NASA geosynchronous remote sensing missions and identified several applications of the liquid crystal tunable filter technology. We have modeled the LCTF performance in the visible and near-infrared, and carried out a literature study on space-hardening of the filter components, to evaluate the suitability of LCTF's for geosynchronous missions. We have also compared the power consumption, weight, size, reliability, and optical performance of an imaging spectrophotometer using a LCTF monochromator, to other instruments that have been put forward for remote sensing from geosynchronous platforms. We put forward some conceptual designs for LCTF's that seem to offer important reliability, over the mechanical filter wheels presently baselined for the HEPI and ALM experiments. The extremely wide acceptance angle achievable with LCTF's could also avoid the present need for large-aperture interference filters in the ALM (and LIS) experiments. Thermal vacuum testing and radiation damage analysis is required to investigate the space hardening of these new filters for geosynchronous flight.

  7. Wavelength tunable liquid crystal imaging filters for remote sensing from geosynchronous platforms. Final Report

    SciTech Connect

    Foukal, P.

    1992-10-01

    Recent advances in liquid crystal technology have enabled us to construct tunable birefringent filters with bandwidths between approximately 0.1 nm and 50 nm. The center wavelength of these filters can be selected electronically, in a few tens of milliseconds, with no moving parts. These liquid crystal tunable filters (LCTF's), together with existing CCD detectors, make possible a new generation of lightweight, rugged, high-resolution imaging spectrophotometers. Such instruments would be particularly interesting for remote sensing applications from geosynchronous platforms. Important advantages exist in the aperture, absence of image shift, power consumption, size, weight, and absence of high drive frequencies, compared to current instruments used or considered for multispectral scene analysis. In the present work, we have reviewed spectral requirements of planned NASA geosynchronous remote sensing missions and identified several applications of the liquid crystal tunable filter technology. We have modeled the LCTF performance in the visible and near-infrared, and carried out a literature study on space-hardening of the filter components, to evaluate the suitability of LCTF's for geosynchronous missions. We have also compared the power consumption, weight, size, reliability, and optical performance of an imaging spectrophotometer using a LCTF monochromator, to other instruments that have been put forward for remote sensing from geosynchronous platforms. We put forward some conceptual designs for LCTF's that seem to offer important reliability, over the mechanical filter wheels presently baselined for the HEPI and ALM experiments. The extremely wide acceptance angle achievable with LCTF's could also avoid the present need for large-aperture interference filters in the ALM (and LIS) experiments. Thermal vacuum testing and radiation damage analysis is required to investigate the space hardening of these new filters for geosynchronous flight.

  8. Wavelength tunable liquid crystal imaging filters for remote sensing from geosynchronous platforms

    NASA Technical Reports Server (NTRS)

    Foukal, Peter

    1992-01-01

    Recent advances in liquid crystal technology have enabled us to construct tunable birefringent filters with bandwidths between approximately 0.1 nm and 50 nm. The center wavelength of these filters can be selected electronically, in a few tens of milliseconds, with no moving parts. These liquid crystal tunable filters (LCTF's), together with existing CCD detectors, make possible a new generation of lightweight, rugged, high-resolution imaging spectrophotometers. Such instruments would be particularly interesting for remote sensing applications from geosynchronous platforms. Important advantages exist in the aperture, absence of image shift, power consumption, size, weight, and absence of high drive frequencies, compared to current instruments used or considered for multispectral scene analysis. In the present work, we have reviewed spectral requirements of planned NASA geosynchronous remote sensing missions and identified several applications of the liquid crystal tunable filter technology. We have modeled the LCTF performance in the visible and near-infrared, and carried out a literature study on space-hardening of the filter components, to evaluate the suitability of LCTF's for geosynchronous missions. We have also compared the power consumption, weight, size, reliability, and optical performance of an imaging spectrophotometer using a LCTF monochromator, to other instruments that have been put forward for remote sensing from geosynchronous platforms. We put forward some conceptual designs for LCTF's that seem to offer important reliability, over the mechanical filter wheels presently baselined for the HEPI and ALM experiments. The extremely wide acceptance angle achievable with LCTF's could also avoid the present need for large-aperture interference filters in the ALM (and LIS) experiments. Thermal vacuum testing and radiation damage analysis is required to investigate the space hardening of these new filters for geosynchronous flight.

  9. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    PubMed

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  10. Assessment of low-frequency hearing with narrow-band chirp-evoked 40-Hz sinusoidal auditory steady-state response.

    PubMed

    Wilson, Uzma S; Kaf, Wafaa A; Danesh, Ali A; Lichtenhan, Jeffery T

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp-evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study sample Thirty young adults aged 18-25 with normal hearing participated in this study. Results When 4000 equivalent response averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17-22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11-15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging. Conclusion Narrow-band chirp-evoked 40-Hz s-ASSR requires a ∼15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used.

  11. Development of inexpensive optical broad- and narrow-band sensors for ecosystem research

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Cuntz, Thomas; Bumberger, Jan

    2014-05-01

    The observation and monitoring of ecosystem processes are great challenges in environmental science, due to the dynamic and complexity of such procedures. To describe and understand biotic and abiotic processes and their interaction it is necessary to acquire multiple parameters, which are influencing the natural regime. Essential issues are: the detection of spatial heterogeneities and scale overlapping procedures in the environment. To overcome these problems an adequate monitoring system should cover a representative area as well as have a sufficient resolution in time and space. Hence, the needed quantity of sensors (depending on the observed parameters or processes) can be enormous. According to these issues, there is a high demand on low-cost sensor technologies (with adequate performances) to realize a delicate monitoring platform. In the case of vegetation processes, one key feature is to characterize photosynthetic activity of the plants in detail. Common investigation methods are based on optical measurements. Here photosynthetically active radiation (PAR) sensors and hyperspectral sensors are in major use. Photosynthetically active radiation (solar radiation from 400 to 700 nanometers) designates the spectral range that photosynthetic organisms are able to use in the process of photosynthesis. PAR sensors enable the detection of the reflected solar light of the vegetation in whole the PAR wave band. The amount of absorption indicates photosynthetic activity of the plant. Hyperspectral sensors observe specific parts of the solar light spectrum and facilitate the determination of the main pigment classes (Chlorophyll, Carotenoid and Anthocyanin). Due to absorption of pigments they producing a specific spectral signature in the visible part of the electromagnetic spectrum (narrow-band peaks). If vegetation is affected by water or nutritional deficience the proportion of light-absorbing pigments is reduced which finally results in an overall reduced light

  12. An accurate cluster selection function for the J-PAS narrow-band wide-field survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Benítez, N.; Dupke, R.; Cypriano, E.; Lima-Neto, G.; López-Sanjuan, C.; Varela, J.; Alcaniz, J. S.; Broadhurst, T.; Cenarro, A. J.; Devi, N. Chandrachani; Díaz-García, L. A.; Fernandes, C. A. C.; Hernández-Monteagudo, C.; Mei, S.; Mendes de Oliveira, C.; Molino, A.; Oteo, I.; Schoenell, W.; Sodré, L.; Viironen, K.; Marín-Franch, A.

    2016-03-01

    The impending Javalambre Physics of the accelerating Universe Astrophysical Survey (J-PAS) will be the first wide-field survey of ≳ 8500 deg2 to reach the `stage IV' category. Because of the redshift resolution afforded by 54 narrow-band filters, J-PAS is particularly suitable for cluster detection in the range z<1. The photometric redshift dispersion is estimated to be only ˜0.003 with few outliers ≲4 per cent for galaxies brighter than i ˜ 23 AB, because of the sensitivity of narrow band imaging to absorption and emission lines. Here, we evaluate the cluster selection function for J-PAS using N-body+semi-analytical realistic mock catalogues. We optimally detect clusters from this simulation with the Bayesian Cluster Finder, and we assess the completeness and purity of cluster detection against the mock data. The minimum halo mass threshold we find for detections of galaxy clusters and groups with both >80 per cent completeness and purity is Mh ˜ 5 × 1013 M⊙ up to z ˜ 0.7. We also model the optical observable, M^{*}_CL-halo mass relation, finding a non-evolution with redshift and main scatter of σ _{M^{*}_CL | M_h}˜ 0.14 dex down to a factor 2 lower in mass than other planned broad-band stage IV surveys, at least. For the Mh ˜ 1 × 1014 M⊙ Planck mass limit, J-PAS will arrive up to z ˜ 0.85 with a σ _{M^{*}_CL | M_h}˜ 0.12 dex. Therefore, J-PAS will provide the largest sample of clusters and groups up to z ˜ 0.8 with a mass calibration accuracy comparable to X-ray data.

  13. Optofluidic tunable plasmonic filter based on liquid-crystal microcavity structures

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Yao, Duanzheng

    2014-10-01

    A theoretical demonstration of Optofluidic tunable wavelength filter in the near-infrared regime has been presented. By incorporating nematic liquid crystal (LC) into the slot resonator, a nanoscale LC optical filter is proposed and numerically investigated. The finite difference time domain method is used to simulate the optical characteristics of the plasmonic nanostructure. Two approaches are considered to tune the filter's resonant wavelength, a fine tuning based on optofluidic control LC length and a coarse tuning based on LC birefringence. Both fine tuning and coarse tuning are successful for manipulating the filter's resonant wavelength. This plasmonic structure permits the high-precision control of transmit of the input surface plasmon polaritons. The filters may have important potential application in highly integrated optical circuits.

  14. Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban

    2003-01-01

    The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.

  15. Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene

    PubMed Central

    Shi, Bin; Cai, Wei; Zhang, Xinzheng; Xiang, Yinxiao; Zhan, Yu; Geng, Juan; Ren, Mengxin; Xu, Jingjun

    2016-01-01

    Tunable band-stop filters based on graphene with periodically modulated chemical potentials are proposed. Periodic graphene can be considered as a plasmonic crystal. Its energy band diagram is analyzed, which clearly shows a blue shift of the forbidden band with increasing chemical potential. Structural design and optimization are performed by an effective-index-based transfer matrix method, which is confirmed by numerical simulations. The center frequency of the filter can be tuned in a range from 37 to 53 THz based on the electrical tunability of graphene, while the modulation depth (−26 dB) and the bandwidth (3.1 THz) of the filter remain unchanged. Specifically, the bandwidth and modulation depth of the filters can be flexibly preset by adjusting the chemical potential ratio and the period number. The length of the filter (~750 nm) is only 1/9 of the operating wavelength in vacuum, which makes the filter a good choice for compact on-chip applications. PMID:27228949

  16. Tunable Broadband Transparency of Macroscopic Quantum Superconducting Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Anlage, Steven M.

    2015-10-01

    Narrow-band invisibility in an otherwise opaque medium has been achieved by electromagnetically induced transparency (EIT) in atomic systems. The quantum EIT behavior can be classically mimicked by specially engineered metamaterials via carefully controlled interference with a "dark mode." However, the narrow transparency window limits the potential applications that require a tunable wideband transparent performance. Here, we present a macroscopic quantum superconducting metamaterial with manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional EIT or its classical analogs. A near-complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bistability of the meta-atoms and can be tuned on and off easily by altering rf and dc magnetic fields, temperature, and history. Hysteretic in situ 100% tunability of transparency paves the way for autocloaking metamaterials, intensity-dependent filters, and fast-tunable power limiters.

  17. Tunability of multichannel optical filter based on magnetized one-dimensional plasma photonic crystal

    SciTech Connect

    Jamshidi-Ghaleh, K. Karami-Garehgeshlagi, F.; Mazloom, A. A.

    2015-10-15

    A one dimensional plasma photonic crystal (1DPPC) structure was proposed to design a tunable compressing/broadening multi-channel optical filter with external controllability. The 1DPPC with arrangement of (AP){sup n}D(PA){sup n}, where A and D are the dielectric materials, P is a magnetized plasma layer and n is the number of the periodicity, was proposed. The well-known transfer matrix method was employed for analysis. In linear transmittance spectrum, n − 1 defect modes were appeared inside the photonic band gap. The results were shown that by increasing the applied magnetic field intensity and its direction, a red-shift and blue-shift were, respectively, observed in defect mode frequencies. On the other hand, the modes were compressed and broadened with increasing the intensity and the direction of the applied magnetic field, respectively. Externally controllable defect modes can be useful in designing a multichannel tunable optical filter.

  18. Tunable optical filter based on self-rolled-up microtube incorporating nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Sedaghat, Setareh; Zarifkar, Abbas

    2017-05-01

    A widely tunable filter in TiO2 self-rolled-up microtube (SRM) with nematic liquid crystal (NLC), which fills the hollow core of the SRM, is proposed as a novel three-dimensional filter structure. Since the total free energy of the NLC is under the influence of elastic distortion energy, the applied static electric field, and optical power, the reorientation of the liquid crystal is computed by minimizing this quantity in this research. The dependency of the NLC refractive index on applied electric field shows that the dynamic wavelength tuning range of an 8 μm-radius NLC SRM can reach up to the maximum value of 90.6 nm with an operation voltage of 30 V, which is enough to achieve the wavelength tunability from S-band to L-band.

  19. Tunable acoustic filters assisted by coupling vibrations of a flexible Helmholtz resonator and a waveguide

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wei, Zhi; Zhang, Xiang; Fan, Li; Qu, Jianmin; Zhang, Shu-yi

    2017-04-01

    We report a coupling structure to realize tunable sound transmission in various frequency ranges. The structure, consisting of a flexible Helmholtz resonator and a waveguide, excites three main coupling modes that generate bandpass and bandstop filter effects. Importantly, the coupling modes are controlled by membrane tension or the device structure. These properties show that a tunable filter can be realized simply by regulating the coupling vibration states by changing the membrane tension with different electromagnetic forces. In applications, the flexible Helmholtz resonator operating at its multiple resonances can be fabricated on the sub-wavelength scale, making it easy to achieve acoustic devices with small size for noise suppression or sound control at low frequencies.

  20. Experimental Generation of Narrow-Band Paired Photons: from Damped Rabi Oscillation to Group Delay

    NASA Astrophysics Data System (ADS)

    Liao, Kai-Yu; Yan, Hui; He, Jun-Yu; Huang, Wei; Zhang, Zhi-Ming; Zhu, Shi-Liang

    2014-03-01

    We report the experimental generation of narrow-band paired photons through electromagnetically induced transparency and spontaneous four-wave mixing in a two-dimensional magneto-optical trap (2D MOT). By controlling the optical depth of the 2D MOT from 0 to 40, the temporal length of the generated narrow-band paired photons can be varied from 50 to 900 ns. The ‘transition’ between damped Rabi oscillation and group delay is observed undisputedly. In the damped Rabi oscillation regime, a violation factor of the Cauchy—Schwartz inequality as large as 6642 is observed. In the group delay regime, sub-MHz linewidth (~ 0.65 MHz) paired photons are obtained with a generation rate of about 0.8 × 105 s-1.

  1. [Narrow band multi-region level set method for remote sensing image].

    PubMed

    Fang, Jiang-Xiong; Tu, En-Mei; Yang, Jie; Jia, Zhen-Hong; Nikola, Kasabov

    2011-11-01

    Massive redundant contours happen when the classical Chan-Vese (C-V) model is used to segment remote sensing images, which have interlaced edges. What's more, this model can't segment homogeneous objects with multiple regions. In order to overcome this limitation of C-V model, narrow band multiple level set method is proposed. The use of N-1 curves is required for the segmentation of N regions and each curve represents one region. First, the level set model to establish an independent multi-region region can eliminate the redundant contours and avoids the problems of vacuum and overlap. Then, narrow band approach to level set method can reduce the computational cost. Experimental results of remote image verify that our model is efficient and accurate.

  2. Stopping Narrow-Band X-Ray Pulses in Nuclear Media

    NASA Astrophysics Data System (ADS)

    Kong, Xiangjin; Pálffy, Adriana

    2016-05-01

    A control mechanism for stopping x-ray pulses in resonant nuclear media is investigated theoretically. We show that narrow-band x-ray pulses can be mapped and stored as nuclear coherence in a thin-film planar x-ray cavity with an embedded 57Fe nuclear layer. The pulse is nearly resonant to the 14.4 keV Mössbauer transition in the 57Fe nuclei. The role of the control field is played here by a hyperfine magnetic field which induces interference effects reminiscent of electromagnetically induced transparency. We show that, by switching off the control magnetic field, a narrow-band x-ray pulse can be completely stored in the cavity for approximately 100 ns. Additional manipulation of the external magnetic field can lead to both group velocity and phase control of the pulse in the x-ray cavity sample.

  3. Numerical Solution of Nonlinear Equation to Combined Deterministic and Narrow-Band Random Excitation

    NASA Astrophysics Data System (ADS)

    Chinviriyasit, W.; Chinviriyasit, S.

    The Duffing oscillator to combined deterministic and narrow-band random excitation, which is a nonlinear equation, is studied and solved numerically using three numerical methods based on finite difference schemes. Method 1, the well-known Euler method, is an explicit method; Method 2 is an implicit first-order method which does not bring contrived chaos into the solution; and Method 3 is based on two first-order methods which is second-order method and is chaos-free. In a series of numerical experiments, it is seen that the proposed methods have superior stability properties to those of the well-known Euler and fourth-order Runge-Kutta methods to which they are compared. When extended to the numerical solution of Duffing oscillator to combined deterministic and narrow-band random excitation, the developed methods give the correct steady-state solutions compared with the literature.

  4. Scaling effect on the estimation of chlorophyll content using narrow band NDVIs based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Shi, Runhe; Liu, Pudong; Cong, Zhou

    2015-09-01

    The aim of this work is to use narrow band normalized difference vegetation indices to compare the estimations of chlorophyll contents at foliar level and canopy level, through a large number of simulated canopy reflectance spectra under different chlorophyll contents based on PROSPECT model and SAIL model. 10 narrow band NDVIs were selected at the identified ranges that can effectively assess foliar chlorophyll content. We analyzed the correlations between canopy chlorophyll contents and the ten narrow band NDVIs firstly, and then analyze these indices' sensitivities to all canopy parameters, the adaptation of the 10 narrow band NDVIs used in assessing the canopy chlorophyll content were evaluated finally. We found that only two narrow band NDVIs (i.e., NDVI(875, 725) and NDVI(900,720)) can be applied for the estimation of chlorophyll contents at canopy level.

  5. Development of a Compact Imaging Spectrometer Using Liquid Crystal Tunable Filter Technology

    NASA Technical Reports Server (NTRS)

    Faust, Jessica A; Biswas, Abhijit; Bearman, Gregory H.; Chrien, Thomas; Miller, Peter J.

    1996-01-01

    Liquid crystal tunable filters are useful in building compact multi-spectral instruments. The system is portable and adaptable for use in a variety of fields of study in the visible and near-infrared regions of the spectrum.We will present data from calibration targets and some applications, results of the spectral calibration of a spectrometer system, and results of environmental (vibration, radiation, shock, and thermal) testing. Data acquisition and system design are also discussed.

  6. A new method for determining the transfer function of an acousto optical tunable filter.

    PubMed

    Mahieux, A; Wilquet, V; Drummond, R; Belyaev, D; Federova, A; Vandaele, A C

    2009-02-02

    The current study describes the determination of the transfer function of an Acousto Optical Tunable Filter from the in-flight solar observations of the SOIR instrument on board Venus Express. An approach is proposed in order to reconstruct the transfer function profile from the analysis of various solar lines. Moreover this technique allows the determination of the evolution of the transfer function as a function of the AOTF radio frequency.

  7. Narrow Band Susceptibility Prediction from the Impulse Scatter Response of a Pseudomissile (Case I),

    DTIC Science & Technology

    1998-04-01

    State University. [2] Comparison of Results Since the prediction of the coupled signal is pertinent to this discussion, the narrow band coupling...1300 to 1500 MHz susceptibility response band. It is not clear based on this method how the probe response was perturbed by the local boundary...scaling property for linear systems dependent upon the local region’s resonant modes, it is appropriate to consider developing better analysis tools and

  8. Narrow-band radiation wavelength measurement by processing digital photographs in RAW format

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2012-12-31

    The technique of measuring the mean wavelength of narrow-band radiation in the 455 - 625-nm range using the image of the emitting surface is presented. The data from the camera array unprocessed by the built-in processor (RAW format) are used. The method is applied for determining the parameters of response of holographic sensors. Depending on the wavelength and brightness of the image fragment, the mean square deviation of the wavelength amounts to 0.3 - 3 nm. (experimental techniques)

  9. The diagnostic value of endoscopic narrow band imaging in helicobacter pylori gastritis in children.

    PubMed

    Özgür, Taner; Özkan, Tanju Başarır; Erdemir, Gülin; Özakın, Cüneyt; Yerci, Ömer

    2015-03-01

    In this study we aimed to investigate the sensitivity and specificity of Narrow Band Imaging (NBI) in H. pylori gastritis and compare them with those of rapid urease test and urea breath test. A hundred sixty-five children who admitted to Uludag University Pediatric Gastroenterology Unit between October 2009-March 2011 with upper gastrointestinal symptoms were consecutively enrolled. During the endoscopy procedure gastric corporeal, antral and fundal images were obtained, afterwards the same areas were visualized with narrow band imaging and images were recorded again. The study included 68 (41.2%) boys and 97(58.8%) girls. The mean age of the patients were 11.88±4.55. Tissue culture positivity and/or histopathological staining for H. pylori was determined in 56 (33.9%) patients (Group 1) and the other patients (n:109, 43.6%) didn't have an evidence of H. pylori infection (Group 2). Narrow band images have supported H. pylori infection in 56.4%. The sensitivity of narrow band images for determining H. pylori infection was 92.86% (95% CI 82.7-98), specificity was 62.39% (95% CI 52.6-71.5). Our study is the first to show the role of NBI in diagnosing H. pylori infection in children, as well as determining the sensitivity and specificity of the technique. The specificity is low; however, we suggest that the specific mucosal view of H. pylori gastritis provided by NBI is useful for identifying the areas from which the biopsies should be taken. Moreover, by using this technique, treatment of H. pylori infection may be initiated immediately without performing rapid urease test and without waiting for histopathology report and tissue culture.

  10. Narrow-band microwave radiation from a biased single-Cooper-pair transistor.

    PubMed

    Naaman, O; Aumentado, J

    2007-06-01

    We show that a single-Cooper-pair transistor (SCPT) electrometer emits narrow-band microwave radiation when biased in its subgap region. Photoexcitation of quasiparticle tunneling in a nearby SCPT is used to spectroscopically detect this radiation in a configuration that closely mimics a qubit-electrometer integrated circuit. We identify emission lines due to Josephson radiation and radiative transport processes in the electrometer and argue that a dissipative superconducting electrometer can severely disrupt the system it attempts to measure.

  11. Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis.

    PubMed

    Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan; Henson, Zachary B; Nguyen, Thuc-Quyen; Heeger, Alan J; Bazan, Guillermo C

    2013-12-02

    PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tunable band notch filters by manipulating couplings of split ring resonators.

    PubMed

    Sun, Haibin; Wen, Guangjun; Huang, Yongjun; Li, Jian; Zhu, Weiren; Si, Li-Ming

    2013-11-01

    The couplings between single/dual split ring resonators (SRRs) and their mirror images in a rectangular waveguide are systematically investigated through theoretical analysis and experimental measurements. Such couplings can be manipulated mechanically by rotating the SRRs along a dielectric rod and/or shifting the SRRs up/down along the sidewall of the rectangular waveguide, resulting in shifts of the resonant frequencies and modulations of the resonant magnitudes. These controllable properties of SRRs pave the routers toward designing tunable band notch filters. In particular, it is experimentally demonstrated that the designed filters possess 7.5% tuning range in the X-band.

  13. A liquid crystals modulated optical tunable filter based on Fano resonance of Au nanorod trimer

    NASA Astrophysics Data System (ADS)

    Xin, Huan Peng; Liu, Fei; Ren, Guang Jun; Zhao, Hong Liang; Yao, Jian Quan

    2017-04-01

    We theoretically studied the liquid crystals modulated optical tunable filter based on Fano resonance of Au nanorod trimer. Plasmonic nanorods can support Fano resonances, where the line shape characteristics are controlled by the geometry of nanorods. Here a polarization-dependent Au nanorod trimer was designed, where the three nanorods have the same geometric parameters and form a C-shape. When the plasmon modes of the longitudinal nanorod and the two transverse nanorods couple at resonance wavelength, a Fano resonance occurs. Due to liquid crystals can change the polarization direction of light, the transmission spectra of Au nanorod trimer can be switched on and off with different phases of liquid crystals when incident light passes through liquid crystals before reaching the Au nanorod trimer. Furthermore, filter optical characteristics are highly tunable by changing the thicknesses of Au nanorod trimer and its coating layer. Fano resonances show a large light extinction in periodic array of assembled nanorods, which can be used in optical tunable filter and optical switch.

  14. Design of tunable terahertz bandstop filter based on electrostatically actuated reconfigurable metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Peng; Hu, Fangrong; Wang, Zhiyuan; Jiang, Wenying; Wang, Yue'e.; Chen, Yuanzhi

    2017-06-01

    A tunable terahertz (THz) bandstop filter based on electrostatically actuated microelectromechanical systems (MEMS) reconfigurable metamaterials is presented. The central part of the filter is a periodic array structure, and each unit cell consists of a movable bar and a fixed inverted trapezoidal ring. When direct current (DC) voltage is applied to actuate the electrostatic comb actuators symmetrically positioned on both sides, the movable frame and all movable bars can move in-plane. This will reconfigure the unit cell of the filter, and thus change its resonance frequency. Finite integration time domain (FITD) method is used to study the working mechanism and the influence of structure parameters. The results show that the performance of the filter strongly depends on the distance between the trapezoidal ring and the cross bar, the width of inverted trapezoidal ring and the basic angle of trapezoidal ring. A finite element analysis (FEA) method is introduced to study the electromechanical performance of the actuator, and a displacement of 3 μm is achieved at DC 30 V. The corresponding modulation of central frequency is about 24%. The potential applications of this tunable THz bandstop filter are THz communication, THz beam control and frequency selective detection.

  15. JPL activities on development of acousto-optic tunable filter imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    Recent activities of JPL in the development of a new type of imaging spectrometers for earth observation and planetary exploration are reported. This instrument uses the acousto-optic tunable filter (AOTF) as high resolution and fast programmable bandpass filter. AOTF operates in the principle of acousto-optic interaction in an anisotropic medium. This filter can be tuned in sequential, random, and multiwavelength access modes, providing observational flexibility. The diffraction process in the filter generates two diffracted monochromatic beams with polarization orthogonal to each other, creating a unique capability to measure both polarimetric and spectral properties of the incoming light simultaneously with a single instrument. The device gives wide wavelength operations with reasonably large throughput. In addition, it is in a compact solid-state structure without moving parts, providing system reliability. These attractive features give promising opportunities to develop a new generation of airborne/spaceborne and ground, real-time, imaging spectrometer systems for remote sensing applications.

  16. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  17. Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements.

    PubMed

    Bisson, S E; Goldsmith, J E; Mitchell, M G

    1999-03-20

    We describe a high-performance Raman lidar system with combined day and night capability for tropospheric water-vapor profile measurements. The system incorporates high-performance UV interference filters and a narrow-band, dual-field-of-view receiver for rejection of background sunlight. Daytime performance has been demonstrated up to 5 km with 150-m vertical and 5-min temporal averaging. The nighttime performance is significantly better with measurements routinely extending from 10 to 12 km with 75-m range resolution and a 5-min temporal average. We describe design issues for daytime operation and a novel daytime calibration technique.

