Sample records for narryer gneiss complex

  1. Archean crustal evolution of the Narryer Gneiss Terrane, Western Australia, as revealed by the U-Pb age and Hf-isotope compositions of zircon from the granitic gneisses

    NASA Astrophysics Data System (ADS)

    Sylvester, P.; Souders, K.; Crowley, J. L.; Myers, J.

    2011-12-01

    The Narryer Gneiss Terrane of the Yilgarn Craton, Western Australia, is an important area for studies of early crustal evolution because of the preservation of (1) detrital zircons of Hadean to Archean age in the Jack Hills and Mt. Narryer metasedimentary belts, and (2) several widespread units of granitic gneisses emplaced between ca. 3.7 and 2.6 Ga. We have analyzed the U-Pb geochronology and Hf-isotope geochemistry of magmatic zircons from 38 samples of the granitic gneisses using laser ablation - (multicollector) - ICPMS. The sample suite is dominated by the Meeberrie gneiss, a banded quartz-microcline-oligoclase-biotite gneiss of monzogranite to granodiorite composition, and the Dugel gneiss, a leucocratic, pegmatite-layered syenogranite gneiss, but gneisses of dioritic to tonalitic composition, as well as less deformed granite sheets, are also represented. Magmatic zircons were identified on the basis of the preservation of oscillatory zoning in BSE and CL images, igneous Th/U ratios (>0.2), and concordant U-Pb isotopic systematics with low common Pb contents. The results indicate many of the gneisses are composed of the products of multiple magmatic events, as has been reported previously for samples of the Meeberrie gneiss (Kinny & Nutman, 1996, Precambrian Res. 78, 165-178). Major ages of magmatism preserved in the gneisses occurred at ca. 3685-3665 Ma, 3620-3565 Ma, 3495-3440 Ma, 3375-3330 Ma, and 3300-3260 Ma. The late granite sheets crystallized at 2710-2645 Ma. Hf-isotope compositions of the zircons trend to less radiogenic values with decreasing age, with ɛHf values of ca. 0 to -5 for 3.7-3.4 Ga gneisses, ca. -1 to -9 for 3.4-3.2 Ga gneisses and ca. -5 to -20 for the late granite sheets. The array of the Hf isotopic compositions with time for the entire sample set are fit well by a regression indicating a source reservoir with a 176Lu/177Hf of 0.022 extracted from the depleted mantle at 3.9 Ga. This suggests that the Narryer gneisses and late granite

  2. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    NASA Astrophysics Data System (ADS)

    Maas, Roland; McCulloch, Malcolm T.

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3000 to 3700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. The association of the near-shore/fluviatile clastic association studied here with extensive turbiditic and chemical sedimentary sequences indicates these sources formed part of a (rifted ?) cratonic margin ca. 3 Ga ago. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneiss terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. ɛNd( TDep) values in Jack Hills metasediments vary widely (+5 to -12) but have a smaller range in the Mt. Narryer belt (-5 to -9). The lowest ɛNd values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger (≥ 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons (≈3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.

  3. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maas, R.; McCulloch, M.T.

    1991-07-01

    Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3,000 to 3,700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneissmore » terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. {epsilon}{sub Nd}(T{sub Dep}) values in Jack Hills metasediments vary widely (+5 to {minus}12) but have a smaller range in the Mt. Narryer belt ({minus}5 to {minus}9). The lowest {epsilon}{sub Nd} values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger ({ge} 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons ({approx}3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.« less

  4. Detrital Zircons From the Jack Hills and Mount Narryer, Western Australia: Geochronological, Morphological, and Geochemical Evidence for Diverse >4000 Ma Source Rocks

    NASA Astrophysics Data System (ADS)

    Crowley, J. L.; Myers, J. S.; Sylvester, P. J.; Cox, R. A.

    2004-05-01

    Detrital zircons from all major clastic units in the Jack Hills and Mount Narryer metasedimentary belts, Western Australia, were analyzed for morphology, internal zoning, inclusion mineralogy, age, and trace element concentrations (latter two obtained by laser-ablation microprobe ICPMS). The results show that zircons were derived from a wide diversity of rocks, including previously described, >4000 Ma grains that are older than any known terrestrial rocks. In three metaconglomerate samples from the western Jack Hills, 4200-3800 Ma zircons ("old grains") comprise 14% of the population, 3800-3600 Ma grains form only 2%, and 3550-3250 Ma zircons ("young grains") are dominant with a significant peak at 3380 Ma. Old and young grains are interpreted as being from similar rock types because they are indistinguishable in trace element concentrations, size (several hundred microns), morphology (subequant, typically fragmented), internal zoning (typically both oscillatory and sector), and U concentration (50-200 ppm). Many of these properties suggest an intermediate plutonic source, whereas an evolved granitic source was previously interpreted from rare-earth element and oxygen isotope data. Detrital zircons in quartzites and metaconglomerates at Mount Narryer differ significantly from zircons from the western Jack Hills. Old grains comprise only 3% (most of which are 4200-4100 Ma), 3800-3600 Ma zircons form 31%, and there are peaks at 3650, 3600, and 3500 Ma. Old and young grains have similar properties that suggest granitic sources, such as elongate prismatic morphology, oscillatory zoning, high U concentrations (100-600 ppm), and xenotime and monazite inclusions. Trace element concentrations are broadly similar to those in Jack Hills zircons, with notable exceptions being generally higher U, smaller Ce and Eu anomalies, and lower Nb/Ta. It is considered unlikely that Jack Hills zircons were derived from granitic gneisses that surround the metasedimentary belts because

  5. The geochemical nature of the Archean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1978-01-01

    The Ancient Gneiss Complex (AGC) of Swaziland, an Archean gray gneiss complex, lies southeast and south of the Barberton greenstone belt and includes the most structurally complex and highly metamorphosed portions of the eastern Kaapvaal craton. The AGC is not precisely dated but apparently is older than 3.4 Ga. The AGC consists of three major units: (a) a bimodal suite of closely interlayered siliceous, low-K gneisses and metabasalt; (b) homogeneous tonalite gneiss; and (c) interlayered siliceous microcline gneiss, metabasalt, and minor metasedimentary rocks - termed the metamorphite suite. A geologically younger gabbro-diorite-tonalite-trondhjemite suite, the Granodiorite Suite, is spatially associated with the AGC and intrusive into it. The bimodal suite consists largely of two types of low-K siliceous gneiss: one has SiO2 14%, low Rb/Sr ratios, and depleted heavy rare earth elements (REE's); the other has SiO2 > 75%, Al2O3 < 13%, high Rb/Sr ratios, and relatively abundant REE's except for negative Eu anomalies. The interlayered metabasalt ranges from komatiitic to tholeiitic compositions. Lenses of quartz monzonitic gneiss of K2O/Na2O close to 1 form a minor part of the bimodal suite. Tonalitic to trondhjemitic migmatite locally is abundant and has major-element abundances similar to those of non-migmatitic varieties. The siliceous gneisses of the metamorphic suite show low Al2O, K2O/Na2O ratios of about 1, high Rb/Sr ratios, moderate REE abundances and negative Eu anomalies. K/Rb ratios of siliceous gneisses of the bimodal suite are very low (???130); of the tonalitic gneiss, low (???225); of the siliceous gneiss of the metamorphite suite, moderate (???300); and of the Granodiorite Suite, high (???400). Rocks of the AGC differ geochemically in several ways from the siliceous volcanic and hypabyssal rocks of the Upper Onverwacht Group and from the diapirs of tonalite and trondhjemite that intrude the Swaziland Group. ?? 1978.

  6. Thermobarometric studies on the Levack Gneisses: Footwall rocks to the Sudbury Igneous Complex

    NASA Technical Reports Server (NTRS)

    James, R. S.; Peredery, W.; Sweeny, J. M.

    1992-01-01

    Granulite and amphibolite facies gneisses and migmatites of the Levack Gneiss Complex occupy a zone up to 8 km wide around the northern part of the Sudbury Igneous Complex (SIC). Orthopyroxene- and garnet-bearing tonalitic and semipelitic assemblages of granulite facies grade occur within 3 km of the SIC together with lenses of mafic and pyroxenitic rock compositions normally represented by an amphibole +/- cpx-rich assemblage; amphibolite facies assemblages dominate elsewhere in this terrain. These 2.711-Ga gneisses were introduced by (1) the Cartier Granite Batholith during late Archaean to early Proterozoic time and (2) the SIC, at 1.85 Ga, which produced a contact aureole 1-1.5 km wide in which pyroxene hornfelses are common within 200-300 m of the contact. A suite of 12 samples including both the opx-gt and amphibole-rich rock compositions have been studied. Garnets in the semipelitic gneisses are variably replaced by a plg-bio assemblage. Thermobarometric calculations using a variety of barometers and thermometers reported in the literature suggest that the granulite facies assemblages formed at depths in the 21-28 km range (6-8 kbar). Textures and mineral chemistry in the garnet-bearing semipelitic rocks indicate that this terrain underwent a second metamorphic event during uplift to depth in the 5-11 km range (2-3 kbar) and at temperatures as low as 500-550 C. This latter event is distinct from thermal recrystallization caused by the emplacement of the SIC; it probably represents metamorphism attributable to intrusion of the Cartier Granite Batholith. These data allow two interpretations for the crustal uplift of the Levack Gneisses: (1) The gneisses were tectonically uplifted prior to the Sudbury Event (due to intrusion of the Cartier Batholith); or (2) the gneisses were raised to epizonal levels as a result of meteorite impact at 1.85 Ga.

  7. Sm-Nd isotopic systematics of the ancient Gneiss complex, southern Africa

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Hunter, D. R.; Barker, F.

    1983-01-01

    In order to shed some new light on the question of the absolute and relative ages of the Ancient Gneiss Complex and Onverwacht Group, a Sm-Nd whole-rock and mineral isochron study of the AGC was begun. At this point, the whole-rock study of samples from the Bimodal Suite selected from those studied for their geochemical characteristics by Hunter et al., is completed. These results and their implications for the chronologic evolution of the Kaapvaal craton and the sources of these ancient rocks are discussed.

  8. Late Cretaceous and early Tertiary plutonism and deformation in the Skagit Gneiss Complex, north Cascade Range, Washington and British Columbia

    USGS Publications Warehouse

    Haugerud, R.A.; Van Der Heyden, P.; Tabor, R.W.; Stacey, J.S.; Zartman, R.E.

    1991-01-01

    The Skagit Gneiss Complex forms a more-or-less continuous terrane within the North Cascade Range. The complex comprises abundant plutons intruded at mid-crustal depths into a variety of metamorphosed supracrustal rocks of both oceanic and volcanic-arc origin. U-Pb zircon ages from gneissis plutons within and near the Skagit Gneiss Complex indicate magmatic crystallziations between 75 and 60 Ma. Deformation, recrystallization, and migmatization in part postdate intrusion of the 75-60 Ma plutons. This latest Cretaceous and earliest Tertiary plutonism and migmatization may reflect thermal relaxation following early Late Cretaceous orogeny. The complex was ductilely extended northwest-southeast shortly after intrusion of granite dikes at ~45 Ma, but before emplacement of the earliest (~34 Ma) plutons of the Cascade arc. -from Authors

  9. Thermal events documented in Hadean zircons by ion microprobe depth profiles

    NASA Astrophysics Data System (ADS)

    Trail, Dustin; Mojzsis, Stephen J.; Harrison, T. Mark

    2007-08-01

    We report the first U-Th-Pb ion microprobe depth profiles of four Hadean zircons from the Jack Hills and Mount Narryer supracrustal belts of the Narryer Gneiss Complex (NGC), Western Australia. This ultra-high spatial resolution technique probes the age and origin of sub-micron features in individual crystals that can record episodes of zircon growth. Near-surface grain dates of 2700 Ma or older are coincident with post-depositional growth/modification. Some ages may coincide with documented pre-deposition metamorphic events for the NGC and igneous emplacement at ca. 3700 Ma. Separate events that do not correlate in time with known geologic episodes prior to the preserved rock record are also present on pre-4000 Ma zircons. We find evidence for a ˜3.9 Ga event, which is coterminous within age uncertainty with one or several large basin-forming impacts (e.g. Nectaris) on the Moon attributed to the late heavy bombardment of the inner solar system.

  10. P- T- t constraints on the development of the Doi Inthanon metamorphic core complex domain and implications for the evolution of the western gneiss belt, northern Thailand

    NASA Astrophysics Data System (ADS)

    Macdonald, A. S.; Barr, S. M.; Miller, B. V.; Reynolds, P. H.; Rhodes, B. P.; Yokart, B.

    2010-01-01

    The western gneiss belt in northern Thailand is exposed within two overlapping Cenozoic structural domains: the extensional Doi Inthanon metamorphic core complex domain located west of the Chiang Mai basin, and the Mae Ping strike-slip fault domain located west of the Tak batholith. New P- T estimates and U-Pb and 40Ar/ 39Ar age determinations from the Doi Inthanon domain show that the gneiss there records a complex multi-stage history that can be represented by a clockwise P- T- t path. U-Pb zircon and titanite dating of mylonitic calc-silicate gneiss from the Mae Wang area of the complex indicates that the paragneissic sequence experienced high-grade, medium-pressure metamorphism (M1) in the Late Triassic - Early Jurassic (ca. 210 Ma), in good agreement with previously determined zircon ages from the underlying core orthogneiss exposed on Doi Inthanon. Late Cretaceous monazite ages of 84 and 72 Ma reported previously from the core orthogneiss are attributed to a thermal overprint (M2) to upper-amphibolite facies in the sillimanite field. U-Pb zircon and monazite dating of granitic mylonite from the Doi Suthep area of the complex provides an upper age limit of 40 Ma (Late Eocene) for the early stage(s) of development of the actual core complex, by initially ductile, low-angle extensional shearing under lower amphibolite-facies conditions (M3), accompanied by near-isothermal diapiric rise and decompression melting. 40Ar/ 39Ar laserprobe dating of muscovite from both Doi Suthep and Doi Inthanon provided Miocene ages of ca. 26-15 Ma, representing cooling through the ca. 350 °C isotherm and marking late-stage development of the core complex by detachment faulting of the cover rocks and isostatic uplift of the sheared core zone and mantling gneisses in the footwall. Similarities in the thermochronology of high-grade gneisses exposed in the core complex and shear zone domains in the western gneiss belt of northern Thailand (and also in northern Vietnam, Laos, Yunnan

  11. Transfer of Metasupracrustal Rocks to Midcrustal Depths in the North Cascades Continental Magmatic Arc, Skagit Gneiss Complex, Washington

    NASA Astrophysics Data System (ADS)

    Sauer, K. B.; Gordon, S. M.; Miller, R. B.; Vervoort, J. D.; Fisher, C. M.

    2017-12-01

    The metasupracrustal units within the north central Chelan block of the North Cascades Range, Washington, are investigated to determine mechanisms and timescales of supracrustal rock incorporation into the deep crust of continental magmatic arcs. Zircon U-Pb and Hf-isotope analyses were used to characterize the protoliths of metasedimentary and metaigneous rocks from the Skagit Gneiss Complex, metasupracrustal rocks from the Cascade River Schist, and metavolcanic rocks from the Napeequa Schist. Skagit Gneiss Complex metasedimentary rocks have (1) a wide range of zircon U-Pb dates from Proterozoic to latest Cretaceous and (2) a more limited range of dates, from Late Triassic to latest Cretaceous, and a lack of Proterozoic dates. Two samples from the Cascade River Schist are characterized by Late Cretaceous protoliths. Amphibolites from the Napeequa Schist have Late Triassic protoliths. Similarities between the Skagit Gneiss metasediments and accretionary wedge and forearc sediments in northwestern Washington and Southern California indicate that the protolith for these units was likely deposited in a forearc basin and/or accretionary wedge in the Early to Late Cretaceous (circa 134-79 Ma). Sediment was likely underthrust into the active arc by circa 74-65 Ma, as soon as 7 Ma after deposition, and intruded by voluminous magmas. The incorporation of metasupracrustal units aligns with the timing of major arc magmatism in the North Cascades (circa 79-60 Ma) and may indicate a link between the burial of sediments and pluton emplacement.

  12. Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology and 142Nd and 182W extinct nuclide-geochemistry

    NASA Astrophysics Data System (ADS)

    Reimink, Jesse R.; Chacko, Thomas; Carlson, Richard W.; Shirey, Steven B.; Liu, Jingao; Stern, Richard A.; Bauer, Ann M.; Pearson, D. Graham; Heaman, Larry M.

    2018-07-01

    The timing and mechanisms of continental crust formation represent major outstanding questions in the Earth sciences. Extinct-nuclide radioactive systems offer the potential to evaluate the temporal relations of a variety of differentiation processes on the early Earth, including crust formation. Here, we investigate the whole-rock 182W/184W and 142Nd/144Nd ratios and zircon Δ17O values of a suite of well-studied and lithologically-homogeneous meta-igneous rocks from the Acasta Gneiss Complex, Northwest Territories, Canada, including the oldest-known zircon-bearing rocks on Earth. In the context of previously published geochemical data and petrogenetic models, the new 142Nd/144Nd data indicate that formation of the Hadean-Eoarchean Acasta crust was ultimately derived from variable sources, both in age and composition. Although 4.02 Ga crust was extracted from a nearly bulk-Earth source, heterogeneous μ142Nd signatures indicate that Eoarchean rocks of the Acasta Gneiss Complex were formed by partial melting of hydrated, Hadean-age mafic crust at depths shallower than the garnet stability field. By ∼3.6 Ga, granodioritic-granitic rocks were formed by partial melting of Archean hydrated mafic crust that was melted at greater depth, well into the garnet stability field. Our 182W results indicate that the sources to the Acasta Gneiss Complex had homogeneous, high-μ182W on the order of +10 ppm-a signature ubiquitous in other Eoarchean terranes. No significant deviation from the terrestrial mass fractionation line was found in the triple oxygen isotope (16O-17O-18O) compositions of Acasta zircons, confirming homogeneous oxygen isotope compositions in Earth's mantle by 4.02 Ga.

  13. Tectonic evolution of greenstone-Gneiss association in Dharwar Craton, South India: Problems and perspectives for future research

    NASA Technical Reports Server (NTRS)

    Rao, Y. J. B.

    1986-01-01

    The two fold stratigraphic subdivision of the Archean-Proterozoic greenstone-gneiss association of Dharwar craton into an older Sargur group (older than 2.9 Ga.) and a younger Dharwar Supergroup serves as an a priori stratigraphic model. The concordant greenstone (schist)-gneiss (Peninsular gneiss) relationships, ambiguities in stratigraphic correlations of the schist belts assigned to Sargur group and difficulties in deciphering the older gneiss units can be best appreciated if the Sargur group be regarded as a trimodal association of: (1) ultrabasic-mafic metavolcanics (including komatiites), (2) clastic and nonclastic metasediments and paragneisses and (3) mainly tonalite/trondhemite gneisses and migmatites of diverse ages which could be as old as c. 3.4 ga. or even older. The extensive occurrence of this greenstone-gneiss complex is evident from recent mapping in many areas of central and southern Karnataka State.

  14. Relationship between high- and low-grade Archean terranes: Implications for early Earth paleogeography

    NASA Technical Reports Server (NTRS)

    Eriksson, K. A.

    1986-01-01

    The Western Gneiss Terrain (WGT) of the Yilgarn Block, Western Australia was studied. The WGT forms an arcuate belt of Archean gneisses that flank the western margin of the Yilgarn Block. In general the WGT is composed of high-grade orthogneisses and paragneisses which contain supracrustal belts composed largely of siliciclastic metasediments and subordinate iron formation. The platformal nature of the metasedimentary belts and lack of obvious metavolcanic lithologies contrasts with the composition of typical Yilgarn greenstones to the east. Radiometric data from WGT rocks indicates that these rocks are significantly older than Yilgarn rocks to the east (less than 3.3 Ga) and this has led to the suggestion that the WGT represents sialic basement to Yilgarn granite-greenstone belts. The Mount Narryer region exposes the northernmost occurrence of high-grade metasediments within the WGT and consists of quartz-rich clastic metasediments at upper amphibolite to granulite grade. Most occurrences of supracrustal rocks in this region comprise isolated lenses within the gneissic basement. However, at Mount Narryer a unique sequence of metaclastics with preserved bedding provide an unusual window into the parentage of similar supracrustal bodies in this region.

  15. Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss

    USGS Publications Warehouse

    Mojzsis, Stephen J.; Cates, Nicole L.; Caro, Guillaume; Trail, Dustin; Abramov, Oleg; Guitreau, Martin; Blichert-Toft, Janne; Hopkins, Michelle D.; Bleeker, Wouter

    2014-01-01

    The oldest compiled U–Pb zircon ages for the Acasta Gneiss Complex in the Northwest Territories of Canada span about 4050–3850 Ma; yet older ca. 4200 Ma xenocrystic U–Pb zircon ages have also been reported for this terrane. The AGC expresses at least 25 km2 of outcrop exposure, but only a small subset of this has been documented in the detail required to investigate a complex history and resolve disputes over emplacement ages. To better understand this history, we combined new ion microprobe235,238U–207,206Pb zircon geochronology with whole-rock and zircon rare earth element compositions ([REE]zirc), Ti-in-zircon thermometry (Tixln) and 147Sm–143Nd geochronology for an individual subdivided ∼60 cm2 slab of Acasta banded gneiss comprising five separate lithologic components. Results were compared to other variably deformed granitoid-gneisses and plagioclase-hornblende rocks from elsewhere in the AGC. We show that different gneissic components carry distinct [Th/U]zirc vs. Tixln and [REE]zirc signatures correlative with different zircon U–Pb age populations and WR compositions, but not with 147Sm–143Nd isotope systematics. Modeled  [REE] from lattice-strain theory reconciles only the ca. 3920 Ma zircons with the oldest component that also preserves strong positive Eu∗ anomalies. Magmas which gave rise to the somewhat older (inherited) ca. 4020 Ma AGC zircon age population formed at ∼IW (iron–wüstite) to gneisses.

  16. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Dai, Lidong; Sun, Wenqing; Li, Heping; Hu, Haiying; Wu, Lei; Jiang, Jianjun

    2018-03-01

    The electrical conductivity of gneiss samples with different chemical compositions (WA = Na2O + K2O + CaO = 7.12, 7.27 and 7.64 % weight percent) was measured using a complex impedance spectroscopic technique at 623-1073 K and 1.5 GPa and a frequency range of 10-1 to 106 Hz. Simultaneously, a pressure effect on the electrical conductivity was also determined for the WA = 7.12 % gneiss. The results indicated that the gneiss conductivities markedly increase with total alkali and calcium ion content. The sample conductivity and temperature conform to an Arrhenius relationship within a certain temperature range. The influence of pressure on gneiss conductivity is weaker than temperature, although conductivity still increases with pressure. According to various ranges of activation enthalpy (0.35-0.52 and 0.76-0.87 eV) at 1.5 GPa, two main conduction mechanisms are suggested that dominate the electrical conductivity of gneiss: impurity conduction in the lower-temperature region and ionic conduction (charge carriers are K+, Na+ and Ca2+) in the higher-temperature region. The electrical conductivity of gneiss with various chemical compositions cannot be used to interpret the high conductivity anomalies in the Dabie-Sulu ultrahigh-pressure metamorphic belt. However, the conductivity-depth profiles for gneiss may provide an important constraint on the interpretation of field magnetotelluric conductivity results in the regional metamorphic belt.

  17. P-T-t conditions, Nd and Pb isotopic compositions and detrital zircon geochronology of the Massabesic Gneiss Complex, New Hampshire: isotopic and metamorphic evidence for the identification of Gander basement, central New England

    USGS Publications Warehouse

    Dorais, Michael J.; Wintsch, Robert P.; Kunk, Michael J.; Aleinikoff, John; Burton, William; Underdown, Christine; Kerwin, Charles M.

    2012-01-01

    We present new evidence for the assignment of the Neoproterozoic Massabesic Gneiss Complex of New Hampshire to the Gander terrane rather than the Avalon terrane. The majority of Avalonian (sensu stricto) igneous and meta-igneous rocks as defined in Maritime Canada have positive whole-rock ɛNd compared to more negative values for Gander rocks, although there is a region of overlap in ɛNd between the two terranes. Our samples from areas in Connecticut previously thought to be Avalonian and samples from the Willimantic dome have the same isotopic signatures as Maritime Canada Avalon. In contrast, samples from the Clinton dome of southern Connecticut plots exclusively in the Gander field. The majority of the orthogneiss samples from Lyme dome (coastal Connecticut), Pelham dome (central Massachusetts) and Massabesic Gneiss Complex also plot in the Gander field, with a few samples plotting in the overlap zone between Gander and Avalon. U-Pb age distributions of detrital zircon populations from quartzites from the Massabesic Gneiss Complex more closely approximate the data from the Lyme Dome rather than Avalon. Additionally, the similarity of the P-T-t path for the rocks of the Massabesic Gneiss Complex (established by thermobarometry and 40Ar/39Ar dating of amphibole, muscovite, biotite and K-feldspar) with that established in the Ganderian Lyme dome of southern Connecticut strengthens the assignment of these rocks to a single Gander block that docked to Laurentia during the Salinic Orogeny. The identification of Ganderian isotopic signatures for these rocks all of which show evidence for Alleghanian metamorphism, supports the hypothesis that Neoproterozoic Gander lower crustal rocks underlie southern New Hampshire, Massachusetts, and Connecticut, and that all rocks of the overlying Central Maine trough that largely escaped high-grade Alleghanian metamorphism are allochthonous. We suggest that during the Alleghanian, the docking of Gondwana caused Avalon to wedge into

  18. Trondhjemitic, 1.35-1.31 Ga gneisses of the Mount Holly Complex of Vermont: evidence for an Elzevirian event in the Grenville Basement of the United States Appalachians

    USGS Publications Warehouse

    Ratcliffe, N.M.; Aleinikoff, J.N.; Burton, W.C.; Karabinos, P.

    1991-01-01

    A newly recognized suite of trondhjemite-tonalite and dacitic gneiss forms a 10 km wide belt of rocks within the Mount Holly Complex in the central part of the Green Mountain massif. Field relationships and chemistry indicate that these gneisses are calc-alkaline, volcanic, and hypabyssal plutonic rocks older than the Middle Proterozoic regional deformation that affected the Mount Holly Complex. U-Pb zircon dates indicate ages as great as 1.35 Ga for crystallization of the volcanic protoliths and for intrusion of crossing trondhjemite. Tonalitic plutonism continued until 1.31 Ga. The Mount Holly intrusives and volcanics may have formed during 1.35-1.31 Ga ensialic volcanic-arc activity, contemporaneous with ensimatic arc activity during the early part of the Elzevirian phase of the Grenville orogeny. -from Authors

  19. The Birth of a Cratonic Core: Petrologic Evolution of the Hadean-Eoarchean Acasta Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Reimink, J. R.; Chacko, T.; Davies, J.; Pearson, D. G.; Stern, R. A.; Heaman, L. M.; Carlson, R.; Shirey, S. B.

    2016-12-01

    Granitoid magmatism within the 4.02-3.6 Ga Acasta Gneiss Complex records distinct whole-rock compositional changes during the building the Slave Craton. Previously1,2 we suggested that these signatures implied petrologic changes from initiation of evolved crust formation in an Iceland-like setting to partial melting of hydrated mafic crust at increasing depth through time, culminating in relatively voluminous magmatism at 3.6 Ga. Increasing La/Yb in these rocks suggest increasing depth of melting (and increasing residual garnet content) with time, ending in emplacement of rocks comparable to other Archean TTG suites3, with both high pressure (high La/Yb) and low pressure (low La/Yb) rocks represented at 3.6 Ga. Data from rocks with variable La/Yb that crystallized 3.6 Ga allow us to evaluate potential mechanisms for formation of rocks of this age such as subduction/accretion or intracrustal melting/delamination. Despite major and trace element compositional and age variability, zircon oxygen isotope compositions from a wide variety of rocks are extremely consistent (+6.0-6.5 ‰ from 3.9-2.9 Ga), implying a similar source, one that had been altered by surface waters1. Potential source rocks include the upper portion of oceanic crust, which contains a large portion of mafic crust that had been altered at low temperatures (e.g., 4). Paired whole rock and zircon radiogenic isotopic data are especially sensitive to the extent of pre-existing felsic material in the region, as well as the longevity of primary, basaltic rocks prior to their reworking into more evolved crust. New paired zircon Hf and whole rock Nd isotope data collected from these samples show variably unradiogenic signatures and allow an exploration of similarities and disparities between crust formation in the Acasta Gneiss Complex and other Paleoarchean-Mesoarchean crustal blocks. [1] Reimink et al., 2016. Precambrian Research 281, 453-472. [2] Reimink et al., 2014 Nature Geoscience 7, 529-533. [3

  20. Extended history of a 3.5 Ga trondhjemitic gneiss, Wyoming Province, USA: Evidence from U-Pb systematics in zircon

    USGS Publications Warehouse

    Mueller, P.A.; Wooden, J.L.; Mogk, D.W.; Nutman, A.P.; Williams, I.S.

    1996-01-01

    The Beartooth-Bighorn magmatic zone (BBMZ) and the Montana metasedimentary province (MMP) are two major subprovinces of the Archean Wyoming province. In the northwestern Beartooth Mountains, these subprovinces are separated by a structurally, lithologically and metamorphically complex assemblage of lithotectonic units that include: (1) a strongly deformed complex of trondhjemitic gneiss and interlayered amphibolites; and (2) an amphibolite facies mafic unit that occurs in a nappe that structurally overlies the gneiss complex. Zircons from a trondhjemitic blastomylonite in the gneiss complex yield concordant U-Pb ages of 3.5 Ga, establishing it as the oldest rock yet documented in the Wyoming province. Two younger events are also recorded by zircons in this rock: (1) an apparently protracted period of high-grade metamorphism and/or intrusion of additional magmas at ??? 3.25 Ga; and (2) growth of hydrothermal zircon at ??? 2.55 Ga, apparently associated with ductile deformation that immediately preceded structural emplacement of the gneiss. Although this latter event appears confined to areas along the BBMZ-MMP boundary, evidence of ??? 3.25 Ga igneous activity is found in the overlying amphibolite (3.24 Ga) and throughout the MMP. These data suggest that this boundary first developed as a major intracratonic zone of displacement at or before 3.25 Ga. The limited occurrences of 2.8 Ga magmatic activity in the MMP suggest that it had a controlling influence on late Archean magmatism as well.

  1. Age and origin of gneisses south of Ameralik, between Kangimut-Sangmissoq and Qasigianguit

    NASA Technical Reports Server (NTRS)

    Jones, N. W.; Moorbath, S.; Taylor, P. N.

    1986-01-01

    Gneisses which crop out along the southern coast of Ameralik between Kangimut-sangmissoq and Qasigianguit (K-s-Q) are the subject of long-standing controversy concerning their relationship to the early Archean Amitsoq gneisses of the Godthaab district. On the basis of field observations, it was argued that gneisses at Kangimut-sangmissoq and Qasigianguit are correlatives of the early Archean Amitsoq gneisses. The data were reexamined and it is concluded that the K-s-Q gneisses represent an addition of substantially juvenile mantle-derived material to the Archean craton of West Greenland during the late Archean times. Some of the parent magmas have undergone interaction with older crust, as indicated by Pb isotope evidence for contamination with Amitsoq-derived Pb. However, the positive epsilon Nd(I) value for the K-s-Q gneisses firmly rules out any significant material contribution from the Amitsoq gneisses to the K-s-Q gneisses.

  2. The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: An example from the Chugach Metamorphic Complex, southern Alaska

    PubMed Central

    Gasser, Deta; Bruand, Emilie; Rubatto, Daniela; Stüwe, Kurt

    2012-01-01

    Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for U–Pb geochronology. However, linking monazite U–Pb ages with the PT evolution of the rock is not always straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and U–Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite is absent. In lower amphibolites facies schists (~ 550–650 °C and ≥ 3.4 kbar), small, medium-Y monazite is wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and andalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption. U–Pb SHRIMP analysis of the second and third monazite generations yields ages of ~ 55–50 Ma. Monazite became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth and dissolution during a single, relatively short-lived metamorphic cycle. PMID:26525358

  3. Geophysical interpretation of the gneiss terrane of northern Washington and southern British Columbia, and its implications for uranium exploration

    USGS Publications Warehouse

    Cady, John W.; Fox, Kenneth F.

    1984-01-01

    The Omineca crystalline belt of northeastern Washington and southern British Columbia has a regional Bouguer gravity high, and individual gneiss domes within the terrane are marked by local gravity highs. Models of crustal structure that satisfy the limited available seismic-refraction data and explain the gravity high over the gneiss terrane permit the hypothesis that the core metamorphic complexes are the surface expression of a zone of dense infrastructure that makes up the upper 20 km (kilometers) of the crust within the crystalline belt. The Omineca crystalline belt is characterized regionally by low aeromagnetic relief. The gneiss domes and biotite- and biotite-muscovite granites are generally marked by low magnetic relief, whereas hornblende-biotite granites often cause magnetic highs. Exceptional magnetic highs mark zones of magnetic rock within the biotite- and biotite-muscovite granites and the gneiss domes; these areas are worthy of study, both to determine the origin and disposition of the magnetite and to explore the possible existence of uraniferous magnetite deposits.

  4. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago.

    PubMed

    Wilde, S A; Valley, J W; Peck, W H; Graham, C M

    2001-01-11

    No crustal rocks are known to have survived since the time of the intense meteor bombardment that affected Earth between its formation about 4,550 Myr ago and 4,030 Myr, the age of the oldest known components in the Acasta Gneiss of northwestern Canada. But evidence of an even older crust is provided by detrital zircons in metamorphosed sediments at Mt Narryer and Jack Hills in the Narryer Gneiss Terrane, Yilgarn Craton, Western Australia, where grains as old as approximately 4,276 Myr have been found. Here we report, based on a detailed micro-analytical study of Jack Hills zircons, the discovery of a detrital zircon with an age as old as 4,404+/-8 Myr--about 130 million years older than any previously identified on Earth. We found that the zircon is zoned with respect to rare earth elements and oxygen isotope ratios (delta18O values from 7.4 to 5.0%), indicating that it formed from an evolving magmatic source. The evolved chemistry, high delta18O value and micro-inclusions of SiO2 are consistent with growth from a granitic melt with a delta18O value from 8.5 to 9.5%. Magmatic oxygen isotope ratios in this range point toward the involvement of supracrustal material that has undergone low-temperature interaction with a liquid hydrosphere. This zircon thus represents the earliest evidence for continental crust and oceans on the Earth.

  5. Partial melting of TTG gneisses: crustal contamination and the production of granitic melts

    NASA Astrophysics Data System (ADS)

    Meade, F. C.; Masotta, M.; Troll, V. R.; Freda, C.; Johnson, T. E.; Dahren, B.

    2011-12-01

    Understanding partial melting of ancient TTG gneiss terranes is crucial when considering crustal contamination in volcanic systems, as these rocks are unlikely to melt completely at magmatic temperatures (1000-1200 °C) and crustal pressures (<500 MPa). Variations in the bulk composition of the gneiss, magma temperature, pressure (depth) and the composition and abundance of any fluids present will produce a variety of melt compositions, from partial melts enriched in incompatible elements to more complete melts, nearing the bulk chemistry of the parent gneiss. We have used piston cylinder experiments to simulate partial melting in a suite of 12 gneisses from NW Scotland (Lewisian) and Eastern Greenland (Ammassalik, Liverpool Land) under magma chamber temperature and pressure conditions (P=200 MPa, T=975 °C). These gneisses form the basement to much of the North Atlantic Igneous Province, where crustal contamination of magmas was commonplace but the composition of the crustal partial melts are poorly constrained [1]. The experiments produced partial melts in all samples (e.g. Fig 1). Electron microprobe analyses of glasses indicate they are compositionally heterogeneous and are significantly different from the whole rock chemistry of the parent gneisses. The melts have variably evolved compositions but are typically trachy-dacitic to rhyolitic (granitic). This integrated petrological, experimental and in-situ geochemical approach allows quantification of the processes of partial melting of TTG gneiss in a volcanic context, providing accurate major/trace element and isotopic (Sr, Pb) end-members for modeling crustal contamination. The experimental melts and restites will be compared geochemically with a suite of natural TTG gneisses, providing constraints on the extent to which the gneisses have produced and subsequently lost melt. [1] Geldmacher et al. (2002) Scottish Journal of Geology, v.38, p.55-61.

  6. U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

    USGS Publications Warehouse

    Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.

    2000-01-01

    Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in

  7. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth

    NASA Astrophysics Data System (ADS)

    Moyen, Jean-François

    2011-04-01

    The geodynamic context of formation of the Archaean continental crust is a matter of debate. The crust is largely made of grey gneiss complexes, a composite rock assemblage dominated by granitoids that are generally regarded as belonging to the TTG (tonalite-trondhjemite-granodiorite) series. Using a large database of published TTG and grey gneiss compositions, it is possible to show that the granitoids forming grey gneiss complexes actually belong to at least four main geochemical groups: (i) a potassic component made of granodiorites and formed by melting of existing crustal lithologies; and (ii) three sodic groups (TTG proper) that comprise low, medium and high pressure groups. The geochemistry of the low pressure group is consistent with derivation from a plagioclase and garnet-amphibolite; the medium pressure group was formed in equilibrium with a garnet-rich, plagioclase-poor amphibolite, whereas the high pressure group derived from a rutile-bearing eclogite. As the temperature of melting of metamafic rocks is largely independent from pressure, this corresponds to melting along a range of contrasting geothermal gradients, in turn reflecting a range of tectonic sites for the formation of the Archaean continental crust.

  8. Evidence for the importance of ductile shear in regional fabric development in Grenville-age gneisses of the Beaver Creek region, Northwest Lowlands, New York State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewksbury, B.; Culbertson, H.; Marcoline, J.

    1993-03-01

    In the Beaver Creek region of the Northwest Lowlands, Brown (1989) has described Grenville-age metasedimentary and metaigneous rocks as showing a prominent regional foliation, early southeastward emplacement of a nappe complex (the North Gouverneur Nappe), 2 subsequent generations of folds, and late regional faulting along the Beaver Creek, Pleasant Lake, and Hickory-Mud Lakes faults. The authors examined a variety of units across the Beaver Creek region, including a granitic augen gneiss immediately west of the Beaver Creek Fault Zone, an alaskitic gneiss immediately below Brown's (1989) North Gouverneur Nappe Sole Fault, a biotitic granitic gneiss within the body of Brown'smore » North Gouverneur Nappe, and hornblende augen gneisses and metasediments adjacent to the granitic gneisses. Each of the granitic units has moderately well-developed to extremely well-developed quartz ribbon lineations, and all show at least 2 ductile shear fabrics. Shear fabrics are present as well in the hornblende augen gneisses but are essentially absent in most of the metasedimentary lithologies, even those immediately adjacent to well-lineated, sheared granitic gneiss. The earliest shear fabrics exhibit spectacular quartz ribbon lineations, sigma grains, and, in the hornblende augen gneiss, shear bands. Granitic gneisses in the Beaver Creek Region show shear fabrics in addition to the main fabric in the rock. A second, variably-recovered shear fabric with quartz ribbons and well-developed sigma grains with core and mantle structure overprints the main shear fabric and shows largely the same sense of shear. The authors suggest further that a regional kinematic model for the Beaver Creek region must take into account significant, protracted regional shear, perhaps including formation of sheath folds, as in the Hyde School Gneiss at Payne Lake and Dobbs Creek.« less

  9. Geochemical investigation of Archaean Bimodal and Dwalile metamorphic suites, Ancient Gneiss Complex, Swaziland

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1984-01-01

    The bimodal suite (BMS) comprises leucotonalitic and trondhjemitic gneisses interlayered with amphibolites. Based on geochemical parameters three main groups of siliceous gneiss are recognized: (i) SiO2 14%, and fractionated light rare-earth element (REE) and flat heavy REE patterns; (ii) SiO2 and Al2O3 contents similar to (i) but with strongly fractionated REE patterns with steep heavy REE slopes; (iii) SiO2 > 73%, Al2O3 < 14%, Zr ??? 500 ppm and high contents of total REE having fractionated light REE and flat heavy REE patterns with large negative Eu anomalies. The interlayered amphibolites have major element abundances similar to those of basaltic komatiites, Mg-tholeiites and Fe-rich tholeiites. The former have gently sloping REE patterns, whereas the Mg-tholeiites have non-uniform REE patterns ranging from flat (??? 10 times chondrite) to strongly light REE-enriched. The Fe-rich amphibolites have flat REE patterns at 20-30 times chondrite. The Dwalile metamorphic suite, which is preserved in the keels of synforms within the BMS, includes peridotitic komatiites that have depleted light REE patterns similar to those of compositionally similar volcanics in the Onverwacht Group, Barberton, basaltic komatiites and tholeiites. The basaltic komatiites have REE patterns parallel to those of the BMS basaltic komatiites but with lower total REE contents. The Dwalile tholeiites have flat REE patterns. The basic and ultrabasic liquids were derived by partial melting of a mantle source which may have been heterogeneous or the heterogeneity may have resulted from sequential melting of the mantle source. The Fe-rich amphibolites were derived either from liquids generated at shallow levels or from liquids generated at depth which subsequently underwent extensive fractionation. ?? 1984.

  10. Spatial greenstone-gneiss relationships: Evidence from mafic-ultramafic xenolith distribution patterns

    NASA Technical Reports Server (NTRS)

    Glikson, A. Y.

    1986-01-01

    The distribution patterns of mafic-ultramafic xenoliths within Archaean orthogneiss terrain furnish an essential key for the elucidation of granite-greenstone relations. Most greenstone belts constitute mega-xenoliths rather than primary basin structures. Transition along strike and across strike between stratigraphically low greenstone sequences and xenolith chains demonstrate their contemporaneity. These terrains represent least deformed cratonic islands within an otherwise penetratively foliated deformed gneiss-greenstone crust. Whereas early greenstone sequences are invariably intruded by tonalitic/trondhjemitic/granodioritic gneisses, stratigraphically higher successions may locally overlap older gneiss terrains and their entrained xenoliths unconformably. The contiguity of xenolith patterns suggests their derivation as relics of regional mafic-ultramafic volcanic crustal units and places limits on horizontal movements between individual crustal blocks.

  11. Geochronology of archean gneisses in the Lake Helen area, Southwestern Big Horn Mountains, Wyoming

    USGS Publications Warehouse

    Arth, Joseph G.; Barker, F.; Stern, T.W.

    1980-01-01

    The RbSr and UPb methods were used to study gneisses in the 7 1 2-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite. A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ?? 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ?? 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ?? 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source. A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ?? 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ?? 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source. ?? 1980.

  12. The Acasta Gneiss - a Hadean cratonic nucleus

    NASA Astrophysics Data System (ADS)

    Sprung, P.; Scherer, E. E.; Maltese, A.; Bast, R.; Bleeker, W.; Mezger, K.

    2016-12-01

    The known terrestrial rock record lacks undisputed, chemically intact Hadean crust. Direct evidence from this eon has been restricted to zircon grains within younger rocks [1]. The Acasta Gneiss Complex (AGC; NT, CA) has yielded zircon with Hadean domains [e.g., 2,3], but the time at which AGC rocks became closed chemical systems is unclear [4,5]. Determining this `time of last disturbance' (tld) would provide a minimum protolith age, and is crucial for using radiogenic isotope compositions of bulk rocks to trace crust-mantle evolution. Recent studies mostly focused on the `low-strain' eastern AGC [e.g., 6, 7], which records an evolving, early-mid Archean cratonic nucleus [7]. We also studied the `high-strain' banded gneiss in the western AGC, which hosts >4 Ga zircon domains [2,3], too. Our focusing lay on adjoining, lithologically distinct bands [8] of two distinct chemical groups: A) Mafic, chondrite-normalized LaN/YbN ≦20, slightly HFSE- depleted, and B) TTG-like, LaN/YbN up to 145, markedly HFSE-depleted. Six adjacent bands yield a well-defined 4 Ga Sm-Nd isochron with a ɛNd4Ga of +2 and ɛHf4Ga values from +1 to +6. Within-band Sm-Nd and Lu-Hf systematics imply younger mineral re-equilibration [9]. We interpret the 4 Ga Sm-Nd isochron to date the physical juxtaposition of bands in the gneiss unit and to define tld among bands for elements less mobile and diffusive than Sm and Nd. Contrasting Sm-Nd results from the same unit [10] likely are due to sampling at too fine a scale. Digestion of metamict pre-tld zircon likely caused the scatter in Lu-Hf. Both decay systems hint at the existence of a possibly local, strongly depleted Hadean mantle domain. The TTG-like bands are 0.4 Gyr older than similar rocks in the `low-strain' eastern AGC [7]. The AGC was thus an evolved cratonic nucleus already at 4 Ga, possibly with a depleted lithospheric keel. [1] Cavosie et al. (2004) Prec. Res. 135, 251-279 [2] Bowring & Williams (1999) CMP 134, 3-16 [3] Iizuka et al

  13. Geology of 1. 7 GA ( ) Baldwin gneiss in the Baldwin Lake type area, San Bernardino Mountains, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.P.; Ehlig, P.L.; Wooden, J.L.

    1993-04-01

    Precambrian gneisses in the San Bernardino Mountains were first identified and described in the vicinity of Baldwin Lake by Guillou (1953). Five lithologic units mappable at 1:24,000 scale are recognized: biotite [+-] muscovite quartzofeldspathic gneiss, amphibolite, pyroxene metagabbro, augen gneiss, and biotite [+-] muscovite granitic gneiss. Baldwin gneiss with this L < S tectonite fabric is unconformably overlain by latest Proterozoic, upright, greenschist/hornfels facies quartzite (Big Bear Group). North and northeast of Baldwin Lake, the gneissic fabric is rotated toward the northwest, subparallel to the Doble fault. Along this fault, Baldwin gneiss is structurally underlain by overturned Paleozoic quartzite andmore » marble (Zabriskie Quartzite and Carrara Formation). Regional relations suggest that the Doble fault is a northeast-directed basement thrust fault of pre-Late Cretaceous age, and may be contemporaneous with late Paleozoic deformation and metamorphism of Paleozoic rocks further west in the range. Field relations suggest that Baldwin gneiss in its type area largely retains Proterozoic fabrics and mineral assemblages, despite marginal Phanerozoic reworking. Silver (1971) reported a U-Pb zircon age of ca. 1,730 Ma for Baldwin augen ( ) gneiss, from an unknown locality, and Miller and Morton (1980) reported Late Cretaceous mica K-Ar ages from a sample of augen gneiss. Preliminary Pb isotopic ratios in galena, feldspar and whole rock samples of Baldwin gneiss, and feldspars in Mesozoic plutons suggest isotopic affinity to the Mojave crustal province of Wooden and Miller (1990).« less

  14. Role of zircon in tracing crustal growth and recycling

    NASA Astrophysics Data System (ADS)

    Compston, W.; Williams, I. S.; Armstrong, R. A.; Claoue-Long, J. C.; Kinny, P. D.; Foster, J. J.; Kroener, A.; Pidgeon, R. T.; Myers, J. S.

    Single crystal ion probe ages of zircons is discussed, which allow much better time resolution compared to other geochronological methods, although the technique is not without problems. Rocks from two areas that contain composite zircon populations, including true magmatic zircons as well as a variety of xenocrystic types are described. It is often difficult to distinguish these; xenocrystic zircons, for example, cannot always be identified on the basis of morphology alone. Additional evidence is needed before making age interpretations. Evidence is also presented of zircon growth long after the original time of crystallization, in some cases apparently at temperatures less than 300 C. The spectacular discovery of 4.1 to 4.2 Ga detrital zircons in metaquartzites from the Mount Narryer area of Western Australia is described. Similar zircons with ages as old as 4276 Ma have been found in the nearby Jack Hills area. The source areas or parent lithologies of these zircons have not yet been determined, but the author expects that they may be unrecognized or buried antecedents of the K rich Narryer gneisses. U or Th concentrations of zircon cannot be used to discriminate between felsic and mafic source rocks.

  15. Role of zircon in tracing crustal growth and recycling

    NASA Technical Reports Server (NTRS)

    Compston, W.; Williams, I. S.; Armstrong, R. A.; Claoue-Long, J. C.; Kinny, P. D.; Foster, J. J.; Kroener, A.; Pidgeon, R. T.; Myers, J. S.

    1988-01-01

    Single crystal ion probe ages of zircons is discussed, which allow much better time resolution compared to other geochronological methods, although the technique is not without problems. Rocks from two areas that contain composite zircon populations, including true magmatic zircons as well as a variety of xenocrystic types are described. It is often difficult to distinguish these; xenocrystic zircons, for example, cannot always be identified on the basis of morphology alone. Additional evidence is needed before making age interpretations. Evidence is also presented of zircon growth long after the original time of crystallization, in some cases apparently at temperatures less than 300 C. The spectacular discovery of 4.1 to 4.2 Ga detrital zircons in metaquartzites from the Mount Narryer area of Western Australia is described. Similar zircons with ages as old as 4276 Ma have been found in the nearby Jack Hills area. The source areas or parent lithologies of these zircons have not yet been determined, but the author expects that they may be unrecognized or buried antecedents of the K rich Narryer gneisses. U or Th concentrations of zircon cannot be used to discriminate between felsic and mafic source rocks.

  16. Eclogitization on the way up: Lu-Hf garnet chronology of metasomatic ultrahigh-pressure rocks from the Western Gneiss Complex, Norway

    NASA Astrophysics Data System (ADS)

    Cutts, J.; Smit, M. A.; Vrijmoed, J. C.

    2016-12-01

    The Western Gneiss Complex (WGC) is a fragment of continental crust that was subjected to high- and ultrahigh pressure (HP; UHP) conditions as a result of Caledonian continental collision (420-400 Ma). Most eclogite lenses and related high-pressure rocks have yielded petrological and chronological results that are consistent with a generalized model of Caledonian continental subduction. A distinct suite of eclogitic rocks - metasomatized (`Caledonized') Fe-Ti meta-peridotites - indicate extreme pressure conditions that do not fit the regional field gradient. The timing of these excursions is critical to their interpretation; however, so far limited age constraints exist for these rocks. In this study, we subject one such rock - the Magerøy orthopyroxene eclogite on the island of Otrøy - to Lu-Hf garnet chronology; a method that provides precise and robust data for garnet even at extreme temperatures. Conventional barometry indicates equilibration of the main garnet-bearing assemblage at c. 4.3 GPa and garnet geochronology yielded a date of c. 390 Ma. This result overlaps with Sm-Nd garnet and U-Pb zircon ages from the nearby diamond-bearing Svartberget peridotite body and leucosomes in its host gneiss. However, the age is ≥ 10 Ma younger than age data for most other eclogite lenses in WGC and corresponds to a time when the terrane was already exhumed to 30-35 km depth. The discrepancy in P-T-t evolution between the bulk of the WGC, and the (ultra-) mafic rocks at Magerøy and Svartberget indicates that the latter rocks reflect localized fluid-induced re-equilibration at pressures higher than lithostatic. The new data provide new support for the occurrence of this phenomenon in subducted continental crust undergoing exhumation and partial melting.

  17. A comparison of the chemistry of pseudotachylyte breccias in the Archean Levack Gneisses of the Sudbury structure, Ontario

    NASA Technical Reports Server (NTRS)

    Thompson, Lucy M.; Spray, John G.

    1992-01-01

    The Archean Levack Gneisses of the North Range host millimeter-thick veins and centimeter-thick lenses of pseudotachylyte, as well as substantially larger meter-wide, dykelike bodies of pseudotachylytic 'breccia'. The 'breccia' occurs up to several tens of kilometers away from the Sudbury Igneous Complex and is commonly sited within or near joints and other natural weaknesses such as bedding, dyke contacts, and lithological boundaries. The larger 'breccia' dykes comprise a generally dark matrix containing rounded to subrounded and occasionally angular rock fragments derived predominantly from Levack Gneiss. Selected samples of bulk Sudbury Breccia and Sudbury Breccia matrices were chemically analyzed and compared to existing data on the Levack Gneisses and Sudbury Breccia. The matrices are apparently enriched in Fe and, to a lesser extent, Mg, Ti, and Ca compared to the wallrocks and the majority of clasts. This enrichment can be partly explained by the preferential cataclasis and/or frictional melting of hydrous ferromagnesian wallrock minerals, but also appear to require contamination by more basic exotic lithologies. This suggests that certain components of pseudotachylitic Sudbury Breccia have undergone significant transport during their formation.

  18. Deformation Enhanced Recrystallization of Titanite: Insight from the Western Gneiss Region Ultrahigh-Pressure Terrane

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Reddy, S. M.; Blatchford, H.; Whitney, D. L.; Kirkland, C. L.; Teyssier, C.; Evans, N. J.; McDonald, B.

    2017-12-01

    Titanite readily recrystallizes due to metamorphism, deformation, and/or fluids making it an ideal chronometer for tracking the exhumation of high-grade rocks. The Western Gneiss Region (WGR), Norway, is a giant UHP terrane exhumed as a fairly coherent slab. Parts of the WGR underwent little deformation during exhumation; however, meters-scale shear zones, located across the WGR, deformed over a range of pressures, from (U)HP to amphibolite facies. Titanite from quartzofeldpathic gneiss within, directly adjacent to, and 300 m away from a mylonitic shear zone within the southern WGR have been analyzed to track exhumation and investigate effects of deformation on recrystallization and trace-element mobility. EBSD was used to characterize the microstructural evolution of the gneisses, and trace-element concentrations and timing of recrystallization were estimated by split-stream LA-ICPMS. Titanite grain size decreases from outside (>200) to inside (<75 µm) the shear zone. Gneiss in and directly adjacent to the shear zone contain partially to completely recrystallized grains, with 207-corrected 206Pb/238U ages of <405 Ma. Gneiss within the shear zone shows a greater percentage of recrystallized grains. EBSD data indicate that some titanite comprises multiple subgrains within an optically coherent single grain. Subgrains in titanite cores show evidence of inherited radiogenic Pb, whereas subgrains in rims and tails of deformed sigma grains were recrystallized. In a gneiss directly adjacent to the shear zone, optically coherent grains are zoned, with increasing Sr and decreasing Zr from core to rim; titanite subgrains within the shear-zone gneiss are too small to analyze. In comparison, titanite from the gneiss outside the shear zone does not show any internal microstructures or evidence for Scandian recrystallization and has low U and high 204Pb. These results show that most trace elements are unaffected by deformation of titanite; however, Pb is mobile. Deformation

  19. Deformation Enhanced Recrystallization of Titanite: Insight from the Western Gneiss Region Ultrahigh-Pressure Terrane

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Reddy, S. M.; Blatchford, H.; Whitney, D. L.; Kirkland, C. L.; Teyssier, C.; Evans, N. J.; McDonald, B.

    2016-12-01

    Titanite readily recrystallizes due to metamorphism, deformation, and/or fluids making it an ideal chronometer for tracking the exhumation of high-grade rocks. The Western Gneiss Region (WGR), Norway, is a giant UHP terrane exhumed as a fairly coherent slab. Parts of the WGR underwent little deformation during exhumation; however, meters-scale shear zones, located across the WGR, deformed over a range of pressures, from (U)HP to amphibolite facies. Titanite from quartzofeldpathic gneiss within, directly adjacent to, and 300 m away from a mylonitic shear zone within the southern WGR have been analyzed to track exhumation and investigate effects of deformation on recrystallization and trace-element mobility. EBSD was used to characterize the microstructural evolution of the gneisses, and trace-element concentrations and timing of recrystallization were estimated by split-stream LA-ICPMS. Titanite grain size decreases from outside (>200) to inside (<75 µm) the shear zone. Gneiss in and directly adjacent to the shear zone contain partially to completely recrystallized grains, with 207-corrected 206Pb/238U ages of <405 Ma. Gneiss within the shear zone shows a greater percentage of recrystallized grains. EBSD data indicate that some titanite comprises multiple subgrains within an optically coherent single grain. Subgrains in titanite cores show evidence of inherited radiogenic Pb, whereas subgrains in rims and tails of deformed sigma grains were recrystallized. In a gneiss directly adjacent to the shear zone, optically coherent grains are zoned, with increasing Sr and decreasing Zr from core to rim; titanite subgrains within the shear-zone gneiss are too small to analyze. In comparison, titanite from the gneiss outside the shear zone does not show any internal microstructures or evidence for Scandian recrystallization and has low U and high 204Pb. These results show that most trace elements are unaffected by deformation of titanite; however, Pb is mobile. Deformation

  20. Two-stage Uplift of Granite-Gneiss-Migmatite Complex (GGMC) of Çataldaǧ Core Complex (Western Anatolia, Turkey): the role of detachment faults on uplift processes

    NASA Astrophysics Data System (ADS)

    Kamaci, Omer; Altunkaynak, Safak

    2016-04-01

    The most recently identified core complex of western Anatolia (Turkey), the Çataldaǧ Core Complex (ÇCC) consists of a granite-gneiss-migmatite complex (GGMC) representing deep crustal rocks of NW Turkey and a shallow level granodioritic body (ÇG: Çataldaǧ granodiorite). The GGMC is Latest Eocene-Early Oligocene and ÇG is Early Miocene in age, and both were exhumed in the footwall of the Çataldaǧ Detachment Fault Zone (ÇDFZ) in the Early Miocene. On the basis of correlation of age data and the closure temperatures of zircon, monazite, muscovite, biotite and K-feldspar, the T-time history of GGMC reveals that GGMC has experienced at least two stages of cooling and uplift, from 33.8 to 30.1 Ma and 21.3 to 20.7 Ma. In stage I, from 33.8 to 30.1 Ma, the cooling rate of GGMC was relatively slow (35°C/my) however cooling rate increase dramatically to ≥500°C/my in stage II between 21.3 and 20.7 Ma. T-time history also indicate that GGMC was elevated to the final location in at least 8-13 My according to the monazite and zircon and mica ages obtained from the same rock. Rapid slab rollback at the Hellenic trench at ca. 23 Ma may have increased extension rates leading to the development of detachment faults (i.e. ÇDFZ), core complexes and associated syn-extensional granitoids in Western Anatolia and the Aegean extensional province.

  1. Origin and evolution of Gneiss-Charnockite rocks of Dharmapuri District, Tamil Nadu, India

    NASA Technical Reports Server (NTRS)

    Rao, D. Rameshwar; Narayana, B. L.

    1988-01-01

    A low- to high-grade transition area in Dharmapuri district was investigated petrologically and geochemically. The investigation confirmed the presence of a continuous section through a former lower crust, with felsic charnockites predominating the lower part and felsic gneisses the upper part. The structure of original gneisses is preserved in charnockites and the latter show petrographic evidence for prograde metamorphism. The prograde metamorphism is of isochemical nature as revealed by the similarity of compositions of tonalitic gneisses and tonalitic charnockites. However, the depletion of LIL elements particularly Rb, caused variation in K/Rb ratios from low values (345) in the gneisses in upper part to higher values (1775) in the charnockites in the lower crust. This variation in K/Rb ratio in a north to south traverse is related to the progressive break-down of hydrous minerals under decreasing H2O and increasing CO2 fluid conditions. Metasomatism and partial melting has also taken place to a limited extent along shear planes and weak zones. During cooling the H2O circulation affected substantial auto-regression in the transition zone resulting in the formation of second generation biotite.

  2. Lu-Hf total-rock age for the Amitsoq gneisses, West Greenland

    NASA Technical Reports Server (NTRS)

    Pettingill, H. S.; Patchett, P. J.

    1981-01-01

    Lu-Hf total-rock data for the Amitsoq gneisses of West Greenland yield an age of 3.55 + or - 0.22 billion years, based on the decay constant for Lu-176 of 1.96 x 10 to the -11th/year, and an initial Hf-176/Hf-177 ratio of 0.280482 + or - 33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 billion years, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial Hf-176/Hf-177 lies close to a chondritic Hf isotopic evolution curve from 4.55 billion years to present. This is consistent with the igneous precursors to the Amitsoq gneisses having been derived from the mantle at or shortly before 3.6 billion years. Anomalous relationships between Hf concentration and the Lu-176/Hf-177 ratio may suggest that trace element abundances in the Amitsoq gneisses are partly controlled by processes related to metamorphism.

  3. Structure, age, and regional significance of syntectonic augen gneisses in the Pan-African Zambezi belt, south-central Zambia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, R.E.; Wilson, T.J.; Wardlaw, M.S.

    1985-01-01

    The Pan-African Zambezi belt in Zambia contains two major augen gneiss units that are elongated parallel to regional strike. These were previously regarded as slices of sialic basement structurally interleaved with Katangan metasedimentary rocks. New field and geochronologic evidence suggests that the gneisses are syntectonic granites intruded as large concordant sheets during main-phase (D/sub 1/) Pan-African deformation. A pervasive, horizontal or shallowly plunging mineral lineation on S/sub 1/ in the gneisses indicates that the parent granites were injected along major zones of transcurrent shear. The northern gneiss unit shows local discordant contacts against, and contains xenoliths of, adjacent Katangan rocks.more » Large, partly polygonized K-spar augen in the gneiss are wrapped around by S/sub 1/ and offset by microfractures antithetic to S/sub 1/. Finer grained granites intruding the gneiss are penetratively foliated to nondeformed, indicating that they were injected at various times relative to D/sub 1/. In the more intensely deformed southern gneiss unit, local pods of protomylonitic flaser gneiss grade into mylonites containing asymmetric K-spar augen set in a dynamically recrystallized matrix. U-Pb analyses of four fractions plus an air-abraded split of one fraction form a normal linear discordance pattern with an upper intercept of 820 +/- 7 Ma, taken as the age of igneous crystallization. Comparison with other available geochronologic data indicates that this age dates main-phase deformation in the Zambezi belt, and that deformation in the supposedly continuous Damaran belt to the SW was significantly younger.« less

  4. Paleoseismology of the Mt. Narryer Fault Zone, West Central Western Australia: a Multi-Segment Intraplate Fault System

    NASA Astrophysics Data System (ADS)

    Whitney, B. B.; Clark, D.; Hengesh, J.

    2014-12-01

    The Western Australia shear zone (WASZ) is a 2000 km long fault system within the intraplate region of Australia. A paleoseismological study of faults and fault-related folds comprising the Mount Narryer fault zone (MNfz) in the southern WASZ reveals a late Quaternary history of repeated morphogenic earthquake occurrence that has profoundly influenced the planform and course of the Murchison, Roderick, and Sanford Rivers. Folding in the near surface sediments is the predominant style of surface expression of reactivated basement faults which is consistent with other neotectonic structures throughout the Western Australia shear zone. CRN and OSL estimates of exposure and burial ages of fault-related folds and fold derived colluvium provide constraint on Late Quaternary slip rates on the underlying faults of ~0.05 - 0.1 mm/a. In the case of the Roderick River fault scarp, 2-3m high tectonic risers separating inset terraces where the Murchison River crosses the scarp are consistent with multiple late Quaternary seismic events on the order of magnitude Mw 7.1-7.3. Mid-Pleistocene ages of tectonically deformed strata in the MNfz are consistent with the timing of collision between the Australian extended margin and Savu-Rote ridge 0.2-1.8 Ma.

  5. Geochemical and K Ar age constraints on the Late Neoproterozoic (?) gneisses at Um Tenassib area, north Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Eliwa, Hassan A.

    2007-05-01

    Wadi Um Tenassib metamorphic rocks consist mainly of biotite gneiss and biotite-hornblende gneiss with subordinate intercalations of amphibolite, migmatitic gneiss, and aplitic granite. Biotite-hornblende gneiss, biotite gneiss, and aplitic granite are geochemically characterized and their cooling ages are determined by using the K-Ar method on biotite. The Um Tenassib gneisses (UTG) range in composition from quartz diorite/monzodiorite to granodiorite. They were derived from igneous rocks that pertain to calc alkaline and metaluminous to weakly peraluminous affinities and were generated in continental volcanic arc setting. REE patterns of the UTG are moderately fractionated (La N/Lu N = 5.9-7.5) relative to those of the aplitic granite (La N/Lu N = 33). The similarity in the geochemical characteristics and REE patterns of both gneiss types indicate their magmatic consanguinity. Amphiboles of the UTG biotite-hornblende gneisses are mainly hornblende, together with few paragasitic hornblende and edenite. Plagioclase composition is oligoclase to andesine (An 21-46) in the biotite-hornblende gneiss, and oligoclase (An 11-26) in the biotite gneiss. Mineral chemistry of amphibole and plagioclase indicate that the gneisses were metamorphosed under low- to medium-pressure of 2.6-6.4 kbar and at medium to high temperatures of 660-755 °C. The K-Ar biotite cooling ages (seven samples) range from 585 ± 12 Ma to 598 ± 12 Ma for the UTG, except one biotite-hornblende gneiss sample gives age of 577 ± 11 Ma. These ages suggest a latest metamorphic cooling event at ca. 585-600 Ma time span, which is consistent with the proposed cooling ages of ˜600 Ma for the Elat metamorphic rocks [Cosca, M.A., Shimron, A., Caby, R., 1999. Late Precambrian metamorphism and cooling in the Arabian-Nubian Shield: petrology and 40Ar/ 39Ar geochronology of metamorphic rocks of the Elat area (southern Israel). Precamb. Res. 98, 107-127]. It may indicate that the metamorphism of the UTG might have

  6. Early Precambrian gneiss terranes and Pan-African island arcs in Yemen: Crustal accretion of the eastern Arabian Shield

    NASA Astrophysics Data System (ADS)

    Windley, Brian F.; Whitehouse, Martin J.; Ba-Bttat, Mahfood A. O.

    1996-02-01

    Within the Precambrian of Yemen, we have identified four gneiss terranes and two island-arc terranes on the basis of existing literature, mapping, and our own field observations, together with new Sm-Nd isotopic data. The two western gneiss terranes can be correlated with well-documented terranes (Asir and Afif) in Saudi Arabia. To the east of these, the Abas and Al-Mahfid gneiss terranes yield Sm-Nd model ages (tDM) of 1.7 2.3 Ga and 1.3 2.7 Ga, respectively, and cannot be correlated with any documented terranes in Saudi Arabia. These two terranes are separated by a Pan-African island-arc terrane that has been obducted onto one or both of the gneiss terranes, and a second arc bounds the Al-Mahfid gneiss terrane to the east. Our discovery of extensive Proterozoic to late Archean gneisses in Yemen provides important constraints upon the much-discussed tectonic framework of northeast Gondwana and the rate of Pan-African crustal growth. The terranes in Yemen may be correlated with comparable terranes on the eastern margin of the Arabian Shield and in northern Somalia. Thus Yemen provides a link between the arc collage of the Arabian Shield and the gneissic Mozambique belt of East Africa.

  7. Volume gain during shearing of the Whatley Mill Gneiss, Pine Mountain Basement massif, eastern Alabama--A trace element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salpas, P.A.; Daniell, N.

    1993-03-01

    The Whatley Mill Gneiss is the most voluminous exposure of the Pine Mountain Basement massif in eastern Alabama. Its type lithology is a proto-mylonitic gneiss composed of K-spar augen, up to 5 cm in diameter, in a finer matrix of biotite, microcline, and quartz. Granulite-facies mineral assemblages in the Whatley Mill Gneiss have been completely retrograded to amphibolite- and greenschist-facies assemblages in response to deformation that produced shear zones paralleling the foliation of the gneiss. The augen gneiss and its associated mylonites are well-exposed in a creek bed in Chewacla State Park. At this location the mineralogy of the mylonitesmore » is dominated by quartz indicating that shearing was associated with influx of a silica-rich fluid. A detailed geochemical study of these rocks shows that the augen gneiss displays relatively little variation in its major and trace element compositions while the quartz-rich mylonites display wider ranges, are enriched in SiO[sub 2] and depleted in the REE and other incompatible trace elements relative to the augen gneiss. When standard composition/volume calculations are applied to the mylonites the results show (1) the bulk of all of the elements, including the REE, were immobile during shearing with the exceptions of Si and Al which were added; and, (2) volume changes calculated using the REE as immobile elements range from +70% to +350%. Though these volume changes seem excessive, they apply to meter-thick shear zones which may actually represent only a small fraction of the total volume of the augen gneiss. Consistent with previous interpretations of these shear zones, the calculated volume gains imply shearing during extension.« less

  8. Rutile and topaz in Precambrian gneiss, Jefferson and Clear Creek Counties, Colorado

    USGS Publications Warehouse

    Sheridan, Douglas M.; Taylor, Richard B.; Marsh, Sherman P.

    1968-01-01

    Disseminated rutile and major amounts of topaz have been identified in Precambrian topaz-quartz gneiss northwest of Evergreen, Colo. The rutile occurs in quartz-topaz-sillimanite gneiss that forms a stratigraphic unit which is 11 to 100 feet thick and is identified along strike for more than 7,000 feet. Three composite chip samples taken across this unit contain 2.2 to 4.2 percent of rutile, by weight, in grains averaging from 0.1 to 0.3 millimeter in size. The topaz content, by weight, in the same samples ranges from 23 to 67 percent.

  9. Granulite-facies rocks in the Whatley Mill gneiss, Pine Mountain basement massif, Eastern Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniell, N.; Salpas, P.A.

    1993-03-01

    The Pine Mountain basement massif is a granulite terrane exposed in a tectonic window through the Inner Piedmont of western Georgia and eastern Alabama. Investigations of the westernmost extent of the massif, the Whatley Mill Gneiss, have revealed four distinct lithologies: (1) an augen gneiss, the type lithology; (2) mylonite that develops in the shear zones cutting the unit; (3) a phaneritic rock showing weak to no foliation; (4) enclaves of biotite gneiss within the weakly-foliated rock. Additionally, the weakly-foliated rock comprises two distinct phases which are in sharp contact along curved and undulating boundaries: phase 1 is a coarser-grainedmore » rock; phase 2 is a finer-grained rock of the same mineralogy as phase 1 except it contains rare hypersthene. This first recorded observation of hypersthene unequivocally confirms the granulite-facies origin of the unit. Major and trace element compositions of the phase 1 rock are identical to those of the augen gneiss. The phase 2 rock, has a distinct composition with higher SiO[sub 2] and lower incompatible trace elements than the phase 1 rock. The enclaves display a range in major elements but higher incompatible elements than the other lithologies. Geochemical and petrologic relationships leads one to interpret: (1) the weakly-foliated rock retains many of its primary igneous features including its two phases and enclaves; (2) the two phases of the weakly-foliated rock arose as a result of injection of one magma (phase 2) into a cooler, crystal mush solidifying from another magma (phase 1); (3) the enclaves represent either autoliths of xenoliths; (4) the augen gneiss arose by isochemical deformation of the phase 1 rock.« less

  10. Deformation sequence of Baltimore gneiss domes, USA, assessed from porphyroblast Foliation Intersection Axes

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Wan

    2007-05-01

    The NE-SW trending gneiss domes around Baltimore, Maryland, USA, have been cited as classic examples of mantled gneiss domes formed by diapiric rise of migmatitic gneisses [Eskola, P., 1949. The problem of mantled gneiss domes. Quarterly Journal of Geological Society of London 104/416, 461-476]. However, 3-D analysis of porphyroblast-matrix foliation relations and porphyroblast inclusion trail geometries suggests that they are the result of interference between multiple refolding of an early-formed nappe. A succession of six FIA (Foliation Intersection Axes) sets, based upon relative timing of inclusion texture in garnet and staurolite porphyroblasts, revealed 6 superposed deformation phases. The successions of inclusion trail asymmetries, formed around these FIAs, document the geometry of deformation associated with folding and fabric development during discrete episodes of bulk shortening. Exclusive top to NW shear asymmetries of curvature were recorded by inclusion trails associated with the vertical collapsing event within the oldest FIA set (NE-SW trend). This strongly indicates a large NE-SW-striking, NW-verging nappe had formed early during this deformation sequence. This nappe was later folded into NE-SW-trending up-right folds by coaxial shortening indicated by an almost equal proportion of both inclusion trail asymmetries documented by the second N-S-trending FIA set. These folds were then amplified by later deformation, as the following FIA sets showed an almost equal proportion of both inclusion trail asymmetries.

  11. Migmatites to mylonites - Crustal deformation mechanisms in the Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Lee, A. L.; Torvela, T.; Lloyd, G. E.; Walker, A.

    2016-12-01

    Strain and fluids localise into shear zones while crustal blocks remain comparatively dry, rigid and deform less. However when H2O is present in the crustal blocks they start to melt, deformation becomes more distributed and is no longer strongly localised into the weak shear zones. Using examples from the Western Gneiss Region (WGR), Norway, we show the deformation characteristics when mylonitic shear zones and migmatites coexist. The WGR is the lowest structural level of the Caledonian Orogeny, exposing Silurian to Devonian metamorphism and deformation of the Precambrian crust. WGR is predominantly composed of amphibolite-facies quartzofeldspathic gneiss that has undergone partial melting. This study focuses on the southwestern peninsula of the island of Gurskøy. Over a 1.2 kilometre section there is a diverse deformation sequence of migmatized gneiss, mylonitic shear zones, sillimanite bearing garnet-mica schists, augen gneiss and boudinaged amphibolite dykes resulting in a large competence differences between the lithologies over the area. The strongly deformed mylonitic shear zones extend from 5 to over 100 meters in width, but deformation is also high in the migmatitic layers as shown from S-C fabrics and isoclinal folding of leucratic and restitic layers. Microstructural evidence of dynamic recrystallization, symplectite textures and magmatic flow show deformation is widespread over the peninsula. Strain localisation, melting, and their interactions are shown by a combination of outcrop and quantitative modelling that uses field data, microstructural analysis, crystallographic preferred orientations and numerical Eshelby modelling. Detailed field mapping and microstructural analysis of samples from across the peninsula allows melt quantification and thus an understanding of strain mechanisms when melt is present. This area is important as it shows the heterogeneity of deformation within the partially melted lower crust on the sub-seismic scale.

  12. The earth's oldest known crust - A geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia

    NASA Astrophysics Data System (ADS)

    Maas, Roland; Kinny, Peter D.; Williams, Ian S.; Froude, Derek O.; Compston, William

    1992-03-01

    Trace element characteristics were analyzed and inclusions were identified within a suite of pre-3.9 Ga detritral zircons from western Australia representing the earth's oldest-known minerals. A diversity of trace-element compositions was found, particularly in the REE compositions of the old Mt. Narryer zircons, implying a variety of source-rock compositions and hence, the presence of a differentiated crust in the earth 4.15-4.20 Ga ago. Comparisons drawn with data obtained from younger detrital zircons occurring within the same deposits indicate nothing unique about the chemical compositions of the old grains. A number of interelement covariations were observed among the analyzed grains which were independent of age and isotopic characteristics, most notably that occurring between Lu and Hf. A general positive correlation between total LREE and the U + Th contents is also apparent. The findings indicate an origin in felsic igneous rocks, which has implications for early-Archaean crustal evolution.

  13. Lu-Hf total-rock age for the Amîtsoq gneisses, West Greenland

    USGS Publications Warehouse

    Pettingill, H.S.; Patchett, P.J.

    1981-01-01

    Lu-Hf total-rock data for the Amîtsoq gneisses of West Greenland yield an age of 3.55±0.22Gy(2σ), based on the decay constant λ176Lu=1.96×10−11y−1, and an initial176Hf/177Hf ratio of 0.280482±33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 Gy, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial176Hf/177Hf lies close to a chondritic Hf isotopic evolution curve from 4.55 Gy to present. This is consistent with the igneous precursors to the Amîtsoq gneisses having been derived from the mantle at or shortly before 3.6 Gy. Anomalous relationships between Hf concentration and the176Lu/177Hf ratio may suggest that trace element abundances in the Amîtsoq gneisses are partly controlled by processes related to metamorphism.

  14. Partial melting of UHP calc-gneiss from the Dabie Mountains

    NASA Astrophysics Data System (ADS)

    Liu, Penglei; Wu, Yao; Liu, Qiang; Zhang, Junfeng; Zhang, Li; Jin, Zhenmin

    2014-04-01

    Exhumation melting has been proposed for the ultra-high pressure (UHP) metamorphic rocks in the Dabie Mountains based on melting experiments. We document here the first petrological and mineralogical evidence demonstrating that the UHP calc-gneisses from the Ganjialing area in the Dabie Mountains experienced partial melting during early exhumation. The assemblage of garnet, phengite (Si = 3.65 pfu), coesite, rutile and carbonate preserved in the calc-gneisses indicates a peak metamorphic condition of 692-757 °C and 4.0-4.8 GPa. Partial melting is indicated by several lines of evidence: the melting textures of phengite, the feldspar-dominated films, bands, branches, blebs and veins, the euhedral K-feldspars, the intergrowth film of plagioclase and K-feldspar, the plagioclase + biotite intergrowth after garnet and the epidote poikiloblasts. Polyphase inclusions in garnet are characterized with wedge-like offshoots and serrate outlines whereas those in epidote display negative crystal shapes, which can be best interpreted by entrapment of former melts. We propose a wet melting reaction of Phn + Q ± Na-Cpx + H2O = Bt + Pl + Grt + felsic melts, which likely took place at ca.650-800 °C and ca.1.0-2.0 GPa, to interpret the melting event in the calc-gneisses. Chemical exchanges between garnet and melts produced new garnet domains with higher almandine, spessartine, MREE, HREE and Y but lower grossular, pyrope, P, Sc, Ti, V and Zr contents. Zr-in-rutile thermometer reveals a low temperature of 620-643 °C at 5 GPa, indicating a later reset for Zr in rutile. Healed fractures are suggested to be responsible for the formation of some polyphase inclusions in garnet.

  15. Ancient granite gneiss in the Black Hills, South Dakota

    USGS Publications Warehouse

    Zartman, R.E.; Norton, J.J.; Stern, T.W.

    1964-01-01

    Granite gneiss, with an age of approximately 2.5 billion years, in the Black Hills, South Dakota , provides a link betweeen ancient rocks in western Wyoming and Montana and in eastern North and South Dakota and Minnesota. The discovery suggests that early Precambrian rocks covered an extensive area in northcentral United States and were not restricted to several small nuclei.

  16. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance

    USGS Publications Warehouse

    Grimes, Craig B.; John, Barbara E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, Michael J.; Hanghoj, K.; Schwartz, J.J.

    2007-01-01

    We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB. ?? 2007 The Geological Society of America.

  17. The geological processes time scale of the Ingozersky block TTG complex (Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Nitkina, Elena

    2013-04-01

    Ingozersky block located in the Tersky Terrane of the Kola Peninsula is composed of Archean gneisses and granitoids [1; 5; 8]. The Archaean basement complexes on the regional geological maps have called tonalite-trondemit-gneisses (TTG) complexes [6]. In the previous studies [1; 3; 4; 5; 7] within Ingozersky block the following types of rocks were established: biotite, biotite-amphibole, amphibole-biotite gneisses, granites, granodiorites and pegmatites [2]. In the rocks of the complex following corresponding sequence of endogenous processes observed (based on [5]): stage 1 - the biotitic gneisses formation; 2 - the introduction of dikes of basic rocks; 3 phase - deformation and foliation; 4 stage - implementation bodies of granite and migmatization; 5 stage - implementation of large pegmatite bodies; stage 6 - the formation of differently pegmatite and granite veins of low power, with and without garnet; stage 7 - quartz veins. Previous U-Pb isotopic dating of the samples was done for biotite gneisses, amphibole-biotite gneisses and biotite-amphibole gneisses. Thus, some Sm-Nd TDM ages are 3613 Ma - biotite gnesses, 2596 Ma - amphibole-biotite gnesses and 3493 Ma biotite-amphibole gneisses.. U-Pb ages of the metamorphism processes in the TTG complex are obtained: 2697±9 Ma - for the biotite gneiss, 2725±2 and 2667±7 Ma - for the amphibole-biotite gneisses, and 2727±5 Ma for the biotite-amphibole gneisses. The age defined for the biotite gneisses by using single zircon dating to be about 3149±46 Ma corresponds to the time of the gneisses protolith formation. The purpose of these studies is the age establishing of granite and pegmatite bodies emplacement and finding a geological processes time scale of the Ingozerskom block. Preliminary U-Pb isotopic dating of zircon and other accessory minerals were held for granites - 2615±8 Ma, migmatites - 2549±30 Ma and veined granites - 1644±7 Ma. As a result of the isotope U-Pb dating of the different Ingozerskogo TTG

  18. Evolution Process and Structural Analysis of Precambrian Jirisan Metamorphic and Sancheong Anorthosite Complexes in the Jirisan Province, Yeongnam Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Lee, D. S.

