Sample records for narva power plants

  1. Experience and prospects of oil shale utilization for power production in Russia

    NASA Astrophysics Data System (ADS)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  2. The use of shale ash in dry mix construction materials

    NASA Astrophysics Data System (ADS)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  3. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the solid ash fractions of the boiler. Most probably it is released to the surrounding environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Stone Age settlement and Holocene water level changes of the Baltic Sea in the Torvajoe Basin area, Narva-Luga Klint Bay, NE Estonia

    NASA Astrophysics Data System (ADS)

    Raig, Hanna; Rosentau, Alar; Muru, Merle; Risberg, Jan

    2014-05-01

    The Tõrvajõe basin is located in NE Estonia in the southern part of the Narva-Luga Klint Bay, that is characterized by slow post-glacial isostatic uplift (about 0-1mm/yr) and slowly undulating low topography. Post-glacial changes of the water-level of the Baltic Sea have at times flooded the area, and at times, it has emerged as terrestrial land. In addition to a complex geological development, the surroundings of the Tõrvajõe basin are interesting from the archaeological point of view because of abundant archaeological findings in the area, of which the oldest (c 8.1 cal ka BP) from the Mesolithic period and the majority, indicating very intense habitation (c 7.1-5.5 cal ka BP), from the Neolithic period. Development of the Tőrvajőe basin area during the period of Stone Age settlement (c 8.1-5.5 cal. ka BP) is studied with multiple geological and archaeological proxies. Sediments are described by lithostratigraphical methods, loss-on-ignition. AMS radiocarbon dates are used to date events and create an age-depth model. Environment is described by pollen analyses and water environment by siliceous microfossil analyses. Palaeogeographical reconstructions for time slices of interest are created to illustrate Stone Age settlement pattern and changes of the coastline and landscape over time. The aim of this interdisciplinary study is to investigate and associate palaeoenvironmental conditions and water-level changes with Stone Age settlement pattern in the Tőrvajőe area. Results show four developmental stages in the post-glacial history of the basin: Ancylus Lake lagoon, mire, lagoon during the Litorina Sea and mire. During the Ancylus Lake transgression at about 10.8-10.2 cal. ka BP a spit started to form north of the basin and a lagoon evolved behind it. Following the Ancylus Lake regression river activity and formation of palaeosoil and fen peat took place. Due to the Litorina Sea transgression, that was initially slower but accelerated around 7.8-7.6 cal ka BP when the sea-level rose c 6m in less than a thousand years, the Siivertsi site (8.1 cal ka BP) was inundated and a coastal lagoon evolved in the basin. Shores of this lagoon were preferable living environments for Neolithic people between 7.1-6.1 cal ka BP as appears from 15 settlement sites around the basin. Due to slowing of water-level rise and on-going land uplift, the water body dried up. People abandoned the Tőrvajőe lagoon and concentrated mostly along the ancient rivers in Narva-Luga Klint Bay (Rosentau et al., 2013). References Rosentau A., Muru M., Kriiska A., Subetto D. A., Vassiljev J., Hang T., Gerasimov D., Nordqvist K., Ludikova A., Lõugas L., Raig H., Kihno K., Aunap R., Letyka, N. 2013. Stone Age settlement and Holocene shore displacement in the Narva-Luga Klint Bay area, eastern Gulf of Finland. Boreas. 10.1111/bor.12004. ISSN 0300-9483

  6. Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish.