  18. Lumped modeling with circuit elements for nonreciprocal magnetoelectric tunable band-pass filter

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Zhou, Hao-Miao; Zhang, Qiu-shi; Hu, Wen-Wen

    2016-11-01

    This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave band-pass filter. The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magnetoelectric composites, includes the electrical tunable equivalent factor of the piezoelectric layer, and is established by the introduced lumped elements, such as radiation capacitance, radiation inductance, and coupling inductance, according to the transmission characteristics of the electromagnetic wave and magnetostatic wave in an inverted-L-shaped microstrip line and ferrite slab. The nonreciprocal transmission property of the filter is described by the introduced T-shaped circuit containing controlled sources. Finally, the lumped equivalent circuit of a nonreciprocal magnetoelectric tunable microwave band-pass filter is given and the lumped parameters are also expressed. When the deviation angles of the ferrite slab are respectively 0° and 45°, the corresponding magnetoelectric devices are respectively a reciprocal device and a nonreciprocal device. The curves of S parameter obtained by the lumped equivalent circuit model and electromagnetic simulation are in good agreement with the experimental results. When the deviation angle is between 0° and 45°, the maximum value of the S parameter predicted by the lumped equivalent circuit model is in good agreement with the experimental result. The comparison results of the paper show that the lumped equivalent circuit model is valid. Further, the effect of some key material parameters on the performance of devices is predicted by the lumped equivalent circuit model. The research can provide the theoretical basis for the design and application of nonreciprocal magnetoelectric tunable devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285, 11472259, and 11302217) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).

  19. Fiber Fabry-Perot tunable filter for high-speed optical packet switching

    SciTech Connect

    Taranenko, N.L.; Tenbrink, S.C.; Hsu, K.; Miller, C.M.

    1997-01-01

    Tunable optical filters are important building blocks for All-Optical systems and networks. Fast optical tuning in several microseconds is necessary to perform high-speed optical packet switching. Multi- Gigabit/sec packet-switching will provide flexibility and higher network throughput when large numbers of users communicate simultaneously. One approach to achieve fast wavelength tuning is to use high-speed piezoelectrically-driven Fiber Fabry-Perot tunable filters (FFP-TFs). The requirement for tuning in microseconds raises a whole new set of challenges, such as ringing, thermostability and mechanical inertia control. It was shown that correlation between the mechanical resonance and optical response of the filter is important for the filter`s speed and for mounting hardware and control circuitry optimization. These features together with the FFP-TF`s high capacitance (approximately 0.25-0.5 microfarad) are being folded into building a special controller to substantially improve the shape of the driving signal and the response of the filter. The resultant controller enables tuning the high-speed FFP-TF three-orders-of- magnitude faster than that possible with standard commercial FFP-TFS. The fastest switching time achieved is 2.5 microseconds. As the result, a new packet-switched media access control protocol is being designed to minimize the searching time. The filter scans only once through the entire optical region and then tunes to all the required channels one after another in a few microseconds. It can help update Rainbow-2 Broadcast-and-Select High-Speed Wavelength Division Multiplexing All-Optical network that currently has a circuit- switched protocol using standard FFP-TFS.

  20. Configurable bandwidth imaging spectrometer based on acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Vila-Francés, Joan; Ribes-Gómez, Emilio; Ibáñez-López, Cristina; Gomez-Chova, Luis; Muñoz-Mari, Jordi; Amorós-López, Julia; Calpe-Maravilla, Javier

    2005-09-01

    This paper presents a new portable instrument called Autonomous Tunable Filtering System (ATFS), developed for highly customisable imaging spectrometry in the VIS-NIR range. The ATFS instrument consists of an Acousto-Optic Tunable Filter (AOTF), an optical system, a Radio Frequency (RF) driver based on a Direct Digital Synthesiser (DDS) and control software. The ATFS can be attached to a variety of high-performance monochrome cameras. The system works as a spectral bandpass filter whose wavelength can be selected between 400nm and 1000nm and whose bandwidth can be adjusted between 4nm and 50nm. The filter can be tuned electronically at a very high speed and accuracy, thanks to the DDS versatility. The control software synchronises the camera with the RF generation and implements a smart auto-exposure algorithm that maximises the dynamic range of the instrument for each band. The software can take a set of spectral images sequentially and save them in ENVI® multispectral format or as multiple TIFF images. The system has been validated using a reference point spectrometer. An optional acquisition procedure has been developed, based on the acquisition of dark and white Spectralon® reference images, in order to use the system in applications involving quantitative (reflectance) measurements. Procedures have been established in order to fully calibrate the instrument. The system has been demonstrated in a real world application, which uses the ATFS to map the leaf chlorophyll content from multispectral reflectance images.

  1. Development of a wavelength tunable filter using MEMS technology

    NASA Astrophysics Data System (ADS)

    Liu, Junting

    Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an

  2. Tunable Plasmonic Band-Pass Filter with Dual Side-Coupled Circular Ring Resonators

    PubMed Central

    Liu, Dongdong; Wang, Jicheng; Zhang, Feng; Pan, Yuewu; Lu, Jian; Ni, Xiaowu

    2017-01-01

    A wavelength band-pass filter with asymmetric dual circular ring resonators in a metal-insulator-metal (MIM) structure is proposed and numerically simulated. For the interaction of the local discrete state and the continuous spectrum caused by the side-coupled resonators and the baffle, respectively, the transmission spectrum exhibits a sharp and asymmetric profile. By adjusting the radius and material imbedded in one ring cavity, the off-to-on plasmon-induced absorption (PIA) optical response can be tunable achieved. In addition, the structure can be easily extended to other similar compact structures to realize the filtering task. Our structures have important potential applications for filters and sensors at visible and near-infrared regions. PMID:28335398

  3. A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Cao, Ye; Tong, Zheng-rong; Yang, Jing-peng

    2017-01-01

    A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation is proposed and demonstrated. The complex coefficient is generated using a Fourier-domain optical processor (FD-OP) to control the amplitude and phase of the optical carrier and radio-frequency (RF) phase modulation sidebands. By controlling the FD-OP, the frequency response of the filter can be tuned in the full free spectral range ( FSR) without changing the shape and the FSR of the frequency response. The results show that the center frequency of the notch filter can be continuously tuned from 17.582 GHz to 29.311 GHz with FSR of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.

  4. A Novel K-Band Tunable Microstrip Bandpass Filter Using a Thin Film HTS/Ferroelectric/ Dielectric Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; VanKeuls, F.; Miranda, F. A.

    1998-01-01

    We report on YBCO/strontium titanate (STO) thin film K-band tunable bandpass filters on lanthanum aluminate substrates. The 2 pole filters were designed for a center frequency of 19 GHz and 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO (epsilon-rSTO). Center frequency shifts greater than 2 GHz were obtained at a 400V bipolar dc bias at temperatures below 77K, with minimum degradation in the insertion loss of the filters.

  5. Response to narrow-band UVB--vitiligo-melasma versus vitiligo: a comparative study.

    PubMed

    Sharma, Parikshit; Pai, Harsha S; Pai, Ganesh S; Kuruvila, Maria; Kolar, Reshma

    2011-04-01

    Vitiligo is the most common depigmentary disorder of the skin and hair, resulting from selective destruction of melanocytes. Melasma, a hyperpigmentary disorder, presents as irregular, brown, macular hypermelanosis. A small subset of vitiligo patients paradoxically also have melasma. To evaluate and compare the response to narrow-band UVB in a group of patients with vitiligo, and another group of patients with vitiligo and coexisting melasma (vitiligo-melasma). Patients in both groups were treated with narrow-band UVB and a comparison of the zonal repigmentation was made at 4, 8, and 12 weeks after the initiation of therapy. At the end of 12 weeks, 86% of patients in the vitiligo-melasma group attained ≥75% pigmentation on the face, whereas this was achieved in only 12.5% of patients in the vitiligo group. Over the limbs, 73% of patients in the vitiligo-melasma group attained 75% or more pigmentation at the end of 12 weeks compared with only 9% in the vitiligo group. On the trunk, only 20% of vitiligo-melasma patients showed ≥75% pigmentation at 12 weeks compared with 63% of patients in the vitiligo group. Patients having both vitiligo and melasma have a significantly better prognosis for repigmentation on the face and limbs with narrow-band UVB compared with patients with vitiligo alone; the vitiligo-melasma patients achieve repigmentation much earlier and also attain a greater level of repigmentation. Unexpectedly, for truncal lesions, patients with vitiligo alone responded better than those with both conditions. Although the vitiligo-melasma group with truncal lesions started repigmenting earlier, the final pigmentation was more extensive in the vitiligo group.

  6. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    PubMed Central

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332

  7. Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter.

    PubMed

    Gupta, Neelam; Voloshinov, Vitaly

    2004-05-01

    Hyperspectral imaging in the ultraviolet to visible spectral region has applications in astronomy, biology, chemistry, medical sciences, etc. A novel electronically tunable, random-wavelength access, compact, no-moving-parts, vibration-insensitive, computer-controlled hyperspectral imager operating from 220 to 480 nm with a spectral resolution of 160 cm(-1), e.g., 2 nm at 350 nm, has been developed by use of a KDP acousto-optic tunable filter (AOTF) with an enhanced CCD camera and a pair of crossed calcite Glan-Taylor polarizing prisms. The linear and angular apertures of the AOTF are 1.5 x 1.5 cm2 and 1.2 degrees, respectively. Imager setup and spectral imaging results as well as analyses and discussion of various factors affecting image quality are presented.

  8. Observation of tunable nonlinear effects in an analogue of superconducting composite right/left hand filter

    PubMed Central

    Liu, Haiwen; Lei, Jiuhuai; Jiang, Hao; Guan, Xuehui; Ji, Laiyun; Ma, Zhewang

    2015-01-01

    Artificial structures with negative permittivity or permeability have attracted significant attention in the science community because they provide a pathway for obtaining exotic electromagnetic properties not found in natural materials. At the moment, the great challenge of these artificial structures in microwave frequency exhibits a relatively large loss. It is well-known that superconducting thin films have extremely low surface resistance. Hence, it is a good candidate to resolve this constraint. Besides, the reported artificial structures with negative permittivity or permeability are mainly focusing on linear regime of wave propagation. However, any future effort in creating tunable structures would require knowledge of nonlinear properties. In this work, a tunable superconducting filter with composite right/left-hand transmission property is proposed and fabricated. Its nonlinear effects on temperature and power are studied by theoretical analysis and experiments. PMID:26442447

  9. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  10. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.

    PubMed

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-09

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  11. Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection

    NASA Astrophysics Data System (ADS)

    Partridge, William P., Jr.; Klassen, Michael S.; Thomsen, D. Douglas; Laurendeau, Normand M.

    1996-08-01

    We experimentally investigate the influence of O 2 interferences on laser-induced fluorescence measurements of NO in lean methane-fueled flames at a range of pressures for both narrow-band and broadband fluorescence detection. We identify NO excitation schemes that minimize O2 interferences. From detection scans we obtain interference spectra for the different NO excitation schemes. We then identify optimum excitation-detection schemes for narrow-band detection measurements of NO. To simulate broadband detection experiments, we numerically apply five different filter combinations to the experimentally obtained detection scans. We develop filter-assessment parameters to judge the effectiveness of the different filtering schemes, and we establish a methodology for evaluating broadband excitation-detection strategies. From this research we identify optimum excitation-detection schemes for broadband detection measurements of NO.

  12. Experimental assessment of O 2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection

    NASA Astrophysics Data System (ADS)

    Partridge, William P.; Klassen, Michael S.; Thomsen, D. Douglas; Laurendeau, Normand M.

    1995-08-01

    We experimentally investigate the influence of O 2 interferences on laser-induced fluorescence measurements of NO in lean methane-fueled flames at a range of pressures for both narrow-band and broadband fluorescence detection. We identify NO excitation schemes that minimize O 2 interferences. From detection scans we obtain interference spectra for the different NO excitation schemes. We then identify optimum excitation-detection schemes for narrow-band detection measurements of NO. To simulate broadband detection experiments, we numerically apply five different filter combinations to the experimentally obtained detection scans. We develop filter-assessment parameters to judge the effectiveness of the different filtering schemes, and we establish a methodology for evaluating broadband excitation-detection strategies. From this research we identify optimum excitation-detection schemes for broadband detection measurements of NO.

  13. H-alpha wide- and narrow-band photometry of R Canis Majoris

    NASA Astrophysics Data System (ADS)

    Edalati, M. T.; Khalesse, B.; Riazi, N.

    1989-01-01

    H-alpha wide- and narrow-band photoelectric observations of the eclipsing binary R CMa were made at the Biruni Observatory between February 18 and March 2, 1983. The light curves obtained from the observations are analyzed according to Kopal's method for the orbital elements by using frequency-domain techniques. It appears likely that an exchange has taken place on the angle of the first contact and is probably continuing at the present time. New geometric and photometric elements are derived, and a new value for the angle of the first contact is also given.

  14. Narrow-band single-photon emission in the near infrared for quantum key distribution.

    PubMed

    Wu, E; Jacques, Vincent; Zeng, Heping; Grangier, Philippe; Treussart, François; Roch, Jean-François

    2006-02-06

    We present a detailed study of photophysical properties of single color centers in natural diamond samples emitting in the near infrared under optical excitation. Photoluminescence of these single emitters has several striking features, including narrow-band (FWHM 2 nm) fully polarized emission around 780 nm, a short excited-state lifetime of about 2 ns, and perfect photostability at room temperature under our excitation conditions. Development of a triggered single-photon source relying on this single color center is discussed for application to quantum key distribution.

  15. Compressed Sensing/Sparse-Recovery Approach for Improved Range Resolution in Narrow-Band Radar.

    PubMed

    Costanzo, Sandra

    2016-01-01

    A compressed sensing/sparse-recovery procedure is adopted to obtain enhanced range resolution capability from the processing of data acquired with narrow-band SFCW radars. A mathematical formulation for the proposed approach is reported and validity limitations are fully discussed, by demonstrating the ability to identify a great number of targets, up to 20, in the range direction. Both numerical and experimental validations are presented, by assuming also noise conditions. The proposed method can be usefully applied for the accurate detection of parameters with very small variations, such as those involved in the monitoring of soil deformations or biological objects.

  16. Narrow-band erbium-doped fibre linear–ring laser

    SciTech Connect

    Kolegov, A A; Sofienko, G S; Minashina, L A; Bochkov, A V

    2014-01-31

    We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)

  17. Compressed Sensing/Sparse-Recovery Approach for Improved Range Resolution in Narrow-Band Radar

    PubMed Central

    Costanzo, Sandra

    2016-01-01

    A compressed sensing/sparse-recovery procedure is adopted to obtain enhanced range resolution capability from the processing of data acquired with narrow-band SFCW radars. A mathematical formulation for the proposed approach is reported and validity limitations are fully discussed, by demonstrating the ability to identify a great number of targets, up to 20, in the range direction. Both numerical and experimental validations are presented, by assuming also noise conditions. The proposed method can be usefully applied for the accurate detection of parameters with very small variations, such as those involved in the monitoring of soil deformations or biological objects. PMID:27022617

  18. Hypopigmented Mycosis Fungoides: Clinical, Histological, and Immunohistochemical Remission Induced by Narrow-band Ultraviolet B

    PubMed Central

    Bisherwal, Kavita; Singal, Archana; Pandhi, Deepika; Sharma, Sonal

    2017-01-01

    Mycosis fungoides (MF) is the most common type of primary cutaneous lymphomas. Several clinical variants of MF have been described. Purely, hypopigmented variant of MF (HMF) is rare. Phototherapy, especially photochemotherapy (Psoralen and ultraviolet), is the most widely used method and is recommended as the first-line treatment for HMF. However, there are no standard guidelines for phototherapy as the disease is uncommon. We, hereby, report a 30-year-old woman with HMF in whom clinical, histopathological, and immunohistochemical remission was achieved following narrow-band ultraviolet B therapy. PMID:28400643

  19. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2010-09-10

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)

  20. Evaluation of hydrazine reduction by cellulose acetate filters using infrared tunable diode laser spectroscopy.

    PubMed

    Harward, Charles N; Parrish, Milton E; Plunkett, Susan E; Banyasz, Joseph L; Shafer, Kenneth H

    2002-11-15

    Cellulose acetate (CA) filters have been investigated to determine their hydrazine (N2H4) breakthrough characteristics using a system based on tunable diode laser absorption spectroscopy (TDIAS). The breakthrough mass loading sorption curves for hydrazine were dependent on both the flow rate and the concentration. In experiments using a 4.5 ppmv hydrazine standard, the amounts of hydrazine retained by the CA filter were 4.25 microg at a flow rate of 2.82 L/min and 65 microg at a flow rate of 0.28 L/min. These loadings are much greater than the 31.5 ng/cigarette of hydrazine reported in smoke for unfiltered cigarettes. Further, CA filters exposed to four and eight puffs of smoke actually made the filter more efficient in retaining hydrazine compared to CA filters that had not been exposed to smoke. Therefore, if hydrazine is present in smoke at the levels reported in unfiltered cigarettes, all of the hydrazine would be trapped by the CA filter, and would be unable to break through during smoking. A unique feature of this analytical method is that the instrument does not require calibration after molecular parameters have been determined, in this case from previously acquired quantitative hydrazine FT-IR reference spectra.

  1. Narrow band imaging and high definition television in the assessment of laryngeal cancer: a prospective study on 279 patients.

    PubMed

    Piazza, Cesare; Cocco, Daniela; De Benedetto, Luigi; Del Bon, Francesca; Nicolai, Piero; Peretti, Giorgio

    2010-03-01

    Narrow band imaging (NBI) is an optical technique in which a filtered light reveals superficial carcinomas in view of their neoangiogenic pattern. The accuracy of NBI is implemented by combining it with a high definition television (HDTV) camera. The aim of this study was to prospectively evaluate the diagnostic gain of NBI and HDTV in the assessment of laryngeal squamous cell carcinoma (LSCC). Between April 2007 and December 2008, we analyzed by NBI with or without HDTV 279 patients divided in two groups: Group A included 96 patients affected by LSCC and Group B included 183 subjects under follow-up after treatment for the same disease. Overall, 50 of 279 patients (18%) showed "suspicious" NBI findings histologically confirmed as neoplastic. The sensitivity, specificity, accuracy, positive and negative predictive rates of flexible NBI, HDTV with white light, and HDTV with NBI in both groups confirmed the value of these two technologies. In the pre- and intraoperative settings, NBI with or without HDTV provided better definition of tumor staging and surgical margins. NBI has also a role in the postoperative setting, due to its ability in early detection of persistences, recurrences, and metachronous tumors.

  2. Fast fiber-optic tunable filter based on axial compression on a fiber Bragg grating.

    PubMed

    Zu, Wen; Gu, Xijia

    2006-09-01

    We describe the design, fabrication, and performance of a fiber Bragg grating-based tunable optic filter. The filter, driven by two piezostacks, consists of a flexural hinge structure for displacement magnification and a fiber-ferrule assembly for axial compression of the fiber grating. Finite-element analysis was used to design the mechanical structure to achieve the required displacement magnification and the force for grating compression. A passive thermal compensation design was implemented to reduce thermal-induced wavelength drift. A feedback control system with a linear variable differential transformer was employed to control the displacement for accurate wavelength tuning and fine-tuning resolution. This tunable filter has achieved a closed-loop switching time of 17.3 ms, and a passive thermal compensation that reduced the thermal drift of the Bragg wavelength to 1.5 pm/C. The flexural-hinge structure that offers negligible backlash, noise-free motion, no need of lubricants, and no wear ensures its long-term reliability.

  3. Tunable fiber polarizing filter based on a single-hole-infiltrated polarization maintaining photonic crystal fiber.

    PubMed

    Guo, Junqi; Liu, Yan-ge; Wang, Zhi; Han, Tingting; Huang, Wei; Luo, Mingming

    2014-04-07

    A tunable fiber polarizing filter based on selectively filling a single hole of a solid-core polarization maintaining photonic crystal fiber with high index liquid are proposed and demonstrated. Two groups of polarization-dependent resonance dips in the transmission spectrum of the single-hole-infiltrated photonic crystal fiber are observed. Theoretical and experimental investigations reveal that these resonant dips result from the couplings between the silica core fundamental mode at x or y polarization and high order modes (TM(01), TE(01) and HE(11)) in the liquid core. Especially, a distinctive characteristic near the strongest resonant point (SRP) is demonstrated and revealed. The transmission loss and spectral shape at the SRP wavelength are extremely sensitive to the filling length and temperature (or Refractive Index, RI), which permits a fiber bandpass or bandstop polarizing filter with a good performance on tunability and controllability. Furthermore, the narrowband dips on both sides of the SRP wavelength have wavelength-dependent tuning velocities, providing a method to achieve flexible and controllable filters as well as two- or multi-parameter sensors with a compact structure.

  4. Design and experimental research of a high-precision wavelength controller for tunable fiber Fabry-Perot filters

    NASA Astrophysics Data System (ADS)

    Qi, Hai-bing; Wei, Shu-hua; Wei, Chen

    2013-03-01

    A high-precision wavelength controller is presented in this paper. It is necessary to find out the difference between the central wavelength of a tunable fiber Fabry-Perot (FFP) filter and that of the input laser, while the wavelength controller operates at the states of wavelength-scanning and wavelength-locking modes. Firstly, a dynamic simulation model of tunable FFP filter is established, and the dynamic characteristic of tunable FFP filter modulated by an alternating current (AC) signal is simulated. Then the measuring time at wavelength-scanning mode compared with the theory time is discussed, and this time difference shows the difference between the central wavelength of a tunable FFP filter and that of the input laser. At last, the effects on wavelength-locking precision of time delays, including the time delay of opened-loop circuit, the time constant of the closed-loop circuit and the intrinsic hysteresis of piezoelectric (PZT) element, are analyzed. A wavelength controller of tunable FFP filter is designed and prepared. The experimental results at wavelength-locking mode show that a high locking precision is obtained.

  5. Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Sánchez-Pérez, J. V.; Garcia-Raffi, L. M.

    2011-07-01

    The physical properties of a periodic distribution of absorbent resonators is used in this work to design a tunable wideband bandstop acoustic filter. Analytical and numerical simulations as well as experimental validations show that the control of the resonances and the absorption of the scatterers along with their periodic arrangement in air introduce high technological possibilities to control noise. Sound manipulation is perhaps the most obvious application of the structures presented in this work. We apply this methodology to develop a device as an alternative to the conventional acoustic barriers with several properties from the acoustical point of view but also with additional esthetic and constructive characteristics.

  6. Tunable semiconductor laser with an acousto-optic filter in an external fibre cavity

    SciTech Connect

    Andreeva, E V; Mamedov, D S; Ruenkov, A A; Shramenko, M V; Magdich, L N; Yakubovich, S D

    2006-04-30

    A tunable semiconductor laser with a laser amplifier based on a double-pass superluminescent diode as an active element and an acousto-optic filter in an external fibre cavity as a selective element is investigated. A continuous spectral tuning is achieved in a band of width 60 nm centered at a wavelength of 845 nm and the 'instant' linewidth below 0.05 nm is obtained. The sweep frequency within the tuning range achieves 200 Hz. The cw power at the output of a single-mode fibre was automatically maintained constant at the level up to 1.5 mW. (lasers and amplifiers)

  7. Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate

    NASA Astrophysics Data System (ADS)

    Shao, Guang-hao; Song, Jing; Ruan, Ya-ping; Cui, Guo-xin; Lu, Yan-qing

    2016-12-01

    A tunable dual-wavelength filter is experimentally demonstrated in domain-engineered lithium niobate. Application of an electric field on the y-surfaces of the sample results in the optical axes rotating clockwise and anticlockwise, which makes selective polarization rotation. The quasi phase-matching wavelengths could be adjusted through suitable domain design. A unique dual valley spectrum is obtained in a periodically poled lithium niobate structure with a central defect if the sample is placed between two parallel polarizers. The expected bandwidth could be varied from ˜1 nm to ˜40 nm. Moreover, both the spectral response and group delay dispersion could be engineered.

  8. A Cooperative Distance Learning Method based on the Narrow-band Internet and Its Evaluation

    NASA Astrophysics Data System (ADS)

    Tilwaldi, Dilmurat; Takahashi, Toshiya; Takata, Akinobu; Koizumi, Hisao

    This paper describes the experimental evaluation of a cooperative distance learning method, which can be utilized on the narrow-band Internet. In this method, students of group-learning perform a series of study a couple of times, which create an on-line report, communicating through the chat about given theme. they try to gain improvement in the study effect with higher cooperative attitude. Teacher gives a short lecture at the first stage, and then gives supplementary explanation after grasping the degree of comprehension of students at the middle stage of the study. Teaching materials are distributed to students' PCs beforehand and the lecture could be carried out on the narrow-band environment by transmitting the commands. The teacher analyzes students' communication logs and gives advice for the next study. This paper describes the result of the evaluation of the proposed method by carrying out simulated installation of the environment within the campus supposing a trial of cooperative distance learning in overseas desert circumference area environment.

  9. The effects of narrow-band middle infrared radiation in enhancing the antitumor activity of paclitaxel.

    PubMed

    Tsai, Shang-Ru; Sheu, Bor-Ching; Huang, Pei-Shen; Lee, Si-Chen

    2016-01-01

    Paclitaxel is used as an adjuvant to enhance the effectiveness of ionization radiation therapy; however, high-energy radiation often damages the healthy cells surrounding cancer cells. Low-energy, middle-infrared radiation (MIR) has been shown to prevent tissue damage, and recent studies have begun combining MIR with paclitaxel. However, the cytotoxic effects of this treatment combination remain unclear, and the mechanism underlying its effects on HeLa cells has yet to be elucidated. This study investigated the effectiveness of treating HeLa human cervical cancer cells with a combination of paclitaxel for 48 h in conjunction with narrow-band MIR from 3.0 to 5.0 μm. This combined treatment significantly inhibited the growth of HeLa cells. Specifically, results from Annexin V-FITC/PI apoptosis detection and cell mitochondrial membrane potential analyses revealed an increase in apoptotic cell death and a collapse of mitochondrial membrane potential. One possible mechanism underlying cellular apoptosis is an increase in oxidative stress. These preliminary findings provide evidence to support the combination of narrow-band MIR with paclitaxel as an alternative approach in the treatment of human cervical cancer.

  10. Narrow-band N-resonance formed in thin rubidium atomic layers

    SciTech Connect

    Sargsyan, A.; Mirzoyan, R.; Sarkisyan, D.

    2012-11-15

    The narrow-band N-resonance formed in a {Lambda} system of D{sub 1}-line rubidium atoms is studied in the presence of a buffer gas (neon) and the radiations of two continuous narrow-band diode lasers. Special-purpose cells are used to investigate the dependence of the process on vapor column thickness L in millimeter, micrometer, and nanometer ranges. A comparison of the dependences of the N-resonance and the electromagnetically induced transparency (EIT) resonance on L demonstrates that the minimum (record) thickness at which the N-resonance can be detected is L = 50 {mu}m and that a high-contrast EIT resonance can easily be formed even at L Almost-Equal-To 800 nm. The N-resonance in a magnetic field for {sup 85}Rb atoms is shown to split into five or six components depending on the magnetic field and laser radiation directions. The results obtained indicate that levels F{sub g} = 2, 3 are initial and final in the N-resonance formation. The dependence of the N-resonance on the angle between the laser beams is analyzed, and practical applications are noted.