    2016-12-01

    The Jirisan metamorphic complex consists mainly of schist, blastoporphyritic granite gneiss, granitic gneiss, leucocratic gneiss, biotite gneiss, banded gneiss, migmatitic gneiss and granite gneiss. The Paleoproterozoic (1.87 1.79 Ga) Sancheong anorthosite complex, which intrude it, is classified into massive-type and foliation-type Sancheong anorthosite, Fe-Ti ore body, and mafic granulite which were formed from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma. These complexes went at least through three times of ductile deformation during Early Proterozoic Late Paleozoic. The D1 deformation formed sheath or "A" type folds and its characteristic orientation was uncertain due to the intensive multi-deformation superimposed after that. The D2 deformation occurred under the EW- or WNW-directed tectonic compression, and formed a regional NS or NNE trend of isoclinal and intrafolial folds and an extensive ductile shear zone accompanied by mylonitization. The D3 deformation occurred under the NS- or NNW-directed tectonic compression environment, and formed an EW or ENE trend of open and tight folds and a partial semibrittle shear zone accompanied by mylonitization, and rearranged the NS-trend pre-D3 structural elements into (E)NE or (W)NW direction. The D2 deformation generally increases from the center toward the margin of Sancheong anorthosite complex but is more intensive in the eastern than western parts of Sancheong anorthosite complex. While the D3 deformation is inversely more intensive in the its western than eastern parts. The D2 and D3 deformations are closely related to the distribution features of Sancheong anorthosite complex. These three tectonic events are expected to give important information in understanding and reconstructing the tectonic movement after the formation of Columbia Supercontinent as well as the present NS-trend tectonic frame of the Jirisan province of the Yeongnam massif, the Korean Peninsula.

  19. The separation of the Hartland Formation and Ravenswood Granodiorite from the Fordham Gneiss at Cameron's Line in the New York City area

    USGS Publications Warehouse

    Baskerville, C.A.; Mose, D.G.

    1989-01-01

    Recent study of the rocks in City Water Tunnel Number 3 between Roosevelt Island and beneath 34th Street and the 63rd Street subway-rail tunnels at 41st Avenue in Long Island City, as well as study of drill core from other sites in western Queens, establishes that this area of New York City is underlain by the Ravenswood Granodiorite and the Hartland Formation. The Fordham Gneiss does not appear east of the East River at these sites. Cameron's Line can be traced down the east side of the East River, as learned from observations in the tunnels, separating the Middle Proterozoic Fordham Gneiss to the west from the Cambrian and Ordovician Hartland Formation and related Ravenswood Granodiorite to the east. The older, adequately defined, Ravenswood Granodiorite, Hartland Formation, and the Fordham Gneiss, are the rock units that make up the poorly defined Brooklyn gneiss or Brooklyn Injection Gneiss and thus appropriately should supercede these later classifications. -from Authors

  20. Glastonbury Gneiss and mantling rocks (a modified Oliverian dome) in south-central Massachusetts and north-central Connecticut; geochemistry, petrogenesis, and isotopic age

    USGS Publications Warehouse

    Leo, G.W.; Zartman, R.E.; Brookins, D.G.

    1984-01-01

    The Glastonbury dome is a long, narrow structure trending approximately 70 km north-northeast through Connecticut and Massachusetts along the west side of the Bronson Hill anticlinorium. Structurally and stratigraphically the dome is analogous to the Oliverian domes of New Hampshire. It is cored by Glastonbury Gneiss and is mantled by Ammonoosuc Volcanics and Partridge Formation (or their equivalents) of Ordovician age. The Glastonbury Gneiss intrudes the Ammonoosuc and, thereby, establishes the relative age of the two units. Monson Gneiss, which unconformably underlies the Ammonoosuc Volcanics in the Monson anticline to the east, is not in contact with Glastonbury Gneiss except near Stafford Springs, Conn., where the contact may be gradational. In some places, Monson Gneiss shows evidence of plastic flow and potential anatexis. The northern part of the Glastonbury Gneiss typically is leucocratic, granoblastic, relatively potassium-poor gneiss that appears homogeneous in outcrop, but proves to be chemically and modally inhomogeneous over short distances, as shown by variation diagrams and REE plots. The gneiss straddles the compositional fields of trondhjemite, tonalite, and granodiorite, and partly overlaps that of Monson Gneiss. The southern part of the Glastonbury Gneiss is consistently more potassic than the northern, having compositions ranging from granite to granodiorite. All of the Glastonbury Gneiss show pervasive, strong foliation, deformation, and local shearing related to the Acadian orogeny. Field relations, textures, and chemistry of the northern part of the Glastonbury suggest an origin by anatexis of the premetamorphic Monson sequence at temperatures of about 690 DC to 750 DC and pressures of <3kbars. The southern part of the Glastonbury appears to have been generated contemporaneously but not comagmatically from calcalkaline crust. U-Pb zircon ages for both the northern and southern bodies are slightly discordant with 207PbfosPb ages of 445 to 467

  1. Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China

    NASA Astrophysics Data System (ADS)

    Wang, Maojiang; Liu, Shuwen; Wang, Wei; Wang, Kang; Yan, Ming; Guo, Boran; Bai, Xiang; Guo, Rongrong

    2016-12-01

    Tonalitic-trondhjemitic-granodioritic (TTG) gneisses are dominant lithological assemblages in Archean high grade metamorphic terranes in the world. These TTG gneisses preserve important information in formation and evolution of Archean continental crust. Tangtu-Majuanzi microblock in North Liaoning Province (NLP) is one of the major Neoarchean metamorphic basement terranes in the northeastern margin of the North China Craton (NCC). The Tangtu-Majuanzi microblock is composed mainly of Neoarchean tonalitic-trondhjemitic (TT) gneisses, subordinate granodioritic to monzogranitic association (GMA) and minor supracrustal rocks. The tonalitic-trondhjemitic gneisses are divided into high MgO Group (HMG) and low MgO Group (LMG) based on their chemical compositions. Detailed petrogenetic investigations suggest that the magmatic precursors of the HMG samples were derived from partial melting of subducted slabs and contaminated by the overlying mantle wedge during its ascent; whereas, magmatic precursors of the LMG samples were derived from the juvenile lower crust. LA-ICPMS zircon U-Pb isotopic dating analyses reveal that the magmatic precursors of the HMG samples were formed at 2553-2531 Ma. An older HMG tonalitic gneiss sample was discovered at Sandaoguan in the southmost of the studied area, with its magmatic precursor emplaced at 2680 Ma. The magmatic precursors of the LMG samples emplaced at 2595-2583 Ma. Combined with previous credible chronological data, our newly obtained zircon U-Pb dating and Lu-Hf isotopic data indicate that three episodes of magmatism at ∼2700-2680 Ma, ∼2600-2570 Ma and ∼2550-2510 Ma occurred in the Tangtu-Majuanzi microblock, and the TT gneisses in this microblock were subjected to generally amphibolite-facies metamorphism at ∼2520-2470 Ma. Based on the above Neoarchean crust-mantle thermal-dynamic processes, we propose that the Neoarchean magmatism and metamorphism in the Tangtu-Majuanzi microblock of North Liaoning Province occurred in

  2. An Integrated Analytical Approach to Obtaining Reliable U-Pb and Hf Isotopic Data from Complex (>3.9 to 3.3 Ga) Zircon from the Acasta Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Bowring, S. A.; Vervoort, J. D.; Fisher, C. M.

    2014-12-01

    The Acasta Gneiss Complex (AGC) of northwestern Canada preserves some of Earth's oldest granitic crust (>4.03 Ga) and thereby contains important insight into crust forming processes on the early Earth. In general, rocks of the AGC have undergone a complex history of metamorphism and deformation (Archean and Paleoproterozoic)1,2, and, as a consequence, the zircons retain a complex history including inheritance, magmatic and metamorphic overgrowths, recrystallization, and multi-stage Pb loss. Previously published Hf isotopic data on zircons show within sample variability in excess of analytical uncertainty2,3,4. In order to assess the meaning and significance of this apparent isotopic variability, we are using two different methods to obtain coupled U-Pb and Lu-Hf isotopic data in zircon from a suite of rocks ranging in age from ca. > 3.9 Ga to 3.3 Ga. To obtain these data from the same volume of zircon, our approach involves: 1) split stream LA-ICPMS for U-Pb and Lu-Hf; 2) mechanical isolation of zircon domains for chemical abrasion and ID-TIMS U-Pb analyses and solution ICPMS for Lu-Hf recovered from U-Pb ion exchange chromatography. The deconvolution of complex histories requires this integrated approach and permits us to take advantage of both high spatial resolution and highest precision measurements to ultimately decipher the age and isotopic composition of discrete domains of multi-phase zircon. We demonstrate our approach with both relatively simple and complex grain populations in an attempt to understand within and between grain heterogeneity. The samples with the simplest zircon systematics have increasingly negative ɛHf from oldest to youngest, consistent with involvement of 4.0 Ga or older crust in later generations; also, none of our samples have been derived solely from strongly depleted sources. The presence of intra-zircon variability within samples from the AGC reflects a complex history of magmatic additions requiring melting/assimilation of older

  3. Ductile shear in granitic gneisses adjacent to the Beaver Creek fault zone, northwest lowlands, New York State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcoline, J.

    1993-03-01

    Greenville-age rocks are exposed in the Beaver Creek area in the Northwest Lowlands of New York State. The prominent structural grain in the area strikes approximately N40E and is defined by a series of metasedimentary and metaigneous rocks elongate parallel to the Beaver Creek Fault Zone. A series of 7 granitic augen gneiss bodies lies to the west of the fault. These bodies are elongate parallel to the Beaver Creek Fault Zone and are bordered by metasedimentary units. Structural analysis of the 7 granitic gneiss bodies shows that the bodies underwent several phases of ductile shear. These shearing events aremore » responsible for both fabric development and the overall shape of the bodies. The granitic gneiss is a well-foliated and lineated augen gneiss. The foliation is defined by biotite alignment, quartz ribbons, and feldspar augen. The foliation has a strike of N42E, with dips ranging from 85SE to vertical. Quartz ribbon lineations plunge 20--25 NE. The gneiss exhibits three distinct ductile shear fabrics showing oblique slip with a large strike-slip component. Fabric asymmetry indicates oblique slip with a large component of sinistral shear. The second shear fabric is somewhat recovered but not annealed. Quartz ribbons are dominantly monogranular and many show pronounced undulose extinction. Feldspar porphyroclasts form well-defined sigma grains showing a component of sinistral shear. The youngest ductile shear fabric is defined by quartz grain shape preferred orientation and mica fish. This third fabric exhibits a component of dextral shear, rather than sinistral shear. A late cataclastic texture crosscuts the earlier ductile fabrics. The elongate character of the 7 bodies and their NE/SE alignment is probably due to the regional shearing processes responsible for forming the fabric in the rocks.« less

  4. Zircon geochronology of the Webb Canyon Gneiss and the Mount Owen Quartz Monzonite, Teton Range, Wyoming: Significance to dating late Archean metamorphism in the Wyoming craton

    USGS Publications Warehouse

    Zartman, R.E.; Reed, J.C.

    1998-01-01

    The Webb Canyon Gneiss is a strongly foliated and lineated orthogneiss intercalated with layered Archean gneisses in the northern part of the Teton Range in northwestern Wyoming. The Mount Owen Quartz Monzonite is a non-foliated or weakly flow foliated rock which forms a discordant pluton exposed in the central part of the range and that cuts the Webb Canyon Gneiss and the associated layered gneisses. U-Pb zircon geochronology reported here indicates that euhedral pink zircon grew in the Webb Canyon Gneiss at about 2680 Ma, probably during the peak of regional metamorphism and that the Mount Owen was emplaced at 2547??3 Ma. These dates provide the best constraints so far reported on the age of Late Archean regional metamorphism in the western part of the Wyoming craton.

  5. Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat

    2018-06-01

    The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.

  6. A Rubidium-Strontium study of the Twilight Gneiss, West Needle Mountains, Colorado

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.; Hildreth, R.A.

    1969-01-01

    The Precambrian trondhjemitic Twilight Gneiss (Twilight Granite of Cross and Howe, 1905b) of the West Needle Mountains, southwestern Colorado, and its interlayered amphibolite and metarhyodacite yield a Rb-Sr isochron of 1,805??35 m.y. A low initial Sr87/Sr86 ratio of 0.7015 implies that metamorphism of these rocks to amphibolite facies took place soon after their emplacement. The mild metamorphism of Uncompahgran age, prior to 1,460 m.y. ago, and Laramide volcanism did not affect the Rb-Sr system in the Twilight. Rb contents of 26.5 to 108 ppm, Sr contents of 114 to 251 ppm, and K2O percentages of 1.23 to 3.64 in the Twilight Gneiss, in conjunction with high K/Rb ratios and the low initial ratio of Sr87/Sr86, lend support to geologic data that suggest the Twilight originated as volcanic or hypabyssal igneous rocks in a basaltic volcanic pile. ?? 1969 Springer-Verlag.

  7. Revised nomenclature and stratigraphic relationships of the Fredericksburg Complex and Quantico Formation of the Virginia Piedmont

    USGS Publications Warehouse

    Pavlides, Louis

    1980-01-01

    The Fredericksburg Complex, in part a migmatitic terrane in northeast Virginia, is subdivided on the basis of lithology, as well as aeromagnetic and aeroradiometric data, into two metamorphic suites. These suites are separated by the northeast-trending Spotsylvania lineament, a rectilinear geophysical feature that is probably the trace of an old fault zone. East of the lineament, the Po River Metamorphic Suite, of Proterozoic Z and (or) early Paleozoic age, consists dominantly of biotite gneiss, generally augen gneiss, and lesser amounts of hornblende gneiss and mica schist. West of the Spotsylvania lineament is the Ta River Metamorphic Suite, composed mostly of amphibolite and amphibole gneiss. However, to the southwest, along its strike belt, the Ta River contains abundant biotite gneiss and mica schist. Both the Ta River and Po River contain abundant foliated granitoid and pegmatoid bodies as concordant tabular masses and as crosscutting dikes; these rocks are considered part of the Ta River and Po River Metamorphic Suites. The amphibolitic Holly Corner Gneiss is interpreted to be a western allochthonous equivalent of the Ta River. Both the Ta River and Holly Corner are considered to be coeval, eastern, distal facies of the Lower Cambrian(?) Chopawamsic Formation. The Paleozoic Falls Run Granite Gneiss intrudes the Ta River Metamorphic Suite and the Holly Corner Gneiss; locally the Falls Run is interpreted to have been transported westward with the Holly Corner after intrusion. The Quantico Formation, in the core of the Quantico-Columbia synclinorium, rests with angular unconformity along its northwest and southeast limbs, respectively, on the Chopawamsic Formation and the Ta River Metamorphic Suite. The Quantico Formation is assigned the same Late Ordovician age and similar stratigraphic position as the Arvonia Slate of the Arvonia syncline. The youngest rocks of the area are the granitoid and pegmatoid bodies of the Falmouth Intrusive Suite. They consist of

  8. Impact of textural anisotropy on syn-kinematic partial melting of natural gneisses: an experimental approach.

    NASA Astrophysics Data System (ADS)

    Ganzhorn, Anne-Céline; Trap, Pierre; Arbaret, Laurent; Champallier, Rémi; Fauconnier, Julien; Labrousse, Loic; Prouteau, Gaëlle

    2015-04-01

    Partial melting of continental crust is a strong weakening process controlling its rheological behavior and ductile flow of orogens. This strength weakening due to partial melting is commonly constrained experimentally on synthetic starting material with derived rheological law. Such analog starting materials are preferentially used because of their well-constrained composition to test the impact of melt fraction, melt viscosity and melt distribution upon rheology. In nature, incipient melting appears in particular locations where mineral and water contents are favorable, leading to stromatic migmatites with foliation-parallel leucosomes. In addition, leucosomes are commonly located in dilatants structural sites like boudin-necks, in pressure shadows, or in fractures within more competent layers of migmatites. The compositional layering is an important parameter controlling melt flow and rheological behavior of migmatite but has not been tackled experimentally for natural starting material. In this contribution we performed in-situ deformation experiments on natural rock samples in order to test the effect of initial gneissic layering on melt distribution, melt flow and rheological response. In-situ deformation experiments using a Paterson apparatus were performed on two partially melted natural gneissic rocks, named NOP1 & PX28. NOP1, sampled in the Western Gneiss Region (Norway), is biotite-muscovite bearing gneiss with a week foliation and no gneissic layering. PX28, sampled from the Sioule Valley series (French Massif Central), is a paragneiss with a very well pronounced layering with quartz-feldspar-rich and biotite-muscovite-rich layers. Experiments were conducted under pure shear condition at axial strain rate varying from 5*10-6 to 10-3 s-1. The main stress component was maintained perpendicular to the main plane of anisotropy. Confining pressure was 3 kbar and temperature ranges were 750°C and 850-900°C for NOP1 and PX28, respectively. For the 750

  9. A Pan African age for the HP-HT granulite gneisses of Zabargad island: implications for the early stages of the Red Sea rifting

    NASA Astrophysics Data System (ADS)

    Lancelot, Joël R.; Bosch, Delphine

    1991-12-01

    Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, Sm sbnd Nd and Rb sbnd Sr internal isochrons yield Pan African dates for felsic and basic granulites collected 500-600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined Rb sbnd Sr and Sm sbnd Nd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the Sm sbnd Nd and Rb sbnd Sr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the Rb sbnd Sr isotopic system of the mafic granulite. The initial 143Nd/ 144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite

  10. Exhumation of high-pressure rocks beneath the Solund Basin, Western Gneiss Region of Norway

    USGS Publications Warehouse

    Hacker, B.R.; Andersen, T.B.; Root, D.B.; Mehl, L.; Mattinson, J.M.; Wooden, J.L.

    2003-01-01

    The Solund-Hyllestad-Lavik area affords an excellent opportunity to understand the ultrahigh-pressure Scandian orogeny because it contains a near-complete record of ophiolite emplacement, high-pressure metamorphism and large-scale extension. In this area, the Upper Allochthon was intruded by the c. 434 Ma Sogneskollen granodiorite and thrust eastward over the Middle/Lower Allochthon, probably in the Wenlockian. The Middle/Lower Allochthon was subducted to c. 50 km depth and the structurally lower Western Gneiss Complex was subducted to eclogite facies conditions at c. 80 km depth by c. 410-400 Ma. Within 100. Exhumation to upper crustal levels was complete by c. 403 Ma. The Solund fault produced the last few km of tectonic exhumation, bringing the near-ultrahigh-pressure rocks to within c. 3 km vertical distance from the low-grade Solund Conglomerate.

  11. U-Pb SHRIMP II age and origin of zircon from lhertzolite of the bug Paleoarchean complex, Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Lobach-Zhuchenko, S. B.; Baltybaev, Sh. K.; Glebovitsky, V. A.; Sergeev, S. A.; Lokhov, K. O.; Egorova, Yu. S.; Balagansky, V. V.; Skublov, S. G.; Galankina, O. L.; Stepanyuk, L. M.

    2017-12-01

    Complex study of the U-Pb and Lu-Hf systems of zircon from a lhertzolite lens of Archean gneiss enderbites of the Bug complex, Ukrainian Shield, showed that ultramafic magma was contaminated by the material of the country gneiss enderbites. The age of the zircons of 2.81 ± 0.05 Ga corresponds to the period of ultramafic magmatism within the Bug complex. Previously, this peak of endogenic activity was considered the stage of manifestation of metamorphism and magmatism of mafic composition.

  12. Geochemical characteristics of charnockite and high grade gneisses from Southern Peninsular Shield and their significance in crustal evolution

    NASA Technical Reports Server (NTRS)

    Sugavanam, E. B.; Vidyadharan, K. T.

    1988-01-01

    Presented here are the results of detailed investigations encompassing externsive structural mapping in the charnockite-high grade gneiss terrain of North Arcot district and the type area in Pallavaram in Tamil Nadu supported by petrography, mineral chemistry, major, minor and REE distribution patterns in various lithounits. This has helped in understanding the evolutionary history of the southern peninsular shield. A possible tectonic model is also suggested. The results of these studies are compared with similar rock types from parts of Andhra Pradesh, Kerala, Sri Lanka, Lapland and Nigeria which has brought about a well defined correlation in geochemical characteristics. The area investigated has an interbanded sequence of thick pile of charnockite and a supracrustal succession of shelf type sediments, layered igneous complex, basic and ultrabasic rocks involved in a complex structural, tectonic, igneous and metamorphic events.

  13. Small scale heterogeneity of Phanerozoic lower crust: evidence from isotopic and geochemical systematics of mid-Cretaceous granulite gneisses, San Gabriel Mountains, southern California

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.; May, D.J.

    1992-01-01

    An elongate belt of mid-Cretaceous, compositionally banded gneisses and granulites is exposed in Cucamonga terrane, in the southeastern foothills of the San Gabriel Mountains of southern California. Banded gneisses include mafic granulites of two geochemical types: type 1 rocks are similar to high Al arc basalts and andesites but have higher HFSE (high-field-strength-element) abundances and extremely variable LILE (largeion-lithophile-element) abundances, while type 2 rocks are relatively low in Al and similar to alkali rich MOR (midocean-ridge) or intraplate basalts. Intercalated with mafic granulites are paragneisses which include felsic granulites, aluminous gneisses, marble, and calc-silicate gneisses. Type 1 mafic granulites and calcic trondhjemitic pegmatites also oceur as cross-cutting, synmetamorphic dikes or small plutons. Small-scale heterogeneity of deep continental crust is indicated by the lithologic and isotopic diversity of intercalated ortho-and paragneisses exposed in Cucamonga terrane. Geochemical and isotopic data indicate that K, Rb, and U depletion and Sm/Nd fractionation were associated with biotite +/- muscovite dehydration reactions in type 1 mafic granulites and aluminous gneisses during high-grade metamorphism. Field relations and model initial isotopic ratios imply a wide range of protolith ages, ranging from Early Proterozoic to Phanerozoic. ?? 1992 Springer-Verlag.

  14. Constraints from geochemistry and oxygen isotopes for the hydrothermal origin of orthoamphibole mafic gneiss in the New Jersey Highlands, north-central Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Volkert, Richard A.; Peck, William H.

    2017-12-01

    Rare exposures of orthoamphibole mafic (Oam) gneiss of Mesoproterozoic age in the north-central Appalachians are confined to the northwestern New Jersey Highlands where they form thin lens-shaped bodies composed of gedrite and sparse anthophyllite, oligoclase (An13-An20), biotite, magnetite, and local fluorapatite, rutile, and ilmenite. The gneiss is penetratively foliated and has sharp, conformable contacts against enclosing supracrustal paragneiss and marble. Orthoamphibole mafic gneiss is characterized by low SiO2 (48 ± 2.5 wt%), CaO (1.9 ± 1.3 wt%), and high Al2O3 (18 ± 1.2 wt%), Fe2O3 (10.5 ± 1.6 wt%), and MgO (12 ± 2.3 wt%). Trace element abundances overlap those of unaltered amphibolites in the study area and, coupled with δ18O values of 9.45 ± 0.6‰ (VSMOW) from gedrite separates, support an origin from a basalt protolith. The geochemical and isotopic data are consistent with the formation of Oam gneiss through sea floor hydrothermal alteration of basalt at low temperature of 150-200 °C. Mass-balance calculations indicate gains during alteration mainly in MgO and Al2O3 and losses in CaO, Sr, and light rare earth elements. Our results are compatible with the pre-metamorphic alteration of the basalt protoliths through chloritization and plagioclase dissolution that produced a Mg-rich and Ca-poor rock. Subsequent metamorphism of this chlorite-rich rock to the current mineral assemblage of Oam gneiss took place at ca. 1045 Ma, during the Ottawan phase of the Grenvillian Orogeny. The close spatial association in the study area of Oam gneiss bodies and sulfide occurrences suggests an affinity to the style of mineralization associated with volcanogenic massive sulfide (VMS)-type deposits.

  15. Zircon from charnockite gneiss, charnockite, and leucosome of migmatite in the Nimnyr Block of the Aldan Shield

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Sedova, I. S.; Berezhnaya, N. G.; Skublov, S. G.; Samorukova, L. M.

    2015-12-01

    The microgeochemistry of zircon was studied in three samples: charnockite gneiss (1594), charnockite (1594a), and migmatite leucosome Lc4 (1594c). Prismatic (Zrn I) and oval (Zrn II) zircon morphotypes are distinguished in the first two samples. Most zircon grains consist of two-phase cores and overgrowth rims variable in thickness. The average weighted concordant U-Pb age of Zrn II cores from charnockite gneiss is 2436 ± 10 Ma. The concordant ages of Zrn I and Zrn II cores from charnockite are 2402 ± 16 Ma and 2453 ± 14 Ma, respectively. Some overgrowth rims are 1.9-2.1 Ga in age. In leucosome Lc4, all measured prismatic zircon crystals yielded a discordant age of 1942 ± 11 Ma (the upper intersection of discordia with concordia). These zircons are strongly altered and anomalously enriched in U and Th. Zrn I grains are enriched relative to Zrn II in REE, Li, Ca, Sr, Ba, Hf, Th, and U. Zrn I is considered to be a product of melt crystallization or subsolidus recrystallization in the presence of melt. Zrn II is relict or crystallizing from melt and then partly fused again. Zrn I from charnockite gneiss and especially from charnockite are markedly altered and have a more discordant age than Zrn II. This is probably related to concentration of fluid in the residual melt left after zircon crystallization.

  16. Numerical Experiments on the Role of the Lower Crust in the Development of Extension-driven Gneiss Domes

    NASA Astrophysics Data System (ADS)

    Korchinski, M.; Rey, P. F.; Teyssier, C. P.; Mondy, L. S.; Whitney, D.

    2016-12-01

    Flow of orogenic crust is a critical geodynamic process in the chemical and physical evolution of continents. Deeply sourced rocks are transported to the near surface within gneiss domes, which are ubiquitous features in orogens and extensional regions. Exhumation of material within a gneiss dome can occur as the result of tectonic stresses, where material moves into space previously occupied by the shallow crust as the result of extension localized along a detachment system. Gravitationally driven flow may also contribute to exhumation. This research addresses how physical parameters (density, viscosity) of the deep crust (base of brittle crust to Moho) impact (1) the localization of extension in the shallow crust, and (2) the flow of deep crust by tectonic and non-tectonic stresses. We present 2D numerical experiments in which the density (2900-3100 kg m-3) and viscosity (1e19-1e21 Pa s) of the deep crust are systematically varied. Lateral and vertical transport of deep crustal rocks toward the gneiss dome occurs across the entire parameter space. A low viscosity deep crust yields localized extension in the upper crust and crustal-scale upward flow; this case produces the highest exhumation. A high viscosity deep crust results in distributed thinning of the upper crust, which suppresses upward mass transport. The density of the deep crust has only a second-order effect on the shallow crust extension regime. We capture the flow field generated after the cessation of extension to evaluate mass transport that is not driven by tectonic stresses. Upward transport of material within the gneiss dome is present across the entire parameter space. In the case of a low-viscosity deep crust, horizontal flow occurs adjacent to the dome above the Moho; this flow is an order of magnitude higher than that within the dome. Density variations do not drastically alter the flow field in the low viscosity lower crust. However, a high density and high viscosity deep crust results in

  17. Evolution of the Archean continental crust in the nucleus of the Yangtze block: Evidence from geochemistry of 3.0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Xiao-Fei; Ling, Wen-Li; Liu, Xiao-Ming; Lu, Shan-Song; Jiang, Tuo; Wei, Yun-Xu; Peng, Lian-Hong; Tan, Juan-Juan

    2018-04-01

    Archean Tonalite-Trondhjemite-Granodiorite (TTG) rocks are scattered within the Kongling high-grade metamorphic terrane (KHMT) in the northern South China block. A comprehensive geochronological and geochemical study is carried out on the Taoyuan granitic gneisses, a newly recognized TTG suite in the northwestern KHMT. This suite has long been regarded as a Mesoproterozoic magmatic pluton, but U-Pb zircon ages of 2994 ± 22 Ma and 2970 ± 15 Ma are obtained by LA-ICP-MS method in this study. The Taoyuan gneiss suite is trondhjemitic in composition, and has high SiO2 (67.80-74.93 wt.%), Na2O (5.11-5.81 wt.%) contents with Na2O/K2O ratios greater than unity, and low Ni (2.56-7.61 ppm), Cr (1.26-7.67 ppm), Yb (0.32-0.82 ppm) and Y (4.48-11.5 ppm) contents. Plots show large variation in La/Yb and Sr/Y ratios and pronounced depletion in Nb, Ta and Ti in the primitive mantle-normalized spiderdiagram. The gneiss suite also displays two-stage Nd model ages close to its crystallization age with corresponding εNd(t) values of -2.5 to +3.5. It is thus suggested that the Taoyuan gneisses, in fact, is part of the Archean Kongling basement complex. Geochemical evidence implies that the TTG rocks may be derived from partial melting of subducted oceanic crust from a garnetiferous amphibolite source with residual assemblage of garnet + amphibole + plagioclase. Our study further indicates that the nucleus of the Yangtze block might experience a juvenile continental crustal growth during Mesoarchean. We also suggest that the Yangtze block may have its own crustal evolutionary history independent from the North China craton and the Tarim block before Paleoproterozoic.

  18. Kyanite-garnet gneisses of the Kåfjord Nappe - North Norwegian Caledonides: P-T conditions and monazite Th-U-Pb dating

    NASA Astrophysics Data System (ADS)

    Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej

    2016-04-01

    The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the

  19. U-Pb geochronologic constraints on the origin of a unique monazite- xenotime gneiss, Hudson Highlands, New York

    USGS Publications Warehouse

    Aleinikoff, J.N.; Grauch, R.I.

    1990-01-01

    A unique rock composed almost entirely of equal proportions of monazite and xenotime occurs as a small, lenticular body (2 ?? 0.5 ?? 0.3 m) in association with paragneiss, migmatite, and Canada Hill Granite in an outcrop in the Hudson Highlands of southeastern New York. The paragneiss contains detrital zircon (207Pb/206Pb ages of 1150-1460 Ma), monazite, and xenotime (both dated at about 1000 Ma). Zircons from the monazite-xenotime gneiss contain dark, rounded cores and clear rims, a morphology suggestive of derivation from the paragneiss, with subsequent metamorphic overgrowth. We conclude, based on results from xenotime and zircon rims, that the monazite-xenotime gneiss formed at about 985 Ma. Based on zircon morphology and age relations within the outcrop, we prefer a metasomatic origin over other possibilities such as a paleo-placer or anatectic restite. -from Authors

  20. The Hardwood Gneiss: Evidence for high P-T Archean metamorphism in the southern province of the Lake Superior region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.W.; Geiger, C.A.

    1990-03-01

    The Hardwood Gneiss is an areally small unit of Precambrian granulite-grade rocks exposed in the Archean gneiss terrane of the southern Lake Superior region. The rocks are located in the southwestern portion of the Upper Peninsula of Michigan and consist of a structurally conformable package of quartzitic, metapelitic, amphibolitic, and metabasic units. Three texturally distinct garnet types are present in the metabasites and are interpreted to represent two metamorphic events. Geothermobarometry indicates conditions of {approximately}8.2-11.6 kbar and {approximately}770C for M1, and conditions of {approximately}6.0-10.1 kbar and {approximately}610-740C for M2. It is proposed that M1 was Archean and contemporaneous with amore » high-grade metamorphic event recorded in the Minnesota River Valley. The M2 event was probably Early Proterozoic and pre-Penokean, with metamorphic conditions more intense than those generally ascribed to the Penokean Orogeny in Michigan, but similar to the conditions reported for the Kapuskasing zone of Ontario. The high paleopressures and temperatures of the M1 event make the Hardwood Gneiss distinct from any rocks previously described in the southern Lake Superior region, and suggest intense tectonic activity during the Archean.« less

  1. Nature and geodynamic setting of the protoliths of the UHP metamorphic Complex and migmatites in Bixiling area, the Dabie Orogen, China

    NASA Astrophysics Data System (ADS)

    Li, H.; Jahn, B.; Wang, D.; Yu, H.; Liu, Z.; Hou, G.

    2013-12-01

    As the largest coesite-bearing mafic-ultramafic body in the Dabie-Sulu orogen, the Bixiling Complex is composed of meta-ultramafic rocks, MgAl-rich eclogites and FeTi-rich eclogites. The FeTi-rich eclogites are further divided into low-Si-high-Fe type (Type I) and high-Si-low-Fe type (Type II) according to their mineral assemblages and bulk chemical composition. Field, petrographic, petrological and geochemical characteristics of these rocks, although suffered an ultra-high pressure metamorphism, still show a magmatic differentiation process among the protoliths of the meta-ultramafic rocks, MgAl-rich eclogites and Type I FeTi-rich eclogites. A small degree of lower crustal contamination occurred during their magma chamber process. Amphibolite is widespread in the periphery of the complex. Non-foliation and fine-grained texture are their obvious characteristics. Geochemical and isotopic affinities suggest that the amphibolites represent a product of complete retrogression from type II FeTi-rich eclogites. The UHP complex is enclosed in granitic gneisses, which variably include two-mica plagioclase gneiss, epidote two-mica plagioclase gneiss, or white-mica plagioclase gneiss. They all show TTG, especially trondjhemitic composition. A migmatite outcrop was found near the northeastern end of the complex. The migmatites consist of dark colored, non-foliated amphibolites and light-colored, fine-grained trondhjemitic gneisses. Field occurrences, microstructures observed under optical microscope and SEM, Sr-Nd isotopic data suggest an origin of partial melting. Chemical composition of two stages of amphiboles occurred in both the amphibolites and the trondhjemitic gneisses also imply a partial melting process occurred. Trace element, Sr-Nd isotope and SHRIMP zircon U-Pb dating of MgAl-rich eclogite, amphibolites and trondhjemite suggest that the migmatites represent a partial melting of crustal materials at about 780Ma, possibly accompanied by the coeval emplacement of a

  2. Insights into the Timing, Origin, and Deformation of the Highland Mountains Gneiss Dome in Southwestern Montana, USA

    NASA Astrophysics Data System (ADS)

    Boyer, Lane Markes

    The Highland Mountains of southwestern Montana offer a unique view of the Archean igneous and metamorphic rocks within the Great Falls tectonic zone (GFTZ). A Paleoproterozoic structural gneiss dome has been interpreted in the southern extent of the Highland Mountains. The ˜ 130km2 of exhumed metamorphic rocks and gneiss dome exposed in the Highland Mountains are the primary focus of this research. The formation of the Highland Mountains gneiss dome is proposed to be directly related to a northwest-side down detachment (the Steels Pass shear zone) that formed during terrane collision along the GFTZ. The field investigation determined foliation and lineation orientation measurements taken at 65 stations. Twenty-two field oriented samples were obtained from a variety of rock types distributed across the ˜ 24 km2 field area. Three field-based domains were established from the lithology, foliation, and lineation observations. Full-section X-ray maps of three sample thin-sections were collected via EPMA to identify all monazite grains. Twenty-eight grains were mapped at high-spatial resolution (0.3--6.0 mum). Thin section micro-structures observed show effects of a multistage deformation history with both dynamic and static recrystallization processes. Monazite geochronology of one thin section revealed two distinct populations of monazite grains; Archean (˜ 2.5 Ga) and Mesoproterozoic (˜ 1.5 Ga). The older population represents the crystallization age of either, or both the Medicine Hat block and the Wyoming province terranes. The younger population is hypothesized to have grown during deformation/alteration associated with the formation of the Belt-Purcell Rift Basin.

  3. Relation of the Wissahickon mica gneiss to the Shenandoah limestone and Octoraro schist of the Doe Run and Avondale region, Chester County, Pennsylvania

    USGS Publications Warehouse

    Bliss, Eleanora F.; Jonas, Anna I.

    1917-01-01

    The region discussed in this paper lies in Chester County, Pa., and is included in the eastern half of the Coatesville quadrangle. (See fig. 3.) It is within the belt of crystal-line schists and gneisses of the Piedmont Plateau. The northern half of the area, which will be called the Doe Run region, from the village of that name (see Fig. 4, p. 15), has been surveyed by Eleanora F. Bliss in connection with the problem of the relation of the Wissahickon mica gneiss to the Octoraro schist.

  4. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: carbon isotope, zircon U-Pb dating and oxygen isotope

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Gong, Bing; Zhao, Zi-Fu; Fu, Bin; Li, Yi-Liang

    2003-10-01

    There are two types of gneisses, biotite paragneiss and granitic orthogneiss, to be closely associated with UHP eclogite at Shuanghe in the Dabie terrane. Both concentration and isotope composition of bulk carbon in apatite and host gneisses were determined by the EA-MS online technique. Structural carbonate within the apatite was detected by the XRD and FTIR techniques. Significant 13C-depletion was observed in the apatite with δ13C values of -28.6‰ to -22.3‰ and the carbon concentrations of 0.70-4.98 wt.% CO 2 despite a large variation in δ18O from -4.3‰ to +10.6‰ for these gneisses. There is significant heterogeneity in both δ13C and δ18O within the gneisses on the scale of several tens meters, pointing to the presence of secondary processes after the UHP metamorphism. Considerable amounts of carbonate carbon occur in some of the gneisses that were also depleted in 13C primarily, but subjected to overprint of 13C-rich CO 2-bearing fluid after the UHP metamorphism. The 13C-depleted carbon in the gneisses is interpreted to be inherited from their precursors that suffered meteoric-hydrothermal alteration before plate subduction. Both low δ13C values and structural carbonate in the apatite suggest the presence of 13C-poor CO 2 in the UHP metamorphic fluid. The 13C-poor CO 2 is undoubtedly derived from oxidation of organic matter in the subsurface fluid during the prograde UHP metamorphism. Zircons from two samples of the granitic orthogneiss exhibit low δ18O values of -4.1‰ to -1.1‰, demonstrating that its protolith was significantly depleted in 18O prior to magma crystallization. U-Pb discordia datings for the 18O-depleted zircons yield Neoproterozoic ages of 724-768 Ma for the protolith of the granitic orthogneiss, consistent with protolith ages of most eclogites and orthogneisses from the other regions in the Dabie-Sulu orogen. Therefore, the meteoric-hydrothermal alteration is directly dated to occur at mid-Neoproterozoic, and may be correlated

  5. Fabric controls on the brittle failure of folded gneiss and schist

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.

    2014-12-01

    We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.

  6. Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane

    USGS Publications Warehouse

    Liou, J.G.; Tsujimori, T.; Chu, W.; Zhang, R.Y.; Wooden, J.L.

    2006-01-01

    The Haiyangsuo Complex in the NE Sulu ultrahigh-pressure (UHP) terrane has discontinuous, coastal exposures of Late Archean gneiss with amphibolitized granulite, amphibolite, Paleoproterozoic metagabbroic intrusives, and Cretaceous granitic dikes over an area of about 15 km2. The U-Pb SHRIMP dating of zircons indicates that theprotolith age of a garnet-biotite gneiss is >2500 Ma, whereas the granulite-facie metamorphism occurred at around 1800 Ma. A gabbroic intrusion was dated at ???1730 Ma, and the formation of amphibolite-facies assemblages in both metagabbro and granulite occurred at ???340-460 Ma. Petrologic and geochronological data indicate that these various rocks show no evidence of Triassic eclogite-facies metamorphism and Neoproterozoic protolith ages that are characteristics of Sulu-Dabie HP-UHP rocks, except Neoproterozoic inherited ages from post-collisional Jurassic granitic dikes. Haiyangsuo retrograde granulites with amphibolite-facies assemblages within the gneiss preserve relict garnet formed during granulite-facies metamorphism at ???1.85 Ga. The Paleoproterozoic metamorphic events are almost coeval with gabbroic intrusions. The granulite-bearing gneiss unit and gabbro-dominated unit of the Haiyangsuo Complex were intruded by thin granitic dikes at about 160 Ma, which is coeval with post-collisional granitic intrusions in the Sulu terrane. We suggest that the Haiyangsuo Complex may represent a fragment of the Jiao-Liao-Ji Paleoproterozoic terrane developed at the eastern margin of the Sino-Korean basement, which was juxtaposed with the Sulu terrane prior to Jurassic granitic activity and regional deformation. ?? Springer-Verlag 2006.

  7. Unravelling the complexities of a high-grade Paleoarchean terrane: Saglek Block, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Salacinska, Anna; Kusiak, Monika; Dunkley, Daniel; Whitehouse, Martin; Wilde, Simon

    2017-04-01

    The Nain Province of Labrador is on the western edge of the Archean North Atlantic Craton, and includes the Saglek Block, where >3.6 Ga Uivak orthogneisses were intercalated with a variety of supracrustals during Neoarchean granulite-grade metamorphism. In order to unravel the complex magmatic and metamorphic history of this terrane, samples of grey orthogneiss mapped as Uivak Gneiss were taken from Tigigakyuk Inlet, where previous studies have suggested the preservation of >3.9 Ga zircons [1]. Samples vary from fine, equigranular felsic-intermediate gneiss, through slightly porphyroblastic metagranitoids to metagabbros. Felsic orthogneises are mostly composed of oligoclase, quartz, biotite and K-feldspar, whereas more mafic samples contain hornblende and augite, with the latter being largely altered to pargasite during post-granulite hydration and lower-grade metamorphism. Geochemically, all samples follow a calc-alkaline differentiation trend, and are metaluminous to slightly peraluminous. Based on the normative albite-anorthite-orthoclase diagram, samples plot within the tonalite and trondhjemite fields; however, according to the normative QAPF classification, they are granodioritic to quartz-monzodioritic. Following the criteria of Moyen and Martin (2012), only one granodioritic sample represents typical Archean TTG gneiss, while the other samples are slightly more K-rich. Although bulk compositions may have been affected by K-enrichment during granulite-facies metamorphism, these samples mostly belong to the "TTG-like" suite. Concordant SIMS U-Pb age data obtained from the zircon cores with characteristic igneous growth textures from TTG-like and quartz monzodioritic gneiss fall within the interval 3.70-3.75 Ga, consistent with previous age estimates for the protoliths of Uivak I gneisses [3,4]. Some quartz monzodioritic gneisses are significantly younger (3.55 Ga), showing that the gneisses at Tigigakyuk Inlet are not of a simple magmatic suite, but are

  8. U-Pb ID-TIMS zircon ages of TTG gneisses of the Aravalli Craton of India

    NASA Astrophysics Data System (ADS)

    Chauhan, Hiredya; Saikia, Ashima; Kaulina, Tatiana; Bayanova, Tamara; Ahmad, Talat

    2015-04-01

    The crystalline basement of the Aravalli Craton is a heterogeneous assemblage dominated by granitic gneisses and granites with sporadic occurrences of amphibolites and dismembered sedimentary enclaves (Upadhyaya et al., 1992). This assemblage is known to have experienced multiple deformation and metamorphic events followed by emplacement of voluminous granites and basaltic dykes. Based on Sm-Nd whole rock data on the basement Mewar orthogneisses of Jhamarkotra region (Gopalan et al., 1990) and Pb/Pb ages of zircon from Gingla Granites which intrudes the basement (Wiedenbeck et al., 1996), it has been inferred that the whole magmatic episode leading to the formation of the basement spanned from 3300 to 2400 Ma and that the Aravalli cratonic block had broadly stabilized by 2500 Ma on which the younger Aravalli and Delhi Supergroup unconformably deposited. However, no comprehensive age data on the basement gneisses from the study area spanning the entire magmatic episode is available. This work attempts to provide a time frame work for evolution of the basement gneisses of the Aravalli Craton. We present here U-Pb zircon ages from the Precambrian basement TTG gneisses of the Aravalli Craton of north western India. Pb and U were measured on multicollector Finnigan-MAT 262 mass spectrometer. The temperatures of measurements were 1300°C for Pb and 1500°C for U. Pb isotope ratios were corrected for mass fractionation with a factor of 0.10% per amu, based on repeat analyses of the standard NBS SRM 982. The U analyses were corrected for mass fractionation with a factor of 0.003% per amu, based on repeat analyses of the NBS U 500 standard. Reproducibility of the U-Pb ratios was determined from the repeated analysis of standard zircon IGFM-87 (Ukraine) and taken as 0.5% for 207Pb/235U and 206Pb/238U ratios, respectively, at 95% confidence level. All calculations were done using the programs PBDAT and ISOPLOT (Ludwig 1991, 2008). Four zircon fractions corresponding to four

  9. Genesis of emulsion texture due to magma mixing: a case study from Chotanagpur Granite Gneiss Complex of Eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor

    2016-04-01

    The emulsion texture is a rare magma mixing feature in which rounded bodies of one magmatic phase remain dispersed in the other coherent phase (Freundt and Schmincke, 1992). This type of special texture in hybrid rocks can significantly contribute toward understanding the mechanisms facilitating magma mixing and magma chamber dynamics involving two disparate magmas as the exact processes by which mixing occurs still remain unclear. Recent developments in microfluidics have greatly helped us to understand the complex processes governing magma mixing occurring at micro-level. Presented work uses some of the results obtained from microfluidic experiments with a view to understand the formation mechanism of emulsions preserved in the hybrid rocks of the Ghansura Rhyolite Dome (GRD) of Proterozoic Chotanagpur Granite Gneiss Complex (CGGC), Eastern India. The GRD has preserved hybrid rocks displaying emulsion texture that formed due to the interaction of a phenocryst-rich basaltic magma and host rhyolite magma. The emulsions are more or less spherical in shape and dominantly composed of amphibole having biotite rinds set in a matrix of biotite, plagioclase, K-feldspar and quartz. Amphibole compositions were determined from the core of the emulsions to the rim with a view to check for cationic substitutions. The amphibole constituting the emulsions is actinolite in composition, and commonly shows tschermakite (Ts) and pargasite (Prg) substitutions. From petrographical and mineral-chemical analyses we infer that when mafic magma, containing phenocrysts of augite, came in contact with felsic magma, diffusion of cations like H+, Al3+and others occurred from the felsic to the mafic system. These cations reacted with the clinopyroxene phenocrysts in the mafic magma to form amphibole (actinolite) crystals. The formation of amphibole crystals in the mafic system greatly increased the viscosity of the system allowing the amphibole crystals to venture into the adjacent felsic

  10. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite gneiss transitions in the Sulu orogen

    NASA Astrophysics Data System (ADS)

    Chen, Ren-Xu; Zheng, Yong-Fei; Gong, Bing; Zhao, Zi-Fu; Gao, Tian-Shan; Chen, Bin; Wu, Yuan-Bao

    2007-05-01

    By taking advantage of having depth profiles between contrasting lithologies from core samples of the Chinese Continental Scientific Drilling (CCSD) project, a combined study was carried out to examine changes in mineral H isotope, total water and hydroxyl contents in garnet and omphacite across the contacts between ultrahigh-pressure (UHP) eclogite and gneiss in the Sulu orogen, east-central China. The samples of interest were from two continuous core segments from the CCSD main hole at depths of 734.21-737.16 and 929.67-932.86 m, respectively. The results show δD values of -116‰ to - 64‰ for garnet and -104‰ to -82‰ for omphacite, consistent with incorporation of meteoric water into protoliths of UHP metamorphic rocks by high-T alteration. Both equilibrium and disequilibrium H isotope fractionations were observed between garnet and omphacite, suggesting fluid-assisted H isotope exchange at local scales during amphibolite-facies retrogression. While bulk water analysis gave total H 2O concentrations of 522-1584 ppm for garnet and 1170-20745 ppm for omphacite, structural hydroxyl analysis yielded H 2O contents of 80-413 ppm for garnet and 228-412 ppm for omphacite. It appears that significant amounts of molecular H 2O are present in the minerals, pointing to enhanced capacity of water storage in the UHP eclogite minerals. Hydrogen isotope variations in the transition between eclogite and gneiss show correlations with variations in their water contents. Petrographically, the degree of retrograde metamorphism generally increases with decreasing distance from the eclogite-gneiss boundary. Thus, retrograde metamorphism results in mineral reactions and H isotope variation. Because hydroxyl solubility in nominally anhydrous minerals decreases with dropping pressure, significant amounts of water are expected to be released from the minerals during decompression exhumation. Decompression exsolution of structural hydroxyl from 1 m 3 volume of eclogite composed of

  11. Strike-slip linked core complexes: A new kinematic model of basement rock exhumation in a crustal-scale fault system

    NASA Astrophysics Data System (ADS)

    Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt

    2014-05-01

    Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip

  12. Were the world's youngest eclogites (NW D'Entrecasteaux Islands, Papua New Guinea) exhumed in rising gneiss domes or by shear on a deep-seated fault?

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Hacker, B.; Seward, G.

    2008-12-01

    The up to ~2.5 km-high gneiss domes of the NW D'Entrecasteaux Islands of Papua New Guinea host the world's youngest terrane of HP (eclogite-facies, ~2-4 Ma) to UHP (coesite-bearing) gneissic rocks (~8 Ma). Previous models for their exhumation at >2 cm/yr have called upon: 1) buoyant rise of crustal diapers, or 2) normal-slip on deeply penetrating faults. A recent variant of the latter suggests that a paleo- subduction zone near the southern edge of the Solomon Sea has been inverted as a result of microplate tectonics. We present structural, microstructural, and electron back-scatter diffraction data of lattice preferred orientations (LPO's) from gneisses of Goodenough and Fergusson Islands to further explore mechanisms of exhumation. Relict eclogite-facies assemblages occur in mafic dikes and boudins, but most HP deformational fabrics are overprinted. The enclosing felsic gneisses are pervaded by amphibolite-facies ductile fabrics formed during their exhumation from the lower crust. These migmatitic rocks (metatexites) were partially molten during their deformation at temperatures of 570-730°C and pressures of 7-11 kb, but today are dominated by solid-state fabrics. The gneisses are capped by remnants of an ultramafic sheet that did not experience HP metamorphism. Below the ultramafics is a ~1 km-thick carapace zone. These high-strain gneisses generally have domal fabrics parallel to, and gradational to, those in the underlying core zone, which they locally rework. Active NE-dipping normal faults on the NE flank of the domes cut across the ultramafic contact and are underlain by a m-thick zone of pseudotachylite-bearing S/C fabrics. A sweeping pattern of stretching lineations reveals a 3-D pattern of ductile flow. In both the carapace and upper core zone, lineations are mostly EW: subparallel to the long dimension of the domes and perpendicular to plate motion in the Woodlark Rift. At greater structural depth, within the core zone, they deflect to become more

  13. Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio

    2014-08-01

    Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration.

  14. Anomalous Complex Electrical Conductivity of a Graphitic Black Schist From the Himalayas of Central Nepal

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Girault, Frédéric; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Deldicque, Damien; Perrier, Frédéric; Spitzer, Klaus

    2018-05-01

    We analyzed in the laboratory the frequency-dependent, complex-valued, electrical conductivity of a graphitic black schist and an augen gneiss, both collected in the Main Central Thrust shear zone in the Himalayas of central Nepal, which was heavily affected by the deadly Mw7.8 Gorkha earthquake in 2015. We focused on anisotropy and salinity dependence of both cores and crushed material as well as the impact of CO2 on conductivity. This black schist possesses an extraordinarily high polarizability and a highly frequency-dependent conductivity. Its anisotropy is very pronounced. The investigations can relate the main polarization feature to disseminated, aligned plates of graphite. By contrast, the augen gneiss shows low polarizability and a moderately anisotropic conductivity dominated by the pore-filling brine. We further demonstrate that neglecting the complex and frequency-dependent nature of conductivity can lead to serious misinterpretation of magnetotelluric data during inversion if highly polarizable rocks are present.

  15. Poly-phase Deformation Recorded in the Core of the Coast Plutonic Complex, Western British Columbia

    NASA Astrophysics Data System (ADS)

    Hamblock, J. M.; Andronicos, C. L.; Hurtado, J. M.

    2006-05-01

    The Coast Plutonic Complex of western British Columbia constitutes the largest batholith within the North American Cordillera. The field area for this study is Mt. Gamsby, an unexplored region above the Kitlope River, east of the Coast Shear Zone and at the southern end of the Central Gneiss Complex. The dominant lithologies on Mt. Gamsby include amphibolite and metasedimentary gneiss, gabbro-diorite, and orthogneiss. The amphibolite gneiss contains alternating amphibolite and felsic layers, with chlorite and epidote pervasive in some regions and garnet rare. This unit is commonly migmatized and contains various folds, boudins, and shear zones. The metasedimentary gneiss contains quartz, k-spar, graphite, chlorite, and perhaps cordierite, but appears to lack muscovite and aluminosilicates. The gabbro-diorite is salt and pepper in color and contains ca. 50% pyroxene and plagioclase. The orthogneiss is light in color and plagioclase-rich, with a texture varying from coarse-grained and undeformed to mylonitic. In some regions, this unit contains abundant mafic enclaves. At least four deformational events (D1-4) are observed. The second generation of folding, F2, is dominant in the area and resulted in the production of a large synform during sinistral shearing. The S1 foliation is observed only in the amphibolite gneiss and is orthogonal to S2, creating mushroom- type fold interference patterns. S2 foliations strike NW-SE and dip steeply to the SW, suggesting SW-NE directed shortening. L2 lineations developed on S2 plunge shallowly to the NW and SE, implying strike-slip motion. Although both dextral and sinistral motions are indicated by shear band data, sinistral motion is dominant. The average right and left lateral shear band orientation is nearly identical to S2, suggesting that right and left lateral shearing were synchronous. Foliations within the orthogneiss are parallel to the axes of S2 folds and boudins in the amphibolite gneiss, suggesting that emplacement

  16. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees

    NASA Astrophysics Data System (ADS)

    Soula, Jean-Claude

    Gneiss domes and plutonic granitoid domes make up almost 50% of the pre-Hercynian terrains in the Central and Eastern Pyrenees. From a structural study of the shape and internal structure of the domes and of their relationships with the enclosing rocks, it can be shown that both types of domes were emplaced diapirically during the major regional deformation phase and the peak of regional metamorphism. The study also shows that the internal structure, the overall shape and general behaviour relative to the host rocks are similar for plutonic domes and for gneiss domes. This appears to be in good agreement with H. Ramberg's (1967, Gravity Deformation and the Earth's Crust. Academic Press, London; 1970, Model studies in relation to intrusion of plutonic bodies. In: Mechanisms of Igneous Intrusion (edited by Newall, G. & Rast, N.) Geol. J. Spec. Issue2, 261-286.) model studies showing that dome or mushroom-like structures, similar to those observed, develop when there is a small viscosity ratio between the rising body and its enclosing medium. This implies a high crystal content for the granitoid magma. This crystal content has been estimated by (i) calculating the viscosity and density in natural conditions from petrological data for the magma considered as a suspension, using the model and program of J. P. Carron et al. (1978 Bull Soc. géol. Fr.20, 739-744.); (ii) using the recent results of experimental deformation of partially melted granites of I. van der Molen & M. S. Paterson (1979, Contr. Miner. Petrol.70, 299-318.) and (ii) comparing the preceding results with the data obtained by deformation experiments on rocks similar to those enclosing the domes. The minimum crystal content for the development of a dome-like structure has been, thus, estimated to about 70%, i.e. a value very close to that estimated by van der Molen & Paterson (1979) to be the critical value separating the granular framework flow from suspension-like behaviour. The effect of small

  17. Petrologic and zircon U-Pb geochronological characteristics of the pelitic granulites from the Badu Complex of the Cathaysia Block, South China

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhou, Xiwen; Zhai, Mingguo; Liu, Bo; Cui, Xiahong

    2018-06-01

    The recognition of the Indosinian Orogeny in the South China block has been controversial and difficult because of strong weathering and thick cover. High temperature (HT) and high pressure (HP) metamorphic rocks related to this orogeny were considered to be absent from this orogenic belt until the recent discovery of eclogite and granulite facies meta-igneous rocks, occurring as lenses within the meta-sedimentary rocks of the Badu Complex. However, metamorphic state of these meta-sedimentary rocks is still not clear. Besides, there have been no geochronological data of HT pelitic granulites previously reported from the Badu Complex. This paper presents petrographic characteristics and zircon geochronological results on the newly discovered kyanite garnet gneiss, pyroxene garnet gneiss and the HT pelitic granulites (sillimanite garnet gneiss). Mineral assemblages are garnet + sillimanite + ternary feldspar + plagioclase + quartz + biotite for the HT pelitic granulite, kyanite + ternary feldspar + garnet + sillimanite + plagioclase + quartz + biotite for the kyanite garnet gneiss, and garnet + biotite + pyroxene + plagioclase + ternary feldspar + quartz for the pyroxene garnet gneiss, respectively. Decompressional coronas around garnet grains can be observed in all these pelitic rocks. Typical granulite facies mineral assemblages and reaction textures suggest that these rocks experienced HP granulite facies metamorphism and overprinted decompression along a clockwise P-T loop. Results from integrated U-Pb dating and REE analysis indicate the growth of metamorphic zircons from depleted heavy REE sources (100-50 chondrite) compared with detrital zircons derived from granitic sources (typically > 1000 chondrite). Metamorphic zircons in HP granulite exhibit no or subdued negative Eu anomalies, which perhaps indicate zircon overgrowth under eclogite facies conditions. The zircon overgrowth ages range from 250 to 235 Ma, suggesting that HP granulite (eclogite) to

  18. Middle Ordovician subduction of continental crust in the Scandinavian Caledonides: an example from Tjeliken, Seve Nappe Complex, Sweden

    NASA Astrophysics Data System (ADS)

    Fassmer, Kathrin; Klonowska, Iwona; Walczak, Katarzyna; Andersson, Barbro; Froitzheim, Nikolaus; Majka, Jarosław; Fonseca, Raúl O. C.; Münker, Carsten; Janák, Marian; Whitehouse, Martin

    2017-12-01

    The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430-400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between 505 and 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet-phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25-27 kbar/680-760 °C for the garnet-phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25-26 kbar/650-700 °C). Metamorphic rims of zircons from the garnet-phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu-Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm-Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction-exhumation cycle.

  19. Detrital zircon and igneous protolith ages of high-grade metamorphic rocks in the Highland and Wanni Complexes, Sri Lanka: Their geochronological correlation with southern India and East Antarctica

    NASA Astrophysics Data System (ADS)

    Kitano, Ippei; Osanai, Yasuhito; Nakano, Nobuhiko; Adachi, Tatsuro; Fitzsimons, Ian C. W.

    2018-05-01

    The high-grade metamorphic rocks of Sri Lanka place valuable constraints on the assembly of central parts of the Gondwana supercontinent. They are subdivided into the Wanni Complex (WC), Highland Complex (HC) and Vijayan Complex (VC), but their correlation with neighbouring Gondwana terranes is hindered by a poor understanding of the contact between the HC and WC. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb dating of remnant zircon cores from 45 high-grade metamorphic rocks in Sri Lanka reveals two domains with different age characteristics that correlate with the HC and WC and which help constrain the location of the boundary between them. The HC is dominated by detrital zircon ages of ca. 3500-1500 Ma from garnet-biotite gneiss, garnet-cordierite-biotite gneiss, some samples of garnet-orthopyroxene-biotite gneiss and siliceous gneiss (interpreted as paragneisses) and igneous protolith ages of ca. 2000-1800 Ma from garnet-hornblende-biotite gneiss, other samples of garnet-orthopyroxene-biotite gneiss, garnet-two-pyroxene granulite, two-pyroxene granulite and charnockite (interpreted as orthogneisses). In contrast, the WC is dominated by detrital zircon ages of ca. 1100-700 Ma from paragneisses and igneous protolith ages of ca. 1100-800 Ma from orthogneisses. This clearly suggests the HC and WC have different origins, but some of our results and previous data indicate their spatial distribution does not correspond exactly to the unit boundary proposed in earlier studies using Nd model ages. Detrital zircon and igneous protolith ages in the HC suggest that sedimentary protoliths were eroded from local 2000-1800 Ma igneous rocks and an older Paleoproterozoic to Archean craton. In contrast, the WC sedimentary protoliths were mainly eroded from local late Mesoproterozoic to Neoproterozoic igneous rocks with very minor components from an older 2500-1500 Ma craton, and in the case of the WC precursor sediments there was possibly

  20. Paleoproterozoic migmatitic gneisses from the Tandilia belt (Argentina), Río de la Plata craton, record cooling at deep crustal levels

    NASA Astrophysics Data System (ADS)

    Martínez, Juan Cruz; Massonne, Hans-Joachim; Dristas, Jorge Anastasio; Theye, Thomas; Graff, Ailín Ayelén

    2016-04-01

    We studied high-grade metamorphic rocks of the El Cristo hill area of the Tandilia belt. Mineral analyses and thermodynamic calculations were carried out for two adjacent rock samples: an amphibole-biotite gneiss and a garnet-biotite-bearing migmatite. Peritectic garnets in the migmatite show core compositions of pyr4.5(gro + andr)10spes6alm79.5 changing to pyr3.5(gro + andr)17spes6alm73.5 at their thin rims. Garnet compositions in the gneiss are pyr6.5(gro + andr)26spes12alm55.5 and pyr4.5(gro + andr)34spes12alm49.5 for core and rim, respectively. A P-T path was constructed by calculating pseudosections in the 11-component system Si-Ti-Al-Fe-Mn-Mg-Ca-Na-K-O-H and contouring them by isopleths for garnet components using the PERPLE_X software package. Supra-solidus crystallization of garnet cores in the migmatite began at 5.8 kbar and 660 °C. Garnet rims equilibrated at 7.0 kbar and 640 °C compatible with garnet cores in the amphibole-biotite gneiss (7.6 kbar and 660 °C). The further chemical development of garnet in this rock points to P-T conditions of 11.6 kbar and 620 °C and 12.2 kbar and 595 °C (outermost garnet rim). At this high-pressure stage Ca-amphibole was not stable. Most biotite formed during exhumation whereas the high-pressure accessory minerals, titanite and epidote, persisted. According to the obtained anti-clockwise P-T path the originally partly melted material was tectonically transported from ∼22 km (middle crust) to ∼40 km (lower crust) depths reaching a geothermal gradient as low as 15 °C km-1. This transport probably occurred along a major suture zone, which was active during the Paleoproterozoic (2.25-2.10 Ga), before a terminating collision of terranes near the SW boundary of the Rio de la Plata craton.

  1. Mid-Cretaceous oblique rifting of West Antarctica: Emplacement and rapid cooling of the Fosdick Mountains migmatite-cored gneiss dome

    USGS Publications Warehouse

    McFadden, Rory; Teyssier, Christian; Siddoway, Christine; Cosca, Michael A.; Fanning, C. Mark

    2015-01-01

    In Marie Byrd Land, West Antarctica, the Fosdick Mountains migmatite-cored gneiss dome was exhumed from mid- to lower middle crustal depths during the incipient stage of the West Antarctic Rift system in the mid-Cretaceous. Prior to and during exhumation, major crustal melting and deformation included transfer and emplacement of voluminous granitic material and numerous intrusions of mantle-derived diorite in dikes. A succession of melt- and magma-related structures formed at temperatures in excess of 665 ± 50 °C based on Ti-in-zircon thermometry. These record a transition from wrench to oblique extensional deformation that culminated in the development of the oblique South Fosdick Detachment zone. Solid-state fabrics within the detachment zone and overprinting brittle structures record translation of the detachment zone and dome to shallow levels.To determine the duration of exhumation and cooling, we sampled granite and gneisses at high spatial resolution for U–Pb zircon geochronology and 40Ar/39Ar hornblende and biotite thermochronology. U–Pb zircon crystallization ages for the youngest granites are 102 Ma. Three hornblende ages are 103 to 100 Ma and 12 biotite ages are 101 to 99 Ma. All overlap within uncertainty. The coincidence of zircon crystallization ages with 40Ar/39Ar cooling ages indicates cooling rates > 100 °C/m.y. that, when considered together with overprinting structures, indicates rapid exhumation of granite and migmatite from deep to shallow crustal levels within a transcurrent setting. Orientations of structures and age-constrained crosscutting relationships indicate counterclockwise rotation of stretching axes from oblique extension into nearly orthogonal extension with respect to the Marie Byrd Land margin. The rotation may be a result of localized extension arising from unroofing and arching of the Fosdick dome, extensional opening within a pull-apart zone, or changes in plate boundary configuration.The rapid tectonic and

  2. Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: Evidence from the Fuping Complex

    NASA Astrophysics Data System (ADS)

    Tang, Li; Santosh, M.; Tsunogae, Toshiaki; Teng, Xue-Ming

    2016-04-01

    The Fuping, Wutai, and Hengshan Complexes in the North China Craton preserve imprints of widespread late Neoarchean magmatism. Here, we report results from systematic petrology, mineral chemistry, whole-rock major, trace and platinum-group element geochemistry, zircon U-Pb geochronology and Hf-O isotopes from the Yangmuqiao mafic-ultramafic intrusion and coeval tonalite-trondhjemite-granodiorite (TTG) gneiss from the Fuping Complex. The mafic-ultramafic intrusion is composed of pyroxene hornblendites, hornblendites, and minor harzburgites. The salient geochemical features of the mafic-ultramafic intrusion and the Fuping TTG gneiss display subduction-related island arc signature, such as fractionated REE patterns with elevated LREE, enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. The chemistry of the clinopyroxene and chromite in the pyroxene hornblendites shows affinity with Alaskan-type mafic-ultramafic intrusions. Zircons from the pyroxene hornblendite yield weighted mean 207Pb/206Pb age of 2514 ± 15 Ma, and those in the Fuping TTG gneiss show mean age of 2513 ± 13 Ma. Zircon Hf and O isotopic compositions are used as magma source and crustal evolution indicators. Zircon grains in the pyroxene hornblendite display positive εHf(t) values (2.6-6.7), Neoarchean TDM (2570-2723 Ma), and their δ18O values vary from 3.8‰ to 7.0‰ (average 6.2‰). Zircons in the TTG gneiss show εHf(t) values in the range of - 1.8 to 4.9, TDM of 2637-2888 Ma, and δ18O values of 4.1‰-6.7‰ (average of 6.1‰). These results suggest that the parental magma of the late Neoarchean magmatism in the Fuping area was dominantly extracted from the depleted mantle and contaminated to different degrees by crustal components. The pyroxene hornblendites have obviously higher IPGE contents (ΣIPGE = 1.69-2.39 ppb) and lower Pd/Ir ratios (5.97-6.28) than those in the hornblendites (ΣIPGE = 0.56-0.72 ppb, Pd/Ir = 6

  3. Archaean and Palaeoproterozoic gneisses reworked during a Neoproterozoic (Pan-African) high-grade event in the Mozambique belt of East Africa: Structural relationships and zircon ages from the Kidatu area, central Tanzania

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Kröner, A.; Poller, U.; Sommer, H.; Muhongo, S.; Wingate, M. T. D.

    2006-06-01

    This study presents new zircon ages and Sm-Nd whole-rock isotopic compositions for high-grade gneisses from the Udzungwa Mountain area in the central part of the Mozambique belt, Tanzania. The study area comprises a succession of layered granulite-facies para- and orthogneisses, mostly retrograded to amphibolite-facies. The original intrusive contacts became obscured or severely modified during non-coaxial ductile deformation, and extensive shearing occurred during retrogression. Structures reflecting the early deformational history were mostly obscured when the rocks were transported into the lower crust as documented by severe flattening. Only the fragmented gneisses in the eastern part of the area testify to a brittle regime. Structures in narrow low strain zones that predate the currently observed layering are preserved in rootless isoclinal folds and boudins. Magmatic and detrital zircons from tonalitic to felsic orthogneisses and a metapelite sample were dated using the U-Pb and Pb-Pb evaporation methods and SHRIMP II. Cathodoluminiscence images reveal ubiquitous xenocrystic cores, rimmed by clear, unzoned overgrowth due to high-grade metamorphism. Discordant U-Pb data therefore reflect core-rim relationships, and it was not always possible to obtain precise crystallisation ages. The analyses reveal Neoarchaean, Palaeoproterozoic and Neoproterozoic protolith ages. Nd isotopic systematics yielded strongly negative ɛNd( t) -values and Neoarchaean to Palaeoproterozoic model ages, even for gneisses emplaced in the Neoproterozoic. The trace element distribution suggests upper crustal derivation of the gneisses. Therefore, our study provides evidence that recycling of older crust played a major role during the evolution of the Kidatu area. Neoarchaean rocks are interpreted to represent fragments of the Tanzania craton. Our results, together with those of earlier workers, lead to the conclusion that the central part of the Mozambique belt mainly consists of ancient

  4. Gneisses of Brazil's cultural heritage buildings and its most frequent degradations

    NASA Astrophysics Data System (ADS)

    Gilberto Costa, Antônio

    2017-04-01

    Macroscopic descriptions of cultural heritage buildings constructed using gneisses in the cities of Rio de Janeiro, Belo Horizonte and Ouro Preto, Brazil, allowed to identify alterations and degradations, in part conditioned by the mineralogical composition and the structures present in these stone materials. It is important to emphasize that: - some changes still begin in the environments where these materials were formed, experiencing an intensification from the processes of extraction, processing and application; - modifications occurring after the applications are understood herein as degradations. The studied gneisses present banding consisting of parts with different thicknesses and mineralogical contents. Due to these differentiated contents, clear bands were identified and constituted essentially by felsic minerals, such as feldspars and quartz, as well as dark bands formed by mafic minerals represented by: biotite, garnets, amphiboles, such as hornblende or pyroxene (hyperstene). In addition to these minerals, low contents of oxides and sulphides were found. Also under the influence of this distribution of minerals, planar structures or foliations, more or less developed, that can be very penetrative have been identified, mainly when these rocks were submitted to the performance of milonitization processes. From the set of changes and degradations observed stand out those related to the decomposition of minerals that make up these materials. In these cases, feldspars and other silicates, such as micas, amphiboles and pyroxenes, were decomposed due to the hydrolysis and products were generated which compromised the resistance of these stone materials, leading to their consequent disintegration. On the other hand, the presence of expansive clays in these products, caused volume increases which also contributed to the expansion of the weathered surface layer (blistering). This process may result detachments in the form of scales to cavities in cases of

  5. Long-range laser scanning and 3D imaging for the Gneiss quarries survey

    NASA Astrophysics Data System (ADS)

    Schenker, Filippo Luca; Spataro, Alessio; Pozzoni, Maurizio; Ambrosi, Christian; Cannata, Massimiliano; Günther, Felix; Corboud, Federico

    2016-04-01

    In Canton Ticino (Southern Switzerland), the exploitation of natural stone, mostly gneisses, is an important activity of valley's economies. Nowadays, these economic activities are menaced by (i) the exploitation costs related to geological phenomena such as fractures, faults and heterogeneous rocks that hinder the processing of the stone product, (ii) continuously changing demand because of the evolving natural stone fashion and (iii) increasing administrative limits and rules acting to protect the environment. Therefore, the sustainable development of the sector for the next decades needs new and effective strategies to regulate and plan the quarries. A fundamental step in this process is the building of a 3D geological model of the quarries to constrain the volume of commercial natural stone and the volume of waste. In this context, we conducted Terrestrial Laser Scanning surveys of the quarries in the Maggia Valley to obtain a detailed 3D topography onto which the geological units were mapped. The topographic 3D model was obtained with a long-range laser scanning Riegl VZ4000 that can measure from up to 4 km of distance with a speed of 147,000 points per second. It operates with the new V-line technology, which defines the surface relief by sensing differentiated signals (echoes), even in the presence of obstacles such as vegetation. Depending on the esthetics of the gneisses, we defined seven types of natural stones that, together with faults and joints, were mapped onto the 3D models of the exploitation sites. According to the orientation of the geological limits and structures, we projected the different rock units and fractures into the excavation front. This way, we obtained a 3D geological model from which we can quantitatively estimate the volume of the seven different natural stones (with different commercial value) and waste (with low commercial value). To verify the 3D geological models and to quantify exploited rock and waste volumes the same

  6. Hyperspectral analysis of the ultramafic complex and adjacent lithologies at Mordor, NT, Australia

    USGS Publications Warehouse

    Rowan, L.C.; Simpson, C.J.; Mars, J.C.

    2004-01-01

    The Mordor Complex consists of a series of potassic ultramafic rocks which were intruded into Proterozoic felsic gneisses and amphibolite and are overlain by quartzite and unconsolidated deposits. In situ and laboratory 0.4 to 2.5 ??m reflectance spectra show Al-OH absorption features caused by absorption in muscovite, kaolinite, and illite/smectite in syenite, granitic gneiss, quartzite and unconsolidated sedimentary deposits, and Fe,Mg-OH features due to phlogopite, biotite, epidote, and hornblende in the mafic and ultramafic rocks. Ferrous-iron absorption positioned near 1.05 ??m is most intense in peridotite reflectance spectra. Ferric-iron absorption is intense in most of the felsic lithologies. HyMap data were recorded in 126 narrow bands from 0.43 to 2.5 ??m along a 7-km-wide swath with approximately 6-m spatial resolution. Correction of the data to spectral reflectance was accomplished by reference to in situ measurements of an extensive, alluvial plain. Spectral classes for matched filter processing were selected by using the pixel purity index procedure and analysis of in situ and laboratory spectra. Considering the spatial distribution of the resulting 14 classes, some classes were combined, which produced eight classes characterized by Al-OH absorption features, and three Fe,Mg-OH absorption-feature classes. Comparison of the distribution of these 11 spectral classes to a generalized lithologic map of the study area shows that the spectral distinction among the eight Al-OH classes is related to variations in primary lithology, weathering products, and vegetation density. Quartzite is represented in three classes, syenite corresponds to a single scattered class, quartz-muscovite-biotite schist defines a single very coherent class, and unconsolidated sediments are portrayed in four classes. The three mafic-ultramafic classes are distinguished on the basis of generally intense Fe,Mg-OH and ferrous-iron absorption features. A single class represents the

  7. Very early Archean crustal-accretion complexes preserved in the North Atlantic craton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutman, A.P.; Collerson, K.D.

    1991-08-01

    The North Atlantic craton contains very early Archean supracrustal rocks, orthogneisses, and massive ultramafic rocks. Most units of supracrustal rocks are dominated by mafic volcanic rocks, layered gabbros, and banded iron formations, bust some also contain abundant felsic volcanic-sedimentary rocks, quartzites, and marbles. Some quartzites contain detrital zircons derived from rocks identical in age to felsic volcanic-sedimentary rocks in these sequences (ca. 3800 Ma) and also from older (ca. 3850 Ma) sources. The presence of the ca. 3850 Ma detrital zircons suggests that the supracrustal units containing them were deposited on, or close to, ca. 3850 Ma sialic crust. Themore » massive ultramafic rocks have chemical affinities to upper mantle rocks. The voluminous suites of tonalitic gneisses are dominated by 3700-3730 Ma bodies that intrude the supracrustal sequences, but they also locally contain components with ages between 3820 and 3920 Ma. The diverse supracrustal units, upper mantle rocks, and {ge} 3820 Ma components in the gneisses were tectonically interleaved in very early Archean convergent plate boundaries, giving rise to accretion complexes. In the period 3700-3730 Ma, voluminous tonalitic magmas produced by partial melting of predominantly mafic rocks in the base of the accretion complexes were emplaced at higher levels, forming juvenile continental crust and leaving behind a refractory lower crustal to upper mantle substrate.« less

  8. Rubidium-strontium whole-rock ages of Kataragama and Pottuvil charnockites and East Vijayan gneiss: Indication of a 2 Ga metamorphism in the highlands of southeast Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Maesschalck, A.A.; Oen, I.S.; Hebeda, E.H.

    1990-09-01

    Highland Group granulite-facies rocks of the Kataragama klippe in southeast Sri Lanka yield a Rb-Sr whole-rock apparent age of 1,930 {plus minus} 130 Ma, MSWD = 39, and a {sup 87}Sr/{sup 86}Sr intercept of 0.715 {plus minus} 0.005, indicating a Highlandian metamorphism about 2.0 Ga ago. A charnockitic gneiss at Komari near Pottuvil, east Sri Lanka, gives a Rb-Sr whole-rock isochron age of 820 {plus minus} 70 Ma, MSWD = 0.78, initial {sup 87}Sr/{sup 86}Sr = 0.725 {plus minus} 0.007, suggesting a metamorphic resetting at about 0.8 Ga. The Rb-Sr whole-rock data of an East Vijayan biotite-hornblende gneiss fit amore » reference isochron of 800 Ma with a {sup 87}Sr/{sup 86}Sr intercept of 0.705; the low {sup 87}Sr/{sup 86}Sr intercept may be explained by a juvenile addition to the older crust. A review of available data from various isotopic dating methods suggests that the Highland Group supracrustals were deposited 2.5-2.0 Ga ago, metamorphosed in the granulite-facies about 2.0 Ga (M1) ago, and disturbed by resetting events about 1.1 Ga (M2), 0.8 Ga (M3), and 0.55 Ga (M4) ago. The East Vijayan supracrustals were deposited 2.0-1.1 Ga ago, invaded by granites and metamorphosed in the amphibolite-facies about 1.1 Ga (M2) ago, and disturbed by resetting events about 0.8 (M3) and 0.55 Ga (M4) ago. Overthrusting of the Kataragama granulites over the East Vijayan gneisses occurred post-M3.« less

  9. Modeling the effects of structure on seismic anisotropy in the Chester gneiss dome, southeast Vermont

    NASA Astrophysics Data System (ADS)

    Saif, S.; Brownlee, S. J.

    2017-12-01

    Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.

  10. Investigation of Fault Zones In The Penninic Gneiss Complex of The Swiss Central Alps Using Tomograhic Inversion of The Seismic Wavefield Along Tunnels

    NASA Astrophysics Data System (ADS)

    Giese, R.; Klose, C.; Otto, P.; Selke, C.; Borm, G.

    Underground seismic investigations have been carried out since March 2000 in the Faido adit of the Gotthard Base Tunnel (Switzerland) and the Piora exploration adit. Both adits cut metamorphic rock formations of the Leventina and Lucomagno Gneiss Complexes. The seismic measurements in the Faido Adit were carried out every 200 m during the excavation work with the Integrated Seismic Imaging System (ISIS) developed by the GeoForschungsZentrum Potsdam in cooperation with Amberg Measuring Technique, Switzerland. This system provides high resolution seismic images via an array of stan- dard anchor rods containing 3D-geophones which can be installed routinely during the excavation process. The seismic source is a repetitive pneumatic impact hammer. For each measurement in the Faido adit, seismic energy was transmitted from 30 to 50 source points distributed along the tunnel wall at intervals of 1.0 to 1.5 m. In the Piora exploration adit a 2D grid of 441 source points distributed along a distance of 147 tunnel meters were measured. In both adits the shots were recorded by arrays of 8 to 16 three - component geophone anchor rods glued into 2 m deep boreholes at intervals of 9 m - 10 m. The total length of all profiles was about 850 m. Seismic sections show first P-wave energy at frequencies up to 2 kHz and S-wave energy up to 1.3 kHz. Reflection energy was observed from distances of up to 350 m for P-waves and 200 m for S-waves. The dominant frequencies of reflective energy were found between 600 and 800 Hz for P-waves and between 200 and 400 Hz for S-waves. The corresponding wave lengths were 8 to 10 m. We used the first arrival times of P- and S- waves to calculate tomographic inversions. The 2D-velocity models for P- and S-waves in the Faido adit revealed a near field of 2 to 3 m from the tunnel surface which is characterized by strong velocity variations: 3000 to 5700 m/s for P-wave velocity (Vp) and 2000 to 3000 m/s for S-wave velocity (Vs). High velocity zones

  11. Harper Creek and Cuyamaca Reservoir gneisses, CLMSZ: Late Jurassic plutons of the Peninsular Ranges batholith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.; Girty, G.H.; Girty, M.S.