    PubMed Central

    Tuvikene, A; Huuskonen, S; Koponen, K; Ritola, O; Mauer, U; Lindström-Seppä, P

    1999-01-01

    The biologic effects of the oil shale industry on caged rainbow trout (Oncorhynchus mykiss) as well as on feral perch (Perca fluviatilis) and roach (Rutilus rutilus) were studied in the River Narva in northeast Estonia. The River Narva passes the oil shale mining and processing area and thus receives elevated amounts of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and sulfates. The effects of the chemical load were monitored by measuring cytochrome P4501A (CYP1A)-dependent monooxygenase (MO) activities [7-ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase (AHH)] as well as conjugation enzyme activities [glutathione S-transferase (GST) and UDP-glucuronosyltransferase] in the liver of fish. CYP1A induction was further studied by detecting the amount and occurrence of the CYP1A protein. Histopathology of tissues (liver, kidney, spleen, and intestine) and the percentage of micronuclei in fish erythrocytes were also determined. Selected PAHs and heavy metals (Cd, Cu, Hg, and Pb) were measured from fish muscle and liver. In spite of the significant accumulation of PAHs, there was no induction of MO activities in any studied fish species. When compared to reference samples, AHH activities were even decreased in feral fish at some of the exposed sites. Detection of CYP1A protein content and the distribution of the CYP1A enzyme by immunohistochemistry also did not show extensive CYP1A induction. Instead, GST activities were significantly increased at exposed sites. Detection of histopathology did not reveal major changes in the morphology of tissues. The micronucleus test also did not show any evidence of genotoxicity. Thus, from the parameters studied, GST activity was most affected. The lack of catalytic CYP1A induction in spite of the heavy loading of PAHs was not studied but has been attributed to the elevated content of other compounds such as heavy metals, some of which can act as inhibitors for MOs. Another possible explanation of this lack of induction is that through adaptation processes the fish could have lost some of their sensitivity to PAHs. Either complex pollution caused by oil shale processing masked part of the harmful effects measured in this study, or oil shale industry did not have any severe effects on fish in the River Narva. Our study illustrates the difficulties in estimating risk in cases where there are numerous various contaminants affecting the biota. Images Figure 1 Figure 2 PMID:10464075

  7. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

  8. Rocket Power Plants Based on Nitric Acid and their Specific Propulsive Weights

    NASA Technical Reports Server (NTRS)

    Zborowski, Helmut

    1947-01-01

    Two fields are reserved for the application of rocket power plants. The first field is determined by the fact that the rocket power plant is the only type of power plant that can produce thrust without dependence upon environment. For this field,the rocket is therefore the only possible power plant and the limit of what may be done is determined by the status of the technical development of these power plants at the given moment. The second field is that in which the rocket power plant proves itself the most suitable as a high-power drive in free competition with other types of power plants. The exposition will be devoted to the demarcation of this field and its division among the various types of rocket power plants.

  9. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  10. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Calvert Cliffs.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed operator...

  11. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1...

  12. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    PubMed

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  13. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less

  14. California Commercial End-Use Survey - CEUS

    Science.gov Websites

    Information Power Plants California Energy Maps DRECP Dockets Unit E-filing and Commenting Power Plant Licensing Cases Power Plant Projects Status Power Plants Public Adviser's Office Siting, Transmission, and Environmental Protection Division More Power Plant Information Renewables Clean Energy & Pollution Reduction

  15. Concentrating Solar Power Projects - Saguaro Power Plant | Concentrating

    Science.gov Websites

    Solar Power | NREL Saguaro Power Plant This page provides information on Saguaro, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: April 14, 2017 Project Overview Project Name: Saguaro Power Plant Country: United

  16. Extreme Statistics of Storm Surges in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kulikov, E. A.; Medvedev, I. P.