  11. Remote laser generation of narrow-band surface waves through optical fibers.

    PubMed

    Di Scalea, F L; Berndt, T P; Spicer, J B; Djordjevic, B B

    1999-01-01

    This paper demonstrates the use of a fiberoptic bundle for flexible, compact, remote, and noncontact laser generation of surface ultrasonic waves in materials. The bundle is able to deliver Nd:YAG pulsed light with a 60% delivery efficiency up to an average energy of 55 mJ/pulse for a pulse duration on the order of 10 ns and a pulse repetition rate of 20 Hz without signs of fiber damage. Details of the bundle construction and surface preparation are given, and pulsed light delivery tests performed with single tapered fibers are discussed. The high-power light delivery capabilities of the bundle are demonstrated for the generation of narrow-band surface waves in a Carbon/PEEK composite laminate by a spatial modulation technique that employs a periodic transmission mask. Single laser pulse ultrasonic tonebursts are clearly detectable using a small aperture piezoelectric transducer while ensuring thermoelastic generation conditions. The theory of narrow-band generation of surface acoustic waves is improved by accounting for the strength nonuniformity of the illumination sources. In addition, the effect of the number of illumination sources on the bandwidth of the generated surface wave is assessed experimentally, and excellent agreement is shown with the theoretical results predicted by the improved model.

  12. Flow-radiation coupling for atmospheric entries using a Hybrid Statistical Narrow Band model

    NASA Astrophysics Data System (ADS)

    Soucasse, Laurent; Scoggins, James B.; Rivière, Philippe; Magin, Thierry E.; Soufiani, Anouar

    2016-09-01

    In this study, a Hybrid Statistical Narrow Band (HSNB) model is implemented to make fast and accurate predictions of radiative transfer effects on hypersonic entry flows. The HSNB model combines a Statistical Narrow Band (SNB) model for optically thick molecular systems, a box model for optically thin molecular systems and continua, and a Line-By-Line (LBL) description of atomic radiation. Radiative transfer calculations are coupled to a 1D stagnation-line flow model under thermal and chemical nonequilibrium. Earth entry conditions corresponding to the FIRE 2 experiment, as well as Titan entry conditions corresponding to the Huygens probe, are considered in this work. Thermal nonequilibrium is described by a two temperature model, although non-Boltzmann distributions of electronic levels provided by a Quasi-Steady State model are also considered for radiative transfer. For all the studied configurations, radiative transfer effects on the flow, the plasma chemistry and the total heat flux at the wall are analyzed in detail. The HSNB model is shown to reproduce LBL results with an accuracy better than 5% and a speed up of the computational time around two orders of magnitude. Concerning molecular radiation, the HSNB model provides a significant improvement in accuracy compared to the Smeared-Rotational-Band model, especially for Titan entries dominated by optically thick CN radiation.

  13. Progress in the Search for Ultra-Narrow Band Extraterrestrial Artificial

    NASA Astrophysics Data System (ADS)

    Lemarchand, Guillermo

    Project META II (Megachannel Extra Terrestrial Assay), a full-sky survey for artificial ultra-narrow-band signals, has been conducted in Argentina, since October 1990, from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomia (IAR). The search was performed near the 1.4 GHz line of neutral hydrogen, using an 8.4 times 10^6 channel Fourier spectrometer of 0.05 Hz spectral resolution and 400 kHz of instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. In 1996, with the economical sponsorship of The Planetary Society, an up-grade of the original META data acquisition system was made. New hardware was installed and new software was developed allowing a more comprehensive data analysis of the detected signals. The search was expanded to the 1.667 and 3.3 GHz observing frequencies. A description of the new system's characteristics as well

  14. Narrow band imaging endoscopy of the nasopharynx is not more useful than white light endoscopy for suspected nasopharyngeal carcinoma.

    PubMed

    Vlantis, Alexander C; Woo, John K S; Tong, Michael C F; King, Ann D; Goggins, William; van Hasselt, C Andrew

    2016-10-01

    Endoscopy is often used to screen for nasopharyngeal carcinoma. A normal nasopharynx on white light endoscopy may yet harbor subclinical or occult malignancy. This study assessed whether the vascular pattern seen on narrow band imaging endoscopy could indicate this and thus be useful for detecting suspected nasopharyngeal carcinoma. The nasopharynx of 156 patients who failed serological screening for or presented with symptoms of nasopharyngeal carcinoma was graded under white light and narrow band imaging endoscopy and a biopsy taken. The accuracy of assessing the nasopharynx as being probably or definitely malignant on white light endoscopy was high (area under the curve = 0.924), as it was of being normal on narrow band imaging endoscopy (=0.799). The sensitivity and specificity of white light and narrow band imaging endoscopy for nasopharyngeal carcinoma was 93 and 22 %, and 92 and 98 %, respectively. Significantly associated with nasopharyngeal carcinoma was a high index of suspicion or definitely malignant grade on white light endoscopy (p < 0.0005, odds 58.978) and vascular tufts on narrow band imaging endoscopy (p = 0.020, odds 41.210). Narrow band imaging endoscopy of vasculature alone for suspected nasopharyngeal carcinoma is not more useful than white light endoscopy of nasopharyngeal morphology, nor does it add to or surpass the diagnostic accuracy of white light endoscopy in this regard.

  15. Wavelength-tunable filter utilizing non-cyclic arrayed waveguide grating to create colorless, directionless, contentionless ROADMs

    NASA Astrophysics Data System (ADS)

    Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio

    2015-01-01

    With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.

  16. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters.

    PubMed

    Choudhary, Amol; Aryanfar, Iman; Shahnia, Shayan; Morrison, Blair; Vu, Khu; Madden, Stephen; Luther-Davies, Barry; Marpaung, David; Eggleton, Benjamin J

    2016-02-01

    An unprecedented Brillouin gain of 44 dB in a photonic chip enables the realization of broadly tunable and reconfigurable integrated microwave photonic filters. More than a decade bandwidth reconfigurability from 30 up to 440 MHz, with a passband ripple <1.9  dB is achieved by tailoring the Brillouin pump. The filter central frequency is continuously tuned up to 30 GHz with no degradation of the passband response, which is a major improvement over electronic filters. Furthermore, we demonstrate pump tailoring to realize multiple bandpass filters with different bandwidths and central frequencies, paving the way for multiple on-chip microwave filters and channelizers.

  17. Spin-wave band-pass filters based on yttrium iron garnet films for tunable microwave photonic oscillators

    NASA Astrophysics Data System (ADS)

    Ustinov, A. B.; Drozdovskii, A. V.; Nikitin, A. A.; Kalinikos, B. A.

    2015-12-01

    The paper reports on development of tunable band-pass microwave filters for microwave photonic generators. The filters were fabricated with the use of epitaxial yttrium iron garnet films. Principle of operation of the filters was based on excitation, propagation, and reception of spin waves. In order to obtain narrow pass band, the filtering properties of excitation and reception antennas were exploited. The filters demonstrated insertion losses of 2-3 dB, bandwidth of 25-35 MHz, and tuning range of up to 1.5 GHz in the range 3-7 GHz.

  18. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    PubMed

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-07-26

    The present study was designed to evaluate the effect of combining fractional CO2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  19. Graphene-Based Plasmonic Tunable Low-Pass Filters in the Terahertz Band

    NASA Astrophysics Data System (ADS)

    Correas-Serrano, Diego; Gomez-Diaz, Juan Sebastian; Perruisseau-Carrier, Julien; Alvarez-Melcon, Alejandro

    2014-11-01

    We propose the concept, synthesis, analysis, and design of graphene-based plasmonic tunable low-pass filters operating in the THz band. The proposed structure is composed of a graphene strip transferred onto a dielectric and a set of polysilicon DC gating pads located beneath it. This structure implements a stepped impedance low-pass filter for the propagating surface plasmons by adequately controlling the guiding properties of each strip section through graphene's field effect. A synthesis procedure is presented to design filters with desired specifications in terms of cut-off frequency, in-band performance, and rejection characteristics. The electromagnetic modeling of the structure is efficiently performed by combining an electrostatic scaling law to compute the guiding features of each strip section with a transmission line and transfer-matrix framework, approach further validated via full wave simulations. The performance of the proposed filters is evaluated in practical scenarios, taking into account the presence of the gating bias and the influence of graphene's losses. These results, together with the high miniaturization associated with plasmonic propagation, are very promising for the future use and integration of the proposed filters with other graphene and silicon-based elements in innovative THz communication systems.

  20. Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2006-01-01

    In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.

  1. Wavelength-tunable actively mode-locked erbium-doped fiber ring laser using a distributed feedback semiconductor laser as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-07-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a distributed feedback semiconductor laser as an intensity mode locker and a tunable optical filter. Very stable optical pulse trains at gigabit repetition rates were generated using harmonica mode locking. The supermode noise was suppressed to 60 dB below the signal level and the root-mean-square timing jitter (0.45 kHz-1 MHz) was found to be about 1% of the pulse duration. A continuous wavelength tuning range of 1.8 nm was achieved by changing the semiconductor laser temperature from 11.4 to 30 °C.

  2. Investigation of utilizing a VCSEL diode to work as a tunable optical bandpass filter

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Hung; Huang, Yi-Syuan; Li, Chung-Yi

    2017-04-01

    Tunable optical band-pass filter (TOBPF) composed of a vertical-cavity surface-emitting laser (VCSEL) is proposed for multi-wavelength optical fiber transport systems. Experimental results prove that through properly adjusting VCSEL driving current, one of multiple injected lightwaves can properly flow through the proposed optical filter and others will be attenuated roughly 12 dB. Furthermore, by changing the VCSEL driving current, the pass-band window of the VCSEL-based TOBPF can be shifted to align with different designated injected lightwave and to block the others. By employing the TOBPF in multi-wavelength optical fiber transport systems, proper eye diagrams are experimentally observed for each dedicated optical signal. The proposed scheme is shown to be a practical and flexible component for multi-wavelength optical fiber transport systems.

  3. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure.

    PubMed

    Wang, Hongqing; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Wu, Wenjun; Chen, Dingbo; Xiao, Gongli

    2016-03-15

    A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth. Moreover, the effects of varying the number of identical teeth are also discussed. It is found that the bandgap width increases continuously with the increasing number of teeth. The finite difference time domain method is used to simulate and compute the coupling of surface plasmon polariton waves with different structures in this Letter. The plasmonic waveguide filter that we propose here may have meaningful applications in ultra-fine spectrum analysis and high-density nanoplasmonic integration circuits.

  4. Tunable terahertz multichannel filter based on one-dimensional superconductor-dielectric photonic crystals

    SciTech Connect

    Liu, Yang; Yi, Lin

    2014-12-14

    By means of the transfer matrix method, the transmission properties of one-dimensional photonic crystals (PCs) consisting of superconductor and dielectric have been systematically investigated within the terahertz frequency range (0.1–10 THz). It is shown that comb-like resonant peaks in transmission band can be formed without adding any defect layer in superconductor-dielectric PCs, which means that such a one-dimensional periodic structure can serve as a tunable terahertz multichannel filter by using the PCs passband. Furthermore, the influences coming from the period of the structure, the thickness of the components, the permittivity of the dielectric layers, temperature, and the normal conducting electrons on the filtering properties are also numerically investigated.

  5. High-speed wavelength tunable DPSK demodulation using a phase modulator based loop mirror filter.

    PubMed

    Ge, Jia; Feng, Hanlin; Fok, Mable P

    2014-06-15

    A high-speed wavelength tunable differential phase-shift-keying (DPSK) signal demodulator is presented using a phase modulator (PM) based fiber loop mirror filter. By controlling the birefringence of the PM inside the loop through electro-optic effect, wavelength tuning speed of tens of GHz and tuning range of over two free spectral ranges are achieved. Stable filter spectra with extinction ratio over 30 dB are obtained through the tuning process. By combining the birefringence of polarization maintaining fiber and PM, error-free demodulation performance is experimentally achieved throughout the wavelength tuning range for DPSK signals with flexible bit-rate range from 2.5 to 10  Gb/s. This design significantly improves the wavelength tuning speed and is potentially valuable for high-speed switching and tuning applications.

  6. Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot-Sagnac filter.

    PubMed

    Li, Ming; Zou, Xin; Wu, Jian; Shi, Jindan; Qiu, Jifang; Hong, Xiaobin

    2015-10-10

    A novel passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all normal dispersion is proposed and experimentally demonstrated based on a semiconductor saturable absorption mirror and tunable Lyot-Sagnac filter. By only tuning the bandwidth of the filter at fixed pump power, the repetition rate of 9.87 to 167.8 MHz (corresponding to 17th-order harmonic) is obtained. This is the highest repetition rate and harmonic order for a passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all-normal dispersion to the best of our knowledge. The signal-to-noise ratio and super-mode suppression ratio for all harmonic orders are higher than 65 and 35 dB, respectively, which shows the high stability of the fiber laser.

  7. Tunable Microwave Filters and Phase Shifters Based on Ferromagnetic/Dielectric Multilayer Waveguides

    NASA Astrophysics Data System (ADS)

    Jiashu Zhang,; Jinzhu Zhao,; Ruwen Peng,; Jia Li,; Ruili Zhang,; Mu Wang,

    2010-03-01

    We present theoretically microwave filters and phase shifters based on the propagation of hybrid electromagnetic-spin waves in a ferromagnetic/dielectric multilayer waveguide. It is demonstrated that some propagating modes of microwave appear in the waveguide and the number of the modes increases with increasing the number of the building blocks. Those propagating modes originate from the coupling between microwave and spin wave, associated with the collective excitations of spin motions in the whole multilayer system when the layer thickness is relatively thin. In addition, it is shown that the attenuation of microwaves and phase difference in the waveguide are tuned by the magnetic field, the ferromagnetic resonance line width, and the conductivity of ferromagnetic material. The investigations can be used in designing tunable compact bandpass filters and phase shifters of microwave.

  8. DKIST visible tunable filter control software: connecting the DKIST framework to OPC UA

    NASA Astrophysics Data System (ADS)

    Bell, Alexander; Halbgewachs, Clemens; Kentischer, Thomas J.; Schmidt, Wolfgang; von der Lühe, Oskar; Sigwarth, Michael; Fischer, Andreas

    2014-07-01

    The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based on large-format Fabry Perot interferometers that is currently built by the Kiepenheuer Institut fuer Sonnenphysik for the Daniel K. Inouye Solar Telescope (DKIST). The control software must handle around 30 motorised drives, 3 etalons, a polarizing modulator, a helium neon laser for system calibration, temperature controllers and a multitude of sensors. The VTF is foreseen as one of the DKISTs first-light instruments and should become operational in 2019. In the design of the control software we strongly separate between the high-level part interfacing to the DKIST common services framework (CSF) and the low-level control system software which guarantees real-time performance and synchronization to precision time protocol (PTP) based observatory time. For the latter we chose a programmable logic controller (PLC) from Beckhoff Automation GmbH which supports a wide set of input and output devices as well as distributed clocks for synchronizing signals down to the sub-microsecond level. In this paper we present the design of the required control system software as well as our work on extending the DKIST CSF to use the OPC Unified Architecture (OPC UA) standard which provides a cross-platform communication standard for process control and automation as an interface between the high-level software and the real-time control system.

  9. Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Vila-Francés, Joan; Calpe-Maravilla, Javier; Muñoz-Mari, Jordi; Gómez-Chova, Luis; Amorós-López, Julia; Ribes-Gómez, Emilio; Durán-Bosch, Vicente

    2006-07-01

    This article presents a new imaging spectrometer called autonomous tunable filtering system. The instrument acquires sequential images at different spectral wavelengths in the visible and near infrared range of the electromagnetic spectrum. The spectral selection is performed by an acousto-optic tunable filter (AOTF), which is driven by a custom radio-frequency (rf) generator based on a direct digital synthesizer (DDS). The DDS allows a high flexibility in terms of acquisition speed and bandwidth selection. The rf power is dynamically controlled to drive the AOTF with the optimum value for each wavelength. The images are formed through a carefully designed optical layout and acquired with a high performance digital camera. The application software controls the instrument and acquires the raw spectral images from the camera. This software optionally corrects the image for the AOTF nonidealities, such as diffraction efficiency variations, spatial nonuniformity, and chromatic aberration, and generates a single multiband image file. Moreover, the software can calculate the reflectance or transmittance of the acquired images. The instrument has been calibrated to give precise and repetitive measurements and has been validated against a high performance point spectrometer. As a case example, the instrument has been successfully used for the mapping of chlorophyll content of plant leaves from their multispectral reflectance images.

  10. Comparative performance studies between tunable filter and push-broom chemical imaging systems

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Saari, Heikki; Kemeny, Gabor; Shi, Zhenqi; Anderson, Carl

    2010-04-01

    This paper reports instrument characterization measurements, which were recently arranged to provide comparative information on different hyperspectral chemical imaging systems. Three different instruments were studied covering both tunable filter and push-broom techniques: The first instrument MatrixNIRTM is based on a LCTF tunable filter and InGaAs camera and covers wavelengths from 1000 to 1700 nm. The second one SisuCHEMATM is based on push-broom technology and MCT camera operating from 1000 to 2500 nm. The third system is an instrument prototype from VTT Technical Research Centre of Finland exploiting high speed Fabry-Perot interferometer and MCT camera, currently calibrated from 1260 to 2500 nm. The characterization procedure was designed to study instrumental noise, signal-to-noise ratio, linearity and spectral as well as spatial resolution. Finally, a pharmaceutical tablet sample was measured with each instrument to demonstrate speed of measurement in a typical application. In spite of differences in wavelength ranges and camera technologies used, the results provide interesting information on relative instrumental advantages and disadvantages, which may be useful for selecting appropriate instrumentation for defined applications. Further, an additional aim of this study is to compare the high speed Fabry-Perot imaging technology under development against the established chemical imaging techniques available on the market today.

  11. Tunable polarization filter based on high-birefringence photonic crystal fiber filled with silver wires

    NASA Astrophysics Data System (ADS)

    Yang, Xianchao; Lu, Ying; Liu, Baolin; Yao, Jianquan

    2017-07-01

    A tunable single polarization filter based on high-birefringence photonic crystal fiber with silver wires symmetrically filled into cladding air holes is designed. The confinement loss of the unwanted polarized mode (x-polarized mode) at 1310- and 1550-nm bands are 371 and 252 dB/cm, whereas another mode confinement loss (y-polarized mode) at the corresponding wavelength as low as 14 and 10 dB/cm, respectively. Moreover, the 20-dB bandwidth can reach 179 (at the 1310-nm band) and 71 nm (at the 1550-nm band) for a propagation distance of 1 mm. The dispersion relations and polarization characteristics are analyzed in detail utilizing the finite element method. Numerical results show that by adjusting the pitch between two adjacent air holes, the diameters of cladding air holes or silver wires near the fiber core, the resonance wavelength and resonance strength can be tuned effectively, which is beneficial for tunable polarization filter devices in the communication wave bands.

  12. Narrow band imaging and high definition television in the endoscopic evaluation of upper aero-digestive tract cancer.

    PubMed

    Piazza, C; Cocco, D; Del Bon, F; Mangili, S; Nicolai, P; Peretti, G

    2011-04-01

    Narrow band imaging and high definition television are recent innovations in upper aero-digestive tract endoscopy. Aim of this prospective, non-randomized, unblinded study was to establish the diagnostic advantage of these procedures in the evaluation of squamous cell cancer arising from various upper aero-digestive tract sites. Between April 2007 and January 2010, 444 patients affected by upper aero-digestive tract squamous cell cancer, or previously treated for it, were evaluated by white light and narrow band imaging ± high definition television endoscopy, both in the pre-/intra-operative setting and during follow-up. Tumour resection was performed taking into account narrow band imaging and high definition television information to obtain histopathologic confirmation of their validity. Endoscopic and pathologic data were subsequently matched to obtain sensitivity, specificity, positive, negative predictive values, and accuracy. Overall, 110 (25%) patients showed adjunctive findings by narrow band imaging ± high definition television when compared to standard white light endoscopy. Of these patients, 98 (89%) received histopatological confirmation. The sensitivity, specificity, positive, negative predictive values, and accuracy for white light-high definition television were 41%, 92%, 87%, 82%, and 67%, for narrow band imaging alone 75%, 87%, 87%, 74%, and 80%, and for narrow band imaging-high definition television 97%, 84%, 88%, 96%, and 92%. The highest diagnostic gain was observed in the oral cavity and oropharynx (25%). Narrow band imaging and high definition television were of value in the definition of superficial tumour extension, and in the detection of synchronous lesions in the pre-/intra-operative settings. These technologies also played an important role during post-treatment surveillance for early detection of persistences, recurrences, and metachronous tumours.

  13. Tunable Universal Filter with Current Follower and Transconductance Amplifiers and Study of Parasitic Influences

    NASA Astrophysics Data System (ADS)

    Jeřábek, Jan; Šotner, Roman; Vrba, Kamil

    2011-11-01

    A universal filter with dual-output current follower (DO-CF), two transconductance amplifiers (OTAs) and two passive elements is presented in this paper. The filter is tunable, of the single-input multiple-output (SIMO) type, and operates in the current mode. Our solution utilizes a low-impedance input node and high-impedance outputs. All types of the active elements used can be realized using our UCC-N1B 0520 integrated circuit and therefore the paper contains not only simulation results that were obtained with the help of behavioral model of the UCC-N1B 0520 element, but also the characteristics that were gained by measurement with the mentioned circuit. The presented simulation and measurement results prove the quality of designed filter. Similar multi-loop structures are very-well known, but there are some drawbacks that are not discussed in similar papers. This paper also contains detailed study of parasitic influences on the filter performance.

  14. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    PubMed

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  15. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding

    PubMed Central

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-01-01

    AIM: To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. METHODS: A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. RESULTS: Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. CONCLUSION: Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both

  16. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding.

    PubMed

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-07-28

    To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both imaging and training, it may be possible

  17. Polyp detection rates using magnification with narrow band imaging and white light

    PubMed Central

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-01-01

    AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for

  18. A search for narrow band signals with SERENDIP II: a progress report.

    PubMed

    Werthimer, D; Brady, R; Berezin, A; Bowyer, S

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  19. Esophageal adenocarcinoma with white opaque substance observed by magnifying endoscopy with narrow band imaging.

    PubMed

    Yoshii, Shunsuke; Kato, Motohiko; Honma, Keiichiro; Fujinaga, Tetsuji; Tsujii, Yoshiki; Maekawa, Akira; Inoue, Takuya; Hayashi, Yoshito; Akasaka, Tomofumi; Shinzaki, Shinichiro; Nishida, Tsutomu; Iijima, Hideki; Tsujii, Masahiko; Morii, Eiichi; Takehara, Tetsuo

    2015-03-01

    White opaque substance (WOS) is observed in the gastric neoplasia of 0-IIa type using magnifying endoscopy with narrow band imaging (NBI-ME). Colonic and duodenal neoplasms with WOS have also been reported. Immunohistochemical examination with adipophilin reveals WOS in gastric neoplasms as lipid droplets, and WOS is specific for neoplasm with intestinal or gastrointestinal phenotype. We herein report a case of adenocarcinoma of the esophagogastric junction with WOS. A male patient in his sixties was found by esophagogastroduodenoscopy to have an esophageal elevated lesion. NBI-ME showed whitish deposits that looked similar to WOS in gastric neoplasms. The patient underwent endoscopic submucosal dissection and the lesion was resected in a single piece. This tumor had diffuse positivity for adipophilin and gastrointestinal phenotype. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.

  20. Integral scale histogram local binary patterns for classification of narrow-band gastroenterology images.

    PubMed

    Riaz, Farhan; Ribeiro, Mario-Dinis; Pimentel-Nunes, Pedro; Coimbra, Miguel Tavares

    2013-01-01

    The introduction of various novel imaging technologies such as narrow-band imaging have posed novel image processing challenges to the design of computer assisted decision systems. In this paper, we propose an image descriptor referred to as integrated scale histogram local binary patterns. We propagate an aggregated histogram of local binary patterns of an image at various resolutions. This results in low dimensional feature vectors for the images while incorporating their multiresolution analysis. The descriptor was used to classify gastroenterology images into four distinct groups. Results produced by the proposed descriptor exhibit around 92% accuracy for classification of gastroenteroloy images outperforming other state-of-the-art methods, endorsing the effectiveness of the proposed descriptor.

  1. A search for narrow band signals with SERENDIP II: a progress report

    NASA Technical Reports Server (NTRS)

    Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  2. Landau damping and coherent structures in narrow-banded 1+1 deep water gravity waves.

    PubMed

    Onorato, Miguel; Osborne, Alfred; Fedele, Renato; Serio, Marina

    2003-04-01

    We study the modulational instability in surface gravity waves with random phase spectra. Starting from the nonlinear Schrödinger equation and using the Wigner-Moyal transform, we study the stability of the narrow-banded approximation of a typical wind-wave spectrum, i.e., the JONSWAP spectrum. By performing numerical simulations of the nonlinear Schrödinger equation we show that in the unstable regime, the nonlinear stage of the modulational instability is responsible for the formation of coherent structures. Furthermore, a Landau-type damping, due to the incoherence of the waves, whose role is to provide a stabilizing effect against the modulational instability, is both analytically and numerically discussed.

  3. Investigation of narrow-band thermal emission from intersubband transitions in quantum wells

    SciTech Connect

    De Zoysa, M.; Asano, T.; Inoue, T.; Mochizuki, K.; Noda, S.

    2015-09-14

    We investigate thermal emission from n-doped GaAs/AlGaAs quantum wells (QWs). Emission peaks with Lorentzian shapes (linewidth 11∼19 meV) that reflect transitions between the first and second conduction subbands are observed in the mid-infrared range. It is demonstrated that the emission characteristics can be tuned by modifying the QW parameters. The peak emissivity is increased from 0.3 to 0.9 by modifying the doping density, and the peak wavelength is tuned from 6 to 10 μm by changing the well width. The obtained results are useful for the design of narrow-band thermal emitters.

  4. On the first-excursion probability in stationary narrow-band random vibration. II.

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.; Shinozuka, M.

    1972-01-01

    The first-excursion probability of a stationary narrow-band Gaussian process with mean zero has been studied. Within the framework of point process approach, series approximations derived from the theory of random points and approximations based on the maximum entropy principle have been developed. With the aid of numerical examples, merits of the approximations proposed previously as well as of those developed in this paper have been compared. The results indicate that the maximum entropy principle has not produced satisfactory approximations but the approximation based on nonapproaching random points is found to be the best among all the approximations proposed herein. A conclusion drawn from the present and the previous studies is that the point process approach produces a number of useful approximations for the first-excursion probability, particularly those based on the concepts of the Markov process, the clump-size, and the nonapproaching random points.

  5. Interstellar scattering effects on the detection of narrow-band signals

    SciTech Connect

    Cordes, J.M.; Lazio, T.J. )

    1991-07-01

    The detection and decoding of narrow-band radio signals are investigated after propagation through the turbulent, ionized interstellar medium. For most lines of sight through the Galaxy, spectral broadening due to scattering below about 0.1 Hz at 1 GHz occurs. Spectral broadening is therefore unimportant for the detection of hypothesized signals from extraterrestrial intelligence. Intensity scintillations, however, are of considerable importance. They both help and hinder detection: signals too weak to be detected without the scattering medium may be modulated above the detection threshold while, conversely, signals above threshold can be modulated below. In strong scattering (distances above about 100 pc at 1 GHz), multiple observations of a given target comprise a strategy that is superior to single observations even when the total time per target is held fixed. Decoding information carrying signals may encounter difficulties due to intensity scintillations. 49 refs.

  6. A search for narrow band signals with SERENDIP II: a progress report

    NASA Technical Reports Server (NTRS)

    Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  7. Pityriasis rubra pilaris sensitive to narrow band-ultraviolet B light therapy.