    1993-04-01

    The Cuyamaca Laguna Mountains shear zone (CLMSZ), southern California, has been interpreted to represent east-over-west thrusting resulting from Early Cretaceous arc-continent collision. Near Pine Valley, the western margin of the CLMSZ is underlain by the Harper Creek (HCg) and Cuyamaca Reservoir (CRg) gneisses. U-Pb zircon studies indicate ages of 161 [+-] 17 Ma and 156 [+-] 12 Ma for the Hcg and an age of 158 Ma for the CRg. Geochemically the HCg and CRg are calc-alkaline and peraluminous. Trace element data suggest a magmatic arc setting. Modal and normative mineralogy suggest granodioritic and tonalitic protoliths. Mineral assemblages indicate uppermore » greenschist facies to lower amphibolite grade conditions during deformation. The HCg and CRg were deformed prior to the emplacement of the adjacent 118 [+-] 9 Ma Pine Valley pluton. Structural fabrics described above suggest NE-SW contraction and subvertical extension and are thus compatible with the arc-continent collisional model proposed by earlier workers.« less

  12. Geology of the Northern Part of the Harcuvar Complex, West-Central Arizona

    USGS Publications Warehouse

    Bryant, Bruce; Wooden, J.L.

    2008-01-01

    In west-central Arizona near the northeast margin of the Basin and Range Province, the Rawhide detachment fault separates Tertiary and older rocks lacking significant effects of Tertiary metamorphism from Precambrian, Paleozoic, and Mesozoic rocks in the Harcuvar metamorphic core complex below. Much of the northern part of the Harcuvar complex in the Buckskin and eastern Harcuvar Mountains is layered granitic gneiss, biotite gneiss, amphibolite, and minor pelitic schist that was probably deformed and metamorphosed in Early Proterozoic time. In the eastern Buckskin Mountains, Early and Middle Proterozoic plutons having U-Pb zircon ages of 1,683?6.4 mega-annum (Ma) and 1,388?2.3 Ma, respectively, intruded the layered gneiss. Small plutons of alkaline gabbro and diorite intruded in Late Jurassic time. A sample of mylonitized diorite from this unit has a U-Pb zircon age of 149?2.8 Ma. In the Early Cretaceous, amphibolite facies regional metamorphism was accompanied by partial melting and formation of migmatite. Zircon from a granitic layer in migmatitic gneiss in the eastern Harcuvar Mountains has a U-Pb age of 110?3.7 Ma. In the Late Cretaceous, sills and plutons of the granite of Tank Pass were emplaced in both the Buckskin and eastern Harcuvar Mountains. In the Buckskin Mountains those intrusions are locally numerous enough to form an injection migmatite. A pluton of this granite crops out over almost half the area of the eastern Harcuvar Mountains. Paleozoic and Mesozoic sedimentary rocks were caught as slices along south-vergent Cretaceous thrusts related to the Maria fold and thrust belt and were metamorphosed beneath a thick sheet of Proterozoic crustal rocks. Inception of volcanism and basin formation in upper-plate rocks indicates that regional extension started at about 26 Ma, in late Oligocene. The Swansea Plutonic Suite, composed of rocks ranging from gabbro to granite, intruded the lower-plate rocks in the Miocene and Oligocene(?). Granite and a gabbro

  13. Can the Metamorphic Basement of Northwestern Guatemala be Correlated with the Chuacús Complex?

    NASA Astrophysics Data System (ADS)

    Cacao, N.; Martens, U.

    2007-05-01

    The Chuacús complex constitutes a northward concave metamorphic belt that stretches ca. 150 km south of the Cuilco-Chixoy-Polochic (CCP) fault system in central and central-eastern Guatemala. It represents the basement of the southern edge of the Maya block, being well exposed in the sierra de Chuacús and the sierra de Las Minas. It is composed of high-Al metapelites, amphibolites, quartzofeldspathic gneisses, and migmatites. In central Guatemala the Chuacús complex contains ubiquitous epidote-amphibolite mineral associations, and local relics of eclogite reveal a previous high-pressure metamorphic event. North of the CCP, in the Sierra de Los Cuchumatanes area of western Guatemala, metamorphic rocks have been considered the equivalent of the Chuacús complex and hence been given the name Western Chuacús group, These rocks, which were intruded by granitic rocks and later mylonitized, include chloritic schist and gneiss, biotite-garnet schist, migmatites, and amphibolites. No eclogitic relics have been found within metamorphic rocks in northwestern Guatemala. Petrographic analyses of garnet-biotite schist reveal abundant retrogression and the formation of abundant zeolite-bearing veins associated with intrusion. Although metamorphic conditions in the greenschist and amphibolite facies are similar to those in the sierra de Chuacús, the association with deformed intrusive granites is unique for western Guatemala. Hence a correlation with metasediments intruded by the Rabinal granite in the San Gabriel area of Baja Verapaz seems more feasible than a correlation with the Chuacús complex. This idea is supported by reintegration of the Cenozoic left-lateral displacement along the CCP, which would place the metamorphic basement of western Guatemala north of Baja Verapaz, adjacent to metasediments intruded by granites in the San Gabriel-Rabinal area.

  14. U-Pb ages and metamorphic evolution of the La Pampa Gneisses: Implications for the evolution of the Chilenia Terrane and Permo-Triassic tectonics of north Central Chile

    NASA Astrophysics Data System (ADS)

    Álvarez, Javier; Mpodozis, Constantino; Blanco-Quintero, Idael; García-Casco, Antonio; Arriagada, César; Morata, Diego

    2013-11-01

    The La Pampa Gneisses are an enclave of orthogneisses emplaced within late Paleozoic to Triassic granitoids of the Chollay Batholith, in the Cordillera Frontal, to the east of Vallenar. Previous geochronological data (a Rb/Sr “errorchron” of 415 ± 4 Ma) allowed to some authors to suggest that these rocks were part of the Chilenia Terrane accreted to Gondwana during the Middle Devonian (ca. 390 Ma). New petrographic, chemical and geothermobarometric studies, together with U-Pb geochronological data show that the protolith of the La Pampa Gneisses derives from peraluminous tonalites emplaced during the Pennsylvanian at 306.5 ± 1.8 Ma, ruling out the hypothesis considering these rocks as remnant of the pre-collisional Chilenia basement. The tonalites were metamorphosed between 5.06 and 5.58 kbar and 709-779 °C during the middle Permian (267.6 ± 2.1 Ma), possibly in conjunction with the San Rafael tectonic event and the emplacement of the oldest granitoids of the Chollay Batholith. A new intrusive episode occurred at ca. 240 Ma, followed by exhumation and cooling during a regional Triassic extensional episode.

  15. Pseudotachylyte in the Tananao Metamorphic Complex, Taiwan: Occurrence and dynamic phase changes of fossil earthquakes

    NASA Astrophysics Data System (ADS)

    Chu, Hao-Tsu; Hwang, Shyh-Lung; Shen, Pouyan; Yui, Tzen-Fu

    2012-12-01

    Pseudotachylyte veins and cataclasites were studied in the mylonitized granitic gneiss of the Tananao Metamorphic Complex at Hoping, Eastern Taiwan. The aphanitic pseudotachylyte veins vary in thickness, ranging from millimeters to about 1 cm. Field and optical microscopic observations show that such pseudotachylyte veins cut across cataclasites, which, in turn, transect the mylonitized granitic gneiss. Scanning electron microscopic images also show that both the pseudotachylyte veins and the cataclasites have been metasomatized by a K-rich fluid, resulting in the replacement of Na-plagioclase by K-feldspar (veins). Analytical electron microscopic observations reveal further details of physical and chemical changes (mainly fragmentation, dislocations, cleaving-healing with inclusions and relic voids, and retention of high-temperature albite) of quartz and feldspar in crushed grains. Pseudotachylytes occur as dark veins having a higher content of chlorite-biotite, clinozoisite-epidote and titanite fragments than cataclasites. These veins, coupled with hematite/jarosite-Fe-rich amorphous shell/carbonaceous material, indicate that crushing, healing/sintering, and inhomogeneous melt/fluid infiltration involving incipient and intermediate/high temperature melt patches, before and/or contemporaneous with the metasomatic K-rich fluid, prevailed in a coupled or sequential manner in the faulting event to form nonequilibrium phase assemblage. The chlorite-biotite, carbonaceous material and other nanoscale minerals could be vulnerable in future earthquakes under the influence of water. The timing of the formation of these pseudotachylyte veins should be later than the area's age of mylonitization of granitic gneiss of approximately 4.1-3.0 Ma (Wang et al., 1998). The formation of pseudotachylytes registers the fossil earthquakes during early stages in the exhumation history of the uplifting Taiwan Mountain belt since the Plio-Pleistocene Arc-Continent collision.

  16. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Sujuan; Hu, Jianmin; Ren, Minghua; Gong, Wangbin; Liu, Yang; Yan, Jiyuan

    2014-11-01

    The Bayanwulashan Metamorphic Complex (BMC) exposes along the eastern margin of the Alxa Block, the westernmost part of the North China Craton (NCC). BMC is principally composed of metamorphic rocks with amphibole plagiogneiss, biotite plagioclase gneiss and granitic gneiss. Our research has been focused on the petrography and zircon U-Pb geochronology of the BMC to better understand the evolution of the Alxa Block and its relationship with the NCC. Evidences from field geology, petrography, and mineral chemistry indicate that two distinct metamorphic assemblages, the amphibolite and greenschist facies, had overprinted the preexisting granitic gneiss and suggest that the BMC experienced retrograde metamorphic episodes. The LA-ICP-MS zircon U-Pb ages reveal that the primary magmatic activities of BMC were at ca. 2.30-2.24 Ga and the two metamorphic events were at ca. 1.95-1.91 Ga and ca. 1.88-1.85 Ga respectively. These ages indicate that BMC initially intruded during Paleoproterozoic, not as previously suggested at Archean period. The Early Paleoproterozoic metamorphic records and the magmatic thermochronological data in BMC exhibit different evolution paths between the Alxa Block and the NCC. The Alxa Block was most likely an independent Early Paleoproterozoic terrain. Following different amalgamation processes, The Alxa Block combined with Western Block at ca. 1.95 Ga and then united with NCC at ca. 1.85 Ga.

  17. Age and composition of Archean crystalline rocks from the southern Madison Range, Montana. Implications for crustal evolution in the Wyoming craton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, P.A.; Shuster, R.D.; Wooden, J.L.

    1993-04-01

    The southern Madison Range of southwestern Montana contains two distinct Precambrian lithologic assemblages: (1) a complex of tonalitic to granitic gneisses that has been thrust over (2) a medium-grade metasupracrustal sequence dominated by pelitic schist. Crystallization ages for the protolith of a granodioritic gneiss that intruded the metasupracrustal sequence ([approximately]2.6 Ga)-along with an intercalated meta-andesite ([approximately]2.7 Ga) confirm the sequence as Archean. Chemical (major and trace element), isotopic (Rb-Sr, Sm-Nd, Pb-Pb), and geochronologic (U-Pb zircon) data for selected components of the gneiss complex indicate two groups of gneisses: an older, tonalitic to trondhjemitic group ([approximately]3.3 Ga) and a younger, mostlymore » granitic group ([approximately]2.7 Ga). Both groups of gneisses exhibit the radiogenic Pb and nonradiogenic Nd isotopic signature characteristic of Middle and Late Archean rocks from throughout the Wyoming province. The older gneisses, in particular, appear to be compositionally, isotopically, and chronologically comparable to other Middle Archean gneisses from the northern part of the province (for example, Beartooth Mountains). The Late Archean gneisses, however, exhibit some distinct differences relative to their temporal counterparts, including (1) trace-element patterns that are more suggestive of crustal melts than subduction activity and (2) higher initial Sr isotopic ratios that suggest more involvement of older crust in their petrogenesis. These comparisons suggest that the juxtaposition of Late Archean terranes in the northern Wyoming province was the result, at least in part, of intracratonic processes. 41 refs., 6 figs., 2 tabs.« less

  18. The problem of the age and structural position of the Blyb metamorphic complex (Fore Range zone, Great Caucasus) granitoids.

    NASA Astrophysics Data System (ADS)

    Kamzolkin, Vladimir; Latyshev, Anton; Ivanov, Stanislav

    2016-04-01

    The Blyb metamorphic complex (BMC) of the Fore Range zone is one of the most high-grade metamorphosed element of the Great Caucasus fold belt. Determination of the timing and the mechanism of formation of the Fore Range fold-thrust structures are not possible without investigation of the BMC located at the basement of its section. At the same time, the conceptions about its structure and age are outdated and need revision. Somin (2011) determined the age of the protolith and metamorphism of the Blyb complex as the Late Devonian - Early Carboniferous. We have recently shown that the BMC has not the dome, as previously thought, but nappe structure (Vidjapin, Kamzolkin, 2015), and is metamorphically coherent with the peak metamorphism pressures up to 22 kbar (Kamzolkin et al., 2015; Konilov et al., 2013). Considering the age and structure of the Blyb complex it is necessary to revise the age of granitoid intrusions and their relations with gneisses and schists, which constitute the main part of the section of the complex. Most authors (Gamkrelidze, Shengelia, 2007; Lavrischev, 2002; Baranov, 1967) adheres to Early Paleozoic age of intrusives, which is doubtful, considering the younger age of metamorphic rocks. We suppose, that the intrusive bodies broke through a BMC nappe structure during the exhumation of the complex (Perchuk, 1991) at the Devonian - Carboniferous boundary. Seemingly, the massive monzodiorites body (Lavrischev, 2002), intruding garnet-muscovite schists and amphibolite gneisses of the Blyb complex and cut by the Main Caucasian fault (MCF), are younger. Given the timing of termination of the MCF movement activity as the Middle Jurassic (Greater Caucasus..., 2005), their age should be in the Early Carboniferous - Middle Jurassic interval. At the same time, on the modern geological map (Lavrischev, 2002) monzodiorites body is assigned to the Middle Paleozoic. The study of the BMC granitoids and monzodiorites will help in determining of the mechanism and

  19. Geophysical evaluation of groundwater potential in part of southwestern Basement Complex terrain of Nigeria

    NASA Astrophysics Data System (ADS)

    Bayewu, Olateju O.; Oloruntola, Moroof O.; Mosuro, Ganiyu O.; Laniyan, Temitope A.; Ariyo, Stephen O.; Fatoba, Julius O.

    2017-12-01

    The geophysical assessment of groundwater in Awa-Ilaporu, near Ago Iwoye southwestern Nigeria was carried out with the aim of delineating probable areas of high groundwater potential. The area falls within the Crystalline Basement Complex of southwestern Nigeria which is predominantly underlain by banded gneiss, granite gneiss and pegmatite. The geophysical investigation involves the very low frequency electromagnetic (VLF-EM) and Vertical Electrical Sounding (VES) methods. The VLF-EM survey was at 10 m interval along eight traverses ranging between 290 and 700 m in length using ABEM WADI VLF-EM unit. The VLF-EM survey was used to delineate areas with conductive/fractured zones. Twenty-three VES surveys were carried out with the use of Campus Ohmega resistivity meter at different location and at locations areas delineated as high conductive areas by VLF-EM survey. The result of VLF-EM survey along its traverse was used in delineating high conductive/fractured zones, it is, however, in agreement with the delineation of the VES survey. The VES results showed 3-4 geoelectric layers inferred as sandy topsoil, sandy clay, clayey and fractured/fresh basement. The combination of these two methods, therefore, helped in resolving the prospecting location for the groundwater yield in the study area.

  20. Time and duration of metamorphism and exhumation of the central Rhodopian core complex, Bulgaria

    NASA Astrophysics Data System (ADS)

    Ovtcharova, M.; von Quadt, A.; Peytcheva, I.; Neubauer, F.; Heinrich, C. A.; Kaiser, M.

    2003-04-01

    The evolution of central Rhodopian dome (Bulgaria) is interpreted in terms of an extensional collapse of thickened crust (Ivanov at al., 2000). U-Pb isotope dating (single Zr and Mnz), Rb-Sr (W.R., Bt and Ap) and Ar-Ar (on Bt) were carried out on different rocks from the central Rhodope, Bulgaria, to constrain the timing and duration of the metamorphism and exhumation of the core complex. The beginning of extensional stage is marked by intrusion of earliest non-penetratively deformed granite bodies at 53Ma (U-Pb on single Zr and Mnz). The late Alpine extensional evolution of the massif is marked by a detachment system connected with exhumation of the migmatites in the core part of the dome (lower plate). U-Pb analyses on Mnz and Zr from mesosome and discordant leucosome yield a Variscan protolith age of the gneiss (311 Ma) and Eocene age (37Ma) of crystallization of the newly formed anatectic melt that corresponds with the peak of the Alpine metamorphic event (P 4.5-6kbar and T 720-750^oC; Georgieva et al., 2002). Rb-Sr mineral system of the weakly deformed gneisses from lower plate of the core complex gives evidence for a cooling age of 34.5±0.34Ma. This result is confirmed by Ar-Ar on Bt from the same rock: 35.5±0.4Ma. Ar-Ar data on biotite from gneisses of the upper plate yield an age of 34.9±0.6Ma. The same age is reflected by an Rb-Sr isochron (W.R., Bt and Ap) of 35.22±0.35Ma. The post-collisional extension was followed by graben depressions filled with sediments of Eocene-Oligocene age and active volcanism and ore mineralization (Zn-Pb and Cu-Pb-Zn ore deposits). Connected with the most intensively "stretched" sections of the extensional system is emplacement of rhyolitic dikes at 32.8±0.41Ma (U-Pb on single Zr, Xe). The available data constrain narrow time bracket between timing of high-grade metamorphism event (37Ma, >600^oC), cooling (35Ma, 300ºC) of the core complex and volcanic activity (32Ma) that corresponds with rapid exhumation tectonic regime

  1. New insights into typical Archaean structures in greenstone terranes of western Ontario

    NASA Technical Reports Server (NTRS)

    Schwerdtner, W. M.

    1986-01-01

    Ongoing detailed field work in selected granitoid complexes of the western Wabigoon and Wawa Subprovinces, southern Canadian Shield, has led to several new conclusions: (1) Prominent gneiss domes are composed of prestrained tonalite-granodiorite and represent dense hoods of magmatic granitoid diapirs; (2) the deformation history of the prestrained gneiss remains to be unraveled; (3) the gneiss lacked a thick cover of mafic metavolcanics or other dense rocks at the time of magmatic diaprisim; (4) the synclinoral structure of large greenstone belts is older than the late gneiss domes and may have been initiated by volcano-tectonic processes; (5) small greenstone masses within the gneiss are complexly deformed, together with the gneiss; and, (6) no compelling evidence has been found of ductile early thrusting in the gneiss terranes. Zones of greenstone enclaves occur in hornblende-rich contaminated tonalite and are apt to be deformed magmatic septa. Elsewhere, the tonalite gneiss is biotite-rich and hornblende-poor. These conclusions rest on several new pieces of structural evidence; (1) oval plutons of syenite-diorite have magmatic strain fabrics and sharp contacts that are parallel to an axial-plane foliation in the surrounding refolded gneiss; (2) gneiss domes are lithologically composite and contain large sheath-like structures which are deformed early plutons, distorted earlier gneiss domes, or early ductile nappes produced by folding of planar plutonic septa, and (3) the predomal attitudes of gneissosity varied from point to point.

  2. Hydrogeological impacts of a railway tunnel in fractured Precambrian gneiss rocks (south-eastern Norway)

    NASA Astrophysics Data System (ADS)

    Kværner, Jens; Snilsberg, Petter

    2013-11-01

    Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.

  3. The role of detrital zircons in Hadean crustal research

    NASA Astrophysics Data System (ADS)

    Nebel, Oliver; Rapp, Robert P.; Yaxley, Gregory M.

    2014-03-01

    Meso-Archean sedimentary sequences at Mt. Narryer and the Jack Hills of the Narryer Terrane in Western Australia's Yilgarn Craton contain detrital zircon grains with ages as old as 4.37 Ga, the oldest preserved terrestrial matter. These grains are rare remnants of Hadean (4.5-4.0 Ga) terrestrial crust and their survival stems from the crystallographic properties of zircon during crustal reworking: they are resistant to physical and chemical weathering. Zircons are further suitable for single grain, precise age determinations making them a unique archive of the crustal past. Only a small proportion of all detrital zircons from the Narryer Terrane show Hadean age spectra and younger overgrowth rims on all 'Hadean' grains indicate multiple recycling events. Numerous studies that applied a spectacular range of analytical tools and proxies have been undertaken to decipher the geochemical nature of these zircons' host rocks, in order to place constraints on Hadean geodynamics and the processes responsible for creating the earliest terrestrial crust. Their elemental and isotope budget and mineral inclusions have helped to develop an emerging picture of a water-rich, evolved Hadean crust. However, subsequent studies have challenged this view and it seems that each piece of new evidence indicative of an early, evolved continental crust has non-unique interpretations also permissive of mafic to ultra-mafic crust. In this review we examine these disparate interpretations and their possible implications and conclude that at least parts of the earliest terrestrial crust were hydrated. However, to date there is no conclusive evidence for preserved granitic, continental crust. The protoliths of the Hadean detrital zircons were likely acidic in nature, yet the composition of the greater terrane from which these melts were derived was probably mafic. It remains unclear if the zircons formed in a geodynamic environment that includes Hadean subduction. We suspect that the Hadean

  4. Mid-Miocene two-mica granites in the Malashan gneiss dome, south Tibet: Geochemical characteristics and formation mechanism

    NASA Astrophysics Data System (ADS)

    Gao, L.; Zeng, L.

    2011-12-01

    Knowledge of the timing of formation and geochemical nature of the Cenozoic granites along the High Himalaya as well as the Tethyan Himalaya is essential to test or formulate models that link high-grade metamorphism, crustal anatexis, and tectonic transition during the evolution of the Himalayan orogen. The Malashan gneiss dome, one of the prominent domes within the Tethyan Himalaya, consists of pelitic schists, calc-silicate metamorphic rocks, and at least two generations of granites. Two mica granites(TMG) occur as large plutons in Cuobu and Malashan, whereas a small leucogranite pluton occurs at the western side of the Paiku Lake. Two-mica granites from the Cuobu and the Malashan share similar characteristics in mineral composition, major and trace element geochemistry and isotope(Sr and Nd) compositions. New LA-ICP-MS zircon U/Pb analyses yielded that the Cuobu and the Malashan TMG formed at 17.6±0.1 Ma and 16.9±0.1 Ma, respectively. Both suits of granites are characterized by:(1)high SiO2(>71.3wt%), Al2O3(>14.8wt%), and relatively high CaO(>1.5wt%); (2)high A/CNK(>1.0) and K/Na ratios; (3)relatively high Sr(>146ppm), low Rb(<228ppm) and Rb/Sr ratios(<1.3); (4) enriched in LREE, depleted in HREE, as well as no or weakly negative Eu anomalies(Eu*=0.7~0.9); (5) as compared to leucogranites of similar ages in other Northern Himalayan Gneiss Domes, lower initial 87Sr/86Sr ratios (0.7390~0.7484) and similarly unradiogenic Nd isotope compositions (ɛNd(t)=-13.7~-14.4). Correlations between Ba and Rb/Sr ratios and between Rb/Sr and initial 87Sr/86Sr ratios imply that these two-mica granites were derived from muscovite H2O-fluxed melting of metasedimentary rocks at T=700-780oC. Such a reaction could be represented by 9Muscovite + 15Plagioclase + 7Quartz + xH2O = 31Melt, in which enhances the involvement of plagioclase, but suppresses the biotite due to relatively low temperature and the presence of water. This reaction not only produces granitic melts with low Rb

  5. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England

    USGS Publications Warehouse

    Aleinikoff, J.N.; Wintsch, R.P.; Tollo, R.P.; Unruh, D.M.; Fanning, C.M.; Schmitz, M.D.

    2007-01-01

    The Killingworth dome of south-central Connecticut occurs at the southern end of the Bronson Hill belt. It is composed of tonalitic and trondhjemitic orthogneisses (Killingworth complex) and bimodal metavolcanic rocks (Middletown complex) that display calc-alkaline affinities. Orthogneisses of the Killingworth complex (Boulder Lake gneiss, 456 ?? 6 Ma; Pond Meadow gneiss, ???460 Ma) were emplaced at about the same time as eruption and deposition of volcanic-sedimentary rocks of the Middletown complex (Middletown Formation, 449 ?? 4 Ma; Higganum gneiss, 459 ?? 4 Ma). Hidden Lake gneiss (339 ?? 3 Ma) occurs as a pluton in the core of the Killingworth dome, and, on the basis of geochemical and isotopic data, is included in the Killingworth complex. Pb and Nd isotopic data suggest that the Pond Meadow, Boulder Lake, and Hidden Lake gneisses (Killingworth complex) resulted from mixing of Neoproterozoic Gander terrane sources (high 207Pb/204Pb and intermediate ??Nd) and less radiogenic (low 207Pb/204Pb and low ??Nd) components, whereas Middletown Formation and Higganum gneiss (Middletown complex) were derived from mixtures of Gander basement and primitive (low 207Pb/204Pb and high ??Nd) sources. The less radiogenic component for the Killingworth complex is similar in isotopic composition to material from Laurentian (Grenville) crust. However, because published paleomagnetic and paleontologic data indicate that the Gander terrane is peri-Gondwanan in origin, the isotopic signature of Killingworth complex rocks probably was derived from Gander basement that contained detritus from non-Laurentian sources such as Amazonia, Baltica, or Oaxaquia. We suggest that the Killingworth complex formed above an east-dipping subduction zone on the west margin of the Gander terrane, whereas the Middletown complex formed to the east in a back-arc rift environment. Subsequent shortening, associated with the assembly of Pangea in the Carboniferous, resulted in Gander cover terranes over the

  6. SHRIMP study of zircons from Early Archean rocks in the Minnesota River Valley: Implications for the tectonic history of the Superior Province

    USGS Publications Warehouse

    Bickford, M.E.; Wooden, J.L.; Bauer, R.L.

    2006-01-01

    Interest in Paleoarchean to early Mesoarchean crust in North America has been sparked by the recent identification of ca. 3800-3500 Ma rocks on the northern margin of the Superior craton in the Assean Lake region of northern Manitoba and the Porpoise Cove terrane in northern Quebec. It has long been known that similarly ancient gneisses are exposed on the southern margin of the Superior craton in the Minnesota River Valley and in northern Michigan, but the ages of these rocks have been poorly constrained, because methods applied in the 1960s through late 1970s were inadequate to unravel the complexities of their thermotectonic history. Rocks exposed in the Minnesota River Valley include a complex of migmatitic granitic gneisses, schistose to gneissic amphibolite, metagabbro, and paragneisses. The best-known units are the Morton Gneiss and the Montevideo Gneiss. The complex of ancient gneisses is intruded by a major younger, weakly deformed granite body, the Sacred Heart granite. Regional geophysical anomalies that extend across the Minnesota River Valley have been interpreted as defining boundaries between distinct blocks containing the various gneissic units. New sensitive high-resolution ion microprobe (SHRIMP) U-Pb data from complex zircons yielded the following ages: Montevideo Gneiss near Montevideo, 3485 ?? 10 Ma, granodiorite intrusion, 3385 ?? 8 Ma; Montevideo Gneiss at Granite Falls, 3497 ?? 9 Ma, metamorphic event, 3300-3350 Ma, mafic intrusion, 3141 ?? 2 Ma, metamorphic overprint (rims), 2606 ?? 4 Ma; Morton Gneiss: 3524 ?? 9 Ma, granodiorite intrusion, 3370 ?? 8 Ma, metamorphic overprints (growth of rims), 3140 ?? 2 Ma and 2595 ?? 4 Ma; biotite-garnet paragneiss, 2619 ?? 20 Ma; and Sacred Heart granite, 2604 ?? 4 Ma. Zircons from a cordierite-bearing feldspar-biotite schist overlying the Morton Gneiss yielded well-defined age peaks at 3520, 3480, 3380, and 3140 Ma, showing detrital input from most of the older rock units; 2600 Ma rims on these zircons

  7. Tectonothermal evolution of a garnet-bearing quartzofeldspathic gneiss from the Moyar shear zone, south India and its bearing on the Neoarchean accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Bhadra, Subhadip; Nasipuri, Pritam

    2017-03-01

    We present mesoscale structural development across the Nilgiri Block and the flanking Moyar and Bhavani shear zones in south India, and detailed mineral-chemical and geothermobarometric studies of a garnet-bearing quartzofeldspathic gneiss from the easternmost part of the Moyar shear zone. Barring a narrow (< 100 μm) rim domain, major element distribution within garnet porphyroblasts reveals complete chemical homogenization. The absence of growth zoning in garnet porphyroblasts may suggest a protracted post-garnet growth residence period of the rock at elevated temperatures. Chemical zoning near garnet rim reflects the signature of both retrograde net-transfer (ReNTR) and retrograde exchange (ReER) equilibria. The ReNTR-equilibrium is recognized by prominent Mn kick-up in garnet, whereas the ReER-equilibrium is identified by divergence of Fe and Mg between garnet and biotite. Diffusion modelling, though qualitative, of the observed chemical zoning in garnet suggests an initial phase of rapid ( 150 °C/Ma) cooling, which may have been achieved by tectonic-extrusion-induced exhumation. Pressure-temperature conditions for peak, ReNTR and ReER are constrained, respectively, at 900 °C; 9-11 kbar, 735 °C; 8 kbar and 685 °C; 7.8 kbar. Analyses of structural fabrics establish oppositely verging nature of the Moyar and Bhavani shear zone and may suggest a doubly vergent orogenic development, with the former as prowedge and the latter as retrowedge. The presence of the Nilgiri Block as a topographically elevated region between these oppositely dipping thrust faults indeed corroborates a doubly vergent orogenic setup. The tectonic scenario is comparable with a continent-continent collision type accretionary tectonics. Peak high-P granulite facies metamorphism and post-peak long residence period of the studied quartzofeldspathic gneiss at deep crustal level suitably fit into the Neoarchean crustal dynamics resulting in crustal thickening, in the order of 41 km, within the

  8. Microstructural finite strain analysis and 40Ar/39Ar evidence for the origin of the Mizil gneiss dome, eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Saleh, Ahmad M.; Kassem, Osama M. K.

    2012-07-01

    The Mizil antiform is a gneiss-cored culmination situated near the northern end of the Ar Rayn island arc terrane, which is the easternmost exposed tectonic unit of the Arabian Shield. This domal structure has a mantle of metamorphosed volcanosedimentary rocks belonging to the Al-Amar Group, and an igneous interior made up of foliated granodiorite-tonalite with adakitic affinity. The gneissic core has a SHRIMP U-Pb zircon age of 689 ± 10 Ma making it the oldest rock unit in the Ar Rayn terrane. An adakite diapir, formed by the melting of the subducted crust of a young marginal basin, and rising through the volcanosedimentary succession of the Ar Rayn island arc is thought to have caused the observed doming. Relatively uniform strain throughout the dome combined with strong vertical shortening and the roughly radial pattern of stretching lineation is consistent with diapirism; the absence of strain localization rules out detachment faulting as a causative mechanism. Amphibolites from the metamorphic envelope have an 40Ar/39Ar age of 615 ± 2 Ma; the age gap between core and cover is thought to reflect the resetting of metamorphic ages during the final suturing event, a phenomenon that is often observed throughout the eastern shield. Aeromagnetic anomalies beneath the Phanerozoic sedimentary cover indicate the presence of a collage of accreted terranes east of the Ar Rayn terrane that were probably amalgamated onto the Arabian margin during the latest stages of the closure of the Mozambique ocean; culminant orogeny is believed to have taken place between 620 and 600 Ma as these terrane collided with a major continental mass to the east referred to here as the eastern Arabian block (EAB). The Mizil gneiss dome is therefore considered to have formed in a convergent contractional setting rather than being the outcome of extensional post-orogenic collapse.

  9. LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Verma, Surendra P.; Oliveira, Elson P.; Singh, Vinod K.; Moreno, Juan A.

    2016-03-01

    The central Bundelkhand greenstone complex in Bundelkhand craton, northern India is one of the well exposed Archaean supracrustal amphibolite, banded iron formation (BIF) and felsic volcanic rocks (FV) and associated with grey and pink porphyritic granite, tonalite-trondhjemite-granodiorite (TTG). Here we present high precision zircon U-Pb geochronological data for the pinkish porphyritic granites and TTG. The zircons from the grey-pinkish porphyritic granite show three different concordia ages of 2531 ± 21 Ma, 2516 ± 38 Ma, and 2514 ± 13 Ma, which are interpreted as the best estimate of the magmatic crystallization age for the studied granites. We also report the concordia age of 2669 ± 7.4 Ma for a trondhjemite gneiss sample, which is so far the youngest U-Pb geochronological data for a TTG rock suite in the Bundelkhand craton. This TTG formation at 2669 Ma is also more similar to Precambrian basement TTG gneisses of the Aravalli Craton of north western India and suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Aravalli craton of the North-western India.

  10. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  11. Granulite fades Nd-isotopic homogenization in the Lewisian complex of northwest Scotland

    USGS Publications Warehouse

    Whitehouse, M.J.

    1988-01-01

    A published Sm-Nd whole-rock isochron of 2,920 ?? 50 Myr, obtained from a wide range of lithologies in the Lewisian complex of north-west Scotland, was interpreted1 as the time of protolith formation. This date is ???260 Myr older than estimates for the timing of high-grade metamorphism in the complex at ??? 2,660 Myr2'3, and this period is considered to represent the duration of the Lewisian crustal accretion-differentiation superevent (CADS)4. Here we give new Sm-Nd data, obtained specifically from granulite facies tonalitic gneisses, that yield a date of 2,600 ??155 Myr. Although depleted-mantle model ages (tDM suggest >200 Myr of premetamorphic crustal residence, the regression date and its associated initial Nd-isotopic parameters demonstrate Nd-isotopic homogenization during the high-grade event, as well as the probability of general rare-earth-element (REE) mobility. Models for selective element depletion in the complex have previously assumed REE immobility since 2,920 Myr, but the data presented here suggest that a reappraisal of the depletion mechanism is required. ?? 1988 Nature Publishing Group.

  12. Melting depths associated with Jack Hills zircons crystallization as revealed by in situ trace element measurements

    NASA Astrophysics Data System (ADS)

    Profeta, L.; Ducea, M. N.; Gehrels, G. E.

    2016-12-01

    The Jack Hills zircons hosted within the Narryer Gneiss Complex, Yilgarn craton have ages from 4.4 Ga up to Mesoarchean. These zircons crystallized from low temperature granitoid magmas (Harrison, 2009). Here, we use trace element measurements obtained simultaneously with U-Pb ages using LA-ICP-MS on 276 Jack Hills zircons in order to estimate the depth of melting. La/Yb are converted to whole rock equivalent values using newly determined REE -whole rock partition coefficients (Chapman et al., 2016). La/Yb are subsequently transformed into depth estimates using the correlation between whole rock La/Yb and crustal thickness put forward in Profeta et al. (2015) for modern arcs. Our data pertains to 4.2 to 3.2 Ga zircons, which are supplemented with previously published data on 4.4.-4.3 Ga zircons (Peck et al. 2001). Depth estimates are averaged over 100 Ma bins, revealing a remarkably constant trend throughout the investigated period with values around 50 ± 10 km. We interpret that these depths may not be the result of a thick continental crust, as is the case for modern arcs, but rather the existence of different melting conditions during the Hadean and Paleoarchean due to elevated thermal regimes within the mantle. The high La/Yb whole rock ratios (with computed values greater than 10) coupled with elevated mantle temperatures point towards granitoid generation from partial melting of hydrated basalts (e.g. Martin et al., 2014). [1] Harrison, T.M., Annu. Rev. Earth Planet. Sci. 37, 479-505 (2009). [2] Chapman, J. B. et al., Chem. Geol. 439, 59-70 (2016). doi: 10.1016/j.chemgeo.2016.06.014. [3] Profeta, L. et al., Sci. Rep. 5, 17786 (2015). doi: 10.1038/srep17786 [4] Peck, W. et al., Cosmochim. Acta 65, 4215-4229 (2001). doi: 10.1016/S0016-7037(01)00711-6 [5] Martin, H. et al. Lithos 198, 1-13 (2014). doi: 10.1016/j.lithos.2014.02.017

  13. Silica-undersaturated reaction zones at a crust-mantle interface in the Highland Complex, Sri Lanka: Mass transfer and melt infiltration during high-temperature metasomatism

    NASA Astrophysics Data System (ADS)

    Fernando, G. W. A. R.; Dharmapriya, P. L.; Baumgartner, Lukas P.

    2017-07-01

    Sri Lanka is a crucial Gondwana fragment mostly composed of granulitic rocks in the Highland Complex surrounded by rocks with granulite to amphibolite grade in the Vijayan and Wanni Complex that were structurally juxtaposed during Pan-African orogeny. Fluids associated with granulite-facies metamorphism are thought to have controlled various lower crustal processes such as dehydration/hydration reactions, partial melting, and high-temperature metasomatism. Chemical disequilibrium in the hybrid contact zone between a near peak post-tectonic ultramafic enclave and siliceous granulitic gneiss at Rupaha within the Highland Complex produced metasomatic reaction zones under the presence of melt. Different reaction zones observed in the contact zone show the mineral assemblages phlogopite + spinel + sapphirine (zone A), spinel + sapphirine + corundum (zone B), corundum ( 30%) + biotite + plagioclase zone (zone C) and plagioclase + biotite + corundum ( 5%) zone (zone D). Chemical potential diagrams and mass balance reveal that the addition of Mg from ultramafic rocks and removal of Si from siliceous granulitic gneiss gave rise to residual enrichment of Al in the metasomatized mineral assemblages. We propose that contact metasomatism between the two units, promoted by melt influx, caused steady state diffusional transport across the profile. Corundum growth was promoted by the strong residual Al enrichment and Si depletion in reaction zone whereas sapphirine may have been formed under high Mg activity near the ultramafic rocks. Modelling also indicated that metasomatic alteration occurred at ca. 850 °C at 9 kbar, which is consistent with post-peak metamorphic conditions reached during the initial stage of exhumation in the lower crust and with temperature calculations based on conventional geothermometry.

  14. Metamorphism within the Chugach accretionary complex on southern Baranof Island, southeastern Alaska

    USGS Publications Warehouse

    Zumsteg, Cathy L.; Himmelberg, Glen R.; Karl, Susan M.; Haeussler, Peter J.

    2003-01-01

    On Baranof Island, southeastern Alaska, we identify four metamorphic events that affect rocks associated with the Chugach accretionary complex. This study focuses on the M1 and M4 metamorphic events. Mesozoic schists, gneisses, and migmatitic gneisses exposed near the Kasnyku pluton on central Baranof Island represent the M1 metamorphic rocks. These rocks underwent amphibolite facies metamorphism. Calculated temperatures and pressures range from about 620 to 780 ºC and 5.5 to 6.6 kbar and are compatible with the observed metamorphic mineral assemblages.The M4 metamorphism affected rocks of the Sitka Graywacke on southern Baranof Island, producing extensive biotite and garnet zones as well as andalusite and sillimanite zones at the contacts of the Crawfish Inlet and Redfish Bay plutons. Calculated M4 temperatures and pressures from the andalusite and sillimanite zones range from 575 to 755 ºC and 3.4 to 6.9 kbar. These results fall within the sillimanite stability field, at pressures higher than andalusite stability. These results may indicate the M4 metamorphic event occurred along a P-T path along which the equilibration of aluminosilicate-garnet-plagioclase-quartz did not occur or was not maintained. This interpretation is supported by the occurrence of andalusite and sillimanite within the same sample. We propose the data reflect a clockwise P-T path with peak M4 metamorphism of the sillimanite-bearing samples adjacent to the intrusions at an approximate depth of 15 to 20 km, followed by rapid uplift without reequilibration of garnet-plagioclase-aluminosilicate-quartz.The large extent of the biotite zone, and possibly the garnet zone, suggests that an additional heat source must have existed to regionally metamorphose these rocks during the M4 event. We suggest the M4 regional thermal metamorphism and intrusion of the Crawfish Inlet and Redfish Bay plutons were synchronous and the result of heat flux from a slab window beneath the accretionary complex at that

  15. The origin of jarosite associated with a gossan on Archean gneiss in Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Pratt, L. M.; Young, S. A.; Cadieux, S. B.; White, J. R.

    2013-12-01

    The mineral Jarosite [KFe3(SO4)2(OH)6] since its discovery, by Opportunity rover at Meridiani Planum on Mars, has been the subject of intense geochemical and environmental study over the last 5-10 years. Jarosite requires highly acidic, K-enriched, and oxidizing aqueous conditions for formation. Stable isotopes of O, H, and S of jarosite have the ability to record the temperatures of formation, environments of deposition, fluids, and fluid/atmospheric interactions. Therefore, the origin of jarosite is important for understanding present and past environmental conditions on Mars. Unfortunately, the origin of jarosite on Mars remains unclear. Jarosite is commonly found on Earth in the weathering zones of pyrite-bearing ore deposits, near-surface playa sediments in acid-saline lakes, or epithermal environments and hot springs. Here, we report the occurrence of jarosite in association with a gossan overlying weathered Archean gneiss and Paleoproterozoic mafic dikes at the ice-free margin of southwestern Greenland. In our 2012 field campaign, we excavated soil pits to a depth of 40 cm with a high vertical sampling resolution. No visible pyrite was found in the nearby outcroppings of gneiss in the field. XRD data show that all samples were composed of anorthite, quartz, albite, jarosite, muscovite, and microcline. Jarosite was the only sulfur-bearing mineral identified by XRD, with abundance of jarosite increasing with depth (up to 8.4 wt. %) in the soil pits. Water soluble and acid soluble sulfate were sequentially extracted using 10% NaCl and 2N HCl solutions, respectively. Pyrite was then subsequently extracted from insoluble residues by a chromium reduction method. The average abundance of water soluble sulfate, acid soluble sulfate, and pyrite were 100 ppm, 7 wt. %, and 10 ppm, respectively. The δ34S values of water soluble sulfate, acid soluble sulfate, and pyrite range from -0.7‰ to 3.1‰ (average= 1.5‰), -1.2 to 1.5‰ (average= 0.7‰), and 0.3‰ to 6.7

  16. Fluid-induced Crystallization of Majoritic Garnet During Deep Continental Subduction (Western Gneiss Region, Norway)

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Pettke, T.; van Roermund, H. L.

    2008-12-01

    In ultrahigh pressure (UHP) rocks, garnet containing pyroxene exsolutions derives from breakdown of majorite crystallized at depths > 200 km. Presence of microdiamonds in some of these rocks [1], including those of the Western Gneiss Region (WGR) of Norway [2], may suggest a fluid-bearing environment for the genesis of majorite. The WGR UHP gneisses host garnet peridotite and websterite recording uplift from extraordinary depths prior to uptake in a subducting slab [2]. These ultramafic rocks (islands of Otrøy and Bardane) derive from depleted Archean transition-zone mantle (350 km depth) upwelled and accreted to a cratonic lithosphere (M2 stage). Evidence for this are decimetric garnets (grt) preserved in Otrøy, hosting up to 20 volume% orthopyroxene (opx) and clinopyroxene (cpx) exsolved from precursor majoritic garnet (M1 stage). The pyroxene lamellae (20-30 ¥ìm thick, hundreds of ¥ìm long) [3] were exsolved under high-T, as shown by the garnet/cpx REE distribution [4]. This Archean-mid Proterozoic record is overprinted by the 425- 390 Ma Scandian continental subduction (M3 stage), forming new grt + cpx + opx + phlogopite (phl) + spinel (sp) that contain diamond-bearing micro-inclusions witnessing deep COH subduction fluids [2]. Here we document formation of new majoritic garnet in the M3 assemblage and in veins at Bardane [5]. Textural characteristics, together with the LREE and LILE enrichments of the M3 minerals, indicate that the new majorite is linked to infiltration of subduction fluids during renewed burial towards sub-lithospheric depths. It represents the deepest occurrence of fluid-related microstructures in mantle rocks. The new majoritic garnet crystallized at grain boundaries and in micro-veins at 7 Gpa and 900-1000 °C. It hosts thin pyroxene needles (5 mm thick, 100 mm long) exsolved under comparatively low-T, as indicated by the garnet/cpx REE distribution. The trace element signature of the majorite-bearing subduction assemblage is LREE

  17. Evidence for a Mid-Crustal Continental Suture and Implications for Multistage (U)HP exhumation, Liverpool Land, East Greenland

    NASA Astrophysics Data System (ADS)

    Johnston, S.; Brueckner, H.; Gehrels, G.; Manthei, C.; Hacker, B.; Kylander-Clark, A.; Hartz, E. H.

    2008-12-01

    The East Greenland Caledonides consists of a series of west-directed sheets that formed from 460-360 Ma as Baltica subducted westward beneath Laurentia, and offer an opportunity to study high- and ultrahigh- pressure exhumation in orogenic hangingwalls. The Liverpool Land (LL) gneiss complex, 100 km east of the nearest Caledonian gneisses, provides a window into the deepest levels of the Greenland Caledonides. From the bottom up, the LL tectonostratigraphy is comprised of the eclogite-bearing Tvaerdal orthogneiss and the granulite-facies Jaettedal paragneiss structurally below the top-N Hurry Inlet Detachment. We present new thermobarometry and U/Pb zircon and titanite geochronology from the LL gneisses to define the tectonostratigraphy, continental affinity, and exhumation histories of the LL gneiss complex. The Tvaerdal orthogneiss consists of felsic orthogneisses that host rare ultramafic bodies (Fo92) and mafic boudins that yield peak pressures of >25 kbar at 800°C. Host gneiss zircons dated using LA-MC- ICPMS yield 1676 ± 17 Ma (2s) cores with 403 ± 6 Ma (2s) rims that suggest Mesoproterozoic emplacement of the original intrusive body followed by late-Caledonian deformation. The Tvaerdal orthogneiss also includes voluminous decompression melts; one yielded a TIMS U/Pb titanite age of 387.5 ± 2.2 Ma (2s). The structurally higher Jaettedal paragneiss consists of pelitic gneisses interlayered with granodioritic-dioritic orthogneisses. The Jaettedal-Tvaerdal contact is petrologically abrupt and concordant to regional foliation and lacks sub-amphibolite-facies displacement. Aluminum silicate-bearing pelitic assemblages within the Jaettedal paragneiss yield peak metamorphic conditions of 10-11 kbar at 750- 800°C. U/Pb age maps made using LA-MC-ICPMS from three paragneisses reveal Mesoproterozoic- Archean detrital cores with Caledonian rim overgrowths that cluster between 439-434 Ma. An amphibolite restite from the Jaettedal paragneiss yielded a TIMS U

  18. Gneisses (Serizzi and Beole) of the Verbano-Cusio-Ossola district (Piedmont, Northern Italy): possible candidates for the designation of "Global Heritage Stone province"

    NASA Astrophysics Data System (ADS)

    Antonella Dino, Giovanna; Borghi, Alessandro; Cavallo, Alessandro; Primavori, Piero

    2016-04-01

    The Verbano-Cusio-Ossola quarrying district (Piedmont, northern Italy) produces many different ornamental stones (granites, gneisses, marbles): two really important categories are represented by Serizzo and Beola gneisses. Several varieties of Serizzo and Beola crop out in the upper and middle Ossola Valley: Serizzo derives from the Antigorio, Monte Leone and Monte Rosa Penninic Units, whereas Beola from the Monte Leone, Orselina-Moncucco-Isorno and Monte Rosa Penninic Units, as well from the Fobello-Rimella schists (Austroalpine). The Serizzo, represented by a group of foliated granitoid orthogneisses (Serizzo Antigorio, Serizzo Formazza, Serizzo Sempione and Serizzo Monte Rosa varieties), is probably the most important and extensively exploited ornamental stones from the VCO province (about 70% of the VCO stone production). The quarries are mostly concentrated in the Antigorio and Formazza valleys, where the Antigorio nappe has a sub-horizontal attitude and reaches its greatest thickness (up to 1000 m). This stone was largely used to produce columns since the end of XV century (e.g. the old Ospedale Maggiore in Milano, now University of Milano) and later on it was replaced with granites. It was also used in the building structure of the Duomo di Milano, for the plinth and the piers. Nowadays, thanks to its good wear resistance and low cost, it is mainly used in polished slabs for paving: a recent application is the Frankfurt airport floor. Beola is the name of a group of heterogeneous orthogneisses with mylonitic foliation and strong mineralogical lineation (Beola Grigia, Bianca, Ghiandonata, Striata varieties), easy to split into thin slabs with hammer and chisel, occurring in the middle Ossola Valley, between Vogogna and Montecrestese. The quarries of Beola are probably the oldest of the Ossola Valley, although the precise period in which the stone started to be exported is unknown. The Beola trade probably started at the end of the XIII century, with the

  19. Isukasia area: Regional geological setting (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Nutman, A. P.; Rosing, M.

    1986-01-01

    A brief account of the geology of the Isukasis area is given and is biased toward the main theme of the itinerary for the area: What has been established about the protoliths of the early Archean rocks of the area - the Isua supracrustal belt and the Amitsoq gneisses? The area's long and complex tectonometamorphic history of events can be divided into episodes using a combination of dike chronology, isotopic, and petrological studies. The earliest dikes, the ca 3700 Ma Inaluk dikes, intrude the earliest (tonalitic) components of the Amitsoq gneisses but are themselves cut up by the injection of the younger (granitic and pegmatitic) phases of the Amitsoq gneisses of the area. The areas of low late Archean deformation, strongly deformed early Archean mafic rocks have coarse grained metamorphic segregations and are cut by virtually undeformed mid-Archean Tarssartoq (Ameralik) dikes devoid of metamorphic segregations. The shows that the area was affected by regional amphibolite facies metamorphism in the early Archean. Late Archean and Proterozoic metamorphic imprints are marked to very strong in the area. Much of the early Archean gneiss complex was already highly deformed when the mid-Archean Tarssartoq dikes were intruded.

  20. Metamorphic brines and no surficial fluids trapped in the detachment footwall of a Metamorphic Core Complex (Nevado-Filábride units, Betics, Spain)

    NASA Astrophysics Data System (ADS)

    Dyja-Person, Vanessa; Tarantola, Alexandre; Richard, Antonin; Hibsch, Christian; Siebenaller, Luc; Boiron, Marie-Christine; Cathelineau, Michel; Boulvais, Philippe

    2018-03-01

    The ductile-brittle transition zone in extensional regimes can play the role of a hydrogeological barrier. Quartz veins developed within an orthogneiss body located in the detachment footwall of a Metamorphic Core Complex (MCC) in the Nevado-Filábride units (Betics, Spain). The detachment footwall is composed mainly of gneisses, schists and metacarbonates from the Bédar-Macael sub-unit. Schist and metacarbonate bodies show evidence of ductile deformation at the time the gneiss was already undergoing brittle deformation and vein opening during exhumation. The vein system provides the opportunity to investigate the origin, composition and PVTX conditions of the fluids that circulated in the detachment footwall while the footwall units were crossing the ductile-brittle transition. The analysis of fluid inclusions reveals the presence of a single type of fluid: 30-40 mass% NaCl > KCl > CaCl2 > MgCl2 brines, with trace amounts of CO2 and N2 and tens to thousands of ppm of metals such as Fe, Sr, Li, Zn, Ba, Pb and Cu. δDfluid values between -39.8 and -16.7‰ and δ18Ofluid values between 4.4 and 11.7 ± 0.5‰ show that the brines have undergone protracted interaction with the host orthogneissic body. Coupled salinity and Cl/Br ratios (200 to 4400) indicate that the brines originate from dissolution of Triassic metaevaporites by metamorphic fluids variably enriched in Br by interaction with graphitic schists. This study highlights the absence of any record of surficial fluids within the veins, despite the brittle deformation conditions prevailing in this orthogneiss body. The fact that fluids from the detachment footwall were isolated from surficial fluid reservoirs may result from the presence of overlying schists and metacarbonates that continued to be affected by ductile deformation during vein formation in the gneiss, preventing downward circulation of surface-derived fluids.

  1. Paleoproterozoic multistage metamorphic events in Jining metapelitic rocks from the Khondalite Belt in the North China Craton: Evidence from petrology, phase equilibria modelling and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Cai, Jia; Liu, Fulai; Liu, Pinghua

    2017-05-01

    Metapelitic rocks of the Jining Complex (sillimanite-cordierite-garnet (Sil-Crd-Grt) gneisses, sillimanite-garnet (Sil-Grt) gneisses and quartzofeldspathic rocks) are exposed in the eastern segment of the Khondalite Belt (KB) in the North China Craton (NCC). The Sil-Crd-Grt gneisses have preserved polyphase mineral assemblages and microstructural evidence of anatexis, resulting from biotite dehydration melting. Petrological observations revealed that the Sil-Crd-Grt gneisses contain three metamorphic assemblages: a peak assemblage of garnet porphyroblast and matrix biotite + sillimanite + K-feldspar + plagioclase + quartz + ilmenite + magnetite, a post-peak near-isothermal decompressional assemblage of garnet + cordierite + biotite + sillimanite + K-feldspar + plagioclase + quartz + ilmenite + magnetite, and a decompressional cooling assemblage of garnet + biotite + cordierite + K-feldspar + plagioclase + quartz + ilmenite + magnetite. A clockwise P-T path was defined involving the inferred peak stage followed by post-peak near-isothermal decompression and decompressional cooling stages, with P-T conditions of 790-825 °C and 9-10 kbar, 810-890 °C and 6.0-6.5 kbar, and 780-810 °C and 4.0-5.5 kbar, respectively. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) U-Pb analyses of the Sil-Crd-Grt gneisses and Sil-Grt gneisses for the detrital and metamorphic zircons yielded a protolith age of ∼2.0 Ga and the late Paleoproterozoic metamorphic age of 1895-1885 Ma. The results reveal that the metapelitic rocks of the Jining Complex underwent continent-continent subduction or collision in the peak metamorphic stage, followed by a post-collisional exhumation event in the post-peak decompressional stage, and a subsequent decompressional cooling stage between the Yinshan and Ordos blocks to form the Paleoproterozoic KB.

  2. Microstructures of the Kirsehir Complex, Central Turkey

    NASA Astrophysics Data System (ADS)

    ISIK, V.; Caglayan, A.; Uysal, T.; Bolhar, R.

    2011-12-01

    Turkey is positioned on the boundary between the Eurasian and African/Arabian plates, providing an ideal natural laboratory for learning passive and active earth processes such as deformation, metamorphism, earthquakes and volcanism. Central Turkey historically has played an important role in evolution of the Alpine orogeny. The Kirsehir Complex is one of three Mesozoic-Early Tertiary metamorphic and plutonic mid-crustal basement units exposed in central Turkey. The most common lithology of the metamorphites are the banded gneisses, which are intercalated with layers of schists, amphibolites and quartzite, and marbles representing the structurally the highest metamorphites of the study area. The metamorphites are characterized by multiple folding episodes and overprinting faults (thrust, normal and strike-slip). These metamorphites reached peak metamorphic conditions of upper amphibolite facies, as indicated by local presence of clinopyroxene, sillimanite, hornblende, andalusite and garnet. Later, retrograde greenschist facies conditions were attained characterized by the alteration of feldspar and mafic minerals to muscovite and chlorite/actinolite, respectively. The microstructures of selected minerals can be used to bracket the metamorphic grade during which microstructure formed. Quartz displays undulose extinction, deformation bands, subgrains and deformation lamellae, and recrystallisation. The presence of lobate grain boundaries of quartz indicates that GBM recrystallisation occurred. Undulose extinction and recrystallisation are common in micas. Recrystallisation, core-mantle structures in feldspar, myrmekites in K-feldspars within the gneisses suggest that deformation occurred within the amphibolite facies. Garnet occurs as slightly elliptical porphroclats. Sillimanite is present as fibrolite growing near biotite and microboudinaged. Andalusite porphyroblast/porphroclats are elongate and microboudinaged. Kinematic indicators (asymmetric mantled grains, S

  3. Petrogenesis of low-δ18O quartz porphyry dykes, Koegel Fontein complex, South Africa

    NASA Astrophysics Data System (ADS)

    Harris, Chris; Mulder, Kwenidyn; Sarkar, Saheli; Whitehead, Benjamin; Roopnarain, Sherissa

    2018-04-01

    This paper investigates the origin of low-δ18O quartz porphyry dykes associated with the 144-133 Ma Koegel Fontein Igneous Complex, which was intruded during the initial phase of breakup of Africa and South America. The 25-km diameter Rietpoort Granite is the largest and youngest phase of activity, and is roofed by a 10-km diameter pendant of gneiss. Quartz porphyry (QP) dykes, up to 15 m in width, strike NW-SE across the complex. The QP dykes that intruded outside the granite have similar quartz phenocryst δ18O values (average 8.0‰, ± 0.7, n = 33) to the granite (average 8.3 ± 1.0, n = 7). The QP dykes that intruded the roof pendant have quartz phenocrysts with more variable δ18O values (average 1.6‰, ± 2.1, n = 55). In some cases quartz phenocrysts have δ18O values as low as - 2.5‰. The variation in δ18O value within the quartz crystal population of individual dykes is small relative to the overall range, and core and rim material from individual quartz phenocrysts in three samples are identical within error. There is no evidence that quartz phenocryst δ18O values have been affected by fluid-rock interaction. Based on a Δquartz-magma value of 0.6‰, magma δ18O values must have been as low as - 3.1‰. Samples collected along the length of the two main QP dykes that traverse the roof pendant have quartz phenocryst δ18O values that range from + 1.1 to + 4.6‰, and - 2.3 to + 5.6‰, respectively. These δ18O values correlate negatively ( r = - 0.96) with initial 87Sr/86Sr, which can be explained by the event that lowered δ18O values of the source being older than the dykes. We suggest that the QP dykes were fed by magma produced by partial melting of gneiss, which had been variably altered at high temperature by 18O-depleted meteoric water during global glaciation at 550 Ma. The early melts had variable δ18O value but as melt pockets interconnected during melting, the δ18O values approached that of average gneiss. Variable quartz phenocryst

  4. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton

    NASA Astrophysics Data System (ADS)

    Lu, Jun-Sheng; Zhai, Ming-Guo; Lu, Lin-Sheng; Wang, Hao Y. C.; Chen, Hong-Xu; Peng, Tao; Wu, Chun-Ming; Zhao, Tai-Ping

    2017-02-01

    The Taihua metamorphic complex in the southern part of the North China Craton is composed of tonalite-trondhjemite-granodiorite (TTG) gneisses, amphibolites, metapelitic gneisses, marbles, quartzites, and banded iron formations (BIFs). The protoliths of the complex have ages ranging from ∼2.1 to ∼2.9 Ga and was metamorphosed under the upper amphibolite to granulite facies conditions with NWW-SEE-striking gneissosity. Metapelitites from the Wugang area have three stages of metamorphic mineral assemblages. The prograde metamorphic mineral assemblage (M1) includes biotite + plagioclase + quartz + ilmenite preserved as inclusions in garnet porphyroblasts. The peak mineral assemblage (M2) consists of garnet porphyroblasts and matrix minerals of sillimanite + biotite + plagioclase + quartz + K-feldspar + ilmenite + rutile + pyrite. The retrograde mineral assemblage (M3), biotite + plagioclase + quartz, occurs as symplectic assemblages surrounding embayed garnet porphyroblasts. Garnet porphyroblasts are chemically zoned. Pseudosection calculated in the NCKFMASHTO model system suggests that mantles of garnet porphyroblasts define high-pressure granulites facies P-T conditions of 12.2 kbar and 830 °C, whereas garnet rims record P-T conditions of 10.2 kbar and 840 °C. Integrating the prograde mineral assemblages, zoning of garnet porphyroblasts with symplectic assemblages, a clockwise metamorphic P-T path can be retrieved. High resolution SIMS U-Pb dating and LA-ICP-MS trace element measurements of the metamorphic zircons demonstrate that metapelites in Wugang possibly record the peak or near peak metamorphic ages of ∼1.92 Ga. Furthermore, 40Ar/39Ar dating of biotite in metapelites suggests that the cooling of the Taihua complex may have lasted until ∼1.83 Ga. Therefore, a long-lived Palaeoproterozoic metamorphic event may define a slow exhumation process. Field relationship and new metamorphic data for the Taihua metamorphic complex does not support the previous

  5. Bedrock geologic and joint trend map of the Pinardville quadrangle, Hillsborough County, New Hampshire

    USGS Publications Warehouse

    Burton, William C.; Armstrong, Thomas R.

    2013-01-01

    The bedrock geology of the Pinardville quadrangle includes the Massabesic Gneiss Complex, exposed in the core of a regional northeast-trending anticlinorium, and highly deformed metasedimentary rocks of the Rangeley Formation, exposed along the northwest limb of the anticlinorium. Both formations were subjected to high-grade metamorphism and partial melting: the Rangeley during the middle Paleozoic Acadian orogeny, and the Massabesic Gneiss Complex during both the Acadian and the late Paleozoic Alleghanian orogeny. Granitoids produced during these orogenies range in age from Devonian (Spaulding Tonalite) to Permian (granite at Damon Pond), each with associated pegmatite. In the latest Paleozoic the Massabesic Gneiss Complex was uplifted with respect to the Rangeley Formation along the ductile Powder Hill fault, which also had a left-lateral component. Uplift continued into the early Mesozoic, producing the 2-kilometer-wide Campbell Hill fault zone, which is marked by northwest-dipping normal faults and dilational map-scale quartz bodies. Rare, undeformed Jurassic diabase dikes cut all older lithologies and structures. A second map is a compilation of joint orientations measured at all outcrops in the quadrangle. There is a great diversity of strike trends, with northeast perhaps being the most predominant.

  6. The post collisional metamorphic evolution from Ultra High Temperature to Amphibolite facies metamorphism in the Odesan area during the Triassic collision between the North and South China cratons.

    NASA Astrophysics Data System (ADS)

    Lee, Byung Choon; Oh, Chang Whan; Kim, Tae Sung; Yi, Kee Wook

    2015-04-01

    The Odaesan Gneiss Complex (OGC) is the eastern end of the Hongseong-Odesan collision belt in Korean Peninsula which is the extension of the Dabie-Sulu collision belt between the North and South China blocks. The OGC mainly consists of banded and migmatitic gneiss with porphyritic granitoid and amphibolite. The banded gneiss can be subdivided into garnet-biotite and garnet-orthopyroxene banded gneisses. The highest metamorphic P/T conditions of the migmatitic and garnet-biotite banded gneiss were 760-820°C/6.3-7.2kbar and 810-840°C/7.2-7.8kbar respectively. On the other hand, the garnet-orthopyroxene banded gneiss records 940-950°C/10.5-10.7kbar that is corresponded to UHT metamorphic condition. These data indicate that the peak UHT metamorphic condition of the study area was preserved only within the garnet-orthopyroxene banded gneiss because its lower water content than other gneisses and UHT metamorphic mineral assemblage was completely replaced by the granulite facies metamorphism in other gneisses due to their higher water content than the garnet-orthopyroxene banded gneiss. Finally all gneisses experienced amphibolite facies retrograde metamorphism which is observed locally within rocks, such as garnet rim and surrounding area. The peak UHT metamorphism is estimated to occur at ca. 250-230 Ma using SHRIMP zircon U-Pb age dating and was caused by the heat supplied from asthenospheric mantle through the opening formed by slab break-off during early post collision stage. The calculated metamorphic conditions represent that geothermal gradient of the study area during the post collision stage was 86°C/kbar indicating the regional low-P/T metamorphic event. Besides the Triassic metamorphic age, two Paleoproterozoic metamorphic ages of ca. 1930 and 1886 Ma are also recognized by the SHRIMP age dating from the banded gneisses and Paleoproterozoic emplacement age of ca. 1847 Ma is identified from the porphyritic granitoid which formed in the within plate tectonic

  7. The role of garnet in (Y+REE) mobility during fluid-initiated, localized, solid state dehydration of an amphibole-bearing migmatised granitic gneiss to charnockite

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.; Anczkiewicz, R.; Johansson, L.

    2013-12-01

    On either side of 1 m wide granitic pegmatoid dyke, Söndrum stone quarry, Halmstad, SW Sweden, extends a 2.5-3 m wide Opx-bearing dehydration zone (DZ) (650-700 °C; 800 MPa; Opx-Cpx-Bt-Amph-Gt-allanite), which overprints the gneissic banding of the surrounding migmatised granitic gneiss (MGG) (Amph-Bt-Gt-allanite) (Harlov et al., 2006, J Petrol 47, 3). Whole-rock chemistry indicates that dehydration of the MGG was predominantly isochemical. Exceptions include (Y+HREE), Ba, Sr, and F, which are markedly depleted throughout the DZ while LREE-bearing allanite remains unaltered. Systematic trends in the Gt, Bt, Amph, and FAp mineral chemistry across the DZ include depletion in Fe, (Y+HREE), Na, K, F, and Cl, and enrichment in Mg, Mn, Ca, and Ti. Fluid inclusion data suggest that the solid state dehydration event was due to advective transport of a CO2-rich fluid with a minor Cl and F component originating from a tectonic fracture represented today by the pegmatoid dyke. LA-ICPMS analysis of (Y+REE) in Gt (NIST 612 Glass standard; for operating conditions cf. Anczkiewicz et al. 2012 Chem Geol 318-319, 16) across the traverse indicates at least two distinct populations of Gt from the DZ variably depleted in (Y+HREE) and LREE (Fig. 1) by an order of magnitude compared to Gt in the MGG (Fig. 2). Depletion most likely is the result of (Y+HREE) and LREE partitioning from the Gt into the dehydrating fluid to complex with F and Cl. Variable depletion suggests preferred inter-granular pathways for fluid flow through the DZ during the dehydration event allowing some Gt grains greater exposure to the fluid than other Gt grains.

  8. The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: An isotopic investigation

    NASA Astrophysics Data System (ADS)

    Brueckner, H. K.; Carswell, D. A.; Griffin, W. L.; Medaris, L. G., Jr.; Van Roermund, H. L. M.; Cuthbert, S. J.

    2010-06-01

    A compilation of published and unpublished geochronological and isotopic data from garnet-bearing orogenic peridotites in the HP/UHP Western Gneiss Region (WGR) of the Norwegian Caledonides indicate a common origin for all WGR peridotites, followed by different, though related, Proterozoic and Phanerozoic histories for those in the northwestern WGR (NW peridotites) compared to those in the central and western WGR (CW peridotites). All peridotites are refractory fragments of the subcontinental lithosphere generated by Archean melt extraction, which produced strongly depleted dunites and harzburgites with relict orthopyroxene and majoritic garnet megacrysts (M 1NW) within the NW peridotites. The Archean history is preserved by Re-Os sulfide and whole-rock ages from several WGR bodies and by Sm-Nd ages from the M 1NW megacrysts. Subsequently the CW peridotites were re-fertilized within the lithospheric mantle by mid-Proterozoic or older silicate melts that generated M 2CW garnet pyroxenites and adjacent garnet peridotites. Clinopyroxenes from these bodies show large variation in 143Nd/ 144Nd, but nearly constant 87Sr/ 86Sr, suggesting autometasomatism of depleted mantle by LREE-enriched, Rb-poor melts derived from equally depleted mantle. NW peridotites lack mid-Proterozoic garnet pyroxenite intrusions, but M 2NW garnet-rich assemblages that exsolved from relict M 1 megacrysts may have equilibrated at the same time as the M 2CW refertilization. Sm-Nd and Lu-Hf mineral apparent isochron ages from both suites range from 1.75 to ca. 0.87 Ga. The age spectrum suggests continuous diffusion among M 2 minerals that formed ≥ 1.75 Ga ago punctuated by partial re-equilibration during a 1.0 Ga thermal event. Much later the NW peridotites were transferred from the mantle wedge into the crust as the WGR was subducted into the mantle during the ca 400 Ma Scandian Orogeny. Further subduction heterogeneously metasomatized and recrystallized the NW peridotites to form M 3NW garnet

  9. Revisiting elastic anisotropy of biotite gneiss from the Outokumpu scientific drill hole based on new texture measurements and texture-based velocity calculations

    NASA Astrophysics Data System (ADS)

    Wenk, H.-R.; Vasin, R. N.; Kern, H.; Matthies, S.; Vogel, S. C.; Ivankina, T. I.

    2012-10-01

    A sample of biotite gneiss from the Outokumpu deep drilling project in Finland was investigated by Kern et al. (2008) for crystal preferred orientation and elastic anisotropy. Considerable differences between measured acoustic velocities and velocities calculated on the basis of texture patterns were observed. Measured P-wave anisotropy was 15.1% versus a Voigt average yielding 7.9%. Here we investigate the same sample with different methods and using different averaging techniques. Analyzing time-of-flight neutron diffraction data from Dubna-SKAT and LANSCE-HIPPO diffractometers with the Rietveld technique, much stronger preferred orientation for biotite is determined, compared to conventional pole-figure analysis reported previously. The comparison reveals important differences: HIPPO has much better counting statistics but pole figure coverage is poor. SKAT has better angular resolution. Using the new preferred orientation data and applying a self-consistent averaging method that takes grain shapes into account, close agreement of calculated and measured P-wave velocities is observed (12.6%). This is further improved by adding 0.1 vol.% flat micropores parallel to the biotite platelets in the simulation (14.9%).

  10. Brother is high Sr/Y two-mica granite and sister is leucogranite: twin granites in the Northern Himalayan Gneiss Domes, southern Tibet

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Gao, L.; Xie, K.

    2011-12-01

    Leucogranites in the Himalayan orogen is widely considered as the type example of crustal melts, which provides a probe to investigate the interplay among high-grade metamorphism, crustal anatexis, and tectonic transition in large-scale collisional belts. Whether the leucogranite was a daughter product from a more primitive granitic melt is an interesting question that deserves careful examination to address the above issue. We report a new suite of two-mica granite (TMG) and leucogranite (LG) in the Yardoi gneiss dome (YGD) in the easternmost of the Northern Himalayan Gneiss Domes (NHGD), south of the Yarlung-Tsangpo suture. SHRIMP and LA-ICP-MS zircon U/Pb dating show that TMG and LG formed at ~17.7 Ma to ~20.0 Ma and at ~17.1 Ma, respectively. Both suites of granite have high Na/K (>1.30) ratios. The TMGs are characterized by (1) high Sr (>450 ppm), low Rb (<95 ppm) and Y (<6 ppm), and high Sr/Y (>86) ratios; (2) no Eu anomalies; and (3) low initial 87Sr/86Sr ratios (<0.7098) and higher ɛNd (>-8.5) values. In contrast, the LGs have (1) lower Sr (<130 ppm) and higher Rb (92-130 ppm); (2) pronounced negative Eu anomalies with Eu/Eu*<0.55; and (3) relatively higher Sr (87Sr/86Sr(t) =0.7136-0.7148) and unradiogenic Nd (ɛNd(t)=-7.7~-11.1). These data demonstrate that these Mid-Miocene granites have major and trace element and radiogenic isotope compositions similar to those of >35 Ma granites, but significantly different from those granites of similar ages in the High Himalaya as well as in the NHGD. High Sr/Y and relatively unradiogenic Sr isotope compositions in the TMGs could be derived from partial melting of mafic materials formed during previous compressional thickening event which was triggered by the input of juvenile heat and material associated with the Miocene E-W extension. An AFC process (plagioclase fractional crystallization and contamination by crustal materials) could be a primary factor leading to the formation of these LGs. Concurrence of high Sr

  11. Complex high-strain deformation in the Usagaran Orogen, Tanzania: structural setting of Palaeoproterozoic eclogites

    NASA Astrophysics Data System (ADS)

    Reddy, S. M.; Collins, A. S.; Mruma, A.

    2003-11-01

    The Palaeoproterozoic Usagaran Orogen of Tanzania contains the Earth's oldest reported examples of subduction-related eclogite facies rocks. Detailed field mapping of gneisses exposed in the high-grade, eclogite-bearing part of the orogen (the Isimani Suite) indicates a complex deformation and thermal history. Deformation in the Isimani Suite can be broadly subdivided into five events. The first of these (D 1), associated with formation of eclogite facies metamorphism, is strongly overprinted by a pervasive deformation (D 2) at amphibolite facies conditions, which resulted in the accumulation of high strains throughout all of the exposed Isimani rocks. The geometry of foliations and lineations developed during D 2 deformation are variable and have different shear directions that enable five D 2 domains to be identified. Analysis of these domains indicates a geometrical and kinematic pattern that is interpreted to have formed by strain and kinematic partitioning during sinistral transpression. U-Pb SHRIMP zircon ages from a post-D 2 granite and previously published geochronological data from the Usagaran eclogites indicate this deformation took place between 2000 ± 1 Ma and 1877 ± 7 Ma (at 1σ error). Subsequent greenschist facies deformation, localised as shear zones on boundaries separating D 2 domains, have both contractional and extensional geometries that indicate post-1877 Ma reactivation of the Isimani Suite. This reactivation may have taken place during Palaeoproterozoic exhumation of the Usagaran Orogen or may be the result of deformation associated with the Neoproterozoic East African Orogen. U-Th-Pb SHRIMP zircon ages from an Isimani gneiss sample and xenocrysts in a "post-tectonic" granite yield ˜2.7 Ga ages and are similar to published Nd model ages from both the Tanzanian Craton and gneiss exposed east of the Usagaran belt in the East African Orogen. These age data indicate that the Isimani Suite of the Usagaran Orogen reflects reworking of Archaean

  12. Geoarchaeological research of the mid-age Ilyas Bey complex buildings with ground penetrating radar in Miletus, Aydin, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioğlu, S.; Kadioğlu, Y. K.; Akyol, A. A.

    2008-07-01

    The ancient Miletus which were one of the most important city of ancient Iona, are today of great value from cultural standpoint of Turkey. Miletus, situated near the village of Balat in the present district of Soke was founded on a peninsula, approximately 2.5 km long. In the Byzantine period, the city boundaries were quite reduced. In 1424 Miletus was taken inside of the Ottoman Empire and was completely abandoned in the 17th century. Ancient Miletus excavation studies were first begun in 1899 by in Berlin Museum and interrupted during the World War I. At present, the extensive restoration works in Ilyas Bey Complex has applied as a project since 2006. Ilyas Bey Complex that includes Mosque, Medresah and baths situated on the archaeological area in ancient Miletus. Impressive Mosque built in 1404 by Ilyas Bey, Emir of Menteseogullari founded in 1279 and the complex was named after him, is one of the most remarkable buildings of mid-age Miletus. There are two main purposes of the study are (1) to determine archaeological remains of the study area underneath Ilyas Bey Complex and (2) to define the nature of main rock unit and their sources in the vicinity or Aegean region. After preliminary archaeometrical studies, acquired GPR profile data paralleled each other in Ilyas Bey Mosque and its around, Medresah Courtyard and inner Courtyard of the Mosque. After processing 2D parallel GPR profiles, we constructed 3D data volume by lining processed 2D profiles up to correlate remain signatures from each profile for each studied area. It was obtained transparent 3D visualisation of GPR data by assigning a new colour scale for the amplitude range and by constructing a new opacity function instead of the linear opacity function. Therefore we could successfully image the archaeological remains in an interactive transparent 3D volume and its sub-volumes, starting at different depth levels or limited profiles. The archaeometrical (geological and mineralogical, petrographical

  13. Petrogenesis of Oxidized Arfvedsonite Granite Gneiss from Dimra Pahar, Hazaribagh, Eastern India: Constraints from Mineral Chemistry and Trace Element Geochemistry

    NASA Astrophysics Data System (ADS)

    Basak, Ankita; Goswami, Bapi

    2017-04-01

    The arfvedsonite granite gneiss of Dimra Pahar occurs along the North Purulia Shear Zone (NPSZ) which pivots the Proterozoic Chotannagpur Gneissic Complex (CGC), Eastern India. Although minerals like arfvedsonite and aegirine depict the peralkaline nature of the pluton, the geochemistry of the rock reflects its composition varying from peralkaline to mildly peraluminous. K-feldspar, quartz, arfvedsonite, albite with accessory aegirine, titaniferous iron oxides and zircon form the dominant mineralogy of this alkali feldspar granite (IUGS, 2000) gneiss. The zircon saturation temperature corresponds to 747oC-1066oC. The granitic magma contains low water content evidenced by the absence of any pegmatite associated with this pluton. Geochemically these granites are classified as ferroan and alkalic (cf. Frost et al., 2001). These highly evolved granites possess enrichment of SiO2, Na2O + K2O, FeO(t)/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce and rare earth elements (REE) with low abundance of CaO, MgO, Ba and Sr which characterize their A-type nature while standard discrimination diagrams ( cf. Eby, 1992; Grebennikov, 2014) help to further discriminate them as A1 type. Tectonic discriminations diagrams (Pearce et al., 1984; Maniar and Piccoli, 1989; Batchelor and Bowden, 1985) constrain the tectonic setting of the magma to be anorogenic, within plate, rift-related one. The REE compositions show moderately fractionated patterns with (La/Yb)N 2.57-10.5 and Eu/Eu* 0.16-0.70. Multielement spider diagram and various trace element ratio together with oxidized nature (ΔNNO: +2) of these granites further suggest that these have been derived from OIB-type parental magma. The peralkaline nature of the granite and its lack of subduction- related geochemical features are consistent with an origin in a zone of regional extension. The extremely high Rb/Sr ratios combined with the extreme Sr, Ba, P, Ti and Eu depletions clearly indicate that these A-type granites were highly evolved and require

  14. A continuous record of tectonic evolution from 3.5 Ga to 2.6 Ga in Swaziland and northern Natal

    NASA Technical Reports Server (NTRS)

    Hunter, D. R.; Wilson, A. H.; Versfeld, J. A.; Allen, A. R.; Smith, R. G.; Sleigh, D. W. W.; Groenewald, P. B.; Chutter, G. M.; Preston, V. A.

    1986-01-01

    The approx. 3.5 Ga-old bimodal suite underlying an extensive area in southwestern Swaziland comprises the oldest-dated sialic rocks in the Kaapvaal structural province. The suite consists of leucocratic, layered tonalitic-trondhjemitic gneisses and amphibolites characterized by the effects of repeated high strains. This suite is considered to represent a sialic basement on which metavolcanic and metasedimentary rocks, now preserved as scattered greenstone remnants, accumulated. Direct evidence to confirm this temporal relationship is lacking, but structural data from the Dwalile, Assegaai and Commondale areas indicate that (1) the bimodal gneisses experienced a complex structural history prior to the first recognizable deformation in the supracrustal rocks (i.e., D1 in the supracrustals is equivalent to Dn + 1 in the gneisses) and (2) scattered remnants of the Dwalile rocks infolded with the bimodal suite structurally overlie the gneisses and are preserved in synformal keels. Significant proportions of metaquartzites and metapelites are present in the Assegaai greenstone sequence, the presence of which implies the existence of felsic crust in the source area from which these sediments were derived, a conclusion that is consistent with the structural data.

  15. Assessment of Blasting Performance Using Electronic Vis-à-Vis Shock Tube Detonators in Strong Garnet Biotite Sillimanite Gneiss Formations

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh Kumar; Rai, Piyush

    2016-04-01

    This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.

  16. Quartz c-axis fabrics in constrictionally strained orthogneisses: implications for the evolution of the Orlica-Śnieżnik Dome, the Sudetes, Poland

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, Andrzej; Kromuszczyńska, Olga; Biegała, Natalia

    2013-12-01

    Żelaźniewicz, A., Kromuszczyńska, O. and Biegała, N. 2013. Quartz c-axis fabrics in constrictionally strained orthogneisses: implications for the evolution of the Orlica-Śnieżnik Dome, the Sudetes, Poland. Acta Geologica Polonica, 63(4), 697-722, Warszawa. The Orlica-Śnieżnik Dome (OSD), NE Bohemian Massif, contains in its core several gneiss variants with protoliths dated at ~500 Ma. In the western limb of the OSD, rodding augen gneisses (Spalona gneiss unit) are mainly L>S tectonites with a prominent stretching lineation. The few quartz LPO studies have produced somewhat discrepant results. Reexamination of these rocks revealed that texture formation was a protracted, multistage process that involved strain partitioning with changing strain rate and kinematics in a general shear regime at temperatures of the amphibolite facies (450-600°C). Quartz c-axis microfabrics show complex yet reproducible patterns that developed under the joint control of strain geometry and temperature; thus the LPOs are mixed features represented by pseudogirdle patterns. Domainal differences in quartz microfabrics (ribbons, tails, quartzo-feldspathic aggregate) are common in the Spalona orthogneisses but uncommon in the sheared migmatitic gneisses. In the latter rocks, the constrictional strain was imposed on the originally planar fabric defined by high-temperature migmatitic layering. The constrictional fabric of the Spalona gneisses may have developed in the hinge zones of kilometer-scale folds, where the elongation occurred parallel to the fold axes. Other occurrences of rodding gneisses throughout the Orlica-Śnieżnik Dome are thought to occupy similar structural positions, which would point to the significance of large-scale folds in the tectonic structure of the dome.