    2017-11-01

    Statistical analysis of the extreme values of the Baltic Sea level has been performed for a series of observations for 15-125 years at 13 tide gauge stations. It is shown that the empirical relation between value of extreme sea level rises or ebbs (caused by storm events) and its return period in the Baltic Sea can be well approximated by the Gumbel probability distribution. The maximum values of extreme floods/ebbs of the 100-year recurrence were observed in the Gulf of Finland and the Gulf of Riga. The two longest data series, observed in Stockholm and Vyborg over 125 years, have shown a significant deviation from the Gumbel distribution for the rarest events. Statistical analysis of the hourly sea level data series reveals some asymmetry in the variability of the Baltic Sea level. The probability of rises proved higher than that of ebbs. As for the magnitude of the 100-year recurrence surge, it considerably exceeded the magnitude of ebbs almost everywhere. This asymmetry effect can be attributed to the influence of low atmospheric pressure during storms. A statistical study of extreme values has also been applied to sea level series for Narva over the period of 1994-2000, which were simulated by the ROMS numerical model. Comparisons of the "simulated" and "observed" extreme sea level distributions show that the model reproduces quite satisfactorily extreme floods of "moderate" magnitude; however, it underestimates sea level changes for the most powerful storm surges.

  17. Influence of geographic setting on thermal discharge from coastal power plants.

    PubMed

    Jia, Hou-Lei; Zheng, Shu; Xie, Jian; Ying, Xiao-Ming; Zhang, Cui-Ping

    2016-10-15

    Characteristics of thermal discharge from three coastal power plants were studied in China. The three plants, Zhuhai Power Plant, Chaozhou Power Plant and Huilai Power Plant, are located in estuary, bay and open sea, respectively. The water temperatures and ocean currents surrounding the outlet of the three power plants were monitored. The results show that the temperature rise became smaller as the spread of thermal discharge moved toward the open sea, which confirms the results of previous studies. The results also indicated that the influence range of thermal discharge from a coastal power plant is determined by geographic setting. The temperature rise range of the Chaozhou Plant, which is located in a bay, was the largest, followed by that of the Zhuhai Plant located in an estuary, and the temperature rise range of the Huilai Plant located in an open sea was the smallest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 76 FR 187 - Programmatic Environmental Assessment and Final Finding of No Significant Impact for Exemptions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... proposed action may include issuing exemptions to nuclear power plant licensees for up to 40 nuclear power.... Fitzpatrick Nuclear Power Plant Joseph M. Farley Nuclear Plant, Units 1 and 2 Millstone Power Station, Unit... Palisades Nuclear Plant Palo Verde Nuclear Generating Station, Units 1, 2, and 3 Perry Nuclear Power Plant...

  19. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment and Finding of No Significant Impact... Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with 10 CFR 51.21... of Nuclear Plants: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437...

  20. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  1. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ..., Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the... Operating License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant, Unit 1... rule's compliance date for all operating nuclear power plants, but noted that the Commission's...

  2. Preliminary assessment of alternative PFBC power plant systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, J.; Rogali, R.

    1980-07-01

    This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBCmore » designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.« less

  3. Study on integration potential of gas turbines and gas engines into parabolic trough power plants

    NASA Astrophysics Data System (ADS)

    Vogel, Tobias; Oeljeklaus, Gerd; Görner, Klaus

    2017-06-01

    Hybrid power plants represent an important intermediate step on the way to an energy supply structure based substantially on renewable energies. Natural gas is the preferred fossil fuel for hybridization of solar thermal power plants, due to its low specific CO2-emission and technical advantages by means of integration into the power plant process. The power plant SHAMS ONE serves as an exemplary object of this study. In order to facilitate peaker gas turbines in an economical way to a combined cycle approach, with the SGT-400 an industrial gas turbine of the 10-20 MWel class have been integrated into the base case power plant. The concept has been set up, to make use of the gas turbine waste heat for power generation and increasing the overall power plant efficiency of the hybrid power plant at the same time. This concept represents an alternative to the widely used concept of combined cycle power plants with solar heat integration. Supplementary, this paper also dedicates the alternative to use gas engines instead of gas turbines.

  4. Entropy production and optimization of geothermal power plants

    NASA Astrophysics Data System (ADS)

    Michaelides, Efstathios E.

    2012-09-01

    Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.

  5. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ..., Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company... operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things... request to generically extend the rule's compliance date for all operating nuclear power plants, but noted...