    PubMed

    Vergilis-Kalner, Irene J; Mann, David J; Wasserman, Justin; Petronic-Rosic, Vesna; Tsoukas, Maria M

    2009-03-01

    Pityriasis rubra pilaris (PRP) is a rare skin condition which typically presents in adults as red-orange plaques with islands of sparing, perifollicular keratotic papules, waxy palmoplantar keratoderma, and erythema with fine, diffuse scale. Currently, there are no well-established treatment guidelines for this condition. This is party due to a lack of universally effective treatments for PRP, with some cases being resistant to multiple topical and systemic therapies. Systemic retinoids have been used with some success. Several phototherapy regimens have lead to variable results. The authors present a case of PRP, unresponsive to 6 month treatment of isotretinoin, that was subsequently treated with narrow-band ultraviolet B (NB-UVB) light therapy with complete resolution after four months of light treatment. The observed clinical benefit may encourage future phototesting and consideration of NB-UVB light therapy in recalcitrant PRP cases.

  8. Use of Narrow Band Imaging in the Diagnosis of Hypovascular Endobronchial Sarcoidosis.

    PubMed

    Hakim, Rimoun; Sabath, Bruce; Kaplan, Tugba; Yung, Rex

    2017-10-01

    Narrow band imaging (NBI) has been widely applied for the evaluation of numerous disease conditions that present with increased vascularity of the mucosa, most often malignancies. It is increasingly being used in benign conditions as well. We present the first case in which NBI was used, rather, to detect areas of bronchial hypovascularity due to its ability to increase the visual contrast between normal and hypovascular mucosa. Endobronchial biopsy of these nodules led to the diagnosis of sarcoidosis. Had conventional white light alone been utilized, the diagnosis would likely have been missed because not only were these lesions difficult to visualize under white light but transbronchial lung biopsy and transbronchial needle aspiration were unremarkable. We propose that NBI should be considered in the bronchoscopic evaluation of possible sarcoidosis or any other condition that could present with airway hypovascularity.

  9. Application of narrow band laser ultrasonics to the nondestructive evaluation of thin bonding layers.

    PubMed

    Liu, Y H; Wu, T T; Lee, C K

    2002-06-01

    In this paper, a modified laser induced grating technique (LIG) has been utilized to generate narrow band surface waves in an epoxy-bonded copper-aluminum layered structure. A high performance optical interferometer system was utilized to detect the laser-generated surface waves. The dispersion of surface wave in an epoxy-bonded copper-aluminum specimen was measured and compared with the theoretical solution. An inverse algorithm based on the simplex method was then introduced to determine the bonding thickness as well as the elastic properties of the bonding layer. The inversion results demonstrated that the thickness in the microm range or the elastic properties of the bonding layer could be successfully determined.

  10. The method of narrow-band audio classification based on universal noise background model

    NASA Astrophysics Data System (ADS)

    Rui, Rui; Bao, Chang-chun

    2013-03-01

    Audio classification is the basis of content-based audio analysis and retrieval. The conventional classification methods mainly depend on feature extraction of audio clip, which certainly increase the time requirement for classification. An approach for classifying the narrow-band audio stream based on feature extraction of audio frame-level is presented in this paper. The audio signals are divided into speech, instrumental music, song with accompaniment and noise using the Gaussian mixture model (GMM). In order to satisfy the demand of actual environment changing, a universal noise background model (UNBM) for white noise, street noise, factory noise and car interior noise is built. In addition, three feature schemes are considered to optimize feature selection. The experimental results show that the proposed algorithm achieves a high accuracy for audio classification, especially under each noise background we used and keep the classification time less than one second.

  11. Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm.

    PubMed

    Chanan, G; Ohara, C; Troy, M

    2000-09-01

    In a previous paper, we described a successful technique, the broadband algorithm, for phasing the primary mirror segments of the Keck telescopes to an accuracy of 30 nm. Here we describe a complementary narrow-band algorithm. Although it has a limited dynamic range, it is much faster than the broadband algorithm and can achieve an unprecedented phasing accuracy of approximately 6 nm. Cross checks between these two independent techniques validate both methods to a high degree of confidence. Both algorithms converge to the edge-minimizing configuration of the segmented primary mirror, which is not the same as the overall wave-front-error-minimizing configuration, but we demonstrate that this distinction disappears as the segment aberrations are reduced to zero.

  12. [Nursing care management in dermatological patient on phototherapy narrow band UVB].

    PubMed

    de Argila Fernández-Durán, Nuria; Blasco Maldonado, Celeste; Martín Gómez, Mónica

    2013-01-01

    Phototherapy with narrow band ultraviolet B is a treatment used in some dermatology units, and is the first choice in some dermatological diseases due to being comfortable and cheap. The aim of this paper is to describe the management and nursing care by grouping more specific diagnoses, following NANDA-NIC/NOC taxonomy, such as the methodology from application, technique, material, and personnel to space-related aspects, with the aim of avoiding the clinical variability and the possible associated risks for the patients, and for the nurses who administer the treatment. The continuity of the same nurse in the follow-up sessions stimulates the relationship between medical personnel and patients, key points for loyalty and therapeutic adherence. This paper examines a consensus procedure with the Dermatology Unit Team and accredited by the Hospital Quality Unit.

  13. Some observations about the components of transonic fan noise from narrow-band spectral analysis

    NASA Technical Reports Server (NTRS)

    Saule, A. V.

    1974-01-01

    Qualitative and quantitative spectral analyses are presented that give the broadband-noise, discrete-tone, and multiple-tone properties of the noise generated by a full-scale high-bypass single-stage axial-flow transonic fan (fan B, NASA Quiet Engine Program). The noise components were obtained from narrow-band spectra in conjunction with 1/3-octave-band spectra. Variations in the pressure levels of the noise components with fan speed, forward-quadrant azimuth angle, and frequency are presented and compared. The study shows that much of the apparent broadband noise on 1/3-octave-band plots consists of a complex system of shaft-order tones. The analyses also indicate the difficulties in determining or defining noise components, especially the broadband level under the discrete tones. The sources which may be associated with the noise components are discussed.

  14. High thermal stability solution-processable narrow-band gap molecular semiconductors.

    PubMed

    Liu, Xiaofeng; Hsu, Ben B Y; Sun, Yanming; Mai, Cheng-Kang; Heeger, Alan J; Bazan, Guillermo C

    2014-11-19

    A series of narrow-band gap conjugated molecules with specific fluorine substitution patterns has been synthesized in order to study the effect of fluorination on bulk thermal stability. As the number of fluorine substituents on the backbone increase, one finds more thermally robust bulk structures both under inert and ambient conditions as well as an increase in phase transition temperatures in the solid state. When integrated into field-effect transistor devices, the molecule with the highest degree of fluorination shows a hole mobility of 0.15 cm(2)/V·s and a device thermal stability of >300 °C. Generally, the enhancement in thermal robustness of bulk organization and device performance correlates with the level of C-H for C-F substitution. These findings are relevant for the design of molecular semiconductors that can be introduced into optoelectronic devices to be operated under a wide range of conditions.

  15. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  16. Feature detection in biological tissues using multi-band and narrow-band imaging.

    PubMed

    Tamura, Yuki; Mashita, Tomohiro; Kuroda, Yoshihiro; Kiyokawa, Kiyoshi; Takemura, Haruo

    2016-12-01

    In the past decade, augmented reality systems have been expected to support surgical operations by making it possible to view invisible objects that are inside or occluded by the skull, hands, or organs. However, the properties of biological tissues that are non-rigid and featureless require a large number of distributed features to track the movement of tissues in detail. With the goal of increasing the number of feature points in organ tracking, we propose a feature detection using multi-band and narrow-band imaging and a new band selection method. The depth of light penetration into an object depends on the wavelength of light based on optical characteristics. We applied typical feature detectors to detect feature points using three selected bands in a human hand. To consider surgical situations, we applied our method to a chicken liver with a variety of light conditions. Our experimental results revealed that the image of each band exhibited a different distribution of feature points. In addition, the total number of feature points determined by the proposed method exceeded that of the R, G, and B images obtained using a normal camera. The results using a chicken liver with various light sources and intensities also show different distributions with each selected band. We have proposed a feature detection method using multi-band and narrow-band imaging and a band selection method. The results of our experiments confirmed that the proposed method increased the number of distributed feature points. The proposed method was also effective for different light conditions.

  17. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.

    PubMed

    Sil Kar, Sudeshna; Maity, Santi P

    2016-09-01

    Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass

  18. Experimental performance of a fully tunable complex-coefficient optical FIR filter using wavelength conversion and chromatic dispersion.

    PubMed

    Khaleghi, Salman; Chitgarha, Mohammad Reza; Yilmaz, Omer F; Tur, Moshe; Haney, Michael W; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2012-08-15

    We experimentally characterize the performance of a continuously tunable all-optical complex-coefficient finite-impulse-response (FIR) filter that exploits nonlinear signal processing (multiplexing and multicasting) and conversion-dispersion-based optical delays. Various length (three and four) optical FIR filters with different tap amplitudes (from 0 to -9 dB), tap phases (from 0 to 2π), and tap delays (~37.4 ps and 25 ps) are realized, showing reconfiguration and tuning capabilities of this FIR filter. The measured frequency responses show close agreement with the theoretical filter responses.

  19. Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Near-Infrared-Emitting Bacteriochlorins.

    PubMed

    Zhang, Nuonuo; Jiang, Jianbing; Liu, Mengran; Taniguchi, Masahiko; Mandal, Amit Kumar; Evans-Storms, Rosemary B; Pitner, J Bruce; Bocian, David F; Holten, Dewey; Lindsey, Jonathan S

    2016-09-01

    Synthetic bacteriochlorins absorb in the near-infrared (NIR) region and are versatile analogues of natural bacteriochlorophylls. The utilization of these chromophores in energy sciences and photomedicine requires the ability to tailor their physicochemical properties, including the incorporation of units to impart water solubility. Herein, we report the synthesis, from two common bacteriochlorin building blocks, of five wavelength-tunable, bioconjugatable and water-soluble bacteriochlorins along with two non-bioconjugatable benchmarks. Each bacteriochlorin bears short polyethylene glycol (PEG) units as the water-solubilizing motif. The PEG groups are located at the 3,5-positions of aryl groups at the pyrrolic β-positions to suppress aggregation in aqueous media. A handle containing a single carboxylic acid is incorporated to allow bioconjugation. The seven water-soluble bacteriochlorins in water display Qy absorption into the NIR range (679-819 nm), sharp emission (21-36 nm full-width-at-half-maximum) and modest fluorescence quantum yield (0.017-0.13). Each bacteriochlorin is neutral (non-ionic) yet soluble in organic (e.g., CH2Cl2, DMF) and aqueous solutions. Water solubility was assessed using absorption spectroscopy by changing the concentration ∼1000-fold (190-690 µM to 0.19-0.69 µM) with a reciprocal change in pathlength (0.1-10 cm). All bacteriochlorins showed excellent solubility in water, except for a bacteriochlorin-imide that gave slight aggregation at higher concentrations. One bacteriochlorin was conjugated to a mouse polyclonal IgG antibody for use in flow cytometry with compensation beads for proof-of-principle. The antibody conjugate of B2-NHS displayed a sharp signal upon ultraviolet laser excitation (355 nm) with NIR emission measured with a 730/45 nm bandpass filter. Overall, the study gives access to a set of water-soluble bacteriochlorins with desirable photophysical properties for use in multiple fields.

  20. 3D-NTT: A New Instrument for the NTT Based on Versatile Tunable Filter Technology

    NASA Astrophysics Data System (ADS)

    Marcelin, M.

    The 3D-NTT will be a visitor instrument for the NTT, built by GEPI (Paris) and LAM (Marseille) with the collaboration of LAE (Montréal, Canada) and AAO (Australia). It is a spectro-imager offering two modes: a low resolution mode (100-5000) with a Tunable Filter, and a high resolution mode (5000 - 40 000) with a standard scanning Fabry-Perot. A large variety of programmes may be led with such an instrument as has been shown recently (1997-2003) with the Taurus Tunable Filter on the AAT and WHT. In the frame of a large scientific coollaboration, gathering European teams as well as collaborators from other countries, we propose a Large Programme (IOGA) dedicated to the study of ionized gas in galaxies, at low and high z, to be undertaken with the 3D-NTT. Nearby IR galaxies (IRGs) are the key to understanding the formation and evolution of galaxies, as they are believed to be the local counter-part of the numerous luminous starburst galaxies at high z. To understand the nature, origin and evolution of IRGs, we propose to map the star formation and kinematics in 500 galaxies and obtain dust extinction, metal abundances and electron density maps in 50 of them for obtaining a reference sample with high spectral and spatial resolution (sub-kpc) to be compared with distant objects being observed on the VLT (GIRAFFE, SINFONI). We will take advantage of both modes proposed by the instrument: high resolution mode with scanning Fabry Perot (FOV 5.5' or 11'), and low resolution mode with Tunable Filter and larger field (FOV 20'). This mode will be used at high z to look for star forming galaxies around quasars with a range of intrinsic UV luminosity. Star forming galaxies exist in significant numbers around low power quasars and we want to check if this remains true around more distant and luminous quasars. This may be the first evidence that powerful UV fields can suppress or delay widespread star formation in galaxies and, as such, may provide important constraints on

  1. All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter

    NASA Astrophysics Data System (ADS)

    Li, N.; Liu, M. Y.; Gao, X. J.; Zhang, L.; Jia, Z. X.; Feng, Y.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2016-07-01

    We demonstrated a widely tunable mode-locked thulium doped fiber laser (TDFL) by using a homemade multimode interference filter (MMIF). The MMIF had a structure of single mode fiber (SMF)—multimode fiber (MMF)—SMF and three main transmission peaks at 1901.2, 1957.2 and 2043.2 nm. By mechanically bending the MMIF, the three main transmission peaks were tuned in the range of 1860-2024 nm due to multimode interference effect. By inserting the MMIF into a passively mode-locked TDFL cavity pumped by a 1570 nm fiber laser, a tunable mode-locked TDFL with a tuning range of 1919.6-2014.9 nm was achieved by adjusting the MMIF. To the best of our knowledge, such a tunable range is the largest among all-fiber tunable mode-locked TDFLs.

  2. Differences of image enhancement in image-enhanced endoscopy: narrow band imaging versus flexible spectral imaging color enhancement.

    PubMed

    Muto, Manabu; Higuchi, Hirokazu; Ezoe, Yasumasa; Horimatsu, Takahiro; Morita, Shuko; Miyamoto, Shin-Ichi; Chiba, Tsutomu

    2011-08-01

    Narrow band imaging (NBI) can emphasize images of the surface microvasculature of lesions, because the central wavelengths of the NBI filter are 415 and 540 nm and these wavelengths are well absorbed by hemoglobin. Flexible spectral imaging color enhancement (FICE) increases the contrast in depictions of mucosal lesions. However, quantitative evaluation of the image enhancement shown by NBI and FICE has not been reported. The aim of this study was to measure and compare the degrees of image enhancement in NBI and FICE. We compared the visibility of human blood diluted with distilled water between that shown by white-light imaging (WLI) and that shown by NBI or FICE. One milliliter of human blood was plated onto a 12-well transparent plastic plate to set up doubling dilutions, from 1/2 to 1/2(23). High-definition endoscopes were used for each imaging method. A total of 11 endoscopists independently evaluated the visibility of the diluted blood. The median dilution was defined as the limit of visibility in each image. NBI enabled clearer visualization of the presence of blood compared with conventional WLI. NBI recognized blood contamination up to a 1/2(14) dilution, whereas conventional WLI recognized blood contamination up to a 1/2(11) dilution. In contrast, FICE did not improve the visualization of diluted blood and recognized blood contamination up to a 1/2(10) dilution. NBI more effectively enhanced images of diluted blood compared to conventional WLI, while FICE did not improve the visualization of the diluted blood. These data suggest the usefulness of NBI for the early detection of gastrointestinal neoplasia, which is accompanied by abundant neovascularization.

  3. Tunable multiwavelength erbium-doped fiber laser based on nonlinear optical loop mirror and birefringence fiber filter

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-05-01

    A tunable multiwavelength erbium-doped fiber laser (MWEDFL) based on nonlinear optical loop mirror (NOLM) and tunable birefringence fiber filter (BFF) is proposed and demonstrated. By combination of intensity-dependent loss modulation induced by NOLM and pump power adjustment, the proposed laser can achieve independent control over the number of lasing lines, without affecting other important characteristics such as channel spacing and peak location. In addition, the laser allows wavelength tuning with both the peak location and the spectral range of lasing lines controllable. Specifically, the peak location of lasing lines can be controlled to scan the whole spectral range between adjacent channels of comb filter by adjusting the BFF. Moreover, the spectral range of lasing lines can be controlled by adjusting NOLM. This tunable MWEDFL may be useful for fiber-optic communication and fiber-optic sensing.

  4. Measured optical performance of three Fabry-Perot interferometers for use in a tunable ultraviolet filter

    NASA Technical Reports Server (NTRS)

    Korendyke, Clarence M.; Socker, Dennis G.

    1993-01-01

    A narrowband ultraviolet (UV) filter would allow the first monochromatic two-dimensional images of astrophysical plasmas to be obtained in UV emission lines. The high etendue and spectral resolving power of the Fabry-Perot (FP) interferometer make it an excellent candidate for use in a tunable UV filter, provided that adequate optical performance can be obtained. Laboratory measurements of three UV FP interferometers with progressively greater dielectric mirror reflectances are described. The measurements demonstrate the adequate reflectivity, absorption, and small-scale smoothness of currently available coatings and substrates for UV interferometry. The measurements are conducted at 228.8 nm utilizing a cadmium hollow cathode light source. The best performing interferometer has a finesse of 41 and maximum transmittance of 0.38 over a coating-performance-dominated 3-mm-diam subaperture and a finesse of 26 and maximum transmittance of 0.32 over a parabolic-defect-dominated 30-mm-diam aperture. This interferometer is well suited for use in a UV filter system.

  5. Duodenal villous morphology assessed using magnification narrow band imaging correlates well with histology in patients with suspected malabsorption syndrome.

    PubMed

    Dutta, Amit Kumar; Sajith, Kattiparambil Gangadharan; Shah, Gautam; Pulimood, Anna Benjamin; Simon, Ebby George; Joseph, Anjilivelil Joseph; Chacko, Ashok

    2014-11-01

    Narrow band imaging with magnification enables detailed assessment of duodenal villi and may be useful in predicting the presence of villous atrophy or normal villi. We aimed to assess the morphology of duodenal villi using magnification narrow band imaging and correlate it with histology findings in patients with clinically suspected malabsorption syndrome. Patients with clinical suspicion of malabsorption presenting at a tertiary care center were prospectively recruited in this diagnostic intervention study. Patients underwent upper gastrointestinal endoscopy using magnification narrow band imaging. The villous morphology in the second part of the duodenum was assessed independently by two endoscopists and the presence of normal or atrophic villi was recorded. Biopsy specimen was obtained from the same area and was examined by two pathologists together. The sensitivity and specificity of magnification narrow band imaging in detecting the presence of duodenal villous atrophy was calculated and compared to the histology. One hundred patients with clinically suspected malabsorption were included in this study. Sixteen patients had histologically confirmed villous atrophy. The sensitivity and specificity of narrow band imaging in predicting villous atrophy was 87.5% and 95.2%, respectively, for one endoscopist. The corresponding figures for the second endoscopist were 81.3% and 92.9%, respectively. The interobserver agreement was very good with a kappa value of 0.87. Magnification narrow band imaging performed very well in predicting duodenal villous morphology. This may help in carrying out targeted biopsies and avoiding unnecessary biopsies in patients with suspected malabsorption. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.

  6. Bandwidth tunable guided-mode resonance filter using contact coupled gratings at oblique incidence

    NASA Astrophysics Data System (ADS)

    Sang, Tian; Wang, Yueke; Li, Junlang; Zhou, Jianyu; Jiang, Wenwen; Wang, Jicheng; Chen, Guoqing

    2017-01-01

    A novel bandwidth tunable guided-mode resonance filter (GMRF) is proposed based on the contact coupled gratings (CCGs) with the absentee layers at oblique incidence. The design principle of the CCGs with double absentee layers is presented. The lateral shift of the CCGs changes the magnetic field distributions of the waveguide mode in the grating cavity and the surface-confined mode at the cover/grating interface thus facilitates the dynamic control of both the spectral and angular bandwidth of the GMRF. The resonance locations are almost immune to the variation of the lateral shift of the CCGs. The sideband level of the GMRF is almost unaffected by the lateral shift due to the Brewster AR effect. The resonance peak red-shifts quasi-linearly as the incident angle is increased, and the resonance wavelength can be selected by merely tuning the incident angle. The tunable ranges of both the spectral and angular bandwidth can be significantly enhanced by increasing the refractive-index contrast. Low-sideband reflection with controllable bandwidth at 650 nm is designed to demonstrate this concept.

  7. Tunable Solid-Etalon Filter for the ICESat/GLAS 532 nm Channel Lidar Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Martino, Anthony J.; Lunt, David L.

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS) was launched into Earth orbit on board the Ice, Cloud and land Elevation Satellite (ICESat) on January 12, 2003. GLAS is a laser altimeter designed to measure ice-sheet topography and associated temporal changes, as well as cloud and atmospheric properties. Each (of the three identical) GLAS lasers is a diode pumped, Q-switched Nd:YAG laser with energy levels of 75 mJ (1064 nm) and 35 mJ (532 nm). The infrared pulse is used for both surface altimetry and atmospheric measurements while the green pulse is used primarily for atmospheric measurements. The receiver uses a 1 meter diameter telescope. We report on the tunable solid-etalon filter used in the ICESat/GLAS 532 nm channel lidar receiver.

  8. Ultraviolet-visible imaging acousto-optic tunable filters in KDP.

    PubMed

    Voloshinov, Vitaly; Gupta, Neelam

    2004-07-01

    There is a need to develop large-aperture acousto-optic tunable filters (AOTFs) in the UV region for applications in astronomy, environmental sciences, biology, etc. We have developed a high-quality noncollinear AOTF cell that uses a single crystal of KDP that has nearly a four times larger acousto-optic figure of merit, M2, than quartz. The linear and angular apertures of this cell are 1.5 cm x 1.5 cm and 1.2 degrees, respectively. The spectral range is 220-480 nm, with 160-cm(-1) spectral resolution and high transmission in the UV. We present an analysis of the design and describe the characterization results.

  9. Investigation of liquid crystal Fabry-Perot tunable filters: design, fabrication, and polarization independence.

    PubMed

    Isaacs, Sivan; Placido, Frank; Abdulhalim, Ibrahim

    2014-10-10

    Liquid crystal Fabry-Perot tunable filters are investigated in detail, with special attention to their manufacturability, design, tolerances, and polarization independence. The calculations were performed both numerically and analytically using the 4×4 propagation matrix method. A simplified analytic expression for the propagation matrix is derived for the case of nematic LC in the homogeneous geometry. At normal incidence, it is shown that one can use the 2×2 Abeles matrix method; however, at oblique incidence, the 4×4 matrix method is needed. The effects of dephasing originating from wedge or noncollimated light beams are investigated. Due to the absorption of the indium tin oxide layer and as an electrode, its location within the mirror multilayered stack is very important. The optimum location is found to be within the stack and not on its top or bottom. Finally, we give more detailed experimental results of our polarization-independent configuration that uses polarization diversity with a Wollaston prism.

  10. Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter.

    PubMed

    Latorre-Carmona, Pedro; Sánchez-Ortiga, Emilio; Xiao, Xiao; Pla, Filiberto; Martínez-Corral, Manuel; Navarro, Héctor; Saavedra, Genaro; Javidi, Bahram

    2012-11-05

    This paper presents an acquisition system and a procedure to capture 3D scenes in different spectral bands. The acquisition system is formed by a monochrome camera, and a Liquid Crystal Tunable Filter (LCTF) that allows to acquire images at different spectral bands in the [480, 680]nm wavelength interval. The Synthetic Aperture Integral Imaging acquisition technique is used to obtain the elemental images for each wavelength. These elemental images are used to computationally obtain the reconstruction planes of the 3D scene at different depth planes. The 3D profile of the acquired scene is also obtained using a minimization of the variance of the contribution of the elemental images at each image pixel. Experimental results show the viability to recover the 3D multispectral information of the scene. Integration of 3D and multispectral information could have important benefits in different areas, including skin cancer detection, remote sensing and pattern recognition, among others.

  11. New electronically tunable current-mode universal biquad filter using translinear current conveyors

    NASA Astrophysics Data System (ADS)

    Kumngern, Montree; Jongchanachavawat, Wirote; Dejhan, Kobchai

    2010-05-01

    In this study, a new electronically tunable current-mode universal filter with two inputs and two outputs employing one translinear current conveyor, one translinear current conveyor with controlled current gain and two grounded capacitors is presented. The proposed circuit offers the following attractive features: realisation of low-pass, band-pass, high-pass, band-stop and all-pass current responses from the same configuration; employment of the minimum active and passive components; no requirement of component matching conditions; independent current-control of the parameters natural frequency (ωo) and quality factor (Q); low active and passive sensitivities; and high impedance output. The characteristics of the proposed circuit are simulated using PSPICE to confirm the theory.

  12. Analysis of discrimination techniques for low-cost narrow-band spectrofluorometers.

    PubMed

    Aymerich, Ismael F; Sánchez, Albert-Miquel; Pérez, Sergio; Piera, Jaume

    2014-12-30

    The need for covering large areas in oceanographic measurement campaigns and the general interest in reducing the observational costs open the necessity to develop new strategies towards this objective, fundamental to deal with current and future research projects. In this respect, the development of low-cost instruments becomes a key factor, but optimal signal-processing techniques must be used to balance their measurements with those obtained from accurate but expensive instruments. In this paper, a complete signal-processing chain to process the fluorescence spectra of marine organisms for taxonomic discrimination is proposed. It has been designed to deal with noisy, narrow-band and low-resolution data obtained from low-cost sensors or instruments and to optimize its computational cost, and it consists of four separated blocks that denoise, normalize, transform and classify the samples. For each block, several techniques are tested and compared to find the best combination that optimizes the classification of the samples. The signal processing has been focused on the Chlorophyll-a fluorescence peak, since it presents the highest emission levels and it can be measured with sensors presenting poor sensitivity and signal-to-noise ratios. The whole methodology has been successfully validated by means of the fluorescence spectra emitted by five different cultures.

  13. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I.; Cheng, Hui-Ming

    2016-03-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6]3- precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ~0.08 eV and show excellent thin-film transistor performance.

  14. Narrow-band imaging system with magnifying endoscopy for early oral cancer.

    PubMed

    Shibahara, Takahiko; Yamamoto, Nobuharu; Yakushiji, Takashi; Nomura, Takeshi; Sekine, Riyo; Muramatsu, Kyotaro; Ohata, Hitoshi

    2014-01-01

    It is often difficult to detect early oral cancer due to the specificity of the oral mucosa structure. The aim of this study was to investigate the potential of narrow band imaging (NBI) as an effective and non-invasive diagnostic tool in early oral cancer and other oral diseases. A magnifying endoscopy system manufactured by Olympus Corporation was used. A total of 121 subjects were included in the study. Subepithelial capillary loops were identified and categorized according to the classification of Inoue, with healthy mucosa graded as Type I or II, and that showing evidence of cancer-induced morphological change as Type III or IV. Sensitivity and specificity for the identification of oral cancer were estimated at 92.3% and 88.2%, respectively. Examination under a microscope with H&E staining and immunostaining for CD34 revealed dilation and extension of the capillaries in epithelial dysplasia, in addition to thickening of the epithelial layer. The present results indicate that use of NBI in conjunction with conventional magnifying endoscopy has great potential as an effective and non-invasive diagnostic tool in the early detection of oral cancer.