  17. U-Pb zircon geochronologycal investigation on the Morro dos Seis Lagos Carbonatite Complex and associated Nb deposit (Amazonas, Brazil)

    NASA Astrophysics Data System (ADS)

    Rossoni, Marco B.; Bastos Neto, Artur C.; Souza, Valmir S.; Marques, Juliana C.; Dantas, Elton; Botelho, Nilson F.; Giovannini, Arthur L.; Pereira, Vitor P.

    2017-12-01

    We present results of U-Pb dating (by MC-ICP-MS) of zircons from samples that cover all of the known lithotypes in the Seis Lagos Carbonatite Complex and associated lateritic mineralization (the Morro dos Seis Lagos Nb deposit). The host rock (gneiss) yielded an age of 1828 ± 09 Ma interpreted as the crystallization time of this unit. The altered feldspar vein in the same gneiss yielded an age of 1839 ± 29 Ma. Carbonatite samples provided 3 groups of ages. The first group comprises inherited zircons with ages compatible with the gneissic host rock: 1819 ± 10 Ma (superior intercept), 1826 ± 5 Ma (concordant age), and 1812 ± 27 Ma (superior intercept), all from the Orosirian. The second and the third group of ages are from the same carbonatite sample: the superior intercept age of 1525 ± 21 Ma (MSWD = 0.77) and the superior intercept age of 1328 ± 58 Ma (MSWD = 1.4). The mineralogical study indicates that the ∼1.3 Ga zircons have affinity with carbonatite. It is, however, a tendence rather than a well-defined result. The data allow state that the age of 1328 ± 58 Ma represents the maximum age of the carbonatite. Without the same certainty, we consider that the data suggest that this age may be the carbonatite age, whose emplacement would have been related to the evolution of the K'Mudku belt. The best age obtained in laterite samples (a superior intercept age of 1828 ± 12 Ma) is considered the age of the main source for the inherited zircons related to the gneissic host rock.

  18. Elastic properties and seismic anisotropy of the Seve Nappe Complex - Laboratory core measurements from the International Continental Drilling Project COSC-1 well, Åre, Sweden

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Almqvist, B. S. G.; Zappone, A. S.

    2015-12-01

    The COSC-1 scientific borehole was drilled in the summer of 2014 to ~2.5 km depth to study the structure and composition of the Middle Allochthon of the Central Scandinavian Caledonides. It crosscuts the amphibolite-grade lower part of the Seve nappe and intersects a mylonite zone in the lower 800 m of the borehole. We selected six core samples representing the primary lithologies in the COSC-1 borehole for laboratory investigation of elastic properties. The cores consisted of two amphibolites with differing grain sizes, a calc-silicate gneiss, a felsic gneiss, a coarse grained amphibole bearing gneiss, and a garnet bearing mylonitic schist from the basal shear zone. Both P- and S-waves were measured at ultrasonic frequency (1 MHz), and room temperature hydrostatic pressure conditions up to 260 MPa. Measurements were made along three mutually perpendicular directions, one perpendicular to foliation and two parallel to the foliation with one aligned with mineral lineation. Vp and Vs, anisotropy, and elastic properties are reported as an extrapolation of the high-pressure portion of the ultrasonic measurements back to the intersection with the zero pressure axis. The Vp and Vs in the direction perpendicular to foliation ranges from 5.51-6.67 km/s and 3.18-4.13 km/s, respectively. In the direction parallel to foliation the Vp and Vs ranges from 6.31-7.25 km/s and 3.52-4.35 km/s, respectively. Vp anisotropy ranges from 3% in the calc-silicate gneiss to 18% in mylonitic schist. Acoustic impedance estimations at lithostatic pressure conditions at base of the borehole (70 MPa) show that acoustic impedance contrast generating reflection coefficients between the basal shear zone and overlying units are significant enough to cause seismic reflections. Above the mylonite zone/shear zone, the reflectivity within the lower Seve nappe is due to the impedance contrast between the felsic gneiss and the amphibolite. This result fits with 3D seismic reflection imaging in the area of

  19. Recent progress in recognition of UHP metamorphism in allochthons of the Scandinavian Caledonides (Seve Nappe Complex and Tromsø Nappe)

    NASA Astrophysics Data System (ADS)

    Janák, Marian; Ravna, Erling; Majka, Jarosław; Klonowska, Iwona; Kullerud, Kåre; Gee, David; Froitzheim, Nikolaus

    2017-04-01

    During the last ten years, UHP rocks have been discovered within far-travelled allochthons of the Scandinavian Caledonides including the Seve Nappe Complex (SNC) of the Middle Allochthon and Tromsø Nappe within the Uppermost Allochthon. The first evidence for UHP conditions in the SNC was documented in a kyanite-bearing eclogite dike within the Friningen garnet peridotite. Subsequently, UHP conditions were determined for phengite eclogite and garnet pyroxenite from Stor Jougdan and pelitic gneisses from Åreskutan. Finally, diamond was found in metasedimentary rocks of the SNC at three localities (Snasahögarna, Åreskutan and most recently near Saxnäs), c. 250 km apart, confirming regional UHP conditions within this allochthon. In the Tromsø Nappe (northern Norway), evidence for UHP metamorphism comes from phengite- and kyanite-bearing eclogites from Tønsvika and Tromsdalstind, and diamond-bearing gneisses from Tønsvika. Microdiamond occurs in-situ as single and composite (mostly with Mg-Fe carbonate) inclusions within garnet and zircon. The calculated P-T conditions for the diamond-bearing samples are 4.1-4.2 GPa/830-840°C (Åreskutan), and 3.5-4.0 GPa/ 750-800°C (Tønsvika), in the diamond stability field. The UHP metamorphism in the SNC and Tromsø Nappe is probably Late Ordovician (c. 460-450 Ma), i.e. c. 40-50 Ma older than that in the Western Gneiss Region of southwestern Norway. Whereas the latter occurred during the collision between Laurentia and Baltica in the Late Silurian to Early Devonian, the processes leading to Ordovician UHP metamorphism occurred during closure of the Iapetus Ocean and are less well understood. The occurrence of two UHP metamorphic events in the Scandinavian Caledonides implies subduction, exhumation, and re-subduction of continental crust. This is an observation that could be of importance for the understanding of orogeny at convergent plate boundaries in general. The following questions remain to be answered: (1) Was UHP

  20. Separating Multiple Episodes of Partial Melting in Polyorogenic Crust: AN Example from the Haiyangsuo Complex, Northern Sulu Belt, Eastern China

    NASA Astrophysics Data System (ADS)

    Feng, P.; Wang, L.; Brown, M.; Wang, S.

    2017-12-01

    Determining the timing, mechanism and source of partial melts in polyorogenic crust is challenging. In the Sulu belt, the tectonic affinity of the Haiyangsuo (HYS) complex is controversial due to its polyphase metamorphic history. Here we use detailed field mapping, petrology, microstructural analysis and zircon geochronology to study thin stromatic leucosomes in host granite gneiss, and crosscutting leucogranite dykes to decipher the melting history. Zircon grains from both granite gneiss and thin leucosomes exhibit core-mantle-rim structures. Zircon cores yield protolith ages of 2.86-2.81 Ga, whereas the mantles and rims yield younger metamorphic/melt crystallization ages of ca. 1.82-1.80 Ga. The mantles are characterized by gray luminescence, flat HREE distribution patterns and relatively low Th/U ratios, indicating crystallization during granulite-facies metamorphism. Whereas rims show bright luminescence, steep HREE distribution patterns and higher Th/U ratios, suggesting they crystallized from melt. The mantles and rims have ɛHf (t) of -18.2 to -11.0. Using 176Lu/177Hf = 0.001, these data project back to the array of ɛHf (t) values for the zircon cores. This demonstrates that the thin leucosomes were derived from the gneiss without any mass input from a mantle source. These features are consistent with an origin of the HYS as part of the eastern margin of the NCC prior to juxtaposition with the Sulu belt. Zircons from the leucogranite dykes also show core-mantle-rim structure. Inherited cores yield concordant 206Pb/238U ages of 776-701 Ma consistent with the dominant age range for protoliths of the UHP metamorphic rocks in the Sulu belt. Zircon mantle and rim domains, which both contain multiphase solid inclusions (Kfs + Pl + Qz and Hem + Pl + Qz in mantles and Kfs + Pl + Qz + Bt in rims), yield melt crystallization ages of 226-217 and 169-156 Ma, respectively. High Sr, low Y and Yb contents, high Sr/Y ratios, and the range of ɛNd (t) values (-18.2- -15

  1. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  2. Episodic crustal growth in the Bundelkhand craton of central India shield: Constraints from petrogenesis of the tonalite–trondhjemite–granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone

    NASA Astrophysics Data System (ADS)

    Chauhan, Hiredya; Saikia, Ashima; Ahmad, Talat

    2018-04-01

    Tonalite-trondhjemite-granodiorite gneisses (TTG) and K-rich granites are extensively exposed in the Mesoarchean to Paleoproterozoic Bundelkhand craton of central India. The TTGs rocks are coarse- grained with biotite, plagioclase feldspar, K-feldspar and amphibole as major constituent phases. The major minerals constituting the K-rich granites are K-feldspar, plagioclase feldspar and biotite. They are also medium to coarse grained. Mineral chemical studies show that the amphiboles of TTG are calcic amphibole hastingsite, plagioclase feldspars are mostly of oligoclase composition, K-feldspars are near pure end members and biotites are solid solutions between annite and siderophyllite components. The K-rich granites have biotites of siderophyllite-annite composition similar to those of TTGs, plagioclase feldspars are oligoclase in composition, potassic feldspars have XK ranging from 0.97 to 0.99 and are devoid of any amphibole. The tonalite-trondhjemite-granodiorite gneiss samples have high SiO2 (64.17-74.52 wt%), Na2O (3.11-5.90 wt%), low Mg# (30-47) and HREE contents, with moderate (La/Yb)_{CN} values (14.7-33.50) and Sr/Y ratios (4.85-98.7). These geochemical characteristics suggest formation of the TTG by partial melting of the hydrous basaltic crust at pressures and depths where garnet and amphibole were stable phases in the Paleo-Mesoarchean. The K-rich granite samples show high SiO2 (64.72-76.73 wt%), K2O (4.31-5.42), low Na2O (2.75-3.31 wt%), Mg# (24-40) and HREE contents, with moderate to high (La/Yb)_{CN} values (9.26-29.75) and Sr/Y ratios (1.52-24). They differ from their TTG in having elevated concentrations of incompatible elements like K, Zr, Th, and REE. These geochemical features indicate formation of the K-granites by anhydrous partial melting of the Paleo-Mesoarchean TTG or mafic crustal materials in an extensional regime. Combined with previous studies it is interpreted that two stages of continental accretion (at 3.59-3.33 and 3.2-3.0 Ga) and

  3. A practical assessment of aquifer discharge for regional groundwater demand by characterizing leaky confined aquifer overlain on a Mesozoic granitic gneiss basement

    NASA Astrophysics Data System (ADS)

    Shih, David Ching-Fang

    2018-04-01

    Due to increasing population worldwide, there is an urgent need to manage these important but diminishing groundwater resources efficiently to ensure their continued availability. The major innovative design of this study is to provide a practical assessment process for groundwater discharge under a regional demand by characterizing the nature of leaky confined aquifers overlain on a Mesozoic granitic gneiss basement which involves the important groundwater system in the Kinmen region (Taiwan, ROC) and the assessment of adoptable groundwater discharge in aquifer is needed. The storage coefficient presents an order of one in a thousand and hydraulic conductivity is approximately at the order of 1-8 m/d and 0.4-0.9 m/d for aquifer and aquitard respectively. Groundwater discharge and admissible number of pumping well is suggested considering scheduled maximum groundwater volume and head decline change for eastern and western studied area respectively. The safety subjected to the conservative issue is then addressed by the use of scheduled maximum groundwater volume. It reveals that the safety can be ensured using the indicator as scheduled maximum groundwater volume with predefined scenarios. The result can be utilized practically for developing management strategy of groundwater resources due to the applicability and novel of method.

  4. The Ultramafic Complex of Reinfjord: from the Magnetic Petrology to the Interpretation of the Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.

    2017-04-01

    A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local

  5. Geologic setting of the Mountain Pass rare earth deposits, San Bernardino County, California

    USGS Publications Warehouse

    Olson, Jerry Chipman

    1952-01-01

    The Mountain Pass district is in a block of pre-Cambrian metamorphic rocks bounded on the east and south by the alluvium of Ivanpah Valley. This block is separated from Paleozoic and Mesozoic sedimentary and volcanic rocks on the west by the Clark Mountain normal fault, and the northern boundary of the district is a prominent transverse fault. The pre-Cambrian metamorphic complex comprises a great variety of lithologic types including garnetiferous mica gneisses and schists; biotite-garnet-sillimenite gneiss; hornblende gneiss, schist, and amphibolite; biotite gneiss and schist; granitic gneisses and migmatites; pegmatites; and minor amounts of foliated mafic rocks. The rare earth-bearing carbonate rocks are related to potash-rich igneous rocks, of uncertain age, that cut the metamorphic complex. The larger potash-rich intrusive masses, 300 or more feet wide, comprise one granite, two syenite, and four composite shonkinite-syenite bodies. One of the shonkinite-syenite stocks is more than a mile long. Several hundred relatively thin dikes of these potash-rich rocks range in composition, and generally decreasing age, from biotite shonkinite through syenite to granite. A few thin fine-grained shonkinite dikes cut the granite. These potash-rich rocks are cut by east-trending andesitic dikes and by faults. Veins of carbonate rock are most abundant in and near the southwest side of the largest shonkinite-syenite body. Although most veins are less than 6 feet thick, one mass of carbonate rock near the Sulphide Queen min4e is 600 feet in maximum width and 2,400 feet long. About 200 veins have been mapped in the district; their aggregate surface area is probably less than one-tenth that of the large carbonate mass. The carbonate materials, which make up about 60 percent of the veins and the large carbonite body, are chiefly calcite, dolomite, ankerite, and siderite. The other constituents are barite, bastnaesite and perisite, quartz, and variable small quantities of

  6. Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane: Implications for Neoarchean crustal evolution in the North China Craton

    NASA Astrophysics Data System (ADS)

    Shan, Houxiang; Zhai, Mingguo; Wang, Fang; Zhou, Yanyan; Santosh, M.; Zhu, Xiyan; Zhang, Huafeng; Wang, Wei

    2015-02-01

    The Precambrian basement in the Jiaobei terrane is largely composed of Tonalite-Trondhjemite-Granodiorite (TTG) suite of rocks and offers important insights into the crustal evolution history of the North China Craton (NCC). The LA-ICP-MS zircon U-Pb age data presented in this study show that the magmatic protoliths of the TTG gneisses formed during 2508-2547 Ma and recorded the Paleoproterozoic metamorphism (∼1905 Ma). The rocks are enriched in LILE (Rb, Ba and Sr) and depleted in HFSE (Nb, Ta, Zr and Hf). They are characterized by high Sr contents (406-2906 ppm), Sr/Y ratios (31.3-355) and subchondritic Nb/Ta ratios (18.5-68.9). The TTGs show relatively high ΣREE contents (72.0-266 ppm) with strongly enriched LREE ((La/Yb)N = 11.5-121) and positive or negligible negative Eu anomalies (Eu/Eu∗ = 0.84-1.89). These geochemical features suggest that the magma source might have been rutile-bearing amphibole eclogite. Their high Mg# numbers (42-56) and high Cr (153-285 ppm) and Ni contents (22.2-74.5 ppm) indicate interaction with the mantle wedge during magma ascent. The whole rock εNd (t) values (+2.6 to +3.8) and most of the magmatic zircon εHf (t) values (+1.3 to +7.6) suggest juvenile to evolved isotopic signatures. All these lines of evidence suggest that the TTG rocks in this study formed through partial melting of subducted oceanic slab in a continental arc environment. The drill holes in the Jiaobei terrane are dominated by ∼2.5 Ga TTG gneisses, suggesting that the TTG magma at ∼2.5 Ga is more widely distributed deep underground than that of ∼2.7-2.9 Ga, at least within the approachable depth range of our research. Some zircon grains from Jiaobei TTGs give high εHf (t) values plotting above the curve of 0.75 ∗ εHf of DM, and their TCDM ages are very close to the time of the zircon crystallization. However, the majority of the εHf (t) values fall below the curve of 0.75 ∗ εHf of DM and their TCDM ages are concentrated between ∼2.7-2.9 Ga

  7. Geochronology of Zircon in Eclogite Reveals Imbrication of the Ultrahigh-Pressure Western Gneiss Region of Norway.

    NASA Astrophysics Data System (ADS)

    Young, D. J.; Kylander-Clark, A. R.; Root, D. B.

    2014-12-01

    Eclogite provides the only record of kinematic events at the deepest levels of orogens. Integrating the U-Pb geochronology and trace element chemistry of zircon in eclogite reveals the most complete view of the PTt history, yet low concentrations of uranium and zirconium and drier compositions that hinder zircon growth at peak conditions render it a challenging rocktype for this approach. The iconic Western Gneiss Region (WGR) in Norway is one of the largest terranes of deeply subducted continental rocks in the world, and contains many indicators of ultrahigh-pressure metamorphic conditions (P>2.8 GPa) that developed during the Siluro-Devonian Caledonian Orogeny. A metamorphic transition from amphibolite-facies to ultrahigh-pressure eclogite facies broadly coincides with a km-scale shear zone that underlies the majority of the WGR. A critical unknown is the timing of movement on this feature, which emplaced allochthonous units above the Baltica basement, but might also have accommodated late-orogenic exhumation of the WGR from mantle depths. We carried out laser ablation split-stream ICPMS (LASS) and selected multigrain TIMS analyses of zircons from eleven eclogites across the southern WGR, of which eight are located within or above the shear zone. LASS spots on polished grains mostly yield weakly discordant Proterozoic intrusive ages, and often minimal indication of a Caledonian (U)HP metamorphic overprint. Direct ablation into unpolished zircon reveals thin rims of Caledonian age in some cases. Overall, the dataset shows that all samples began zircon growth at approximately the same time (ca. 430-420 Ma). Eclogite from lower levels of the shear zone does not contain any dates younger than ca. 410 Ma, however, while eclogite from higher levels continued growth until ca. 400 Ma. We interpret this to result from thrusting of the WGR above cooler basement after 410 Ma, terminating new zircon crystallization within the shear zone but allowing limited further growth in

  8. [Influence of surface roughness on degree of polarization of biotite plagioclase gneiss varying with viewing angle].

    PubMed

    Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei

    2011-12-01

    Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the

  9. Large-Scale, Long-Lived Subduction of Ultrahigh-Pressure Terranes: Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Hacker, B. R.; Johnson, C. M.; Beard, B. L.; Corfu, F.; Mahlen, N. J.

    2007-12-01

    Recent Lu-Hf and Sm-Nd ages of garnets and a U-Pb age of zircon of eclogites from the Western Gneiss Region (WGR) ultrahigh-pressure (UHP) terrane, Norway, demonstrate that eclogite-facies metamorphism occurred over a large area (60,000 km2) for an unexpectedly long time. This observation stands in stark contrast to the general belief that continental subduction, and attendant (U)HP metamorphism, occurs over short timescales. Four HP eclogites (~700-800°C, ~2.0-2.5 GPa) from the central WGR yielded equivalent Lu-Hf ages of ~416 Ma; three of these samples gave Sm-Nd ages of ~400 Ma. Given the distribution coefficients for Lu and Sm, the older Lu-Hf ages reflect prograde growth, but are younger than the initiation of garnet crystallization. The younger Sm-Nd ages represent either eclogite-facies cooling through the blocking temperature of the Sm-Nd system or an 'average' age of garnet growth. Both cases imply >16 m.y. of eclogite- facies conditions. Two UHP eclogites (~750-850°C, ~3 GPa) from the same region yielded significantly younger, but equivalent Lu-Hf and Sm-Nd ages of ~380 Ma, which likely indicate passage through the blocking temperature of both systems up to 20 m.y. after the HP eclogites had passed through the blocking temperature. Because these eclogites are unretrogressed, their ages are the youngest known for eclogite stability in the WGR. An eclogite from the northern WGR yielded a Sm-Nd age of 413.9 ± 3.7 Ma. This could represent a different HP history than that of the central WGR: U/Pb ages in the north are also ~15 m.y. older. Two HP (~650°C, ~2 GPa) eclogites from the southern WGR yielded Lu-Hf ages of 410.2 ± 3.1 and 427.5 ± 7.7 Ma, indicating a similar garnet growth history to the central WGR eclogites. A retrogressed eclogite from the undated eastern portion of the WGR gave a 206Pb/238U age of 408.0 ± 1.7 Ma. Thermal models mirror results from similar studies (Roselle et al., 2002), and confirm that slow subduction likely produced the P

  10. Sr, Nd and Pb isotopes in Proterozoic intrusives astride the Grenville Front in Labrador: Implications for crustal contamination and basement mapping

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.; Emslie, R.F.

    1986-01-01

    We report Sr, Nd and Pb isotopic compositions of mid-Proterozoic anorthosites and related rocks (1.45-1.65 Ga) and of younger olivine diabase dikes (1.4 Ga) from two complexes on either side of the Grenville Front in Labrador. Anorthositic or diabasic samples from the Mealy Mountains (Grenville Province) and Harp Lake (Nain-Churchill Provinces) complexes have very similar major, minor and trace element compositions, but distinctly different isotopic signatures. All Mealy Mountains samples have ISr = 0.7025-0.7033, ??{lunate}Nd = +0.6 to +5.6 and Pb isotopic compositions consistent with derivation from a mantle source depleted with respect to Nd/Sm and Rb/Sr. Pb isotopic compositions for the Mealy Mountains samples are slightly more radiogenic than model mantle compositions. All Harp Lake samples have ISr = 0.7032-0.7066, ??{lunate}Nd = -0.3 to -4.4 and variable, but generally unradiogenic 207Pb 204Pb and 206Pb 204Pb compared to model mantle, suggesting mixing between a mantle-derived component and a U-depleted crustal contaminant. Crustal contaminants are probably a variety of Archean high-grade quartzofeldspathic gneisses with low U/Pb ratios and include a component that must be isotopically similar to the early Archean (>3.6 Ga) Uivak gneisses of Labrador or the Amitsoq gneisses of west Greenland. This would imply that the ancient gneiss complex of coastal Labrador and Greenland is larger than indicated by present surface exposure and may extend in the subsurface as far west as the Labrador Trough. If Harp Lake and Mealy Mountains samples were subjected to the same degree of contamination, as suggested by their chemical similarities, then the Mealy contaminants must be much younger, probably early or middle Proterozoic in age. The Labrador segment of the Grenville Front, therefore, appears to coincide with the southern margin of the Archean North Atlantic craton and may represent a pre mid-Proterozoic suture. ?? 1986.

  11. Timing of metamorphism and exhumation in the Nordøyane ultra-high-pressure domain, Western Gneiss Region, Norway: New constraints from complementary CA-ID-TIMS and LA-MC-ICP-MS geochronology

    NASA Astrophysics Data System (ADS)

    Butler, J. P.; Jamieson, R. A.; Dunning, G. R.; Pecha, M. E.; Robinson, P.; Steenkamp, H. M.

    2018-06-01

    We present the results of a combined CA-ID-TIMS and LA-MC-ICP-MS U-Pb geochronology study of zircon and associated rutile and titanite from the Nordøyane ultra-high-pressure (UHP) domain in the Western Gneiss Region (WGR) of Norway. The dated samples include 4 eclogite bodies, 2 host-rock migmatites, and 2 cross-cutting pegmatites and leucosomes, all from the island of Harøya. Zircon from a coesite eclogite yielded an age of ca. 413 Ma, interpreted as the time of UHP metamorphism in this sample. Zircon data from the other eclogite bodies yielded metamorphic ages of ca. 413 Ma, 407 Ma, and 406 Ma; zircon trace-element data associated with 413 Ma and 407 Ma ages are consistent with eclogite-facies crystallization. In all of the eclogites, U-Pb dates from zircon cores, interpreted as the times of protolith crystallization, range from ca. 1680-1586 Ma, consistent with Gothian ages from orthogneisses in Nordøyane and elsewhere in the WGR. A zircon core age of ca. 943 Ma from one sample agrees with Sveconorwegian ages of felsic gneisses and pegmatites in the western part of the area. Migmatites hosting the eclogite bodies yielded zircon core ages of ca. 1657-1591 Ma and rim ages of ca. 395-392 Ma, interpreted as the times of Gothian protolith formation and Scandian partial melt crystallization, respectively. Pegmatite in an eclogite boudin neck yielded a crystallization age of ca. 388 Ma, interpreted as the time of melt crystallization. Rutile and titanite from 3 samples (an eclogite and two migmatites) yielded concordant ID-TIMS ages of 378-376 Ma. The results are similar to existing U-Pb data from other Nordøyane eclogites (415-405 Ma). In combination with previous pressure-temperature data from the coesite eclogite, these ages indicate that peak metamorphic conditions of 3 GPa/760 °C were reached ca. 413 Ma, followed by decompression to 1 GPa/810 °C by ca. 397 Ma and cooling below ca. 600 °C by ca. 375 Ma. The results are compatible with protracted UHP

  12. Geology of the southernmost Piedmont from Columbus to Junction City, GA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanley, T.B.

    1993-03-01

    Mapping in the Piedmont from the Chattahoochee River to Junction City, GA, is critical to understanding contacts with Southern Appalachian outboard terranes, relationships to the Piedmont allochthon, strike slip displacements along major faults and late Paleozoic and post Paleozoic tectonic activity. Three major map units defining a large synform are recognized in western Muscogee County: the North Columbus Migmatite Complex, the Moffitts Mill Schist (MMS), and the Phenix City gneiss. The distinctive but poorly exposed fine grained feldspar augen MMS, which extends at least as far east as Geneva, contains small enclaves of amphibolite and calcsilicate and large enclaves ofmore » lineated granitoid gneiss. Protomylonites and mylonitic gneiss with a N-S to N45E strike are exposed from Geneva to Junction City. Three brecciated quartz dikes transect the area in eastern Muscogee Co. and Talbot Co., converging on Talbotton from the southwest. The northern dike strikes ENE and is associated with an augen schist; the middle dike strikes NE and projects to the southwest deep into Muscogee County as a silicified fracture zone with minor associated granite. The southern dike has a NNE strike and is parallel to and locally silicifies the mylonitic foliation that dominates gneisses to the east. Deflections of the magnetic anomaly patterns to the northeast in the Geneva - Junction City area are parallel to quartz dikes and mylonitic foliations.« less

  13. Is the Cameron River greenstone belt allochthonous?

    NASA Technical Reports Server (NTRS)

    Kusky, T. M.

    1986-01-01

    Many tectonic models for the Slave Province, N.W.T., Canada, and for Archean granite - greenstone terranes in general, are implicitly dependent on the assumption that greenstone belt lithologies rest unconformably upon older gneissic basement. Other models require originally large separations between gneissic terranes and greenstone belts. A key question relating to the tectonics of greenstone belts is therefore the original spatial relationship between the volcanic assemblages and presumed-basement gneisses, and how this relationship has been modified by subsequent deformation. What remains unclear in these examples is the significance of the so-called later faulting of the greenstone - gneiss contacts. Where unconformities between gneisses and overlying sediments are indisputable, such as at Point Lake, the significance of faults which occur below the base of the volcanic succession also needs to be evaluated. As part of an on-going investigation aimed at answering these and other questions, the extremely well-exposed Cameron River Greenstone Belt and the Sleepy Dragon Metamorphic Complex in the vicinity of Webb Lake and Sleepy Dragon Lake was mapped.

  14. An ancient depleted mantle source for Archean crust in Rajasthan, India

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.; Gopalan, K.; Lugmair, G. W.; Roy, A. B.

    1983-01-01

    Data from an initial set of Banded Gneiss Complex (BGC) east of the city of Udaipur are given. In this region the BGC comprises typical grey gneiss with variably abundant granitic and mafic components. Efforts to date were concentrated on the mafic components which, based on chemical data, appear to be metavolcanic. All samples examined were recrystallized under amphibolite or upper amphibolite facies conditions. Pertinent chemical data for a small number of amphibolites analyzed so far are: SiO2: 49-53%; MgO: 5.7-7.3%; K2O: 0.24-0.50%; Ni: 106-140 ppm; Zr: 37-159 ppm. From Sm/Nd data, all amphibolites show small to moderate LREE enrichments.

  15. U-Th-Pb geochronology of the Massabesic Gneiss and the granite near Milford, South-Central New Hampshire: New evidence for avalonian basement and taconic and alleghenian disturbances in Eastern New England

    USGS Publications Warehouse

    Aleinikoff, J.N.; Zartman, R.E.; Lyons, J.B.

    1979-01-01

    U-Th-Pb systematics for zircon and monazite from Massabesic Gneiss (paragneiss and orthogneiss) and the granite near Milford, New Hampshire, were determined. Zircon morphology suggests that the paragneiss may be volcaniclastic (igneous) in origin, and thus the age data probably record the date (minimum of 646 m.y.) at which the rock was extruded. A two-stage lead-loss model is proposed to explain the present array of data points on a concordia diagram. Orthogneiss ages range only narrowly and are clustered around 475 m.y. Data for the granite of Milford, New Hampshire, are scattered, but may be interpreted in terms of inheritance and modern lead loss, yielding a crystallization age of 275 m.y. This is the only known occurrence of Avalonian-type basement in New Hampshire and as such provides evidence for the location of the paleo-Africa-paleo- North America suture. The geochronology also further documents the occurrence of disturbances during the Ordovician and Permian. ?? 1979 Springer-Verlag.

  16. Tectonic controls on large landslide complex: Williams Fork Mountains near Dillon, Colorado

    USGS Publications Warehouse

    Kellogg, K.S.

    2001-01-01

    An extensive (~ 25 km2) landslide complex covers a large area on the west side of the Williams Fork Mountains in central Colorado. The complex is deeply weathered and incised, and in most places geomorphic evidence of sliding (breakaways, hummocky topography, transverse ridges, and lobate distal zones) are no longer visible, indicating that the main mass of the slide has long been inactive. However, localized Holocene reactivation of the landslide deposits is common above the timberline (at about 3300 m) and locally at lower elevations. Clasts within the complex, as long as several tens of meters, are entirely of crystalline basement (Proterozoic gneiss and granitic rocks) from the hanging wall of the Laramide (Late Cretaceous to Early Tertiary), west-directed Williams Range thrust, which forms the western structural boundary of the Colorado Front Range. Late Cretaceous shale and sandstone compose most footwall rocks. The crystalline hanging-wall rocks are pervasively fractured or shattered, and alteration to clay minerals is locally well developed. Sackung structures (trenches or small-scale grabens and upslope-facing scarps) are common near the rounded crest of the range, suggesting gravitational spreading of the fractured rocks and oversteepening of the mountain flanks. Late Tertiary and Quaternary incision of the Blue River Valley, just west of the Williams Fork Mountains, contributed to the oversteepening. Major landslide movement is suspected during periods of deglaciation when abundant meltwater increased pore-water pressure in bedrock fractures. A fault-flexure model for the development of the widespread fracturing and weakening of the Proterozoic basement proposes that the surface of the Williams Range thrust contains a concave-downward flexure, the axis of which coincides approximately with the contact in the footwall between Proterozoic basement and mostly Cretaceous rocks. Movement of brittle, hanging-wall rocks through the flexure during Laramide

  17. UHT overprint of HP rocks? A case study from the Adula nappe complex (Central Alps, N Italy)

    NASA Astrophysics Data System (ADS)

    Tumiati, Simone; Zanchetta, Stefano; Malaspina, Nadia; Poli, Stefano

    2014-05-01

    The Adula-Cima Lunga nappe complex is located on the eastern flank of the Lepontine Dome and represents the highest of the Lower Penninic units of the Central Alps. The Adula nappe largely consists of orthogneiss and paragneiss of pre-Mesozoic origin, variably retrogressed eclogites preserved as boudins within paragneiss, minor ultramafic bodies and metasedimentary rocks of presumed Mesozoic age. The higher metamorphic conditions have been estimated for the peridotite lenses in the southern part of the nappe at pressure over 3.0 GPa and temperature of 800-850°C. Garnet lherzolite bodies crop out at three localities, from west to east: Cima di Gagnone, Alpe Arami and Mt. Duria. After the partial subduction of the European distal margin beneath the Africa-Adria margin, the HP rocks were overprinted by an upper amphibolite facies metamorphism that postdates the main phase of nappe stacking. In the southern sector of the Lepontine Dome, adjacent to the Insubric Fault, metamorphic conditions promoted extensive migmatization of both metasedimentary and metagranitoid rocks. In one single outcrop, at Monte Duria, garnet lherzolites occur in m-sized boudins hosted within partly granulitized amphibole-bearing and k-feldspar gneisses that contain also some decimeter-sized boudins of both mafic and metapelitic eclogites. This rock association is in turn embedded within the migmatitic gneisses that form most of the southern sector of the Adula nappe. Petrographic and chemical analyses indicate that garnet peridotite is composed of olivine (XMg=0.88), orthopyroxene, clinopyroxene and garnet (Py68; Cr2O3 up to 1.45 wt%) with inclusions of Cr-rich spinel (up to Cr/(Al+Cr)=0.55) surrounded by kelyphitic symplectites of opx + cpx/amph + spl. These reaction produced double coronas, one composed of opx (former ol) and one composed of cpx + opx+ spl. In one kelyphite, we observed the uncommon occurrence of ZrO2 (baddeleyite) and ZrTi2O6 (srilankite). Tiny crystals of these two Zr

  18. Assimilation of Consanguineous Mafic Intrutions: Layered Crustal Sill Complexes as Reactive Filters for Continental Basalts

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Vetter, S. K.

    2007-12-01

    Continental basalts commonly display variations in their chemical compositions that are inferred to reflect fractionational crystallization (FC), recharge-FC (RFC), assimilation-FC (AFC), or recharge-AFC (RAFC). The dominance of AFC-related processes reflects the intrinsic linkage between crystallization (which releases latent heat) and assimilation (which consumes latent heat). One of the central questions in any assimilation process, however, is what exactly is being assimilated. It is commonly assumed in most AFC models for the intrusion of basalt into continental crust that the contaminant is pre-existing continental crust - that is, felsic gneiss of roughly granodioritic to tonalitic composition, which is enriched in K2O and other large ion lithophiles relative to mantle-derived basalts. These continental gneisses are commonly Precambrian in age and are enriched in the lithophilic isotope ratios 87Sr/86Sr, 207Pb/204Pb, and 208Pb/204Pb, and depleted in 143Nd/144Nd. As a result, AFC-related processes involving this ancient continental crust component typically result in basaltic lavas that are enriched in LILE (e.g., K) relative to high-field strength elements (e.g., Ti, P) and enriched in the heavy isotopes of Sr, Pb, and Nd compared to the primary or parental magma. Contrary to these expectations, basalts of the Snake River volcanic province that display chemical variations diagnostic of AFC (e.g., increasing La/Lu with decreasing mg#) are commonly characterized by essentially constant isotopic ratios of Sr, Pb and Nd, and by LILE/HFSE ratios (e.g., K/P) that decrease with decreasing mg#. We propose that these basalts assimilated a ferrogabbro derived from a parent magma that was the same or similar to the magmas being intruded to recharge the system. Melts derived from this ferrogabbro would be low in K and enriched in Fe, Ti, P, and La/Lu relative to the primitive recharge magma; the isotopic composition would be the same as the primitive recharge magma. We

  19. Phase transformations in 40-60-GPa shocked gneisses from the Haughton Crater (Canada): An Analytical Transmission Electron Microscopy (ATEM) study

    NASA Technical Reports Server (NTRS)

    Martinez, I.; Guyot, F.; Schaerer, U.

    1992-01-01

    In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.

  20. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: New geochronology of Gianbul dome, northwestern India

    USGS Publications Warehouse

    Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.

    2015-01-01

    A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.

  1. Vorticity Analysis and Deformation History of the Mizil Gneiss Dome, Eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Al-Saleh, Ahmad M.

    2018-05-01

    The Mizil gneiss dome is an elliptical structure consisting of an amphibolite-facies volcanosedimentary mantle and a gneissic granite core. This dome is located at the northern tip of the Ar Rayn terrane only a few kilometers from the eastern edge of the Arabian shield. Previous investigations have shown the intrusive core to be an adakitic diapir with a U-Pb zircon age of 689 ± 10 Ma; this age is 50-80 Ma years older than other granites in this terrane. Vorticity analysis was carried out on samples from the intrusive core and volcanosedimentary cover; the Passchier and Rigid Grain Net (RGN) methods were used to obtain the kinematic vorticity number ( W k) and the mean kinematic vorticity number ( W m). The W k and W m values show a marked increase towards the south; such a pattern indicates a N-S movement of the core pluton thus creating an inclined diapir tilted to the south. Analogue experiments simulating the flow of magma diapirs rising form a subducted slab through the mantle wedge have shown that supra-subduction zone oblique diapirs are produced close to the trench and are elongated normal to the convergence direction as is the case in the Mizil pluton. This effect was found to increase with increasing slab dip due to enhanced drag along the upper surface of the subducted lithospheric plate. Spontaneous subduction which is often associated with rollback resulting in back-arc extension and steep dipping slabs is thought to have occurred in the Mozambique Ocean by 700 Ma. The Mizil pluton is coeval with the back-arc Urd ophiolite from the adjacent Dawadimi terrane, and could therefore have been produced by incipient subduction of a relatively cold slab as observed in many Pacific margin adakites. The tectonic evolution of the eastern shield, as deduced from the Mizil dome and other data from Ar Rayn and neighboring terranes, begins with the subduction of >100 My-old lithosphere beneath the Afif terrane resulting in back-arc spreading and the splitting of the

  2. Geological history of the Cretaceous ophiolitic complexes of northwestern South America (Colombian Andes)

    NASA Astrophysics Data System (ADS)

    Bourgois, Jacques; Toussaint, Jean-François; Gonzalez, Humberto; Azema, Jacques; Calle, Bernardo; Desmet, Alain; Murcia, Luis A.; Acevedo, Alvaro P.; Parra, Eduardo; Tournon, Jean

    1987-12-01

    The Western Cordillera of Colombia was formed by intense alpine-type nappe-forming folding and thrusting. The Cretaceous (80-120 Ma B.P.) tholeiitic material of the Western Cordilleran nappes has been obducted onto the Paleozoic and Precambrian polymetamorphic micaschists and gneiss of the Central Cordillera. Near Yarumal, the Antioquia batholith (60-80 Ma B.P.) intrudes both obducted Cretaceous oceanic material and the polymetamorphic basement rock of the Central Cordillera. Therefore, nappe emplacement and obduction onto the Central Cordillera occurred during Late Senonian to Early Paleocene. The nappes travelled from northwest to southeast so that the highest unit, the Rio Calima nappe therefore has the most northwestern source, whereas the lowest units originated from a more southeastward direction. Sedimentological analysis of the volcanoclastic and sandy turbidite material from each unit suggests a marginal marine environment. During Cretaceous times the opening of this marginal sea, from now on called the "Colombia marginal basin", probably originated by detachment of a block from the South American continent related to the Farallon-South America plate convergence. In the Popayan area (southern Colombia), the Central Cordilleran basement exhibits glaucophane schist facies metamorphism. This high pressure low temperature metamorphism is of Early Cretaceous (125 Ma B.P.) age and is related to an undated metaophiolitic complex. The ophiolitic material originating from the Western Cordilleran is thrust over both the blueschist belt and the metaophiolitic complex. These data suggest that the "Occidente Colombiano" suffered at least two phases of ophiolitic obduction during Mesozoic time.

  3. Petrologic Constraints on the Exhumation of the Sierra Blanca Metamorphic Core Complex (AZ)

    NASA Astrophysics Data System (ADS)

    Koppens, K. M.; Gottardi, R.

    2017-12-01

    The Sierra Blanca metamorphic core complex (SBMCC), located 90 miles west of Tucson, is part of the southern belt of metamorphic core complexes that stretches across southern Arizona. The SBMCC exposes Jurassic age sedimentary rocks that have been metamorphosed by intruding Late Cretaceous peraluminous granites and pegmatites. Evidence of this magmatic episode includes polysythetic twinning in plagioclase, albite exsolution of potassium feldspar resulting in myrmekitic texture, and garnet, mica and feldspar assemblages. The magmatic fabric is overprinted by a Tertiary (Miocene?) tectonic fabric, associated with the exhumation of the Sierra Blanca metamorphic core along a low-angle detachment fault, forming the SBMCC. The NW-SE elongated dome of metamorphic rocks forms the footwall of the detachment shear zone, and is separated from the hanging wall, composed of Paleozoic and Mesozoic metasedimentary rocks, by a low-angle detachment shear zone. Foliation is defined by gneissic layering and aligned muscovite, and is generally sub-horizontal, defining the dome. The NNW-SSE mineral stretching lineation is expressed by plagioclase and K-feldspar porphyroclasts, and various shear sense indicators are all consistent with a top-to the-NNW shear sense. Lineation trends in a NNW-SSE orientation; however, plunge changes across the domiform shape of the MCC. Much of the deformation is preserved in the blastomylonitic gneiss derived from the peraluminous granite, including epidote porphyroclasts, grain boundary migration in quartz, lozenged amphiboles, mica fish, and retrograde mineral alterations. Detailed petrologic observation and microstructural analysis presented here provide thermomechanical constraints on the evolution of the SBMCC.

  4. A low-δ18O intrusive breccia from Koegel Fontein, South Africa: Remobilisation of basement that was hydrothermally altered during global glaciation?

    NASA Astrophysics Data System (ADS)

    Olianti, Camille A. E.; Harris, Chris

    2018-02-01

    The Cretaceous Koegel Fontein igneous complex is situated on the west coast of South Africa, and has a high proportion of rocks with abnormally low δ18O values. The rocks with the lowest δ18O values (- 5.2‰) belong to intrusive matrix-supported breccia pipes and dykes, containing a variety of clast types. The breccia rocks range in SiO2 from 44 to 68 wt% and their whole-rock δ18O values vary between - 5.2‰ and + 1.8‰. The major and trace element composition of the breccia rocks is consistent with them containing variable proportions of clasts of Cretaceous intrusive rocks and basement gneiss and the matrix being fluidized material derived from the same source as the clasts. Based on the nature of the clasts contained in the breccia, it was emplaced just prior to intrusion of the main Rietpoort Granite at 134 Ma. All components of the breccia have low δ18O value and, at least in the case of the gneiss clasts, this predates incorporation in the fluidized material. Although the early Cretaceous appears to have been a period of cold climate, it is unlikely that the δ18O values of ambient precipitation ( - 10‰) would have been low enough to have generated the required 18O-depletion. The basement gneiss was probably 2-3 km below the Cretaceous surface, minimizing the possibility of interaction with isotopically unmodified meteoric water, and there is no evidence for foundered blocks of cover rocks in the breccia. There is, therefore, no evidence for downwards movement of material. We favour a model where basement gneiss interacted with extremely 18O-depleted fluid during crustal reworking at 547 Ma, a time of global glaciation. Low-δ18O metamorphic fluids produced by dehydration melting of 18O-depleted gneiss became trapped and, as the fluid pressure increased, failure of the seal resulted in explosive upwards movement of fluidized breccia. Migration was along pre-existing dykes, incorporating fragments of these dykes, as well as the country rock gneiss.

  5. Occurrence of silicate melt, carbonate-rich melt and fluid during medium pressure anatexis of metapelitic gneisses (Oberpfalz, Bavaria) revealed by melt and fluid inclusions study

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd

    2014-05-01

    In the last decades our understanding of partial melting processes in the lower crust profited from the investigation of fluid inclusions (Touret et al., 2009) and more recently of anatectic melt inclusions (Cesare et al., 2011) within enclaves and high-grade terranes. The latter finding allowed us to directly analyse the original anatectic melt (Ferrero et al., 2012; Bartoli et al., 2013) preserved within peritectic phases, i.e. mainly garnet, but also ilmenite and spinel, before fractionation, mixing and contamination processes took place. Furthermore, the occurrence of primary fluid inclusions (FI) and anatectic melt inclusions (MI) within enclaves allowed the characterization of the COH fluid present during anatexis under fluid+melt immiscibility conditions (Ferrero et al., 2014). Primary crystallized MI, or "nanogranites", and FI have been identified to occur as clusters in garnet from stromatic migmatites (Zeilengneise) from Oberpfalz, Eastern Bavaria (Moldanubian Zone). During the late Carboniferous, these Grt+Bt+Sill+Crd+Spl metapelitic gneisses underwent HT/MP metamorphism, followed by a HT/LP event (Tanner & Behrmann, 1995). Nanogranites, ≤20 µm in size, consist of Qtz+Bt+Wm+Ab±Ap, and show abundant nanoporosity, localized in the quartz. Fluid inclusions are smaller, generally ≤10 µm, and contain CO2+N2+CH4 plus siderite, pyrophillite and cristobalite, mineral phases not observed in the surrounding rock or as mineral inclusion in garnet. Polycrystalline inclusions containing Cc+Wm+Opx±Qz, commonly ≤10 µm in diameter, occur in the same cluster with MI and FI. Microstructural features, negative-crystal shape and the well-developed crystalline faces of calcite within inclusions suggest that they may result from the crystallization of a carbonate-rich melt. The lack of arrays of carbonate-bearing MI, verified by cathodoluminiscence investigation, supports their primary nature, i.e. they formed during garnet growth. This would suggest the occurrence

  6. Using the magmatic record to constrain the growth of continental crust-The Eoarchean zircon Hf record of Greenland

    NASA Astrophysics Data System (ADS)

    Fisher, Christopher M.; Vervoort, Jeffrey D.

    2018-04-01

    Southern West Greenland contains some of the best-studied and best-preserved magmatic Eoarchean rocks on Earth, and these provide an excellent vantage point from which to view long-standing questions regarding the growth of the earliest continental crust. In order to address the questions surrounding early crustal growth and complementary mantle depletion, we present Laser Ablation Split Stream (LASS) analyses of the U-Pb and Hf isotope compositions of zircon from eleven samples of the least-altered meta-igneous rocks from the Itsaq (Amîtsoq) Gneisses of the Isukasia and Nuuk regions of southern West Greenland. This analytical technique allows a less ambiguous approach to determining the age and Hf isotope composition of complicated zircon. Results corroborate previous findings that Eoarchean zircon from the Itsaq Gneiss (∼3.85 Ga to ∼3.63 Ga) were derived from a broadly chondritic source. In contrast to the Sm-Nd whole rock isotope record for southern West Greenland, the zircon Lu-Hf isotope record provides no evidence for early mantle depletion, nor does it suggest the presence of crust older than ∼3.85 Ga in Greenland. Utilizing LASS U-Pb and Hf data from the Greenland zircons studied here, we demonstrate the importance of focusing on the magmatic (rather than detrital) zircon record to more confidently understand early crustal growth and mantle depletion. We compare the Greenland Hf isotope data with other Eoarchean magmatic complexes such as the Acasta Gneiss Complex, Nuvvuagittuq greenstone belt, and the gneissic complexes of southern Africa, and all lack zircons with suprachondritic Hf isotope compositions. In total, these data suggest only a very modest volume of crust was produced during (or survived from) the Hadean and earliest Eoarchean. There remains no record of planet-scale early Earth mantle depletion in the Hf isotope record prior to 3.8 Ga.

  7. Geochronology of the proterozoic basement of southwesternmost North America, and the origin and evolution of the Mojave crustal province

    USGS Publications Warehouse

    Barth, Andrew P.; Wooden, Joseph L.; Coleman, Drew S.; Fanning, C. Mark

    2000-01-01

    The Proterozoic Baldwin gneiss in the central Transverse Ranges of southern California, a part of the Mojave crustal province, is composed of quartzofeldspathic gneiss and schist, augen and granitic gneiss, trondhjemite gneiss, and minor quartzite, amphibolite, metagabbro, and metapyroxenite. Sensitive high resolution ion microprobe (SHRIMP) data indicate that augen and granitic gneisses comprise a magmatic arc intrusive suite emplaced between 1783 ± 12 and 1675 ± 19 Ma, adjacent to or through thinned Archean crust. High U/Th rims on zircons in most samples suggest an early metamorphic event at ∼1741 Ma, but peak amphibolite facies metamorphism and penetrative, west vergent deformation occurred after 1675 Ma. The Baldwin gneiss is part of a regional allochthon emplaced by west vergent deformation over a Proterozoic shelf-slope sequence (Joshua Tree terrane). We hypothesize that emplacement of this regional allochthon occurred during a late Early or Middle Proterozoic arc-continent collision along the western margin of Laurentia.

  8. Preliminary report of the uranium favorability of shear zones in the crystalline rocks of the southern Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penley, H.M.; Schot, E.H.; Sewell, J.M.

    1978-11-01

    Three sheared areas in the crystalline Piedmont and Blue Ridge provinces, from which uranium occurrences or anomalous radioactivity have been reported, were studied to determine their favorability for uranium mineralization. The study, which involved a literature review, geologic reconnaissance, ground radiometric surveys, and sampling of rock outcrops for petrographic and chemical analyses, indicates that more-detailed investigations of these and similar areas are warranted. In each area, surface leaching and deep residual cover make it difficult to assess the potential for uranium mineralization on the basis of results from chemical analyses for U/sub 3/O/sub 8/ and the radiometric surveys. Although anomalousmore » radioactivity and anomalous chemical uranium values were noted in only a few rock exposures and samples from the shear zones, the potential for uranium mineralization at depth could be much greater than indicated by these surface data. The study indicates that shear zones within Precambiran granitic basement complexes (such as the Wilson Creek Gneiss of western North Carolina, the Cranberry Gneiss of eastern Tennessee, and the Toxaway Gneiss of western South Carolina) are favorable as hosts for uranium and may contain subsurface deposits. Mylonitized graphitic schists immediately north of the Towaliga fault in Alabama and Georgia may be favorable host rocks for uranium.« less

  9. The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu

    NASA Astrophysics Data System (ADS)

    Kern, H.; Ivankina, T. I.; Nikitin, A. N.; Lokajíček, T.; Pros, Z.

    2008-10-01

    Elastic anisotropy is an important property of crustal and mantle rocks. This study investigates the contribution of oriented microcracks and crystallographic (LPO) and shape preferred orientation (SPO) to the bulk elastic anisotropy of a strongly foliated biotite gneiss, using different methodologies. The rock is felsic in composition (about 70 vol.% SiO 2) and made up by about 40 vol.% quartz, 37 vol.% plagioclase and 23 vol.% biotite. Measurements of compressional (Vp) and shear wave (Vs) velocities on a sample cube in the three foliation-related structural directions (up to 600 MPa) and of the 3D P-wave velocity distribution on a sample sphere (up to 200 MPa) revealed a strong pressure sensitivity of Vp, Vs and P-wave anisotropy in the low pressure range. A major contribution to bulk anisotropy is from biotite. Importantly, intercrystalline and intracrystalline cracks are closely linked to the morphologic sheet plane (001) of the biotite minerals, leading to very high anisotropy at low pressure. Above about 150 MPa the effect of cracks is almost eliminated, due to progressive closure of microcracks. The residual (pressure-independent) part of velocity anisotropy is mainly caused by the strong alignment of the platy biotite minerals, displaying a strong SPO and LPO. Calculation of the 3D velocity distribution based on neutron diffraction texture measurements of biotite, quartz, and plagioclase and their single-crystal properties give evidence for an important contribution of the biotite LPO to the intrinsic velocity anisotropy, confirming the experimental findings that maximum and minimum velocities and shear wave splitting are closely related to foliation. Comparison of the LPO-based calculated anisotropy (about 8%) with measured intrinsic anisotropy (about 15% at 600 MPa) give hints for a major contribution of SPO to the bulk anisotropy of the rock.

  10. Tectono-metamorphic evolution of high-P/T and low-P/T metamorphic rocks in the Tia Complex, southern New England Fold Belt, eastern Australia: Insights from K-Ar chronology

    NASA Astrophysics Data System (ADS)

    Fukui, Shiro; Tsujimori, Tatsuki; Watanabe, Teruo; Itaya, Tetsumaru

    2012-10-01

    The Tia Complex in the southern New England Fold Belt is a poly-metamorphosed Late Paleozoic accretionary complex. It consists mainly of high-P/low-T type pumpellyite-actinolite facies (rare blueschist facies) schists, phyllite and serpentinite (T = 300 °C and P = 5 kbar), and low-P/high-T type amphibolite facies schist and gneiss (T = 600 °C and P < 5 kbar) associated with granodioritic plutons (Tia granodiorite). White mica and biotite K-Ar ages distinguish Carboniferous subduction zone metamorphism and Permian granitic intrusions, respectively. The systematic K-Ar age mapping along a N-S traverse of the Tia Complex exhibits a gradual change. The white mica ages become younger from the lowest-grade zone (339 Ma) to the highest-grade zone (259 Ma). In contrast, Si content of muscovite changes drastically only in the highest-grade zone. The regional changes of white mica K-Ar ages and chemical compositions of micas indicate argon depletion from precursor high-P/low-T type phengitic white mica during the thermal overprinting and recrystallization by granitoids intrusions. Our new K-Ar ages and available geological data postulate a model of the eastward rollback of a subduction zone in Early Permian. The eastward shift of a subduction zone system and subsequent magmatic activities of high-Mg andesite and adakite might explain formation of S-type granitoids (Hillgrove suite) and coeval low-P/high-T type metamorphism in the Tia Complex.

  11. Aperçu de precambrien de côte d'Ivoire: geologie-metallogenie

    NASA Astrophysics Data System (ADS)

    Angoran, Y.; Kadio, E.

    The Ivory Coast is situated at the southern limits of the West African Craton and constitute a part of the 'Dorsale de Man'. The precambrian rocks occupy 97% of the superficial area of the country and include rocks of two orogenic episodes: the Liberian (3000-2580 Ma) and the Eburnian of lower Proterozoic (2400-1550 Ma). Liberian Orogeny, which is the most ancient, consists of gneisses, amphibo-pyroxinites, fine-grained itabirites and coarse-grained ferruginous quartzites. The aluminous gneisses, amphibo-pyroxinites and ferruginous quartzites are supracrustals that have been transformed by a high grade Catasonal metamorphism resulting in highly folded rocks. The Liberian plutons are infracrustals consisting of complex basic and ultrabasic rocks, migmatites, charnockites and granites associated with magmatites. This Liberian complex is intruded by some dolerites (2200 Ma), and kimberlites with diamond (2210-2500 Ma) which have been eroded to produce Birrimian placer deposits of Tortiya and Birrim in Ghana. The eburnian geosyncline consists of alternating subparallel intrageosynclines and intrageanticlines. The volcano-sedimentary complexes were intruded by eburnian plutons of 2100-1550 Ma. About 20 different types of mineralisations are common within the Pre-Cambrian rocks of the Ivory Coast and they are of Archaen to lower Proterozoic age. Examples of these mineral concentrations are cited in this paper.

  12. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains. Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss. Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  13. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains.Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss.Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  14. The origin of oceanic crust and metabasic rocks protolith, the Luk Ulo Mélange Complex, Indonesia

    NASA Astrophysics Data System (ADS)

    Permana, H.; Munasri; Mukti, Maruf M.; Nurhidayati, A. U.; Aribowo, S.

    2018-02-01

    The Luk Ulo Mélange Complex (LUMC) is composed of tectonic slices of rocks that surrounded by scaly clay matrix. These rocks consist of serpentinite, gabbro, diabase, and basalt, eclogite, blueschist, amphibolite, schist, gneiss, phylite and slate, granite, chert, red limestone, claystone and sandstone. The LUMC was formed since Paleocene to Eocene, gradually uplifted of HP-UHP metabasic-metapelite (P: 20-27kbar; T: 410-628°C) to near surface mixed with hemipelagic sedimentary rocks. The metamorphic rocks were formed during 101-125 Ma (Early Cretaceous) within 70 to 100 km depth and ∼6°C/km thermal gradient. It took about 50-57 Myr for these rocks to reach the near surface during Paleocene-Eocene, with an uplift rate at ∼1.4-1.8 km/year to form the mélange complex. The low thermal gradient was due to subduction of old and cold oceanic crust. The subducted oceanic crust (MORB) as protolith of Cretaceous metabasic rocks must be older than Cretaceous. The data show that the basalt of oceanic crust is Cretaceous (130-81 Ma) comparable to the age of the cherts (Early to Late Cretaceous). Therefore, we consider that neither oceanic crust exposed in LUMC nor all of part of the old oceanic crust is the protolith of LUMC metabasic subducted beneath the Eurasian Plate. These oceanic rocks possibly originated or part of the edge of micro-continental that merged as a part of the LUMC during the collision with the Eurasian margin.

  15. Reconnaissance geology of the Precambrian rocks in the Ayn Qunay quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Whitlow, Jesse William; Ankary, Abdullah O.

    1972-01-01

    The Aya Qunay quadrangle covers an area of 2833 sq km in central Saudi Arabia, Only the western edge of the quadrangle is underlain by Precambrian rocks, which were the subject of this investigation. Toward the east the Precambrian rocks are unconformably overlain by Permian and younger sedimentary rocks. The Permian rocks at the west edge of the Ayn Qunay quadrangle consist mainly of a granitic intrusive complex of batholithic dimensions. Parts of the eastern edge of the granitic complex are exposed just west of the overlying Khuff Formation of Permian age, where biotite-hornblende granite of the complex intrudes chlorite-sericite schist of the Precambrian Bi'r Khountina Group. The biotite-hornblende granite of the complex also intrudes plutons of diorite, gabbro, and pyroxenite and is itself intruded by granite porphyry, thereby indicating some difference in age between the granitic rocks in the complex. A sequence of metamorphosed volcanic rocks composed mainly of andesite, rhyolite, and kindred rocks, and called the Halaban Group, is older than the Bi'r Khountina Group. Relations between the Halaban and a gray hornblende-biotite granite gneiss are uncertain, but the gneiss may be older than the Halaban. The few observed contacts disclosed parallel foliation in the two units, but the foliation may have been imposed after the Halaban was deposited on the granite gneiss. Two major left-lateral faults extend west-northwest across the Precambrian rocks but are not in the Permian rocks. These faults parallel to the Najd fault zone found farther south. Seemingly they correlate in time with early movements on the Najd fault zone, but not with the latest. Saprolitic material-of variable thickness is present on the upper surface of the Precambrian rocks beneath the Khuff Formation at many places. Where the Khuff Formation has been removed by erosion, the saprolite is also stripped away. The weathering probably took place in pre-Khuff time. No ancient mines or prospects

  16. Nature and probable age of metamorphism in northern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grambling, J.A.; Daniel, C.D.; Dallmeyer, R.D.

    1993-02-01

    Metamorphic conditions near the Al[sub 2]SiO[sub 5] triple point are unusually common in northern New Mexico. This observation is supported by mineralogy (Ky + And + Sil, Cld + Sil, Sil + Pg + Qz) and Grt-Bt-Pl-Ms thermobarometry (4--5 kb and 500--550 C). Isograds cut across tight folds (overturned to the north) in the Pecos, Rio Mora, Truchas and Picuris areas. Some deformation also accompanied or preceded metamorphism in the Rincon and Cimarron ranges. P-T paths derived from zoning in Grt and Pl, in Mn-andalusite, and the textural transition Ky to Sil to And reflect up to 2 kb ofmore » decompression, at constant temperature in the more southerly ranges but during cooling toward the north. These 500--550 C rocks are in direct contact with gneisses in the Rincon and Cimarron Ranges. Metaplutonic gneisses record hornblende pressures of 6--8 kb. Metasedimentary gneisses are migmatitic. Assemblages include Sil + Kfs, Hc + Qz and Alm + Bt + Sil, whereas Grt-Sil-Pl-Bt yields 6.5--7 kb and 700--725 C. Pressures increase northward from the Cimarrron Mountains. The gneisses display retrograde P-T paths with 2.5--3 kb of decompression and cooling through the Al[sub 2]SiO[sub 5] triple point. Geometric relationships between gneisses and 500--550 C rocks are best constrained in the Cimarron Mountains, where a folded but initially low-angle contact separates the two metamorphic grades. Gneisses are structurally beneath this contact. Other regions may display a similar geometry. The structurally-highest gneisses are locally mylonitic, suggesting that contacts between gneisses and 500--550 C rocks are ductile shear zones. Monazite U-Pb ages from gneisses of the Cimarron Range are 1420-1425 Ma, whereas hornblende argon ages are 1,395--1,397 Ma.« less

  17. Archean Arctic continental crust fingerprints revealing by zircons from Alpha Ridge bottom rocks

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey; Petrov, Oleg; Morozov, Andrey; Shevchenko, Sergey; Presnyakov, Sergey; Antonov, Anton; Belyatsky, Boris

    2015-04-01

    Whereas thick Cenozoic sedimentary cover overlapping bedrock of the Arctic Ocean, some tectonic windows were sampled by scientific submarine manipulator, as well as by grabbing, dredging and drilling during «Arctic-2012» Russian High-Arctic expedition (21 thousands samples in total, from 400-km profile along Alpha-Mendeleev Ridges). Among others, on the western slope of Alpha Ridge one 10x10 cm fragment without any tracks of glacial transportation of fine-layered migmatitic-gneiss with prominent quartz veinlets was studied. Its mineral (47.5 vol.% plagioclase + 29.6% quartz + 16.6% biotite + 6.1% orthoclase) and chemical composition (SiO2:68.2, Al2O3:14.9, Fe2O3:4.44, TiO2:0.54, MgO:2.03, CaO:3.13, Na2O:3.23, K2O:2.16%) corresponds to trachydacite vulcanite, deformed and metamorphozed under amphibolite facies. Most zircon grains (>80%) from this sample has an concordant U-Pb age 3450 Ma with Th/U 0.8-1.4 and U content of 100-400 ppm, epsilon Hf from -4 up to 0, and ca 20% - ca 3.3 Ga with Th/U 0.7-1.4 and 90-190 ppm U, epsilon Hf -6.5 to -4.5, while only 2% of the grains show Proterozoic age of ca 1.9 Ga (Th/U: 0.02-0.07, U~500 ppm, epsilon Hf about 0). No younger zircons were revealed at all. We suppose that magmatic zircon crystallized as early as 3450 Ma ago during acid volcanism, the second phase zircon crystallization from partial melt (or by volcanics remelting) under amphibolite facies metamorphism was at 3.3 Ga ago with formation of migmatitie gneisses. Last zircon formation from crustal fluids under low-grade metamorphic conditions was 1.9 Ga ago. There are two principal possibilities for the provenance of this metavolcanic rock. The first one - this is ice-rafted debris deposited by melted glacial iceberg. However, presently there are no temporal and compositional analogues of such rocks in basement geology of peri-oceanic regions, including Archean Itsaq Gneiss Complex, Lewisian Complex and Baltic Shield but these regions are far from the places of

  18. Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Mondal, M. E. A.; Satyanarayanan, M.

    2016-08-01

    Basement complex of the Aravalli craton (NW India) known as the Banded Gneissic Complex (BGC) is classified into two domains viz. Archean BGC-I and Proterozoic BGC-II. We present first comprehensive geochemical study of the Archean metasedimentary rocks occurring within the BGC-I. These rocks occur associated with intrusive amphibolites in a linear belt within the basement gneisses. The association is only concentrated on the western margin of the BGC-I. The samples are highly mature (MSm) to very immature (MSi), along with highly variable geochemistry. Their major (SiO2/Al2O3, Na2O/K2O and Al2O3/TiO2) and trace (Th/Sc, Cr/Th, Th/Co, La/Sc, Zr/Sc) element ratios, and rare earth element (REE) patterns are consistent with derivation of detritus from the basement gneisses and its mafic enclaves, with major contribution from the former. Variable mixing between the two end members and closed system recycling (cannibalism) resulted in the compositional heterogeneity. Chemical index of alteration (CIA) of the samples indicate low to moderate weathering of the source terrain in a sub-tropical environment. In A-CN-K ternary diagram, some samples deceptively appear to have undergone post-depositional K-metasomatism. Nevertheless, their petrography and geochemistry (low K2O and Rb) preclude the post-depositional alteration. We propose non-preferential leaching of elements during cannibalism as the cause of the deceptive K-metasomatism as well as enigmatic low CIA values of some highly mature samples. The Archean metasedimentary rocks were deposited on stable basement gneisses, making the BGC-I a plausible participant in the Archean Ur supercontinent.

  19. Neoproterozoic extension in the greater dharwar craton: A reevaluation of the "betsimisaraka suture" in madagascar

    USGS Publications Warehouse

    Tucker, R.D.; Roig, J.-Y.; Delor, C.; Amlin, Y.; Goncalves, P.; Rabarimanana, M.H.; Ralison, A.V.; Belcher, R.W.

    2011-01-01

    The Precambrian shield of Madagascar is reevaluated with recently compiled geological data and new U-Pb sensitive high-resolution ion microprobe (SHRIMP) geochronology. Two Archean domains are recognized: the eastern Antongil-Masora domain and the central Antananarivo domain, the latter with distinctive belts of metamafic gneiss and schist (Tsaratanana Complex). In the eastern domain, the period of early crust formation is extended to the Paleo-Mesoarchean (3.32-3.15 Ga) and a supracrustal sequence (Fenerivo Group), deposited at 3.18 Ga and metamorphosed at 2.55 Ga, is identified. In the central domain, a Neoarchean period of high-grade metamorphism and anatexis that affected both felsic (Betsiboka Suite) and mafic gneisses (Tsaratanana Complex) is documented. We propose, therefore, that the Antananarivo domain was amalgamated within the Greater Dharwar Craton (India + Madagascar) by a Neoarchean accretion event (2.55-2.48 Ga), involving emplacement of juvenile igneous rocks, high-grade metamorphism, and the juxtaposition of disparate belts of mafic gneiss and schist (metagreenstones). The concept of the "Betsimisaraka suture" is dispelled and the zone is redefined as a domain of Neoproterozoic metasedimentary (Manampotsy Group) and metaigneous rocks (Itsindro-Imorona Suite) formed during a period of continental extension and intrusive igneous activity between 840 and 760 Ma. Younger orogenic convergence (560-520 Ma) resulted in east-directed overthrusting throughout south Madagascar and steepening with local inversion of the domain in central Madagascar. Along part of its length, the Manampotsy Group covers the boundary between the eastern and central Archean domains and is overprinted by the Angavo-Ifanadiana high-strain zone that served as a zone of crustal weakness throughout Cretaceous to Recent times.

  20. Timing of metamorphism of the Lansang gneiss and implications for left-lateral motion along the Mae Ping (Wang Chao) strike-slip fault, Thailand

    NASA Astrophysics Data System (ADS)

    Palin, R. M.; Searle, M. P.; Morley, C. K.; Charusiri, P.; Horstwood, M. S. A.; Roberts, N. M. W.

    2013-10-01

    The Mae Ping fault (MPF), western Thailand, exhibits dominantly left-lateral strike-slip motion and stretches for >600 km, reportedly branching off the right-lateral Sagaing fault in Myanmar and extending southeast towards Cambodia. Previous studies have suggested that the fault assisted the large-scale extrusion of Sundaland that occurred during the Late Eocene-Early Oligocene, with a geological offset of ˜120-150 km estimated from displaced high-grade gneisses and granites of the Chiang Mai-Lincang belt. Exposures of high-grade orthogneiss in the Lansang National Park, part of this belt, locally contain strong mylonitic textures and are bounded by strike-slip ductile shear zones and brittle faults. Geochronological analysis of monazite from a sample of sheared biotite-K-feldspar orthogneiss suggests two episodes of crystallization, with core regions documenting Th-Pb ages between c. 123 and c. 114 Ma and rim regions documenting a significantly younger age range between c. 45-37 Ma. These data are interpreted to represent possible magmatic protolith emplacement for the Lansang orthogneiss during the Early Cretaceous, with a later episode of metamorphism occurring during the Eocene. Textural relationships provided by in situ analysis suggest that ductile shearing along the MPF occurred during the latter stages of, or after, this metamorphic event. In addition, monazite analyzed from an undeformed garnet-two-mica granite dyke intruding metamorphic units at Bhumipol Lake outside of the Mae Ping shear zone produced a Th-Pb age of 66.2 ± 1.6 Ma. This age is interpreted to date the timing of dyke emplacement, implying that the MPF cuts through earlier formed magmatic and high-grade metamorphic rocks. These new data, when combined with regional mapping and earlier geochronological work, show that neither metamorphism, nor regional cooling, was directly related to strike-slip motion.

  1. Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications

    NASA Astrophysics Data System (ADS)

    Rainaud, C.; Master, S.; Armstrong, R. A.; Robb, L. J.

    2005-07-01

    U-Pb SHRIMP zircon age data, together with geochemical analyses, from the basement to the Katanga Supergroup in the Central African Copperbelt reveal the existence of a widespread Palaeoproterozoic magmatic arc terrane. The Lufubu schists represent a long-lived calc-alkaline volcanic arc sequence and, where dated in both Zambia and the Democratic Republic of Congo (DRC), yield ages of 1980 ± 7, 1968 ± 9, 1964 ± 12 and 1874 ± 8 Ma. The oldest dated unit from the region, the Mkushi granitic gneiss from south-east of the Zambian Copperbelt, has an age of 2049 ± 6 Ma. The copper-mineralized Mtuga aplites, which crosscut the foliation in the Mkushi gneisses, have mainly xenocrystic, zoned zircons with cores dated at ca. 2.07-2.00 Ga. Overgrowths on these cores are dated at 1059 ± 26 Ma, which is interpreted as the intrusive age of the aplites. An augen gneiss from the Mulungushi Bridge locality yielded an emplacement age of 1976 ± 5 Ma. The Mufulira Pink Granite has an age of 1994 ± 7 Ma, while the Chambishi granite has been dated at 1983 ± 5 Ma, an age within error of Lufubu schist metavolcanics from elsewhere in the Chambishi basin. The gneisses, granitoids and acid-intermediate calc-alkaline metavolcanics are considered to represent stages in the evolution of one or more magmatic arcs that formed episodically over a 200 million year period between 2050 and 1850 Ma. We suggest naming this assemblage of rocks the "Lufubu Metamorphic Complex". The rocks of the Lufubu Metamorphic Complex are interpreted to be part of a regionally extensive Palaeoproterozoic magmatic arc terrane stretching from northern Namibia to northern Zambia and the DRC. This terrane is termed the Kamanjab-Bangweulu arc and is inferred to have collided with the Archaean Tanzanian craton during the ca. 2.0-1.9 Ga Ubendian orogeny, to produce a new composite minicontinental entity that we term the "Kambantan" terrane. The Kambantan terrane was accreted onto the southern margin of the Congo

  2. Installation Restoration Program Records Search for Luke Air Force Base, Arizona.

    DTIC Science & Technology

    1982-06-01

    These soils were formed in recent alluvium derived from a wide mixture of rock type, including andesite, basalt , schist, rhyolite, and granite-gneiss...were originally derived from granite, granite- gneiss, schist, andesite, basalt , and limestone. Permeability is moderate (same as Gilman series...alluvium is the crystalline rock, granite, granite-gneiss, anyolite, schist, andesite, basalt , and limestone, which eroded from the mountains, and were

  3. Empirical analysis of electromagnetic profiles for groundwater prospecting in rural areas of Ibadan, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Ehinola, O. A.; Opoola, A. O.

    2005-05-01

    The Slingram electromagnetic (EM) survey using a coil separation of 60 and 100 meters was carried out in 10 villages in Akinyele area of Ibadan, southwestern Nigeria to aid in the development of groundwater. Five main rock types including an undifferentiated gneiss complex (Su), biotite-garnet schist/gneiss (Bs), quartzite and quartz schist (Q), migmatised undifferentiated biotite/hornblende gneiss (M) and pegmatite/quartz vein (P) underlie the study area. A total of 31 EM profiles was made to accurately locate prospective borehole sites in the field. Four main groups with different behavioural pattern were categorized from the EM profiles. Group 1 is characterized by high density of positive (HDP) or high density of negative (HDN) real and imaginary curves, Group 2 by parallel real and imaginary curves intersecting with negligible amplitude (PNA), Group 3 by frequent intersection of high density of negative minima (FHN) real and imaginary curves, and Group 4 by separate and approximately parallel (SAP) real and imaginary curves. Qualitative pictures of the overburden thickness and the extent of fracturing have been proposed from these behavioural patterns. A comparison of the borehole yield with the overburden thickness and the level of fracturing show that borehole yield depends more on the fracture density than on the overburden thickness. Asymmetry of the anomaly was also found useful in the determination of the inclination of the conductor/fracture.

  4. The basement of the Mount Athos peninsula, northern Greece: insights from geochemistry and zircon ages

    NASA Astrophysics Data System (ADS)

    Himmerkus, F.; Zachariadis, P.; Reischmann, T.; Kostopoulos, D.

    2012-09-01

    The Mount Athos Peninsula is situated in the south-easternmost part of the Chalkidiki Peninsula in northern Greece. It belongs to the Serbo-Macedonian Massif (SMM), a large basement massif within the Internal Hellenides. The south-eastern part of the Mount Athos peninsula is built by fine-grained banded biotite gneisses and migmatites forming a domal structure. The southern tip of the peninsula, which also comprises Mount Athos itself, is built by limestone, marble and low-grade metamorphic rocks of the Chortiatis Unit. The northern part and the majority of the western shore of the Mount Athos peninsula are composed of highly deformed rocks belonging to a tectonic mélange termed the Athos-Volvi-Suture Zone (AVZ), which separates two major basement units: the Vertiskos Terrane in the west and the Kerdillion Unit in the east. The rock-types in this mélange range from metasediments, marbles and gneisses to amphibolites, eclogites and peridotites. The gneisses are tectonic slivers of the adjacent basement complexes. The mélange zone and the gneisses were intruded by granites (Ierissos, Ouranoupolis and Gregoriou). The Ouranoupolis intrusion obscures the contact between the mélange and the gneisses. The granites are only slightly deformed and therefore postdate the accretionary event that assembled the units and created the mélange. Pb-Pb- and U-Pb-SHRIMP-dating of igneous zircons of the gneisses and granites of the eastern Athos peninsula in conjunction with geochemical and isotopic analyses are used to put Athos into the context of a regional tectonic model. The ages form three clusters: The basement age is indicated by two samples that yielded Permo-Carboniferous U-Pb-ages of 292.6 ± 2.9 Ma and 299.4 ± 3.5 Ma. The main magmatic event of the granitoids now forming the gneiss dome is dated by Pb-Pb-ages between 140.0 ± 2.6 Ma and 155.7 ± 5.1 Ma with a mean of 144.7 ± 2.4 Ma. A within-error identical age of 146.6 ± 2.3 Ma was obtained by the U

  5. Deformational history of part of the Acatlán Complex: Late Ordovician Early Silurian and Early Permian orogenesis in southern Mexico

    NASA Astrophysics Data System (ADS)

    Malone, J. R.; Nance, R. D.; Keppie, J. D.; Dostal, J.

    2002-10-01

    The Paleozoic Acatlán Complex of southern Mexico comprises polydeformed metasedimentary, granitoid, and mafic-ultramafic rocks variously interpreted as recording the closure of the Iapetus, Rheic, and Ouachitan Oceans. The complex is tectonically juxtaposed on its eastern margin against Grenville-age gneisses (Oaxacan Complex) that are unconformably overlain by Lower Paleozoic strata containing fossils of Gondwanan affinity. A thick siliciclastic unit (Chazumba and Cosoltepec Formations) at the base of the complex is considered part of a Lower Paleozoic accretionary prism with a provenance that isotopically resembles the Oaxacan Complex. This unit is tectonically overridden by a locally eclogitic mafic-ultramafic unit interpreted as a westward-obducted ophiolite, the emplacement of which was synchronous with mylonitic granitoid intrusion at ca. 440 Ma. Both units are unconformably overlain by a deformed volcano-sedimentary sequence (Tecomate Formation) attributed to a volcanic arc of presumed Devonian age. Deformed granitoids in contact with this sequence have been dated at ca. 371 (La Noria granite) and 287 Ma (Totoltepec pluton). Three phases of penetrative deformation (D 1-3) affect the Cosoltepec Formation; the last two correlate with two penetrative deformational phases that affect the Tecomate Formation. D 1 is of unknown kinematics but predates deposition of the Tecomate Formation and likely records obduction at ca. 440 Ma (Acatecan orogeny). A folded foliation in the Totoltepec pluton appears to record both deformational phases in the Tecomate Formation, bracketing D 2 and D 3 between 287 Ma and the deposition of the nonconformably overlying Leonardian Matzitzi Formation. D 2 records north-south dextral transpression and south-vergent thrusting and is attributed to the collision of Gondwana and southern Laurentia (Ouachitan orogeny) at ca. 290 Ma, the kinematics being consistent with the northward motion of Mexico that is required by most continental

  6. In situ U-Pb and Lu-Hf isotopic studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite

    NASA Astrophysics Data System (ADS)

    Lee, Yuyoung; Cho, Moonsup; Yi, Keewook

    2017-05-01

    Isotopic and geochemical characteristics of Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite have long been used for tracing the mantle-crustal source and magmatic evolution. We analyzed Lu-Hf isotopic compositions of zircon from the Sancheong-Hadong AMCG complex, Yeongnam Massif, Korea, in order to understand tectonomagmatic evolution of the Paleoproterozoic AMCG suite occurring at the southeastern margin of the North China Craton (NCC). The anorthositic rocks in this complex, associated with charnockitic and granitic gneisses, were recrystallized to eradicate magmatic features. In situ SHRIMP (sensitive high-resolution ion microprobe) U-Pb analyses of zircon from a leuconorite and an oxide-bearing gabbroic dyke yielded weighted mean 207Pb/206Pb ages of 1870 ± 2 Ma and 1861 ± 6 Ma, respectively. Charnockitic, granitic, and porphyroblastic gneisses yielded weighted mean 207Pb/206Pb zircon ages of 1861 ± 6 Ma, 1872 ± 6 Ma, and 1873 ± 4 Ma, respectively. These crystallization ages, together with our previous geochronological data for anorthosites (1862 ± 2 Ma), are indicative of episodic AMCG magmatism over an ∼10 Ma interval. Initial εHf(t) values of zircon analyzed from five anorthositic rocks and four felsic gneisses range from +2.1 to -6.1 and -0.3 to -5.4, respectively. Zircon Hf isotopic data in combination with available whole rock Sr-Nd isotopic data suggest that anorthositic parental magma was most likely derived from a mantle source and variably affected by crustal contamination. This crustal component is also reflected in charnockitic-granitic magmas produced primarily by the melting of lower crust. Taken together, the AMCG magmatism at 1.87-1.86 Ga in the Yeongnam Massif is most likely a late orogenic product of Paleoproterozoic NCC amalgamation tectonically linked to assembly of the Columbia supercontinent.

  7. U-Pb Geochronology and Hf-isotope constrains on Formation of Archaean Crust From the Lewisian of NW Scotland, Great Britain

    NASA Astrophysics Data System (ADS)

    Crowley, Q. G.; Noble, S. R.; Key, R.

    2006-12-01

    The Lewisian complex of NW Scotland is dominantly composed of Archaean tonalitic to granodioritic gneisses, ultramafic bodies and minor metasedimentary components. Although the area is internationally well known and has been much studied for over a century, the precise timing of crustal forming events has proven difficult to ascertain. We present data from both in-situ laser ablation (LA) ICP-MS and an adaptation of a new U-Pb chemical abrasion ID-TIMS technique (Mattinson 2006) applied to multi-age component zircons from the Assynt block of this region. The new data reveal a previously unrecognised complexity and provide the first unequivocal proof of an Archean metamorphic event in the area. In a wider context the data also elucidate some of the processes involved in early global crust formation and plate tectonic events. In-situ LA-ICPMS U-Pb dating has indicated a ca 2.8Ga protolith age for a tonalite gneiss with evidence for a ca. 3.6Ga xenocrystic component (the oldest discovered in the UK). Non-conventional U-Pb ID-TIMS utilising a combination of high-temperature annealing followed by multi-step incremental dissolution on single grains has dated zircon growth at ca 2.7Ga (Badcallian) and 2.5Ga (Inverian) with later Pb-loss occurring at ca 1.9Ga and ca 1.7Ga (early and late Laxfordian respectively). This latter method combines a pseudo-spatial resolution normally associated with an in-situ technique but benefits from the high-precision analysis of ID-TIMS. Zircon Hf isotopes indicate that some rocks from the Assynt area are typical of Archaean continental crust (epsilon Hf ca -1. The tonalite gneisses however have strongly negative epsilon Hf values of -7 to -10 indicating a more complex history of derivation through partial melting of ancient crust with residual garnet as a long- lived control on Hf. Archaean events at ca. 3.6Ga, ca 2.8Ga and ca 2.7Ga have also been recorded in west Greenland (e.g. Mojzsis & Harrison 1999, Richards and Appel, 1987

  8. Isotopic mapping of age provinces in Precambrian high-grade terrains: Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milisenda, C.C.; Liew, T.C.; Hofmann, A.W.