  6. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  7. Energy saving and consumption reducing evaluation of thermal power plant

    NASA Astrophysics Data System (ADS)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  8. Evaluation of parasitic consumption for a CSP plant

    NASA Astrophysics Data System (ADS)

    Ramorakane, Relebohile John; Dinter, Frank

    2016-05-01

    With the continuous development and desire to build alternative effective and efficient power plants, Concentrated Solar Power (CSP) plants (and more specifically the Parabolic Trough CSP Plants) have proven to be one of the alternative energy resources for the future. On this regard more emphasis and research is being employed to better this power plant technology, where one of the main challenges to these plants is to improve their efficiency by optimizing the parasitic load, wherein one of the major causes of the power plants' reduced overall efficiency arises from their parasitic load consumption. This project is therefore aimed at evaluating the parasitic load on Andasol 3 Power Plant, which is a 50 MW Parabolic Trough Power Plant with a 7.5 hours of full load storage system. It was hence determined that the total power plant's parasitic load consumption is about 12% in summer season and between 16% and 24% in winter season. In an effort to improve the power plant's efficiency, a couple of measures to reduce the parasitic load consumption were recommended, and also an alternative and cheaper source of parasitic load feeding plant, during the day (when the parasitic load consumption is highest) was proposed/recommended.

  9. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-244; Docket No. 72-67] R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent Fuel Storage Installation; Notice of... Facility Operating License No. DPR-18, for the R.E. Ginna Nuclear Power Plant (Ginna), currently held by R...

  10. Typical calculation and analysis of carbon emissions in thermal power plants

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-jie; Zhao, Jian-gang; Zhang, Gang

    2018-03-01

    On December 19, 2017, the national development and reform commission issued the national carbon emissions trading market construction plan (power generation industry), which officially launched the construction process of the carbon emissions trading market. The plan promotes a phased advance in carbon market construction, taking the power industry with a large carbon footprint as a breakthrough, so it is extremely urgent for power generation plants to master their carbon emissions. Taking a coal power plant as an example, the paper introduces the calculation process of carbon emissions, and comes to the fuel activity level, fuel emissions factor and carbon emissions data of the power plant. Power plants can master their carbon emissions according to this paper, increase knowledge in the field of carbon reserves, and make the plant be familiar with calculation method based on the power industry carbon emissions data, which can help power plants positioning accurately in the upcoming carbon emissions trading market.

  11. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    EIA Publications

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  12. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  13. Concentrating Solar Power Projects - Bokpoort | Concentrating Solar Power |

    Science.gov Websites

    ) project, with data organized by background, parcipants and power plant configuration. Status Date: April (Northern Cape Province) Owner(s): ACWA Power Solafrica Bokpoort CSP Power Plant (Pty) Ltd Technology Participants Developer(s): ACWA Power Owner(s) (%): ACWA Power Solafrica Bokpoort CSP Power Plant (Pty) Ltd EPC

  14. 16. Photocopy of a photograph1921 EASTSIDE POWER PLANT LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of a photograph--1921 EASTSIDE POWER PLANT LOOKING NORTH - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  15. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...

  16. 75 FR 14637 - James A. FitzPatrick Nuclear Power Plant; Environmental Assessment and Finding of No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... Power Plant; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County, NY. In accordance with 10 CFR...Patrick Nuclear Power Plant Power Authority of the State of New York, Docket No. 50-333,'' dated March...

  17. Power Plants Likely Covered by the Mercury and Air Toxics Standards (MATS)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. Using Google Earth, this page locates power plants in your state.

  18. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of NUREG... Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of Evacuation Time Estimate Studies...