  15. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  16. Narrow-Band Imaging and Spatially Resolved Spectra of Nova Shells

    NASA Astrophysics Data System (ADS)

    Hillwig, T. C.; Honeycutt, R. K.; Shore, S. N.

    2000-12-01

    Observations of nova shells were made at the WIYN Observatory using the WIYN Imager, the ``naked'' DensePak fiber array, and a Barlow 4x magnifying assembly used with DensePak. DensePak was used to obtain spatially resolved spectra of several nova shells at wavelengths including the Hα , Hβ , [OIII], and [NII] emission lines. The purpose is to derive true shapes and sizes of the nova shells, velocity structure, and abundance structure. The ability to spatially resolve the shell with spectroscopy, with the accuracy and resolution available to DensePak is a useful and unique tool. The velocity structure of the shell provides data which can be compared to models of expected shell structure. Measuring abundances in different, spatially resolved portions of the shell can give indications of the cause of the structure. For example, in shaping by a fast wind, we may expect to see different abundances in the slowly moving ejected material than in the material comprising the fast wind (which becomes apparent in planetary nebulae with wind-blown bubbles). Imaging also provides, along with comparison to velocity structure, an additional constraint on the determination of parallax distances, and the narrow-band imaging can supply estimates of excitation levels in various regions of the shells. All of these are important contributors to the determination of the physical mechanism responsible for the nova shell structure. The first phase of this research is presented here.

  17. Acetic Acid Enhanced Narrow Band Imaging for the Diagnosis of Gastric Intestinal Metaplasia

    PubMed Central

    Zhu, Bingliang; Zhu, Minghui; Li, Xueliang; Gao, Feng

    2017-01-01

    Gastric intestinal metaplasia (GIM) is a precancerous lesion of the stomach. The detection of GIM using conventional white-light endoscopy (WLE) is difficult. In this study, we determined whether acetic acid-enhanced narrow band imaging (AA-NBI) improves the detection of GIM. A consecutive cohort of 132 individuals aged 40 years or older was subjected to upper gastrointestinal endoscopy using WLE, NBI and AA-NBI. The ability of the three methods to diagnose GIM in patients was compared. Histological assessment (per-patient and per-biopsy) was used for the accuracy assessment. Sixty-six (50.0%) out of the 132 individuals examined were found to have GIM, of which 44 (66.7%) were diagnosed correctly by NBI (sensitivity 66.7% and specificity 68.2%) and 58 (87.9%) were correctly identified by AA–NBI (sensitivity 87.9% and specificity 68.2%), as compared to only 22 (33.3%) by WLE (sensitivity 33.3% and specificity 28.8%). Therefore, the sensitivity of AA–NBI in the diagnosis of GIM was significantly higher than NBI (p<0.05) and WLE (p < 0.001). Our study indicates that AA-NBI can improve the accuracy of endoscopy-targeted biopsies for GIM. PMID:28135297

  18. Case of pharyngeal cancer not detected during preoperative transoral endoscopy with narrow band imaging.

    PubMed

    Tsuji, Kunihiro; Doyama, Hisashi; Nakanishi, Hiroyoshi; Takemura, Kenichi; Moriyama, Hideki; Sakumoto, Makoto; Tsuyama, Sho; Kurumaya, Hiroshi

    2015-04-01

    We herein report a case of pharyngeal cancer that was not detected during preoperative transoral endoscopy with narrow band imaging (NBI). A 61-year-old female was referred to our hospital for further evaluation of a pharyngeal lesion. Endoscopy revealed a small, elevated lesion, approximately 7 mm in size, at the right pyriform sinus. We performed endoscopic resection to remove this lesion under general anesthesia based on the biopsy results. Intraoperatively, we detected another tumor in the left oropharyngeal wall with Lugol staining after insertion of a curved laryngoscope. Although this lesion was ≥20 mm in diameter, we were unable to detect it during preoperative transoral endoscopy with NBI and white light imaging. We performed endoscopic treatment for this lesion 2 months later. The pathological diagnosis was pharyngeal cancer; the lesion had low vascularity. This case report provides an example of false-negative endoscopy with NBI. Although transoral endoscopy with NBI has improved the early diagnosis of superficial squamous cell carcinomas of the head and neck, pharyngeal cancers that are less vascular may be missed with NBI.

  19. Clinicopathologic characteristics and management of minute esophageal lesions diagnosed by narrow-band imaging endoscopy

    PubMed Central

    Kumamoto, Takashi; Sentani, Kazuhiro; Oka, Shiro; Tanaka, Shinji; Yasui, Wataru

    2016-01-01

    Background and study aims: Magnifying narrow-band imaging (NBI) endoscopy enables the diagnosis of minute esophageal neoplasia. We aimed to evaluate clinicopathological diagnosis of minute esophageal neoplasia by using magnifying NBI endoscopy and biopsy. Patients and methods: In total, 309 patients (127 men and 182 women) with minute esophageal lesions of intrapapillary capillary loop (IPCL) type IV were enrolled. Of these patients, 249 underwent biopsy for histologic diagnosis and also for treatment. Of the 249 patients, 123 underwent follow-up with endoscopy. We analyzed the clinicopathologic characteristics and prognosis of these lesions after biopsy. Results: Of the 249 biopsied lesions, we histologically diagnosed 11 as high-grade intraepithelial neoplasia (HGIN), 41 as low-grade intraepithelial neoplasia (LGIN), and 197 as non-neoplasia (Non-N) including inflammation. Six of the 11 HGINs and 11 of the 41 LGINs showed slight elevation. Background coloration was observed in 9 of 11 HGINs, 34 of 41 LGINs, and 33 of 197 Non-Ns. Of the 249 biopsied lesions, 147 were microscopically measurable. The average diameter was 1.4 mm for HGINs and 0.8 mm for LGINs. Of the 123 patients who underwent post-biopsy follow-up, 93 (76 %) showed no lesions at the biopsied sites during the NBI examinations and were suspected to have undergone complete resection by biopsy. Conclusions: Biopsy was useful for diagnosis and treatment of minute esophageal lesions, diagnosed as IPCL type IV by magnifying NBI endoscopy. PMID:27652295

  20. Reliability of office-based narrow-band imaging-guided flexible laryngoscopic tissue samplings.

    PubMed

    Chang, Catherine; Lin, Wan-Ni; Hsin, Li-Jen; Lee, Li-Ang; Lin, Chien-Yu; Li, Hsueh-Yu; Liao, Chun-Ta; Fang, Tuan-Jen

    2016-12-01

    Direct suspension laryngoscopic biopsy performed under general anesthesia is the conventional management for obtaining pathological diagnosis for neoplasms of the larynx, oropharynx, and hypopharynx. Since the development of distal chip laryngoscopy and digital imaging systems, transnasal flexible laryngoscopy tissue sampling has gained popularity as an office-based procedure. Additional assessment with narrow-band imaging (NBI) can help to increase the diagnostic yield. The aim of the study was to evaluate the accuracy, sensitivity, and specificity of a novel diagnostic tool: office-based NBI (OB-NBI) flexible laryngoscopic tissue sampling. Retrospective chart review performed in a tertiary referral medical center in Taiwan. From January 2010 to February 2013, 90 consecutive patients received OB-NBI biopsies. The accuracies of the OB-NBI biopsies were compared among locations, tumor sizes, head and neck cancer histories, and other factors. All patients had completed the procedure without life-threatening complications. The overall sensitivity and specificity were 97.2% and 100%, respectively, with a diagnostic accuracy of 98.9%. Accuracy was not affected by tumor size, location, learning curves, or previous head and neck cancer history. We present an integrated technique that merges the safety and versatility of flexible laryngoscopy with the diagnostic power of NBI to produce a promising method of high accuracy and minimal morbidity. 4 Laryngoscope, 126:2764-2769, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. The value of narrow band imaging for early detection of laryngeal cancer.

    PubMed

    Watanabe, Akihito; Taniguchi, Masanobu; Tsujie, Hitoshi; Hosokawa, Masao; Fujita, Masahiro; Sasaki, Shigeyuki

    2009-07-01

    We evaluate the value of laryngoscopy using narrow band imaging (NBI) system in the diagnosis of precancerous and cancerous laryngeal lesions. Thirty-four patients were suspected of having a total of 35 precancerous or cancerous laryngeal lesions among patients receiving conventional white-light laryngoscopy. All 34 patients underwent laryngoscopy with NBI system to determine whether those lesions were malignant before biopsy procedure. The diagnostic criteria of malignancy by NBI view was the presence of demarcated brownish area with scattered brown spots in the lesion. Histopathologic results were retrospectively compared with results of determination of malignancy made by NBI view. Of the 23 lesions histopathologically proved to be malignancies, 21 lesions were classified as malignant by NBI view. Sensitivity and specificity for the diagnosis of malignancy by means of NBI view compared with histopathologic results were 91.3% for sensitivity and 91.6% for specificity. NBI endoscopy seems to be a very promising diagnostic tool in the diagnosis of laryngeal malignant disease.

  2. Effects of Narrow Band UVB (311 nm) Irradiation on Epidermal Cells

    PubMed Central

    Reich, Adam; Mędrek, Karolina

    2013-01-01

    Ultraviolet radiation (UVR) is known to be one of the most important environmental hazards acting on the skin. It was revealed that chronic exposure to UVR accelerates skin aging, induces immunosuppression and may lead to the development of skin cancers. On the other hand, UVR has been shown to be effective in the treatment of numerous skin diseases and thus, various phototherapy modalities have been developed to date. Narrow-band ultraviolet B (NB-UVB) emitting a light with a peak around 311 nm has been demonstrated to be effective in the treatment of various skin disorders; currently it is one of the most commonly used phototherapy devices. Despite NB-UVB has been developed more than 30 years ago, the exact mechanism of its therapeutic action remains poorly understood. To date, most of NB-UVB effects were attributed to its influence on immune cells; however, nearly 90% of NB-UVB irradiation is absorbed by epidermis and keratinocytes seem to be important players in mediating NB-UVB biological activity. Here, we have reviewed the current data about the influence of NB-UVB on epidermal cells, with a special emphasis on cell proliferation and death. PMID:23594996

  3. Use of narrow band imaging in evaluation of possible nasopharyngeal carcinoma.

    PubMed

    Ho, Ching-Yin; Lee, Yi-Lun; Chu, Pen-Yuan

    2011-01-01

    This study was designed to evaluate the narrow band imaging (NBI) system for its ability to differentiate between malignant neoplasm and benign neoplasm by real-time image during nasopharyngoscopy, the quality of the visualization, and the limitation of the NBI in nasopharyngeal lesions. Between June 2009 and May 2010, 63 patients who had a suspected nasopharyngeal tumor via nasopharyngoscopy at Taipei Veterans General Hospital, Taiwan, were included in this study. All of the patients received nasopharyngoscopy with conventional view and NBI view and nasopharyngeal biopsy. The patients were divided into two groups depending on the pathological results: nasopharyngeal carcinoma (NPC) and lymphoid hyperplasia/chronic inflammation (LH). Forty-one patients were in the NPC group and 22 patients were in the LH group. The pattern of the NBI view showed regular cobblestone in the LH group, except for one patient. The pattern of the NBI view showed an irregular engorged vascular pattern and/or microvascular proliferative pattern in 32 of 41 NPC patients (78.0%). The sensitivity, specificity, positive predictive value, and negative predictive value of NBI in nasopharynx (NP) were 78.0, 95.5, 97.0, and 70.0%, respectively, in NP neoplasm. NBI could be helpful in differentiating benign and malignant neoplasm in the NP region. Using NBI in NP regions had some limitations, including bleeding and mucus coating.

  4. Narrow-band imaging flexible cystoscopy in the detection of recurrent urothelial cancer of the bladder.

    PubMed

    Bryan, Richard T; Billingham, Lucinda J; Wallace, D Michael A

    2008-03-01

    To investigate whether narrow-band imaging (NBI) flexible cystoscopy improves the detection rate of urothelial carcinomas (UCs) of the bladder. NBI is an optical image enhancement technology in which the narrow bandwidth of light is strongly absorbed by haemoglobin and penetrates only the surface of tissue, increasing the visibility of capillaries and other delicate tissue surface structures by enhancing contrast between the two. Between November 2005 and May 2007 at the Queen Elizabeth Hospital, Birmingham, NBI flexible cystoscopy was performed on 29 patients with known recurrences of UC of the bladder after initial conventional white-light imaging (WLI) flexible cystoscopy with the same instrument (Olympus Lucera sequential RGB endoscopy system). Subjectively, NBI provided a much clearer view of bladder UCs and in particular their delicate capillary architecture. Objectively, NBI detected 15 additional UCs in 12 of 29 patients (41%), as compared with WLI. The mean (sd) difference was 0.52 (0.74) UCs per patient (P < 0.001, Wilcoxon signed-rank test). Even in the few patients studied there is strong evidence that NBI differs from WLI in the number of UCs it detects, with a significantly increased detection rate. We feel that further evaluation of NBI flexible cystoscopy in more patients will show this technique to be highly valuable in the detection of both new and recurrent bladder UCs, and this work is continuing in our unit.

  5. Perspectives on narrow-band imaging endoscopy for superficial squamous neoplasms of the orohypopharynx and esophagus.

    PubMed

    Goda, Kenichi; Dobashi, Akira; Tajiri, Hisao

    2014-01-01

    Narrow-band imaging (NBI) is widely available and over the last decade has been applied as a detection and characterization technique for superficial neoplasms of the aerodigestive tract. The aims of the present study were to systematically review clinical trials of NBI endoscopy and to investigate an upgraded NBI system using a novel endoscope for superficial squamous neoplasms in the orohypopharynx and esophagus. Studies on the diagnostic use of NBI endoscopy for superficial squamous neoplasms in the orohypopharynx and esophagus were retrieved from MEDLINE and PubMed and reviewed. An upgraded NBI system using a novel endoscope was investigated with our clinical cases. In many clinical trials, NBI endoscopy with or without magnification had high diagnostic value for superficial squamousneoplasms in the orohypopharynx and esophagus. An upgraded NBI system can produce a significantly brighter endoscopic view than conventional endoscopes with high-quality magnified images that could be used to diagnose superficial squamous neoplasms. NBI endoscopy with or without magnification has diagnostic utility for superficial squamous neoplasms in the orohypopharynx and esophagus. The upgraded NBI endoscopic system is expected to facilitate the use of NBI and magnifying endoscopic diagnosis. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  6. Generation of Nondegenerate Narrow-Band Photon Pairs for a Hybrid Quantum Network

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lv, Peng-YinJie; Cui, Jin-Ming; Liu, Bi-Heng; Tang, Jian-Shun; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can

    2015-12-01

    In a hybrid quantum network, the linking of two types of quantum nodes through photonic channels requires excellent matching of the central frequency and bandwidth between both nodes and their interfacing photons. However, preexisting photon sources cannot fulfill this requirement. Using a novel conjoined double-cavity strategy, we report the generation of nondegenerate narrow-band photon pairs by cavity-enhanced spontaneous parametric down-conversion. The central frequencies and bandwidths of the signal and idler photons are independently set to match with trapped ions and solid-state quantum memories. With this source we achieve the bandwidths and central wavelengths of 4 MHz at 935 nm and 5 MHz at 880 nm for the signal and idler photons, respectively, with a normalized spectral brightness of 4.9 photon pairs /(s MHz mW ) . Because of its ability to be independently locked to two different wavelengths, the conjoined double cavity is universally suitable for a hybrid quantum network consisting of various quantum nodes.

  7. Generation of nondegenerate narrow-band photon pairs for hybrid quantum network

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lv, Pengyinjie; Cui, Jinming; Liu, Biheng; Tang, Jianshun; Huang, Yunfeng; Li, Chuanfeng; Guo, Guangcan

    In a hybrid quantum network, the linking two types of quantum nodes through photonic channels requires excellent matching of the central frequency and bandwidth between both nodes and their interfacing photons. However, pre-existing photon sources cannot fulfill this requirement. Using a novel conjoined double-cavity strategy, we report the generation of nondegenerate narrow-band photon pairs by cavity-enhanced spontaneous parametric down-conversion. The central frequencies and bandwidths of the signal and idler photons are independently set to match with trapped ions and solid-state quantum memories. With this source we achieve the bandwidths and central frequencies of 4 MHz at 935 nm and 5 MHz at 880 nm for the signal and idler photons, respectively, with a normalized spectral brightness of 4.9/s/MHz/mW. Due to its ability to be independently locked to two different wavelengths, the conjoined double-cavity is universally suitable for a hybrid quantum network consisting of various quantum nodes.

  8. Use of narrow-band imaging bronchoscopy in detection of lung cancer.

    PubMed

    Zaric, Bojan; Perin, Branislav

    2010-05-01

    Narrow-band imaging (NBI) is a new endoscopic technique designed for detection of pathologically altered submucosal and mucosal microvascular patterns. The combination of magnification videobronchoscopy and NBI showed great potential in the detection of precancerous and cancerous lesions of the bronchial mucosa. The preliminary studies confirmed supremacy of NBI over white-light videobronchoscopy in the detection of premalignant and malignant lesions. Pathological patterns of capillaries in bronchial mucosa are known as Shibuya's descriptors (dotted, tortuous and abrupt-ending blood vessels). Where respiratory endoscopy is concerned, the NBI is still a 'technology in search of proper indication'. More randomized trials are necessary to confirm the place of NBI in the diagnostic algorithm, and more trials are needed to evaluate the relation of NBI to autofluorescence videobronchoscopy and to white-light magnification videobronchoscopy. Considering the fact that NBI examination of the tracheo-bronchial tree is easy, reproducible and clear to interpret, it is certain that NBI videobronchoscopy will play a significant role in the future of lung cancer detection and staging.

  9. Clinical Application of Magnifying Endoscopy with Narrow-Band Imaging in the Stomach

    PubMed Central

    Yao, Kenshi

    2015-01-01

    Magnifying endoscopy with narrow-band imaging (M-NBI) can visualize superficial microanatomies in the stomach. The normal morphology of the microanatomy visualized by M-NBI differs according to the part of the stomach. The gastric fundic glandular mucosa appears as a regular honeycomb-like subepithelial capillary network (SECN) pattern with a regular collecting venule pattern and regular oval crypt opening with circular marginal crypt epithelium (MCE) pattern. The gastric pyloric glandular mucosa displays a regular coil-shaped SECN pattern and regular polygonal or curved MCE pattern. For a diagnosis of early gastric cancer using M-NBI, the vessel plus surface classification system was developed. This system is clinically useful for the differential diagnosis of focal gastritis and small depressed cancer and for determining the horizontal extent of early gastric cancer for successful endoscopic resection. Advantages of M-NBI over conventional endoscopic imaging techniques with white light include accurate diagnosis and cost effectiveness. This technique is a breakthrough in the endoscopic diagnostic field. PMID:26668793

  10. Interpreting motion and force for narrow-band intermodulation atomic force microscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2013-01-01

    Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip-surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the Fourier components of the tip-surface force that are in-phase with the tip motion (F(I)) and quadrature to the motion (F(Q)). Traditionally, these force components have been considered as a function of the static-probe height only. Here we show that F(I) and F(Q) actually depend on both static-probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence of F(I) and F(Q) from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we reconstruct the full amplitude and probe-height dependence of the force components F(I) and F(Q), providing deeper insight into the tip-surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.

  11. Quantitative evaluation of mucosal vascular contrast in narrow band imaging using Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-06-01

    Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.

  12. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution

    PubMed Central

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I.; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6]3− precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance. PMID:27025784

  13. An improved algorithm for narrow-band searches of continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Mastrogiovanni, S.; Astone, P.; D'Antonio, S.; Frasca, S.; Intini, G.; Leaci, P.; Miller, A.; Palomba, C.; Piccinni, O. J.; Singhal, A.

    2017-07-01

    Continuous gravitational waves signals, emitted by asymmetric spinning neutron stars, are among the main targets of current detectors like Advanced LIGO and Virgo. In the case of sources, like pulsars, whose rotational parameters are measured through electromagnetic observations, typical searches assume that the gravitational wave frequency is at a given known fixed ratio with respect to the star rotational frequency. For instance, for a neutron star rotating around one of its principal axis of inertia the gravitational signal frequency would be exactly two times the rotational frequency of the star. It is possible, however, that this assumption is wrong. This is why search algorithms able to take into account a possible small mismatch between the gravitational waves frequency and the frequency inferred from electromagnetic observations have been developed. In this paper we present an improved pipeline to perform such narrow-band searches for continuous gravitational waves from neutron stars, about three orders of magnitude faster than previous implementations. The algorithm that we have developed is based on the 5-vectors framework and is able to perform a fully coherent search over a frequency band of width O (Hertz) and for hundreds of spin-down values running a few hours on a standard workstation. This new algorithm opens the possibility of long coherence time searches for objects whose rotational parameters are highly uncertain as shown in the case study of the central compact object in the supernova remnant G353.6-0.7.

  14. Narrow band gap and enhanced thermoelectricity in FeSb2.

    PubMed

    Sun, Peijie; Oeschler, Niels; Johnsen, Simon; Iversen, Bo B; Steglich, Frank

    2010-01-28

    FeSb(2) was recently identified as a narrow-gap semiconductor with indications of strong electron-electron correlations. In this manuscript, we report on systematic thermoelectric investigation of a number of FeSb(2) single crystals with varying carrier concentrations, together with two isoelectronically substituted FeSb(2-x)As(x) samples (x = 0.01 and 0.03) and two reference compounds FeAs(2) and RuSb(2). Typical behaviour associated with narrow bands and narrow gaps is only confirmed for the FeSb(2) and the FeSb(2-x)As(x) samples. The maximum absolute thermopower of FeSb(2) spans from 10 to 45 mV/K at around 10 K, greatly exceeding that of both FeAs(2) and RuSb(2). The relation between the carrier concentration and the maximum thermopower value is in approximate agreement with theoretical predictions of the electron-diffusion contribution which, however, requires an enhancement factor larger than 30. The isoelectronic substitution leads to a reduction of the thermal conductivity, but the charge-carrier mobility is also largely reduced due to doping-induced crystallographic defects or impurities. In combination with the high charge-carrier mobility and the enhanced thermoelectricity, FeSb(2) represents a promising candidate for thermoelectric cooling applications at cryogenic temperatures.

  15. A narrow-band analysis of reflected magnitude and phase from six reflector panel arrays

    NASA Astrophysics Data System (ADS)

    Rathsam, Jonathan; Wang, Lily M.; Torres, Rendell R.

    2005-09-01

    This investigation analyzes measurements of the reflected sound field from various reflector panel arrays. A previous study by the third author [R. R. Torres and M. Vorlaender, ``Scale-model MLS-measurements of scattering from overhead panel arrays,'' Acta Acustica (in press)] measured impulse responses using the maximum length sequence method at various receiver positions from six scale-model panel arrays of different sizes and densities. This study included an octave band analysis of reflected magnitude as a function of receiver position. The current authors have extended the research by conducting a narrow-band analysis of magnitude and phase of the reflected sound fields for three of the panel arrays [J. Rathsam, L. M. Wang, and R. R. Torres, J. Acoust. Soc. Am. 117, 2499(A) (2005)]. This study revealed a close relationship between phase and magnitude. The current work continues the analysis of reflected phase and magnitude for the three additional reflector panel arrays. The newer arrays are more complex and may reveal the effects of multiple diffraction more clearly than the previous three arrays.

  16. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  17. Thermo-mechanically tunable Bragg grating filters on silicon-on-insulator rib waveguide bridges

    NASA Astrophysics Data System (ADS)

    Raum, Christopher R.

    This thesis explores the integration of an optical device within a micromechanical structure to enhance its performance and enable behaviour it would otherwise be incapable of. Thermo-mechanically tunable Bragg grating filters on silicon-on-insulator rib waveguide bridges have been designed, fabricated and characterised to demonstrate what happens when an optical device, and the actuator used to tune its optical response, are physically the same structure. The process flow developed to fabricate the device was a five mask process that included a bridge waveguide, integrated filter, and integrated heater. A surface micromachining technique was developed to release up to 4000 mum long, 5 mum thick waveguide bridges. The device has three distinct operating regimes: pre-buckle, buckle, and post-buckle. The pre-buckle experimental thermal sensitivity of the filter was 76 pm/°C and the theoretical sensitivity was 83 pm/°C. During the transient buckle regime, the Bragg filter wavelength was measured to shift 0.95 nm, and theorised to shift 0.55 nm. The post-buckle experimental thermal sensitivity of the filter was 88 pm/°C and the theoretical sensitivity was 99 pm/°C. The rib waveguide bridge was observed to possess a meta-stable regime between the pre- and post-buckle regimes. Before the critical buckle temperature could be attained, the bridge deflected 0.5 mum out-of-plane and remained static over a range of 7.5 °C, whereupon it deflected to its full 15.1 mum buckling mode height. This metastable deflection caused a Bragg wavelength shift of 0.39 nm. The thermal sensitivity of the Bragg filter wavelength in this meta-stable regime was 62 pm/°C. Rectangular cross-section beams did not produce this behaviour. Mechano-optical bi-stability was also observed. In this bi-stable regime there would be two possible Bragg wavelengths for a given temperature, depending on whether the device was in a forward or return path. The bi-stable regime occurred over a span of 15

  18. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  19. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  20. Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters.

    PubMed

    Rocha-Mendoza, Israel; Licea-Rodriguez, Jacob; Marro, Mónica; Olarte, Omar E; Plata-Sanchez, Marcos; Loza-Alvarez, Pablo

    2015-09-01

    We perform rapid spontaneous Raman 2D imaging in light-sheet microscopy using continuous wave lasers and interferometric tunable filters. By angularly tuning the filter, the cut-on/off edge transitions are scanned along the excited Stokes wavelengths. This allows obtaining cumulative intensity profiles of the scanned vibrational bands, which are recorded on image stacks; resembling a spectral version of the knife-edge technique to measure intensity profiles. A further differentiation of the stack retrieves the Raman spectra at each pixel of the image which inherits the 3D resolution of the host light sheet system. We demonstrate this technique using solvent solutions and composites of polystyrene beads and lipid droplets immersed in agar and by imaging the C-H (2800-3100cm(-1)) region in a C. elegans worm. The image acquisition time results in 4 orders of magnitude faster than confocal point scanning Raman systems, allowing the possibility of performing fast spontaneous Raman·3D-imaging on biological samples.

  1. Acousto-optic tunable filter for dispersion characterization of time-domain optical coherence tomography systems.

    PubMed

    Chin, Catherine; Toadere, Florin; Feuchter, Thomas; Leick, Lasse; Moselund, Peter; Bradu, Adrian; Podoleanu, Adrian

    2016-07-20

    A broadband supercontinuum light source with an acousto-optic tunable filter (AOTF) are used to characterize dispersion in two time-domain OCT systems, at 850 and 1300 nm. The filter is designed to sweep across two spectral ranges, which are restricted here from 800 to 900 nm and from 1200 to 1500 nm, respectively. Dispersion compensation for 850 nm was achieved with a spectral delay line. Dispersion compensation for 1300 nm was achieved using BK 7 rod glasses in the reference arm. The AOTF allows evaluation of dispersion in under as well as overcompensated systems. The AOTF method is based on wavelength dependence of the optical path difference corresponding to the maximum strength of the interference signal recorded using a mirror as object. Comparison is made between the AOTF method and the more usual method based on measurement of the full width at half-maximum of the autocorrelation peak. This comparison shows that the AOTF method is more accurate in terms of evaluation of the dispersion left uncompensated after each adjustment. The AOTF method additionally provides information on the direction of dispersion compensation.