    1988-09-01

    Nd model ages of amphibolite- and granulite-grade rocks in Sri Lanka form a simple region pattern that broadly correlates with mappable geological units, and is in effect an isotopic map of the island's basement. The granulite-grade units of the Highland Group and Southwest Group have model ages of 2.2-3.0 Ga indicating derivation mainly from late Archean sources. They are bounded to the east and west by late Proterozoic gneisses of the Vijayan Complex with model ages of 1.1-2.0 Ga. The isotopic data identify three distinct crustal provinces and are not consistent with earlier suggestions that the Vijayan gneisses are retrogrademore » equivalents of the Highland granulites. Sri Lanka is not a direct continuation of the Archean Dharwar Craton of southern India. Identification of Vijayan-type juvenile crustal terrains in other Gondwana fragments may play a key role in determining the precise attachment of southern India-Sri Lanka in eastern Gondwana.« less

  9. 3.3 Ga SHRIMP U-Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco craton, Bahia (NE Brazil)

    NASA Astrophysics Data System (ADS)

    Peucat, J. J.; Mascarenhas, J. F.; Barbosa, J. S. F.; de Souza, S. L.; Marinho, M. M.; Fanning, C. M.; Leite, C. M. M.

    2002-07-01

    Felsic metavolcanics associated with supracrustal rocks provide U-Pb zircon and Sm-Nd TDM ages of approximately 3.3 Ga, which establish an Archean age of the Mundo Novo greenstone belt. A granodioritic gneiss from the Mairi complex, located on the eastern boundary of the Mundo Novo greenstone belt, exhibits a zircon evaporation minimum age of 3.04 Ga and a Nd model age of 3.2 Ga. These results constrain the occurrence of at least three major geological units in this area: the Archean Mundo Novo greenstone belt, the Archean Mairi gneisses, and the adjoining Paleoproterozoic (<2.1 Ga) Jacobina sedimentary basin. The Jacobina basin follows the same trend as the Archean structure, extending southward to the Contendas-Mirante belt, in which a similar Archean-Paleoproterozoic association appears. We postulate that during the Paleoproterozoic in the eastern margin of the Gavião block, these Archean greenstone belts constituted a zone of weakness along which a late-stage orogenic sedimentary basin developed.

  10. Unraveling the Switch from Subduction to Exhumation within a Collisional Orogen: Split-stream U-Pb and Trace-element Results from the Western Gneiss Region, Norway (Invited)

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Whitney, D. L.; Teyssier, C. P.; Fossen, H.; Desormeau, J. W.; Jessen, B.

    2013-12-01

    During continental collision, crustal material may be subducted to great depths and subsequently exhumed. Ultrahigh-pressure (UHP) terranes preserve a record of the subduction of crustal material during suturing of colliding continents and the exhumation of this material during extension and, in some cases, collapse of the orogen. The UHP rocks of the Western Gneiss Region (WGR), Norway, resulted from the collision of Baltica with Laurentia during the final stages of the Caledonian orogeny. The WGR represents one of the two largest UHP terranes on Earth and consists of a UHP eclogite-bearing domain south of the Møre-Trøndelag strike-slip fault and a HP mafic granulite-bearing domain north of the fault. At least some of the HP granulite is overprinted eclogite. To evaluate the metamorphic and structural relationship of mafic rocks and associated migmatite in both regions, we obtained LA-ICP-MS U-Pb dates and trace-element analyses for zircon from a variety of textural types of leucosome associated with mafic layers and lenses. Five leucosomes within highly deformed migmatite in the HP granulite complex on the Roan Peninsula reveal U-Pb lower-intercept ages from ca. 405 to 409 Ma and upper-intercept Proterozoic dates. These zircons have distinct trace-elements patterns: all of the zircons that yield Proterozoic dates have overall much higher REE concentrations, a more significant negative Eu anomaly (-0.3 to -0.7) and steeper HREE patterns (Lu/Dy = 5-12). In comparison, the Caledonian zircons reveal flatter Eu anomalies (-0.3 to 0.2) and less steep HREE patterns (Lu/Dy = 2-7), although the individual patterns do not seem to correlate with age. The Caledonian zircon patterns suggest crystallization at high-pressures and are distinct from the inherited Proterozoic grains. Similar results were obtained from zircon rims extracted from layer-parallel to crosscutting leucosomes from the UHP domain. Trace elements in zircon in these samples record the transition from high

  11. Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Rino, Vikoleno; Hayasaka, Yasutaka; Kimura, Kosuke; Raju, Shunmugam; Terada, Kentaro; Pathak, Manjari

    2017-04-01

    The Meghalaya Plateau and the Mikir Hills constitute a northeastern extension of the Precambrian Indian Shield. They are dominantly composed of Proterozoic basement granite gneisses, granites, migmatites, granulites, the Shillong Group metasedimentary cover sequence, and Mesozoic-Tertiary igneous and sedimentary rocks. Medium to coarse grained, equigranular to porphyritic Cambrian granite plutons intrude the basement granite gneisses and the Shillong Group. U-Pb SHRIMP zircon geochronology and geochemistry of the granite gneisses and granites have been carried out in order to understand the nature and timing of granite magmatism, supercontinent cycles, and crustal growth of the Meghalaya Plateau and Mikir Hills. Zircons from the Rongjeng granite gneiss record the oldest magmatism at 1778 ± 37 Ma. An inherited zircon core has an age of 2566.4 ± 26.9 Ma, indicating the presence of recycled Neoarchaean crust in the basement granite gneisses. Zircons from the Sonsak granite have two ages: 523.4 ± 7.9 Ma and 1620.8 ± 9.2 Ma, which indicate partial assimilation of an older granite gneiss by a younger granite melt. Zircons from the Longavalli granite gneiss of the Mikir Hills has a crystallization age of 1430.4 ± 9.6 Ma and a metamorphic age of 514 ± 18.6 Ma. An inherited core of a zircon from Longavalli granite gneiss has an age of 1617.1 ± 14.5 Ma. Zircons from younger granite plutons have Cambrian mean ages of 528.7 ± 5.5 Ma (Kaziranga), 516 ± 9.0 Ma (South Khasi), 512.5 ± 8.7 Ma (Kyrdem), and 506.7 ± 7.1 Ma and 535 ± 11 Ma (Nongpoh). These plutons are products of the global Pan-African tectonothermal event, and their formation markedly coincides with the later stages of East Gondwana assembly (570-500 Ma, Kuunga orogen). The older inherited zircon cores (2566.4 ± 26.9 Ma, 1758.1 ± 54.3 Ma, 1617.1 ± 14 Ma) imply a significant role for recycled ancient crust in the generation of Cambrian granites. Thus the Meghalaya Plateau and Mikir Hills experienced

  12. Kinematic stratification in the hinterland of the central Scandinavian Caledonides

    USGS Publications Warehouse

    Gilotti, J.A.; Hull, J.M.

    1993-01-01

    A transect through west-central Norway illustrates the changing geometry and kinematics of collision in the hinterland of the central Scandinavian Caledonides. A depth section through the crust is exposed on Fosen Peninsula, comprising three tectonic units separated by two shear zones. The lowest unit, exposed in the Roan window, is a modestly deformed, Caledonian granulite complex framed by a subhorizontal de??collement, with NW-SE oriented lineations and kinematic indicators showing top-to-the-northwest transport. The middle unit, the Vestranden gneiss complex, contains relict granulites, but was penetratively deformed at amphibolite facies to produce an orogen-parallel family of structures during translation on the de??collement. Shallow plunging lineations on steep schistosities are subparallel to fold axes of the dominant, upright, non-cylindrical folds. A small component of sinistral strike slip is also recorded. In contrast, southernmost Fosen Peninsula contains an abundance of cover rocks infolded with Proterozoic basement in a fold nappe, with shallow, E-dipping schistosities, down-dip lineations, and orogen-oblique, top-to-the-west shear sense indicators. A NE-striking, sinistral shear zone separates the gneisses from southern Fosen. Deformation in the Scandian hinterland was partitioned both in space and time, with orogen-parallel extension and shear at middle structural levels and orogen-oblique transport at shallower levels. ?? 1993.

  13. Empirical analysis of electromagnetic profiles for groundwater prospecting in rural areas of Ibadan, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Ehinola, O. A.; Opoola, A. O.; Adesokan, H. A.

    2006-04-01

    The Slingram electromagnetic (EM) survey using a coil separation of 60 and 100 m was carried out in ten villages in the Akinyele area of Ibadan, southwestern Nigeria to aid in the development of groundwater. Five main rock types including an undifferentiated gneiss complex (Su), biotite-garnet schist/gneiss (Bs), quartzite and quartz schist (Q), migmatized undifferentiated biotite/hornblende gneiss (M) and pegmatite/quartz vein (P) underlie the study area. A total of 31 EM profiles was made to accurately locate prospective borehole sites in the field. Four main groups with different behavioural patterns were categorized from the EM profiles. Group 1 is characterized by a high density of positive (HDP) or a high density of negative (HDN) real and imaginary curves, Group 2 by parallel real and imaginary curves intersecting with negligible amplitude (PNA), Group 3 by frequent intersection of a high density of negative minima (FHN) real and imaginary curves, and Group 4 by separate and approximately parallel (SAP) real and imaginary curves. Qualitative pictures of the overburden thickness and the extent of fracturing have been proposed from these behavioural patterns. A comparison of the borehole yield with the overburden thickness and the level of fracturing shows that the borehole yield depends more on the fracture density than on the overburden thickness. The asymmetry of the anomaly was also found to be useful in the determination of the inclination of the conductor/fracture.

  14. U-Pb detrital zircon geochronology from the basement of the Central Qilian Terrane: implications for tectonic evolution of northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Changfeng; Wu, Chen; Zhou, Zhiguang; Yan, Zhu; Jiang, Tian; Song, Zhijie; Liu, Wencan; Yang, Xin; Zhang, Hongyuan

    2018-03-01

    The Tuolai Group dominates the Central Qilian Terrane, and there are different opinions on the age and tectonic attribute of the Tuolai Group. Based on large-scale geologic mapping and zircon dating, the Tuolai Group is divided into four parts: metamorphic supracrustal rocks, Neoproterozoic acid intrusive rocks, early-middle Ordovician acid intrusive rocks and middle Ordovician basic intrusive rocks. The metamorphic supracrustal rocks are the redefined Tuolai complex-group and include gneiss and schist assemblage by faulting contact. Zircon U-Pb LA-MC-ICP-MS dating was conducted on these samples of gneiss and migmatite from the gneiss assemblage, quartzite, two-mica schist and slate from the schist assemblage. The five detrital samples possess similar age spectra; have detrital zircon U-Pb main peak ages of 1.7 Ga with youngest U-Pb ages of 1150 Ma. They are intruded by Neoproterozoic acid intrusive rocks. Therefore, the Tuolai Group belonging to late Mesoproterozoic and early Neoproterozoic. With this caveat in mind, we believe that U-Pb detrital zircon dating, together with the geologic constraints obtained from this study and early work in the neighboring regions. We suggest that the formation age of the entire crystalline basement rocks of metasedimentary sequence from the Central Qilian Terrane should be constrained between the Late Mesoproterozoic and the Late Neoproterozoic, but not the previous Paleoproterozoic. The basement of the Central Qilian Terrane contains the typical Grenville ages, which indicates the Centre Qilian Terrane have been experienced the Grenville orogeny event.

  15. Leucogranites of the Teton Range, Wyoming: A record of Archean collisional orogeny

    NASA Astrophysics Data System (ADS)

    Frost, Carol D.; Swapp, Susan M.; Frost, B. Ronald; Finley-Blasi, Lee; Fitz-Gerald, D. Braden

    2016-07-01

    Leucogranitic rocks formed by crustal melting are a prominent feature of collisional orogens of all ages. This study describes leucogranitic gneisses associated with an Archean collisional orogeny preserved in the Teton Range of northwestern Wyoming, USA. These leucogneisses formed at 2.68 Ga, and initial Nd isotopic compositions suggest they are derived from relatively juvenile sources. Two distinct groups of leucogneisses, both trondhjemitic, are identified on the basis of field relations, petrology, and geochemistry. The Webb Canyon gneiss forms large, sheet-like bodies of hornblende biotite trondhjemite and granodiorite. This gneiss is silica-rich (SiO2 = 70-80%), strongly ferroan, comparatively low in alumina, and is characterized by high Zr and Y, low Sr, and high REE contents that define ;seagull;-shaped REE patterns. The Bitch Creek gneiss forms small sills, dikes, and plutons of biotite trondhjemite. Silica, Zr, Y, and REE are lower and alumina and Sr are higher than in the Webb Canyon gneiss. These differences reflect different melting conditions: the Webb Canyon gneiss formed by dehydration melting in which amphibole and quartz breaks down, accounting for the low alumina, high FeO, high silica content and observed trace element characteristics. The Bitch Creek gneiss formed by H2O-excess melting in which plagioclase breaks down leaving an amphibole-rich restite, producing magmas higher in alumina and Sr and lower in FeO and HREE. Both melt mechanisms are expected in collisional environments: dehydration melting accompanies gravitational collapse and tectonic extension of dramatically thickened crust, and water-excess melting may occur when collision places a relatively cool, hydrous lower plate beneath a hotter upper plate. The Archean leucogranitic gneisses of the Teton Range are calcic trondhjemites and granodiorites whereas younger collisional leucogranites typically are true granites. The difference in leucogranite composition reflects the

  16. Timing and sources of late Archean magmatism, Kolar area, south India: Implications for Archean tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, E.J.

    1988-01-01

    The N-S trending 80 km long by 4-8 km wide Kolar Schist Belt in the Achean Dharwar craton of south India is bounded on its east and west by gneiss terranes. The contacts between the schist belt and surrounding gneisses are tectonic, rather than intrusive or unconformable. On the west side of the schist belt, monzodioritic to granitic gneisses have U-Pb zircon ages of 2631 +6.5/{minus}6 Ma, 2610 +10/{minus}10 Ma, and 2551 +3/{minus}3 Ma. The U-Pb sphene ages of these orthogneisses are between 2553 and 2551 Ma. Later granitic intrusions have U-Pb sphene and garnet ages as young as 2400more » Ma. Gneisses occurring as tectonic and magmatic inclusions in the area contain zircons older than 3140 Ma. The dominant gneiss unit on the east side of the schist belt has a U-Pb zircon age of 2532 +3.5/{minus}3Ma; U-Pb sphene ages east of the belt range from 2520 to 2500 Ma. The last major shearing episode, probably represented by Pb-Pb K-feldspar-whole rock ages on both sides of the schist belt, and by an {sup 40}Ar/{sup 39}Ar muscovite plateau age from sheared gneisses, occurred between 2520 and 2420 Ma. Pb, Nd and Sr initial ratios for the western gneisses suggest that their parent magmas were mantle-derived, but were contaminated by continental crust older than 3200 Ma. Nd, Sr and Pb initial ratios for the eastern gneisses show no evidence of older continental crust either having contaminated the magmas, or acting as part of the source materials. The Kolar Schist Belt is interpreted as the site of a latest Archean or earliest Proterozoic (2520 to 2420 Ma) suture zone where newly generated continental crust on the east was tectonically accreted to the margin of an older (3400 to 2550 Ma) continental nucleus to the west.« less

  17. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard

    2018-03-01

    In the central Erzgebirge within the Bohemian Massif, lenses of high pressure and ultrahigh pressure felsic granulites occur within meta-sedimentary and meta-igneous amphibolite-facies felsic rocks. In the felsic granulite, melt rich parts and restite form alternating layers, and were identified by petrology and bulk rock geochemistry. Mineral assemblages representing the peak P-T conditions were best preserved in melanocratic restite layers. In contrast, in the melt rich leucocratic layers, garnet and related HP minerals as kyanite are almost completely resorbed. Both layers display differences in accessory minerals: melanosomes have frequent and large monazite and Fe-Ti-minerals but lack xenotime and apatite; leucosomes have abundant apatite and xenotime while monazite is rare. Here we present a detailed petrographic study of zircon grains (abundance, size, morphology, inclusions) in granulite-facies and amphibolite-facies felsic gneisses, along with their oxygen and hafnium isotope compositions. Our data complement earlier Usbnd Pb ages and trace element data (REE, Y, Hf, U) on zircons from the same rocks (Tichomirowa et al., 2005). Our results show that the degree of melting determines the behaviour of zircon in different layers of the granulites and associated amphibolite-facies rocks. In restite layers of the granulite lenses, small, inherited, and resorbed zircon grains are preserved and new zircon formation is very limited. In contrast, new zircons abundantly grew in the melt rich leucocratic layers. In these layers, the new zircons (Usbnd Pb age, trace elements, Hf, O isotopes) best preserve the information on peak metamorphic conditions due to intense corrosion of other metamorphic minerals. The new zircons often contain inherited cores. Compared to cores, the new zircons and rims show similar or slightly lower Hf isotope values, slightly higher Hf model ages, and decreased oxygen isotope ratios. The isotope compositions (Hf, O) of new zircons indicate

  18. New age data on the geological evolution of Southern India

    NASA Technical Reports Server (NTRS)

    Taylor, Paul N.; Chadwick, B.; Friend, C. R. L.; Ramakrishnan, M.; Moorbath, Stephen; Viswanatha, M. N.

    1988-01-01

    The Peninsular Gneisses of Southern India developed over a period of several hundred Ma in the middle-to-late Archaean. Gneisses in the Gorur-Hassan area of southern Karnataka are the oldest recognized constituents: Beckinsale et al. reported a preliminary Rb-Sr whole-rock isochron age of 33558 + or - 66 Ma, but further Rb-Sr and Pb/Pb whole-rock isochron determinations indicate a slightly younger, though more precise age of ca 3305 Ma (R. D. Beckinsale, Pers. Comm.). It is well established that the Peninsular Gneisses constitute basement on which the Dharwar schist belts were deposited. Well-documented exposures of unconformities, with basal quartz pebble conglomerates of the Dharwar Supergroup overlying Peninsular Gneisses, have been reported from the Chikmagalur and Chitradurga areas, and basement gneisses in these two areas have been dated by Rb-Sr and Pb/Pb whole-rock isochron methods at ca 3150 Ma and ca 3000 Ma respectively. Dharwar supracrustal rocks of the Chitradurga schist belt are intruded by the Chitradurga Granite, dated by a Pb/Pb whole-rock isochron at 2605 + or - 18 Ma. These results indicate that the Dharwar Supergroup in the Chitradurga belt was deposited between 3000 Ma and 2600 Ma.

  19. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  20. Metasomatic Reaction Zones as Monitors of Trace Element Transfer at the Slab-Mantle Interface: the Case of the Hochwart Peridotite (Ulten Zone, Italy)

    NASA Astrophysics Data System (ADS)

    Marocchi, M.; Hermann, J.; Bargossi, G. M.; Mair, V.; Morten, L.

    2006-12-01

    Ultramafic blocks belonging to the Hochwart peridotite outcrop (Ulten Zone, Italian Alps) preserve a series of metasomatic mineral zones generated by infiltration of Si-rich hydrous fluids which occurred at the gneiss- peridotite interface. The age of the high pressure metamorphism for the Hochwart complex has been constrained at 330 Ma (Tumiati et al., 2003, EPSL, 210, 509-526). The country rocks are stromatic gneisses consisting mainly of quartz, K-feldspar, garnet, kyanite, biotite and muscovite. The ultramafic body consists of strongly serpentinized metaperidotites which are exposed as a hectometre-size lens along a steep gully, associated to monomineralic zones that developed at the contact between the peridotite body and the garnet gneiss country rocks. The composition of the metasomatic zones has been investigated in detail and records an order of metasomatic zoning formed by phlogopite-rich to tremolite-anthophyllite-rich rocks going from the host gneiss towards the peridotite. In some cases, the ultramafics fade into the gneisses developing serpentine and talc which has replaced, presumably at lower temperatures, the serpentine matrix and occurs in association with chlorite. Phlogopite aggregates (phlogopitite) with accessory minerals (quartz + zircon + apatite) and metabasic pods (phlogopite and hornblende) also occur. Black tourmaline (schorl-dravite solid solution) has been found for the first time in the contact near the phlogopite zone, suggesting an external addition of elements (boron and fluorine) to the system at high temperature. The formation of the metasomatic zones composed exclusively of hydrous phases must have involved extensive H2O-metasomatism as already documented for the Ulten peridotites. The source for these fluids can be a system of trondhjemitic-pegmatitic dikes cutting the peridotite that would have channelled aqueous fluids into the ultramafic rocks. Whole-rock geochemistry and trace element (LA ICP-MS) composition of hydrous

  1. Geologic map of the Ennis 30' x 60' quadrangle, Madison and Gallatin Counties, Montana

    USGS Publications Warehouse

    Kellogg, Karl S.; Williams, Van S.

    1998-01-01

    The Ennis 1:100,000 quadrangle lies within both the Laramide (Late Cretaceous to early Tertiary) foreland province of southwestern Montana and the northeastern margin of the middle to late Tertiary Basin and Range province. The oldest rocks in the quadrangle are Archean high-grade gneiss, and granitic to ultramafic intrusive rocks that are as old as about 3.0 Ga. The gneiss includes a supracrustal assemblage of quartz-feldspar gneiss, amphibolite, quartzite, and biotite schist and gneiss. The basement rocks are overlain by a platform sequence of sedimentary rocks as old as Cambrian Flathead Quartzite and as young as Upper Cretaceous Livingston Group sandstones, shales, and volcanic rocks. The Archean crystalline rocks crop out in the cores of large basement uplifts, most notably the 'Madison-Gravelly arch' that includes parts of the present Tobacco Root Mountains and the Gravelly, Madison, and Gallatin Ranges. These basement uplifts or blocks were thrust westward during the Laramide orogeny over rocks as young as Upper Cretaceous. The thrusts are now exposed in the quadrangle along the western flanks of the Gravelly and Madison Ranges (the Greenhorn thrust and the Hilgard fault system, respectively). Simultaneous with the west-directed thrusting, northwest-striking, northeast-side-up reverse faults formed a parallel set across southwestern Montana; the largest of these is the Spanish Peaks fault, which cuts prominently across the Ennis quadrangle. Beginning in late Eocene time, extensive volcanism of the Absorka Volcanic Supergroup covered large parts of the area; large remnants of the volcanic field remain in the eastern part of the quadrangle. The volcanism was concurrent with, and followed by, middle Tertiary extension. During this time, the axial zone of the 'Madison-Gravelly arch,' a large Laramide uplift, collapsed, forming the Madison Valley, structurally a complex down-to-the-east half graben. Basin deposits as thick as 4,500 m filled the graben

  2. Geologic map of the Ennis 30' x 60' quadrangle, Madison and Gallatin Counties, Montana, and Park County, Wyoming

    USGS Publications Warehouse

    Kellogg, Karl S.; Williams, Van S.

    2000-01-01

    The Ennis 1:100,000 quadrangle lies within both the Laramide (Late Cretaceous to early Tertiary) foreland province of southwestern Montana and the northeastern margin of the middle to late Tertiary Basin and Range province. The oldest rocks in the quadrangle are Archean high-grade gneiss, and granitic to ultramafic intrusive rocks that are as old as about 3.0 Ga. The gneiss includes a supracrustal assemblage of quartz-feldspar gneiss, amphibolite, quartzite, and biotite schist and gneiss. The basement rocks are overlain by a platform sequence of sedimentary rocks as old as Cambrian Flathead Quartzite and as young as Upper Cretaceous Livingston Group sandstones, shales, and volcanic rocks. The Archean crystalline rocks crop out in the cores of large basement uplifts, most notably the 'Madison-Gravelly arch' that includes parts of the present Tobacco Root Mountains and the Gravelly, Madison, and Gallatin Ranges. These basement uplifts or blocks were thrust westward during the Laramide orogeny over rocks as young as Upper Cretaceous. The thrusts are now exposed in the quadrangle along the western flanks of the Gravelly and Madison Ranges (the Greenhorn thrust and the Hilgard fault system, respectively). Simultaneous with the west-directed thrusting, northwest-striking, northeast-side-up reverse faults formed a parallel set across southwestern Montana; the largest of these is the Spanish Peaks fault, which cuts prominently across the Ennis quadrangle. Beginning in late Eocene time, extensive volcanism of the Absorka Volcanic Supergroup covered large parts of the area; large remnants of the volcanic field remain in the eastern part of the quadrangle. The volcanism was concurrent with, and followed by, middle Tertiary extension. During this time, the axial zone of the 'Madison-Gravelly arch,' a large Laramide uplift, collapsed, forming the Madison Valley, structurally a complex down-to-the-east half graben. Basin deposits as thick as 4,500 m filled the graben

  3. Rock- and Paleomagnetic Properties and Modeling of a Deep Crustal Volcanic System, the Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway

    NASA Astrophysics Data System (ADS)

    ter Maat, G. W.; Pastore, Z.; Michels, A.; Church, N. S.; McEnroe, S. A.; Larsen, R. B.

    2017-12-01

    The Reinfjord Ultramafic Complex is part of the 5000 km2 Seiland Igneous Province (SIP) in Northern Norway. The SIP is argued to be the deep-seated conduit system of a Large Igneous Province and was emplaced at 25-35 km depth in less than 10 Ma (570-560 Ma). The Reinfjord Ultramafic Complex was emplaced during three major successive events at 22-28km depth at pressures of 6-8kb, with associated temperatures 1450-1500°C (Roberts, 2006). The rocks are divided into three formations: the central series (CS) consisting of mainly dunites, upper layered series (ULS) consisting of dunites and wehrlites, a lower layered series (LLS) containing most pyroxene-rich rocks and a marginal zone (MZ) which formed where the ultramafic melts intruded the gabbro-norite and metasedimentary gneisses. Deep exposures such as the Reinfjord Ultramafic Complex are rare, therefore this study gives a unique insight in the rock magnetic properties of a deep ultramafic system. Localised serpentinised zones provide an opportunity to observe the effect of this alteration process on the magnetic properties of deep-seated rocks. Here, we present the results from the rock magnetic properties, a paleomagnetic study and combined potential-fields modeling. The study of the rock magnetic properties provides insight in primary processes associated with the intrusion, and later serpentinization. The paleomagnetic data yields two distinct directions. One direction corresponds to a Laurentia pole at ≈ 532 Ma while the other, though younger, is not yet fully understood. Rock magnetic properties were measured on > 700 specimens and used to constrain the modelling of gravity, high-resolution helicopter, and ground magnetic data. The intrusion is modelled as a cylindrically shaped complex with a dunite core surrounded by wehrlite and gabbro. The ultramafic part of the complex dips to the NE and its maximum vertical extent is modelled to 1400m. Furthermore, modelling allows estimation of relative volumes of

  4. Eudialyte Composition and Decomposition Assemblage of the Sushina Syenite Gneisss, India

    NASA Astrophysics Data System (ADS)

    Chakrabarty, A.; Ren, M.

    2012-12-01

    Eudialyte group of minerals (EGM) were not recognized from the Indian subcontinent until recently an occurrence of eudialyte bearing nepheline syenite from the Sushina Hill region of West Bengal is made. The rocks of the Sushina hill region had undergone poly-phase post formational magmato-thermal activity and the studied unit of nepheline syenite can be better termed as 'nepheline syenite gneiss' in their present form. This under saturated syenite gneiss is present as intrusive body and hosted by the phyllites and schists of the Proterozoic Chandil Formation covering an area of about 1500m2. There is not much information available on the detailed mineralogy of this nepheline gneiss. The main purpose of this study is to present precise in-depth chemistry of the individual minerals with special emphasis on the EGM along with the decomposition assemblage(s) formed after eudialyte. The ortho-, late- and post-magmatic assemblages were observed throughout the studied unit of syenite gneiss. The ortho-magmatic assemblage is defined by the discrete subhedral grains of albite, orthoclase, nepheline and aegirine. Compositionally all the feldspars represent near end-member compositions. Nepheline compositions are falling well within the range of Morozewicz-Buerger convergence field for plutonic low-temperature nepheline. Eudialyte is the dominant phase associated with the late-magmatic assemblage. Anhedral aegirine grains are frequently present within the complex aggregate of eudialyte and related decomposition assemblages which indicate that the aegirine predates eudialyte during the crystallization history. The studied EGM are essentially Mn-Nb-Ca-Zr rich variety and comparable to the other occurrences of the Ilímaussaq (Greenland), Tamazeght (Morocco), Mont-Saint Hilaire (Canada) and Pilansberg (South Africa). The studied eudialytes are characterized by very high Mn content (6.6-9.7 wt.%) relative to all other eudialyte reported world-wide. Such Mn-rich eudialytes are

  5. Anisotropy of magnetic susceptibility (AMS) in the Siilinjärvi carbonatite complex, eastern Finland

    NASA Astrophysics Data System (ADS)

    Almqvist, Bjarne; Karell, Fredrik; Högdahl, Karin; Malehmir, Alireza; Heino, Pasi; Salo, Aleksi

    2017-04-01

    We present a set of AMS measurements on samples from the Siilinjärvi alkaline-carbonatite complex in eastern Finland. The complex has a tabular shape (ca. 16 km long, 1.5 km wide) that strikes north-south and is constrained within a steeply dipping N-S oriented deformation zone. It consists of a mixture of lithologies, including carbonatite, fenite and glimmerite (mica-rich rocks), which is hosted within a Precambrian granite and gneiss. After emplacement of the carbonatite, the complex was subsequently intruded by diabase dykes. Deformation has occurred in several episodes after dyke intrusions, and strain is heterogeneously distributed among the different lithologies. Strain localizes mainly within glimmerite and carbonatite, and at the contacts between dykes and glimmerite/carbonatite where shear zones develop locally. Structures provide indications for both simple (strike-slip) and pure shear components in the deformation history of the complex, although the former may dominate. Thirty-six localities were sampled, providing 272 specimens for AMS measurements, within the southern and eastern parts of the Siilinjärvi open-pit mine (within the complex), mainly from diabase dykes, glimmerite and carbonatites; a smaller number of samples were collected from fenite. Sampling was carried out in order to investigate magnetic fabrics in relation to the emplacement of the dykes and their structural relationship to the glimmerite/carbonatite. Structural measurements were made to accompany the magnetic fabric study. The magnetic fabric shows a magnetic foliation plane that is oriented north-south, with sub-horizontal k3-axes oriented nearly east-west. Magnetic lineation (k1) clusters sub-vertically, but does show a tendency to spread along the north-south magnetic foliation great circle. The dataset can be further divided into two sub-sets based on the bulk susceptibility (km) and degree of anisotropy (P). The bulk of the data set ( 70 %), belonging to samples of diabase

  6. Crystalline rocks of the Strawberry Lake area, Front Range, Colorado

    USGS Publications Warehouse

    Young, Edward J.

    1991-01-01

    This report is a petrographic and geochemical study of the bedrock and a petrologic discussion based on felsic-mafic and silica-saturation ratios of the Strawberry Lake area. This volume is published as chapters A and B. These chapters are not available separatelyThe Strawberry lake area lies between the Continental Divide and Granby, Colorado, just north of Tabernash. It is underlain by Proterozoic rocks composed of biotite gneiss and two plutons-Boulder Creek Granodiorite of the Routt Plutonic Suite and Silver Plume Granite of the Berthoud Plutonic Suite. Relict enclaves of biotite gneiss are not uncommon in the Boulder Creek Granodiorite, in the Silver Plume Granite, and in the granitic enclaves in the biotite gneiss. Granitic and mafic enclaves in the Boulder Creek Granodiorite, granitic enclaves in the Silver Plume Granite and in the biotite gneiss, and a Tertiary andesite porphyry dike complete the rock types.

  7. Jack Hills, Australia

    NASA Image and Video Library

    2009-06-02

    This image acquired by NASA Terra spacecraft, shows the oldest material on Earth which has yet been dated by man is a zircon mineral of 4.4 billion years old from a sedimentary gneiss in the Jack Hills of the Narre Gneiss Terrane of Australia.

  8. Sediment underthrusting within a continental magmatic arc: Coast Mountains batholith, British Columbia

    NASA Astrophysics Data System (ADS)

    Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.

    2017-10-01

    Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.

  9. Geologic Map of the Big Delta B-1 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O'Neill, J. Michael; Aleinikoff, John N.; Green, Gregory N.; Saltus, Richard W.; Gough, Larry P.

    2007-01-01

    Geologic mapping and U-Pb age dating of rocks from the Big Delta B-1 quadrangle, east-central Alaska, have yielded new insights into the geology and gold mineral resource for the headwater region of the Goodpaster River, northeast of Delta, Alaska. The area lies within the Yukon-Tanana Upland and is underlain by Paleozoic and Cretaceous crystalline bedrock and contains several gold mines and prospects. The Paleozoic units include biotite gneiss, quartzite interlayered with metapelite, and amphibolite gneiss. The Paleozoic units were intruded during the Devonian by tonalitic to granitic plutons, which, as a result of regional Mesozoic metamorphism and tectonism, are now augen gneiss and biotite orthogneiss. The Mesozoic regional metamorphism and ductile deformation of the entire Yukon-Tanana Upland culminated by the Late Cretaceous (about 116 Ma) as a result of northwest-directed regional transpression along the southern margin of the North American craton. This dynamothermal episode was followed by invasion of syn- to post-tectonic granodioritic to granitic batholiths during the Late Cretaceous (about 113-107 Ma), followed by a pulse of 100-95 Ma quartz feldspar porphyry intrusions. Gold mineralization is spatially associated with various post-tectonic Late Cretaceous granitic dikes and batholiths throughout the quadrangle. A northeast-trending structural corridor, described herein as the Black Mountain tectonic zone, both controlled the emplacement of some of the Cretaceous intrusive rocks, gold deposits, and prospects, as well as formed a deep-seated crustal conduit along which a subsequent rhyolite flow-dome complex erupted during the Paleocene. Tertiary uplift and erosion resulted in the development of extensive erosional pediments. Quaternary alpine glaciation carved beautiful, broad valleys in the eastern part of the quadrangle, leaving behind terminal moraines in the headwater region of the Goodpaster river drainage. Continued Holocene to Recent deformation

  10. Hogtuvaite, a new beryllian member of the aenigmatite group from Norway, with new X-ray data on aenigmatite

    USGS Publications Warehouse

    Grauch, R.I.

    1994-01-01

    Hogtuvaite is a new beryllian member of the aenigmatite group that was discovered in Nordland County, Norway. It is a metamorphic mineral, hosted by Proterozoic granitic gneisses and mafic pegmatites of metamorphic origin. Compositional variations within and between gneiss-hosted samples of hogtuvaite are minimal; however, pegmatite-hosted samples of hogtuvaite are significantly different, containing less Al and Sn, and more Ti and Mn, than those from the gneisses. The mineralogical, optical and crystallographic properties of hogtuvaite are described. A new and uniquely indexed set of X-ray powder diffraction data for aenigmatite is presented. -from Authors

  11. An exotic terrane in the Sulu UHP region, China

    NASA Astrophysics Data System (ADS)

    Chu, W.; Zhang, R.; Tsujimori, T.; Liou, J. G.

    2004-12-01

    The Haiyangsuo region of about 15 km2 along the coast in the NE part of the Triassic Sulu UHP terrane occurs three major rock types: amphibolitized metagabbro, gneiss and granitic dikes. Three different gneisses were observed in the field: A) Light color felsic gneiss is the dominant country rock and contains Qtz, Pl, Ms and Bi. B) Dark color plagioclase-amphibole gneiss occurs as thin layers within country rock; C) Granulite facies rock occurs as discontinuous lens. The amphibolitized metagabbros intrude into the gneisses as massive bodies (several m to hundreds of m in size) and thin dikes. Both metamorphic intrusives and gneisses are cross-cut by granitic dikes. The amphibolitized metagabbro was divided into three types: coronal metagabbro, transitional rock and garnet amphibolite: 1) Coronal metagabbro preserves gabbroic texture and primary assemblage of Opx+Cpx+Pl+Amp+Ilm. Most pyroxene grains are partially rimmed by thin corona of Amp+Ab+Qtz. Garnet occurs as fine-grained coronas at interface between plagioclase, pyroxene or ilmenite. 2) Transitional rocks contain similar assemblage and texture but most orthopyroxenes were partially or totally replaced by Amp+Qtz; garnet increases in content and size. Some gabbroic textures are preserved, but calcic plagioclase was replaced by zoisite, albite and muscovite. 3) Garnet amphibolite occurs at the margins of intrusive bodies and boudins where only minor relict clinopyroxenes preserve. Garnet coronal chains are not clear any more. Granitic dikes show pronounced deformation with mylonitic texture and contain 40-50% quartz porphyroclasts. Zircon separates from 2 metagabbros, 4 gneisses and 1 granitic rock were dated by using Stanford SHRIMP-RG. Metagabbroic zircons are angular and fractured shapes. The upper-intercept ages of gneisses rang from 1730 to about 2400 Ma, indicating variable protoith age. The 2 garnet amphibolites have upper-intercept ages 1734±5Ma and 1735±21Ma respectively. They are much older than

  12. Implications for late Grenvillian (Rigolet phase) construction of Rodinia using new U-Pb data from the Mars Hill terrane, Tennessee and North Carolina, United States

    USGS Publications Warehouse

    Aleinikoff, John N.; Southworth, Scott; Merschat, Arthur J.

    2013-01-01

    New data for zircon (external morphology, cathodoluminescence zoning, and sensitive high resolution ion microprobe [SHRIMP] U-Pb ages) from the Carvers Gap granulite gneiss of the Mars Hill terrane (Tennessee and North Carolina, United States) require reevaluation of interpretations of the age and origin of this rock. The new results indicate that the zircon is detrital and that the sedimentary protolith of this gneiss (and related Cloudland gneiss) was deposited no earlier than ca. 1.02 Ga and was metamorphosed at ca. 0.98 Ga. Tectonic models that included the gneiss as a piece of 1.8 Ga Amazonian crust (perhaps as part of the hypothetical Columbia supercontinent) are now untenable. The remarkably fast cycle of exhumation, erosion, deposition, and deep burial also is characteristic of other late Grenvillian (post-Ottawan) Mesoproterozoic paragneisses that occur throughout the Appalachians. These rocks provide new evidence for the duration of the formation of the Rodinia supercontinent lasting until at least 0.98 Ma.

  13. Photogeologic maps of the Iris SE and Doyleville SW quadrangles, Saguache County, Colorado

    USGS Publications Warehouse

    McQueen, Kathleen

    1957-01-01

    The Iris SE and Doyleville SW quadrangles, Saguache County, Colorado include part ot the Cochetopa mining district. Photogeologic maps of these quadrangles show the distribution of sedimentary rocks of Jurassic and Cretaceous age; precambrian granite, schist, and gneiss; and igneous rocks of Tertiary age. Sedimentary rocks lie on an essentially flat erosion surface on Precambrian rocks. Folds appear to be absent but faults present an extremely complex structural terrane. Uraniferous deposits occur at fault intersections in Precambriam and Mesozoic rocks.

  14. Intrusive rocks of the Holden and Lucerne quadrangles, Washington; the relation of depth zones, composition, textures, and emplacement of plutons

    USGS Publications Warehouse

    Cater, Fred W.

    1982-01-01

    serpentine. These occur either as included irregular masses in later intrusives or as tectonically emplaced lenses in metamorphic rocks. Also of uncertain age but probably much younger, perhaps as young as Eocene, are larger masses of hornblendite and hornblende periodotite that grade into hornblende gabbro. These are exposed on the surface and in the underground workings of the Holden mine. Oldest of the granitoid intrusives are the narrow, nearly concordant Dumbell Mountain plutons, having a radiometric age of about 220 m.y. They consist of gneissic hornblende-quartz diorite and quartz diorite gneiss. Most contacts consist of lit-par-lit zones, but some are gradational or more rarely sharp. The plutons are typically catazonal. Closely resembling the Dumbell Mountain plutons in outcrop appearance, but differing considerably in composition, are the Bearcat Ridge plutons. These consist of gneissic quartz diorite and granodiorite. The Bearcat Ridge plutons are not in contact with older dated plutons, but because their textural and structural characteristics so closely resemble those of the Dumbell Mountain plutons, they are considered to be the same age. Their composition, however, is suggestive of a much younger age. Cutting the Dumbell Mountain plutons is the Leroy Creek pluton, consisting of gneissic biotite-quartz diorite and trondjhemite. The gneissic foliation in the Leroy Creek is characterized by a strong and pervasive swirling. Cutting both the Dumbell Mountain and Leroy Creek plutons are the almost dikelike Seven-fingered Jack plutons. These range in composition from gabbro to quartz diorite; associated with them are contact complexes of highly varied rocks characterized by gabbro and coarse-grained hornblendite. Most of the rocks are gneissic, but some are massive and structureless. Radiometric ages by various methods range from 100 to 193 m.y. Dikes, sills, small stocks, and irregular clots of leucocratic quartz diorite and granodiorite are abundant in t

  15. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite

  16. The Tonalite-Trondhjemite-Granodiorite (TTG) to Calc-alkaline Granodiorite-Granite Transition: Evolution of the Archaean Basement of the Quadrilátero Ferrífero Province (Southeast Brazil)

    NASA Astrophysics Data System (ADS)

    Farina, F.; Albert, C.; Lana, C.; Stevens, G.

    2014-12-01

    The Bação, Bonfim and Belo Horizonte domes are the largest domes in the Archaean Southern São Francisco craton (Quadrilátero Ferrífero, Brazil). These domes are mainly formed by fine-grained banded gneisses typically intruded by leucogranitic veins and by weakly foliated granites, cropping out as large batholiths and small scale-domains closely associated to the gneisses. Granites and gneisses have high silica content (70-76 wt%), K2O ranging from 2wt% to 6wt%, Sr from 600 to 40 ppm and La/Yb from 150 to 5. Based on their K2O/Na2O ratios, these rocks are subdivided in three groups: sodic (K2O/Na2O≤0.7), transitional (0.7gneisses) and the K2O/Na2O ratio; e.g. granites plots equally in the sodic and potassic groups. Overall, the composition of gneisses and granitoids in the three domes marks the transition between Archean TTGs and modern calc-alkalic granitoids. LA-ICP-MS zircon U-Pb data allow three main periods of magmatism to be defined. The oldest recorded magmatic contribution to the craton began at 3200 Ma, as attested by the occurrence of inherited zircons in younger granitoids as well as by the fact that zircons with a ca. 3200 Ma age represent a significant subset in the detrital zircon population of the greenstone belt. Subsequent magmatic events took place at 2930-2870 Ma and 2780-2700 Ma. The geochronological data reveal that, although the sodic rocks represent a greater proportion of the older gneisses, sodic, transitional and potassic granitoids intruded contemporaneously. The geochemistry of sodic and transitional granites and gneisses suggests that they formed by partial melting of TTG source rocks that are not preserved in the rock record. MC-ICP-MS Hf isotope data on magmatic zircon, suggesting crustal reworking with minor or no involvement of juvenile magmas, support this interpretation. Further recycling of sodic

  17. Late Neoproterozoic metamorphic assemblages along the Pan-African Hamisana Shear Zone, southeastern Egypt: Metamorphism, geochemistry and petrogenesis

    NASA Astrophysics Data System (ADS)

    Ali-Bik, Mohamed W.; Sadek, Mohamed F.; Ghabrial, Doris Sadek

    2014-11-01

    A variety of Late Neoproterozoic gneisses and amphibolites are distributed along the N-S trending Hamisana Shear Zone (HSZ), in southeastern Egypt. The HSZ originated after the accretion of the Arabian-Nubian Shield (ANS) and covers an area of about 1500 km2 in southeastern Egypt and northeastern Sudan. The architecture of the northern part of the HSZ is best explained as a tectono-stratigraphic column, in which allochthonous ophiolitic mélange was thrusted onto metamorphosed island-arc assemblages (gneisses and amphibolites). The latter rock units were generally subjected to two successive phases of amphibolite facies metamorphism, followed by a thermal phase and retrograde overprint. The early penetrative, low- to medium-pressure metamorphism (M1) was synchronous with D1-gneissosity and N-S trending lineation, demarcating the high strain HSZ. The mineral assemblages formed during the M1 phase include quartz + andesine + hornblende (I) + biotite (I) in hornblende-biotite gneiss, quartz + andesine + pargasitic hornblende (I) + ferroan pargasitic hornblende (I) + edenitic hornblende (I) in hornblende-schist, quartz + plagioclase + biotite + muscovite in psammopelitic gneiss, and diopside + tremolite + calcite + sphene ± garnet in calc-silicates, being characteristic for amphibolite facies with metamorphic conditions of 600 ± 50 °C and 5-6.5 kbar. The second metamorphic phase (M2) is related to the crystallization of biotite and/or hornblende in S2 foliation demarcating the NE-SW trending dextral shear deformation (D2). The calculated temperature for this M2 phase is about 592 °C. Subsequent thermal events are documented by growth of spinel and scapolite in calc-silicate rocks and of cordierite in psammopelitic gneiss in response to uplift, decomposition and heat provided by the nearby late-formed igneous intrusions. Finally, the rocks reached a temperature of about 530 °C during the cooling retrogressive stage. Based on geological, petrological and geochemical

  18. Sm-Nd Mineral Isochron Age Patterns from Garnet-bearing Peridotite of the Western Gneiss Region, Norwegian Caledonides: Discrete Mantle Events or Continuous Re- equilibration?

    NASA Astrophysics Data System (ADS)

    Brueckner, H. K.

    2007-12-01

    The garnet peridotites (and pyroxenites) of the UHP Western Gneiss Region of Norway give Sm-Nd garnet, clinopyroxene, whole rock, orthopyroxene, amphibole ages that range from ca. 1.7 Ga to 424 Ma. Most of these twenty seven ages are much older than the continent-continent collision that transferred these peridoitites from the mantle into the crust (i.e. the 400 Ma Scandian Orogeny) suggesting the garnet peridotites of the WGR are unique relative to those in other UHP terranes, which invariably give ages that overlap the time of UHP metamorphism of the enclosing country rocks. All but the youngest ages given by WGR peridotites reflect processes that occurred deep in the mantle beneath the Baltic Shield, but it is unclear if they date a series of discrete events related to the tectonic evolution of the Baltic Shield or if the ages reflect continuous, but variable, re-equilibration of the Sm-Nd system between phases during the residence of the peridotites in the mantle. Three ages overlap the 1.75 to 1.55 Ga Gothian Orogeny while twelve ages are within error of the 1.2 to 0.9 Ga Sveconorwegian Orogeny. The three youngest ages (438 to 424 Ma) are associated with a younger generation of garnets and may mark the beginning of eclogite-facies metamorphism of Baltica as it was subducted beneath Laurentia during the Scandian Orogeny. However, the remaining nine ages spread more or less continuously between these three major events. The overall pattern on a histogram is a range of ages with a pronounced peak at and near the Sveconorwegian Orogeny. The ages therefore appear to date continuous diffusion between minerals from garnet-bearing assemblages that formed originally during or, less likely, before the Gothian Orogeny interrupted by a pronounced thermal event during the Svconorwegian Orogeny and a recrystallization event during the early stages of the Scandian orogeny. The degree of re-equilibration was probably controlled by the ambient temperature of the peridotite

  19. Geologic and Geochronologic Studies of the Early Proterozoic Kanektok Metamorphic Complex of Southwestern Alaska

    USGS Publications Warehouse

    Turner, Donald L.; Forbes, Robert B.; Aleinikoff, John N.; McDougall, Ian; Hedge, Carl E.; Wilson, Frederic H.; Layer, Paul W.; Hults, Chad P.

    2009-01-01

    The Kanektok complex of southwestern Alaska appears to be a rootless terrane of early Proterozoic sedimentary, volcanic, and intrusive rocks which were metamorphosed to amphibolite and granulite facies and later underwent a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism of overlying sediments. The terrane is structurally complex and exhibits characteristics generally attributed to mantled gneiss domes. U-Th-Pb analyses of zircon and sphene from a core zone granitic orthogneiss indicate that the orthogneiss protolith crystallized about 2.05 b.y. ago and that the protolithic sedimentary, volcanic and granitic intrusive rocks of the core zone were metamorphosed to granulite and amphibolite facies about 1.77 b.y. ago. A Rb-Sr study of 13 whole-rock samples also suggests metamorphism of an early Proterozoic [Paleoproterozoic] protolith at 1.77 Ga, although the data are scattered and difficult to interpret. Seventy-seven conventional 40K/40Ar mineral ages were determined for 58 rocks distributed throughout the outcrop area of the complex. Analysis of the K-Ar data indicate that nearly all of these ages have been totally or partially reset by a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism. Several biotites gave apparent K-Ar ages over 2 Ga. These ages appear to be controlled by excess radiogenic 40Ar produced by the degassing protolith during the 1.77 Ga metamorphism and incorporated by the biotites when they were at temperatures at which Ar could diffuse through the lattice. Five amphibolites yielded apparent Precambrian 40K/40Ar hornblende ages. There is no evidence that these hornblende ages have been increased by excess argon. The oldest 40K/40Ar hornblende age of 1.77 Ga is identical to the sphene 207Pb/206Pb orthogneiss age and to the Rb-Sr 'isochron' age for six of the 13 whole-rock samples. The younger hornblende ages are interpreted as

  20. Tectonics of some Amazonian greenstone belts

    NASA Technical Reports Server (NTRS)

    Gibbs, A. K.

    1986-01-01

    Greenstone belts exposed amid gneisses, granitoid rocks, and less abundant granulites along the northern and eastern margins of the Amazonian Craton yield Trans-Amazonican metamorphic ages of 2.0-2.1 Ga. Early proterozoic belts in the northern region probably originated as ensimatic island arc complexes. The Archean Carajas belt in the southeastern craton probably formed in an extensional basin on older continental basement. That basement contains older Archean belts with pillow basalts and komatiites. Belts of ultramafic rocks warrant investigatijon as possible ophiolites. A discussion follows.

  1. Hydrogeological characterisation and prospect of basement Aquifers of Ibarapa region, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Akanbi, Olanrewaju Akinfemiwa

    2018-06-01

    The present study involved the use of 82 geo-electric soundings, and the measurement of well inventory and conduct of yield tests in 19 wells across the various bedrock terrains of Ibarapa region of southwestern Nigeria. The aim is to proffer solution to the unsustainable yield of the available boreholes in order to effectively exploit the existing groundwater resource in the area. From the geological reports, the area is underlain by four principal crystalline rocks that include porphyritic granite, gneisses, amphibolite and migmatite. The geo-electric studies revealed that the degree and extent of development of the weathered-fractured component varied, leading to diversity in groundwater yield and in aquifer vulnerability to contamination. The thickness of the weathered layer is greater than 18 m in areas underlain by amphibolite and gneisses and less than 13 m within migmatite and porphyritic granite terrains. High groundwater yield greater than 70 m3/day was recorded in wells within the zones of rock contacts and in areas with large concentration of bedrock fractures and elevated locations across the various bedrock terrains. Aquifer vulnerability is low in amphibolite, high in granitic terrains, low to moderate in gneisses and high to moderate in migmatite. Also, wells' depths and terrain elevation have a moderate to strong indirect relationship with groundwater yield in most bedrock terrains, except in high topographic areas underlain by porphyritic granite. Therefore, there is need for modification of well depth in accordance with the terrain elevation and hydrogeological complexity of the weathered-fractured components of the variuos bedrock terrains, so as to ensure a sustainable groundwater yield.

  2. High-pressure granulites in the Fuping Complex of the central North China Craton: Metamorphic P-T-t evolution and tectonic implications

    NASA Astrophysics Data System (ADS)

    Qian, Jiahui; Yin, Changqing; Zhang, Jian; Ma, Li; Wang, Luojuan

    2018-04-01

    Mafic granulites in the Fuping Complex occur as lenses or boudins within high-grade TTG (Trondhjemite-Tonalite-Granodiorite) gneisses. Petrographic observations reveal four generations of mineral assemblage in the granulites: an inclusion assemblage of hornblende + plagioclase + ilmenite + quartz within garnet core; an inferred peak assemblage composed of garnet ± hornblende + plagioclase + clinopyroxene + rutile/ilmenite + quartz; a decompression assemblage characterized by symplectites of clinopyroxene ± orthopyroxene + plagioclase, coronae of plagioclase ± clinopyroxene ± hornblende around embayed garnet porphyroblasts or a two-pyroxene association; and a late amphibolite-facies retrogressive assemblage. Two representative samples were used for pseudosection modeling in NCFMASHTO model system to determine their metamorphic evolution. The results show that these granulites experienced a high-pressure stage of metamorphism with peak P-T conditions of 12-13 kbar and 760-800 °C (Pmax) and a post-peak history under P-T conditions of ∼9.0 kbar and 805-835 °C (Tmax), indicating a nearly isothermal decompression process (ITD) with a slight heating. Metamorphic evolution from the Pmax to the Tmax is predicted to be dominated by garnet breakdown through continuous metamorphic reactions of garnet + quartz ± diopside = hornblende + plagioclase + liquid and garnet + quartz + hornblende = plagioclase + diopside + liquid + orthopyroxene. Further metamorphic evolution after the Tmax is dominated by cooling, suggesting that high-pressure (HP) granulites may also exist in the Fuping Complex. Metamorphic zircons in the Fuping HP mafic granulites have left inclined REE patterns, Ti contents of 1.68-6.88 ppm and crystallization temperatures of 602-712 °C. SIMS zircon U-Pb dating on these zircons yields 207Pb/206Pb ages of 1891 ± 14 Ma and 1849 ± 6 Ma, interpreted to represent the cooling stage of metamorphism. The P-T-t evolution of the Fuping HP mafic granulites records

  3. Some examples of deep structure of the Archean from geophysics

    NASA Technical Reports Server (NTRS)

    Smithson, S. B.; Johnson, R. A.; Pierson, W. R.

    1986-01-01

    The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering.

  4. Geology of the Trenton Prong, west-central New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkert, R.A.; Drake, A.A.Jr.

    1993-03-01

    The Trenton Prong in New Jersey is underlain by a heterogeneous sequence of rocks that is divisible into northern and southern belts separated by the steeply southeast-dipping Huntingdon Valley fault (HVF). The northern belt contains metagabbro, charnockite, and dacite/tonalite, upon which biotite-bearing quartzofeldspathic gneiss, calc-silicate gneiss, and minor marble may rest unconformably. The mineralogy and geochemistry of these rocks are remarkably similar to those of Middle Proterozoic rocks in the New Jersey Highlands, and the authors interpret them to be correlative. Northern belt rocks are unconformably overlain by the Cambrian Chickies Quartzite, which is cut off to the northeast bymore » the HVF. The southern belt contains felsic to intermediate quartzofeldspathic gneiss and schist and minor amounts of metavolcanic rocks, all of which may be at slightly lower metamorphic grade than those in the northern belt. High TiO[sub 2] metabasalt is chemically identical to diabase dikes that intrude Middle Proterozoic rocks in the New Jersey Highlands; it is interpreted to be Late Proterozoic in age. Rocks in the southern belt have been thrust northwestward over the Chickies and Middle Proterozoic rocks along the HVF. South of the southern belt, biotite schist and gneiss of the Wissahickon Formation are thrust onto both belts of basement rocks on the HVF and a splay from the HVF, the Morrisville thrust fault. Both faults are marked by augen gneiss that shows evidence of dextral shear.« less

  5. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand - A new report of Early Paleozoic granite

    NASA Astrophysics Data System (ADS)

    Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T.

    2014-07-01

    In order to understand the age and tectonic framework of Eastern to Peninsular Thailand from the viewpoint of basement (metamorphic and plutonic) geology, the LA-ICP-MS U-Pb zircon dating and the chemical Th-U-total Pb isochron method (CHIME) monazite dating were performed in the Khao Chao, Hub-Kapong to Pran Buri, and Khanom areas in Eastern to Peninsular Thailand. The LA-ICP-MS U-Pb zircon dating of the garnet-hornblende gneiss from the Khao Chao area gave 229 ± 3 Ma representing the crystallization age of the gabbro, and that of the garnet-biotite gneisses gave 193 ± 4 Ma representing the timing of an upper amphibolite facies metamorphism. The CHIME monazite dating of pelitic gneiss from the Khao Chao gneiss gave scattered result of 68 ± 22 Ma, due to low PbO content and rejuvenation of older monazite grains during another metamorphism in the Late Cretaceous to Tertiary time. The U-Pb ages of zircon from the Hua Hin gneissic granite in the Hub-Kapong to Pran Buri area scatter from 250 Ma to 170 Ma on the concordia. Granite crystallization was at 219 ± 2 Ma, followed by the sillimanite-grade regional metamorphism at 185 ± 2 Ma. Monazite in the pelitic gneiss from this area also preserves Early to Middle Jurassic metamorphism and rejuvenation by later contact metamorphism by non-foliated granite or by another fluid infiltration event in the Late Cretaceous to Tertiary time. The Khao Dat Fa granite from the Khanom area of Peninsular Thailand gave a U-Pb zircon age of 477 ± 7 Ma. This is the second oldest granite pluton ever reported from Thailand, and is a clear evidence for the Sibumasu block having a crystalline basement that was formed during the Pan-African Orogeny. The Khao Pret granite gives U-Pb zircon concordia age of 67.5 ± 1.3 Ma, which represents the timing of zircon crystallization from the granitic melt and accompanied sillimanite-grade contact metamorphism against surrounding metapelites and gneisses. Metamorphic rocks in the Doi Inthanon area

  6. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Williams-Jones, Anthony E.

    1996-06-01

    The middle-Proterozoic peralkaline pluton at Strange Lake, Quebec/Labrador, comprises hypersolvus to subsolvus phases which are unusually enriched in Zr, Y, REEs, Nb, Be, and F, as exotic alkali and alkaline-earth silicate minerals. The highest concentrations of these elements are in subsolvus granite, which underwent intense low temperature (≤200°C) hydrothermal alteration involving hematization and the replacement of alkali high-field strength element (HFSE) minerals by calcic equivalents. This alteration is interpreted to have been caused by meteoric or formational waters. High temperature (≥ 350°C) alteration, attributed to orthomagmatic fluids, is evident in other parts of the subsolvus granite by the replacement of arfvedsonite by aegirine. Comparisons of the chemical compositions of fresh and altered rocks indicate that rocks subjected to high temperature alteration were chemically unaffected, except for depletion in Zr, Y, and HREEs. These elements were appreciably enriched in rocks that underwent low temperature alteration. Other elements affected by low temperature alteration include Ca and Mg, which were added and Na, which was removed. Available data on HFSE speciation in aqueous fluids and the chemistry of the pluton, suggest that the HFSEs were transported as fluoride complexes. If this was the case, the low temperature fluid could not have been responsible for HFSE transport, because the high concentration of Ca and low solubility of fluorite would have buffered F - activity to levels too low to permit significant complexation. We propose that HFSE mineralization and accompanying alteration were the result of mixing, in the apical parts of the pluton, of a F-rich, essentially Ca-free orthomagmatic fluid containing significant concentrations of HFSEs, with an externally derived meteoric-dominated fluid, enriched in Ca as a result of interaction with calc-silicate gneisses and gabbros. According to this interpretation, the latter fluid was

  7. Communication complexity and information complexity

    NASA Astrophysics Data System (ADS)

    Pankratov, Denis

    Information complexity enables the use of information-theoretic tools in communication complexity theory. Prior to the results presented in this thesis, information complexity was mainly used for proving lower bounds and direct-sum theorems in the setting of communication complexity. We present three results that demonstrate new connections between information complexity and communication complexity. In the first contribution we thoroughly study the information complexity of the smallest nontrivial two-party function: the AND function. While computing the communication complexity of AND is trivial, computing its exact information complexity presents a major technical challenge. In overcoming this challenge, we reveal that information complexity gives rise to rich geometrical structures. Our analysis of information complexity relies on new analytic techniques and new characterizations of communication protocols. We also uncover a connection of information complexity to the theory of elliptic partial differential equations. Once we compute the exact information complexity of AND, we can compute exact communication complexity of several related functions on n-bit inputs with some additional technical work. Previous combinatorial and algebraic techniques could only prove bounds of the form theta( n). Interestingly, this level of precision is typical in the area of information theory, so our result demonstrates that this meta-property of precise bounds carries over to information complexity and in certain cases even to communication complexity. Our result does not only strengthen the lower bound on communication complexity of disjointness by making it more exact, but it also shows that information complexity provides the exact upper bound on communication complexity. In fact, this result is more general and applies to a whole class of communication problems. In the second contribution, we use self-reduction methods to prove strong lower bounds on the information

  8. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun

    2011-11-01

    This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are

  9. Chronology of paleozoic metamorphism and deformation in the Blue Ridge thrust complex, North Carolina and Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, S.A.; Dallmeyer, R.D.

    1997-05-01

    The Blue Ridge province in northwestern North Carolina and northeastern Tennessee records a multiphase collisional and accretionary history from the Mesoproterozoic through the Paleozoic. To constrain the tectonothermal evolution in this region, radiometric ages have been determined for 23 regionally metamorphosed amphibolites, granitic gneisses, and pelitic schists and from mylonites along shear zones that bound thrust sheets and within an internal shear zone. The garnet ages from the Pumpkin Patch a thrust sheet (458, 455, and 451 Ma) are similar to those from the structurally overlying Spruce Pine thrust sheet (460, 456, 455, and 450 Ma). Both thrust sheets exhibitmore » similar upper amphibolite-facies conditions. Because of the high closure temperature for garnet, the garnet ages are interpreted to date growth at or near the peak of Taconic metamorphism. Devonian metamorphic ages are recognized in the Spruce Pine thrust sheet, where Sm-Nd and Rb-Sr garnet ages of 386 and 393 Ma and mineral isochron ages of 397 {+-} 14 and 375 {+-} 27 Ma are preserved. Hornblendes record similar {sup 40}Ar/{sup 39}Ar, Sm-Nd, and Rb-Sr ages of 398 to 379 Ma. Devonian {sup 40}Ar/{sup 39}Ar hornblende ages are also recorded in the structurally lower Pumpkin Patch thrust sheet. The Devonian mineral ages are interpreted to date a discrete tectonothermal event, as opposed to uplift and slow cooling from an Ordovician metamorphic event. The Mississippian mylonitization is interpreted to represent thrusting and initial assembly of crystalline sheets associated with the Alleghanian orogeny. The composite thrust stack of the Blue Ridge complex was subsequently thrust northwestward along the Linville Falls fault during middle Alleghanian orogeny (about 300 Ma).« less

  10. Nature and time of emplacement of a pegmatoidal granite within the Delhi Fold Belt near Bayalan, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Dasgupta, N.; Sen, J.; Pal, T.; Ghosh, T.

    2009-04-01

    The study area is situated about 70 km south east of Ajmer, in Rajasthan, India around the village Bayala (26o 02' 19 N''; 74o 21' 01'') within the Ajmer district of Central Rajasthan. The area is along the eastern flank of the central portion of the Precambrian South Delhi Fold Belt (SDFB) and it stratigraphically belongs to the Bhim Group of rocks. Basement rocks of Archaean age, commonly known as the Banded gneissic Complex (BGC), is exposed to the east, where the rocks of the Bhim Group rests unconformably over BGC. To the west gneissic basement rocks of mid-Proterozoic times underlie the Bhim Group and have been referred to as the Beawar gneiss (BG). The Bhim Group of rocks comprises of metamorphosed marls and calc-silicate gneisses with minor amounts of quartzites and pelitic schists, indicative of its shallow marine origin. Within the Bhim Group, a pegmatoidal granite has intruded the calc silicate gneisses of the area. The pegmatoidal granite body is elliptical in outline with the long dimension(20 km) trending N-S and covers an area of 300 sq. km. approximately. This granite have so far been mapped as basement rocks (BG) surrounding the Beawar town (26o 06' 05'' N; 74o 19' 03'' E), 50 km south east of Ajmer. Rafts of calc-silicate gneisses, belonging to the Bhim Group, are seen to be entrapped within granite. Fragments of BG and its equivalents have also been found as caught up blocks within this pegmatoidal granite body near Andheri Devari, a small hamlet east of Beawar. The objective of the study was to map this pegmatoidal body, and decipher the mechanism and time of emplacement of this granite. A detailed structural mapping of the area in a 1:20000 scale spread over a 30 sq. km area in the vicinity of Bayala was carried out to analyse the geometry and the time of emplacement of the pegmatitic granite. The ridges of calc silicates and marbles adjoining the area were studied for the structural analyses of the Delhi fold belt rocks of the area. The calc

  11. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    NASA Astrophysics Data System (ADS)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  12. Neoarchean ductile deformation of the Northeastern North China Craton: The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei, North China

    NASA Astrophysics Data System (ADS)

    Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue

    2017-05-01

    Archean granitic gneiss domes and greenstone belts are well-preserved in eastern North China Craton (NCC), one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups, and some Archean granitic gneisses were involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400-550 °C. LA-ICP-MS zircon U-Pb dating of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone

  13. Geologic Map of the Upper Wolf Island Creek Watershed, Reidsville Area, Rockingham County, North Carolina

    USGS Publications Warehouse

    Horton, J. Wright; Geddes, Donald J.

    2006-01-01

    This geologic map provides a foundation for hydrogeologic investigations in the Reidsville area of Rockingham County, north-central North Carolina. The 16-mi2 area within the Southeast Eden and Reidsville 7.5-min quadrangles includes the watershed of Wolf Island Creek and its tributary, Carroll Creek, upstream of their confluence. Layered metamorphic rocks in this area of the Milton terrane, here informally named the Chinqua-Penn metamorphic suite, include a heterogeneous mica gneiss and schist unit that contains interlayers and lenses of white-mica schist, felsic gneiss, amphibolite, and ultramafic rock; a felsic gneiss that contains interlayers of amphibolite, white-mica schist, and minor ultramafic lenses; and a migmatitic biotite gneiss. Crushed stone is produced from an active quarry in the felsic gneiss. Igneous intrusive rocks include a mafic-ultramafic assemblage that may have originated as mafic intrusive bodies containing ultramafic cumulates, a foliated two-mica granite informally named the granite of Reidsville, and unmetamorphosed Jurassic diabase dikes. The newly recognized Carroll Creek shear zone strikes roughly east-west and separates heterogeneous mica gneiss and schist to the north from structurally overlying felsic gneiss to the south. Regional amphibolite-facies metamorphism accompanied polyphase ductile deformation in the metamorphic rocks. Two phases of isoclinal to tight folding and related penetrative deformation, described as D1 and D2, were followed by phases of high-strain mylonitic deformation in shear zones and late gentle to open folding. Later brittle deformation produced minor faults, steep joints, foliation-parallel parting, and sheeting joints. The metamorphic and igneous rocks are mantled by saprolite and residual soil derived from weathering of the underlying bedrock, and unconsolidated Quaternary alluvium occupies the flood plains of Wolf Island Creek and its tributaries. The geologic map delineates lithologic and structural

  14. Evidence for an Alleghanian (Early Carboniferous to Late Permian) tectonothermal event in the New Jersey Coastal Plain basement from 40Ar/39Ar biotite data, geochemistry and gravity modeling

    USGS Publications Warehouse

    Maguire, T.J.; Volkert, R.A.; Swisher, C. C.; Sheridan, R.E.

    2009-01-01

    40Ar/39Ar dating of biotite from felsic orthogneiss recovered from the -3890-foot level of the Island Beach State Park (IBSP) well beneath the outer New Jersey Coastal Plain was accomplished using CO2 laser incremental-heating techniques. Over 75% of the Ar released from the incremental-heating experiment form a well-behaved plateau with a calculated age of 243.98 ?? 0.10 Ma. The new 244 Ma biotite age reported here is a cooling age younger than the metamorphic event that crystallized or reheated the biotite. We consider reheating of older biotite to be unlikely because the concordant 40Ar/39Ar spectrum upon repeated incremental laser heating showed a well-developed plateau. Thus, biotites from the IBSP gneiss are interpreted as having crystallized during a single thermal event, followed by cooling to below 300 ??C. The IBSP well falls on a structural and geophysical anomaly trend that is along strike with rocks of the Bronson Hill anticlinorium to the north of the IBSP gneiss. Locally graphitic metasedimentary schists and gneisses recovered from New Jersey wells inboard of the IBSP well gneiss correlate to similar lithologies of the Connecticut Valley synclinorium west of the Hartford basin. Our reinterpretation of the IBSP gneiss as metamorphosed dacite or dacitic tuff is consistent with a correlation to some rocks of the Bronson Hill magmatic arc east of the Hartford basin. If correct, this would imply a Late Ordovician age for the protolith of the IBSP gneiss. Reported 40Ar/39Ar biotite ages of 235-253 Ma from southwestern Rhode Island, and of 238-247 Ma from southeastern Connecticut, are interpreted as cooling ages following a tectonothermal event associated with the Alleghanian orogeny (Early Carboniferous to Late Permian). Cooling ages of Alleghanian age (Early Carboniferous to Late Permian) are not recognized west of the Bronson Hill volcanic arc in either central Connecticut or in Massachusetts. Therefore, the 244 Ma cooling age presented here, and the

  15. Timing and Nature of Events Leading to the Formation of the Albion-Raft River-Grouse Creek (ARG) Metamorphic Core complex, Northern Great Basin, W. U.S.

    NASA Astrophysics Data System (ADS)

    Miller, E. L.; Konstantinou, A.; Sheu, D.; Strickland, A.; Grove, M.

    2016-12-01

    Interpretations of the geodynamic significance of metamorphic core complexes in the northern Basin and Range are intimately tied to a combination of P-T data, geochronology and mica thermochronology used to infer episodes of deformation and uplift related to syn-shortening gravitational collapse of the crust in the latest Cretaceous-early Cenozoic. The ARG is no exception and we bring new geologic mapping, microstructural analysis, geochronology and 40Ar/39Ar thermochronology to bear on these questions. The petrogenesis of Eocene-Miocene magmas, the structural fabrics and metamorphism developed in wall rocks of plutons and the history of flanking basins outline a three-part Cenozoic story of this complex: Part 1: Mantle-derived heat input into the crust in the Eocene (42-36 Ma), related to Farallon slab removal, produced volcanism, plutonism, but little regional extension. Part 2: Heat input led to increased crustal melting as surface volcanism ceased. Diapiric rise of granite-cored gneiss domes sheathed by high grade, high strain metamorphic fabrics and mylonites took place over a protracted time, 32-25 Ma, stalling at depths > 10 km. Transitions upward from penetrative stretching fabrics to brittle crust were complex damage zones of multiply deformed and faulted Paleozoic strata overlain by a more intact 7-8 km thick section of Late Paleozoic and Triassic. Extension was localized and no sedimentary basins formed during this time. Part 3: Metamorphic and igneous rocks were brought to near surface conditions during Miocene extension, between 14-8 Ma ago. Structures accommodating E-W extension are high-angle, rotational normal faults that currently bound both sides of the ARG complex with linked sedimentary basins in their hanging wall. New 40Ar/39Ar data show that country rocks near the Oligocene Almo pluton share the pluton's cooling history. Further from the pluton, where pre-Oligocene fabrics are variably preserved, white mica total gas and plateau ages increase

  16. Bedrock geology of the Mount Carmel and Southington quadrangles, Connecticut

    USGS Publications Warehouse

    Fritts, Crawford Ellswroth

    1962-01-01

    New data concerning the geologic structure, stratigraphy, petrography, origin, and ages of bedrock formations in an area of approximately 111 square miles in south-central Connecticut were obtained in the course of detailed geologic mapping from 1957 to 1960. Mapping was done at a scale of 1:24,000 on topographic base maps having a 10-foot contour interval. Bedrock formations are classified in two principal categories. The first includes metasedimentary, meta-igneous, and igneous rocks of Precambrian to Devonian age, which crop out in the western parts of both quadrangles. The second includes sedimentary and igneous rocks of the Newark Group of Late Triassic age, which crop out in the eastern parts of the quadrangles. Diabase dikes, which are Late Triassic or younger in age, intruded rocks in both the western and eastern parts of the map area. Rocks in the western part of the area underwent progressive regional metamorphism in Middle to Late Devonian time. The arrangement of the chlorite, garnet, biotite, staurolite, and kyanite zones here is approximately the mirror-image of metamorphic zones in Dutchess County, New York. However, garnet appeared before biotite in politic rocks in the map area, because the ration MgO/FeO is low. Waterbury Gneiss and the intrusive Woodtick Gneiss are parts of a basement complex of Precambrian age, which forms the core of the Waterbury dome. This structure is near the southern end of a line of similar domes that lie along the crest of a geanticline east of the Green Mountain anticlinorium. The Waterbury Gneiss is believed to have been metamorphosed in Precambrian time as well as in Paleozoic time. The Woodtick Gneiss also may have been metamorphosed more than once. In Paleozoic time, sediments were deposited in geosynclines during two main cycles of sedimentation. The Straits, Southington Mountain, and Derby Hill Schists, which range in age from Cambrian to Ordovician, reflect a transition from relatively clean politic sediments to

  17. Geology and Mineral Resources of the Northern Part of the North Cascades National Park, Washington

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Tabor, Rowland W.; Weis, Paul L.; Robertson, Jacques F.; Van Noy, Ronald M.; Pattee, Eldon C.

    1972-01-01

    The northern part of the North Cascades National Park in northern Washington is north of the Skagit River between Mount Shuksan on the West and Ross Lake on the east. The area occupies approximately 500 square miles of steep mountains and thickly forested valleys centered on the precipitous Picket Range. Old metamorphic rocks and young volcanic and sedimentary rocks are intruded by large masses of granitic rocks that together form a diverse, complicated, but well-exposed geologic section. The granitic rocks are the most abundant in the area; they intrude most of the other rocks, and they separate one suite of rocks in the eastern part of the area from a second suite in the western part. In the eastern part of the area, the oldest rocks are the Custer Gneiss of McTaggart and Thompson, a thick sequence of biotite and hornblende gneisses and schists. We have divided these rocks into three generalized units: light-colored gneiss, banded gneiss, and amphibole-rich gneiss. To the northeast of these rocks lies a metagabbro. This rock type is complex and is made up of several types of gabbro, diorite, amphibolite, ultramafic rocks, and quartz diorite that crop out along the Ross Lake fault zone. To the northeast of these rocks and also along the Ross Lake fault zone is the phyllite and schist of Ross Lake. These rocks are the highly sheared and metamorphosed equivalents of the plagioclase arkose and argillite sequence of Jurassic and Cretaceous age that is so widespread on the east side of Ross Lake. The Cretaceous Hozomeen Group of Cairnes lies along Ross Lake northeast of the phyllite and schist and consists mainly of slightly metamorphosed greenstones with subordinate chert and phyllite. The phyllite in this unit is similar to that in the underlying phyllite and schist of Ross Lake with which it appears to be interbedded. The youngest rocks in the eastern part of the area are the Skagit Volcanics a thick sequence of welded tuff-breccia with some flows and air-laid tuffs

  18. Seismic images of a tectonic subdivision of the Greenville Orogen beneath lakes Ontario and Erie

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.

    1994-01-01

    New seismic data from marine air-gun and Vibroseis profiles in Lake Ontario and Lake Erie provide images of subhorizontal Phanerozoic sediments underlain by a remarkable series of easterly dipping reflections that extends from the crystalline basement to the lower crust. These reflections are interpreted as structural features of crustal-scale subdivisions within the Grenville Orogen. Broadly deformed, imbricated, and overlapping thrust sheets within the western Central Metasedimentary Belt are succeeded to the west by a complex zone of easterly dipping, apparent thrust faults that are interpreted as a southwest subsurface extension of the boundary zone between the Central Metasedimentary Belt and the Central Gneiss Belt. The interpreted Central Metasedimentary Belt boundary zone has a characteristic magnetic anomaly that provides a link from the adjacent ends of lakes Ontario and Erie to structures exposed 150 km to the north. Less reflective, west-dipping events are interpreted as structures within the eastern Central Gneiss Belt. The seismic interpretation augments current tectonic models that suggest the exposed ductile structures formed at depth as a result of crustal shortening along northwest-verging thrust faults. Relatively shallow reflections across the boundary region suggest local, Late Proterozoic extensional troughs containing post-Grenville sediments, preserved possibly as a result of pre-Paleozoic reactivation of basement structures.

  19. Metamorphism, graphite crystallinity, and sulfide anatexis of the Rampura-Agucha massive sulfide deposit, northwestern India

    NASA Astrophysics Data System (ADS)

    Mishra, Biswajit; Bernhardt, Heinz-Jurgen

    2009-02-01

    Located adjacent to the Banded Gneissic Complex, Rampura-Agucha is the only sulfide ore deposit discovered to date within the Precambrian basement gneisses of Rajasthan. The massive Zn-(Pb) sulfide orebody occurs within graphite-biotite-sillimanite schist along with garnet-biotite-sillimanite gneiss, calc-silicate gneisses, amphibolites, and garnet-bearing leucosomes. Plagioclase-hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720-780°C, whereas temperatures obtained from Fe-Mg exchange between garnet and biotite (580-610°C) in the pelites correspond to postpeak resetting. Thermodynamic considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise P- T- t path with peak P- T of ˜6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f( S 2)] range of 352°C (-8.2) to 490°C (-4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite, pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb-Ag-rich sulfosalt-bearing veins and pods that are irregularly distributed within the hanging wall calc-silicate gneisses show no evidence of deformation and metamorphism. The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn-jamesonite, Cu-free meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite and semseyite in the Pb-Ag-rich ores constrain temperatures at >550°C and

  20. Zircon U-Pb dating, Hf analysis from the Horoman perdiotite -age constraint for lithospheric process, and tectonic juxtaposition of collision root zone-

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Yi, K.; Wang, K. L.; Chung, S. L.

    2017-12-01

    Hidaka metamorphic belt, Hokkaido, Japan is known as youngest arc-arc collision in the world. It ncludes the youngest granulite and the Horoman peridotite complex in the highest grade zone. Age of these rocks have been determined by various methods (K-Ar, U-Pb, Rb-Sr). However, the age of Horoman peridotite complex has not been determined yet. Only Yoshikawa et al 1993) reported the cooling age of the complex as 23 Ma according to whole rock Rb-Sr isochron. This study has performed U-Pb dating of zircons from the Horoman peridotite, and from the paragneiss surrounding the peridotite complex in order to determine the intrusive age of the Horoman peridotite complex into the lower crustal conditions. Several zircon grains were separated from the peridotite. All zircons are homogeneous exhibiting different age group; 267-278 Ma, 33-40 Ma and 18-20 Ma. Hf isotope analysis indicates that the 267-278 Ma is juvenile age and other two are recycled. As a result of this measurement, rims of the zircons from the gneisses show that 238U-206Pb ages are 20 Ma and detrital cores are ranging from 580-510 Ma, 60-50 Ma, 46-40 Ma and 27 Ma. The rim ages are from the gneiss suffered amphibolite facies and granulite faices, and there is a consistancy with zircon rim ages (19 Ma) from the granulite (Kemp et al 2007, Usuki et al 2006 and so on). That is, granulite faices metamorphism was coeval to regional metamorphism in the lower crust at 20 Ma. The zircon ages from the peridotite was probably related to local hydration related to precipitation of phlogopite at 20 Ma, I type magma infiltration at 40 Ma and lithosphere formation at 270 Ma. It is considered that the Horoman peridotite complex was part of the lithosphere at 270 Ma, and the joined as subarc mantle prior to I type magma activity at 40 Ma, aud suffered local hydration and regional metamorphism at 20 Ma. Ref. Kemp, A.I.S., et al., 2007, Geology, 35, 807-810; Usuki, T. et al, 2006, Island Arc, 14, 503-516.