  19. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Mines, Greg; Turchi, Craig

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.« less

  20. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests ofmore » the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.« less

  1. Concentrating Solar Power Projects - Gemasolar Thermosolar Plant |

    Science.gov Websites

    Concentrating Solar Power | NREL Gemasolar Thermosolar Plant This page provides information on Gemasolar Thermosolar Plant, a concentrating solar power (CSP) project, with data organized by background , participants, and power plant configuration. Gemasolar is the first high-temperature solar receiver with molten

  2. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0202] Seismic Instrumentation for Nuclear Power Plants... Reports for Nuclear Power Plants: LWR Edition,'' Section 3.7.4, ``Seismic Instrumentation.'' DATES: Submit... Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a new Revision 3). The proposed...

  3. 76 FR 46856 - Qualification of Connection Assemblies for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY: The U.S..., ``Qualification of Connection Assemblies for Nuclear Power Plants.'' This guide describes a method that the NRC... in nuclear power plants. The environmental qualification helps ensure that connection assemblies can...

  4. The 125 MW Upper Mahiao geothermal power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by amore » subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.« less

  5. A simulated field trip: "The visual aspects of power plant sitings"

    Treesearch

    Bill Bottomly; Alex Young

    1979-01-01

    The growth of our economy is demanding construction of a variety of power plants to generate electricity which is having a significant impact on the visual environment. These power plants will consist of conventional thermal (fossil fuel and nuclear), geothermal, wind and solar power plants. There are several areas where solutions to the visual impacts of these power...

  6. Photovoltaic power generation; Proceedings of the EC Contractors' Meeting, Hamburg, West Germany, July 12, 13, 1983

    NASA Astrophysics Data System (ADS)

    Palz, W.

    Several operational examples of photovoltaic (PV) power generation systems in Europe are described. The systems include: a 300 kW power plant in Pellworm, West Germany; the Tremiti desalination plant in Tremiti, Italy; and the Kythnos PV power plant in Kythnos, Greece. Consideration is also given to a PV-powered swimming pool heating system in Chevretogne, Belgium; a rural electrification program using PV power plants in French Guyana; a solar-wind project on Terschelling Island, the Netherlands; and a PV power plant for hydrogen production and water pumping in Hoboken, Belgium. A 30-kW power station in Marchwood, England and the Nice airport survey and control system are also cited as examples of successful PV power generation systems.

  7. 78 FR 37325 - License Renewal of Nuclear Power Plants; Generic Environmental Impact Statement and Standard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Nuclear Power Plants; Generic Environmental Impact Statement and Standard Review Plans for Environmental... for Nuclear Power Plants, Supplement 1: Operating License Renewal'' (ESRP). The ESRP serves as a guide... published a final rule, ``Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating...

  8. 78 FR 46255 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... environmental effect of renewing the operating license of a nuclear power plant. This document is necessary to..., Environmental impact statement, Nuclear materials, Nuclear power plants and reactors, Reporting and... Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction AGENCY: Nuclear...

  9. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... construction of a 100 megawatt (MW) biomass plant and related facilities (Proposal) in Warren County, Georgia...

  10. Analysis on capability of load following for nuclear power plants abroad and its enlightenment

    NASA Astrophysics Data System (ADS)

    Zheng, Kuan; Zhang, Fu-qiang; Deng, Ting-ting; Zhang, Jin-fang; Hao, Weihua

    2017-01-01

    With the acceleration adjustment of China’s energy structure, the development of nuclear power plants in China has been going back to the fast track. While as the trend of slowing electric power demand is now unmistakable, it enforces the power system to face much greater pressure in some coastal zones where the nuclear power plants are of a comparative big proportion, such as Fujian province and Liaoning province. In this paper, the capability of load following of nuclear power plants of some developed countries with high proportion of nuclear power generation such as France, US and Japan are analysed, also from the aspects including the safety, the economy and their practical operation experience is studied. The feasibility of nuclear power plants to participate in the peak regulation of system is also studied and summarized. The results of this paper could be of good reference value for the China’s nuclear power plants to participate in system load following, and also of great significance for the development of the nuclear power plants in China.