  2. Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters

    PubMed Central

    Rocha-Mendoza, Israel; Licea-Rodriguez, Jacob; Marro, Mónica; Olarte, Omar E.; Plata-Sanchez, Marcos; Loza-Alvarez, Pablo

    2015-01-01

    We perform rapid spontaneous Raman 2D imaging in light-sheet microscopy using continuous wave lasers and interferometric tunable filters. By angularly tuning the filter, the cut-on/off edge transitions are scanned along the excited Stokes wavelengths. This allows obtaining cumulative intensity profiles of the scanned vibrational bands, which are recorded on image stacks; resembling a spectral version of the knife-edge technique to measure intensity profiles. A further differentiation of the stack retrieves the Raman spectra at each pixel of the image which inherits the 3D resolution of the host light sheet system. We demonstrate this technique using solvent solutions and composites of polystyrene beads and lipid droplets immersed in agar and by imaging the C–H (2800-3100cm−1) region in a C. elegans worm. The image acquisition time results in 4 orders of magnitude faster than confocal point scanning Raman systems, allowing the possibility of performing fast spontaneous Raman·3D-imaging on biological samples. PMID:26417514

  3. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990---December 31, 2002

    SciTech Connect

    Allen, J. W.

    2003-05-13

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties.

  4. Transverse Stratified Structure for Tunable Beaming and Filtering at Terahertz Frequencies

    NASA Astrophysics Data System (ADS)

    Lo Forti, Daniele

    The terahertz field is rapidly expanding due to technological progress over the last few years. While source and detectors are available in this frequency range, there is still no firmly established technology for tunable filters and modulators. In this work a number of transverse stratified configurations of metal and dielectric layers are studied for modulating Terahertz radiation in amplitude and phase. The first configuration analyzed is a set of metal plates placed on top of each other and separated by a thin layer of Liquid Crystal (LC). The period of the grating is such that the only propagating order is the order zero. The thickness of the LC is subwavelength and the propagation within the grating is TEM. The natural response of the structure is FP-like with periodic resonances that can be tuned by means of an applied voltage as a result of the electro-optic effect in the LC anisotropic medium. Pass-band flat-top response or high wide-band transmission is achieved using a cascade configuration or Brewster incidence respectively. A Brewster incidence is used to show the ability of the structure to steer an incoming THz beam. The single resonance FP response is enhanced by making cuts or placing metallic obstacles within the LC layer. In this way the periodicity of the resonances is altered due to a band-gap effect. As a result, the metallic structure reaches a flat band response at certain frequencies and a steep slope with high attenuation at other frequencies. A second transverse configuration is then studied. The structure is a set of dielectric slabs, in between two very thin layers of metal, placed on top of each other and separated by a layer of LC. The structure proves to be highly resonant in correspondence of certain frequencies at which it completely reflects the incoming radiation. At these frequencies, the transmission shows tunable periodic notches. The phenomenon is modeled using Structured Surface Plasmon and Bloch wave theory. The structure

  5. Notch filter

    NASA Technical Reports Server (NTRS)

    Shelton, G. B. (Inventor)

    1977-01-01

    A notch filter for the selective attenuation of a narrow band of frequencies out of a larger band was developed. A helical resonator is connected to an input circuit and an output circuit through discrete and equal capacitors, and a resistor is connected between the input and the output circuits.

  6. The simulation and improved design of tunable channel drop filter using hexagonal photonic crystal ring resonator

    SciTech Connect

    Chhipa, Mayur Kumar

    2014-10-15

    In this paper, we have proposed a new design of tunable two dimensional (2D) photonic crystal (PhC) channel drop filter (CDF) using ring resonators. The increasing interest in photonic integrated circuits (PIC's) and the increasing use of all-optical fiber networks as backbones for global communication systems have been based in large part on the extremely wide optical transmission bandwidth provided by dielectric materials. Based on the analysis we present novel photonic crystal channel drop filters. Simulations demonstrate that these filters exhibit ideal transfer characteristics. Channel dropping filters (CDF's) that access one channel of a wavelength division multiplexed (WDM) signal while leaving other channels undisturbed are essential components of PIC's and optical communication systems. In this paper we have investigated such parameters which have an effect on resonant wavelength in this Channel Drop Filter, such as dielectric constant of inner, coupling, adjacent and whole rods of the structure. The dimensions of these structures are taken as 20a×19a and the area of the proposed structure is about 125.6μm{sup 2}; therefore this structure can be used in the future photonic integrated circuits. While using this design the dropping efficiency at the resonance of single ring are 100%. The spectrum of the power transmission is obtained with finite difference time domain (FDTD) method. FDTD method is the most famous method for PhC analysis. In this paper the dielectric rods have a dielectric constant of 10.65, so the refractive index is 3.26 and radius r=0.213a is located in air, where a is a lattice constant. In this we have used five scatter rods for obtaining more coupling efficiency; radius of scatter rods is set to 0.215a. The proposed structure is simulated with OptiFDTD.v.8.0 software, the different dielectric constant of rods equal to ε{sub r}−0.4, ε{sub r} and ε{sub r}+0.4 at wavelength of 1570 nm.

  7. Discretely tunable Tm-doped fiber-based MOPA using FBG arrays as spectral filters

    NASA Astrophysics Data System (ADS)

    Tiess, T.; Junaid, S.; Becker, M.; Rothhardt, M.; Bartelt, H.; Jäger, M.

    2016-03-01

    Over the past years, Thulium (Tm) -doped fiber lasers in the 2μm region have gained a lot of interest due to many potential applications in materials processing and biophotonics. Based on the broad gain regions spanning from 1800nm to 2100nm, they offer the perfect basis to implement broadly tunable and user-friendly light sources like they are increasingly demanded in spectroscopic applications. Recently, a novel tuning mechanism based on a fiber Bragg grating (FBG) array as versatile spectral filter has been reported. This concept combines unique spectral freedom for customized tuning ranges and ultrabroad bandwidths with a fiber-integrated setup in order to maintain the advantages of the waveguide geometry. In this work, we demonstrate such a dispersion tuned and pulsed fiber laser in the Tm domain around 1950nm using a modulator and a discrete FBG array to control the emission wavelength. In order to comply with the demands of potential applications in biophotonics, for the first time, this tuning concept is realized in a polarization maintaining (PM) configuration ensuring linearly polarized output. While a simple FBG array is employed containing five gratings inscribed in PM fiber, we also outline the prospect to implement FBGs fabricated in a standard single mode fiber. The emission characteristics of the system are investigated showing pulse durations down to 11ns and a good spectral signal contrast. In order to highlight the prospect for tunable high-power operation, we have also implemented an amplification stage scaling the average power to more than 25W.

  8. TUNABLE RING LASER BASED ON A SEMICONDUCTOR OPTICAL AMPLIFIER AT 1300 NM USING A SIMPLE WAVELENGTH SELECTION FILTER

    PubMed Central

    Jeon, Mansik; Kim, Jeehyun; Song, Jae-Won; Lee, Ho; Choi, Sanghoon; Nelson, J. Stuart

    2009-01-01

    A simple, compact, and low cost tunable ring laser with a commercial semiconductor optical amplifier (SOA) was demonstrated. The tunable ring laser is based on an external wavelength filter cavity that is analogous with the Littman configuration with a diffraction grating, a mirror, and a simple slit. The unique structural advantage of this new system is that the slit is displaced to select a desired wavelength instead of tilting the mirror as in the Littman configuration. This allows easy control over the selected wavelength by the translating action of the slit. The full width half maximum (FWHM) wavelength turning range is 45 nm, and the wavelength resolution is about 2 pm. The demonstrated tunable ring laser has 2 mW output power. The side mode suppression ratios is 70–73 dB. PMID:20539831

  9. Detection of Mucosal Recurrent Nasopharyngeal Carcinomas After Radiotherapy With Narrow-Band Imaging Endoscopy

    SciTech Connect

    Wang, Wen-Hung; Lin, Yen-Chun; Chen, Wen-Cheng; Chen, Miao-Fen; Chen, Chih-Cheng; Lee, Kam-Fai

    2012-07-15

    Purpose: This study evaluated the feasibility of screening mucosal recurrent nasopharyngeal carcinoma with narrow-band imaging (NBI) endoscopy. Methods and Materials: One hundred and six patients were enrolled. All patients underwent conventional white-light (WL) endoscopic examination of the nasopharynx followed by NBI endoscopy. Biopsies were performed if recurrence was suspected. Results: We identified 32 suspected lesions by endoscopy in WL and/or NBI mode. Scattered brown spots (BS) were identified in 22 patients, and 4 of the 22 who had negative MRI findings were histopathologically confirmed to be neoplasias that were successfully removed via endoscopy. A comparison of the visualization in NBI closer view corresponded to histopathological findings in 22 BS, and the prevalence rates of neoplasias in tail signs, round signs, and irregularities signs were 0% (0/6), 0% (0/7), and 44.4% (4/9), respectively (p = 0.048). The sensitivity, specificity, and diagnostic capability were 37.5%, 92.9% and 0.652 for WL, 87.5%, 74.5% and 0.810 for NBI, and 87.5%, 87.8%, and 0.876 for NBI closer view, respectively. NBI closer view was effective in increasing specificity compared with NBI alone (87.8% vs. 74.5%, p < 0.05), and in increasing sensitivity and diagnostic capability compared to WL alone (87.5% vs. 37.5%, p < 0.05; 0.876 vs. 0.652, p = 0.0001). Conclusions: Although NBI in endoscopy can improve sensitivity of mucosal recurrent nasopharyngeal neoplasias, false-positive (nonneoplasia BS) results may be obtained in areas with nonspecific inflammatory changes due to postradiation effects. NBI closer view not only can offer a timely, convenient, and highly reliable assessment of mucosal recurrent nasopharyngeal carcinoma, it can also make endoscopic removal possible.

  10. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period

    PubMed Central

    2012-01-01

    Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. PMID

  11. Endocytoscopic narrow-band imaging efficiency for evaluation of inflammatory activity in ulcerative colitis

    PubMed Central

    Maeda, Yasuharu; Ohtsuka, Kazuo; Kudo, Shin-ei; Wakamura, Kunihiko; Mori, Yuichi; Ogata, Noriyuki; Wada, Yoshiki; Misawa, Masashi; Yamauchi, Akihiro; Hayashi, Seiko; Kudo, Toyoki; Hayashi, Takemasa; Miyachi, Hideyuki; Yamamura, Fuyuhiko; Ishida, Fumio; Inoue, Haruhiro; Hamatani, Shigeharu

    2015-01-01

    AIM: To assess the efficacy of endocytoscopic narrow-band imaging (EC-NBI) for evaluating the severity of inflammation in ulcerative colitis (UC). METHODS: This retrospective study was conducted at a single tertiary care referral center. We included UC patients who underwent colonoscopy with endocytoscopy from July 2010 to December 2013. EC-NBI was performed, and the images were evaluated by assessing visibility, increased vascularization, and the increased calibers of capillaries and were classified as Obscure, Visible or Dilated. Obscure was indicative of inactive disease, while Visible and Dilated were indicative of acute inflammation. This study received Institutional Review Board approval. The primary outcome measures included the diagnostic ability of EC-NBI to distinguish between active and inactive UC on the basis of histological activity. The conventional endoscopic images were classified according to the Mayo endoscopic score. A score of 0 or 1 indicated inactive disease, whereas a score of 2 indicated active disease. RESULTS: Fifty-two patients were enrolled. There was a strong correlation between the EC-NBI findings and the histological assessment (r = 0.871, P < 0.01). The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of EC-NBI for diagnosing acute inflammation were 84.0%, 100%, 87.1%, 100%, and 92.3%, respectively, while those for the Mayo endoscopic score were 100%, 40.7%, 100%, 61.0%, and 69.2%, respectively. Compared with conventional endoscopy, EC-NBI was superior in diagnostic specificity, negative predictive value, and accuracy (P < 0.001, P = 0.001 and P = 0.047, respectively). CONCLUSION: The EC-NBI finding of capillaries in the rectal mucosa was strongly correlated with histological inflammation and aided in the differential diagnosis between active and inactive UC. PMID:25717245

  12. Detection of mucosal recurrent nasopharyngeal carcinomas after radiotherapy with narrow-band imaging endoscopy.

    PubMed

    Wang, Wen-Hung; Lin, Yen-Chun; Chen, Wen-Cheng; Chen, Miao-Fen; Chen, Chih-Cheng; Lee, Kam-Fai

    2012-07-15

    This study evaluated the feasibility of screening mucosal recurrent nasopharyngeal carcinoma with narrow-band imaging (NBI) endoscopy. One hundred and six patients were enrolled. All patients underwent conventional white-light (WL) endoscopic examination of the nasopharynx followed by NBI endoscopy. Biopsies were performed if recurrence was suspected. We identified 32 suspected lesions by endoscopy in WL and/or NBI mode. Scattered brown spots (BS) were identified in 22 patients, and 4 of the 22 who had negative MRI findings were histopathologically confirmed to be neoplasias that were successfully removed via endoscopy. A comparison of the visualization in NBI closer view corresponded to histopathological findings in 22 BS, and the prevalence rates of neoplasias in tail signs, round signs, and irregularities signs were 0% (0/6), 0% (0/7), and 44.4% (4/9), respectively (p = 0.048). The sensitivity, specificity, and diagnostic capability were 37.5%, 92.9% and 0.652 for WL, 87.5%, 74.5% and 0.810 for NBI, and 87.5%, 87.8%, and 0.876 for NBI closer view, respectively. NBI closer view was effective in increasing specificity compared with NBI alone (87.8% vs. 74.5%, p < 0.05), and in increasing sensitivity and diagnostic capability compared to WL alone (87.5% vs. 37.5%, p < 0.05; 0.876 vs. 0.652, p = 0.0001). Although NBI in endoscopy can improve sensitivity of mucosal recurrent nasopharyngeal neoplasias, false-positive (nonneoplasia BS) results may be obtained in areas with nonspecific inflammatory changes due to postradiation effects. NBI closer view not only can offer a timely, convenient, and highly reliable assessment of mucosal recurrent nasopharyngeal carcinoma, it can also make endoscopic removal possible. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Narrow-band imaging of laryngeal images and endoscopically proven reflux esophagitis.

    PubMed

    Wang, Wen-Hung; Tsai, Kai-Yu

    2015-05-01

    To compare the difference between white light (WL) and narrow-band imaging (NBI) endoscopy in evaluating patients who had reflux laryngitis and esophagitis. Retrospective review of medical records and endoscopic images. Outpatient clinic. There were 102 consecutive patients with reflux esophagitis (mean age, 48 ± 11 years) who had office-based transnasal esophagoscopy (TNE) with WL and NBI views, including 60 men (59%) and 42 women (41%). We compared WL and NBI endoscopy in observing the laryngeal and esophageal epithelium. The nasopharynx, base of the tongue, epiglottis, hypopharynx, larynx, esophagus, gastroesophageal junction, and stomach were examined, and all procedures were digitally recorded. All patients were evaluated with WL and NBI views to determine the reflux finding score (RFS) in the larynx and Los Angeles (LA) classification grade in the esophagus. The NBI views were more sensitive than the WL views in the erythema/hyperemia, vocal cord edema, and global RFS scores. The NBI view facilitated the identification of the erythema/hyperemia change representing dilation or proliferation of microvessels caused by epithelial inflammation. The global RFS score was significantly associated with severity of LA grade only with the NBI view. The endoscopic findings with the NBI view permit an easier identification of the RFS parameters of laryngeal erythema/vocal cord edema, which have a stronger correlation with the severity of reflux esophagitis, than the WL view. The importance of NBI in the evaluation of reflux laryngitis and gastroesophageal reflux disease deserves further study. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.

  14. Added value of narrow band imaging and confocal laser endomicroscopy in detecting Barrett's esophagus neoplasia.

    PubMed

    Jayasekera, C; Taylor, A C F; Desmond, P V; Macrae, F; Williams, R

    2012-12-01

    Advances in endoscopic imaging techniques have enabled more accurate identification of subtle mucosal abnormalities. The aim of the study was to assess the accuracy of predicting high grade dysplasia (HGD) and intramucosal cancer (IMC) in mucosa predicted as being nondysplastic vs. dysplastic by high definition white light endoscopy (HD-WLE), narrow band imaging (NBI), and confocal laser endomicroscopy (CLE). A cross-sectional study was performed in a tertiary referral setting between February 2010 and September 2011. A total of 50 consecutive patients who were referred to St Vincent's Hospital for management of dysplastic Barrett's esophagus were included. A prediction of likely histology was made for each mucosal point (four-quadrant every 1 cm and any visible mucosal abnormality), first with HD-WLE, followed by NBI, and finally CLE. Biopsies were taken at all of these points. A total of 1190 individual biopsy points were assessed. At histology, 39 biopsy points were found to harbor HGD and 52 biopsy points harbored IMC. For the detection of HGD/IMC the sensitivity, specificity, and accuracy were: HD - WLE, 79.1 %, 83.1 %, and 82.8 %; NBI, 89.0 %, 80.1 %, and 81.4 %; and CLE, 75.7 %, 80.0 %, and 79.9 %, respectively. All mucosal points with IMC and all patients with HGD were detected by targeted biopsies guided by HD-WLE and NBI without the need for random Seattle protocol biopsies. HD-WLE in combination with NBI is highly accurate in the detection of HGD/IMC. Performing targeted biopsies in the surveillance of Barrett's esophagus is possible in expert centers. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Advantage of transurethral resection with narrow band imaging for non-muscle invasive bladder cancer.

    PubMed

    Kobatake, Kohei; Mita, Koji; Ohara, Shinya; Kato, Masao

    2015-08-01

    The aim of the present study was to compare the benefits of transurethral resection (TUR) under narrow band imaging (NBI-TUR) and TUR under conventional white light imaging (WLI-TUR) for non-muscle invasive bladder cancer (NMIBC). The study cohort consisted of 135 patients with NMIBC who were followed up for ≥1 year after TUR and who received no additional post-operative treatment. In the WLI-TUR group (n=78), systematic intravesical observation under WLI was followed by a multiple site biopsy (MSB), after which lesions detected as positive findings were resected completely under WLI. In the NBI-TUR group (n=57), similar observation under WLI was followed by systematic intravesical observation under NBI. Following MSB under NBI, TUR was performed for all lesions detected as positive findings under NBI. The sensitivity, specificity, positive-predictive value, negative-predictive value (NPV) and accuracy in the NBI-TUR group were calculated using results from the cystoscopical and pathological examinations of MSB samples under WLI and NBI. The tumor recurrence rate was analyzed in the two groups. Background factors did not differ significantly between the two groups, with the exception of the observation period (31.0 vs. 15.0 months; P<0.01). The procedure under NBI exhibited significantly higher sensitivity (95.0 vs. 70.0%; P<0.01) and NPV (97.1 vs. 86.8%; P<0.01) compared with the procedure under WLI. The 1-year recurrence rate in the NBI-TUR group was significantly lower than that in the WLI-TUR group (21.1 vs. 39.7%; P=0.016). In conclusion, the present study indicated that NBI-TUR is more advantageous than conventional WLI-TUR for patients with NMIBC.

  16. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency.

    PubMed

    Sarkar, Abhishek; Loho, Christoph; Velasco, Leonardo; Thomas, Tiju; Bhattacharya, Subramshu S; Hahn, Horst; Djenadic, Ruzica

    2017-09-04

    New multicomponent equiatomic rare earth oxides (ME-REOs) containing 3-7 rare earth elements (Ce, Gd, La, Nd, Pr, Sm and Y) in equiatomic proportions are synthesized using nebulized spray pyrolysis. All the systems crystallized as a phase pure fluorite type (Fm3[combining macron]m) structure in spite of the high chemical complexity. A nominal increase in the lattice parameter compared to CeO2 is observed in all ME-REOs. X-ray photoelectron spectroscopy performed on the ME-REOs confirmed that all the constituent rare earth elements are present in the 3+ oxidation state, except for Ce and Pr which are present in 4+ and in a mixed (3+/4+) oxidation state, respectively. The presence of Ce(4+) contributes substantially to the observed stability of the single phase structure. These new oxide systems have narrow direct band gaps in the range of 1.95-2.14 eV and indirect band gaps in the range of 1.40-1.64 eV, enabling light absorption over the entire visible spectral range. Furthermore, the oxygen vacancy concentration rapidly increases and then saturates with the number of rare earth elements that are incorporated into the ME-REOs. The lowering of the band gap is found to be closely related to the presence of multivalent Pr. Interestingly, the band gap values are relatively invariant with respect to the composition or thermal treatments. Considering the high level of oxygen vacancies present and the observed low band gap values, these new material systems can be of importance where the presence of oxygen vacancies is essential or in applications where a narrow band gap is desirable.

  17. New-generation narrow band imaging improves visibility of polyps: a colonoscopy video evaluation study.

    PubMed

    Ogiso, Kiyoshi; Yoshida, Naohisa; Siah, Kewin Tien Ho; Kitae, Hiroaki; Murakami, Takaaki; Hirose, Ryohei; Inada, Yutaka; Dohi, Osamu; Okayama, Tetsuya; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Handa, Osamu; Konishi, Hideyuki; Naito, Yuji; Yanagisawa, Akio; Itoh, Yoshito

    2016-09-01

    The benefits of narrow band imaging (NBI) in colorectal polyp detection remain questionable. Previous NBI has poorer brightness and resolution than white light (WL). However, recently these factors were improved by the new-generation video processor system (EVIS LUCERA ELITE) in comparison with the previous system (EVIS LUCERA SPECTRUM). The aim of this study was to investigate whether NBI with EVIS LUCERA ELITE could improve the visibility of colorectal polyps compared to WL. We analyzed prospectively 240 colorectal polyps (group 1: ELITE with CF-HQ290 scope, 80 polyps; group 2: ELITE with PCF-Q260AZI scope, 80 polyps; group 3: SPECTRUM with PCF-Q260AZI scope, 80 polyps) whose videos were recorded using NBI and WL at Kyoto Prefectural University of Medicine. The videos were evaluated in a randomized order by three experts and three non-experts. Each polyp was assigned a polyp visibility score from 4 (excellent visibility) to 1 (poor visibility). The polyp visibility scores in each mode and their relationship to the clinical characteristics were analyzed. The mean polyp visibility scores of NBI with ELITE system were significantly higher than those of WL (ELITE with CF-HQ290: 3.14 ± 0.87 vs. 2.75 ± 0.98, p < 0.0001, ELITE with PCF-Q260AZI: 3.03 ± 0.92 vs. 2.83 ± 0.93, p = 0.0006). Conversely, the mean polyp visibility score of NBI using SPECTRUM system with PCF-Q260AZI was significantly lower than WL (2.75 ± 1.06 vs. 3.05 ± 0.92, p < 0.0001). Our study showed that NBI using EVIS LUCERA ELITE improved polyp visibility.

  18. Simplified Classification of Capillary Pattern in Barrett Esophagus Using Magnifying Endoscopy With Narrow Band Imaging

    PubMed Central

    Uno, Goichi; Ishimura, Norihisa; Tada, Yasumasa; Tamagawa, Yuji; Yuki, Takafumi; Matsushita, Takashi; Ishihara, Shunji; Amano, Yuji; Maruyama, Riruke; Kinoshita, Yoshikazu

    2015-01-01

    Abstract The classification of Barrett esophagus (BE) using magnifying endoscopy with narrow band imaging (ME-NBI) is not widely used in clinical settings because of its complexity. To establish a new simplified available classification using ME-NBI. We conducted a cross-sectional study in a single-referral center. One hundred eight consecutive patients with BE using ME-NBI and crystal violet (CV) chromoendoscopy, and histological findings were enrolled. BE areas observed by ME-NBI were classified as type I or II on the basis of capillary pattern (CP), and as closed or open type on the basis of a mucosal pit pattern using CV chromoendoscopy; then, biopsy samples were obtained. We evaluated the relation between CP and pit pattern, expression of the factors with malignant potential, percentage of microvascular density, and interobserver agreement. One hundred thirty lesions from 91 patients were analyzed. Type II CP had more open type pit pattern areas and significantly greater microvascular density than type I. The presence of dysplasia, specialized intestinal metaplasia, expressions of COX-2, CDX2, and CD34, and PCNA index were significantly higher in type II, whereas the multivariate analysis showed that type II was the best predictor for the presence of dysplasia (OR 11.14), CD34 expression (OR 3.60), and PCNA (OR 3.29). Interobserver agreement for this classification was substantial (κ = 0.66). A simplified CP classification based on observation with ME-NBI is presented. Our results indicate that the classification may be useful for surveillance of BE with high malignant potential. PMID:25621687

  19. The role of narrow-band imaging (NBI) endoscopy in optical biopsy of vocal cord leukoplakia.

    PubMed

    Staníková, L; Šatanková, J; Kučová, H; Walderová, R; Zeleník, K; Komínek, Pavel

    2017-01-01

    The aim of this study was to investigate whether observing microvascular changes by narrow-band imaging (NBI) endoscopy in the area surrounding leukoplakia is sufficient for discriminating between benign and malignant patterns of vocal cord leukoplakia. A total of 282 patients were investigated using white-light high-definition TV laryngoscopy and NBI endoscopy from 6/2013 to 8/2015, and 63 patients with a primary case of laryngeal leukoplakia were enrolled. Patients were divided into two groups based on leukoplakia with surrounding malignant intraepithelial papillary capillary loops (group I; 26/63) and leukoplakia with a surrounding benign vascular network (group II; 37/63), both by NBI endoscopy. All 63 patients were evaluated by blinded histological examination, and results were compared with NBI optical biopsy. Carcinoma in situ or invasive squamous cell carcinoma was confirmed in 22/26 cases (84.6 %) in group I. Hyperkeratosis or low-grade dysplasia was confirmed histologically in 31/37 (83.8 %) and squamous cell carcinoma in 2/37 (5.4 %) cases in group II. Accordance of NBI endoscopy and histopathological features of vocal cord leukoplakia lesions was statistically significant (kappa index 0.77, p < 0.001), with a sensitivity of 88.0 % (95 % CI 67.8-97.5 %) and specificity of 89.5 % (95 % CI 71.2-97.1 %). NBI is convenient for improving evaluation of laryngeal leukoplakias based on optic prehistological diagnosis. The close accordance between NBI features and histological results suggests that a negative NBI endoscopy may be an indication for long-term endoscopy follow-up without histological evaluation.