  1. Disclosing the Paleoarchean to Ediacaran history of the São Francisco craton basement: The Porteirinha domain (northern Araçuaí orogen, Brazil)

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Carlos da; Pedrosa-Soares, Antonio Carlos; Armstrong, Richard; Pinto, Claiton Piva; Magalhães, Joana Tiago Reis; Pinheiro, Marco Aurélio Piacentini; Santos, Gabriella Galliac

    2016-07-01

    This geochronological and isotopic study focuses on one of the Archean-Paleoproterozoic basement domains of the São Francisco craton reworked in the Araçuaí orogen, the Porteirinha domain, Brazil. It also includes a thorough compilation of the U-Pb geochronological data related to the adjacent Archean and Rhyacian terranes from the São Francisco craton and Araçuaí orogen. The main target of this study is the TTG gneisses of the Porteirinha complex (Sample 1). The gneiss dated at 3371 ± 6 Ma unraveled a polycyclic evolution characterized by two metamorphic overprinting episodes, dated at 3146 ± 24 Ma (M1) and ca. 600 Ma (M2). The former (M1) is so far the most reliable evidence of the oldest metamorphic episode ever dated in Brazil. The latter (M2), in turn, is endemic in most of the exposed eastern cratonic margin within the Araçuaí orogen. Whole-rock Sm-Nd analysis from the gneiss provided a slightly negative εNd(t3370) = - 0.78 value, and a depleted mantle model (TDM) age of 3.5 Ga, indicating derivation mainly from the melting of a ca. 3.5 Ga tholeiitic source. Sample 2, a K-rich leuco-orthogneiss from the Rio Itacambiriçu Complex, was dated at 2657 ± 25 Ma and also presents a ca. 600 Ma M2 overprinting M2 age. The other two analyses were obtained from Rhyacian granitoids. Sample 3 is syn-collisional, peraluminous leucogranite from the Tingui granitic complex, showing a crystallization age of 2140 ± 14 Ma and strong post-crystallization Pb*-loss, also ascribed to the Ediacaran overprinting. Accordingly, it is interpreted as a correlative of the late Rhyacian (ca. 2150-2050 Ma) collisional stage of the Mantiqueira orogenic system/belt (ca. 2220-2000 Ma), overprinted by the Ediacaran collage. Sample 4 is a Rhyacian post-orogenic (post-collisional), mixed-source, peralkaline, A1-type suite, with a crystallization age of 2050 ± 10 Ma, presenting an important post-crystallization Pb*-loss related to Ediacaran collision. The focused region records some

  2. Metamorphic and structural evidence for significant vertical displacement along the Ross Lake fault zone, a major orogen-parallel shear zone in the Cordillera of western North America

    USGS Publications Warehouse

    Baldwin, J.A.; Whitney, D.L.; Hurlow, H.A.

    1997-01-01

    Results of an investigation of the petrology and structure of the Skymo complex and adjacent terranes constrain the amount, timing, and sense of motion on a segment of the > 600-km-long Late Cretaceous - early Tertiary Ross Lake fault zone (RLFZ), a major orogen-parallel shear zone in the Cordillera of western North America. In the study area in the North Cascades, Washington state, the RLFZ accommodated significant pre-middle Eocene vertical displacement, and it juxtaposes the Skymo complex with upper amphibolite facies (650??-690??C and 6-7 kbar) Skagit Gneiss of the North Cascades crystalline core to the SW and andalusite-bearing phyllite of the Little Jack terrane (Intermontane superterrane) to the NE. The two main lithologic units of the Skymo complex, a primitive mafic intrusion and a fault-bounded block of granulite facies metasedimentary rocks, are unique in the North Cascades. Granulite facies conditions were attained during high-temperature (> 800??C), low pressure (??? 4 kbar) contact metamorphism associated with intrusion of the mafic magma. P-T estimates and reaction textures in garnet-orthopyroxene gneiss suggest that contact metamorphism followed earlier, higher pressure regional metamorphism. There is no evidence that the Skagit Gneiss experienced high-T - low-P contact metamorphism. In the Little Jack terrane, however, texturally late cordierite ?? spinel and partial replacement of andalusite by sillimanite near the terrane's fault contact with Skymo gabbro suggest that the Little Jack terrane experienced high-T (??? 600??C) - low-P (??? 4 kbar) contact metamorphism following earlier low-grade regional metamorphism. Similarities in the protoliths of metasedimentary rocks in the Skymo and Little Jack indicate that they may be part of the same terrane. Differences in pressure estimates for the Little Jack versus Skymo for regional metamorphism that preceded contact metamorphism indicate vertical displacement of ??? 10 km (west side up) on the strand

  3. Investigation of the influence of lineaments, lineament intersections and geology on groundwater yield in the basement complex terrain of Ondo State, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Akinluyi, Francis O.; Olorunfemi, Martins O.; Bayowa, Oyelowo G.

    2018-03-01

    The influence of lineaments, lineament intersections and geology on the groundwater yield of the basement terrain of Ondo State was investigated using optical remote sensing data, Aster DEM, geology, and borehole yield data. Landsat-7 ETM+ and Aster DEM were processed to generate composite lineament map. The study area was traversed by five (5) main lineament populations trending N-S, NE-SW, E-W, ENE-WSW, NNW-SSE. Boreholes sited on lineament exhibited a yield range of between 0.8 and 1.28 l/s with an average yield of 1.04 l/s. Boreholes sited close to lineament gave groundwater yield values of between 0.5 and 1.28 l/s and an average yield of 1 l/s, while boreholes located outside lineament gave groundwater yield range of between 0.2 and 1.26 l/s with an average yield of 0.98 l/s. The investigation of the hydrogeological characteristics of the lithologies by superimposing the yield data showed average yield of 0.98 l/s for migmatite gneiss biotite granite undifferentiated (M), 1.01 l/s for porphyritic granite (OGp), 1.03 l/s for medium- to coarse-grained (OGe), 1.17 l/s for pelitic schist undifferentiated (Su), 1.24 l/s for quartz schist and quartzite (Eq), 1.12 l/s for older granite undifferentiated (OGu), 0.5 l/s for slightly migmatised medium-grained granite-gneiss (gg) and 1.23 l/s for fine-grained flaggy quartzite and schists (Sf). The study concluded that borehole data located on or near lineaments or at intersection of lineaments gave higher yields more than those located before lineaments or outside lineaments, while quartz schist and quartzite exhibited the highest average groundwater yield of all the lithological units.

  4. AERORADIOACTIVITY SURVEY AND AREAL GEOLOGY OF THE GEORGIA NUCLEAR LABORATORY AREA, NORTHERN GEORGIA (ARMS-I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKallor, J.A.

    1962-01-01

    An airborne gamma-radioactivity survey of about 7000 square miles around the Georgia Nuclear Laboratory (GNL) in Dawson County, Ga., was made by the U. S. Geological Survey in cooperation with the Division of Biology and Medicine, U. S. Atomic Energy Commission. The project was flown perpendicular to the regional strike at a nominal elevation of 500 ft above the ground with a flight-line spacing of 1 mile. Radioactivity contacts shown on a 1:250,000 map delineate areas of similar radioactivity, which, in general, trend northeast, parallel to the geologic strike. Many, but not all, formations correlate closely with radioactivity units. Changesmore » of radioactivity within some formations may indicate facies changes. In the GNL area the Cartersville fault, which dlosely coincides with a prominent radioactivity contact, separates the Valley and Ridge physiographic province from the Piedmont to the east. Within the Valley and Ridge province bedrock consists of sedimentary rocks of Paleozoic age; the radioactivity is from 300 to 900 counts per second (cps). Areas of limestone and dolomite are characterized by radioactivity lows, usually less than 500 cps. Most areas of shale have a radioactivity of 600 to 900 cps. Bedrock in the Piedmont consists mainly of igneous and metamorphic rocks of Precambrian and Palezoic ages, and the radioactivity ranges from about 250 to 2000 cps. The least radioactive rocks (250 to 500 cps) are hornblende gneiss, dioritic injection gneiss, and some of the granitic gneiss. The most radioactive rock is the augen gneiss in Bartow and Cherokee Counties (1000 to 2000 cps). Some of the granitic gneiss, biotite gneiss and schist, and the Talladega Slate have a radioactivity of slightly more than 1000 cps. Composite samples of surficial material were collected from sites directly under the flight path of the aircraft. After analysis for equivalent uranium based upon the number of counts recorded by geiger tubes, the samples were stored for future

  5. Charnockites and granites of the western Adirondacks, New York, USA: a differentiated A-type suite

    USGS Publications Warehouse

    Whitney, P.R.

    1992-01-01

    Granitic rocks in the west-central Adirondack Highlands of New York State include both relatively homogeneous charnockitic and hornblende granitic gneisses (CG), that occur in thick stratiform bodies and elliptical domes, and heterogeneous leucogneisses (LG), that commonly are interlayered with metasedimentary rocks. Major- and trace-element geochemical analyses were obtained for 115 samples, including both types of granitoids. Data for CG fail to show the presence of more than one distinct group based on composition. Most of the variance within the CG sample population is consistent with magmatic differentiation combined with incomplete separation of early crystals of alkali feldspar, plagioclase, and pyroxenes or amphibole from the residual liquid. Ti, Fe, Mg, Ca, P, Sr, Ba, and Zr decrease with increasing silica, while Rb and K increase. Within CG, the distinction between charnockitic (orthopyroxene-bearing) and granitic gneisses is correlated with bulk chemistry. The charnockites are consistently more mafic than the hornblende granitic gneisses, although forming a continuum with them. The leucogneisses, while generally more felsic than the charnockites and granitic gneisses, are otherwise geochemically similar to them. The data are consistent with the LG suite being an evolved extrusive equivalent of the intrusive CG suite. Both CG and LG suites are metaluminous to mildly peraluminous and display an A-type geochemical signature, enriched in Fe, K, Ce, Y, Nb, Zr, and Ga and depleted in Ca, Mg, and Sr relative to I- and S-type granites. Rare earth element patterns show moderate LREE enrichment and a negative Eu anomaly throughout the suite. The geochemical data suggest an origin by partial melting of biotite- and plagioclase-rich crustal rocks. Emplacement occurred in an anorogenic or post-collisional tectonic setting, probably at relatively shallow depths. Deformation and granulite-facies metamorphism with some partial melting followed during the Ottawan phase

  6. Ams Fabric and Deformation of The Jawornik Granitoids In The Zloty Stok - Skrzynka Deformation Zone (sudetes, SW Poland)- Preliminary Interpretations.

    NASA Astrophysics Data System (ADS)

    Werner, T.; Bialek, D.

    Jawornik granitoids comprise the NE-SW trending sequences of the 1cm up to 1 km thick granitoid veins surrounded by schists and gneisses of the Zloty Stok - Skrzynka deformation zone in Eastern Sudetes (SW Poland). According to conflicting theories granitoids are of magmatic origin or were formed from blastomylonitic rocks that underwent multiphase deformation. AMS studies were performed for the 53 sites lo- calized within granitoid veins and within the surrounding gneisses. AMS foliations for granitoid veins of various thickness as well as for gneisses dip at moderate to steep an- gles to N-NW. AMS lineations in the surrounding gneisses plunge subhorizontally to NE-SW that reflects the regional NE-SW shearing components. Magnetic lineations for sites within wider veins of granitoids plunge at low angles (mostly from S to W) but with more varying trends between sites. Mezoscopic tectonic foliations are record- able only in 50% of sites. They show good correlation with AMS planar fabric on the site scale. The uniformity of AMS fabric on the site scale and high AMS anisotropy within all sites (P of 1.05-1.30, T of 0.3-0.6 on average) suggest syntectonic gener- ation of granitoids. Further interpretations of the AMS and tectonic fabrics will be performed when microtectonic studies and chemical analyses results are available.

  7. The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho

    USGS Publications Warehouse

    Strickland, A.; Miller, E.L.; Wooden, J.L.

    2011-01-01

    The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

  8. Geochemistry, petrography, and zircon U-Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta area of east-central Alaska: implications for the evolution of the westernmost part of the Yukon-Tanana terrane

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.

    2013-01-01

    We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.

  9. Relative chronology in high-grade crystalline terrain of the Eastern Ghats, India: new insights

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Kar, R.; Saw, A. K.; Das, P.

    2011-01-01

    The two major lithology or gneiss components in the polycyclic granulite terrain of the Eastern Ghats, India, are the supracrustal rocks, commonly described as khondalites, and the charnockite-gneiss. Many of the workers considered the khondalites as the oldest component with unknown basement and the charnockite-protoliths as intrusive into the khondalites. However, geochronological data do not corroborate the aforesaid relations. The field relations of the hornblende- mafic granulite with the two gneiss components together with geocronological data indicate that khondalite sediments were deposited on older mafic crustal rocks. We propose a different scenario: Mafic basement and supracrustal rocks were subsequently deformed and metamorphosed together at high to ultra-high temperatures - partial melting of mafic rocks producing the charnockitic melt; and partial melting of pelitic sediments producing the peraluminous granitoids. This is compatible with all the geochronological data as well as the petrogenetic model of partial melting for the charnockitic rocks in the Eastern Ghats Belt.

  10. Geologic map of the Wenatchee 1:100,000 Quadrangle, central Washington

    USGS Publications Warehouse

    Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.

    1982-01-01

    The rocks and deposits within the Wenatchee quadrangle can be grouped into six generalized units: (1) Precambrian(?) Swakane Biotite Gneiss in the northeastern part of the quadrangle and the probable Jurassic low-grade metamorphic suite, mostly composed of the Easton Schist, in the southwestern part; (2) the Mesozoic Ingalls Tectonic Complex; (3) the Mesozoic Mount Stuart batholith; (4) lower and middle Tertiary nonmarine sedimentary and volcanic rocks; (5) Miocene basalt flows and interbedded epiclastic rocks constituting part of the Columbia River Basalt Group and interbedded silicic volcaniclastic rocks of the Ellensburg Formation; and (6) Pliocene to Holocene alluvium, glacial, flood, and mass-wastage deposits.

  11. Geology of the Windsor quadrangle, Massachusetts

    USGS Publications Warehouse

    Norton, Stephen A.

    1967-01-01

    The Windsor quadrangle lies on the boundary between the eugeosynclinal and miogeosynclinal rocks of the Appalachian geosyncline on the western flank of the metamorphic high in western New England. Precambrian rocks crop out in a north-trending belt in the central part of the quadrangle. They have been classified into 2 formations. The Stamford Granite Gneiss crops out in the eastern half of the Precambrian terrane. It is a microcline-quartz-biotite augen gneiss. Stratified Precambrian rocks (the Hinsdale Gneiss) crop out entirely the west of the Stamford Granite Gneiss. They are predominantly highly metamorphosed felsic gneisses and .quartzites with minor calc-silicate rock, amphibolite, and graphitic gneiss. Eugeosynclinal rocks (the Hoosac Formation and the Rowe Schist), .ranging in age from Lower Cambrian to Lower Ordovician, crop out in a north-trending belt east of the Precambrian terrane. They are composed predominantly of albite schist and muscovite-chlorite schist with minor garnet schist, quartz-muscovite-calcite schist, felsic granulite and gneiss, quartzite, greenschist, and carbonaceous phyllite and schist. West of the Precambrian rocks, the Hoosac Formation is overlain by a miogeosynclinal sequence (the Dalton Formation, Cheshire Quartzite, Kitchen Brook Dolomite, Clarendon Springs Dolomite, Shelburne Marble, and the Bascom Formation) ranging in age from Lower Cambrian to Lower Ordovician. These rocks are unconformably overlain by the Berkshire Schist of Middle Ordovician age that is composed of carbonaceous schist, phyllite, and quartzite. The relationships in the zone of transition between the miogeosynclinal and eugeosynclinal rocks are unknown because the rocks of this zone are no longer present. The contact between the eugeosynclinal Hoosac Formation and the Dalton Format ion is conformable and deposition. The dominant structure is a large recumbent, northwest-facing anticline (the Hoosac nappe) with a Precambrian co re. The miogeosynclinal rocks

  12. Geology and geochronology of granitoid and metamorphic rocks of late Archean age in northwestern Wisconsin

    USGS Publications Warehouse

    Sims, P.K.; Peterman, Z.E.; Zartman, R.E.; Benedict, F.C.

    1985-01-01

    Granitoid rocks of the Puritan Quartz Monzonite and associated biotite gneiss and amphibolite in northwestern Wisconsin compose the southwestern part of the Puritan batholith of Late Archean age. They differ from rocks in the Michigan segment of the batholith in having been deformed by brittle-ductile deformation and partly recrystallized during shearing accompanying development of the midcontinent rift system of Keweenawan (Middle Proterozoic) age. Granitoid rocks ranging in composition from granite to tonalite are dominant in the Wisconsin part of the batholith. To the north of the Mineral Lake fault zone, they are massive to weakly foliated and dominantly of granite composition, whereas south of the fault zone they are more strongly foliated and mainly of tonalite composition. Massive granite, leucogranite, and granite pegmatite cut the dominant granitoid rocks. Intercalated with the granitoid rocks in small to large conformable bodies are biotite gneiss, amphibolite, and local tonalite gneiss. Metagabbro dikes of probable Early Proterozoic age as much as 15 m thick cut the Archean rocks. Rubidium-strontium whole-rock data indicate a Late Archean age for the granitoids and gneisses, but data points are scattered and do not define a single isochron. Zircon from two samples of tonalitic gneiss for uranium-thorium-Iead dating define a single chord on a concordia diagram, establishing an age of 2,735?16 m.y. The lower intercept age of 1,052?70 m.y. is in close agreement with rubidium-strontium and potassium-argon biotite ages from the gneisses. Two episodes of deformation and metamorphism are recorded in the Archean rocks. Deformation during the Late Archean produced a steep west-northwest-oriented foliation and gently plunging fold axes and was accompanied by low amphibolite-facies metamorphism of the bedded rocks. A younger deformation resulting from largely brittle fracture was accompanied by retrogressive metamorphism; this deformation is most evident adjacent

  13. Geology and mineral deposits of an area in the Departments of Antioquia and Caldas (Subzone IIB), Colombia

    USGS Publications Warehouse

    Feininger, Tomas; Barrero L., Dario; Castro, Nestor; Hall, R.B.

    1973-01-01

    The Inventario Minero National (IMN), a four-year cooperative geologic mapping and mineral resources appraisal project, was accomplished under an agreement between the Republic of Colombia and the U. S. Agency for International Development from 1964 through 1969. Subzone IIB, consisting essentially of the east half of Zone comprises nearly 20,000 km2 principally in the Department of Antioquia but including also small parts of the Departments of Caldas and Tolima. The rocks in IIB range from Precambrian to Holocene. Precambrian feldspar-quartz gneiss occupies a mosaic of fault-bounded blocks intruded by igneous rocks between the Oto fault and the Rio Magdalena. Paleozoic rocks are extensive, and include lightly metamorphosed graptolite-bearing Ordovician shale at Cristalina, and a major suite of graphitic quartz-mica schist, feldspathic and aluminous gneiss, quartzite, marble, amphibolite, and other rocks. Syntectonic intrusive gneiss included many of the older rocks during a late Paleozoic(?) orogeny, which was accompanied by Abukuma-type metamorphosing from lowermost greenschist to upper amphibolite facies. A Jurassic diorite pluton bounded by faults cuts volcanic rocks of unknown age east of the Otu fault. Cretaceous rocks are major units. Middle Cretaceous carbonaceous shale, sandstone, graywacke, conglomerate, and volcanic rocks are locally prominent. The Antioquian batholith (quartz diorite) of Late Cretaceous age cuts the middle Cretaceous and older rocks. A belt of Tertiary nonmarine clastic sedimentary rocks crops out along the Magdalena Valley. Patches of Tertiary alluvium are locally preserved in the mountains. Quaternary alluvium, much of it auriferous, is widespread in modern stream valleys. Structurally IIB constitutes part of a vast complex synclinorium intruded concordantly by syntectonic catazonal or mesozonal felsic plutons, and by the later epizonal post-tectonic Antioquian batholith. Previously unrecognized major wrench faults are outstanding

  14. Reactivation of the Archean-Proterozoic suture along the southern margin of Laurentia during the Mazatzal orogeny: Petrogenesis and tectonic implications of ca. 1.63 Ga granite in southeastern Wyoming

    USGS Publications Warehouse

    Jones, Daniel S.; Barnes, Calvin G.; Premo, Wayne R.; Snoke, Arthur W.

    2013-01-01

    The presence of ca. 1.63 Ga monzogranite (the “white quartz monzonite”) in the southern Sierra Madre, southeastern Wyoming, is anomalous given its distance from the nearest documented plutons of similar age (central Colorado) and the nearest contemporaneous tectonic margin (New Mexico). It is located immediately south of the Cheyenne belt—a ca. 1.75 Ga Archean-Proterozoic tectonic suture. New geochronological, isotopic, and geochemical data suggest that emplacement of the white quartz monzonite occurred between ca. 1645 and 1628 Ma (main pulse ca. 1628 Ma) and that the white quartz monzonite originated primarily by partial melting of the Big Creek Gneiss, a modified arc complex. There is no evidence that mafic magmas were involved. Open folds of the ca. 1750 Ma regional foliation are cut by undeformed white quartz monzonite. On a regional scale, rocks intruded by the white quartz monzonite have experienced higher pressure and temperature conditions and are migmatitic as compared to the surrounding rocks, suggesting a genetic relationship between the white quartz monzonite and tectonic exhumation. We propose that regional shortening imbricated the Big Creek Gneiss, uplifting the now-exposed high-grade rocks of the Big Creek Gneiss (hanging wall of the thrust and wall rock to the white quartz monzonite) and burying correlative rocks, which partially melted to form the white quartz monzonite. This tectonism is attributed to the ca. 1.65 Ga Mazatzal orogeny, as foreland shortening spread progressively into the Yavapai Province. Mazatzal foreland effects have also been described in the Great Lakes region and have been inferred in the Black Hills of South Dakota. We suggest that the crustal-scale rheologic contrast across the Archean-Proterozoic suture, originally developed along the southern margin of Laurentia, and including the Cheyenne belt, facilitated widespread reactivation of that boundary during the Mazatzal orogeny. This finding emphasizes the degree to

  15. Coexistence of enriched and modern-like 142Nd signatures in Archean igneous rocks of the eastern Kaapvaal Craton, southern Africa

    NASA Astrophysics Data System (ADS)

    Schneider, Kathrin P.; Hoffmann, J. Elis; Boyet, Maud; Münker, Carsten; Kröner, Alfred

    2018-04-01

    The short-lived 146Sm-142Nd isotope system is an important tool for tracing Hadean crust-mantle differentiation processes and constraining their imprint on much younger rocks from Archean cratons. We report the first comprehensive set of high-precision 142Nd analyses for granitoids and amphibolites of the Ancient Gneiss Complex (AGC; Swaziland) and the oldest metavolcanic units of the Barberton Greenstone Belt (BGB; South Africa). The investigated samples span an age range from 3.66 Ga to 3.22 Ga and are representative of major geological units of the AGC and the lower Onverwacht Group of the BGB. Measured samples yielded μ142Nd values in the range from -8 ppm to +3 ppm relative to the JNdi-1 terrestrial standard, with typical errors smaller than 4.4 ppm. The distribution of the μ142Nd values for these 17 measured samples is bimodal with ten samples showing a tendency towards slightly negative μ142Nd anomalies, whereas seven samples have 142Nd similar to the terrestrial reference. The only confidently resolvable μ142Nd anomalies were found in a 3.44 Ga Ngwane Gneiss sample and in amphibolites of the ca. 3.45 Ga Dwalile Greenstone Remnant, revealing μ142Nd values ranging from - 7.9 ± 4.4 to - 6.1 ± 4.3 ppm. The μ142Nd deficits do not correlate with age, lithological unit, or sample locality. Instead, our results reveal that two distinct mantle domains were involved in the formation of the AGC crust. The two reservoirs can be distinguished by their μ142Nd signatures. Mantle-derived rocks tapped the enriched reservoir with negative μ142Nd at least until 3.46 Ga, whereas the granitoids preserved a negative μ142Nd signature that formed by incorporation of older AGC crust at least until 3.22 Ga. The oldest gneisses with no μ142Nd anomaly are up to 3.64 Ga in age, indicating that a modern terrestrial 142Nd reservoir was already present by early Archean times.

  16. Northward extension of Carolina slate belt stratigraphy and structure, South-Central Virginia: Results from geologic mapping

    USGS Publications Warehouse

    Hackley, P.C.; Peper, J.D.; Burton, W.C.; Horton, J. Wright

    2007-01-01

    Geologic mapping in south-central Virginia demonstrates that the stratigraphy and structure of the Carolina slate belt extend northward across a steep thermal gradient into upper amphibolite-facies correlative gneiss and schist. The Neoproterozoic greenschist-facies Hyco, Aaron, and Virgilina Formations were traced northward from their type localities near Virgilina, Virginia, along a simple, upright, northeast-trending isoclinal syncline. This syncline is called the Dryburg syncline and is a northern extension of the more complex Virgilina synclinorium. Progressively higher-grade equivalents of the Hyco and Aaron Formations were mapped northward along the axial trace of the refolded and westwardly-overturned Dryburg syncline through the Keysville and Green Bay 7.5-minute quadrangles, and across the northern end of the Carolina slate belt as interpreted on previous geologic maps. Hyco rocks, including felsic metatuff, metawacke, and amphibolite, become gneisses upgrade with areas of local anatexis and the segregation of granitic melt into leucosomes with biotite selvages. Phyllite of the Aaron Formation becomes garnet-bearing mica schist. Aaron Formation rocks disconformably overlie the primarily felsic volcanic and volcaniclastic rocks of the Hyco Formation as evidenced by repeated truncation of internal contacts within the Hyco on both limbs of the Dryburg syncline at the Aaron-Hyco contact. East-northeast-trending isograds, defined successively by the first appearance of garnet, then kyanite ?? staurolite in sufficiently aluminous rocks, are superposed on the stratigraphic units and synclinal structure at moderate to high angles to strike. The textural distinction between gneisses and identifiable sedimentary structures occurs near the kyanite ?? staurolite-in isograd. Development of the steep thermal gradient and regional penetrative fabric is interpreted to result from emplacement of the Goochland terrane adjacent to the northern end of the slate belt during

  17. Geologic map of the Julian 7.5' quadrangle, San Diego County, California

    USGS Publications Warehouse

    Todd, Victoria R.

    2015-01-01

    Jurassic plutons in the Julian quadrangle underwent synkinematic metamorphism with the result that plutonic contacts and foliation are concordant with those in the surrounding metamorphosed country rocks. Foliation in Jurassic plutons consists of the planar orientation of recrystallized mineral grains and aggregates; deformation textures include augen gneiss, mylonitic gneiss, and mylonite. Structural studies indicate that a significant part of this deformation took place in the Cretaceous and, therefore, the regional foliation in this part of the batholith clearly postdates intrusion of many Cretaceous plutons.

  18. Provenance of granites used to build the Santa Maria de Valdeiglesias Monastery, Pelayos de la Presa (Madrid, Spain), and conservation state of the monumental complex

    NASA Astrophysics Data System (ADS)

    Fort, R.; Alvarez de Buergo, M.; Vazquez-Calvo, C.; Perez-Monserrat, E. M.; Varas-Muriel, M. J.; Lopez-Arce, P.

    2012-04-01

    The construction of the Cistercian Monastery began at 1180, in an initial Late Romanesque style in which the Church was erected; later on, in 1258, the church underwent a severe fire, only the apse stood standing. The church was reconstructed at the end of the 13th century in Mudejar style. Gothic style was used later on, in the 16th century, for the reconstruction of the funerary chapel, and Renaissance style for the Plateresque door in between the church and the sacristy. At the end of the 16th century, the main door to access the church was built in Baroque style. In 1836, the Ecclesiastical Confiscations resulted on transfer the Monastery into particular owners. This fact favoured its abandon and ruin state until 1979, when architect Mariano Garcia Benito purchased the property and started the conservation and consolidation of the complex, beginning with the Bell Tower. Natural stone materials used in the Monastery are igneous (granite) and metamorphic rocks (gneiss and schist), and artificial stone materials are bricks and mortars, both joint and rendering ones. Granite is the most abundant material used in the complex, with a structural/reinforcing role in elements such as lintels, jambs, buttresses, or bottom areas of the walls with greater sizes and better dimensioned. Some pillars are granite built, from the large ashlars of the sacristy, to the rubble-work of the Mozarab chapel. Two types of monzogranite can be differentiated in relation to distinct constructive stages: the coarse texture monzogranite is used in the first building stages, while the fine texture monzogranite was employed mainly from 17th century on. Petrophysical characteristics of these granites are different but show a good quality to be used in construction. Nevertheless, the abandon and partial ruin of the complex, the devastating fire events (the second one in 1743) leaded to the decay acceleration of the monumental complex, being nowadays the church in ruin, with no roofs and walls

  19. Re-Os Isotopic Characteristics of the Earth's Oldest Preserved Oceanic Crustal Fragments (Isua Supracrustals Belt, W Greenland); A Vastly Disturbed System.

    NASA Astrophysics Data System (ADS)

    Frei, R.; Frei, R.; Jensen, B. K.

    2001-12-01

    Variably preserved pillow lavas from the Isua Supracrustals Belt (ISB; Western Greenland) exhibit strongly supra-chondritic Re/Os (range from 2 to 45) and highly radiogenic 187Os/188Os isotopic compositions (range from 0.3 to 20.5). Re-Os model ages are geologically meaningless and reflect the disturbances invoked by post-formational metamorphic overprinting and by metasomatic events that were associated with the intrusion of various generations of the precursors of tonalitic gneisses into the ISB. Most prominently, a late Archean (c. 2.8 Ga) tectono-metamorphic event has locally reset the Re-Os clock in high strain domains of the ISB. Disturbance of the Re-Os system was initially caused by Re addition in connection with metasomatic fluid flow during the early Archean (3.65 to 3.81 Ga) emplacement of central dome gneiss precursors and tonalite sheets into the supracrustals sequences. The effects of open system behaviour of the Re-Os system are similarly recorded by the U-Pb and Sm-Nd systems of these meta-basalts, principally revealing the influx of U, Th, Re; LREE and alkaline-rich fluids from the gneisses into the oceanic crustal sequences preserved at Isua (Blichert-Toft and Frei, 2001; Frei et al., in press; Frei and Rosing, in press). Ultramafic lenses with komatiitic chemical affinities within the ISB are equally affected by early addition of Re, but the very much higher Os concentrations (more than an order of magnitude higher than those of the meta-basalts with values ranging from 30 to 150 ppt) did efficiently mask the disturbances in the Os isotope compositions, so that reasonable Re depletion ages (TRD) can still be deduced. The least altered of these ultramafic lenses revealed a TRD) of 3725 Ma and a mantle extraction (TMA) age of 3807 Ma, dates which are compatible with independent U-Pb zircon ages from intrusive tonaltic gneisses (Nutman et al., 1997) and Pb-Pb age constraints from metasomatic minerals of strongly altered meta-basalts (Frei and Rosing

  20. Subsolidus migmatization in high-grade meta-tuffs (Kurkijärvi, southwest Finland)

    NASA Astrophysics Data System (ADS)

    Blom, K. A.

    1988-07-01

    The phenomenon of migmatization was studied in Precambrian metavolcanic gneisses of calc-alkaline chemistry, outcropping along a prograde amphibolite/granulite facies transition in the West Uusimaa Complex of SW Finland. This paper discusses one of the studied gneiss levels (a garnet-bearing Qtz/Plag/Ksp/Bio-gneiss) which was observed to transsect the metamorphic isograd pattern at almost right angle. The gneiss was studied for structures, whole-rock chemistry (major, trace and REE), mineral content, microtextures, plagioclase anorthite content and fluid inclusions. Data concerning the latter four subjects are presented. Migmatization proved to: (1) have occurred parallel to compositional banding of the rocks; (2) have produced identical leucosome/melanosome/mesosome mineral parageneses; (3) have initiated feldspar/garnet-poikiloblasthesis (and occasionally biotite porphyroblasthesis) in leucosome, and biotite-/garnet-poikiloblasthesis in melanosome; (4) have caused entrapment of unstrained quartz blebs carrying isolated (primary) two-phase pure H 2O fluid inclusions of unique filling degree range in the above-mentioned feldspar- and garnet-poikiloblasts; (5) have occurred post-D 1/pre-D 2, synchronous to amphibolitefacies metamorphism, in the subsolidus regime; (6) have been affected by D 2 in the way of localized mylonitization of the melanosome, and quartz migration (exudation) from adjacent mesosome into leucosome; and (7) have had some control by the biotite content of the original compositionally banded rock. Initial leucosome formation appears to have been controlled by the pre-leucosome biotite content: the recalculated modal biotite content of the leucosome/melanosome combination conspicuously is in the range of 5-20 vol.% of biotite. Final extent of the leucosome shows on its turn a marked correlation with mesosome modal biotite content. Because leucosomes occur carrying a recalculated modal biotite content equalling adjacent mesosome biotite content, a

  1. Thermal history of the Pan-African basement under the Jurassic Marib-Shabwa Basin, Yemen

    NASA Astrophysics Data System (ADS)

    Rice, A. Hugh N.; Schneider, David; Veeningen, Resi; Grasemann, Bernhard; Decker, Kurt

    2013-04-01

    Pan-African tectonism within the Arabian Nubian Shield in Yemen is very poorly known. New drill-cores from the Marib-Shabwa Basin (Habban oil field) from central Yemen penetrated 600 m into the pre-Jurassic crystalline basement, providing a unique opportunity to extend our understanding of Pan-African events in Yemen. The cores were obtained some 80 km NE of the exposure limit of the Al Bayda Terrane, which lies SE of Sana'a. This terrane, which has no direct correlative in the ANS further north in Saudi Arabia, comprises deformed greenschist facies acid to basic volcanic rocks later witnessing acid to basic magmatism and has been previously interpreted as a Pan-African island arc complex with a basement component. Ophiolite fragments are common, both within the terrane and at its margins (sutures). To the north lies the Abas Gneiss Terrane and to the south the Al Mahfid Gneiss Terrane; both consist of older pre-Pan-African crystalline basement rocks. Geochemistry of a red, undeformed granite from the drill core indicates an A-type composition. LA-ICPMS U-Pb analysis of granite zircons gave two concordant age populations: 628.3 ± 3.1 Ma (large & small zircons) and 604.9 ± 2.0 Ma (intermediate sized zircons). The former age is interpreted as the time of crystallization, within the range of other A-type Younger Granites in the ANS, and the latter age as constraining lower temperature dissolution-reprecipitation of zircon, due to hydrothermal fluids or melt remobilization. Nd Tdm model ages for two granite samples from the drill core both gave ages of 1.24 Ga, within the range of the Al Bayda Terrane (1.2-2.5 Ga) and outside the range of the adjacent Palaeoproterozoic gneissic terranes (1.7-2.3 Ga, Abas Gneiss Terrane; 1.8-3.0 Ga, Al Mahfid Gneiss Terrane). Thus it seems certain that the Al Bayda Terrane extends at least 80 km to the NE of its present surface exposure. Rb-Sr biotite ages from the granite indicate closure through ~300°C at 593 Ma, indicating fast

  2. Mesoproterozoic graphite deposits, New Jersey Highlands: Geologic and stable isotopic evidence for possible algal origins

    USGS Publications Warehouse

    Volkert, R.A.

    2000-01-01

    Graphite deposits of Mesoproterozoic age are locally abundant in the eastern New Jersey Highlands, where they are hosted by sulphidic biotite-quartz-feldspar gneiss, metaquartzite, and anatectic pegmatite. Gneiss and metaquartzite represent a shallow marine shelf sequence of locally organic-rich sand and mud. Graphite from massive deposits within metaquartzite yielded ??13C values of -26 ?? 2??? (1??), and graphite from massive deposits within biotite-quartz-feldspar gneiss yielded ??13C values of -23 ??4???. Disseminated graphite from biotite-quartz-feldspar gneiss country rock was -22 ??3???, indistinguishable from the massive deposits hosted by the same lithology. Anatectic pegmatite is graphitic only where generated from graphite-bearing host rocks; one sample gave a ??13C value of -15???. The ??34S values of trace pyrrhotite are uniform within individual deposits, but vary from 0 to 9??? from one deposit to another. Apart from pegmatitic occurrences, evidence is lacking for long-range mobilization of carbon during Grenvillian orogenesis or post-Grenvillian tectonism. The field, petrographic, and isotope data suggest that massive graphite was formed by granulite-facies metamorphism of Proterozoic accumulations of sedimentary organic matter, possibly algal mats. Preservation of these accumulations in the sedimentary environment requires anoxic basin waters or rapid burial. Anoxia would also favour the accumulation of dissolved ferrous iron in basin waters, which may explain some of the metasediment-hosted massive magnetite deposits in the New Jersey Highlands. ?? 2000 NRC.

  3. Elastic anisotropy and borehole stress estimation in the Seve Nappe Complex from the COSC-1 well, Åre, Sweden.

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn; Almquist, Bjarne; Ask, Maria; Schmitt, Douglas R.; Zappone, Alba

    2015-04-01

    The Caledonian orogeny, preserved in Scandinavia and Greenland, began with the closure of the Iapetus Ocean and culminated in the collision of Baltica and Laurentia cratons during the middle Paleozoic. The COSC scientific drilling project aims at understanding the crustal structure and composition of the Scandinavian Caledonides. The first well of the dual phase drilling program, completed in Summer of 2014, drilled through ~2.5 km of the Seve Nappe Complex near the town of Åre, Sweden. Newly acquired drill core and borehole logs provide fresh core material for physical rock property measurements and in-situ stress determination. This contribution presents preliminary data on compressional and shear wave ultrasonic velocities (Vp, Vs) determined from laboratory measurements on drill cores, together with in-situ stress orientation analysis using image logs from the first borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-1). An hydrostatically oil pressurized apparatus is used to test the ultrasonic Vp and Vs on three orthogonally cut samples of amphibolite, calcium bearing and felsic gneiss, meta-gabbro, and mylonitic schist from drill core. We measure directional anisotropy variability for each lithology using one sample cut perpendicular to the foliation and two additional plugs cut parallel to the foliation with one parallel to the lineation and the other perpendicular. Measurements are performed using the pulse transmission technique on samples subjected to hydrostatic pressure from 1-350 MPa at dry conditions. We present preliminary results relating Vp and Vs anisotropy to geologic units and degree of deformation. Additionally, we use acoustic borehole televiewer logs to estimate the horizontal stress orientation making use of well developed techniques for observed borehole breakouts (compressive failure) and drilling induced fractures (tensile failure). Preliminary observations show that very few drilling-induced tensile

  4. Age of zircons from the xenolith of metapelite in granitoids of the Verkhisetsk massif (Middle Urals): Evidence for granite-related stages of metamorphism

    NASA Astrophysics Data System (ADS)

    Zinkova, E. A.; Pribavkin, S. V.

    2016-02-01

    Two age stages in the formation of high-aluminous gneisses related to the major stages of granite formation of the Uralian mobile belt were revealed in this study. The first stage (372 ± 2 Ma) corresponds to the age of metamorphism of the amphibolite facies and is controlled by intrusion of the tonalite-trondhjemite series under the environment of the continental margin. At the second stage (307 ± 3 Ma), gneiss underwent contact metamorphism under the influence of plutons of the adamellite-granite composition formed during the early episodes of collisional metamorphism.

  5. A geological and geochemical reconnaissance of the Tathlith one-degree quadrangle, sheet 19/43, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.

    1978-01-01

    The Tathlith one-degree quadrangle occupies an area of 11,620 sq km in the northeastern Asir region of the Kingdom of Saudi Arabia, in the southeastern part of the Precambrian shield. In the eastern part of the quadrangle the Precambrian rocks are covered by exposures of easterly-dipping sandstone of Cambrian or Ordovician age. A well-developed and highly integrated drainage system trending northward is worn into the Precambrian rocks, but for most of the year the wadis are dry. The Precambrian rocks of the quadrangle consist of an old, non-metamorphosed to variably metamorphosed sequence of volcanic and sedimentary rocks intruded by three main successions of plutonic and hypabyssal igneous rocks. The interlayered volcanic and sedimentary rocks occupy arcuate, north-trending fold belts in which old, rather tight north-trending folds have been refolded at least once by open folds with nearly east-trending axes. Old, north-trending left-lateral faults are associated with the fold belts and are themselves intersected by younger, northwest-trending faults. Motion on both sets of faults has been reactivated several times. The interlayered volcanic and sedimentary rocks are an eugeosynclinal sequence of graywacke and andesite with sparse marble, quartzite, and rhyolite. Andesite is the dominant component of the sequence. Plutonic or hypabyssal equivalents of the andesite intrude the volcanic-sedimentary sequence. In many places these rocks are essentially non-metamorphosed, but elsewhere they are faintly to strongly metamorphosed, or even polymetamorphosed. Dynamothermal metamorphism associated with the northerly folding, and contact metamorphism are the principal kinds of metamorphism. The metamorphic grade is mostly greenschist facies or albite-epidote amphibolite facies. The largest intrusive in the area is a batholith of regional dimension, the east side of which intrudes and divides the fold belts. Granite gneiss and granodiorite gneiss are the main components of

  6. Identifying Provenance of Archaean Basal Conglomerates: An Evidence from Sigegudda and Bababudan Conglomerate Quartzites, India

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Dey, S.

    2017-12-01

    Geochemical characteristics of clastic sedimentary rocks deposited and later preserved in ancient supracrustal sequences of Archaean terrain are competent representation of their source rocks in provenance. These rocks usually sample a wide geographic area and bear signature of subsequently destroyed and dismembered terrains. In this study the quartz pebble conglomerate-quartz sandstone association of Sigegudda and Bababudan belt of western Dharwar craton (WDC), Southern India have been studied to understand the nature of their provenance. Both Sigegudda and Bababudan belt represent younger (2.8-2.6 Ga) greenstone sequences of WDC. They start with a prominent band of conglomerate-quartzite lying over Palaeo to Meso Archaean Peninsular Gneiss (3.35-3.29 Ga) with older Sargur greentone (3.35-3.28 Ga) enclaves along an unconformity. Here, we present a comprehensive provenance (mainly source rock characterization) study of major and trace element composition of low to moderately metamorphosed basal siliciclastics of the younger greenstone sequences of WDC. Chemically they are enriched in Th, U, HFSE (Hf, Nb, Zr) and depleted in Sc, Co, Cr and Eu content with elevated La/Sc and Th/Sc values depicting a differentiated felsic source. This is further supported by fractionated LREE (10.64 - 14.66), significant negative Eu anomaly (0.67 - 0.55) and nearly flat HREE indicating granitoid rocks as source. In La-Th-Cr/100 and La-Th-Sc triangular diagram, quartz arenite field overlap with the Peninsular Gneiss and plotted far away from the mafic-ultramafics of Sargur. The chemical index of alteration (CIA) values of arenites of Sigegudda (71) and Bababudan (75), Peninsular Gneisses (avg-50) and Sargur group (avg-30) implies their derivation from the underlying gneisses associated with a prolonged weathering. The presence of a thick conglomerate-quartz sandstone association with differently sized quartz in their framework and matrix, depicts the development of a stable craton in

  7. The Dora-Maira Unit (Italian Cottian Alps): a reservoir of ornamental stones locally and worldwide employed since Roman age

    NASA Astrophysics Data System (ADS)

    Borghi, Alessandro; Cadoppi, Paola; Antonella Dino, Giovanna

    2015-04-01

    The Dora-Maira is a geological unit belonging to the Penninic Domain of the Western Alps (NW Italy), which covers over 1000 km2 from the Susa to the Maira valleys, in the inner part of the Cottian Alps. It consists of different superposed complexes made of micaschists, fine-grained gneisses, quartzites, impure and dolomitic marbles, metabasites and various types of orthogneisses deriving from metamorphic transformation, during alpine orogeny, of a Palaeozoic upper continental crust and its Mesozoic carbonate cover. Thanks to the presence of different varieties of rocks, the Dora-Maira Unit can be considered as a reservoir of ornamental stones, locally employed, since Roman age, for military and religious buildings. Furthermore, these materials were used in Piedmont region for the construction of important historical palaces (17th and 18th centuries). Several varieties of gneisses, quartzites and marbles, exploited in the past and up to now, come from the Paleozoic basement. The most famous variety of gneiss is the so called "Luserna stone", a leucocratic gneiss characterized by a mylonitic fabric deriving from highly differentiated granitoids of Permian age. The first traces of Luserna Stone exploitation arise to the medieval age in the Pellice Valley). This material was widely employed in Turin, from Savoia kingdom period up to know. The very peculiar and precious application of Luserna stone were: Royal Palace and Venaria Reale Palace, Mole Antonelliana. Recently, it has been employed for the construction of Turin Metro stations (launched in 2006). Other varieties of orthogneisses, not yet exploited, are: Borgone and Vaie Stones, Villarfocchiardo and Cumiana Stones. They were used for the realization of the columns characterising the façade of several churches in Turin and in the piers of different bridges over the Po River. Another gneiss variety, with dioritic composition, is the Malanaggio Stone employed in the Fenestrelle Fortress. As for the palaeozoic

  8. Petrogenesis and tectonic setting of the Bondla mafic-ultramafic complex, western India: Inferences from chromian spinel chemistry

    NASA Astrophysics Data System (ADS)

    Ishwar-Kumar, C.; Rajesh, V. J.; Windley, B. F.; Razakamanana, T.; Itaya, T.; Babu, E. V. S. S. K.; Sajeev, K.

    2016-11-01

    Crustal-scale shear/suture zones hold prime importance because they are one of the critical parameters used for paleogeographic configurations of supercontinental assemblies. The Kumta suture, located on the western margin of peninsular India, has been interpreted as the eastern extension of the Betsimisaraka suture zone of Madagascar. This suture separates the Karwar block (ca. 3200 Ma tonalite-trondhjemite-granodiorite (TTG) and amphibolite) in the west from a quartzite-dominated shelf that overlies ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block in the east. The NW/SE-trending Bondla ultramafic-mafic complex, situated in the arc just west of the Kumta suture, comprises gabbro, troctolite, wehrlite, dunite, peridotite, pyroxenite, chromitite and chromian spinel-bearing serpentinite. In this paper, we study the chemistry of Cr-spinels in chromitites and serpentinites to help understand their paleo-tectonic environments. The Cr-spinel in Bondla chromitites and serpentinites shows variations in Cr# [Cr/(Cr + Al)] ranging from 0.54 to 0.58 and 0.56 to 0.64 respectively; also, the Mg# [Mg/(Mg + Fe)] varies from 0.56 to 0.67 and 0.41 to 0.63 respectively. The Cr-spinels in serpentinites have strong chemical zoning with distinctive ferrian chromite rims (Mg# 0.41-0.63), whereas the Cr-spinels in chromitites are generally homogeneous with only occasional weak zoning. The spinel-core crystallization temperature in the serpentinite is estimated to be above 600 °C (the spinel stability field was calculated for equilibrium with Fo90 olivine), which suggests the core composition is chemically unaltered. The Cr-spinels in all studied samples have low-Al2O3 (15-23 wt%) and moderate to high-Cr# (0.54-0.69), suggesting derivation from a supra-subduction zone arc setting. The chemistry of clinopyroxene in serpentinite indicates a wide range of crystallization temperatures from 969 °C to 1241 °C at 1.0 GPa. The calculated parental magma composition was similar to

  9. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  10. Zircon ion microprobe dating of high-grade rocks in Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroener, A.; Williams, I.S.; Compston, W.

    1987-11-01

    The high-grade gneisses of Sri Lanka display spectacular in-situ granulitization phenomena similar to those observed in southern India and of current interest for evolutionary models of the lower continental crust. The absolute ages of these rocks are poorly constrained and so, using the SHRIMP ion microprobe, the authors have analyzed small spots on zircons from upper amphibolite to granulite grade quartzitic and pelitic metasediments. Detrital grains from a metaquartzite of the Highland Group preserve premetamorphic U-Pb ages of between 3.17 and 2.4 Ga and indicate derivation of the sediment from an unidentified Archean source terrain. The Pb-loss patterns of thesemore » zircons and the other samples suggest severe disturbance at ca 1100 Ma ago, which the authors attribute to high-grade regional metamorphism. Two pelitic gneisses contain detrital zircons with ages up to 2.04 Ga and also record an approx. = 1100 Ma event that is also apparent from metamorphic rims around old cores and new zircon growth. A granite intrusive into the Highland Group granulites records an emplacement age of 1000-1100 Ma as well as metamorphic disturbance some 550 Ma ago but also contains older, crustally derived xenocrysts. Zircons from a metaquartzite xenolith within the granitoid Vijayan Complex are not older than approx. 1100 Ma; therefore the Vijayan is neither Archean in age nor acted as basement to the Highland Group, as previously proposed. The authors suggest that the Vijayan Complex formed significantly later than the Highland Group and that the two units were brought into contact through post-1.1 Ga thrusting. Although the granulitization phenomena in India and Sri Lanka are similar, the granulite event in Sri Lanka is not Archean in age but took place in the late Proterozoic.« less

  11. New investigations in southwestern Guinea: consequences for the Rokelide belt (West Africa)

    NASA Astrophysics Data System (ADS)

    Villeneuve, Michel; Bellon, Hervé; Corsini, Michel; Le Metour, Joël; Chatelee, Sébastien

    2015-07-01

    The southern Guinean terranes belong to the "Rokelide belt" that is located in the southwestern part of the West African craton (Senegal to Liberia). Field investigations and K-Ar and 40Ar-39Ar radiometric analysis performed on samples collected from southern Guinea provide a new interpretation for metamorphic terranes not yet dated. A K-Ar whole-rock age of a gneiss and 40Ar-39Ar plateau ages of amphiboles separated from a mylonitic gneiss of the Ouankifondi formation and a gneiss from the Kissi-Kissi formation yield several Pan-African metamorphic ages at circa 650, 560, and 530 Ma, respectively. Field investigations show that these formations are unconformably capped by the Kolente group. The previous structural framework and the geodynamic evolution of the Rokelide belt based on the coeval evolution of the Ouankifondi and Kissi-Kissi formations and the Kolente group are reassessed. The Rokelide belt is linked to the Bassaride belt. Correlations with adjacent Sierra Leonean terranes and with northern Guinea and Senegal are considered.

  12. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C

    USGS Publications Warehouse

    Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.

    1996-01-01

    The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.

  13. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study

    USGS Publications Warehouse

    Aleinikoff, J.N.; Wintsch, R.P.; Fanning, C.M.; Dorais, M.J.

    2002-01-01

    U-Pb ages for zircon and titanite from a granodioritic gneiss in the Glastonbury Complex, Connecticut, have been determined using both isotope dilution thermal ionization mass spectrometry (TIMS) and the sensitive high resolution ion microprobe (SHRIMP). Zircons occur in three morphologic populations: (1) equant to stubby, multifaceted, colorless, (2) prismatic, dark brown, with numerous cracks, and (3) elongate, prismatic, light tan to colorless. Cathodoluminescence (CL) imaging of the three populations shows simple concentric oscillatory zoning. The zircon TIMS age [weighted average of 207Pb/206Pb ages from Group 3 grains-450.5 ?? 1.6 Ma (MSWD=1.11)] and SHRIMP age [composite of 206Pb/238 U age data from all three groups-448.2 ?? 2.7 Ma (MSWD = 1.3)], are interpreted to suggest a relatively simple crystallization history. Titanite from the granodioritic gneiss occurs as both brown and colorless varieties. Scanning electron microscope backscatter (BSE) images of brown grains show multiple cross-cutting oscillatory zones of variable brightness and dark overgrowths. Colorless grains are unzoned or contain subtle wispy or very faint oscillatory zoning. Electron microprobe analysis (EMPA) clearly distinguishes the two populations. Brown grains contain relatively high concentrations of Fe2O3, Ce2O3 (up to ~ 1.5 wt.%), Nb2O5, and Zr. Cerium concentration is positively correlated with total REE + Y concentration, which together can exceed 3.5 wt.%. Oscillatory zoning in brown titanite is correlated with variations in REE concentrations. In contrast, colorless titanite (both as discrete grains and overgrowths on brown titanite) contains lower concentrations of Y, REE, Fe2O3, and Zr, but somewhat higher Al2O3 and Nb2O5. Uranium concentrations and Th/U discriminate between brown grains (typically 200-400 ppm U; all analyses but one have Th/U between about 0.8 and 2) and colorless grains (10-60 ppm U; Th/U of 0-0.17). In contrast to the zircon U-Pb age results, SHRIMP U

  14. Carbonatite magmatism in northeast India

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Mamallan, R.; Dwivedy, K. K.

    The Shillong Plateau of northeast India is identified as an alkaline province in view of the development of several carbonatite complexes e.g. the Sung Valley (Jaintia Hills), Jasra (Karbi-Anglong), Samchampi and Barpung (Mikir Hills) and lamprophyre dyke swarms (Swangkre, Garo-Khasi Hills). On the basis of limited KAr data, magmatic activity appears to have taken place over a protracted period, ranging from the Late Jurassic to the Early Cretaceous. The carbonatite complexes of the Shillong Plateau share several common traits: they are emplaced along rift zones, either within Archaean gneisses or Proterozoic metasediments and granites, and exhibit enrichment in the light rare-earth elements, U, Th, Nb, Zr, Ti, K and Na. The enrichment in incompatible trace elements can best be accounted for if the parental magmas were of alkali basaltic type (e.g. mela-nephelinite or carbonate-rich alkali picrite).

  15. On State Complexes and Special Cube Complexes

    ERIC Educational Resources Information Center

    Peterson, Valerie J.

    2009-01-01

    This thesis presents the first steps toward a classification of non-positively curved cube complexes called state complexes. A "state complex" is a configuration space for a "reconfigurable system," i.e., an abstract system in which local movements occur in some discrete manner. Reconfigurable systems can be used to describe, for example,…

  16. Granulites from Northwest Indian Shield: Their differences and similarities with Southern Indian granulite terrain

    NASA Technical Reports Server (NTRS)

    Sharma, R. S.

    1988-01-01

    Granulite facies suite in the NW Indian Shield is exposed at Sand Mata, Udaipur district, Rajasthan, as an oval-shaped massif within amphibolite facies rocks of the Banded Gneissic Complex (3.5 to 2.6 b.y. old) - a possible analogue of the Peninsular gneiss of Dharwar craton. On the basis of quantitative P-T estimates, combined with the textural evidence for the crystallization sequence of the Al-silicate polymorphs (kyanite to sillimanite to kyanite) in the pelitic granulite, the deduced P-T path for the Sand Mata granulites is the reverse of that characterizing the Plate tectonic collision zone. It, however, agrees with the P-T path inferred in the case of the southern Indian granulitic rocks.

  17. Lithologic mapping of mafic intrusions in East Greenland using Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Naslund, H. Richard; Birnie, R. W.; Parr, J. T.

    1989-01-01

    The East Greenland Tertiary Igneous Province contains a variety of intrusive and extrusive rock types. The Skaergaard complex is the most well known of the intrusive centers. Landsat thematic mapping (TM) was used in conjunction with field spectrometer data to map these mafic intrusions. These intrusions are of interest as possible precious metal ore deposits. They are spectrally distinct from the surrounding Precambrian gneisses. However, subpixel contamination by snow, oxide surface coatings, lichen cover and severe topography limit the discrimination of lithologic units within the gabbro. Imagery of the Skaergaard and surrounding vicinity, and image processing and enhancement techniques are presented. Student theses and other publications resulting from this work are also listed.

  18. Nature, geochemistry and petrogenesis of the syn-tectonic Amspoort suite (Pan-African Boundary Igneous Complex, Kaoko Belt, NW Namibia)

    NASA Astrophysics Data System (ADS)

    Janousek, Vojtech; Konopasek, Jiri; Ulrich, Stanislav

    2010-05-01

    Crucial information on the Neoproterozoic-Cambrian amalgamation of Western Gondwana is provided by studies of the large Pan-African collisional belt in central-northern Namibia. This so-called Damara Orogen (Miller, 1983) can be subdivided into two branches, the SW-NE trending Damara Belt and a roughly perpendicular, NNW-SSE trending Kaoko Belt further north. The Kaoko Belt consists of two principal crustal units. The easterly part has a Congo Craton affinity (a basement built mostly by ≥ 1.5 Ga granitic gneisses with Neoproterozoic metasedimentary cover), whereas the westerly Coastal Terrane consists of Neoproterozoic (c.850-650 Ma) metapsammites and minor metabasic bodies; no exposures of the basement were found. The at least 180 km long, NNW-SSE trending suture between both units was intruded by numerous syn-tectonic magmatic bodies with ages spanning the interval 580-550 Ma (Seth et al., 1998; Kröner et al., 2004) designated as the Boundary Igneous Complex by Konopásek et al. (2008). The most typical representatives of this syn-collision igneous association are c.550 Ma old K-feldspar-phyric, Bt ± Cam granites-granodiorites of the Amspoort suite, with minor Cpx gabbro and rare two-pyroxene dolerite bodies. The petrological character, whole-rock geochemistry and Sr-Nd isotopic signatures of the scarce Opx-Cpx-Bt dolerites indicate an origin from a CHUR-like mantle-derived melts (87Sr/86Sr550 ~ 0.7045, ɛNd550 ~ 0) modified by extensive (?Ol-) Cpx fractionation. The rest of the suite is interpreted as a product of a high-temperature anatexis of a heterogeneous lower crust, built mainly by immature metapsammites - rich in arc-derived detritus - with minor metabasite and intermediate metaigneous bodies. The most likely source appears to be the anatectic Coastal Terrane gneisses. Yet, partial melting of the so far little constrained Congo Craton cover, if formed by immature and youthful detritus unrelated to the basement, cannot be discounted. In any case, the

  19. Geochronological study of zircons from continental crust rocks in the Frido Unit (southern Apennines)

    NASA Astrophysics Data System (ADS)

    Laurita, Salvatore; Prosser, Giacomo; Rizzo, Giovanna; Langone, Antonio; Tiepolo, Massimo; Laurita, Alessandro

    2015-01-01

    Zircon crystals have been separated from gneisses and metagranitoids of the Pollino area (southern Apennines) in order to unravel the origin of these crustal slices within the ophiolite-bearing Frido Unit. The morphology of the zircon has been investigated by SEM, and the internal structure was revealed by cathodoluminescence. Data obtained by U/Pb dating have been used to deduce the age and significance of the different crystallization stages of zircon, connected to the evolutionary stages of the continental crust (Late Paleozoic-Early Mesozoic). Zircons in gneisses are characterized by inherited cores of magmatic origin, bordered by metamorphic rims. Inherited zircons generally show Paleoproterozoic to Ordovician ages, indicating the provenance of the sedimentary protolith from different sources. The exclusive presence of Late Neoproterozoic zircon cores in leucocratic gneisses may suggest a different magmatic source possibly connected to Pan-African events. Late Carboniferous-Early Permian ages are found mainly in zircon rims of metamorphic origin. These are similar to the emplacement ages of protolith of the metagranites in the middle crust portion. Late Carboniferous-Early Permian metamorphism and magmatism testify the extensional collapse of the Hercynian belt, recorded in European, particularly, in the Corsica-Sardinia block and in Calabria. Late Permian-Triassic ages have been detected in zircon rims from gneisses and metagranitoids. These younger ages appear related to deformation and emplacement of albite-quartz veins in both lithologies, and are related to an extensional episode predating the Middle Triassic to Middle Jurassic rifting in the Tethyan domain, followed by Middle to Late Jurassic spreading.

  20. Age and tectonic implications of Paleoproterozoic Deo Khe Granitoids within the Phan Si Pan Zone, Vietnam

    NASA Astrophysics Data System (ADS)

    Anh, Hoang Thi Hong; Hieu, Pham Trung; Tu, Vu Le; Son, La Mai; Choi, Sung Hi; Yu, Yongjae

    2015-11-01

    We report the first U-Pb zircon ages of 1855-1873 Ma for the Deo Khe Granitoids (DKG) in the Phan Si Pan Zone (PSPZ) of northern Vietnam. The DKG are medium-grained two-mica granitoids predominantly composed of quartz, K-feldspar, and muscovite. Trace element analyses indicate that the DKG are enriched in large ion lithophile elements but depleted in high field strength elements. Zircons from the granitoids have negative εHf(t) values ranging from -23.6 to -17.5. The magmatic zircons from the DKG have single-stage Hf model ages (TDM1) that range from 3.3 to 2.8 Ga and their εHf(t) data all plot well below the evolution trend of 2800 Ma average juvenile mantle. Observed Hf model ages are contemporaneous with the emplacement of 2.90-2.84 Ga tonalite-trondhjemite-granodiorite (TTG) gneiss observed in a nearby Ca Vinh Complex, suggesting that PSPZ in northern Vietnam is a product of partial melting of Archean crust. A sequence of similar tectonic events including initial emplacement of TTG protolith at 2.8-2.9 Ga, metamorphic development of TTG gneiss at 1.9-2.0 Ga, and magmatic activity at 1.8-2.0 Ga are now recognized both in northern Vietnam and Yangtze block which we interpret to indicate basement rocks in northern Vietnam are similar to those found along southern China.

  1. Structural analysis and implicit 3D modelling of high-grade host rocks to the Venetia kimberlite diatremes, Central Zone, Limpopo Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Basson, I. J.; Creus, P. K.; Anthonissen, C. J.; Stoch, B.; Ekkerd, J.

    2016-05-01

    The Beit Bridge Complex of the Central Zone (CZ) of the Limpopo Belt hosts the 519 ± 6 Ma Venetia kimberlite diatremes. Deformed shelf- or platform-type supracrustal sequences include the Mount Dowe, Malala Drift and Gumbu Groups, comprising quartzofeldspathic units, biotite-bearing gneiss, quartzite, metapelite, metacalcsilicate and ortho- and para-amphibolite. Previous studies define tectonometamorphic events at 3.3-3.1 Ga, 2.7-2.5 Ga and 2.04 Ga. Detailed structural mapping over 10 years highlights four deformation events at Venetia. Rules-based implicit 3D modelling in Leapfrog Geo™ provides an unprecedented insight into CZ ductile deformation and sheath folding. D1 juxtaposed gneisses against metasediments. D2 produced a pervasive axial planar foliation (S2) to isoclinal F2 folds. Sheared lithological contacts and S2 were refolded into regional, open, predominantly southward-verging, E-W trending F3 folds. Intrusion of a hornblendite protolith occurred at high angles to incipient S2. Constrictional-prolate D4 shows moderately NE-plunging azimuths defined by elongated hornblendite lenses, andalusite crystals in metapelite, crenulations in fuchsitic quartzite and sheath folding. D4 overlaps with a: 1) 2.03-2.01 Ga regional M3 metamorphic overprint; b) transpressional deformation at 2.2-1.9 Ga and c) 2.03 Ga transpressional, dextral shearing and thrusting around the CZ and d) formation of the Avoca, Bellavue and Baklykraal sheath folds and parallel lineations.

  2. Synchronization in node of complex networks consist of complex chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  3. Not so Complex: Iteration in the Complex Plane

    ERIC Educational Resources Information Center

    O'Dell, Robin S.

    2014-01-01

    The simple process of iteration can produce complex and beautiful figures. In this article, Robin O'Dell presents a set of tasks requiring students to use the geometric interpretation of complex number multiplication to construct linear iteration rules. When the outputs are plotted in the complex plane, the graphs trace pleasing designs…

  4. Application of pinch-and-swell structure rheology gauge to determine rock paleo-rheological parameters in Taili, western Liaoning, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Zhengquan; Zeng, Zuoxun; Wu, Linbo; Xu, Shaopeng; Yang, Shuang; Chen, Deli; Wang, Jianxiu

    2017-05-01

    New results, in combination with previously published ones, reveal that when the Stress Exponent of the Competent layer (SEC) ranges from 1 to 10 (1 < n < 10), Pinch-and-Swell structure Rheology Gauge (PSRG) can only be available under the condition that the Viscosity ratio between the Competent layer and its corresponding Matrix layer (VCM) is larger than 10. Therefore, we made the attempt to calculate the viscosity ratio of pinch-and-swell structure of competent layer to the related matrix and stress exponent. Based on this knowledge, we applied this gauge to calculate SECs and VCMs of eight types of pinch-and-swell structures, which are widely developed in the Taili area of the west Liaoning Province in China. Statistical analysis of the SEC resulted in intervals of four types of competent layers, that is, Medium-scale Granitic coarse-to-pegmatitic Veins, Small-scale Augen Granite aplite Veins, Small-scale Granite aplite Veins, and Small-scale Augen Quartz-K-feldspar veins, with intervals of [3.50, 4.63], [2.64, 4.29], [2.70, 3.51], and [2.50, 3.36] respectively. The preferred intervals of VCM of the five types of pinch-and-swell structures, Small-scale Augen Granite aplite Veins + Fine-grained Biotite-Hornblende-plagioclase Gneiss, Medium-scale Granitic coarse-to-pegmatitic Veins + Fine-grained Biotite-Hornblende-plagioclase Gneiss, Small-scale Augen Granite aplite Veins + medium-to-fine-grained granitic gneiss, Medium-scale Granitic coarse-to-pegmatitic Veins + medium-to-fine-grained granitic gneiss, and Small-scale Augen Granite aplite Veins + fine-grained biotite-plagioclase gneiss, are [19.98, 62.51], [15.90, 61.17], [26.72, 93.27], [22.21, 107.26], and [76.33, 309.39] respectively. The similarities between these calculated SEC statistical preferred intervals and the physical experimental results verify the validity of the PSRG. The competent layers of the pinch-and-swell structures were presented in this study as power-law flow with SEC values that

  5. Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): Implications for crustal anatexis

    NASA Astrophysics Data System (ADS)

    Barich, Amel; Acosta-Vigil, Antonio; Garrido, Carlos J.; Cesare, Bernardo; Tajčmanová, Lucie; Bartoli, Omar

    2014-10-01

    We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though strongly thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and in contact with the peridotites, and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence, garnet decreases whereas biotite increases in modal proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈ 5 to 200 μm, with a mean size of ≈ 30-40 μm. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈ 850 °C and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈ 800-850 °C and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the

  6. Microstructures and Petrology of Melt Inclusions in the Anatectic Sequence of Jubrique (Betic Cordillera, S Spain): Implications for Crustal Anatexis

    NASA Astrophysics Data System (ADS)

    Acosta-vigil, A.; Barich, A.; Garrido, C. J.; Cesare, B.; Tajčmanová, L.; Bartoli, O.

    2014-12-01

    We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence garnet decreases whereas biotite increases in proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈5 to 200 micrometers, with a mean size of ≈30-40 micrometers. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈850 ºC and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈800-850 ºC and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the matrix with oriented sillimanite. Previous

  7. Syntactic Complexity as an Aspect of Text Complexity

    ERIC Educational Resources Information Center

    Frantz, Roger S.; Starr, Laura E.; Bailey, Alison L.

    2015-01-01

    Students' ability to read complex texts is emphasized in the Common Core State Standards (CCSS) for English Language Arts and Literacy. The standards propose a three-part model for measuring text complexity. Although the model presents a robust means for determining text complexity based on a variety of features inherent to a text as well as…

  8. Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties

    PubMed Central

    Ma, Shengquan; Li, Shenggang

    2014-01-01

    Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202

  9. Food-web complexity, meta-community complexity and community stability.

    PubMed

    Mougi, A; Kondoh, M

    2016-04-13

    What allows interacting, diverse species to coexist in nature has been a central question in ecology, ever since the theoretical prediction that a complex community should be inherently unstable. Although the role of spatiality in species coexistence has been recognized, its application to more complex systems has been less explored. Here, using a meta-community model of food web, we show that meta-community complexity, measured by the number of local food webs and their connectedness, elicits a self-regulating, negative-feedback mechanism and thus stabilizes food-web dynamics. Moreover, the presence of meta-community complexity can give rise to a positive food-web complexity-stability effect. Spatiality may play a more important role in stabilizing dynamics of complex, real food webs than expected from ecological theory based on the models of simpler food webs.

  10. Microstructural evidence for northeastward movement on the Chocolate Mountains fault zone, southeastern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, C.

    1990-01-10

    Microstructural analysis of rocks from the Chocolate Mountains fault zone, Gavilan Hills area, southeastern California, show unequivocal evidence for northeast directed transport of the upper plate gneisses over lower plate Orocopia schists. Samples were taken from transects through the fault zone. Prefaulting fabrics in upper plate gneisses show a strong component of northeast directed rotational deformation under lower amphibolite facies conditions. In contrast, prefaulting lower plate Orocopia schists show strongly coaxial fabrics (minimum stretch value of 2.2) formed at greenschist grade. Mylonitic fabrics associated with the Chocolate Mountains fault are predominantly northeast directed shear bands that are unidirectional (northeastward) inmore » the gneisses but bi-directional in the schists, suggesting a significant component of nonrotational deformation occurred in the Orocopia schists during and after emplacement of the upper plate. The kinematic findings are in agreement with Dillon et al. (1989), who found that the vergence of asymmetrical folds within the fault zone indicates overthrusting to the northeast, toward the craton, in this region. The available evidence favors a single protracted northeastward movement on the Chocolate Mountains fault zone with temperatures waning as deformation proceeded.« less

  11. Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado

    USGS Publications Warehouse

    Adams, John W.; Stugard, Frederick

    1954-01-01

    Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.

  12. Preliminary Geologic Map of the San Fernando 7.5' Quadrangle, Southern California: A Digital Database

    USGS Publications Warehouse

    Yerkes, R.F.

    1997-01-01

    The city of San Fernando sits atop a structurally complex, sedimentologically diverse, and tectonically evolving late Tertiary-Quaternary basin situated within the Transverse Ranges of southern California. The surrounding San Fernando Valley (SFV) contains the headwaters of the Los Angeles River and its tributaries. Prior to the advent of flood control, the valley floor was composed of active alluvial fans and floodplains. Seasonal streams emanating from Pacoima and Big Tujunga Canyons drain the complex western San Gabriel Mountains and deposit coarse, highly permeable alluvium that contains generally high-quality ground water. The more shallow western part derives mainly from Tertiary and pre-Tertiary sedimentary rocks, and is underlain by less permeable, fine-grained deposits containing persistent shallow ground water and poorer water quality. Home of the 1971 San Fernando and the 1994 Northridge earthquakes, the SFV experienced near-record levels of strong ground motion in 1994 that caused widespread damage from strong shaking and ground failure. A new map of late Quaternary deposits of the San Fernando area shows that the SFV is a structural trough that has been filled from the sides, with the major source of sediment being large drainages in the San Gabriel Mountains. Deposition on the major alluvial fan of Tujunga Wash and Pacoima Wash, which issues from the San Gabriel Mountains, and on smaller fans, has been influenced by ongoing compressional tectonics in the valley. Late Pleistocene deposits have been cut by active faults and warped over growing folds. Holocene alluvial fans are locally ponded behind active uplifts. The resulting complex pattern of deposits has a major effect on liquefaction hazards. Young sandy sediments generally are highly susceptible to liquefaction where they are saturated, but the distribution of young deposits, their grain size characteristics, and the level of ground water all are complexly dependent on the tectonics of the valley

  13. Isotope geochronology of the Precambrian

    NASA Astrophysics Data System (ADS)

    Levskii, L. K.; Levchenkov, O. A.

    This symposium discusses the use of isotope methods for establishing the geochronology of Precambrian formations, with special consideration given to geochronological studies of the early phases of the earth's core evolution in the Baltic and Vitim-Aldan shields and the Enderby Land (Antarctica). Attention is also given to the Early Archean Vodlozero gneiss complex and its structural-metamorphic evolution, the influence of geological events during the Proterozoic on the state of the U-Pb and Rb-Sr systems in the Archean postkinematic granites of Karelia, the Rb-Sr systems in the andesite basalts of the Suna-Semch' region (Karelia), and the geochronology of the Karelian granite-greenstone region. Also discussed are the petrogenesis and age of the rocks from the Kola ultradeep borehole, the isotope-geochronological evidence for the early Precambrian history of the Aldan-Olekma region, the Rb-Sr systems in metasedimentary rocks of the Khani graben, and the U-Pb ages of zircons from polymetamorphic rocks of the Archean granulite complex of Enderby Land.

  14. Plate tectonics 2.5 billion years ago: evidence at kolar, South India.

    PubMed

    Krogstad, E J; Balakrishnan, S; Mukhopadhyay, D K; Rajamani, V; Hanson, G N

    1989-03-10

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accrted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics sugesting that their volcanic protoliths were derived from dint mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on Earth by 2500 Ma.

  15. Plate tectonics 2.5 billion years ago - Evidence at Kolar, south India

    NASA Technical Reports Server (NTRS)

    Krogstad, E. J.; Hanson, G. N.; Balakrishnan, S.; Rajamani, V.; Mukhopadhyay, D. K.

    1989-01-01

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accreted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics suggesting that their volcanic protoliths were derived from different mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on earth by 2500 Ma.

  16. CHATTAHOOCHEE ROADLESS AREA, GEORGIA.

    USGS Publications Warehouse

    Nelson, Arthur E.; Welsh, Robert A.

    1984-01-01

    A mineral survey indicates that the Chattahoochee Roadless Area, Georgia, offers little promise for the occurrence of mineral resources even though gold, mica, sillimanite, soapstone, dunite, chromite, and nickel have been mined nearby, and source rocks for these commodities are present in the roadless area. Granite gneiss, gneiss, schist, and metasandstone in the roadless area are suitable for stone, crushed rock, or aggregate; however, other sources for these materials are available outside the roadless area, closer to present markets. The potential for the occurrence of hydrocarbons (probably gas) beneath the thick regional thrust sheets in this area cannot be adequately evaluated from available data.

  17. National Dam Safety Program. Lindys Lake Dam (NJ00201), Passaic River Basin, Branch of West Brook, Passaic County, New Jersey. Phase 1 Inspection Report.

    DTIC Science & Technology

    1980-02-01

    shallow ground moraine over rock. The downstream channel is described as swamp. The rock is described on Geologic Overlay Sheet 22, as hornblende granite ...DAM 410-04’ hqa Scale: I" =I Mite LEGEND: PRECAMBRIAN gh Mostly Hornblende Granite and Gneiss. hqa Hyperstene-Quartz- And esine.-Gneiss. GEOLOGIC MAP L...A.J. 0o2o/) S CZ6 -§&S5 /,r/ C,4 7-1 ,4V-etaoe Dep4e&/LaL L* rt~~~c~~t4’A aeS’ OP~ ~ A AI 3CD PS?7V7,/ & zAer ’, ! v’.’:7- z - 6 c ,, ,, ,,g

  18. Representation of complex probabilities and complex Gibbs sampling

    NASA Astrophysics Data System (ADS)

    Salcedo, Lorenzo Luis

    2018-03-01

    Complex weights appear in Physics which are beyond a straightforward importance sampling treatment, as required in Monte Carlo calculations. This is the wellknown sign problem. The complex Langevin approach amounts to effectively construct a positive distribution on the complexified manifold reproducing the expectation values of the observables through their analytical extension. Here we discuss the direct construction of such positive distributions paying attention to their localization on the complexified manifold. Explicit localized representations are obtained for complex probabilities defined on Abelian and non Abelian groups. The viability and performance of a complex version of the heat bath method, based on such representations, is analyzed.

  19. Complexity: an internet resource for analysis of DNA sequence complexity

    PubMed Central

    Orlov, Y. L.; Potapov, V. N.

    2004-01-01

    The search for DNA regions with low complexity is one of the pivotal tasks of modern structural analysis of complete genomes. The low complexity may be preconditioned by strong inequality in nucleotide content (biased composition), by tandem or dispersed repeats or by palindrome-hairpin structures, as well as by a combination of all these factors. Several numerical measures of textual complexity, including combinatorial and linguistic ones, together with complexity estimation using a modified Lempel–Ziv algorithm, have been implemented in a software tool called ‘Complexity’ (http://wwwmgs.bionet.nsc.ru/mgs/programs/low_complexity/). The software enables a user to search for low-complexity regions in long sequences, e.g. complete bacterial genomes or eukaryotic chromosomes. In addition, it estimates the complexity of groups of aligned sequences. PMID:15215465

  20. The Rondonian-San Ignacio Province in the SW Amazonian Craton: An overview

    NASA Astrophysics Data System (ADS)

    Bettencourt, Jorge Silva; Leite, Washington Barbosa; Ruiz, Amarildo Salina; Matos, Ramiro; Payolla, Bruno Leonelo; Tosdal, Richard M.

    2010-01-01

    The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paraguá Terrane (Bolivia and Mato Grosso regions) and in the Alto Guaporé Belt and the Rio Negro-Juruena Province (Rondônia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsás Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paraguá Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guaporé Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paraguá Terrane, and the Colorado Complex and the Nova Mamoré Metamorphic Suite in the Alto Guaporé Belt. The Paraguá Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1

  1. Complexity Survey.

    ERIC Educational Resources Information Center

    Gordon, Sandra L.; Anderson, Beth C.

    To determine whether consensus existed among teachers about the complexity of common classroom materials, a survey was administered to 66 pre-service and in-service kindergarten and prekindergarten teachers. Participants were asked to rate 14 common classroom materials as simple, complex, or super-complex. Simple materials have one obvious part,…

  2. Chemical and mineralogical data and processing methods management system prototype with application to study of the North Caucasus Blybsky Metamorphic Complexes metamorphism PT-condition

    NASA Astrophysics Data System (ADS)

    Ivanov, Stanislav; Kamzolkin, Vladimir; Konilov, Aleksandr; Aleshin, Igor

    2014-05-01

    There are many various methods of assessing the conditions of rocks formation based on determining the composition of the constituent minerals. Our objective was to create a universal tool for processing mineral's chemical analysis results and solving geothermobarometry problems by creating a database of existing sensors and providing a user-friendly standard interface. Similar computer assisted tools are based upon large collection of sensors (geothermometers and geobarometers) are known, for example, the project TPF (Konilov A.N., 1999) - text-based sensor collection tool written in PASCAL. The application contained more than 350 different sensors and has been used widely in petrochemical studies (see A.N. Konilov , A.A. Grafchikov, V.I. Fonarev 2010 for review). Our prototype uses the TPF project concept and is designed with modern application development techniques, which allows better flexibility. Main components of the designed system are 3 connected datasets: sensors collection (geothermometers, geobarometers, oxygen geobarometers, etc.), petrochemical data and modeling results. All data is maintained by special management and visualization tools and resides in sql database. System utilities allow user to import and export data in various file formats, edit records and plot graphs. Sensors database contains up to date collections of known methods. New sensors may be added by user. Measured database should be filled in by researcher. User friendly interface allows access to all available data and sensors, automates routine work, reduces the risk of common user mistakes and simplifies information exchange between research groups. We use prototype to evaluate peak pressure during the formation of garnet-amphibolite apoeclogites, gneisses and schists Blybsky metamorphic complex of the Front Range of the Northern Caucasus. In particular, our estimation of formation pressure range (18 ± 4 kbar) agrees on independent research results. The reported study was

  3. Reconnaissance geology of the Jabal Dalfa Quadrangle, sheet 21/43 C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1983-01-01

    The Jabal Dalfa quadrangle (sheet 21/43 C) is part of the Najd province in west-central Saudi Arabia. The quadrangle is mostly a plain, tilted gently northeastward, but local inselbergs and two areas of dissected uplands rise as much as 200 m above the plain. Wadi Bishah and Wadi Ranyah terminate in the quadrangle. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, and plutonic rocks. The gneiss outcrops in the northeast and east-central parts of the quadrangle are apparently the oldest rocks. After they were emplaced, a wide variety of metavolcanic and metasedimentary rocks were deposited at Jabal Dalfa and Umm Shat, and in the northeast part of the quadrangle as the Arfan formation. Subsequently, granite gneiss was emplaced in the west part of the quadrangle and intruded by gabbro. Metabasalt and meta-andesite were extruded in a wide north-trending belt through the middle of the quadrangle and at Jabal Silli. Intrusion of small bodies of granitic rocks and Najd faulting conclude the Precambrian history of the area. Surficial deposits include sand and gravel covering the plains, alluvial fans, and voluminous dune sands. In the southeast part of the quadrangle, the layered rocks strike north and dip steeply. They are oriented parallel to the Nabitah fault zone. In the northeast and east-central parts of the quadrangle, layered rocks and gneiss are sheared into slices by the southernmost faults of the major Najd fault zone. Bedding and foliation in these slices strike northwest, parallel to the faults. Gneiss in the west part of the quadrangle also strikes northwest, and dips steeply to vertically; layered rocks underlying Jabal Silli strike northeast. Layered metamorphic rocks in the Jabal Dalfa quadrangle are mostly in the greenschist facies. Projection of data from other quadrangles suggests that the oldest gneiss is about 780 Ma old and the Arfan formation, Umm Shat, and Jabal Dalfa layered rocks are about 775 to 745 Ma old. The gneiss of

  4. U–Pb, Rb–Sr, and U-series isotope geochemistry of rocks and fracture minerals from the Chalk River Laboratories site, Grenville Province, Ontario, Canada

    USGS Publications Warehouse

    Neymark, Leonid; Peterman, Zell E.; Moscati, Richard J.; Thivierge, R. H.