  11. Thermal power systems small power systems applications project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    Small power system technology as applied to power plants up to 10 MW in size was considered. Markets for small power systems were characterized and cost goals were established for the project. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Breakeven capital costs were determined for leading contenders among the candidate systems. The potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, was studied. Criteria and methodologies were developed for the ranking of candidate power plant system design concepts. Experimental power plant concepts of 1 MW rating were studied to define a power plant configuration for subsequent detail design construction, testing and evaluation. Site selection criteria and ground rules were developed.

  12. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    DOEpatents

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  13. 2. VIEW OF POWER PLANT LOOKING SOUTHEAST. Potomac Power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF POWER PLANT LOOKING SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  14. 40. Photocopy of a photographca. 1925 ISLAND PLANT: INTERIOR OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Photocopy of a photograph--ca. 1925 ISLAND PLANT: INTERIOR OF GENERATING PLANT - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  15. An initial comparative assessment of orbital and terrestrial central power systems

    NASA Technical Reports Server (NTRS)

    Caputo, R.

    1977-01-01

    Orbital solar power plants, which beam power to earth by microwave, are compared with ground-based solar and conventional baseload power plants. Candidate systems were identified for three types of plants and the selected plant designs were then compared on the basis of economic and social costs. The representative types of plant selected for the comparison are: light water nuclear reactor; turbines using low BTU gas from coal; central receiver with steam turbo-electric conversion and thermal storage; silicon photovoltaic power plant without tracking and including solar concentration and redox battery storage; and silicon photovoltaics.

  16. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...

  18. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...

  19. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...

  20. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...

  1. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  2. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... regulatory guide, (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... missiles that a nuclear power plant should be designed to withstand to prevent undue risk to the health and...

  3. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  4. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  5. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  6. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  7. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  8. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  9. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  10. 76 FR 22729 - Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plant #1, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ..., Power Train Division, Mack Avenue Engine Plant 1, Including On-Site Leased Workers From Caravan Knight..., applicable to workers of Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plant 1, including on... all workers of Chrysler LLC, Mack Avenue Engine Plants 1 & 2, Power Train Division, Detroit, Michigan...

  11. Concentrating Solar Power Projects - ISCC Hassi R'mel | Concentrating Solar

    Science.gov Websites

    solar power (CSP) project, with data organized by background, participants, and power plant consists of a 150 MWe hybrid power plant composed of a combined cycle and a 20 MWe solar thermal plant : Abener Operator(s): Abener Generation Offtaker(s): Sonatrach Plant Configuration Solar Field Solar-Field

  12. 78 FR 4465 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... Regulations (10 CFR), Subpart C of Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County...

  13. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request... that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

  14. Dynamics of Postcombustion CO2 Capture Plants: Modeling, Validation, and Case Study

    PubMed Central

    2017-01-01

    The capture of CO2 from power plant flue gases provides an opportunity to mitigate emissions that are harmful to the global climate. While the process of CO2 capture using an aqueous amine solution is well-known from experience in other technical sectors (e.g., acid gas removal in the gas processing industry), its operation combined with a power plant still needs investigation because in this case, the interaction with power plants that are increasingly operated dynamically poses control challenges. This article presents the dynamic modeling of CO2 capture plants followed by a detailed validation using transient measurements recorded from the pilot plant operated at the Maasvlakte power station in the Netherlands. The model predictions are in good agreement with the experimental data related to the transient changes of the main process variables such as flow rate, CO2 concentrations, temperatures, and solvent loading. The validated model was used to study the effects of fast power plant transients on the capture plant operation. A relevant result of this work is that an integrated CO2 capture plant might enable more dynamic operation of retrofitted fossil fuel power plants because the large amount of steam needed by the capture process can be diverted rapidly to and from the power plant. PMID:28413256

  15. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the efficiency of the plant increases, although the higher pressure losses of the flue-gas path increase the requirements of the air compressor. Finally, replacing the two heat exchangers of the electrolyzer unit with one that uses extracted steam from the biomass power plant can lead to an overall decrease in the operating and investment costs of the plant.