  20. FICE vs Narrow Band Imaging for In Vivo Histologic Diagnosis of Polyps

    PubMed Central

    Sahbaz, Nuri Alper; Dural, Ahmet Cem; Unsal, Mustafa Gokhan; Kones, Osman; Kocatas, Ali; Halicioglu, Ilkay; Alis, Halil

    2016-01-01

    Background and Objectives: Gastrointestinal cancers are the most frequently occurring cancers worldwide. Diagnosis and removal of polyps during screening endoscopy decreases the prevalence of colon cancer and cancer-related mortality, and it is considered to be the gold standard in gastrointestinal system cancer prevention. Technological innovations in endoscopy have led to revolutionary developments in many areas. Flexible spectral imaging color enhancement (FICE) and narrow-band imaging (NBI) are forms of digital chromoendoscopy and enhance the endoscopic images without the need for a dye. This study seeks to evaluate the efficacy of FICE and NBI on polyp screening and real-time histologic diagnosis with endoscopy and to compare them. Methods: A total of 134 patients (male/female = 72/62) and 161 polyps were evaluated with FICE or NBI, and real-time histologic diagnosis predictions were classified as neoplastic or nonneoplastic, according to Kudo's pit pattern classification. Pathological results and real-time endoscopic diagnoses were statistically interpreted for both FICE and NBI. Positive predictive value, negative predictive value, sensitivity, specificity, and accuracy rates were calculated and compared for both modalities. Results: When both systems were compared, the negative predictive value of NBI was found to be higher than that of FICE statistically (P < .001). Specificity and positive predictive value in the FICE group were higher than in the NBI group, but the difference was not statistically significant (P = .082 and P = .153, respectively). Conclusions: Aside from being safe in polyp detection, digital chromoendoscopy also helps the endoscopist in selecting the type of simultaneous intervention (eg, polypectomy, endomucosal resection, or submucosal dissection) by enabling endoscopic histologic diagnosis. PMID:28028382

  1. Therapeutic or spontaneous Helicobacter pylori eradication can obscure magnifying narrow-band imaging of gastric tumors

    PubMed Central

    Kobayashi, Masaaki; Hashimoto, Satoru; Mizuno, Ken-ichi; Takeuchi, Manabu; Sato, Yuichi; Watanabe, Gen; Ajioka, Yoichi; Azumi, Motoi; Akazawa, Kouhei; Terai, Shuji

    2016-01-01

    Background and study aims: We previously reported that narrow-band imaging with magnifying endoscopy (NBI-ME) revealed a unique “gastritis-like” appearance in approximately 40 % of early gastric cancers after Helicobacter pylori eradication. Because rates of gastric cancer are increasing in patients with non-persistent infection of H. pylori, we aimed to clarify contribution factors to obscure tumors after therapeutic or spontaneous eradication. Patients and methods: NBI-ME findings were examined retrospectively in 194 differentiated-type adenocarcinomas from H. pylori-negative patients with prior eradication therapy (83 patients) or without prior eradication therapy (72 patients). A gastritis-like appearance under NBI-ME was defined as an orderly microsurface structure and/or loss of clear demarcation with resemblance to the adjacent, non-cancerous mucosa. The correlation of this phenomenon with the degree of atrophic gastritis, determined both histologically in the adjacent mucosa and endoscopically, was evaluated. Results: The tumor-obscuring gastritis-like appearance was observed in 42 % and 23 % of the patients in the H. pylori eradication and non-eradication groups, respectively. The development of this appearance was affected by the histological grade of atrophy (P = 0.003) and intestinal metaplasia (P < 0.001) on univariate analysis. Multivariate analysis revealed an odds ratio of 0.25 (95 % confidence interval 0.10 – 0.61, P = 0.002) for an endoscopically severe extent of atrophy, independently of eradication therapy. Conclusions: An endoscopically mild or moderate extent of atrophy is associated with a gastritis-like appearance under NBI-ME in currently H. pylori-negative gastric cancers. Surveillance endoscopy should be performed carefully after successful eradication or spontaneous elimination of H. pylori, particularly in patients with non-severe atrophic background mucosa. PMID:27556076

  2. OLGA- and OLGIM-based staging of gastritis using narrow-band imaging magnifying endoscopy.

    PubMed

    Saka, Akiko; Yagi, Kazuyoshi; Nimura, Satoshi

    2015-11-01

    As atrophic gastritis and intestinal metaplasia as a result of Helicobacter pylori are considered risk factors for gastric cancer, it is important to assess their severity. In the West, the operative link for gastritis assessment (OLGA) and operative link for gastric intestinal metaplasia assessment (OLGIM) staging systems based on biopsy have been widely adopted. In Japan, however, narrow-band imaging (NBI)-magnifying endoscopic diagnosis of gastric mucosal inflammation, atrophy, and intestinal metaplasia has been reported to be fairly accurate. Therefore, we investigated the practicality of NBI-magnifying endoscopy (NBI-ME) for gastritis staging. We enrolled 55 patients, in whom NBI-ME was used to score the lesser curvature of the antrum (antrum) and the lesser curvature of the lower body (corpus). The NBI-ME score classification was established from images obtained beforehand, and then biopsy specimens taken from the observed areas were scored according to histological findings. The NBI-ME and histology scores were then compared. Furthermore, we assessed the NBI-ME and histology stages using a combination of scores for the antrum and corpus, and divided the stages into two risk groups: low and high. The degree to which the stage assessed by NBI-ME approximated that assessed by histology was then ascertained. Degree of correspondence between the NBI-ME and histology scores was 69.1% for the antrum and 72.7% for the corpus, and that between the high- and low-risk groups was 89.1%. Staging of gastritis using NBI-ME approximates that based on histology, and would be a practical alternative to the latter. © 2015 The Authors. Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.

  3. Analysis of signal to noise enhancement using a highly selective modulation tracking filter

    NASA Technical Reports Server (NTRS)

    Haden, C. R.; Alworth, C. W.

    1972-01-01

    Experiments are reported which utilize photodielectric effects in semiconductor loaded superconducting resonant circuits for suppressing noise in RF communication systems. The superconducting tunable cavity acts as a narrow band tracking filter for detecting conventional RF signals. Analytical techniques were developed which lead to prediction of signal-to-noise improvements. Progress is reported in optimization of the experimental variables. These include improved Q, new semiconductors, improved optics, and simplification of the electronics. Information bearing signals were passed through the system, and noise was introduced into the computer model.

  4. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were

  5. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    PubMed

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  6. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG.

    PubMed

    Segawa, Toru; Matsuo, Shinji; Kakitsuka, Takaaki; Shibata, Yasuo; Sato, Tomonari; Kawaguchi, Yoshihiro; Kondo, Yasuhiro; Takahashi, Ryo

    2010-03-01

    We present a compact 4x8 wavelength-routing switch that monolithically integrates fast tunable wavelength converters (TWCs) and an arrayed-waveguide grating (AWG) for optical packet switching. The TWC consists of a double-ring-resonator-coupled tunable laser which allows rapid and stable switching, and an optical gate based on a parallel amplifier structure which prevents an input optical signal from being routed through the AWG (filter-free operation). A deep-ridge waveguide technology, employed for the AWG and ring resonators, facilitates the fabrication of the switch and makes the device compact. The filter-free TWCs achieve low crosstalk of the input optical signal of less than -22 dB. The wavelength routing operation of a non-return-to-zero (NRZ) signal at 10 Gbit/s is achieved with a switching time of less than 5 ns.

  7. Tunable fiber comb filter based on simple waveplate combination and polarization-diversified loop

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon; Lee, Yong Wook

    2017-06-01

    By incorporating a simple waveplate combination (WPC) set composed of two waveplates, we propose a wavelength-tunable fiber comb filter based on a polarization-diversified loop (PDL). The simple WPC set includes three kinds of waveplate groups such as two quarter-wave plates (QWPs), a set of a QWP and a half-wave plate (HWP), and a set of an HWP and a QWP. The PDL is implemented by making a Sagnac birefringence loop comprised of a four-port polarization beam splitter (PBS), two waveplates, and polarization-maintaining fiber (PMF). In the PDL, one end of PMF is connected to one port of the PBS with its slow axis π/4 (45°) oriented with respect to the horizontal axis of the PBS, and the other end of PMF is concatenated with the waveplates. First, we investigated light polarization conditions required to continuously tune the absolute wavelength location of the proposed filter in terms of input and output states of polarization (SOPs) of a birefringence element, or PMF. Then, three analytic transmittances of the filter were derived for the three WPC sets with arbitrary orientation angles of waveplates through Jones matrix formulation. And eight specific orientation angle sets of two waveplates, which caused phase shifts increasing linearly from 0° to 315° by a step of 45° in a sinusoidal transmittance function, were found for each WPC set. In particular, it has been theoretically proved that an orientation angle set of two waveplates, which can induce an arbitrary phase shift in the sinusoidal transmittance function, always exists for each WPC set. This implies that the comb spectrum of the proposed filter can be continuously tuned within one channel bandwidth by the proper control of the waveplate orientation angles. Finally, the input SOPs of PMF and the wavelength-dependent evolution of its output SOP were examined on the Poincare sphere at the eight specific waveplate angle sets. The relationship between the wavelength tuning and the SOP evolution was also

  8. LIGHT MODULATION: Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection

    NASA Astrophysics Data System (ADS)

    Molchanov, V. Ya; Voloshinov, V. B.; Makarov, O. Yu

    2009-04-01

    Quasi-collinear acousto-optic interaction is studied in acoustically and optically anisotropic paratellurite crystals. The possible applications of this interaction in acousto-optic tunable filters with a high spectral resolution are discussed. Different modifications of devices are compared and variants of devices intended for processing light beams and selection of light signals in fibreoptic communication systems with wavelength division multiplexing (WDM) at λ simeq 1550 nm are considered.

  9. A Very Compact, High Speed and Rugged Acousto-Optic Tunable Filter for Wavelength Division Demultiplexing in Fiber Optic Communication Networks. Phase 1

    DTIC Science & Technology

    1995-06-30

    Novel concepts of near-collinear/collinear acousto - optic interactions have been investigated during this SBIR Phase I program. As a result, several...new acousto - optic tunable filters have been built and tested. The program is highlighted by: (1) Design, fabrication and experimental demonstration of...a novel TeO2 near-collinear acousto - optic tunable filter has been designed, fabricated and tested. The device exhibits a 1.29 nm spectral resolution

  10. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter.

    PubMed

    Lyubopytov, Vladimir S; Porfirev, Alexey P; Gurbatov, Stanislav O; Paul, Sujoy; Schumann, Martin F; Cesar, Julijan; Malekizandi, Mohammadreza; Haidar, Mohammad T; Wegener, Martin; Chipouline, Arkadi; Küppers, Franko

    2017-05-01

    In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two wavelengths, each of them carrying two channels with zero and nonzero OAMs, form four independent information channels. In case of spacing between wavelength channels of 0.8 nm and intensity modulation, power penalties relative to the transmission of one channel do not exceed 1.45, 0.79 and 0.46 dB at the hard-decision forward-error correction (HD-FEC) bit-error-rate (BER) limit 3.8 × 10-3 when multiplexing a Gaussian beam and OAM beams of azimuthal orders 1, 2 and 3 respectively. In case of phase modulation, power penalties do not exceed 1.77, 0.54 and 0.79 dB respectively. At the 0.4 nm wavelength grid, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable, cheap, and reliable transformation of OAM states simultaneously with the selection of a particular wavelength in wavelength division multiplexing (WDM). The proposed on-chip device can be useful in future high-capacity optical communications with spatial- and wavelength-division multiplexing, especially for short-range communication links and optical interconnects.

  11. Hyperspectral imaging performance based on two TeO2 acousto-optic tunable filters.

    PubMed

    Wang, Pengchong; Zhang, Zhonghua

    2017-02-20

    The performance parameters of an acousto-optic tunable filter (AOTF) were reasonably optimized based on the previous research, according to which two AOTFs that could be applied to hyperspectral imaging were produced. Through testing, the basic tuning relationship of the two AOTFs was basically in line with the principle. Then, a hyperspectral imaging system was built based on the two AOTFs, and a long-range perspective target imaging experiment was carried out in the entire white light region. Finally, the proposed double-filtering method was applied to the hyperspectral imaging for the first time, and the imaging result was analyzed in detail.

  12. CONTROL OF LASER RADIATION PARAMETERS: Tunable acousto-optic filters with the multiple interaction of light and sound

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. B.; Magdich, L. N.; Knyazev, G. A.

    2005-11-01

    Optical multipass schemes of the interaction of light and sound, which are promising for filtration of optical beams based on tunable acousto-optic filters, are studied. The features of operation of acousto-optic filters in the rejection and transmission regimes are considered. It is proved theoretically and confirmed experimentally that the use of multiple interaction improves the spectral and energy parameters of acousto-optic devices. The collinear and transverse geometry of acousto-optic interaction in cells based on a paratellurite crystal is studied in the double-pass, three-pass, and multipass diffraction regimes.

  13. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    SciTech Connect

    Mukhopadhyay, Pranab K. Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  14. First cophasing of a segmented mirror with a tunable filter and the pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Bonaglia, M.; Pinna, E.; Puglisi, A.; Esposito, S.; Guerra, J. C.; Myers, R.; Dipper, N.

    2010-07-01

    Optical cophasing has a key role in ensuring that segmented mirror telescopes reach their best performance. To measure and correct segments misalignment it is necessary to have a wavefront sensor (WFS) in the telescope optical path. All the cophasing WFS suffer the phase ambiguity problem that limits the piston error measurements to a unit of wavelength. To overcome this problem we have developed a new cophasing technique based on the wavelength sweep. This paper will present the results of laboratory and on-sky tests of this technique, comparing them with the expected performance obtained in a previous work through numerical simulations. The laboratory test was carried out on the Active Phasing Experiment bench at ESO premises in Garching. We measured wavefront piston errors up to 15μm with an accuracy better than 0.25μm on a pupil conjugate segmented mirror using the Pyramid Phasing Sensor (PYPS) and a commercial tunable filter. We tested the possibility of propagating the differential piston measurements over the segmented mirror to cophase it, obtaining a residual surface error less than 0.2μm rms. The first on-sky test of the WST was carried out at William Hershel Telescope (WHT) using the NAOMI segmented mirror. We checked the effects of atmospheric turbulence on the measurements of large piston errors up to 15um wavefront and it was obtained an accuracy of 0.5μm, which is in agreement with simulation.

  15. Near-infrared spectropolarimetry based on acousto-optical tunable filters.

    PubMed

    Pereira, Claudete Fernandes; Gonzaga, Fabiano Barbieri; Pasquini, Celio

    2008-05-01

    A new approach to near-infrared (NIR) spectropolarimetry is described, in which the properties of a noncollinear acousto-optical tunable filter (AOTF) made of an anisotropic crystal of TeO2 is employed to produce a novel instrument that precludes or reduces significantly the use of mechanical parts and simplifies the acquisition of optical rotation spectra of absorbing species in the NIR region. In essence, the instrument is based on the measurement of the relative beam intensities produced when a 45 degrees plane polarized beam of radiation passes through a sample cell and is directed to the entrance window of the AOTF. Because of the crystal anisotropy, two planar and orthogonally polarized beams will leave the AOTF, angularly split from the nondiffracted beam, after the acousto-optical interaction has occurred. If an optically nonactive sample is present in the cell, equal intensities for both diffracted beams should be observed. On the other hand, the presence of an optically active sample will cause the polarization plane to rotate and a consequent difference in the intensities of the AOTF diffracted beams will be registered as a function of the optical activity of the sample. The instrument has been evaluated with aqueous solutions of sucrose, glucose, and fructose and for three forms of camphor (d, l, dl).

  16. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation

    NASA Astrophysics Data System (ADS)

    Gebhart, Steven C.; Thompson, Reid C.; Mahadevan-Jansen, Anita

    2007-04-01

    Past studies have demonstrated that combined fluorescence and diffuse reflectance spectroscopy can successfully discriminate between normal, tumor core, and tumor margin tissues in the brain. To achieve efficient, real-time surgical resection guidance with optical biopsy, probe-based spectroscopy must be extended to spectral imaging to spatially demarcate the tumor margins. We describe the design and characterization of a combined fluorescence and diffuse reflectance imaging system that uses liquid-crystal tunable filter technology. Experiments were conducted to quantitatively determine the linearity, field of view, spatial and spectral resolution, and wavelength sensitivity of the imaging system. Spectral images were acquired from tissue phantoms, mouse brain in vitro, and human cortex in vivo for functional testing of the system. The spectral imaging system produces measured intensities that are linear with sample emission intensity and integration time and possesses a 1 in. (2.54 cm) field of view for a 7 in. (18 cm) object distance. The spectral resolution is linear with wavelength, and the spatial resolution is pixel-limited. The sensitivity spectra for the imaging system provide a guide for the distribution of total image integration time between wavelengths. Functional tests in vitro demonstrate the capability to spectrally discriminate between brain tissues based on exogenous fluorescence contrast or endogenous tissue composition. In vivo imaging captures adequate fluorescence and diffuse reflectance intensities within a clinically viable 2 min imaging time frame and demonstrates the importance of hemostasis to acquired signal strengths and imaging speed.

  17. Brain tumor demarcation with liquid-crystal tunable filter spectral imaging

    NASA Astrophysics Data System (ADS)

    Gebhart, Steven C.; Mahadevan-Jansen, Anita

    2006-02-01

    Past studies have demonstrated that combined fluorescence and diffuse reflectance spectroscopy can successfully discriminate between normal, tumor core, and tumor margin tissues in the brain. To achieve efficient surgical resection guidance with optical biopsy, probe-based spectroscopy must be extended to spectral imaging to spatially demarcate the tumor margins. This paper describes the design and testing of a combined fluorescence and diffuse reflectance imaging system which uses liquid-crystal tunable filter technology. Experiments were conducted to quantitatively determine its linearity, field of view, spatial and spectral resolution, and wavelength sensitivity. For functional testing, spectral images were acquired from tissue phantoms, mouse brain in vitro, and rat brain cortex in vivo. The spectral imaging system is characterized by measured intensities which are linear with sample emission intensity and integration time, a one-inch field of view for a seven-inch object distance, spectral resolution which is linear with wavelength, spatial resolution which is pixel-limited, and sensitivity functions which provide a guide for the distribution of total image integration time between wavelengths. Functional testing demonstrated good spatial and spectral constrast between brain tissue types, the capability to acquire adequate fluorescence and diffuse reflectance intensities within a one-minute imaging timeframe, and the importance of hemostasis to acquired signal strengths and imaging speed.

  18. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  19. An acousto-optic tunable filter enhanced CO{sub 2} lidar atmospheric monitor

    SciTech Connect

    Taylor, L.H.; Suhre, D.R.; Mani, S.S.

    1996-12-31

    The atmospheric monitor conceptual design is based on a pulsed CO{sub 2} laser. The narrow laser lines provide high spectral selectivity in the 9-11 {mu}m region, within the 8-14 {mu}m ``fingerprint`` region where most large molecules have unique spectral absorption signatures. Laser power has been chosen so that topological objects, e.g., trees or buildings, as far as 4 km can be used as backreflectors, but the laser intensity is sufficiently low that the laser beam is eye-safe. Time-of-flight measurements give the distance to the topological reflector. The lidar system is augmented with an acousto-optic tunable filter (AOTF) which measures the thermal emission spectra from 3 to 14 {mu}m with a 3 cm{sup -1} passband. Sensitivity to narrow emission lines is enhanced by derivative spectroscopy in which the passband of the AOTF is dithered via the rf drive. Path-averaged concentrations are determined from the emission intensity and laser- determined range.

  20. Measurement and optimization of fiber mechanical properties for use in a novel HTS tunable filter

    NASA Astrophysics Data System (ADS)

    Guo, Libing

    2003-10-01

    This dissertation is a study of the thermal physical properties of a single fiber to be used as a key part of an HTS tunable filter. Eight classes of candidate fibers were narrowed down to carbon and borosilicate fibers for more study. Novel measurement methods were used in this project that overcame the shortcomings of literature methods, which can only measure the properties at room temperature. The experimental apparatus was designed and built, and measurements were made of Young's modulus, tensile strength, ultimate strain, torsional modulus and thermal linear expansion of both types of fibers at both room temperature and 95K. The errors of the measurement, including random variations in fiber diameter, were analyzed statistically to determine error bounds. The measurement results were used to determine the mechanical performance of each of the fibers when applied to suspending the toractor system. Based on the working conditions of both carbon fiber and borosilicate fiber, the borosilicate fiber was chosen for this purpose. The performance margin of the fiber suspending system was estimated by using a statistical model. A new model was proposed to demonstrate the relationship of the cross-section structure of Polyacrylonitrile (PAN)-based carbon fiber and its mechanical properties. The theoretical predictions on the properties of PAN-based carbon fiber based on this model agree very well with the experimental data. The Young's modulus and tensile strength of PAN-based carbon fiber with known diameter can be calculated by a simple equation without taking time to do an experimental measurement.

  1. Demonstration of multi-wavelength tunable fiber lasers based on a digital micromirror device processor.

    PubMed

    Ai, Qi; Chen, Xiao; Tian, Miao; Yan, Bin-bin; Zhang, Ying; Song, Fei-jun; Chen, Gen-xiang; Sang, Xin-zhu; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal

    2015-02-01

    Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.02 nm linewidth, 0.055 nm wavelength tuning step, and side-mode suppression ratio greater than 60 dB. Due to the automatic power control and polarization design, the power uniformity of output lasers is less than 0.008 dB and the wavelength fluctuation is below 0.02 nm within 2 h at room temperature.

  2. Zero crossings properties of a narrow band process to determine the reliability of a two frequency encoding: Application to evaluating its autocorrelation envelope

    NASA Astrophysics Data System (ADS)

    Hay, J.

    1981-03-01

    A mathematical model of narrow band Gaussian noise zero crossing was developed to facilitate the calibration of electronic equipment for detecting two frequency codes on single track tape. The model makes use of the small probability that a narrow band process will have a long series of zero crossings. The model is also considered with respect to evaluating the autocorrelation envelope.

  3. Narrow-band ultraviolet B exposure increases serum vitamin D levels in haemodialysis patients.

    PubMed

    Ala-Houhala, Meri J; Vähävihu, Katja; Hasan, Taina; Kautiainen, Hannu; Snellman, Erna; Karisola, Piia; Dombrowski, Yvonne; Schauber, Jürgen; Saha, Heikki; Reunala, Timo

    2012-06-01

    Chronic kidney disease (CKD) patients are especially prone to vitamin D insufficiency. Narrow-band ultraviolet B (NB-UVB) treatment increases serum 25-hydroxyvitamin D [25(OH)D] in dermatological patients, and we studied whether it also improves vitamin D balance in CKD patients on haemodialysis. Fifteen dialysis patients (mean age 48.3 years) and 12 healthy subjects (mean age 43.6 years) received nine NB-UVB exposures on the upper body. Serum 25(OH)D and 1,25(OH)(2)D were measured before and after the exposures. From skin biopsy specimen messenger RNA (mRNA) expression levels of CYP24A1 and CYP27B1, two enzymes needed for hydroxylation of vitamin D into its active metabolites, and of antimicrobial peptide cathelicidin, were examined. Before NB-UVB, mean serum 25(OH)D was 32.5 ± 10.2 nmol/L in the dialysis patients and 60.2 ± 18.0 nmol/L in the healthy subjects (P < 0.001). After eight NB-UVB exposures, serum 25(OH)D increased by 13.8 nmol/L (43%; P < 0.001) and serum 1,25(OH)(2)D by 3.3 pmol/L (27%; P = 0.002) in the dialysis patients. After NB-UVB exposures, CYP27B1 mRNA was increased (P = 0.04), whereas cathelicidin mRNA was decreased (P < 0.0001) compared to non-treated healthy subjects. One and 2 months after NB-UVB exposure, serum 25(OH)D was still 10% higher than initially in the dialysis patients. The present study shows that a short course of NB-UVB exposure increases significantly serum 25(OH)D and 1,25(OH)(2)D in dialysis patients. The effect is, however, short lasting suggesting that the patients need cyclic NB-UVB exposure to maintain their improved vitamin D concentration.

  4. Physical Theory of Narrow-Band Sounds Associated with Intracranial Aneurysms

    NASA Astrophysics Data System (ADS)

    Mast, T. Douglas

    Intracranial aneurysms in humans are sometimes associated with narrow-band sound. The sounds of interest have frequencies on the order of 500 Hz. Bandwidths observed correspond to quality factors on the order of 30. The present thesis offers a physical theory of the mechanism of excitation of these sounds. It is shown that an aneurysm can be modeled as a lumped-element resonator in which the kinetic energy is associated with the motion of blood in the neck of the aneurysm and the potential energy is stored in the flexible walls of the aneurysm sac. However, the quality factors of aneurysms as lumped-element resonators are seen to be much smaller than the observed quality factors of aneurysm sounds, so that aneurysm sounds cannot be explained as a simple resonance phenomenon associated with external forcing. It is shown that the best explanation for aneurysm sounds is a self-excited oscillation of the system comprised of the aneurysm and the unstable mean flow; this oscillation is explained quantitatively here for the first time. In the theory developed in this thesis, limit cycles of the aneurysm-flow system are found using describing -function analysis. Results of the theory agree quantitatively with experiments performed on flow-excited Helmholtz resonators and agree qualitatively with the observed characteristics of aneurysm sounds. The bandwidths of observed aneurysm sounds for a time-varying mean flow are predicted and compared with bandwidths of sounds due to periodic vortex shedding in the absence of any resonator. It is shown that the presence of a resonator causes a locking-in of the flow disturbances to the sounding frequency of the resonator, resulting in a narrow observed bandwidth, even for a time -varying mean flow. Bandwidth considerations make it possible to distinguish sounds associated with self-excited oscillations of aneurysms from sounds due to purely fluid-mechanical mechanisms. The theory presented here can be taken as a starting point for

  5. Narrow band wave emissions and noise around the plasma frequency in the solar wind

    NASA Astrophysics Data System (ADS)

    Chugunov, Yu. V.; Hayosh, M.; Fiala, V.; Soucek, J.; Santolik, O.; Pickett, J.

    2007-08-01

    The wave data obtained with a wide band instrument were recently used for interpretation of both quasi-thermal noise spectra and narrow band signals observed in the near vicinity of the local plasma frequency on CLUSTER II spacecraft in the solar wind, well upstream of the Earth's bow shock [1, 2] This approach is planned to continue with the large Cluster database and will be of use for other space missions such as Stereo and Solar Orbiter. If available, multi-component and/or multi-point measurements are expected to provide even greater insight in the generation of radio waves in the heliosphere in this frequency range. Our approach is based on a novel study of performance of receiving antennas in resonance regions in a streaming plasma. As far as noise spectra is concerned two distinctive features appear: a cutoff shifted down below the plasma frequency by a factor proportional to the ratio of stream velocity to the electron thermal velocity squared. The spectral maximum depends on the orientation of the antenna axis with respect to the stream velocity; it is shifted above the plasma frequency according to the antenna orientation, which is changing with the spacecraft spin. When the time resolution of the instrument is sufficient, it is possible to follow these changes. The overall form of the spectrum depends on the plasma distribution function, but even with a simplified model of two electron populations with largely different temperatures the estimates of the drift velocity and/or the temperature of the hot component can be obtained. In the case of a quasi-harmonic wave (narrow band signal) incident on the antenna, it is the antenna's effective length that allows for conversion of the open circuit voltage induced on its terminals to the electric field of the incoming wave. We show that this effective length grows by more than an order of magnitude under resonance conditions. This was already confirmed for waves propagating close to the lower oblique resonance

  6. A Bio-Realistic Analog CMOS Cochlea Filter With High Tunability and Ultra-Steep Roll-Off.

    PubMed

    Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Cheung, Rebecca; Smith, Leslie S

    2015-06-01

    This paper presents the design and experimental results of a cochlea filter in analog very large scale integration (VLSI) which highly resembles physiologically measured response of the mammalian cochlea. The filter consists of three specialized sub-filter stages which respectively provide passive response in low frequencies, actively tunable response in mid-band frequencies and ultra-steep roll-off at transition frequencies from pass-band to stop-band. The sub-filters are implemented in balanced ladder topology using floating active inductors. Measured results from the fabricated chip show that wide range of mid-band tuning including gain tuning of over 20 dB, Q factor tuning from 2 to 19 as well as the bio-realistic center frequency shift are achieved by adjusting only one circuit parameter. Besides, the filter has an ultra-steep roll-off reaching over 300 dB/dec. By changing biasing currents, the filter can be configured to operate with center frequencies from 31 Hz to 8 kHz. The filter is 9th order, consumes 59.5 ∼ 90.0 μW power and occupies 0.9 mm2 chip area. A parallel bank of the proposed filter can be used as the front-end in hearing prosthesis devices, speech processors as well as other bio-inspired auditory systems owing to its bio-realistic behavior, low power consumption and small size.