    2013-01-01

    As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks.Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate substantial large-scale preferential element mobility during superimposed metamorphic and water/rock interaction processes. This may confirm the integrity of the rock mass, which is a positive attribute for a potential nuclear waste repository. Most 234U/238U activity ratios (AR) in whole rock samples are within errors of the secular equilibrium value of one, indicating that the rocks have not experienced any appreciable U loss or gain within the past 1

  5. Dynamic complexity: plant receptor complexes at the plasma membrane.

    PubMed

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Radioisotope trithiol complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisson, Silvia S.; Cutler, Cathy S.; Degraffenreid, Anthony J.

    The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.

  7. Energy-Complexity Relations by Structural Complexity Methods

    NASA Astrophysics Data System (ADS)

    Ricca, Renzo L.

    2011-09-01

    In this paper we shall review some of the most recent developments and results on work on energy-complexity relations and, if time will allow it, we shall provide an analytical proof of eq. (3) below, a fundamental relation between energy and complexity established by numerical experiments.

  8. Revitalizing Complex Analysis: A Transition-to-Proof Course Centered on Complex Topics

    ERIC Educational Resources Information Center

    Sachs, Robert

    2017-01-01

    A new transition course centered on complex topics would help in revitalizing complex analysis in two ways: first, provide early exposure to complex functions, sparking greater interest in the complex analysis course; second, create extra time in the complex analysis course by eliminating the "complex precalculus" part of the course. In…

  9. Strides in Preservation of Malawi's Natural Stone

    NASA Astrophysics Data System (ADS)

    Kamanga, Tamara; Chisenga, Chikondi; Katonda, Vincent

    2017-04-01

    The geology of Malawi is broadly grouped into four main lithological units that is the Basement Complex, the Karoo Super group, Tertiary to Quaternary sedimentary deposits and the Chilwa Alkaline province. The basement complex rocks cover much of the country and range in age from late Precambrian to early Paleozoic. They have been affected by three major phases of deformation and metamorphism that is the Irumide, Ubendian and The Pan-African. These rocks comprise gneisses, granulites and schists with associated mafic, ultramafic, syenites and granite rocks. The Karoo System sedimentary rocks range in age from Permian to lower Jurassic and are mainly restricted to two areas in the extreme North and extreme Alkaline Province - late Jurassic to Cretaceous in age, preceded by upper Karoo Dolerite dyke swarms and basaltic lavas, have been intruded into the Basement Complex gneisses of southern Malawi. Malawi is endowed with different types of natural stone deposits most of which remain unexploited and explored. Over twenty quarry operators supply quarry stone for road and building construction in Malawi. Hundreds of artisanal workers continue to supply aggregate stones within and on the outskirts of urban areas. Ornamental stones and granitic dimension stones are also quarried, but in insignificant volumes. In Northern Malawi, there are several granite deposits including the Nyika, which is the largest single outcrop occupying approximately 260.5 km2 , Mtwalo Amazonite an opaque to translucent bluish -green variety of microcline feldspar that occurs in alkali granites and pegmatite, the Ilomba granite (sodalite) occurring in small areas within biotite; apatite, plagioclase and calcite. In the Center, there are the Dzalanyama granites, and the Sani granites. In the South, there are the Mangochi granites. Dolerite and gabbroic rocks spread across the country, treading as black granites. Malawi is also endowed with many deposits of marble. A variety of other igneous

  10. Did Oligocene crustal thickening precede basin development in northern Thailand? A geochronological reassessment of Doi Inthanon and Doi Suthep

    NASA Astrophysics Data System (ADS)

    Gardiner, Nicholas J.; Roberts, Nick M. W.; Morley, Christopher K.; Searle, Michael P.; Whitehouse, Martin J.

    2016-01-01

    The Doi Inthanon and Doi Suthep metamorphic core complexes in northern Thailand are comprised of amphibolite-grade migmatitic gneisses mantled by lower-grade mylonites and metasedimentary sequences, thought to represent Cordilleran-style core complexes exhumed through the mobilization of a low-angle detachment fault. Previous studies have interpreted two metamorphic events (Late Triassic and Late Cretaceous), followed by ductile extension between the late Eocene and late Oligocene, a model which infers movement on the detachment at ca. 40 Ma, and which culminates in a rapid unroofing of the complexes in the early Miocene. The Chiang Mai Basin, the largest such Cenozoic Basin in the region, lies immediately to the east. Its development is related to the extension observed at Doi Inthanon and Doi Suthep, however it is not definitively dated, and models for its development have difficulty reconciling Miocene cooling ages with Eocene detachment movement. Here we present new in-situ LA-ICP-MS and SIMS U-Pb age data of zircon and monazite grains from gneiss and leucogranite samples taken from Doi Inthanon and Doi Suthep. Our new zircon data exhibit an older age range of 221-210 Ma, with younger ages of ca. 72 Ma, and 32-26 Ma. Our monazite data imply an older age cluster at 83-67 Ma, and a younger age cluster of 34-24 Ma. While our data support the view of Indosinian basement being reworked in the Cretaceous, they also indicate a late Eocene-Oligocene tectonothermal event, resulting in prograde metamorphism and anatexis. We suggest that this later event is related to localized transpressional thickening associated with sinistral movement on the Mae Ping Fault, coupled with thickening at the restraining bend of the Mae Yuan Fault to the immediate west of Doi Inthanon. Further, this upper Oligocene age limit from our zircon and monazite data would imply a younger Miocene constraint on movement of the detachment, which, when combined with the previously recorded Miocene

  11. Geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.

    1987-01-01

    Summary -- The Chelan quadrangle hosts a wide variety of rocks and deposits and display a long geologic history ranging from possible Precambrian to Recent. Two major structures, the Leavenworth and Entiat faults divide cross the quadrangle from southeast to northwest and bound the Chiwaukum 'graben', a structural low preserving Tertiary sedimentary rocks between blocks of older, metamorphic and igneous rocks. Pre-Tertiary metamorphic rocks in the quadrangle are subdivided into five major tectonostratigraphic terranes: (1) the Ingalls terrane, equivalent to the Jurassic Ingalls Tectonic Complex of probable mantle and deep oceanic rocks origin, (2) the Nason terrane, composed of the Chiwaukum Schist and related gneiss, (3) the Swakane terrane, made up entirely of the Swakane Biotite Gneiss, a metamorphosed, possibly Precambrian, sedimentary and/or volcanic rock, (4) the Mad River terrane composed mostly of the rocks of the Napeequa River area (Napeequa Schist), a unit of oceanic protolith now considered part of the Chelan Mountains terrane (the Mad River terrane has been abandoned, 2001), and (5) the Chelan Mountains terrane, dominated by the Chelan Complex of Hopson and Mattinson (1971) which is composed of migmatite and gneissic to tonalite of deep-seated igneous and metamorphic origin.During an episode of Late Cretaceous regional metamorphism, all the terranes were intruded by deepseated tonalite to granodiorite plutons, including the Mount Stuart batholith, Ten Peak and Dirty Face plutons, and the Entiat pluton and massive granitoid rocks of the Chelan Complex. The Duncan Hill pluton intruded rocks of the Chelan Mountains terrane in the Middle Eocene. At about the same time fluvial arkosic sediment of the Chumstick Formation was deposited in a depression. The outpouring of basalt lavas to the southeast of the quadrangle during the Miocene built up the Columbia River Basalt Group. These now slightly warped lavas lapped onto the uplifted older rocks. Deformation

  12. 3D Complex: A Structural Classification of Protein Complexes

    PubMed Central

    Levy, Emmanuel D; Pereira-Leal, Jose B; Chothia, Cyrus; Teichmann, Sarah A

    2006-01-01

    Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes. PMID:17112313

  13. Social complexity as a proximate and ultimate factor in communicative complexity

    PubMed Central

    Freeberg, Todd M.; Dunbar, Robin I. M.; Ord, Terry J.

    2012-01-01

    The ‘social complexity hypothesis’ for communication posits that groups with complex social systems require more complex communicative systems to regulate interactions and relations among group members. Complex social systems, compared with simple social systems, are those in which individuals frequently interact in many different contexts with many different individuals, and often repeatedly interact with many of the same individuals in networks over time. Complex communicative systems, compared with simple communicative systems, are those that contain a large number of structurally and functionally distinct elements or possess a high amount of bits of information. Here, we describe some of the historical arguments that led to the social complexity hypothesis, and review evidence in support of the hypothesis. We discuss social complexity as a driver of communication and possible causal factor in human language origins. Finally, we discuss some of the key current limitations to the social complexity hypothesis—the lack of tests against alternative hypotheses for communicative complexity and evidence corroborating the hypothesis from modalities other than the vocal signalling channel. PMID:22641818

  14. The mesoproterozoic Beaverhead impact structure and its tectonic setting, Montana-Idaho: 40Ar/39 and U-Pb isotopic constraints

    USGS Publications Warehouse

    Kellogg, K.S.; Snee, L.W.; Unruh, D.M.

    2003-01-01

    New 40Ar/39Ar and uranium-lead (U-Pb) zircon data from the Beaverhead impact structure, first identified by extensive shatter coning of Proterozoic quartzite and gneiss from the Beaverhead Mountains near the Montana-Idaho border, indicate that the structure formed at or after 900 Ma. The 40Ar/39Ar age spectra from fine-grained muscovite and biotite from a breccia zone in high-grade gneiss show significant argon loss but yield dates for highest-temperature steps that cluster between 899 and 908 Ma. The dated minerals probably formed by recrystallization of impact glass, so on both geologic and isotopic grounds, the dates probably represent the minimum age of impact. U-Pb data for zircons from the same breccia are strongly discordant and yield an upper intercept apparent age of 2464 ?? 56 Ma and a lower intercept apparent age of 779 ?? 69 Ma. Another brecciated gneiss about 7 km to the northeast that does not contain secondary mica does contain zircons that yield a concordant apparent age of 2455 ?? 9 Ma. Nearby gneiss that neither is brecciated nor contains shatter cones yields an apparent age of 2451 ?? 46 Ma. The 40Ar/39Ar results constrain the age of the shatter-coned quartzite and indicate that it is >900 Ma and possibly correlative with the Gunsight Formation of the Mesoproterozoic Lemhi Group. The upper intercept U-Pb age of ???2450 Ma from all three dated samples also shows that the Paleoproterozoic basement rocks of the area are among the youngest in the mostly Archean Wyoming province of North America. The impact site lies near the margin of the province, along the northeast-trending Great Falls tectonic zone, and the relatively young crustal age may reflect Early Proterozoic marginal accretion.

  15. Crustal Anatexis by Upwelling Mantle Melts in the N.Atlantic Igneous Province: the Isle of Rum, NW Scotland.

    NASA Astrophysics Data System (ADS)

    Hertogen, J.; Meyer, R.; Nicoll, G.; Troll, V. R.; Ellam, R. M.; Emeleus, C. H.

    2008-12-01

    Crustal anatexis is a common process in the rift-to-drift evolution during continental breakup and the formation of Volcanic Rifted Margins (VRM) systems. 'Early felsic-later mafic' volcanic rock associations on the Continent Ocean Boundary (COB) of the N.Atlantic Ocean have been sampled by ODP drilling on the SE Greenland margin and the the Vøring Plateau (Norwegian Sea). Such associations also occur further inland in the British Paleocene Igneous Province, such as on the Isle of Rum (e.g., Troll et al., Contrib. Min. Petrol., 2004, 147, p.722). Sr and Nd isotope and trace element geochemistry show that the Rum rhyodacites are the products of melting of Lewisian amphibolite gneiss. There are no indications of a melt contribution from Lewisian granulite gneiss. The amphibolite gneiss parent rock had experienced an ancient Cs and Rb loss, possibly during a Caledonian event, which caused 87Sr/86Sr heterogeneity in the crustal source of silicic melts. The dacites and early gabbros of Rum are mixtures of crustal melts and primary mantle melts. Rare Earth Element modelling shows that late stage picritic melts on Rum are close analogues for the parent melts of the Rum Layered Suite, and for the mantle melts that caused crustal anatexis of the Lewisian gneiss. These primary mantle melts have close affinities to MORB whose trace element content varies from slightly depleted to slightly enriched. The 'early felsic-later mafic' volcanic associations from Rum, and from the now drowned seaward dipping wedges on the shelf of SE Greenland and on the Vøring Plateau show geochemical differences that result from variations in the regional crustal composition and the depth at which crustal anatexis took place.

  16. Major and trace element investigation of the Pine Mountain massif--The southernmost exposure of Grenville age crust in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salpas, P.A.; Daniell, N.

    1992-01-01

    The Pine Mountain massif is a 1.1 Ga basement massif exposed in Alabama and Georgia. The Whatley Mill Gneiss (WMG) constitutes a major exposure of rock in the Pine Mountain massif of eastern Alabama. Based on appearance in outcrop, the WMG can be divided into three distinct lithologies. The first is a massive augen gneiss (AG) consisting of K-spar augen in a finer grained matrix of biotite, K-spar, plagioclase, and quartz. The second lithology is a fine-grained gneiss (FG) composed predominantly of quartz with minor muscovite. The FG occurs sporadically as band of mylonite within the AG. The third lithologymore » is generally accepted to be the protolith of the AG. It is a relatively unfoliated and undeformed rock (UN) of sparse occurrence whose mineralogy is similar to that of the AG but also contains hornblende and rounded mafic inclusions of biotite gneiss. AG and FG samples were collected along a traverse through over 220 meters of stratigraphic thickness of the WMG and were analyzed for major element compositions by XRF and for trace element compositions by INAA. Relative to the AG samples, the FG samples are enriched in SiO[sub 2] and depleted in FeO and ferromagnesian trace elements such as Sc. REE concentrations are generally higher in the AG than in the FG but the sizes of the ranges in concentrations among both groups of rocks are similar. REE systematics indicate that the silica-rich fluid introduced into the AG during shearing appears to have made negligible contributions to the absolute and relative whole-rock REE concentrations but, instead, simply diluted the REE in the parent AG. Based upon the limited sampling of UN so far, deformation to produce the foliated AG, including augen formation, appears to have occurred isochemically.« less

  17. Geological evolution of the late Proterozoic ``Mozambique Belt'' of Kenya

    NASA Astrophysics Data System (ADS)

    Mosley, P. N.

    1993-05-01

    Within the "Mozambique Belt" of Kenya at least four distinct tectonothermal episodes are recognised on Rb-Sr isotopics. The dates are in broad agreement with those from surrounding countries; principal ages/age ranges being 830 - 800, ~ 760, 630 - 580 and 560 - 520 Ma. All except the last attained at least upper amphibolite/granulite grade (with local melts). The first event was responsible for the primary transformation of an essentially sedimentary sequence to paragneisses with an initial near-horizontal fabric parallel to the compositional layering. Associated with the later part of the first phase, and linked to the second, is the emplacement of allochthonous ophiolitic and volcanosedimentary "packages", coupled with thrusting and imbrication of the paragneiss groups. The subsequent phases record progressive shortening across the orogenic belt during collision between two major continental fragments (east and west Gondwana), involving extensive structural reorganisation and isotopic resetting. During the progressive 630 - 580 Ma event, regional N-S- to NNW-SSE-trending ductile shear zones (generally sinistral) were produced giving the dominant regional fabric (including a regional N-S-stretching lineation), and controlling the present gross distribution of gneiss groups. Cooling and uplift post a ~ 560 Ma thermal event has exposed high-grade gneisses with a distinct structural and metamorphic asymmetry across the orogen. The western part of the orogen shows clockwise P- T- t paths and involves overthrusting of, and imbrication with, the Tanzanian craton which probably obscures older (1900 and 1100 Ma) tectonothermal episodes. In contrast, the eastern part has anti-clockwise P- T- t paths, is characterised by extensive crustal melts, and retains the isotopic imprint of earlier Proterozoic events. The present level of uplift exposes tectonised high-grade gneisses of more than one age. Current evidence supports the suggestion that low-grade ophiolitic

  18. Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modeling

    NASA Astrophysics Data System (ADS)

    Kern, H.; Mengel, K.; Strauss, K. W.; Ivankina, T. I.; Nikitin, A. N.; Kukkonen, I. T.

    2009-07-01

    The Outokumpu scientific deep drill hole intersects a 2500 m deep Precambrian crustal section comprising a 1300 m thick biotite-gneiss series (mica schists) at top, followed by a 200 m thick meta-ophiolite sequence, underlain again by biotite gneisses (mica schists) (500 m thick) with intercalations of amphibolite and meta-pegmatoids (pegmatitic granite). From 2000 m downward the dominating rock types are meta-pegmatoids (pegmatitic granite). Average isotropic intrinsic P- and S-wave velocities and densities of rocks were calculated on the basis of the volume fraction of the constituent minerals and their single crystal properties for 29 core samples covering the depth range 198-2491 m. The modal composition of the rocks is obtained from bulk rock (XRF) and mineral chemistry (microprobe), using least squares fitting. Laboratory seismic measurements on 13 selected samples representing the main lithologies revealed strong anisotropy of P- and S-wave velocities and shear wave splitting. Seismic anisotropy is strongly related to foliation and is, in particular, an important property of the biotite gneisses, which dominate the upper and lower gneiss series. At in situ conditions, velocity anisotropy is largely caused by oriented microcracks, which are not completely closed at the pressures corresponding to the relatively shallow depth drilled by the borehole, in addition to crystallographic preferred orientation (CPO) of the phyllosilicates. The contribution of CPO to bulk anisotropy is confirmed by 3D velocity calculations based on neutron diffraction texture measurements. For vertical incidence of the wave train, the in situ velocities derived from the lab measurements are significantly lower than the measured and calculated intrinsic velocities. The experimental results give evidence that the strong reflective nature of the ophiolite-derived rock assemblages is largely affected by oriented microcracks and preferred crystallographic orientation of major minerals, in

  19. Complex Light

    NASA Astrophysics Data System (ADS)

    Secor, Jeff; Alfano, Robert; Ashrafi, Solyman

    2017-01-01

    The emerging field of complex light-the study and application of custom light beams with tailored intensity, polarization or phase-is a focal point for fundamental breakthroughs in optical science. As this review will show, those advances in fundamental understanding, coupled with the latest developments in complex light generation, are translating into a range of diverse and cross-disciplinary applications that span microscopy, high-data-rate communications, optical trapping and quantum optics. We can expect more twists along the way, too, as researchers seek to manipulate and control the propagation speed of complex light beams, while others push the more exotic possibilities afforded by complex light in quantum-entanglement experiments.

  20. Late Mesoproterozoic to Early Paleozoic history of metamorphic basement from the southeastern Chiapas Massif Complex, Mexico, and implications for the evolution of NW Gondwana

    NASA Astrophysics Data System (ADS)

    Weber, Bodo; González-Guzmán, Reneé; Manjarrez-Juárez, Román; Cisneros de León, Alejandro; Martens, Uwe; Solari, Luigi; Hecht, Lutz; Valencia, Victor

    2018-02-01

    In this paper, U-Pb zircon geochronology, Lu-Hf and Sm-Nd isotope systematics, geochemistry and geothermobarometry of metaigneous basement rocks exposed in the southeastern Chiapas Massif Complex are presented. Geologic mapping of the newly defined "El Triunfo Complex" located at the southeastern edge of the Chiapas Massif reveals (1) partial melting of a metamorphic basement mainly constituted by mafic metaigneous rocks (Candelaria unit), (2) an Ediacaran metasedimentary sequence (Jocote unit), and (3) occurrence of massif-type anorthosite. All these units are intruded by undeformed Ordovician plutonic rocks of the Motozintla suite. Pressure and temperature estimates using Ca-amphiboles, plagioclase and phengite revealed prograde metamorphism that reached peak conditions at 650 °C and 6 kbar, sufficient for partial melting under water saturated conditions. Relict rutile in titanite and clinopyroxene in amphibolite further indicate a previous metamorphic event at higher P-T conditions. U-Pb zircon ages from felsic orthogneiss boudins hosted in deformed amphibolite and migmatite yield crystallization ages of 1.0 Ga, indicating that dry granitic protoliths represent remnants of Rodinia-type basement. Additionally, a mid-Tonian ( 920 Ma) metamorphic overprint is suggested by recrystallized zircon from a banded gneiss. Zircon from folded amphibolite samples yield mainly Ordovician ages ranging from 457 to 444 Ma that are indistinguishable from the age of the undeformed Motozintla plutonic suite. Similar ages between igneous- and metamorphic- zircon suggest a coeval formation during a high-grade metamorphic event, in which textural discrepancies are explained in terms of differing zircon formation mechanisms such as sub-solidus recrystallization and precipitation from anatectic melts. In addition, some amphibolite samples contain inherited zircon yielding Stenian-Tonian ages around 1.0 Ga. Lu-Hf and Sm-Nd isotopes and geochemical data indicate that the protoliths of

  1. An integrated study on microtectonics, geothermometry and thermochronology of the Çataldaǧ Core Complex (NW Turkey): Implications for cooling, deformation and uplift history

    NASA Astrophysics Data System (ADS)

    Kamaci, Omer; Altunkaynak, Safak

    2017-04-01

    We present an integrated study on structure, microstructure, geothermometry and thermochronology of the Çataldaǧ Core Complex (ÇCC) in NW Turkey in order to understand the cooling, deformation and uplift mechanisms. ÇCC is formed from an Eo-Oligocene granite-gneiss-migmatite complex (GGMC) and an Early Miocene I-type granodioritic body (ÇG: Çataldaǧ granodiorite) which were exhumed as a dome-shaped core complex in the footwall of a ring-shaped low-angle detachment zone (The Çataldaǧ Detachment Fault Zone; ÇDFZ) in the Early Miocene. New U-Pb zircon (LA-ICPMS) and monazite ages of GGMC yielded magmatic ages of 33.8 and 30.1 Ma (Latest Eocene-Early Oligocene). 40Ar/39Ar muscovite, biotite and K-feldspar from the GGMC yielded the deformation age span 21.38±0,05 Ma and 20.81±0.04 Ma, which is also the emplacement age (20.84±0.13 Ma and 21.6±0.04 Ma) of ÇG. ÇDFZ is responsible for mainly top-to-the-north sense kinematic processes. The microstructural features of quartz, feldspar and mica indicate that the ÇCC has undergone continuous deformations during its cooling, from submagmatic to cataclastic conditions. Five microstructural grades have been classified under ductile (DZ) and ductile-to-brittle shear zone (SZ), according to the estimated deformation temperature and intensity of the strain. Microcline twinning, marginally replacement myrmekite and flame-perthite are predominant features for feldspar while chessboard extinction, grain boundary migration and subgrain rotation recrystallization is common for quartz in the DZ which has a deformation temperature range of >600°C to 400°C. Grain size reduction is an important factor for the ductile to brittle shear zone (SZ). Feldspar is represented by bulging recrystallization (BLG), feldspar-fish and domino-type microfracture/microfaulting and quartz show more elongated structures such as ribbons with high aspect ratios. Mineral-fish (muscovite, biotite and feldspar) structures indicate a temperature

  2. A Geophysical Study in Grand Teton National Park and Vicinity, Teton County, Wyoming: With Sections on Stratigraphy and Structure and Precambrian Rocks

    USGS Publications Warehouse

    Behrendt, John Charles; Tibbetts, Benton L.; Bonini, William E.; Lavin, Peter M.; Love, J.D.; Reed, John C.

    1968-01-01

    An integrated geophysical study - comprising gravity, seismic refraction, and aeromagnetic surveys - was made of a 4,600-km2 area in Grand Teton National Park and vicinity, Wyoming, for the purpose of obtaining a better understanding of the structural relationships in the region. The Teton range is largely comprised of Precambrian crystalline rocks and layered metasedimentary gneiss, but it also includes granitic gneiss, hornblende-plagioclase gneiss, granodiorite, and pegmatite and diabase dikes. Elsewhere, the sedimentary section is thick. The presence of each system except Silurian provides a chronological history of most structures. Uplift of the Teton-Gros Ventre area began in the Late Cretaceous; most of the uplift occurred after middle Eocene time. Additional uplift of the Teton Range and downfaulting of Jackson Hole began in the late Pliocene and continues to the present. Bouguer anomalies range from -185 mgal over Precambrian rocks of the Teton Range to -240 mgal over low-density Tertiary and Cretaceous sedimentary rocks of Jackson Hole. The Teton fault (at the west edge of Jackson Hole), as shown by steep gravity gradients and seismic-refraction data, trends north-northeast away from the front of the Teton Range in the area of Jackson Lake. The Teton fault either is shallowly inclined in the Jenny Lake area, or it consists of a series of fault steps in the fault zone; it is approximately vertical in the Arizona Creek area. Seismic-refraction data can be fitted well by a three-layer gravity model with velocities of 2.45 km per sec for the Tertiary and Cretaceous rocks above the Cloverly Formation, 3.9 km per sec for the lower Mesozoic rocks, and 6.1 km per sec for the Paleozoic (limestone and dolomite) and Precambrian rocks. Gravity models computed along two seismic profiles are in good agreement (sigma=+- 2 mgal) if density contrasts with the assumed 2.67 g per cm2 Paleozoic and Precambrian rocks are assumed to be -0.35 and -0.10 g per cm2 for the 2

  3. Unraveling chaotic attractors by complex networks and measurements of stock market complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Hongduo; Li, Ying, E-mail: mnsliy@mail.sysu.edu.cn

    2014-03-15

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However,more » developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.« less

  4. A preliminary synthesis of structural, stratigraphic, and magnetic data from part of the northwest Adirondacks, New York

    USGS Publications Warehouse

    Foose, M.P.; Brown, C. Ervin

    1976-01-01

    Synthesis of recent work in the NW Adirondacks, New York allows the development of a coherent geologic picture. Mapping of the Precambrian rock units enables the recognition of four major units which are, from bottom to top, 1) Granitic Gneiss (alaskite), 2) Lower Marble, 3) Major Gneiss, and 4) Upper Marble. Additionally, lenses of amphibolite and granite occur as intrusives within this succession. These rock units have been complexly deformed by three major folding episodes, and by two distinctly different styles of faulting. The result has been to produce large northeast-southwest trending dome and basin structures. Patterns of magnetic intensity closely parallel distribution of rock units and provide additional information for a structural and stratigraphic synthesis-.

  5. OVERFLOW ROADLESS AREA, GEORGIA AND NORTH CAROLINA.

    USGS Publications Warehouse

    Koeppen, Robert P.; Davis, Michael P.

    1984-01-01

    The Overflow Roadless Area in the Blue Ridge Mountains of Georgia and North Carolina is underlain by complexly folded schist and gneiss of Proterozoic age. A mineral-resource survey found little likelihood for the occurrence of mineral or energy resources in the area. Minor isolated localities of mica pegmatite and amethyst gemstone occur in the area. Gneiss and schist suitable for rock aggregate are present in large quantities, but similar rocks abound outside the area. Natural gas may possibly be present at great depth beneath the overthrust of the Blue Ridge. Further seismic studies and exploratory drilling are needed to evaluate the natural gas potential of this part of the Eastern Overthrust Belt.

  6. SHINING ROCK WILDERNESS, NORTH CAROLINA.

    USGS Publications Warehouse

    Lesure, Frank G.; Dunn, Maynard L.

    1984-01-01

    The Shining Rock Wilderness, in the Blue Ridge Mountains of Haywood County, North Carolina, is underlain by complexly folded mica gneiss and schist of Precambrian age. A mineral-resource survey determined that two commodities, quartz as a source of silica (SiO//2) and gneiss and schist suitable for common building stone and crushed rock, are present in large quantities. Demonstrated resources of silica occur at Shining Rock Mountain and small amounts of sheet muscovite (mica) and scrap mica are present at about 10 localities. Until deep drilling is done to test the results of the seismic studies, no estimate of the potential for gas can be made, but the presence of gas cannot be totally discounted.

  7. The Grand St Bernard-Briançonnais Nappe System and the Paleozoic Inheritance of the Western Alps Unraveled by Zircon U-Pb Dating

    NASA Astrophysics Data System (ADS)

    Bergomi, M. A.; Dal Piaz, G. V.; Malusà, M. G.; Monopoli, B.; Tunesi, A.

    2017-12-01

    The continental crust involved in the Alpine orogeny was largely shaped by Paleozoic tectono-metamorphic and igneous events during oblique collision between Gondwana and Laurussia. In order to shed light on the pre-Alpine basement puzzle disrupted and reamalgamated during the Tethyan rifting and the Alpine orogeny, we provide sensitive high-resolution ion microprobe U-Pb zircon and geochemical whole rock data from selected basement units of the Grand St Bernard-Briançonnais nappe system in the Western Alps and from the Penninic and Lower Austroalpine units in the Central Alps. Zircon U-Pb ages, ranging from 459.0 ± 2.3 Ma to 279.1 ± 1.1 Ma, provide evidence of a complex evolution along the northern margin of Gondwana including Ordovician transtension, Devonian subduction, and Carboniferous-to-Permian tectonic reorganization. Original zircon U-Pb ages of 371 ± 0.9 Ma and 369.3 ± 1.5 Ma, from calc-alkaline granitoids of the Grand Nomenon and Gneiss del Monte Canale units, provide the first compelling evidence of Late Devonian orogenic magmatism in the Alps. We propose that rocks belonging to these units were originally part of the Moldanubian domain and were displaced toward the SW by Late Carboniferous strike-slip faulting. The resulting assemblage of basement units was disrupted by Permian tectonics and by Mesozoic opening of the Alpine Tethys. Remnants of the Moldanubian domain became either part of the European paleomargin (Grand Nomenon unit) or part of the Adriatic paleomargin (Gneiss del Monte Canale unit), to be finally accreted into the Alpine orogenic wedge during the Cenozoic.

  8. Clinical Complexity in Medicine: A Measurement Model of Task and Patient Complexity.

    PubMed

    Islam, R; Weir, C; Del Fiol, G

    2016-01-01

    Complexity in medicine needs to be reduced to simple components in a way that is comprehensible to researchers and clinicians. Few studies in the current literature propose a measurement model that addresses both task and patient complexity in medicine. The objective of this paper is to develop an integrated approach to understand and measure clinical complexity by incorporating both task and patient complexity components focusing on the infectious disease domain. The measurement model was adapted and modified for the healthcare domain. Three clinical infectious disease teams were observed, audio-recorded and transcribed. Each team included an infectious diseases expert, one infectious diseases fellow, one physician assistant and one pharmacy resident fellow. The transcripts were parsed and the authors independently coded complexity attributes. This baseline measurement model of clinical complexity was modified in an initial set of coding processes and further validated in a consensus-based iterative process that included several meetings and email discussions by three clinical experts from diverse backgrounds from the Department of Biomedical Informatics at the University of Utah. Inter-rater reliability was calculated using Cohen's kappa. The proposed clinical complexity model consists of two separate components. The first is a clinical task complexity model with 13 clinical complexity-contributing factors and 7 dimensions. The second is the patient complexity model with 11 complexity-contributing factors and 5 dimensions. The measurement model for complexity encompassing both task and patient complexity will be a valuable resource for future researchers and industry to measure and understand complexity in healthcare.

  9. Low-temperature water-rock interactions in bedrock aquifers of southern Rhode Island: Results of laboratory simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeger, A.I.; Moulton, K.L.

    1993-03-01

    The nature of low-temperature chemical reactions occurring in bedrock aquifers of southern Rhode Island was investigated in the laboratory using flow-through columns. Crushed samples of Narragansett Pier Granite (NPG), Scituate Granite Gneiss (SGG), Hope Valley Alaskite Gneiss (HVAG) and Ten Rod Granite Gneiss (TRGG) were placed in flow-through columns. Water was circulated through the columns at a 3 ml/min and maintained at 25 C and at equilibrium with atmospheric carbon dioxide. Samples were collected from the columns at increasing time intervals and were analyzed for pH, conductivity, major cations and anions, and silica. The leachate compositions show that distinctive chemicalmore » differences can be expected in ground water that flows through each of these different rock types. Chemical modeling of the leachate solutions shows that reactions involving plagioclase feldspar (albiteoligoclase), reactive accessory minerals such as sphene, and, to a lesser degree, potassium feldspar and biotite, dominate the solution chemistry, with amorphous oxides and aluminosilicates formed as products of the weathering reactions. Small concentrations of reactive minerals may profoundly affect the composition of the leachate. Batch experiments using mineral separates revealed that the calcium in the NPG leachate was almost entirely attributable to sphene which comprises less than 1% of the rock.« less

  10. Impact-generated endolithic habitat within crystalline rocks of the Haughton impact structure, Devon Island, Canada.

    PubMed

    Pontefract, Alexandra; Osinski, Gordon R; Cockell, Charles S; Moore, Casey A; Moores, John E; Southam, Gordon

    2014-06-01

    The colonization of rocks by endolithic communities is an advantageous trait, especially in environments such as hot or cold deserts, where large temperature ranges, low water availability, and high-intensity ultraviolet radiation pose a significant challenge to survival and growth. On Mars, similar conditions (albeit more extreme) prevail. In these environments, meteorite impact structures could provide refuge for endolithic organisms. Though initially detrimental to biology, an impact event into a rocky body can favorably change the availability and habitability of a substrate for endolithic organisms, which are then able to (re)colonize microfractures and pore spaces created during the impact. Here, we show how shocked gneisses from the Haughton impact structure, Devon Island, Canada, offer significant refuge for endolithic communities. A total of 28 gneiss samples representing a range of shock states were analyzed, collected from in situ, stable field locations. For each sample, the top centimeter of rock was examined with confocal scanning laser microscopy, scanning electron microscopy, and bright-field microscopy to investigate the relationship of biomass with shock level, which was found to correlate generally with increased shock state and particularly with increased porosity. We found that gneisses, which experienced pressures between 35 and 60 GPa, provide the most ideal habitat for endolithic organisms.

  11. Late Proterozoic charnockites in Orissa, India: A U-Pb and Rb-Sr isotopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftalion, M.; Bowes, D.R.; Dash, B.

    1988-11-01

    Charnockite formation in the Angul district of Orissa took place between 1088 + 26/ -17 Ma, the U-Pb zircon upper intercept crystallization age of a leptynite neosome, and 957 +8/ -4-956 {plus minus} 4 Ma, the U-Pb zircon-monazite upper intercept and U-Pb monazite crystallization ages of a granite. Confirmation of the Proterozoic age of the charnockites is given by (1) a U-Pb zircon upper intercept 1159 + 59/ -30 Ma age and a Rb-Sr whole-rock 1080 {plus minus} 65 Ma age for an augen gneiss which pre-dates the leptynite, and (2) U-Pb monazite ages of 973 {plus minus} 5,964 {plusmore » minus} 4, and 953 {plus minus} 4 Ma for a gray quartzofeldspathic gneiss, the augen gneiss, and the leptynite, respectively: these late Proterozoic dates are interpreted as representing ages recorded during charnockitization. The ca. 950-980 Ma charnockite- and granite-forming events are related to the evolution of mantle-derived, CO{sub 2}-bearing basic magma emplaced into the deeper levels of an extensional tectonic-transcurrent fault regime. The ca. 1100-1150 Ma tectonothermal and igneous events represent compressional tectonism in reactivated crystalline basement in the late mid-Proterozoic Eastern Ghats orogenic belt.« less

  12. The oldest rock of Ivory Coast

    NASA Astrophysics Data System (ADS)

    Kouamelan, Alain Nicaise; Djro, Sagbrou Chérubin; Allialy, Marc Ephrem; Paquette, Jean-Louis; Peucat, Jean-Jacques

    2015-03-01

    The tonalitic gneiss of Balmer (TGB), in the SASCA area of south-western Ivory Coast, previously dated at 3141 ± 2 Ma using the single zircon evaporation method, is regarded as a relic of Archean rock within the Paleoproterozoic (Birimian) formation of the West African Craton (WAC). We present new geochronological data for the TGB using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method. We obtain a U-Pb age of 3207 ± 7 Ma for abundant zircons extracted from the tonalitic gneiss, and interpret this age as that of the magmatic protolith because of the igneous-type homogeneous zircon population. Certain magmatic zircon edges and some round zircons define an upper intercept age of 3155 ± 17 Ma which could represent overgrowths during gneissification. It appears that the TGB was not affected by the events posterior to its genesis, i.e. the Liberian (2.9-2.7 Ga) and Eburnean (2.4-2.0 Ga) events. Additionally, the TGB proves to be a juvenile Leonian rock, as indicated by the Nd model age of 3456 Ma, and could also constitute the protolith of the granulitic grey gneisses and charnockites of the Man area, which are 150-400 Ma younger.

  13. [Analysis of X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry of Pangxidong Composite Granitoid Pluton and Its Implications for Magmatic Differentiation].

    PubMed

    Zeng, Chang-yu; Ding, Ru-xin; Li, Hong-zhong; Zhou, Yong-zhang; Niu, Jia; Zhang, Jie-tang

    2015-11-01

    Pangxidong composite granitoid pluton located in the southwestern margin of Yunkai massif. The metamorphic grade of this pluton increases from outside to inside, that is, banded-augen granitic gneisses, gneissoid granites and granites distribute in order from edge to core. X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry are conducted to study the geochemical characteristics of the three types of rocks. The result shows that all the three types of rocks are peraluminous rocks and their contents of main elements and rare earth elements change gradually. From granitic gneisses to granites, the contents of Al₂O₃, CaO, MgO, TiO₂, total rare earth elements and light rare earth elements increase, but the contents of SiO₂ and heavy rare earth elements decrease. It is suggested that the phylogenetic relationship exists between granitic gneisses, gneissoid granites and granites during the multi-stage tectonic evolution process. Furthermore, the remelting of metamorphosed supracrustal rocks in Yunkai massif is probably an important cause of granitoid rocks forming. The evolutionary mechanism is probably that SiO₂ and heavy rare earth elements were melt out from the protolith and gradually enriched upward, but Al₂O₃, CaO, MgO, TiO₂ and light rare earth elements enriched downward.

  14. Thinking Forbidden Thoughts: The Oedipus Complex as a Complex of Knowing.

    PubMed

    Schein, Michael

    2016-04-01

    The Oedipus complex, considered by Freud the "nuclear complex of development," played a central role in the evolution of psychoanalytic thought. This paper returns to the point of transition from the seduction theory, Freud's initial theorem, to the oedipal model, and suggests that the Oedipus complex is first and foremost a text and as such contains a multiplicity of narratives. In particular, the author articulates the close relation between the Oedipus complex and the subject of knowing, postulating that underlying its surface level, the deep-level structure of this complex is one of knowing. As a complex of knowing it is of dual quality, both promoting and impeding the ability to know.

  15. Nucleoprotein Complexes Containing Replicating Simian Virus 40 DNA: Comparison with Polyoma Nucleoprotein Complexes

    PubMed Central

    Hall, Mark R.; Meinke, William; Goldstein, David A.

    1973-01-01

    Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. PMID:4359958

  16. Migmatization and low-pressure overprinting metamorphism as record of two pre-Cretaceous tectonic episodes in the Santander Massif of the Andean basement in northern Colombia (NW South America)

    NASA Astrophysics Data System (ADS)

    Zuluaga, C. A.; Amaya, S.; Urueña, C.; Bernet, M.

    2017-03-01

    The core of the Santander Massif in the northern Andes of Colombia is dominated by migmatitic gneisses with a < 1.71 Ga protolith and was affected by continuous interactions of oceanic plates to the west and the northwestern corner of the South American continental plate. The exposed metamorphic core of the massif offers a unique opportunity to understand the tectonic evolution of northwestern South America. We present new metamorphic petrology and geochemistry data from the Bucaramanga Gneiss in the Santander Massif to document part of this tectonic evolution from late Proterozoic to Jurassic times. Metapelitic migmatite gneiss, quartz-feldspathic gneiss, and amphibolite from the Bucaramanga Gneiss recorded metamorphic peak conditions in the range of 660-850 °C at pressures of > 7.5 kbar. Lithologies are overprinted by low-pressure metamorphism, related to extensive Jurassic intrusions and linked with growth of cordierite and equilibration of low-pressure mineral assemblages, recorded metamorphic conditions are < 750 °C and < 6.5 kbar. Observed leucosomes display significant compositional variations and can be grouped in three groups: i) Group One leucosomes with high total REE content, high LREE/HREE, and negative Eu anomaly, ii) Group Two leucosomes with low total REE, low LREE/HREE, and positive Eu anomalies, and iii) Group Three leucosomes with relatively low LREE/HREE and strong positive Eu anomaly. Geochemical data support the interpretation that Group Two leucosomes crystallized from melts originated in a partial melting event affecting mostly pelitic and quartz-feldspathic lithologies with fluid-present melting reactions. The evaluation of mesosomes (amphibolite, pelitic and quartz-feldspathic rocks) as potential protoliths or restites indicates that at least two pelitic samples of the analyzed lithologies have characteristics consistent with the occurrence of fluid-present melting reactions involving quartz and feldspar. The leucosomes produced by

  17. Geologic map of the Topock 7.5’ quadrangle, Arizona and California

    USGS Publications Warehouse

    Howard, Keith A.; John, Barbara E.; Nielson, Jane E.; Miller, Julia M.G.; Wooden, Joseph L.

    2013-01-01

    The Topock quadrangle exposes a structurally complex part of the Colorado River extensional corridor and also exposes deposits that record landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and intrusive sheets are exposed through tilted cross-sectional thicknesses of many kilometers. Intruding them are a series of Mesozoic to Tertiary igneous rocks including dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite in Arizona, if structurally restored for Miocene extension, formed cupolas capping the Chemehuevi Mountains batholith in California. Thick (1–3 km) Miocene sections of volcanic rocks, sedimentary breccias, conglomerate, and sandstone rest nonconformably on the Proterozoic rocks and record the structural and depositional evolution of the Colorado River extensional corridor. Four major Miocene low-angle normal faults and a steep block-bounding fault that developed during this episode divide the deformed rocks of the quadrangle into major structural plates and tilted blocks in and east of the Chemehuevi Mountains core complex. The low-angle faults attenuate crustal section, superposing supracrustal and upper crustal rocks against gneisses and granitoids originally from deeper crustal levels. The transverse block-bounding Gold Dome Fault Zone juxtaposes two large hanging-wall blocks, each tilted 90°, and the fault zone splays at its tip into folds in layered Miocene rocks. A synfaulting intrusion occupies the triangular zone where the folded strata detached from an inside corner along this fault between the tilt blocks. Post-extensional upper Miocene to Quaternary strata, locally deformed, record post-extensional landscape evolution, including several Pliocene and younger aggradational episodes in the Colorado River valley and intervening degradation episodes. The aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits

  18. Age and origin of anorthosites, charnockites, and granulites in the Central Virginia Blue Ridge: Nd and Sr isotopic evidence

    USGS Publications Warehouse

    Pettingill, H.S.; Sinha, A.K.; Tatsumoto, M.

    1984-01-01

    Rb-Sr isotopic data for anorthosites, charnockites, ferrodioritic to quartz monzonitic plutons, and high-grade gneisses of the Blue Ridge of central Virginia show evidence of post-emplacement metamorphism, but in some cases retain Grenville ages. The Pedlar River Charnockite Suite yields an isochron age of 1021 +/-36 Ma, (initial 87Sr/86Sr ratio of 0.7047 +/-6), which agrees with published U-Pb zircon ages. Five samples of that unit which contain Paleozoic mylonitic fabrics define a regression line of 683 Ma, interpreted as a mixing line with no age significance. Samples of the Roseland Anorthosite Complex show excessive scatter on a Rb-Sr evolution diagram probably due to Paleozoic (475 m.y.) metamorphism. Data from the ferrodioritic to quartz monzonitic plutons of the area yield an age of 1009 +/-26 Ma (inital ratio=0.7058 +/-4), which is in the range of the U-Pb zircon ages of 1000-1100 Ma. The Stage Road Layered Gneiss yields an age of 1147 +/-34 Ma (initial ratio of 0.7047 +/- 5). Sm-Nd data for the Pedlar River Charnockite Suite reflect a pre-Grenville age of 1489 +/-118 Ma (e{open}Nd=+6.7 +/-1.2). Data for the Roseland Anorthosite Complex and the ferrodioritic to quartz monzonitic plutons yield Grenville isochron ages of 1045 +/44 Ma (e{open}Nd=+1.0 +/-0.3) and 1027 +/-101 Ma (e{open}Nd=+1.4 +/-1.0), respectively. Two Roseland Anorthosite samples plot far above the isochron, demonstrating the effects of post-emplacement disturbance of Sm-Nd systematics, while mylonitized Pedlar River Charnockite Suite samples show no evidence of Sm-Nd redistribution. The disparity of the Sm-Nd age and other isotopic ages for the Pedlar River Charnockite Suite probably reflects a Sm-Nd "source" age, suggesting the presence of an older crust within this portion of the ca. 1 Ga old basement. ?? 1984 Springer-Verlag.

  19. A new subdivision of the central Sesia Zone (Aosta Valley, Italy)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Engi, Martin; Manzotti, Paola; Ballèvre, Michel

    2015-04-01

    The Sesia Zone in the Western Alps is a continental terrane probably derived from the NW-Adriatic margin and polydeformed at HP conditions during Alpine convergence. Subdivisions of the Sesia Zone classically have been based on the dominant lithotypes: Eclogitic Micaschist Complex, Seconda Zona Diorito-Kinzigitica, and Gneiss Minuti Complex. However, recent work (Regis et al., 2014) on what was considered a single internal unit has revealed that it comprises two or more tectonic slices that experienced substantially different PTDt-evolutions. Therefore, detailed regional petrographic and structural mapping (1:3k to 1:10k) was undertaken and combined with extensive sampling for petrochronological analysis. Results allow us to propose a first tectonic scheme for the Sesia Zone between the Aosta Valley and Val d'Ayas. A set of field criteria was developed and applied, aiming to recognize and delimit the first order tectonic units in this complex structural and metamorphic context. The approach rests on three criteria used in the field: (1) Discontinuously visible metasedimentary trails (mostly carbonates) considered to be monocyclic (Permo-Mesozoic protoliths); (2) mappable high-strain zones; and (3) visible differences in the metamorphic imprint. None of these key features used are sufficient by themselves, but in combination they allow us to propose a new map that delimits main units. We propose an Internal Complex with three eclogitic sheets, each 0.5-3 km thick. Dominant lithotypes include micaschists associated with mafic rocks and minor orthogneiss. The main foliation is of HP, dipping moderately NW. Each of these sheets is bounded by (most likely monometamorphic) sediments, <10-50 m thick. HP-relics (of eclogite facies) are widespread, but a greenschist facies overprint locally is strong close to the tectonic contact to neighbouring sheets. An Intermediate Complex lies NW of the Internal Complex and comprises two thinner, wedge-shaped units termed slices. These

  20. Effects of Task Complexity on L2 Writing Behaviors and Linguistic Complexity

    ERIC Educational Resources Information Center

    Révész, Andrea; Kourtali, Nektaria-Efstathia; Mazgutova, Diana

    2017-01-01

    This study investigated whether task complexity influences second language (L2) writers' fluency, pausing, and revision behaviors and the cognitive processes underlying these behaviors; whether task complexity affects linguistic complexity of written output; and whether relationships between writing behaviors and linguistic complexity are…

  1. Correlations and contrasts in structural history and style between an Archaean greenstone belt and adjacent gneiss belt, NE Minnesota

    NASA Technical Reports Server (NTRS)

    Bauer, R. L.; Hudleston, P. J.; Southwick, D. L.

    1986-01-01

    An analysis of the deformation along the boundary between the Vermilion Granitic Complex (VGC) and the Vermilion district indicates that the two terranes have seen a similar deformation history since the earliest stages of folding in the area. Despite this common history, variations in structural style occur between the two terranes, such as the relative development of D sub 1 fabrics and D sub 2 shear zones, and these can be attributed to differences in the crustal levels of the two terranes during the deformation. Similarly, the local development of F sub 3 folds in the VGC, but not in the Vermilion district, is interpreted to be a result of later-D sub 2 pluton emplacement which was not significant at the level of exposure of ther Vermilion district.

  2. Complexity and dynamics of topological and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2017-07-01

    Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.

  3. Complexity Theory

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  4. Origin of Archean migmatites from the Gwenoro Dam area, Zimbabwe-Rhodesia

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.; Allen, Philip

    1980-09-01

    Archean migmatites in the vicinity of Gwenoro Dam in Zimbabwe-Rhodesia are composed chiefly of trondhjemite gneiss (TR), mafic tonalite (MT), amphibolite (AM), leuco-trondhjemite veins (LTR), and pegmatites. The gneiss is intruded in nearby areas with small tonalite plutons (TN). Geochemical model studies together with field relationships are consistent with the following model for migmatite production: AM is produced by partial melting of a partly depleted ultramafic parent in which neither garnet nor amphibole remain in the residue; TR and TN are produced by partial melting of undepleted to variably depleted amphibolite in which garnet does not remain in the residue; MT is produced by mixing of plagioclase-rich TR with AM; and LTR represents the solid residue after fractional crystallization of TR.

  5. The Neutron Tomography Studies of the Rocks from the Kola Superdeep Borehole

    NASA Astrophysics Data System (ADS)

    Kichanov, S. E.; Kozlenko, D. P.; Ivankina, T. I.; Rutkauskas, A. V.; Lukin, E. V.; Savenko, B. N.

    The volume morphology of a gneiss sample K-8802 recovered from the deep of 8802 m of the Kola Superdeep Borehole and its surface homologue sample PL-36 have been studied by means of neutron radiography and tomography methods. The volumes and size distributions of a biotite-muscovite grains as well as grains orientation distribution have been obtained from experimental data. It was found that the average volumes of the biotite-muscovite grains in surface homologue sample is noticeably larger than the average volume of grains in the deep-seated gneiss sample K-8802. This drastically differences in grains volumes can be explained by the recrystallization processes in deep of the Kola Superdeep Borehole at high temperatures and high pressures.

  6. Evolution of biological complexity

    PubMed Central

    Adami, Christoph; Ofria, Charles; Collier, Travis C.

    2000-01-01

    To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045

  7. Asteroidal-meteoric complexes.

    NASA Astrophysics Data System (ADS)

    Shestaka, I. S.

    1994-12-01

    Fourteen asteroidal-meteoric complexes were identified by means of the criterion of similarity of quasistationary parameters μ, ν and Tisserand's invariant Ti. Each of these complexes consists of several meteor swarms and one or several asteroids. The existence of such complexes confirms the possibility of formation of meteor swarms by means of disintegration of asteroids and their fragments.

  8. Neoproterozoic A-type granitoids of the central and southern Appalachians: Intraplate magmatism associated with episodic rifting of the Rodinian supercontinent

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Bartholomew, M.J.; Rankin, D.W.

    2004-01-01

    Emplacement of compositionally distinctive granitic plutons accompanied two pulses (765-680 and 620-550Ma) of crustal extension that affected the Rodinian craton at the present location of the central Appalachians during the Neoproterozoic. The dominantly metaluminous plutons display mineralogical and geochemical characteristics of A-type granites including high FeO t/MgO ratios, high abundances of Nb, Zr, Y, Ta, and REE (except Eu), and low concentrations of Sc, Ba, Sr, and Eu. These dike-like, sheet complexes occur throughout the Blue Ridge province of Virginia and North Carolina, and were emplaced at shallow levels in continental crust during active extension, forming locally multiple-intrusive plutons elongated perpendicular to the axis of extension. New U-Pb zircon ages obtained from the Polly Wright Cove (706??4Ma) and Suck Mountain (680??4Ma) plutons indicate that metaluminous magmas continued to be replenished near the end of the first pulse of rifting. The Suck Mountain body is presently the youngest known igneous body associated with earlier rifting. U-Pb zircon ages for the Pound Ridge Granite Gneiss (562??5Ma) and Yonkers Gneiss (563??2Ma) in the Manhattan prong of southeastern New York constitute the first evidence of plutonic felsic activity associated with the later period of rifting in the U.S. Appalachians, and suggest that similar melt-generation processes were operative during both intervals of crustal extension. Fractionation processes involving primary minerals were responsible for much of the compositional variation within individual plutons. Compositions of mapped lithologic units in a subset of plutons studied in detail define overlapping data arrays, indicating that, throughout the province, similar petrologic processes operated locally on magmas that became successively more chemically evolved. Limited variation in source-sensitive Y/Nb and Yb/Ta ratios is consistent with results of melting experiments and indicates that metaluminous

  9. Islas Marias Archipelago, Mexico. A Missing Piece to Reconstruct the Paleoposition of Baja California

    NASA Astrophysics Data System (ADS)

    Schaaf, P. E.; Pompa, V.; Hernandez, T.; Weber, B.; Solis, G.; Villanueva, D.; Perez-Venzor, J.

    2011-12-01

    Paleopositions for southern Baja California peninsula have yielded controversial models over the past 30 years. Mainly based on paleomagnetic data many hypotheses place Baja at lower paleolatitudes in front of southern Mexico or Central America with subsequent northward translations. Other models suggest minor, if any, northward displacements with respect to continental Mexico combined with clockwise rotations. Lithological, geochemical, and geochronological similarities for southern Baja California and Puerto Vallarta (western Mexico Pacific margin) igneous rocks seem to confirm the latter model. To further prove this model we have mapped and collected rocks from Maria Madre, the largest island of the Islas Marias archipelago, located in the mouth of the Gulf of California. In an area of only 145 square kilometers, metamorphic basements rocks (ortho and migmatitic gneisses), highly deformed metasediments, granitoids, acid to intermediate volcanic sequences, and a cover with gently folded marine sediments are exposed. The basement complex with gneisses and metasediments, including garnet-bearing paragneiss and calc silicates, as well as the granodioritic-tonalitic intrusives display an extraordinary accordance with similar units observed in the Los Cabos Block (LCB) of Baja California Sur. Furthermore, U-Pb zircon ages of 162 and 170 Ma for the basement gneisses and of 80 Ma for the granitoids have been reported also from the LCB. Additionally, upper Cretaceous intrusive ages are well known from the Puerto Vallarta batholith in Jalisco and Nayarit, mainland Mexico. Geochemical and isotopic data as well as Nd model ages confirm a magmatic consanguinity of LCB, Islas Marias, and Puerto Vallarta granitoids. The volcanic units of Maria Madre Island include ignimbrites and effusive dacitic-rhyolithic rocks, which can be correlated to the Sierra Madre Occidental province and the Comundú Formation of Baja California. Age determinations are under work to confirm this

  10. Complex Constructivism: A Theoretical Model of Complexity and Cognition

    ERIC Educational Resources Information Center

    Doolittle, Peter E.

    2014-01-01

    Education has long been driven by its metaphors for teaching and learning. These metaphors have influenced both educational research and educational practice. Complexity and constructivism are two theories that provide functional and robust metaphors. Complexity provides a metaphor for the structure of myriad phenomena, while constructivism…

  11. The Ndc80 complex bridges two Dam1 complex rings

    PubMed Central

    Kim, Jae ook; Zelter, Alex; Umbreit, Neil T; Bollozos, Athena; Riffle, Michael; Johnson, Richard; MacCoss, Michael J; Asbury, Charles L; Davis, Trisha N

    2017-01-01

    Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex’s ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital. DOI: http://dx.doi.org/10.7554/eLife.21069.001 PMID:28191870

  12. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Jing, Y.; Liou, J. G.; Pan, G.; Liang, W.; Xia, M.; Maruyama, S.

    1990-11-01

    Four distinct types of eclogites are recognized according to their field occurrences and mineral parageneses in a gneiss terrane of the Dabie Mountains, a collision zone between the Sino-Korean and Yangtze cratons in central China. Some eclogites contain coesite and its quartz pseudomorphs enclosed in garnet and omphacite. Type I eclogites occur as layers in serpentinites and contain garnet, clinopyroxene, orthopyroxene, phengite, rutile, and coesite pseudomorph. Type II eclogites occur as lenticular bodies inside serpentinites and contain garnet, clinopyroxene, quartz, rutile, and edenitic hornblende. Type III eclogites occur as blocks of 2 cm to 20 m in size in a matrix of hornblende gneiss and biotite gneiss, and Type IV eclogites occur as thin layers interbedded with amphibolites. P- T estimates for these different eclogites indicate that they were formed under different physical conditions. All the eclogites were affected by later regional metamorphism for which the P- T conditions are estimated. This paper provides an introduction to the abundant eclogites from central China which have not been reported previously in Western literature. Specifically, the mode of field occurrence, petrography, mineral chemistry and formation conditions of the four types of eclogites are described. The paper is thus designed to establish a petrological framework for future detailed studies of the eclogites and their country rocks in an ancient zone of collision.

  13. The Tom Core Complex

    PubMed Central

    Ahting, Uwe; Thun, Clemens; Hegerl, Reiner; Typke, Dieter; Nargang, Frank E.; Neupert, Walter; Nussberger, Stephan

    1999-01-01

    Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of ∼2.1 nm and a height of ∼7 nm. Tom40 is the key structural element of the TOM core complex. PMID:10579717

  14. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  15. Sustainability, Complexity and Learning: Insights from Complex Systems Approaches

    ERIC Educational Resources Information Center

    Espinosa, A.; Porter, T.

    2011-01-01

    Purpose: The purpose of this research is to explore core contributions from two different approaches to complexity management in organisations aiming to improve their sustainability,: the Viable Systems Model (VSM), and the Complex Adaptive Systems (CAS). It is proposed to perform this by summarising the main insights each approach offers to…

  16. Artistic forms and complexity.

    PubMed

    Boon, J-P; Casti, J; Taylor, R P

    2011-04-01

    We discuss the inter-relationship between various concepts of complexity by introducing a complexity 'triangle' featuring objective complexity, subjective complexity and social complexity. Their connections are explored using visual and musical compositions of art. As examples, we quantify the complexity embedded within the paintings of the Jackson Pollock and the musical works of Johann Sebastian Bach. We discuss the challenges inherent in comparisons of the spatial patterns created by Pollock and the sonic patterns created by Bach, including the differing roles that time plays in these investigations. Our results draw attention to some common intriguing characteristics suggesting 'universality' and conjecturing that the fractal nature of art might have an intrinsic value of more general significance.

  17. Putting Text Complexity in Context: Refocusing on Comprehension of Complex Text

    ERIC Educational Resources Information Center

    Valencia, Sheila W.; Wixson, Karen K.; Pearson, P. David

    2014-01-01

    The Common Core State Standards for English Language Arts have prompted enormous attention to issues of text complexity. The purpose of this article is to put text complexity in perspective by moving from a primary focus on the text itself to a focus on the comprehension of complex text. We argue that a focus on comprehension is at the heart of…

  18. Igneous petrogenesis and tectonic setting of granitic rocks from the eastern Blue Ridge, Alabama Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, M.S.; Allison, D.T.; Tull, J.F.

    1994-03-01

    A span of 150 my of orogenic activity is recorded within the granitic rocks of the eastern Blue Ridge of Alabama (EBR). Four discrete episodes of plutonism can be differentiated, each event exhibiting distinct field relations and geochemical signatures. (1) Penobscotian stage: this initial stage of plutonic activity is represented by the Elkahatchee Quartz Diorite (EQD), a premetamorphic (495 Ma) batholith and the largest intrusive complex (880 km[sup 2]) exposed in the Blue Ridge. Calc-alkaline I-type tonalite-granodiorite are the principal lithologies, with subordinate cumulate hbl-bt diorite, metadacite, granite and trondhjemite. The parental tonalitic magmas are interpreted to have been derivedmore » from a subducted MORB source under eclogite to get amphibolite conditions. (2) Taconic stage: the Kowaliga augen gneiss (KAG) and the Zana granite gneiss (ZG) are 460 Ma granitic bodies that reside in the SE extremity and structurally highest portion of the EBR. Both of these bodies are pre-metamorphic with strongly elongate sill- and pod-like shapes concordant with S[sub 1] foliation. Granite and granodiorite comprise the bulk of the KAG. (3) Acadian stage: Rockford Granite (RG), Bluff springs Granite (BSG, 366 Ma), and Almond Trondhjemite represent a suite of pre- to syn-metamorphic granitic intrusions. (4) late-Acadian stage: The Blakes Ferry pluton (BFP) is a post-kinematic pluton displaying spectacular by schlieren igneous flow structures, but no metamorphic fabric. The pluton's age can be bracketed between a 366 Ma age on the BSG and a 324 Ma K-Ar muscovite age on the BFP. BFP's petrogenesis has involved partial melting a MORB source followed by assimilation of metasedimentary host rock.« less

  19. Designing Complexity

    ERIC Educational Resources Information Center

    Glanville, Ranulph

    2007-01-01

    This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…

  20. The origin of zircon and the significance of U-Pb ages in high-grade metamorphic rocks: a case study from the Variscan orogenic root (Vosges Mountains, NE France)

    NASA Astrophysics Data System (ADS)

    Skrzypek, E.; Štípská, P.; Cocherie, A.

    2012-12-01

    U-Pb zircon dating is combined with petrology, Zr-in-rutile thermometry and mineral equilibria modelling to discuss zircon petrogenesis and the age of metamorphism in three units of the Variscan Vosges Mountains (NE France). The monotonous gneiss unit shows results at 700-500 Ma, but no Variscan ages. The varied gneiss unit preserves ages between 600 and 460 Ma and a Variscan group at 340-335 Ma. Zircon analyses from the felsic granulite unit define a continuous array of ages between 500 and 340 Ma. In varied gneiss samples, zoned garnet includes kyanite and rutile and is surrounded by matrix sillimanite and cordierite. In a pseudosection, it points to peak conditions of ~16 kbar/850 °C followed by isothermal decompression to 8-10 kbar/820-860 °C. In felsic granulite samples, the assemblage K-feldspar-garnet-kyanite-Zr-rich rutile is replaced by sillimanite and Zr-poor rutile. Modelling these assemblages supports minimum conditions of ~13 kbar/925 °C, and a subsequent P-T decrease to 6.5-8.5 kbar/800-820 °C. The internal structure and chemistry of zircons, and modelling of zircon dissolution/growth along the inferred P-T paths are used to discuss the significance of the U-Pb ages. In the monotonous unit, inherited zircon ages of 700-500 Ma point to sedimentation during the Late Cambrian, while medium-grade metamorphism did not allow the formation of Variscan zircon domains. In both the varied gneiss and felsic granulite units, zircons with a blurred oscillatory-zoned pattern could reflect solid-state recrystallization of older grains during HT metamorphism, whereas zircons with a dark cathodoluminescence pattern are thought to derive from crystallization of an anatectic melt during cooling at middle pressure conditions. The present work proposes that U-Pb zircon ages of ca. 340 Ma probably reflect the end of a widespread HT metamorphic event at middle crustal level.

  1. Geology and preliminary hydrogeologic characterization of the cell-house site, Berlin, New Hampshire, 2003-04

    USGS Publications Warehouse

    Degnan, James R.; Clark, Stewart F.; Harte, Philip T.; Mack, Thomas J.

    2005-01-01

    At the cell-house site, thin, generally less than 20-foot thick overburden, consisting of till and demolition materials, overlies fractured crystalline bedrock. Bedrock at the site consists of gneiss with thin discontinuous lenses of chlorite schist and discontinuous tabular pegmatite. Two distinct fracture domains, with principal trends to the west and northwest, and to the north, overlap near the site. The cell-house site shows principal trends common to both domains. Gneiss is the most abundant rock at the site. Steeply dipping fractures within the gneiss terminate on subhorizontal contacts with pegmatite and on moderately dipping contacts with chlorite schist. Steeply northwest-dipping en Echelon fracture zones, parallel joint zones, and silicified brittle faults show consistent strikes to the northeast. Gently east-dipping to subhorizontal fractures, sub-parallel to gneissosity, strike northeast. The impermeable cap, barrier wall, and bedrock surface topography affect ground-water flow in the overburden. There is relatively little ground-water flow in the overburden in the capped area and a poor hydraulic connection between the overburden and the underlying bedrock over most of the site. The overburden beneath the cap may receive inflow through or beneath the barrier wall, or by flow through vertical fractures in the underlying bedrock beneath the barrier wall. The bedrock aquifer near the river is well connected to the river and head difference in the bedrock across the site are large (greater than 13 ft). Horizontal hydraulic conductivities of 0.2 to 20 ft/d were estimated for the bedrock. Individual fractures or fracture zones likely have hydraulic conductivities greater than the bulk rock. Subhorizontal fractures occur at pegmatite contacts or along chlorite schist lenses and may serve as ground-water conduits to the steeply dipping fractures in gneiss. The effective hydraulic conductivity across the site is likely to be in the low range of the estimated

  2. Deformation history of the Neoproterozoic basement complex, Ain Shams area, Western Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Fakharani, Abdelhamid; Hamimi, Zakaria

    2013-04-01

    Ain Shams area, Western Arabian Shield, Saudi Arabia, is occupied by four main rock units; gneisses, metavolcanics, metasediments and syn- to post-tectonic granitoids. Field and structural studies reveal that the area was subjected to at least three phases of deformation (D1, D2 and D3). The structural features of the D1 are represented by tight to isoclinal and intrafolial folds (F1), axial plane foliation (S1) and stretching lineations (L1). This phase is believed to be resulted from an early NW-SE contractional phase due to the amalgamation between Asir and Jeddah tectonic terranes. D2 deformation phase progressively overprinted D1 structures and was dominated by thrusts, minor and major F2 thrust-related overturned folds. These structures indicate a top-to-the-NW movement direction and compressional regime during the D2 phase. Emplacement of the syn-tectonic granitoids is likely to have occurred during this phase. D3 structures are manifested F3 folds, which are open with steep to subvertical axial planes and axes moderately to steeply plunging towards the E, ENE and ESE directions, L3 is represented by crenulation lineations and kink bands. These structures attest NE-SW contractional phase, concurrent with the accretion of the Arabian-Nubian Shield (ANS) to the Saharan Metacraton (SM) and the final assembly between the continental blocks of East and West Gondwana.

  3. Complex I-complex II ratio strongly differs in various organs of Arabidopsis thaliana.

    PubMed

    Peters, Katrin; Niessen, Markus; Peterhänsel, Christoph; Späth, Bettina; Hölzle, Angela; Binder, Stefan; Marchfelder, Anita; Braun, Hans-Peter

    2012-06-01

    In most studies, amounts of protein complexes of the oxidative phosphorylation (OXPHOS) system in different organs or tissues are quantified on the basis of isolated mitochondrial fractions. However, yield of mitochondrial isolations might differ with respect to tissue type due to varying efficiencies of cell disruption during organelle isolation procedures or due to tissue-specific properties of organelles. Here we report an immunological investigation on the ratio of the OXPHOS complexes in different tissues of Arabidopsis thaliana which is based on total protein fractions isolated from five Arabidopsis organs (leaves, stems, flowers, roots and seeds) and from callus. Antibodies were generated against one surface exposed subunit of each of the five OXPHOS complexes and used for systematic immunoblotting experiments. Amounts of all complexes are highest in flowers (likewise with respect to organ fresh weight or total protein content of the flower fraction). Relative amounts of protein complexes in all other fractions were determined with respect to their amounts in flowers. Our investigation reveals high relative amounts of complex I in green organs (leaves and stems) but much lower amounts in non-green organs (roots, callus tissue). In contrast, complex II only is represented by low relative amounts in green organs but by significantly higher amounts in non-green organs, especially in seeds. In fact, the complex I-complex II ratio differs by factor 37 between callus and leaf, indicating drastic differences in electron entry into the respiratory chain in these two fractions. Variation in amounts concerning complexes III, IV and V was less pronounced in different Arabidopsis tissues (quantification of complex V in leaves was not meaningful due to a cross-reaction of the antibody with the chloroplast form of this enzyme). Analyses were complemented by in gel activity measurements for the protein complexes of the OXPHOS system and comparative 2D blue native/SDS PAGE

  4. Complexity in Nature and Society: Complexity Management in the Age of Globalization

    NASA Astrophysics Data System (ADS)

    Mainzer, Klaus

    The theory of nonlinear complex systems has become a proven problem-solving approach in the natural sciences from cosmic and quantum systems to cellular organisms and the brain. Even in modern engineering science self-organizing systems are developed to manage complex networks and processes. It is now recognized that many of our ecological, social, economic, and political problems are also of a global, complex, and nonlinear nature. What are the laws of sociodynamics? Is there a socio-engineering of nonlinear problem solving? What can we learn from nonlinear dynamics for complexity management in social, economic, financial and political systems? Is self-organization an acceptable strategy to handle the challenges of complexity in firms, institutions and other organizations? It is a main thesis of the talk that nature and society are basically governed by nonlinear and complex information dynamics. How computational is sociodynamics? What can we hope for social, economic and political problem solving in the age of globalization?.

  5. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  6. [Tissue-specific nucleoprotein complexes].

    PubMed

    Riadnova, I Iu; Shataeva, L K; Khavinson, V Kh

    2000-01-01

    A method of isolation of native nucleorprotein complexes from cattle cerebral cortex, thymus, and liver was developed. Compositions of these complexes were studied by means of gel-chromatography and ion-exchange chromatography. These preparations were shown to consist of several fractions of proteins and their complexes differ by molecular mass and electro-chemical properties. Native nucleoprotein complexes revealed high tissue specific activity, which was not species-specific.

  7. Dynamical complexity of short and noisy time series. Compression-Complexity vs. Shannon entropy

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Balasubramanian, Karthi

    2017-07-01

    Shannon entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ and H, thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity measures are promising for applications which involve short and noisy time series.

  8. Geologic Map of the Sheep Hole Mountains 30' x 60' Quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.

    2002-01-01

    This data set describes and maps the geology of the Sheep Hole Mountains 30' x 60' quadrangle in southern California. The quadrangle covers an area of the Mojave Desert characterized by desert ranges separated by broad basins. Ranges include parts of the Old Woman, Ship, Iron, Coxcomb, Pinto, Bullion, and Calumet mountains as well as Lead Mountain and the Kilbeck Hills. Basins include part of Ward Valley, part of Cadiz Valley including Cadiz Lake playa, and broad valleys occupied by the Bristol Lake and Dale Lake playas. Bedrock geologic units in the ranges range in age from Proterozoic to Quaternary. The valleys expose Neogene and Quaternary deposits. Proterozoic granitoids in the quadrangle include the Early Proterozoic Fenner Gneiss, Kilbeck Gneiss, Dog Wash Gneiss, granite of Joshua Tree, the (highly peraluminous granite) gneiss of Dry Lakes valley, and a Middle Proterozoic granite. Proterozoic supracrustal rocks include the Pinto Gneiss of Miller (1938) and the quartzite of Pinto Mountain. Early Proterozoic orogeny left an imprint of metamorphic mineral assemblages and fabrics in the older rocks. A Cambrian to Triassic sequence deposited on the continental shelf lies above a profound nonconformity developed on the Proterozoic rocks. Small metamorphosed remnants of this sequence in the quadrangle include rocks correlated to the Tapeats, Bright Angel, Bonanza King, Redwall, Bird Spring, Hermit, Coconino, Kaibab, and Moenkopi formations. The Dale Lake Volcanics (Jurassic), and the McCoy Mountains Formation of Miller (1944)(Cretaceous and Jurassic?) are younger Mesozoic synorogenic supracrustal rocks in the quadrangle. Mesozoic intrusions form much of the bedrock in the quadrangle, and represent a succession of magmatic arcs. The oldest rock is the Early Triassic quartz monzonite of Twentynine Palms. Extensive Jurassic magmatism is represented by large expanses of granitoids that range in composition from gabbro to syenogranite. They include the Virginia May

  9. Synthesis and Deprotonation of Aminophosphane Complexes: First K/N(H)R Phosphinidenoid Complexes and Access to a Complex with a P2 N-Ring Ligand.

    PubMed

    Majhi, Paresh Kumar; Kyri, Andreas Wolfgang; Schmer, Alexander; Schnakenburg, Gregor; Streubel, Rainer

    2016-10-17

    Synthesis of 1,1'-bifunctional aminophosphane complexes 3 a-e was achieved by the reaction of Li/Cl phosphinidenoid complex 2 with various primary amines (R=Me, iPr, tBu, Cy, Ph). Deprotonation of complex 3 a (R=Me) with potassium hexamethyldisilazide yielded a mixture of K/NHMe phosphinidenoid complex 4 a and potassium phosphanylamido complex 4 a'. Treatment of complex 3 c (R=tBu) and e (R=Ph) with KHMDS afforded the first examples of K/NHR phosphinidenoid complexes 4 c and e. The reaction of complex 3 c with 2 molar equivalents of KHMDS followed by PhPCl 2 afforded complexes 5 c,c', which possess a P 2 N-ring ligand. All complexes were characterized by NMR, IR, MS, and microanalysis, and additionally, complexes 3 b-e and 5 c' were scrutinized by single-crystal X-ray crystallography. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The timing of eclogite facies metamorphism and migmatization in the Orlica–Śnieżnik complex, Bohemian Massif: Constraints from a multimethod geochronological study

    USGS Publications Warehouse

    Brocker, M.; Klemd, R.; Cosca, M.; Brock, W.; Larionov, A.N.; Rodionov, N.

    2009-01-01

    The Orlica–Śnieżnik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370- to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c.370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country-rock gneiss from the location Nowa Wieś suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt-forming high-temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh-temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet

  11. Microstructural and fabric characterization of brittle-ductile transitional deformation of middle crustal rocks along the Jinzhou detachment fault zone, Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Juyi; Jiang, Hao; Liu, Junlai

    2017-04-01

    Detachment fault zones (DFZs) of metamorphic core complexes generally root into the middle crust. Exhumed DFZs therefore generally demonstrate structural, microstructural and fabric features characteristic of middle to upper crustal deformation. The Jinzhou detachment fault zone from the Liaonan metamorphic core complex is characterized by the occurrence of a sequence of fault rocks due to progressive shearing along the fault zone during exhumation of the lower plate. From the exhumed fabric zonation, cataclastic rocks formed in the upper crust occur near the Jinzhou master detachment fault, and toward the lower plate gradually changed to mylonites, mylonitic gneisses and migmatitic gneisses. Correspondingly, these fault rocks have various structural, microstructural and fabric characteristics that were formed by different deformation and recrystallization mechanisms from middle to upper crustal levels. At the meanwhile, various structural styles for strain localization were formed in the DFZ. As strain localization occurs, rapid changes in deformation mechanisms are attributed to increases in strain rates or involvement of fluid phases during the brittle-ductile shearing. Optical microscopic studies reveal that deformed quartz aggregates in the lower part of the detachment fault zone are characterized by generation of dynamically recrystallized grains via SGR and BLG recrystallization. Quartz rocks from the upper part of the DFZ have quartz porphyroclasts in a matrix of very fine recrystallized grains. The porphyroclasts have mantles of sub-grains and margins grain boundary bulges. Electron backscattered diffraction technique (EBSD) quartz c-axis fabric analysis suggests that quartz grain aggregates from different parts of the DFZ possess distinct fabric complexities. The c-axis fabrics of deformed quartz aggregates from mylonitic rocks in the lower part of the detachment fault zone preserve Y-maxima which are ascribed to intermediate temperature deformation (500

  12. Selenophene transition metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Carter James

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η 5- and the η 1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand.more » In the final paper, the C-H bond activation of η 1(S)-bound thiophenes, η 1(S)-benzothiophene and η 1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η 1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh 3)Re(2-benzothioenylcarbene)]O 3SCF 3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η 1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.« less

  13. Bacterial formate hydrogenlyase complex.

    PubMed

    McDowall, Jennifer S; Murphy, Bonnie J; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A; Sargent, Frank

    2014-09-23

    Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.

  14. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    PubMed

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Complexes and imagination.

    PubMed

    Kast, Verena

    2014-11-01

    Fantasies as imaginative activities are seen by Jung as expressions of psychic energy. In the various descriptions of active imagination the observation of the inner image and the dialogue with inner figures, if possible, are important. The model of symbol formation, as Jung describes it, can be experienced in doing active imagination. There is a correspondence between Jung's understanding of complexes and our imaginations: complexes develop a fantasy life. Complex episodes are narratives of difficult dysfunctional relationship episodes that have occurred repeatedly and are internalized with episodic memory. This means that the whole complex episode (the image for the child and the image for the aggressor, connected with emotions) is internalized and can get constellated in everyday relationship. Therefore inner dialogues do not necessarily qualify as active imaginations, often they are the expression of complex-episodes, very similar to fruitless soliloquies. If imaginations of this kind are repeated, new symbols and new possibilities of behaviour are not found. On the contrary, old patterns of behaviour and fantasies are perpetuated and become cemented. Imaginations of this kind need an intervention by the analyst. In clinical examples different kinds of imaginations are discussed. © 2014, The Society of Analytical Psychology.

  16. Structure of complexes between aluminum chloride and other chlorides, 2: Alkali-(chloroaluminates). Gaseous complexes

    NASA Technical Reports Server (NTRS)

    Hargittai, M.

    1980-01-01

    The structural chemistry of complexes between aluminum chloride and other metal chlorides is important both for practice and theory. Condensed-phase as well as vapor-phase complexes are of interest. Structural information on such complexes is reviewed. The first emphasis is given to the molten state because of its practical importance. Aluminum chloride forms volatile complexes with other metal chlorides and these vapor-phase complexes are dealt with in the second part. Finally, the variations in molecular shape and geometrical parameters are summarized.

  17. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marikos, M.A.; Barton, M.D.

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Ndmore » and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.« less

  18. Complex Questions Promote Complex Thinking

    ERIC Educational Resources Information Center

    Degener, Sophie; Berne, Jennifer

    2017-01-01

    Intermediate-grade teachers often express concerns about meeting the Common Core State Standards for Reading, primarily because of the emphasis on deep understanding of complex texts. No matter how difficult the text, if teachers demand little of the reading, student meaning making is not challenged. This article offers a tool for teachers to…

  19. Physical Complexity and Cognitive Evolution

    NASA Astrophysics Data System (ADS)

    Jedlicka, Peter

    Our intuition tells us that there is a general trend in the evolution of nature, a trend towards greater complexity. However, there are several definitions of complexity and hence it is difficult to argue for or against the validity of this intuition. Christoph Adami has recently introduced a novel measure called physical complexity that assigns low complexity to both ordered and random systems and high complexity to those in between. Physical complexity measures the amount of information that an organism stores in its genome about the environment in which it evolves. The theory of physical complexity predicts that evolution increases the amount of `knowledge' an organism accumulates about its niche. It might be fruitful to generalize Adami's concept of complexity to the entire evolution (including the evolution of man). Physical complexity fits nicely into the philosophical framework of cognitive biology which considers biological evolution as a progressing process of accumulation of knowledge (as a gradual increase of epistemic complexity). According to this paradigm, evolution is a cognitive `ratchet' that pushes the organisms unidirectionally towards higher complexity. Dynamic environment continually creates problems to be solved. To survive in the environment means to solve the problem, and the solution is an embodied knowledge. Cognitive biology (as well as the theory of physical complexity) uses the concepts of information and entropy and views the evolution from both the information-theoretical and thermodynamical perspective. Concerning humans as conscious beings, it seems necessary to postulate an emergence of a new kind of knowledge - a self-aware and self-referential knowledge. Appearence of selfreflection in evolution indicates that the human brain reached a new qualitative level in the epistemic complexity.