  7. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background.

    PubMed

    Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan

    2015-07-01

    Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging.

  8. Hydrogen-saturated saline protects intensive narrow band noise-induced hearing loss in guinea pigs through an antioxidant effect.

    PubMed

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5-3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect.

  9. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background

    PubMed Central

    Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan

    2015-01-01

    Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387

  10. Intensity Variations of Narrow Bands of Solar UV Radiation during Descending Phases of SACs 21-23

    NASA Astrophysics Data System (ADS)

    Gigolashvili, M.; Kapanadze, N.

    2014-12-01

    The study of variations of four narrow bands of solar spectral irradiance (SSI) in the ultraviolet (UV) range for period 1981-2008 is presented. Observational data obtained by space-flight missions SORCE, UARS, SME and daily meanings of international sunspot number (ISN) have been used. The investigated data cover the decreasing phases of the solar activity cycles (SACs) 21, 22 and 23. We have revealed a peculiar behavior of intensity variability of some solar ultraviolet spectral lines originated in the solar chromospheres for period corresponding to the declining phase of the solar cycle 23. It is found that variability of emission of different solar spectral narrow bands (289.5 nm, 300.5 nm) does not agree equally well with ISN variability during decreasing phase of the solar activity cycle 23. The negative correlations between total solar irradiance and the solar spectral narrow bands of UV emission (298.5 nm, 300.5 nm) had been revealed. The existence of the negative correlation can be explained by the sensitivity of SSI of some emission lines to the solar global magnetic field.

  11. Searching for narrow-band oscillations in solar flares in the presence of frequency-dependent noise

    NASA Astrophysics Data System (ADS)

    Inglis, Andrew; Ireland, Jack

    2014-06-01

    A common feature of solar flare emission is the appearance of short timescale fluctuations, often interpreted in terms of oscillatory signatures, and often referred to as quasi-periodic pulsations (QPPs) or quasi-periodic oscilations (QPOs). These fluctuations are an important diagnostic of solar plasma, as they are linked to the flare reconnection and particle acceleration sites. However, it has recently become clear that solar flare time series, like many astrophysical objects, are often dominated by frequency-dependent 'red' noise, rather than white noise. This frequency-dependent red-noise is commonly not taken into account when analyzing flare time-series for narrow-band oscillations. We demonstrate the application of a Bayesian method of searching for narrow-band oscillations in flares (based on Vaughan 2010) that fully accounts for frequency-dependent noise. We apply this method to the recent flares of 2011 February 15 and 2011 June 7, utilizing high-cadence EUV and X-ray data from the Proba-2/LYRA and Fermi/GBM instruments. While emphasizing that the observed fluctuations are a very real effect, we show that the emission from the selected events can be well described by a frequency-dependent noise model, without the need to invoke an explicit oscillatory mechanism. This presents a challenge to our current understanding of flare fluctuations, and suggests that narrow-band oscillations in flare emission may be much less prevalent than previously believed.

  12. Hydrogen-Saturated Saline Protects Intensive Narrow Band Noise-Induced Hearing Loss in Guinea Pigs through an Antioxidant Effect

    PubMed Central

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316

  13. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  14. High Voltage Ramp Generator for Electro-Optically Tunable Filter for the MSE-CIF Diagnostics on NSTX.

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Levinton, Fred

    2004-11-01

    The motional Stark effect (MSE) diagnostic is routinely used to determine the q-profile in large fusion devices. To apply the MSE diagnostic to experiments with low magnetic fields such as NSTX (<1 T), a tunable birefringent Lyot filter is used with high throughput and high resolution which allows for a good signal-to-noise ratio. The birefringent filter is made from lithium-niobate crystals, which are coated with a layer of indium tin-oxide (ITO). The ITO layer is a transparent conductive coating. By applying an electric field across the crystal the index of refraction is varied. This allows tunability of the filter. Putting multiple crystals together and tuning them individually it is possible to pass certain wavelengths of light and reject others. A high voltage ramp generator circuit is under development to ramp a 5 kV signal using a simple design involving MOSFET ladders. The goal is to design the circuit so that it can ramp ±5000 volts at a frequency of around 1 kHz. This would allow the filter to sweep over a range of ˜ 1nm.

  15. Multichannel tunable filter properties of 1D magnetized ternary plasma photonic crystal in the presence of evanescent wave

    NASA Astrophysics Data System (ADS)

    Awasthi, Suneet Kumar; Panda, Ranjita; Shiveshwari, Laxmi

    2017-07-01

    The multichannel tunable filter properties of one-dimensional ternary plasma photonic crystal composed of magnetized plasma and lossless dielectric have been theoretically investigated using transfer matrix method in the microwave region. The proposed filters possess 2N - 2 comb-like sharp resonant peaks also called transmission channels for N > 1 in transmission spectra in the absence and presence of an external magnetic field. Due to the coupling between evanescent waves and propagating modes in plasma and dielectric layers, respectively, 2N - 2 transmission channels are found without the addition of any defect, enabling the structure to work as a multichannel filter. Next, the filter properties can be made tunable by the application of an external magnetic field, i.e., channel frequency can either be red or blue shifted depending upon the orientation of an external magnetic field. The number of channels and their positions can also be modulated by changing the number of periods (N) and the incident angle (θo), respectively, for both transverse electric (TE) and transverse magnetic (TM) modes besides other parameters such as plasma collision frequency, thickness of the plasma layer, plasma frequency, etc.

  16. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    nm (r2 = 0.88, RMSE = 7.54 x 107). When perfect retrievals were assumed (0% noise), retrievals remained good in the low emission regions on either side of the peaks-- those associated with the H alpha line at 655 nm (r2 = 0.83, RMSE =8.87 x 107) and the far-NIR wavelengths recently utilized for satellite retrievals: a K line at 770 nm (r2 = 0.85, RMSE = 8.36 x 107) and the 750-770 nm interval (r2 = 0.88, RMSE = 6.92 x 107). However, the atmosphere and satellite observations are expected to add noise to retrievals. Adding 5% random error to these relationships did not seriously impair the retrieval successes in the red and far-red peaks (r2 ~ 0.85, RMSEs = 6.31 x 107). A greater impact occurred (reducing retrieval success by ~10%) when adding 5% noise for the far-NIR narrow band at 770 nm (r2 ~ 0.70, RMSE ~ 8.5 x 107). When a 10% random error was added, the retrieval successes fell to ~68 ± 7% for all retrieval wavebands, and RMSEs increased by a factor of 10. This laboratory approach will be critical to calibrate space borne retrievals, but additional information across plant species is needed. Furthermore, this experiment indicates that ChlF retrievals from space should include information from the red and far-red peak emission regions, since the true total fluorescence signal is the desired parameter for Earth carbon and energy budgets.

  17. Diagnostic utility of narrow-band imaging endoscopy for pharyngeal superficial carcinoma

    PubMed Central

    Yoshimura, Noboru; Goda, Kenichi; Tajiri, Hisao; Yoshida, Yukinaga; Kato, Takakuni; Seino, Yoichi; Ikegami, Masahiro; Urashima, Mitsuyoshi

    2011-01-01

    AIM: To investigate the endoscopic features of pharyngeal superficial carcinoma and evaluate the utility of narrow-band imaging (NBI) for this disease. METHODS: In the present prospective study, 335 patients underwent conventional white light (CWL) endoscopy and non-magnified/magnified NBI endoscopy, followed by an endoscopic biopsy, for 445 superficial lesions in the oropharynx and hypopharynx. The macroscopic appearance of superficial lesions was categorized as either elevated (< 5 mm in height), flat, or depressed (not ulcerous). Superficial carcinoma (SC) was defined as a superficial lesion showing high-grade dysplasia or squamous cell carcinoma on histology. The color, delineation, and macroscopic appearances of the lesions were evaluated by CWL endoscopy. The ratio of the brownish area/intervascular brownish epithelium (IBE), as well as microvascular proliferation, dilation, and irregularities, was determined by non-magnified/magnified NBI endoscopy. An experienced pathologist who was unaware of the endoscopic findings made the histological diagnoses. By comparing endoscopic findings with histology, we determined the endoscopic features of SC and evaluated the diagnostic utility of NBI. RESULTS: The 445 lesions were divided histologically into two groups: a non-SC group, including non-neoplasia and low-grade dysplasia cases, and an SC group. Of the 445 lesions examined, 333 were classified as non-SC and 112 were classified as SC. There were no significant differences in age, gender, or the location of the lesions between the patients in the two groups. The mean diameter of the SC lesions was significantly greater than that of non-SC lesions (11.0 ± 7.6 mm vs 4.6 ± 3.6 mm, respectively, P < 0.001). Comparisons of CWL endoscopy findings for SC and non-SC lesions by univariate analysis revealed that the incidence of redness (72% vs 41%, respectively, P < 0.001) and a flat or depressed type of lesion (58% vs 44%, respectively, P = 0.013) was significantly

  18. Diagnostic utility of narrow-band imaging endoscopy for pharyngeal superficial carcinoma.

    PubMed

    Yoshimura, Noboru; Goda, Kenichi; Tajiri, Hisao; Yoshida, Yukinaga; Kato, Takakuni; Seino, Yoichi; Ikegami, Masahiro; Urashima, Mitsuyoshi

    2011-12-07

    To investigate the endoscopic features of pharyngeal superficial carcinoma and evaluate the utility of narrow-band imaging (NBI) for this disease. In the present prospective study, 335 patients underwent conventional white light (CWL) endoscopy and non-magnified/magnified NBI endoscopy, followed by an endoscopic biopsy, for 445 superficial lesions in the oropharynx and hypopharynx. The macroscopic appearance of superficial lesions was categorized as either elevated (< 5 mm in height), flat, or depressed (not ulcerous). Superficial carcinoma (SC) was defined as a superficial lesion showing high-grade dysplasia or squamous cell carcinoma on histology. The color, delineation, and macroscopic appearances of the lesions were evaluated by CWL endoscopy. The ratio of the brownish area/intervascular brownish epithelium (IBE), as well as microvascular proliferation, dilation, and irregularities, was determined by non-magnified/magnified NBI endoscopy. An experienced pathologist who was unaware of the endoscopic findings made the histological diagnoses. By comparing endoscopic findings with histology, we determined the endoscopic features of SC and evaluated the diagnostic utility of NBI. The 445 lesions were divided histologically into two groups: a non-SC group, including non-neoplasia and low-grade dysplasia cases, and an SC group. Of the 445 lesions examined, 333 were classified as non-SC and 112 were classified as SC. There were no significant differences in age, gender, or the location of the lesions between the patients in the two groups. The mean diameter of the SC lesions was significantly greater than that of non-SC lesions (11.0 ± 7.6 mm vs 4.6 ± 3.6 mm, respectively, P < 0.001). Comparisons of CWL endoscopy findings for SC and non-SC lesions by univariate analysis revealed that the incidence of redness (72% vs 41%, respectively, P < 0.001) and a flat or depressed type of lesion (58% vs 44%, respectively, P = 0.013) was significantly higher in the SC group

  19. Diagnosis of gastric intraepithelial neoplasia by narrow-band imaging and confocal laser endomicroscopy

    PubMed Central

    Wang, Shu-Fang; Yang, Yun-Sheng; Wei, Li-Xin; Lu, Zhong-Sheng; Guo, Ming-Zhou; Huang, Jin; Peng, Li-Hua; Sun, Gang; Ling-Hu, En-Qiang; Meng, Jiang-Yun

    2012-01-01

    AIM: To evaluate the diagnosis of different differentiated gastric intraepithelial neoplasia (IN) by magnification endoscopy combined with narrow-band imaging (ME-NBI) and confocal laser endomicroscopy (CLE). METHODS: Eligible patients with suspected gastric IN lesions previously diagnosed by endoscopy in secondary hospitals and scheduled for further diagnosis and treatment were recruited for this study. Excluded from the study were patients who had liver cirrhosis, impaired renal function, acute gastrointestinal (GI) bleeding, coagulopathy, esophageal varices, jaundice, and GI post-surgery. Also excluded were those who were pregnant, breastfeeding, were younger than 18 years old, or were unable to provide informed consent. All patients had all mucus and bile cleared from their stomachs. They then received upper GI endoscopy. When a mucosal lesion is found during observation with white-light imaging, the lesion is visualized using maximal magnification, employing gradual movement of the tip of the endoscope to bring the image into focus. Saved images are analyzed. Confocal images were evaluated by two endoscopists (Huang J and Li MY), who were familiar with CLE, blinded to the related information about the lesions, and asked to classify each lesion as either a low grade dysplasia (LGD) or high grade dysplasia (HGD) according to given criteria. The results were compared with the final histopathologic diagnosis. ME-NBI images were evaluated by two endoscopists (Lu ZS and Ling-Hu EQ) who were familiar with NBI, blinded to the related information about the lesions and CLE images, and were asked to classify each lesion as a LGD or HGD according to the “microvascular pattern and surface pattern” classification system. The results were compared with the final histopathologic diagnosis. RESULTS: The study included 32 pathology-proven low grade gastric IN and 26 pathology-proven high grade gastric IN that were detected with any of the modalities. CLE and ME-NBI enabled

  20. Tunable Q-switched thulium-doped Fiber Laser using multiwall carbon nanotube and Fabry-Perot Etalon filter

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Muhamad, A.; Sharbirin, A. S.; Samion, M. Z.; Ismail, M. F.

    2017-01-01

    In this paper, we demonstrate an electro-tunable Thulium-doped Fiber Laser (TDFL) using a voltage-controlled Fabry-Perot Etalon (FPE) filter with passive Q-switching capability, obtained by using a multi-walled carbon-nanotube (MWCNT) thin-film as a saturable absorber (SA). To the best of our knowledge, this is the first demonstration of a wavelength-tunable Q-switched TDFL using an FPE filter. The tunable TDFL has a wavelength-tuning range of 41.95 nm, from 1965.40 nm up to 2007.35 nm. Q-switching operation starts at a pump power of 94.72 mW and destabilizes at a maximum input pump power of 146.39 mW. By varying the pump power, the repetition rate and the pulse width can be tuned with a maximum tuning range of 15.5 kHz and 7.0 μs respectively. The laser also has a maximum pulse energy of 82.6 nJ and a peak power of 27.52 mW. The use of the MWCNT thin-film as an SA generates a stable Q-switching operation, which is verified by its relatively high signal-to-noise ratio at a value of 55.0 dB.

  1. A novel acousto-optic tunable filter for use in hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Stedham, C.; Draper, M.; Ward, J.; Wachman, E.; Pannell, C.

    2008-02-01

    The design and performance characteristics of a novel Acousto Optic Tunable Filter (AOTF) are presented. Particular attention has been paid to the reduction of optical side lobes, maximising the light throughput and achieving efficient wideband RF matching of a device for use in hyperspectral imaging systems. Conventional AOTFs are known to yield an optical pass band with side lobes at unacceptable levels of ~-10dB relative to the transmission peak. It is known that shaping the acoustic beam ("apodisation") can suppress the side lobe transmission of the AOTF and improve its imaging capabilities. Results of a novel electrode apodisation pattern are presented, reducing sidelobes to ~-25dB. This produces an AOTF which is capable of being placed in a diffraction limited optical system and introduces negligible amounts of image degradation. The large transducer area (associated with the large optical aperture) and acoustic impedance mismatch between the AO substrate (TeO II) and transducer (LiNbO 3) pose a challenge in achieving wideband RF performance. Acoustic mismatch between substrate and transducer has been addressed by the introduction of a special acoustic matching layer in the bond. The layer reduces dispersion in the transducer impedance easing broadband matching. The transducer has a low (<1 Ohm) radiation resistance which must be matched to the RF driver (typically 50 ohms). This very low impedance may be swamped by the parasitic impedances of the electrode, bond layers and wire bonds used for electrical connection. Thus, the transducer is split into series-connected sections to increase the "bare" impedance. We present results to show the performance increase that can be obtained this way.

  2. Design of MEMS-tunable novel monolithic optical filters in InP with horizontal bragg mirrors

    NASA Astrophysics Data System (ADS)

    Datta, Madhumita; Pruessner, Marcel W.; Kelly, Daniel P.; Ghodssi, Reza

    2004-11-01

    This paper presents the theoretical design and analysis of a tunable Fabry-Perot resonant microcavity filter realized by movable-waveguide-based integrated optical MEMS technology in InP. Wide-bandwidth, high-reflectivity horizontal InP/air-gap distributed bragg reflector (DBR) mirrors monolithically integrated with the waveguides have been proposed. The filter can be tuned by moving one of the high-reflectivity mirrors axially with on-chip MEMS electrostatic actuation. Spectral performance of the filter is numerically simulated taking into account the diffraction effects. Finite element mechanical modeling of the parallel-plate capacitive microactuator, consisting of a micromachined suspension beam and fixed electrodes, predicts a wide wavelength tuning range (1250-1650 nm) achievable by low actuation voltage (<7 V).

  3. The Luminosity Function and Star Formation Rate Between Redshifts of 0.07 and 1.47 for Narrow-band Emitters in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, M.; Kashikawa, N.; Shimasaku, K.; Doi, M.; Nagao, T.; Iye, M.; Kodama, T.; Morokuma, T.; Motohara, K.

    2006-06-01

    Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple narrow-band filters are used to distinguish Hα, [OII], and [OIII] emitters between redshifts of 0.07 and 1.47 to construct their averaged rest-frame optical-to-UV SED and luminosity functions. These luminosity functions are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N 200-900) sample for each redshift interval, a Schechter profile is fitted to each luminosity function. Prior to dust extinction corrections, the [OIII] and [OII] luminosity functions reported in this paper agree reasonably well with those of Hippelein et al (2003). The z=0.066-0.092 Hα LF agrees with those of Jones & Bland-Hawthorn (2001), but for z=0.24 and 0.40, their number density is higher by a factor of two or more. The z=0.08 Hα LF, which reaches two orders of magnitude fainter than Gallego et al. (1995), is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1 than predicted. The faint end slope α and φ* show a strong evolution with redshift while L* show little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Hα for 0.07

  4. Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating.

    PubMed

    Park, Chang-Hyun; Yoon, Yeo-Taek; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Kim, Eun-Soo

    2013-11-18

    We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.

  5. Tunable semiconductor laser at 1025-1095 nm range for OCT applications with an extended imaging depth

    NASA Astrophysics Data System (ADS)

    Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej

    2015-03-01

    Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.

  6. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications.

    PubMed

    Thompson, Barry C; Kim, Young-Gi; McCarley, Tracy D; Reynolds, John R

    2006-10-04

    A family of soluble narrow band gap donor-acceptor conjugated polymers based on dioxythiophenes and cyanovinylenes is reported. The polymers were synthesized using Knoevenagel polycondensation or Yamamoto coupling polymerizations to yield polymers with molecular weights on the order of 10 000-20 000 g/mol, which possess solubility in common organic solvents. Thin film optical measurements revealed narrow band gaps of 1.5-1.8 eV, which gives the polymers a strong overlap of the solar spectrum. The energetic positions of the band edges were determined by cyclic voltammetry and differential pulse voltammetry and demonstrate that the polymers are both air stable and show a strong propensity for photoinduced charge transfer to fullerene acceptors. Such measurements also suggest that the polymers can be both p- and n-type doped, which is supported by spectroelectrochemical results. These polymers have been investigated as electron donors in photovoltaic devices in combination with PCBM ([6,6]-phenyl C(61)-butyric acid methyl ester) as an electron acceptor based on the near ideal band structures designed into the polymers. Efficiencies as high as 0.2% (AM1.5) with short circuit current densities as high as 1.2-1.3 mA/cm(2) have been observed in polymer/PCBM (1:4 by weight) devices and external quantum efficiencies of more than 10% have been observed at wavelengths longer than 600 nm. The electrochromic properties of the narrow band gap polymers are also of interest as the polymers show three accessible color states changing from an absorptive blue or purple in the neutral state to a transmissive sky-blue or gray in the oxidized and reduced forms. The wide electrochemical range of electrochromic activity coupled with the strong observed changes in transmissivity between oxidation states makes these materials potentially interesting for application to electrochromic displays.

  7. Resonant loop mirror with narrow-band reflections and its application in single-frequency fiber lasers

    SciTech Connect

    Paschotta, R.; Brinck, D.J.; Farwell, S.G.; Hanna, D.C.

    1997-01-01

    We present a new form of loop mirror (to be realized with all-fiber or integrated optics technology) that can produce narrow-band reflections and could find an application in single-frequency fiber lasers, allowing for a standing-wave design with a long doped section and eliminating the need for a Faraday isolator or a fiber grating. We discuss the main features of such a loop mirror and present experimental results that agree well with the theory. {copyright} 1997 Optical Society of America

  8. SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam

    SciTech Connect

    Paley, J.; Djurcic, Z.; Harris, D.; Tesarek, R.; Feldman, G.; Corwin, L.; Messier, M.D.; Mayer, N.; Musser, J.; Paley, J.; Tayloe, R.; /Indiana U. /Iowa State U. /Minnesota U. /South Carolina U. /Wichita State U. /William-Mary Coll.

    2010-10-15

    We propose to construct and deploy a fine-grained detector in the Fermilab NOvA 2 GeV narrow-band neutrino beam. In this beam, the detector can make unique contributions to the measurement of quasi-elastic scattering, neutral-current elastic scattering, neutral-current {pi}{sup 0} production, and enhance the NOvA measurements of electron neutrino appearance. To minimize cost and risks, the proposed detector is a copy of the SciBar detector originally built for the K2K long baseline experiment and used recently in the SciBooNE experiment.

  9. Russell Body Gastritis Treated With Helicobacter pylori Eradication Therapy: Magnifying Endoscopic Findings With Narrow Band Imaging Before and After Treatment

    PubMed Central

    Nishimura, Naoyuki; Mizuno, Motowo; Shimodate, Yuichi; Doi, Akira; Mouri, Hirokazu; Matsueda, Kazuhiro; Yamamoto, Hiroshi; Notohara, Kenji

    2016-01-01

    Russell body gastritis is considered a benign inflammatory disease. This is the first report that documented the disease’s natural history over a 15-month period and the response to eradication of Helicobacter pylori, with follow-up for another 15 months. In addition, Russell body gastritis was observed with magnifying endoscopy and narrow-band imaging. In the period of 30 months, we were able to record progression of the disease in the untreated state and its complete regression after clearance of H. pylori. PMID:27807558

  10. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  11. High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts

    NASA Astrophysics Data System (ADS)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2016-02-01

    Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high

  12. Tunable extended depth of field using a liquid crystal annular spatial filter.

    PubMed

    Klapp, Iftach; Solodar, Asi; Abdulhalim, Ibrahim

    2014-03-15

    A tunable extended depth of field (EDOF) imaging is presented using temporal multiplexing and a low-cost eight-ring, annular liquid crystal spatial light modulator. By changing between different phase profiles in the pupil plane of a lens we perform several levels of EDOF. Using these levels as a "database" it is shown by temporal multiplexing how to decompose tunable levels of EDOF.

  13. Design and implementation of a narrow-band superconducting X-band diplexer with high isolation

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Wei, Bin; Zheng, Tianning; Cao, Bisong; Jiang, Linan; Chen, Jiabin

    2016-12-01

    This paper presents a high performance X-band diplexer with a 65 MHz bandwidth operating at central frequencies of 9.90 and 10.02 GHz. Outstanding six-pole channel filters with a high out-of-band rejection are realized by utilizing a double-folded resonator and suppressing nonadjacent couplings on the basis of coupling analysis to improve the filtering performance of the diplexer. Two types of diplexers are compared in terms of isolation and packaging box's influence. The T-type topology is better than Y-type, and its isolation exceeds 70 dB. Moreover, the return loss and insertion loss is better than 13 dB and 0.4 dB respectively. The measurements agree well with the simulations, demonstrating that a high performance X-band diplexer with a compact size can be realized by HTS film apart from waveguide structure.

  14. Candidates for Intracluster Planetary Nebulae in the Virgo Cluster Based on the Suprime-Cam Narrow-Band Imaging in [O III] and Hα

    NASA Astrophysics Data System (ADS)

    Okamura, Sadanori; Yasuda, Naoki; Arnaboldi, Magda; Freeman, Kenneth C.; Ando, Hiroyasu; Doi, Mamoru; Furusawa, Hisanori; Gerhard, Ortwin; Hamabe, Masaru; Kimura, Masahiko; Kajino, Toshitaka; Komiyama, Yutaka; Miyazaki, Satoshi; Nakata, Fumiaki; Napolitano, Nicola R.; Ouchi, Masami; Pannella, Maurilio; Sekiguchi, Maki; Shimasaku, Kazuhiro; Yagi, Masafumi

    2002-12-01

    We have identified 38 candidates of intracluster planetary nebulae (ICPNe) in a 34' × 27' field in the core of the Virgo cluster based on Suprime-Cam imaging through two narrow-band filters centered at redshifted wavelengths of the [O III] λ=5007Å and the Hα λ=6563Å lines. Broad-band images in the V and R bands are used to check for any emissions in the adjacent continuum. We describe the method briefly and present a list of the intracluster planetary nebula candidates, together with their finding charts. The ICPN candidates show a highly inhomogeneous distribution, which may suggest an association with the M 86-M 84 subcluster. The fraction of diffuse intracluster light with respect to the total light in galaxies is estimated to be about 10%, leading to an estimate of about 20% for the baryon fraction. A spectroscopic follow up and a wider survey are critical to reveal the nature of the intracluster stellar population.

  15. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  16. Power-ratio tunable dual-wavelength laser using linearly variable Fabry-Perot filter as output coupler.

    PubMed

    Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan

    2016-02-01

    For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.

  17. Versatile tunable current-mode universal biquadratic filter using MO-DVCCs and MOSFET-based electronic resistors.

    PubMed

    Chen, Hua-Pin

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.

  18. Continuously tunable polarization-independent zeroth-order fiber comb filter based on polarization-diversity loop structure

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon; Lee, Yong Wook

    2017-04-01

    By selecting some optimal wave retarder combination (WRC) groups, we propose and experimentally implement a continuously tunable polarization-independent zeroth-order fiber comb filter based on a polarization-diversity loop structure. The selected WRC groups contain a set of two quarter-wave retarders (QWRs), a set of a QWR and a half-wave retarder (HWR), and a set of an HWR and a QWR. The filter was formed using a polarization beam splitter (PBS), one of the three selected WRC groups, and high birefringence fiber (HBF). One end of HBF was butt-coupled to the PBS so that its slow axis should be oriented at 45° for the horizontal axis of the PBS, and the other end was connected to the WRC group. Three kinds of comb filters were fabricated with the three selected WRC groups. Through theoretical analysis on light polarization conditions for continuous spectral tuning and filter transmittances, eight special azimuth angle sets of two wave retarders, which gave the transmittance function eight different phase shifts of 0 to -7 π/4 with a -π/4 step, were found for each WRC group. Theoretical prediction was verified by experimental demonstration. It was also confirmed that the filter could be continuously tuned by the appropriate control of wave retarders.

  19. Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    PubMed Central

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963

  20. Narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using multimode interference filter.

    PubMed

    Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S

    2017-05-01

    A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240  ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.