  20. Multi-Dimensional Scaling based grouping of known complexes and intelligent protein complex detection.

    PubMed

    Rehman, Zia Ur; Idris, Adnan; Khan, Asifullah

    2018-06-01

    Protein-Protein Interactions (PPI) play a vital role in cellular processes and are formed because of thousands of interactions among proteins. Advancements in proteomics technologies have resulted in huge PPI datasets that need to be systematically analyzed. Protein complexes are the locally dense regions in PPI networks, which extend important role in metabolic pathways and gene regulation. In this work, a novel two-phase protein complex detection and grouping mechanism is proposed. In the first phase, topological and biological features are extracted for each complex, and prediction performance is investigated using Bagging based Ensemble classifier (PCD-BEns). Performance evaluation through cross validation shows improvement in comparison to CDIP, MCode, CFinder and PLSMC methods Second phase employs Multi-Dimensional Scaling (MDS) for the grouping of known complexes by exploring inter complex relations. It is experimentally observed that the combination of topological and biological features in the proposed approach has greatly enhanced prediction performance for protein complex detection, which may help to understand various biological processes, whereas application of MDS based exploration may assist in grouping potentially similar complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  2. Subsumed complexity: abiogenesis as a by-product of complex energy transduction

    NASA Astrophysics Data System (ADS)

    Adam, Z. R.; Zubarev, D.; Aono, M.; Cleaves, H. James

    2017-11-01

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity, organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  3. Complex chimerism

    PubMed Central

    Ma, Kimberly K.; Petroff, Margaret G.; Coscia, Lisa A.; Armenti, Vincent T.; Adams Waldorf, Kristina M.

    2013-01-01

    Thousands of women with organ transplantation have undergone successful pregnancies, however little is known about how the profound immunologic changes associated with pregnancy might influence tolerance or rejection of the allograft. Pregnant women with a solid organ transplant are complex chimeras with multiple foreign cell populations from the donor organ, fetus, and mother of the pregnant woman. We consider the impact of complex chimerism and pregnancy-associated immunologic changes on tolerance of the allograft both during pregnancy and the postpartum period. Mechanisms of allograft tolerance are likely dynamic during pregnancy and affected by the influx of fetal microchimeric cells, HLA relationships (between the fetus, pregnant woman and/or donor), peripheral T cell tolerance to fetal cells, and fetal minor histocompatibility antigens. Further research is necessary to understand the complex immunology during pregnancy and the postpartum period of women with a solid organ transplant. PMID:23974274

  4. Complexity Leadership: A Theoretical Perspective

    ERIC Educational Resources Information Center

    Baltaci, Ali; Balci, Ali

    2017-01-01

    Complex systems are social networks composed of interactive employees interconnected through collaborative, dynamic ties such as shared goals, perspectives and needs. Complex systems are largely based on "the complex system theory". The complex system theory focuses mainly on finding out and developing strategies and behaviours that…

  5. Complexity and robustness

    PubMed Central

    Carlson, J. M.; Doyle, John

    2002-01-01

    Highly optimized tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes, (i) highly structured, nongeneric, self-dissimilar internal configurations, and (ii) robust yet fragile external behavior. HOT claims these are the most important features of complexity and not accidents of evolution or artifices of engineering design but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on real-world examples and also model systems, particularly those from self-organized criticality. PMID:11875207

  6. The "Golden Shale": An indicator of coastal stability for Marble Point, McMurdo Sound, over the last four million years

    USGS Publications Warehouse

    Claridge, G.G.C.; Campbell, I.B.

    2007-01-01

    A small sedimentary deposit near Gneiss Point on the western side of McMurdo Sound, previously identified as shale, is described. The deposit is phillipsite, a zeolite that is believed to have formed from the deposition and alteration of volcanic ash in a small ice-marginal saline lake. Other previously recorded occurrences of phillipsite in the dry valleys are believed to be several million years old. A similar age for this deposit is suggested for the Gneiss Point deposit. This is consistent with other weathering and landscape features found in the immediate area, including traces of halloysite in soils. The deposit is very close to sea level but could not have formed if the site had been below sea level, indicating that there has been very little uplift following that which caused the sea to retreat from the Wright Fiord.

  7. Aspartate aminotransferase is potently inhibited by copper complexes: Exploring copper complex-binding proteome.

    PubMed

    Jia, Yuqi; Lu, Liping; Yuan, Caixia; Feng, Sisi; Zhu, Miaoli

    2017-05-01

    Recent researches indicated that a copper complex-binding proteome that potently interacted with copper complexes and then influenced cellular metabolism might exist in organism. In order to explore the copper complex-binding proteome, a copper chelating ion-immobilized affinity chromatography (Cu-IMAC) column and mass spectrometry were used to separate and identify putative Cu-binding proteins in primary rat hepatocytes. A total of 97 putative Cu-binding proteins were isolated and identified. Five higher abundance proteins, aspartate aminotransferase (AST), malate dehydrogenase (MDH), catalase (CAT), calreticulin (CRT) and albumin (Alb) were further purified using a SP-, and (or) Q-Sepharose Fast Flow column. The interaction between the purified proteins and selected 11 copper complexes and CuCl 2 was investigated. The enzymes inhibition tests demonstrated that AST was potently inhibited by copper complexes while MDH and CAT were weakly inhibited. Schiff-based copper complexes 6 and 7 potently inhibited AST with the IC 50 value of 3.6 and 7.2μM, respectively and exhibited better selectivity over MDH and CAT. Fluorescence titration results showed the two complexes tightly bound to AST with binding constant of 3.89×10 6 and 3.73×10 6 M -1 , respectively and a stoichiometry ratio of 1:1. Copper complex 6 was able to enter into HepG2 cells and further inhibit intracellular AST activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Embracing uncertainty, managing complexity: applying complexity thinking principles to transformation efforts in healthcare systems.

    PubMed

    Khan, Sobia; Vandermorris, Ashley; Shepherd, John; Begun, James W; Lanham, Holly Jordan; Uhl-Bien, Mary; Berta, Whitney

    2018-03-21

    Complexity thinking is increasingly being embraced in healthcare, which is often described as a complex adaptive system (CAS). Applying CAS to healthcare as an explanatory model for understanding the nature of the system, and to stimulate changes and transformations within the system, is valuable. A seminar series on systems and complexity thinking hosted at the University of Toronto in 2016 offered a number of insights on applications of CAS perspectives to healthcare that we explore here. We synthesized topics from this series into a set of six insights on how complexity thinking fosters a deeper understanding of accepted ideas in healthcare, applications of CAS to actors within the system, and paradoxes in applications of complexity thinking that may require further debate: 1) a complexity lens helps us better understand the nebulous term "context"; 2) concepts of CAS may be applied differently when actors are cognizant of the system in which they operate; 3) actor responses to uncertainty within a CAS is a mechanism for emergent and intentional adaptation; 4) acknowledging complexity supports patient-centred intersectional approaches to patient care; 5) complexity perspectives can support ways that leaders manage change (and transformation) in healthcare; and 6) complexity demands different ways of implementing ideas and assessing the system. To enhance our exploration of key insights, we augmented the knowledge gleaned from the series with key articles on complexity in the literature. Ultimately, complexity thinking acknowledges the "messiness" that we seek to control in healthcare and encourages us to embrace it. This means seeing challenges as opportunities for adaptation, stimulating innovative solutions to ensure positive adaptation, leveraging the social system to enable ideas to emerge and spread across the system, and even more important, acknowledging that these adaptive actions are part of system behaviour just as much as periods of stability are. By

  9. Perimetric Complexity of Binary Digital Images: Notes on Calculation and Relation to Visual Complexity

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    2011-01-01

    Perimetric complexity is a measure of the complexity of binary pictures. It is defined as the sum of inside and outside perimeters of the foreground, squared, divided by the foreground area, divided by 4p . Difficulties arise when this definition is applied to digital images composed of binary pixels. In this paper we identify these problems and propose solutions. Perimetric complexity is often used as a measure of visual complexity, in which case it should take into account the limited resolution of the visual system. We propose a measure of visual perimetric complexity that meets this requirement.

  10. Complexity and the Arrow of Time

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.; Davies, Paul C. W.; Ruse, Michael

    2013-08-01

    1. What is complexity? Is it increasing? Charles H. Lineweaver, Paul C. W. Davies and Michael Ruse; 2. Directionality principles from cancer to cosmology Paul C. W. Davies; 3. A simple treatment of complexity: cosmological entropic boundary conditions on increasing complexity Charles H. Lineweaver; 4. Using complexity science to search for unity in the natural sciences Eric J. Chaisson; 5. On the spontaneous generation of complexity in the universe Seth Lloyd; 6. Emergent spatiotemporal complexity in field theory Marcelo Gleiser; 7. Life: the final frontier for complexity? Simon Conway Morris; 8. Evolution beyond Newton, Darwin, and entailing law: the origin of complexity in the evolving biosphere Stuart A. Kauffman; 9. Emergent order in processes: the interplay of complexity, robustness, correlation, and hierarchy in the biosphere D. Eric Smith; 10. The inferential evolution of biological complexity: forgetting nature by learning to nurture David C. Krakauer; 11. Information width: a way for the second law to increase complexity David Wolpert; 12. Wrestling with biological complexity: from Darwin to Dawkins Michael Ruse; 13. The role of generative entrenchment and robustness in the evolution of complexity William C. Wimsatt; 14. On the plurality of complexity-producing mechanisms Philip Clayton; Index.

  11. Method for preparing radiopharmaceutical complexes

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1989-05-02

    A method for preparing radiopharmaceutical complexes that are substantially free of the reaction materials used to produce the radiopharmaceutical complex is disclosed. The method involves admixing in a suitable first solvent in a container a target seeking ligand or salt or metal adduct thereof, a radionuclide label, and a reducing agent for said radionuclide, thereby forming said radiopharmaceutical complex; coating the interior walls of the container with said pharmaceutical complex; discarding the solvent containing by-products and unreacted starting reaction materials; and removing the radiopharmaceutical complex from said walls by dissolving it in a second solvent, thereby obtaining said radiopharmaceutical complex substantially free of by-products and unreacted starting materials.

  12. The bacterial flagellar switch complex is getting more complex

    PubMed Central

    Cohen-Ben-Lulu, Galit N; Francis, Noreen R; Shimoni, Eyal; Noy, Dror; Davidov, Yaacov; Prasad, Krishna; Sagi, Yael; Cecchini, Gary; Johnstone, Rose M; Eisenbach, Michael

    2008-01-01

    The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions. PMID:18337747

  13. Recommendations for the Development of a Dust Suppressant Test Operations Procedure (TOP) Performed at the U.S. Army Yuma Proving Ground

    DTIC Science & Technology

    2010-02-08

    variety of bedrock types including: igneous ( basalt , granite, and rhyolite), metamorphic (schist and gneiss), and sedimentary rocks of Quaternary...TerraLOC® Standard formulation was applied. Chemical dust suppressant formulations vary widely, to include salts, oils, fiber mixtures and synthetic

  14. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  15. Subsumed complexity: abiogenesis as a by-product of complex energy transduction.

    PubMed

    Adam, Z R; Zubarev, D; Aono, M; Cleaves, H James

    2017-12-28

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity , organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  16. Characterisation and monitoring of the Excavation Disturbed Zone (EDZ) in fractured gneisses of the Roselend underground laboratory: permeability measurements, transport property changes and related radon bursts

    NASA Astrophysics Data System (ADS)

    Wassermann, Jérôme; Sabroux, Jean-Christophe; Richon, Patrick; Pontreau, Sébastien; Guillon, Sophie; Pili, Eric

    2010-05-01

    The Roselend tunnel was drilled in the fifties by blasting in the micashists, granites and gneisses of the Méraillet massif (French Alps). It is situated on the shore of the Roselend reservoir Lake near its dam. Several tectonic shear fractures related to the Alpine orogeny intersect the dead end tunnel (with length of 128 m and section about 2 m), indeed the fracture density varies from 0.45 to 1 fracture per meter along the tunnel (Dezayes and Villemin 2002). Some fractures are partially or totally filled with secondary minerals. The flow rates of percolating water through the fractured medium are seasonal dependent. Large fractures drain a large fluid volume unlike small ones that drain limited fluid volume (Patriarche et al. 2007). The Roselend underground laboratory allows the study of the geochemical and geophysical responses of a fractured rock mass to periodic sollicitations due to water level variations of the nearby Roselend reservoir Lake. The tunnel was instrumented in the nineties to understand the relationship between radon (Rn-222) concentration and water level variations of the Roselend reservoir Lake (Trique et al. 1999). In order to characterize the geometry and the extent of the EDZ, core drilling and permeability measurements through pneumatic testing are performed along the Roselend tunnel. Drilled core analysis consists of direct observations at a macroscopic scale of fractures (density of fractures from EDZ) and also at a microscopic scale via thin sections. Method of pressure build-up in wells (Jakubick and Franz 1993, Bossart et al. 2002) is used to determine permeability profile along each borehole and hence to precise the extent and geometry of the EDZ. A strong correlation is observed between permeability profiles and the density of fractures estimated from core analysis. The extent of the EDZ appears to be about one tunnel radius i.e. one meter around the tunnel corridor. Another experiment consisting of continuous differential

  17. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Guodong

    In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl 2 (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti(η 2-PhC≡CPh), with aromatic aldehydes or aryl ketones resulted in reductive couplingmore » of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti(η 2-PhC≡CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph) 2C(Ph) 2O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti(η 2-PhC≡CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol and α-hydroxy ketones to benzaldehyde and α-diketones, respectively. Other high valent metalloporphyrin complexes also can catalyze the oxidative diol cleavage and the benzyl alcohol oxidation reactions with dioxygen. A comparison of Ti(IV) and Sn(IV) porphyrin chemistry was undertaken. While chelated diolato complexes were invariably obtained for titanium porphyrins on treatment with 1,2-diols, the reaction of vicinal diols with tin porphyrins gave a number of products, including mono-, bis-alkoxo, and chelating diolato complexes

  18. Mathematics and complex systems.

    PubMed

    Foote, Richard

    2007-10-19

    Contemporary researchers strive to understand complex physical phenomena that involve many constituents, may be influenced by numerous forces, and may exhibit unexpected or emergent behavior. Often such "complex systems" are macroscopic manifestations of other systems that exhibit their own complex behavior and obey more elemental laws. This article proposes that areas of mathematics, even ones based on simple axiomatic foundations, have discernible layers, entirely unexpected "macroscopic" outcomes, and both mathematical and physical ramifications profoundly beyond their historical beginnings. In a larger sense, the study of mathematics itself, which is increasingly surpassing the capacity of researchers to verify "by hand," may be the ultimate complex system.

  19. Visual complexity: a review.

    PubMed

    Donderi, Don C

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from research on single forms, form and texture arrays and visual displays. Form complexity and form probability are shown to be linked through their reciprocal relationship in complexity theory, which is in turn shown to be consistent with recent developments in perceptual learning and neural circuit theory. Directions for further research are suggested.

  20. Hydridomethyl iridium complex

    DOEpatents

    Bergman, Robert G.; Buchanan, J. Michael; Stryker, Jeffrey M.; Wax, Michael J.

    1989-01-01

    A process for functionalizing methane comprising: (a) reacting methane with a hydridoalkyl metal complex of the formula: CpIr[P(R.sub.1).sub.3 ]H(R.sub.2) wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical having from 1 to 5 carbon atoms; Ir represents an iridium atom; P represents a phosphorus atom; R.sub.1 represents an alkyl group; R.sub.2 represents an alkyl group having at least two carbon atoms; and H represents a hydrogen atom, in the presence of a liquid alkane R.sub.3 H having at least three carbon atoms to form a hydridomethyl complex of the formula: CpIr[P(R.sub.1).sub.3 ]HMe where Me represents a methyl radical. (b) reacting said hydridomethyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X"X'"X"" or CHX'X"X'"; wherein X', X", X"', and X"" represent halogens selected from bromine, iodine and chlorine, to halomethyl complex of step (a) having the formula: CpIr[P(R.sub.1).sub.3 ]MeX: (c) reacting said halomethyl complex with a mercuric halide of the formula HgX.sub.2 to form a methyl mercuric halide of the formula HgMeX; and (d) reacting said methyl mercuric halide with a molecular halogen of the formula X.sub.2 to form methyl halide.

  1. Predicting Physical Interactions between Protein Complexes*

    PubMed Central

    Clancy, Trevor; Rødland, Einar Andreas; Nygard, Ståle; Hovig, Eivind

    2013-01-01

    Protein complexes enact most biochemical functions in the cell. Dynamic interactions between protein complexes are frequent in many cellular processes. As they are often of a transient nature, they may be difficult to detect using current genome-wide screens. Here, we describe a method to computationally predict physical interactions between protein complexes, applied to both humans and yeast. We integrated manually curated protein complexes and physical protein interaction networks, and we designed a statistical method to identify pairs of protein complexes where the number of protein interactions between a complex pair is due to an actual physical interaction between the complexes. An evaluation against manually curated physical complex-complex interactions in yeast revealed that 50% of these interactions could be predicted in this manner. A community network analysis of the highest scoring pairs revealed a biologically sensible organization of physical complex-complex interactions in the cell. Such analyses of proteomes may serve as a guide to the discovery of novel functional cellular relationships. PMID:23438732

  2. The crustal structure of the eastern Fennoscandian Shield and central part of the East-European platform based on seismic, regional geophysic and geological data

    NASA Astrophysics Data System (ADS)

    Mints, M. V.; Berzin, R. G.; Babayants, P. S.; Konilov, A. N.; Suleimanov, A. K.; Zamozhniaya, N. G.; Zlobin, V. L.

    2003-04-01

    The 1-EU and 4B CDP transects worked out during 1998-2002 years by "Spetsgeophyzica", together with previously developed CDP profiles, have crossed most of the main tectonic units of the eastern Fennoscandian Shield and central part of the East-European platform. They provide seismic images of the Early Precambrian crust and upper mantle from the surface to about 80 km depth (25 s). The Neoarchaean granite-greenstone complexes of the Karelia craton along the 4B profile form a series of the tectonic slices descending eastward, some of which can be traced to the Moho. The Palaeoproterozoic structures presented by two main types: (1) volcano-sedimentary (VS) and (2) granulite-gneiss (GN) belts. The Pechenga-Varzuga VS belt has been identified as overthrust-underthrust southward-dipping package. Tectonic slices formed by the Palaeoproterozoic VS belts alternating with slices of the Neoarchaean granite-gneisses form the imbricated crustal unit that extends along the eastern margin of the Neoarchaean Karelia craton. The slices dip steeply northeastward flattening and partially juxtaposing at 20 km depth at the 1-EU cross-section. This level, which can be understood as the surface of main detachment, ascends westward. An imbrication and related thickening of the crust was caused by displacement of crustal slices in western and southwestern directions because of the Palaeoproterozoic collision event. The Palaeoproterozoic Onega unit comprising VS assemblages originated in a setting of the rifted passive margin forms the northwestward displaced thrust nappe complex. It is considered initially belonging to the southern edge of the Svecofennian passive margin. The Lapland GN belt has been transected by the Polar and EGGI profiles. Both cross-sections demonstrated that it constitutes thick composite crustal-scale tectonic slice. According to geophysical data, the continuation of the Lapland GN belt beneath the platform cover of the East European Craton forms an extended arch

  3. Intimate Views of Cretaceous Plutons, the Colorado River Extensional Corridor, and Colorado River Stratigraphy in and near Topock Gorge, Southwest USA

    NASA Astrophysics Data System (ADS)

    Howard, K. A.; John, B. E.; Nielson, J. E.; Miller, J. M.; Priest, S. S.

    2010-12-01

    Geologic mapping of the Topock 7.5’ quadrangle, CA-AZ, reveals a structurally complex part of the Colorado River extensional corridor, and a younger stratigraphic record of landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and diabase sheets are exposed through cross-sectional thicknesses of many kilometers. Mesozoic to Tertary igneous rocks intrude the older rocks and include dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite exposed in the Arizona part of the quad reconstruct, if Miocene deformation is restored, as cupolas capping the sill-like Chemehuevi Mountains batholith exposed in California. A nonconformity between Proterozoic and Miocene rocks reflects pre-Miocene uplift and erosional stripping of regional Paleozoic and Mesozoic strata. Thick (1-3 km) Miocene sections of volcanic rocks, sedimentary breccias, and conglomerate record the Colorado River extensional corridor’s structural and erosional evolution. Four major Miocene low-angle normal faults and a steep block-bounding Miocene fault divide the deformed rocks into major structural plates and giant tilted blocks on the east side of the Chemehuevi Mountains core complex. The low-angle faults attenuate >10 km of crustal section, superposing supracrustal and upper crustal rocks against originally deeper gneisses and granitoids. The block-bounding Gold Dome fault zone juxtaposes two large hanging-wall blocks, each tilted 90°, and splays at its tip into folds that deform layered Miocene rocks. A 15-16 Ma synfaulting intrusion occupies the triangular zone or gap where the folding strata detached from an inside corner along this fault between the tilt blocks. Post-extensional landscape evolution is recorded by upper Miocene to Quaternary strata, locally deformed. This includes several Pliocene and younger aggradational episodes in the Colorado River valley, and intervening degradation

  4. Operational Shock Complexity Theory

    DTIC Science & Technology

    2005-05-26

    Theory : Recommendations For The National Strategy To Defeat Terrorism.” Student Issue Paper, Center for Strategic Leadership , US Army War College, July...Lens of Complexity Theory : Recommendations For The National Strategy To Defeat Terrorism.” (Student Issue Paper, Center for Strategic Leadership , US... Leadership Complexity theory affects the training of leaders. With the enemy system able to develop its complexity either through interaction with US

  5. Geology and fluorspar deposits, Northgate district, Colorado

    USGS Publications Warehouse

    Steven, Thomas A.

    1960-01-01

    The fluorspar deposits in the Northgate district, Jackson County, Colo., are among the largest in Western United States. The mines were operated intermittently during the 1920's and again during World War II, but production during these early periods of operation was not large. Mining was begun on a larger scale in 1951, and the district has assumed a prominent position among the fluorspar producers in the United States. Within the Northgate district, Precambrian metamorphic and igneous rocks crop out largely in the Medicine Bow Mountains, and later sedimentary rocks underlie North Park and fill old stream valleys in the mountains. The metamorphic rocks constitute a gneiss complex that formed under progressively changing conditions of regional metamorphism. They consist principally of hornblende-plagioclase gneiss (hornblende gneiss), quartz monzonite gneiss, pegmatite, biotite-garnet-quartz-plagioclase gneiss (biotite-garnet gneiss), hornblende-biotite-quartz-plagioclase gneiss (hornblende-biotite gneiss) and mylonite gneiss. The igneous rocks comprise some local fine-grained dacite porphyry dikes near the west margin of the district, and a quartz monzonitic stock and associated dikes in the central and eastern parts of the district. The sedimentary rocks in the district range in age from Permian to Recent. Folded Permian and Mesozoic rocks underlie the basin of North Park, and consist in sequence from oldest to youngest, of Satanka(?) shale (0-50 feet of brick-red shale) and Forelle(?) limestone (8-15 feet of pink to light-gray laminated limestone) of Permian age, Chugwater formation of Permian and Triassic age (690 feet of red silty shale and sandstone), Sundance formation of Late Jurassic age (145 feet of sandstone containing some shale and limestone), Morrison formation of Late Jurassic age (445 feet of variegated shale and minor sandstone and limestone), Dakota group as used by Lee (1927), now considered to be of Early Cretaceous age in this area (200

  6. Petrography and geochemistry of precambrian rocks from GT-2 and EE-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, A.W.; Eddy, A.

    1977-08-01

    During the drilling of GT-2 and EE-1, 27 cores totaling about 35 m were collected from the Precambrian section. Samples of each different lithology in each core were taken for petrographic and whole-rock major- and trace-element analyses. Whole-rock analyses are now completed on 37 samples. From these data four major Precambrian units were identified at the Fenton Hill site. Geophysical logs and cuttings were used to extrapolate between cores. The most abundant rock type is an extremely variable gneissic unit comprising about 75% of the rock penetrated. This rock is strongly foliated and may range compositionally from syenogranitic to tonaliticmore » over a few centimeters. The bulk of the unit falls within the monzogranite field. Interlayered with the gneiss is a ferrohastingsite-biotite schist which compositionally resembles a basaltic andesite. A fault contact between the schist and gneiss was observed in one core. Intrusive into this metamorphic complex are two igneous rocks. A leucocratic monzogranite occurs as at least two 15-m-thick dikes, and a biotite-granodiorite body was intercepted by 338 m of drill hole. Both rocks are unfoliated and equigranular. The biotite granodiorite is very homogeneous and is characterized by high modal contents of biotite and sphene and by high K/sub 2/O, TiO/sub 2/, and P/sub 2/O/sub 5/ contents. Although all of the cores examined show fractures, most of these are tightly sealed or healed. Calcite is the most abundant fracture filling mineral, but epidote, quartz, chlorite, clays or sulfides have also been observed. The degree of alteration of the essential minerals normally increases as these fractures are approached. The homogeneity of the biotite granodiorite at the bottom of GT-2 and the high degree of fracture filling ensure an ideal setting for the Hot Dry Rock Experiment.« less

  7. The Chunky Gal Mountain fault-detachment-normal fault providing evidence for Early-to-Middle Paleozoic extensional unroofing of the eastern Blue Ridge, or folded thrust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, R.D. Jr.

    1993-03-01

    The Chunky Gal Mountain fault (CGMF), located in the western Blue Ridge of southern NC and northern GA, contains unequivocal evidence for hanging wall-down-to-the-west movement. The 50 m-thick fault zone here consists of a series of shear zones in the footwall in a mass of mylonitized garnet-rich biotite gneiss. The main contact with the hanging wall reveals both a contrast in rock type and truncation of fabrics. Above the fault are amphibolite, ultramafic rocks, and minor metasandstone and pelitic schist of the Buck Creek mafic-ultramafic complex, while the footwall contains complexly folded metasandstone, pelitic schist, and calcsilicate pods of themore » Coleman River Formation. In the present orientation, the mylonitic foliation in the footwall rocks of the GGMF is subvertical; foliation in the hanging wall is subhorizontal at road level. These rocks were metamorphosed to upper amphibolite facies assemblages, and, after emplacement of the CGMF, were cut by brittle faults and trondhjemite dikes that contain no obvious tectonic fabric. Movement on the CGMF occurred near the thermal peak because enough heat remained in the rocks after movement to statically anneal the mylonite microfabric, but mesoscopic rotated porphyroclasts, rotated (dragged) earlier foliation, and some S-C fabrics clearly indicate the shear sense and vergence of this structure. Shear zones related to the CGMF transposed earlier fabrics, although some relicts preserving earlier structures remain in the shear zones. These rotated but untransposed relicts of amphibolite and garnet-rich biotite gneiss mylonite may indicate locally higher strain rates in subsidiary shear zones. The thermal/mechanical properties of the CGMF make it difficult to connect to the Shope Fork or Soque River thrusts farther south and east. Thus the hanging-wall-down configuration provides an alternative hypothesis that the CGMF may be a detachment-normal fault related to Taconian extensional unroofing of the Appalachians.« less

  8. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    PubMed

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  9. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations

    PubMed Central

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results. PMID:28467431

  10. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  11. Describing the complexity of systems: multivariable "set complexity" and the information basis of systems biology.

    PubMed

    Galas, David J; Sakhanenko, Nikita A; Skupin, Alexander; Ignac, Tomasz

    2014-02-01

    Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.

  12. Structural and petrophysical characterization: from outcrop rock analogue to reservoir model of deep geothermal prospect in Eastern France

    NASA Astrophysics Data System (ADS)

    Bertrand, Lionel; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément

    2017-04-01

    The Scientific Interest Group (GIS) GEODENERGIES with the REFLET project aims to develop a geological and reservoir model for fault zones that are the main targets for deep geothermal prospects in the West European Rift system. In this project, several areas are studied with an integrated methodology combining field studies, boreholes and geophysical data acquisition and 3D modelling. In this study, we present the results of reservoir rock analogues characterization of one of these prospects in the Valence Graben (Eastern France). The approach used is a structural and petrophysical characterization of the rocks outcropping at the shoulders of the rift in order to model the buried targeted fault zone. The reservoir rocks are composed of fractured granites, gneiss and schists of the Hercynian basement of the graben. The matrix porosity, permeability, P-waves velocities and thermal conductivities have been characterized on hand samples coming from fault zones at the outcrop. Furthermore, fault organization has been mapped with the aim to identify the characteristic fault orientation, spacing and width. The fractures statistics like the orientation, density, and length have been identified in the damaged zones and unfaulted blocks regarding the regional fault pattern. All theses data have been included in a reservoir model with a double porosity model. The field study shows that the fault pattern in the outcrop area can be classified in different fault orders, with first order scale, larger faults distribution controls the first order structural and lithological organization. Between theses faults, the first order blocks are divided in second and third order faults, smaller structures, with characteristic spacing and width. Third order fault zones in granitic rocks show a significant porosity development in the fault cores until 25 % in the most locally altered material, as the damaged zones develop mostly fractures permeabilities. In the gneiss and schists units, the

  13. Deformation in the hanging wall of Cretaceous HP rocks (Austroalpine Ötztal-Stubai Complex, European Eastern Alps): constraints on timing, conditions and kinematics

    NASA Astrophysics Data System (ADS)

    Habler, Gerlinde; Thöni, Martin; Grasemann, Bernhard; Sölva, Helmuth; Cotza, Gianluca

    2010-05-01

    The position and nature of the tectonic boundary between the Cretaceous eclogite facies metamorphic Texel Complex (Sölva et al. 2005, TC) and the Ötztal-Stubai Complex sensu stricto (OSC) with predominantly pre-Cretaceous tectonometamorphic imprint remained a matter of discussion (Fügenschuh et al. 2009). Sölva et al (2005) described the Cretaceous Schneeberg Normal Fault Zone (SNFZ) as the major tectonic boundary between the exhuming TC and the OSC, where the major portion of ductile deformation was partitioned into the rheologically weak Schneeberg/Monteneve Unit (SMU). In contrast, other authors proposed a model of a coherent vertical crustal section in the southern OSC (Schmid and Haas 1989), which was rotated and exhumed by erosion due to Oligocene large scale refolding (Fügenschuh et al. 2009). Here, new Rb-Sr data of muscovite and biotite from para- and orthogneisses from the Ferwalltal and Timmelsjoch areas (Austria/Italy) were correlated with mineral chemical and structural data in order to constrain the age and kinematics of the predominant deformational imprint in the OSC representing the hanging wall of the SNFZ. In the Ferwalltal the undisturbed OSC/SMU boundary is exposed. Above that boundary an amphibolite facies mylonitic foliation (Sc1) represented by the compositional layering of coarse grained Qtz, Bt and dynamically recrystallized Pl interferes with an overprinting mylonitic foliation (Sc2) with spatially heterogeneous intensity. Sc1-planes were syn-tectonically overgrown by euhedral Grt with single phase continuous prograde chemical zoning and Bt-porphyroblasts. Dc2 postdated garnet growth and caused the formation of SCC' fabrics in Bt-Pl gneisses. Still Qtz recrystallized dynamically, whereas Ms and Bt newly crystallized during Dc2. In the study area, the lithological boundaries in the OSC mainly are subparallel to the predominant foliation Sc1. These planes dip with 45-50° to the NW-NNW and show a WNW-plunging stretching lineation (LSc1

  14. Ages of the Xinghuadukou Group in the Erguna Block, NE China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Hou, W.

    2016-12-01

    The Xinghuadukou group is outcropped in the Erguna block (EB) of NE China, which is an important component of the eastern segment of the Central Asian Orogenic Belt (CAOB). This group was previously classified as Paleoproterozoic in age. However, recent studies reported Paleozoic ages from the meta-volcanic rocks, Paleoproterozoic to Neoarchean detrital zircon ages from the meta-sedimentary rocks and Neoproterozoic ages from the granitoids. The tectonic affinity of the EB is still debated. In order to clarify the aforementioned issues, 19 samples were collected from the Xinghuadukou group from the Mohe region in NE China. All samples underwent gneiss facies metamorphism, including two-mica granitic gneiss and quartz biotite gneiss. Based on the protolith discrimination diagram of Si—(al+fm)-(c+alk) system, 7 samples originated from sedimentary rocks and the other 12 of igneous origin. The orthogneiss samples were plotted as diorite, granodiorite and granite respectively in TAS, showing felsic character (SiO2 57% - 74%). One orthogneiss and one paragneiss samples were chosen to conduct the LA-ICP-MS U-Pb zircon age analysis. Apart from one zircon with the age of 742 Ma shows evident metamorphic rim, all zircons from the orthogneiss show euhedral to subhedral prismatic shape and typical concentric or oscillatory structure indicating the igneous origin. The concordant age of 2478±26 Ma was generated, indicating the existence of the near Archean basement of the EB. The detrital zircons from the paragneiss produced age populations cluster at 0.6, 0.8, 1.9, 2.6 and 2.7 Ga, lacking of the Grenville event age. The youngest zircon age is 395 Ma, taken as the maximum depositional age of the sedimentary protolith. According to the new data obtained, it is suggested that the Xinghuadukou group comprises the early Paleoproterozoic granite-gneiss, which proves the granitic basement of the Erguna block. The sedimentary rocks formed overlying the basement during the early

  15. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    PubMed

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  16. U-Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Power, S.E.; Gilotti, J.A.; Mazdab, F.K.; Wopenka, B.

    2006-01-01

    Obtaining reliable estimates for the timing of eclogite-facies metamorphism is critical to establishing models for the formation and exhumation of high-pressure and ultrahigh-pressure (UHP) metamorphic terranes in collisional orogens. The presence of pressure-dependent phases, such as coesite, included in metamorphic zircon is generally regarded as evidence that zircon growth occurred at UHP conditions and, ifdated, should provide the necessary timing information. We report U-Pb sensitive high-resolution ion microprobe (SHRIMP) ages and trace-element SHRIMP data from coesite-bearing zircon suites formed during UHP metamorphism in the North- East Greenland Caledonides. Kyanite eclogite and quartzofeldspathic host gneiss samples from an island in J??kelbugt (78??00'N, 18??04'W) contained subspherical zircons with well-defined domains in cathodoluminescence (CL) images. The presence of coesite is confirmed by Raman spectroscopy in six zircons from four samples. Additional components of the eclogite-facies inclusion suite include kyanite, omphacite, garnet, and rutile. The trace-element signatures in core domains reflect modification of igneous protolith zircon. Rim signatures show flat heavy rare earth element (HREE) patterns that are characteristic of eclogite-facies zircon. The kyanite eclogites generally lack a Eu anomaly, whereas a negative Eu anomaly persists in all domains of the host gneiss. The 207Pb- corrected 206Pb/238U ages range from 330 to 390 Ma for the host gneiss and 330-370 Ma for the kyanite eclogite. Weighted mean 206Pb/238U ages for coesite-bearing domains vary from 364 ?? 8 Ma for the host gneiss to 350 ?? 4 Ma for kyanite eclogite. The combined U-Pb and REE data interpreted in conjunction with observed CL domains and inclusion suites suggest that (1) Caledonian metamorphic zircon formed by both new zircon growth and recrystallization, (2) UHP metamorphism occurred near the end of the Caledonian collision, and (3) the 30-50m.y. span of ages

  17. Salen complexes with dianionic counterions

    DOEpatents

    Job, Gabriel E.; Farmer, Jay J.; Cherian, Anna E.

    2016-08-02

    The present invention describes metal salen complexes having dianionic counterions. Such complexes can be readily precipitated and provide an economical method for the purification and isolation of the complexes, and are useful to prepare novel polymer compositions.

  18. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  19. Offdiagonal complexity: A computationally quick complexity measure for graphs and networks

    NASA Astrophysics Data System (ADS)

    Claussen, Jens Christian

    2007-02-01

    A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.

  20. Reconnaissance geology of the Jabal Bitran quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kahr, Viktor P.; Overstreet, W.C.; Whitlow, J.W.; Ankary, A.O.

    1972-01-01

    The Jabal Bitten quadrangle covers an area of 2833 sq km in the eastern part of the Precambrian Shield in Saudi Arabia. The rocks in the quadrangle are divided geographically alone arcuate north-trending lines into an eastern area of granite intruded by a swarm of dikes of rhyolite and andesite, and a western area of dominantly pelitic chlorite-sericite schist, separated by the narrow central complex of the Idsas Range. This complex is composed of pyroclastic rocks, lava, conglomerate, marble, and plutonic mafic rocks that have been intricately modified by episodes of metamorphism, igneous intrusion, and faulting. The Idsas Range contains ancient gold and copper mines, and deposits of magnetite, copper, asbestos, and chromite. The rocks in the Jabal Bitten quadrangle are here interpreted to consist of three major sedimentary and volcanic groups, the lowermost of which was deposited unconformably on hornblende-biotite granite gneiss, and all of which are intruded by granite dikes and plutons. From oldest to youngest the layered rocks are called Halaban Group, Bi'r Khountina Group, and Murdama Group, A biotite-hornblende granite is older than uppermost Bi'r Khountina, and peralkalic granite is younger than Murdama. The layered rocks of these groups are generally metamorphosed to the greenschist facies. The metamorphic grade rises abruptly at the Idsas Range to the albite-epidote-amphibolite facies and lower subfacies of the amphibolite facies in parts of the Halaban Group; some skarn east of the range may be in the upper part of the amphibolite facies. Characteristically, the Halaban Group has the highest grade and the greatest range in metamorphic grade, and the Murdama Group has the lowest but most uniformly developed metamorphic grade. The metamorphism of the rocks was caused by three successive pulses of regional dynamothermal metamorphism plus contact metamorphism around the younger bodies of plutonic igneous rocks. Four major structural elements of the

  1. SCAR/WAVE: A complex issue.

    PubMed

    Davidson, Andrew J; Insall, Robert H

    2013-11-01

    The SCAR/WAVE complex drives the actin polymerisation that underlies protrusion of the front of the cell and thus drives migration. However, it is not understood how the activity of SCAR/WAVE is regulated to generate the infinite range of cellular shape changes observed during cell motility. What are the relative roles of the subunits of the SCAR/WAVE complex? What signaling molecules do they interact with? And how does the complex integrate all this information in order to control the temporal and spatial polymerisation of actin during protrusion formation? Unfortunately, the interdependence of SCAR complex members has made genetic dissection hard. In our recent paper,(1) we describe stabilization of the Dictyostelium SCAR complex by a small fragment of Abi. Here we summarize the main findings and discuss how this approach can help reveal the inner workings of this impenetrable complex.

  2. Complexation-assisted reduction: complexes of glutaroimide-dioxime with tetravalent actinides (Np( iv ) and Th( iv ))

    DOE PAGES

    Zhang, Zhicheng; Parker, Bernard F.; Lohrey, Trevor D.; ...

    2018-01-01

    Glutaroimide-dioxime forms strong complexes with Np( iv ) and Th( iv ) in aqueous solution and in crystals. The formation of Np( iv ) complexes from initial Np( v ) is interpreted by a complexation-assisted reduction mechanism.

  3. Complexation-assisted reduction: complexes of glutaroimide-dioxime with tetravalent actinides (Np( iv ) and Th( iv ))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhicheng; Parker, Bernard F.; Lohrey, Trevor D.

    Glutaroimide-dioxime forms strong complexes with Np( iv ) and Th( iv ) in aqueous solution and in crystals. The formation of Np( iv ) complexes from initial Np( v ) is interpreted by a complexation-assisted reduction mechanism.

  4. Complex adaptive systems: concept analysis.

    PubMed

    Holden, Lela M

    2005-12-01

    The aim of this paper is to explicate the concept of complex adaptive systems through an analysis that provides a description, antecedents, consequences, and a model case from the nursing and health care literature. Life is more than atoms and molecules--it is patterns of organization. Complexity science is the latest generation of systems thinking that investigates patterns and has emerged from the exploration of the subatomic world and quantum physics. A key component of complexity science is the concept of complex adaptive systems, and active research is found in many disciplines--from biology to economics to health care. However, the research and literature related to these appealing topics have generated confusion. A thorough explication of complex adaptive systems is needed. A modified application of the methods recommended by Walker and Avant for concept analysis was used. A complex adaptive system is a collection of individual agents with freedom to act in ways that are not always totally predictable and whose actions are interconnected. Examples include a colony of termites, the financial market, and a surgical team. It is often referred to as chaos theory, but the two are not the same. Chaos theory is actually a subset of complexity science. Complexity science offers a powerful new approach--beyond merely looking at clinical processes and the skills of healthcare professionals. The use of complex adaptive systems as a framework is increasing for a wide range of scientific applications, including nursing and healthcare management research. When nursing and other healthcare managers focus on increasing connections, diversity, and interactions they increase information flow and promote creative adaptation referred to as self-organization. Complexity science builds on the rich tradition in nursing that views patients and nursing care from a systems perspective.

  5. Humic acid protein complexation

    NASA Astrophysics Data System (ADS)

    Tan, W. F.; Koopal, L. K.; Weng, L. P.; van Riemsdijk, W. H.; Norde, W.

    2008-04-01

    Interactions of purified Aldrich humic acid (PAHA) with lysozyme (LSZ) are investigated. In solution LSZ is moderately positively and PAHA negatively charged at the investigated pH values. The proton binding of PAHA and of LSZ is determined by potentiometric proton titrations at various KCl concentrations. It is also measured for two mixtures of PAHA-LSZ and compared with theoretically calculated proton binding assuming no mutual interaction. The charge adaptation due to PAHA-LSZ interaction is relatively small and only significant at low and high pH. Next to the proton binding, the mass ratio PAHA/LSZ at the iso-electric point (IEP) of the complex at given solution conditions is measured together with the pH using the Mütek particle charge detector. From the pH changes the charge adaptation due to the interaction can be found. Also these measurements show that the net charge adaptation is weak for PAHA-LSZ complexes at their IEP. PAHA/LSZ mass ratios in the complexes at the IEP are measured at pH 5 and 7. At pH 5 and 50 mmol/L KCl the charge of the complex is compensated for 30-40% by K +; at pH 7, where LSZ has a rather low positive charge, this is 45-55%. At pH 5 and 5 mmol/L KCl the PAHA/LSZ mass ratio at the IEP of the complex depends on the order of addition. When LSZ is added to PAHA about 25% K + is included in the complex, but no K + is incorporated when PAHA is added to LSZ. The flocculation behavior of the complexes is also different. After LSZ addition to PAHA slow precipitation occurs (6-24 h) in the IEP, but after addition of PAHA to LSZ no precipitation can be seen after 12 h. Clearly, PAHA/LSZ complexation and the colloidal stability of PAHA-LSZ aggregates depend on the order of addition. Some implications of the observed behavior are discussed.

  6. Doxorubicin Lipid Complex Injection

    MedlinePlus

    ... has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also ... has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also ...

  7. The timing of high-temperature retrogression in the Reynolds Range, central Australia: constraints from garnet and epidote Pb-Pb dating

    NASA Astrophysics Data System (ADS)

    Buick, Ian S.; Frei, Robert; Cartwright, Ian

    Lower Calcsilicate Unit metasediments and underlying migmatitic Napperby Gneiss metagranite at Conical Hill in the Reynolds Range, central Australia, underwent regional high-grade ( 680 to 720°C), low-pressure/high-temperature metamorphism at 1594+/- 6Ma. The Lower Calcsilicate Unit is extensively quartz veined and epidotised, and discordant grandite garnet+epidote quartz veins may be traced over tens of metres depth into pegmatites that pooled at the Lower Calcsilicate Unit-Napperby Gneiss contact. The quartz veins were probably precipitated by water-rich fluids that exsolved from partial melts derived from the Napperby Gneiss during cooling from the peak of regional metamorphism to the wet granite solidus. Pb stepwise leaching (PbSL) on garnet from three discordant quartz veins yielded comparable single mineral isochrons of 1566+/-32Ma, 1576+/-3Ma and 1577+/-5Ma, which are interpreted as the age of garnet growth in the veins. These dates are in good agreement with previous Sensitive High Resolution Ion Microprobe (SHRIMP) ages of zircon and monazite formed during high-temperature retrogression (1586+/-5 to 1568+/-4Ma) elsewhere in the Reynolds Range. The relatively small age difference between peak metamorphism and retrograde veining suggests that partial melting and melt crystallisation controlled fluid recycling in the high-grade rocks. However, PbSL experiments on epidote intergrown with, and partially replacing, garnet in two of the veins yielded isochrons of 1454+/-34 and 1469+/- 26Ma. The 100-120Ma age difference between intergrown garnet and late epidote from the same vein suggests that the vein systems may have experienced multiple episodes of fluid flow.

  8. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China

    NASA Astrophysics Data System (ADS)

    Song, Shuguang; Yang, Jingsui; Liou, J. G.; Wu, Cailai; Shi, Rendeng; Xu, Zhiqin

    2003-10-01

    The Dulan eclogite-gneiss region is located in the eastern part of the North Qaidam eclogite belt, NW China. Widespread evidence demonstrates that this region is a typical ultrahigh-pressure (UHP) metamorphic terrane. Eclogites occur as lenses or layers in both granitic and pelitic gneisses. Two distinguished sub-belts can be recognized and differ in mineralogy, petrology and geochemistry. The North Dulan Belt (NDB) has tholeiitic protoliths with high TiO 2 and lower Al 2O 3 and MgO contents. REE patterns and trace element contents resemble those of N-type and E-type MORB. In contrast, eclogites in the South Dulan Belt (SDB) are of island arc protoliths with low TiO 2, high Al 2O 3 and show LREE-enriched and HFSE-depleted patterns. Sm-Nd isotope analyses give isochron ages of 458-497 Ma for eclogite-facies metamorphism for the two sub-belts. The ages are similar to those of Yuka and Altun eclogites in the western extension of the North Qaidam-Altun eclogite belt. The Dulan UHP metamorphic terrane, together with several other recently recognized eclogite-bearing terrenes within the North Qaidam-Altun HP-UHP belt, constitute the key to the understanding of the tectonic evolution of the northern Tibetan Plateau. The entire UHP belt extends for more than 1000 km from the Dulan UHP terrane in the southeast to the Altun eclogite-gneiss terrane in the west. This super-belt marks an early Paleozoic continental collision zone between the Qaidam Massif and the Qilian Massif.

  9. Clearance and organ localization of particles and soluble complexes in mice with circulating complexes.

    PubMed Central

    Carter, S D; Brennan, F M; Grace, S A; Elson, C J

    1984-01-01

    The clearance and organ localization of a number of substances cleared by either Fc-dependent or -independent mechanisms was studied in normal mice and in mice with endogenously produced persistent circulating complexes. Clearance of covalent dimers of mouse IgG, chicken IgG and ovalbumin were no different between the two groups of mice. By contrast, hepatic and splenic uptake of dimeric mouse IgG (but not of chicken IgG or ovalbumin dimer) was impaired in the mice with persisting complexes. Surprisingly the rate of clearance of sheep red blood cells (SRBC) was increased in mice with persisting complexes as was hepatic uptake of polyvinyl pyrrolidone. It is suggested that the mononuclear phagocytes of mice with persistent circulating complexes are non-specifically stimulated while their ability to take up soluble complexes by Fc-dependent attachment is selectively impaired. PMID:6746002

  10. Internal complexity and environmental sensitivity in hospitals.

    PubMed

    Ashmos, D P; Duchon, D; Hauge, F E; McDaniel, R R

    1996-01-01

    Theory suggests that organizations should respond to external complexity with internal complexity. We examine whether "environmentally sensitive" hospitals are more internally complex than "environmentally insensitive" hospitals. Results show that environmentally sensitive and insensitive hospitals differed on three of the measures of internal complexity: goal complexity, strategic complexity, and relational complexity.

  11. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  12. Identification of a small TAF complex and its role in the assembly of TAF-containing complexes.

    PubMed

    Demény, Màté A; Soutoglou, Evi; Nagy, Zita; Scheer, Elisabeth; Jànoshàzi, Agnes; Richardot, Magalie; Argentini, Manuela; Kessler, Pascal; Tora, Laszlo

    2007-03-21

    TFIID plays a role in nucleating RNA polymerase II preinitiation complex assembly on protein-coding genes. TFIID is a multisubunit complex comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). Another class of multiprotein transcriptional regulatory complexes having histone acetyl transferase (HAT) activity, and containing TAFs, includes TFTC, STAGA and the PCAF/GCN5 complex. Looking for as yet undiscovered subunits by a proteomic approach, we had identified TAF8 and SPT7L in human TFTC preparations. Subsequently, however, we demonstrated that TAF8 was not a stable component of TFTC, but that it is present in a small TAF complex (SMAT), containing TAF8, TAF10 and SPT7L, that co-purified with TFTC. Thus, TAF8 is a subunit of both TFIID and SMAT. The latter has to be involved in a pathway of complex formation distinct from the other known TAF complexes, since these three histone fold (HF)-containing proteins (TAF8, TAF10 and SPT7L) can never be found together either in TFIID or in STAGA/TFTC HAT complexes. Here we show that TAF8 is absolutely necessary for the integration of TAF10 in a higher order TFIID core complex containing seven TAFs. TAF8 forms a heterodimer with TAF10 through its HF and proline rich domains, and also interacts with SPT7L through its C-terminal region, and the three proteins form a complex in vitro and in vivo. Thus, the TAF8-TAF10 and TAF10-SPT7L HF pairs, and also the SMAT complex, seem to be important regulators of the composition of different TFIID and/or STAGA/TFTC complexes in the nucleus and consequently may play a role in gene regulation.

  13. Complexity science and leadership in healthcare.

    PubMed

    Burns, J P

    2001-10-01

    The emerging field of complexity science offers an alternative leadership strategy for the chaotic, complex healthcare environment. A survey revealed that healthcare leaders intuitively support principles of complexity science. Leadership that uses complexity principles offers opportunities in the chaotic healthcare environment to focus less on prediction and control and more on fostering relationships and creating conditions in which complex adaptive systems can evolve to produce creative outcomes.

  14. Activated Prothrombin Complex Concentrate Versus 4-Factor Prothrombin Complex Concentrate for Vitamin K-Antagonist Reversal.

    PubMed

    Rowe, A Shaun; Dietrich, Scott K; Phillips, John W; Foster, Kaci E; Canter, Joshua R

    2018-06-01

    To compare the international normalized ratio normalization efficacy of activated prothrombin complex concentrates and 4-factor prothrombin complex concentrates and to evaluate the thrombotic complications in patients treated with these products for warfarin-associated hemorrhage. Retrospective, Multicenter Cohort. Large, Community, Teaching Hospital. Patients greater than 18 years old and received either activated prothrombin complex concentrate or 4-factor prothrombin complex concentrate for the treatment of warfarin-associated hemorrhage. We excluded those patients who received either agent for an indication other than warfarin-associated hemorrhage, pregnant, had a baseline international normalized ratio of less than 2, received a massive transfusion as defined by hospital protocol, received plasma for treatment of warfarin-associated hemorrhage, or were treated for an acute warfarin ingestion. Patients in the activated prothrombin complex concentrate group (enrolled from one hospital) with an international normalized ratio of less than 5 received 500 IU and those with an international normalized ratio greater than 5 received 1,000 IU. Patients in the 4-factor prothrombin complex concentrate (enrolled from a separate hospital) group received the Food and Drug Administration approved dosing algorithm. A total of 158 patients were included in the final analysis (activated prothrombin complex concentrate = 118; 4-factor prothrombin complex concentrate = 40). Those in the 4-factor prothrombin complex concentrate group had a higher pretreatment international normalized ratio (2.7 ± 1.8 vs 3.5 ± 2.9; p = 0.0164). However, the posttreatment international normalized ratio was similar between the groups. In addition, even when controlling for differences in the pretreatment international normalized ratio, there was no difference in the ability to achieve a posttreatment international normalized ratio of less than 1.4 (odds ratio, 0.753 [95% CI, 0.637-0.890]; p

  15. Complex Functions with GeoGebra

    ERIC Educational Resources Information Center

    Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos

    2016-01-01

    Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…

  16. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  17. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...

  18. The Complexity Trap

    DTIC Science & Technology

    2012-01-01

    proactively and effectively to today’s international environment, prioritization is the key first step —and precisely the opposite reaction to the complacency...formidable than just endless grains of sand.”32 This is not to deny the possibility of nonlinear phenomena, butterfly effects, self-organizing systems...The first step is replac- ing the current reactive worship of complexity with proactive prioritization. To escape the complexity trap, let us dare

  19. Problematisations of Complexity: On the Notion and Production of Diverse Complexities in Healthcare Interventions and Evaluations

    PubMed Central

    Broer, Tineke; Bal, Roland; Pickersgill, Martyn

    2017-01-01

    Abstract Within the literature on the evaluation of health (policy) interventions, complexity is a much-debated issue. In particular, many claim that so-called ‘complex interventions’ pose different challenges to evaluation studies than apparently ‘simple interventions’ do. Distinct ways of doing evaluation entail particular ontologies and epistemologies of complexity. They differ in terms of whether they define complexity as a quantitative trait of interventions, whether they see evaluation as part of or outside the intervention, and whether complexity can be regarded as an emergent property of the intervention and its evaluation. In practice, evaluators and commissioners of large health care improvement programmes rely on different, sometimes contradictory, repertoires about what it means to conduct a ‘good’ evaluation. This is an ongoing matter negotiated between and among commissioners, researchers, and—sometimes—programme managers. In particular, notions of evaluability, usefulness and distance/independence are problematised in different ways and with diverse consequences, which, in turn, produce other notions and layers of complexity such as temporal, institutional and affective complexities. When (social science) researchers claim that one method or another is better able to grasp complexity, they elide the issue that any methodological choice emphasises some complexities and lets others fade into the background. Analysing the practicalities and emotions involved in evaluation studies opens up the notion of complexity to analytical scrutiny, and suggests a basis for co-theorising between biomedical, public health and social scientists (including Science and Technology Studies scholars). PMID:28515573

  20. Fluoroquinolone-Gyrase-DNA Complexes

    PubMed Central

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M.; Hiasa, Hiroshi; Marks, Kevin R.; Kerns, Robert J.; Berger, James M.; Drlica, Karl

    2014-01-01

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases. PMID:24497635

  1. Cranberry magnetite deposits Avery County, N.C., and Carter County, Tenn.

    USGS Publications Warehouse

    Kline, M.H.; Ballard, T.J.

    1948-01-01

    The Cranberry magnetite deposits occur in pre-Cambrian granite-gneiss in a belt extending from 3 miles southeast of Cranberry, N.C., to about 6 miles southwest of Magnetic City, Tenn. The belt forms a curve, elongated to the north, approximately 26 miles in length.

  2. Solar chemistry of metal complexes

    NASA Astrophysics Data System (ADS)

    Gray, H. B.; Maverick, A. W.

    1981-12-01

    Electronic excited states of certain transition metal complexes undergo oxidation-reduction reactions that store chemical energy. Such reactions have been extensively explored for mononuclear complexes. Two classes of polynuclear species exhibit similar properties, and these complexes are now being studied as possible homogeneous sensitizer-catalysts for hydrogen production from aqueous solutions.

  3. The Cauaburi magmatic arc: Litho-stratigraphic review and evolution of the Imeri Domain, Rio Negro Province, Amazonian Craton

    NASA Astrophysics Data System (ADS)

    Carneiro, Marcia C. R.; Nascimento, Rielva S. C.; Almeida, Marcelo E.; Salazar, Carlos A.; Trindade, Ivaldo Rodrigues da; Rodrigues, Vanisse de Oliveira; Passos, Marcel S.

    2017-08-01

    A lithostratigraphic review of the Cauaburi Complex was carried out by means of field, tectono-metamorphic and geochemical data, which were the basis for the sub-division of the Cauaburi Complex orthogneisses into the Santa Izabel do Rio Negro, Cumati and São Jorge facies. These rocks crop out between São Gabriel da Cachoeira and Santa Izabel do Rio Negro, Amazonas, Brazil. The gneisses of the Santa Izabel do Rio Negro and Cumati facies are metaluminous and of calc-alkaline affinity; in turn, the rocks of the São Jorge facies are peraluminous and of alkaline affinity. They vary from (amphibole)-biotite granodiorites/monzogranites (Cumati and Santa Izabel do Rio Negro facies) to spessartite-bearing biotite monzogranites (São Jorge facies). The Cauaburi Complex geochemical signature is compatible with that of granites generated in collisional settings (magmatic arc?) and its evolution is related to three distinct tectono-metamorphic events: D1, causing foliation S1, which developed during the Cauaburi Complex syn-tectonic emplacement in the Cauaburi Orogeny; D2/M2, causing foliation S2, which was generated under amphibolite facies conditions (717.9 °C and 5.84 kbars), and the emplacement of I- and S-type granite during the Içana Orogen, and low-temperature D3, associated with the K'Mudku Event, which caused foliation S3 and reworking via transcurrent shear zones under greenschist facies conditions.

  4. Studying the HIT-Complexity Interchange.

    PubMed

    Kuziemsky, Craig E; Borycki, Elizabeth M; Kushniruk, Andre W

    2016-01-01

    The design and implementation of health information technology (HIT) is challenging, particularly when it is being introduced into complex settings. While complex adaptive system (CASs) can be a valuable means of understanding relationships between users, HIT and tasks, much of the existing work using CASs is descriptive in nature. This paper addresses that issue by integrating a model for analyzing task complexity with approaches for HIT evaluation and systems analysis. The resulting framework classifies HIT-user tasks and issues as simple, complicated or complex, and provides insight on how to study them.

  5. Definitions of Complexity are Notoriously Difficult

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    Definitions of complexity are notoriously difficult if not impossible at all. A good working hypothesis might be: Everything is complex that is not simple. This is precisely the way in which we define nonlinear behavior. Things appear complex for different reasons: i) Complexity may result from lack of insight, ii) complexity may result from lack of methods, and (iii) complexity may be inherent to the system. The best known example for i) is celestial mechanics: The highly complex Pythagorean epicycles become obsolete by the introduction of Newton's law of universal gravitation. To give an example for ii), pattern formation and deterministic chaos became not really understandable before extensive computer simulations became possible. Cellular metabolism may serve as an example for iii) and is caused by the enormous complexity of biochemical reaction networks with up to one hundred individual reaction fluxes. Nevertheless, only few fluxes are dominant in the sense that using Pareto optimal values for them provides near optimal values for all the others...

  6. The evolution of complex life.

    PubMed

    Billingham, J

    1989-01-01

    In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.

  7. Epidemic modeling in complex realities.

    PubMed

    Colizza, Vittoria; Barthélemy, Marc; Barrat, Alain; Vespignani, Alessandro

    2007-04-01

    In our global world, the increasing complexity of social relations and transport infrastructures are key factors in the spread of epidemics. In recent years, the increasing availability of computer power has enabled both to obtain reliable data allowing one to quantify the complexity of the networks on which epidemics may propagate and to envision computational tools able to tackle the analysis of such propagation phenomena. These advances have put in evidence the limits of homogeneous assumptions and simple spatial diffusion approaches, and stimulated the inclusion of complex features and heterogeneities relevant in the description of epidemic diffusion. In this paper, we review recent progresses that integrate complex systems and networks analysis with epidemic modelling and focus on the impact of the various complex features of real systems on the dynamics of epidemic spreading.

  8. On the Way to Appropriate Model Complexity

    NASA Astrophysics Data System (ADS)

    Höge, M.

    2016-12-01

    When statistical models are used to represent natural phenomena they are often too simple or too complex - this is known. But what exactly is model complexity? Among many other definitions, the complexity of a model can be conceptualized as a measure of statistical dependence between observations and parameters (Van der Linde, 2014). However, several issues remain when working with model complexity: A unique definition for model complexity is missing. Assuming a definition is accepted, how can model complexity be quantified? How can we use a quantified complexity to the better of modeling? Generally defined, "complexity is a measure of the information needed to specify the relationships between the elements of organized systems" (Bawden & Robinson, 2015). The complexity of a system changes as the knowledge about the system changes. For models this means that complexity is not a static concept: With more data or higher spatio-temporal resolution of parameters, the complexity of a model changes. There are essentially three categories into which all commonly used complexity measures can be classified: (1) An explicit representation of model complexity as "Degrees of freedom" of a model, e.g. effective number of parameters. (2) Model complexity as code length, a.k.a. "Kolmogorov complexity": The longer the shortest model code, the higher its complexity (e.g. in bits). (3) Complexity defined via information entropy of parametric or predictive uncertainty. Preliminary results show that Bayes theorem allows for incorporating all parts of the non-static concept of model complexity like data quality and quantity or parametric uncertainty. Therefore, we test how different approaches for measuring model complexity perform in comparison to a fully Bayesian model selection procedure. Ultimately, we want to find a measure that helps to assess the most appropriate model.

  9. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Complexity in language learning and treatment.

    PubMed

    Thompson, Cynthia K

    2007-02-01

    To introduce a Clinical Forum focused on the Complexity Account of Treatment Efficacy (C. K. Thompson, L. P. Shapiro, S. Kiran, & J. Sobecks, 2003), a counterintuitive but effective approach for treating language disorders. This approach espouses training complex structures to promote generalized improvement of simpler, linguistically related structures. Three articles are included, addressing complexity in treatment of phonology, lexical-semantics, and syntax. Complexity hierarchies based on models of normal language representation and processing are discussed in each language domain. In addition, each article presents single-subject controlled experimental studies examining the complexity effect. By counterbalancing treatment of complex and simple structures across participants, acquisition and generalization patterns are examined as they emerge. In all language domains, cascading generalization occurs from more to less complex structures; however, the opposite pattern is rarely seen. The results are robust, with replication within and across participants. The construct of complexity appears to be a general principle that is relevant to treating a range of language disorders in both children and adults. While challenging the long-standing clinical notion that treatment should begin with simple structures, mounting evidence points toward the facilitative effects of using more complex structures as a starting point for treatment.

  11. Neurosurgical implications of Carney complex.

    PubMed

    Watson, J C; Stratakis, C A; Bryant-Greenwood, P K; Koch, C A; Kirschner, L S; Nguyen, T; Carney, J A; Oldfield, E H

    2000-03-01

    The authors present their neurosurgical experience with Carney complex. Carney complex, characterized by spotty skin pigmentation, cardiac myxomas, primary pigmented nodular adrenocortical disease, pituitary tumors, and nerve sheath tumors (NSTs), is a recently described, rare, autosomal-dominant familial syndrome that is relatively unknown to neurosurgeons. Neurosurgery is required to treat pituitary adenomas and a rare NST, the psammomatous melanotic schwannoma (PMS), in patients with Carney complex. Cushing's syndrome, a common component of the complex, is caused by primary pigmented nodular adrenocortical disease and is not secondary to an adrenocorticotropic hormone-secreting pituitary adenoma. The authors reviewed 14 cases of Carney complex, five from the literature and nine from their own experience. Of the 14 pituitary adenomas recognized in association with Carney complex, 12 developed growth hormone (GH) hypersecretion (producing gigantism in two patients and acromegaly in 10), and results of immunohistochemical studies in one of the other two were positive for GH. The association of PMSs with Carney complex was established in 1990. Of the reported tumors, 28% were associated with spinal nerve sheaths. The spinal tumors occurred in adults (mean age 32 years, range 18-49 years) who presented with pain and radiculopathy. These NSTs may be malignant (10%) and, as with the cardiac myxomas, are associated with significant rates of morbidity and mortality. Because of the surgical comorbidity associated with cardiac myxoma and/or Cushing's syndrome, recognition of Carney complex has important implications for perisurgical patient management and family screening. Study of the genetics of Carney complex and of the biological abnormalities associated with the tumors may provide insight into the general pathobiological abnormalities associated with the tumors may provide insight into the general pathobiological features of pituitary adenomas and NSTs.

  12. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes

    PubMed Central

    Torreira, Eva; Jha, Sudhakar; López-Blanco, José R.; Arias-Palomo, Ernesto; Chacón, Pablo; Cañas, Cristina; Ayora, Sylvia; Dutta, Anindya; Llorca, Oscar

    2008-01-01

    Summary Pontin and reptin belong to the AAA+ family and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a cryo-electron microscopy reconstruction at 13 Å. Pontin/reptin hetero-dodecamers were purified from in vivo assembled complexes forming a double ring. Two rings interact through flexible domains projecting from each hexamer, constituting an atypical asymmetric form of oligomerization. These flexible domains and the AAA+ cores reveal significant conformational changes when compared to the crystal structure of human pontin that generate enlarged channels. This structure of endogenously assembled pontin/reptin complexes is different to previously described structures, suggesting that pontin and reptin could acquire distinct structural states to regulate their broad functions as molecular motors and scaffolds for nucleic acids and proteins. PMID:18940606

  13. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes.

    PubMed

    Srihari, Sriganesh; Yong, Chern Han; Patil, Ashwini; Wong, Limsoon

    2015-09-14

    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organisation of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their limitations and challenges, in particular at detecting sparse and small or sub-complexes and discerning overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. COMPLEXITY IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    The enormous complexity of ecosystems is generally obvious under even the most cursory examination. In the modern world, this complexity is further augmented by the linkage of ecosystems to economic and social systems through the human use of the environment for technological pu...

  15. Complex Regional Pain Syndrome

    MedlinePlus

    ... Other major and minor traumas — such as surgery, heart attacks, infections and even sprained ankles — can also lead to complex regional pain syndrome. It's not well-understood why these injuries can trigger complex regional pain syndrome. Not everyone who has ...

  16. Effects of Task Complexity on the Fluency and Lexical Complexity in EFL Students' Argumentative Writing

    ERIC Educational Resources Information Center

    Ong, Justina; Zhang, Lawrence Jun

    2010-01-01

    Based on Robinson's (2001a,b, 2003) Cognition Hypothesis and Skehan's (1998) Limited Attentional Capacity Model, this study explored the effects of task complexity on the fluency and lexical complexity of 108 EFL students' argumentative writing. Task complexity was manipulated using three factors: (1) availability of planning time; (2) provision…

  17. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with

  18. Information geometric methods for complexity

    NASA Astrophysics Data System (ADS)

    Felice, Domenico; Cafaro, Carlo; Mancini, Stefano

    2018-03-01

    Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence, we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.

  19. On Reinventing Education in the Age of Complexity: A Vygotsky-­Inspired Generative Complexity Approach

    ERIC Educational Resources Information Center

    Jörg, Ton

    2017-01-01

    Reinventing education is the ultimate aim of this contribution. The approach taken is a radical new complexity-inspired bottom-up approach which shows complexity as the fount of creativity and innovation. Organizing complexity accordingly may be the foundation for a new complexified vision of education. It all starts with new thinking in…

  20. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  1. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE PAGES

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao; ...

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  2. Complexity leadership: a healthcare imperative.

    PubMed

    Weberg, Dan

    2012-01-01

    The healthcare system is plagued with increasing cost and poor quality outcomes. A major contributing factor for these issues is that outdated leadership practices, such as leader-centricity, linear thinking, and poor readiness for innovation, are being used in healthcare organizations. Complexity leadership theory provides a new framework with which healthcare leaders may practice leadership. Complexity leadership theory conceptualizes leadership as a continual process that stems from collaboration, complex systems thinking, and innovation mindsets. Compared to transactional and transformational leadership concepts, complexity leadership practices hold promise to improve cost and quality in health care. © 2012 Wiley Periodicals, Inc.

  3. Turbulent complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  4. New U-Pb zircon age data on polyphase plutono-metamorphic complex in western Enderby Land (East Antarctica) and its implications for Neoproterozoic amalgamation of the Gondwanaland

    NASA Astrophysics Data System (ADS)

    Mikhalskii, Evgenii; Krylov, Dmitriy; Rodionov, Nikolay

    2017-04-01

    Western Enderby Land occupies a key position on Gondwanaland reconstructions near India - Sri Lanka - Antarctica junction and eastwards the Lützow-Holm Bay metamorphic complex commonly identified as a Cambrian suture zone. We present U-Pb zircon isotopic age determinations with SHRIMP II obtained on tonalite- to granite-gneiss samples from the Thala Hills and the Polkanova Hills. In the Thala Hills three high-temperature tectonomagmatic episodes may be distinguished at ca 980-970 Ma, ca 780-720 Ma, and ca 545-530 Ma. All of them included sin-kinematic granitic orthogneiss protolith emplacements and high-grade metamorphism. In the Polkanova Hills tonalitic to granodioritic orthogneisses, intercalated with prevailing amphibolites, were emplaced during ca 980-950 Ma episode (or at both of these ages) and subsequently metamorphosed under amphibolite facies accompanied by migmatization at ca 600-530 Ma. The ca 980-950 Ma event corresponds to the Rayner Structural Episode which affected much of East Antarctica, including Sør Rondane Mountains to the west and Kemp Land to the east of study area. The Polkanova Hills area is underlain by basic amphibolites and tonalitic to granodioritic orthogneisses characterized by LILE enrichment and Nb-Ta troughs in a primitive mantle normalized spiderdiagram suggestive of derivation in arc-related convergent palaeotectonic environments. Co-eval orthogneisses in the Thala Hills are characterized by granitic compositions and occur in intercalation with paragneisses, which points out to more in-land palaeotectonic environments. The ca 780-720 Ma episode included two events at ca 780 Ma (high-grade anatexis) and 720 Ma (sin-tectonic granitoid emplacement) and was roughly co-eval with magmatic and/or metamorphic events in Dronning Maud Land of East Antarctica as well as in other Gondwanaland regions, like Madagascar, Sri Lanka and eastern Africa. The ca 780-720 Ma episode (Thala Episode) may be correlated with the East African Orogeny

  5. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  6. Being pragmatic about healthcare complexity: our experiences applying complexity theory and pragmatism to health services research.

    PubMed

    Long, Katrina M; McDermott, Fiona; Meadows, Graham N

    2018-06-20

    The healthcare system has proved a challenging environment for innovation, especially in the area of health services management and research. This is often attributed to the complexity of the healthcare sector, characterized by intersecting biological, social and political systems spread across geographically disparate areas. To help make sense of this complexity, researchers are turning towards new methods and frameworks, including simulation modeling and complexity theory. Herein, we describe our experiences implementing and evaluating a health services innovation in the form of simulation modeling. We explore the strengths and limitations of complexity theory in evaluating health service interventions, using our experiences as examples. We then argue for the potential of pragmatism as an epistemic foundation for the methodological pluralism currently found in complexity research. We discuss the similarities between complexity theory and pragmatism, and close by revisiting our experiences putting pragmatic complexity theory into practice. We found the commonalities between pragmatism and complexity theory to be striking. These included a sensitivity to research context, a focus on applied research, and the valuing of different forms of knowledge. We found that, in practice, a pragmatic complexity theory approach provided more flexibility to respond to the rapidly changing context of health services implementation and evaluation. However, this approach requires a redefinition of implementation success, away from pre-determined outcomes and process fidelity, to one that embraces the continual learning, evolution, and emergence that characterized our project.

  7. Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore–microtubule attachments

    PubMed Central

    Zelter, Alex; Riffle, Michael; MacCoss, Michael J.; Asbury, Charles L.; Davis, Trisha N.

    2018-01-01

    Accurate segregation of chromosomes relies on the force-bearing capabilities of the kinetochore to robustly attach chromosomes to dynamic microtubule tips. The human Ska complex and Ndc80 complex are outer-kinetochore components that bind microtubules and are required to fully stabilize kinetochore–microtubule attachments in vivo. While purified Ska complex tracks with disassembling microtubule tips, it remains unclear whether the Ska complex–microtubule interaction is sufficiently strong to make a significant contribution to kinetochore–microtubule coupling. Alternatively, Ska complex might affect kinetochore coupling indirectly, through recruitment of phosphoregulatory factors. Using optical tweezers, we show that the Ska complex itself bears load on microtubule tips, strengthens Ndc80 complex-based tip attachments, and increases the switching dynamics of the attached microtubule tips. Cross-linking mass spectrometry suggests the Ska complex directly binds Ndc80 complex through interactions between the Ska3 unstructured C-terminal region and the coiled-coil regions of each Ndc80 complex subunit. Deletion of the Ska complex microtubule-binding domain or the Ska3 C terminus prevents Ska complex from strengthening Ndc80 complex-based attachments. Together, our results indicate that the Ska complex can directly strengthen the kinetochore–microtubule interface and regulate microtubule tip dynamics by forming an additional connection between the Ndc80 complex and the microtubule. PMID:29487209

  8. Performance Improvement Assuming Complexity

    ERIC Educational Resources Information Center

    Rowland, Gordon

    2007-01-01

    Individual performers, work teams, and organizations may be considered complex adaptive systems, while most current human performance technologies appear to assume simple determinism. This article explores the apparent mismatch and speculates on future efforts to enhance performance if complexity rather than simplicity is assumed. Included are…

  9. U1A Complex

    ScienceCinema

    None

    2018-01-16

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  10. Unifying Complexity and Information

    NASA Astrophysics Data System (ADS)

    Ke, Da-Guan

    2013-04-01

    Complex systems, arising in many contexts in the computer, life, social, and physical sciences, have not shared a generally-accepted complexity measure playing a fundamental role as the Shannon entropy H in statistical mechanics. Superficially-conflicting criteria of complexity measurement, i.e. complexity-randomness (C-R) relations, have given rise to a special measure intrinsically adaptable to more than one criterion. However, deep causes of the conflict and the adaptability are not much clear. Here I trace the root of each representative or adaptable measure to its particular universal data-generating or -regenerating model (UDGM or UDRM). A representative measure for deterministic dynamical systems is found as a counterpart of the H for random process, clearly redefining the boundary of different criteria. And a specific UDRM achieving the intrinsic adaptability enables a general information measure that ultimately solves all major disputes. This work encourages a single framework coving deterministic systems, statistical mechanics and real-world living organisms.

  11. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP)more » with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  12. Workspace Program for Complex-Number Arithmetic

    NASA Technical Reports Server (NTRS)

    Patrick, M. C.; Howell, Leonard W., Jr.

    1986-01-01

    COMPLEX is workspace program designed to empower APL with complexnumber capabilities. Complex-variable methods provide analytical tools invaluable for applications in mathematics, science, and engineering. COMPLEX written in APL.

  13. Tectonic Implications of Paleoproterozoic Deo Khe Granitoids in Northwestern Vietnam

    NASA Astrophysics Data System (ADS)

    Hoang, T. H. A.; Yu, Y.; Pham, T. H.; Choi, S. H.; Tu, V. L.; Son, L. M.

    2015-12-01

    An integrated study of petrographic description, zircon U/Pb geochronology, and Hf isotopic analysis was carried out on the medium-grained two-mica Deo Khe Granitoids (DKG) in northwestern Vietnam. U/Pb zircon ages were 1855-1873 Ma, interpreted as the time of magma crystallization. On the basis of Hf isotopic compositions, a single-stage Hf model ages were estimated as 3.3-2.8 Ga. Values of Hf isotopes ɛHf (t) range from -23.6 to -17.5, suggesting that the DKG are products of reworked Archean crustal rocks. A similar sequence of tectonic events including the presence of 2.8-2.9 Ga tonalite-trondhjemite-granodiorite (TTG) gneiss, metamorphic development of TTG gneiss at 1.9-2.0 Ga, and 1.85 Ga magmatic activity were recognized both in Yangtze block and northwestern Vietnam. Therefore we propose that basement rocks in northern Vietnam are similar to those found along southern China.

  14. Seismic anisotropy of the Archean crust in the Minnesota River Valley, Superior Province

    NASA Astrophysics Data System (ADS)

    Ferré, Eric C.; Gébelin, Aude; Conder, James A.; Christensen, Nik; Wood, Justin D.; Teyssier, Christian

    2014-03-01

    The Minnesota River Valley (MRV) subprovince is a well-exposed example of late Archean lithosphere. Its high-grade gneisses display a subhorizontal layering, most likely extending down to the crust-mantle boundary. The strong linear fabric of the gneisses results from high-temperature plastic flow during collage-related contraction. Seismic anisotropies measured up to 1 GPa in the laboratory, and seismic anisotropies calculated through forward-modeling indicate ΔVP ~5-6% and ΔVS ~3%. The MRV crust exhibits a strong macroscopic layering and foliation, and relatively strong seismic anisotropies at the hand specimen scale. Yet the horizontal attitude of these structures precludes any substantial contribution of the MRV crust to shear wave splitting for vertically propagating shear waves such as SKS. The origin of the regionally low seismic anisotropy must lie in the upper mantle. A horizontally layered mantle underneath the United States interior could provide an explanation for the observed low SWS.

  15. Inheritance, Variscan tectonometamorphic evolution and Permian to Mesozoic rejuvenations in the metamorphic basement complexes of the Romanian Carpathians revealed by monazite microprobe geochronology

    NASA Astrophysics Data System (ADS)

    Săbău, Gavril; Negulescu, Elena

    2014-05-01

    South Carpathians contain lower Paleozoic or older units intruded by Ordovician granitoids, imbricated with juvenile Variscan slivers, the structural sequence differing in individual basement complexes. So, in the Leaota Massif the lowermost term of the sequence is prograde Variscan, tectonically overlain by reworked lower Paleozoic gneisses, supporting thrust sheets with very low- to low-grade Variscan schists. In the Făgăraş Massif a lower Paleozoic (Cumpăna) complex bearing a strong Variscan overprint, straddles Variscan juvenile rocks, and the lowermost visible structural level is assumed by upper Carboniferous to Permian juvenile medium-grade metamorphic schists. In the Lotru Metamorphic Suite of the Alpine Getic Nappe, the Variscan stacking is overprinted by post-orogenic differential uplift, documented by the correlation among younging ages, structural and metamorphic low-pressure overprints, recording often higher metamorphic temperatures. The most spectacular structure is Upper Jurassic in age, contains high-grade metamorphic rocks and peraluminous anatectic granitoids, is outlined by a deformed boundary evolving from ductile to brittle regime during cooling, and induces a thermal overprint in the neighbouring rocks. In the basement units thrust over the Getic Nappe, the Sibişel unit yielded Permian prograde peak metamorphic ages and Triassic post-peak overprints, while an adjacent gneissic unit (Laz) delivered an exclusively Cretaceous age pattern. Unexpectedly young metamorphic ages resulted also for the East Carpathians and the Apuseni Mountains. While most of the ages obtained so far correspond to Variscan retrogression of older basement units, the lowermost structural unit of the infra-Bucovinian nappe system in the East Carpathians yielded Upper Cretaceous metamorphic ages in apparently monometamorphic medium-grade schists. In the Apuseni Mountains, schists of the Baia de Arieş Unit display an Upper Jurassic age spectrum, corresponding to a clearly

  16. Is a "Complex" Task Really Complex? Validating the Assumption of Cognitive Task Complexity

    ERIC Educational Resources Information Center

    Sasayama, Shoko

    2016-01-01

    In research on task-based learning and teaching, it has traditionally been assumed that differing degrees of cognitive task complexity can be inferred through task design and/or observations of differing qualities in linguistic production elicited by second language (L2) communication tasks. Without validating this assumption, however, it is…

  17. Leadership and transitions: maintaining the science in complexity and complex systems.

    PubMed

    Sturmberg, Joachim P; Martin, Carmel M

    2012-02-01

    It is the 'moral compass', however subtle, that underpins leadership. Leadership, meaning showing the way, demands as much conviction as gentile diplomacy in the discourse with supporters and detractors. In particular, leadership defends the goal by safeguarding its principles from its detractors. The authors writing in the Forum on Complexity in Medicine and Healthcare since its inception are leaders in an intellectual transition to complex systems thinking in medicine and health. © 2012 Blackwell Publishing Ltd.

  18. Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas

    DTIC Science & Technology

    2014-09-26

    pipe at the flange attached to the inner Dewar bottle. The temperature of the gas in the glass tube is controlled by the cryogenic liquid , liquid ...dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is characterized by a sound speed of a few cm...through the illumination of laser light on dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is

  19. Assessing Complexity in Learning Outcomes--A Comparison between the SOLO Taxonomy and the Model of Hierarchical Complexity

    ERIC Educational Resources Information Center

    Stålne, Kristian; Kjellström, Sofia; Utriainen, Jukka

    2016-01-01

    An important aspect of higher education is to educate students who can manage complex relationships and solve complex problems. Teachers need to be able to evaluate course content with regard to complexity, as well as evaluate students' ability to assimilate complex content and express it in the form of a learning outcome. One model for evaluating…

  20. Complexation of carboxylate on smectite surfaces.

    PubMed

    Liu, Xiandong; Lu, Xiancai; Zhang, Yingchun; Zhang, Chi; Wang, Rucheng

    2017-07-19

    We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca 2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pK a s and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.