  16. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  17. Microprocessor-based control systems application in nuclear power plant critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.R.; Nowak, J.B.

    Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less

  18. Analysis on energy consumption index system of thermal power plant

    NASA Astrophysics Data System (ADS)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  19. Spatial Distribution and Trend of CH4, NO2, CO and Ozone during 2003-2015 over Coal Fired Power Plants in US

    NASA Astrophysics Data System (ADS)

    de Azevedo, S. C.; Reyes, C.; Singh, R. P.

    2016-12-01

    Coal fired power plants are the sources of atmospheric pollution and poor air quality in many parts of the world especially in India and China. The greenhouse emissions from the coal fired power plants are considered as threat to the climate and human health. About 572 coal fired power plants (up to 2012) are operational, especially in the mid and eastern parts of US. We have analyzed satellite measured carbon monoxide (CO), methane (CH4), nitrogen dioxide (NO2), ozone (O3) and meteorological parameters for the period 2003-2015. In this study, we have considered 30 power plants, covering 10 x10surrounding area and over 11 regions of US in a grid of about 50 x50 to 60 x60. In general, most of the coal fired power plants show a decreasing trend of CO, whereas NO2 follow a similar trend over the power plants located in the eastern parts. Our analysis shows that the clean air act is strictly followed by the coal fired power plants in the eastern US compared to power plants located in the mid and western parts. The CH4 concentrations over the eastern parts show higher concentrations compared to mid and western regions in the period 2003-2015. Higher concentrations and seasonal variability of greenhouse gases is dependent on the prevailing meteorological conditions.

  20. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

  1. California Energy Commission

    Science.gov Websites

    Licensing Cases Power Plant Projects Status Power Plants Public Adviser's Office Siting, Transmission, and Watch Phone List Power Plant Licensing Cases Public Adviser Renewables Portfolio Standard Reports and

  2. 40 CFR 52.2636 - Implementation plan for regional haze.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... River Station Units 1, 2, and 3 (PM); (iv) PacifiCorp Dave Johnston Power Plant Unit 3 (PM); (v) PacifiCorp Dave Johnston Power Plant Unit 4 (PM and NOX); (vi) PacifiCorp Jim Bridger Power Plant Units 1, 2, 3, and 4 (PM and NOX); (vii) PacifiCorp Naughton Power Plant Units 1, 2, and 3 (PM and NOX); and...

  3. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...

  4. Drivers of biomass co-firing in U.S. coal-fired power plants

    Treesearch

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  5. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  6. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    PubMed

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  7. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  8. Proceedings of the American Power Conference. Volume 58-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1996-11-01

    This book is part 2 of the proceedings of the American Power Conference, Technology for Competition and Globalization, 1996. The topics of the papers include structural plant design; challenges of the global marketplace; thermal hydraulic methods for nuclear power plant safety and operation; decontamination and decommissioning; competitive operations and maintenance; fuel opportunities; cooling; competitive power pricing; operations; transformers; relays; plant controls; training to meet the competitive future; burning technologies; ash and byproducts utilization; advanced systems; computer tools for plant design; globalization of power; power system protection and power quality; life extension; grounding; and transmission line equipment.

  9. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.

  10. The influence of PM2.5 coal power plant emissions on environment PM2.5 in Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Li, Zhi; Zhang, Dan; Zhang, He; Zhang, Huafei

    2018-02-01

    In recent years, in the Northeast of China, the heating period comes with large range of haze weather. All the units of coal power plants in Jilin Province have completed the cogeneration reformation; they provide local city heat energy. Many people believe that coal power plants heating caused the heavy haze. In is paper, by compared concentration of PM2.5 in environment in heating period and non heating period, meanwhile the capacity of local coal power plants, conclude that the PM2.5 emission of coal power plants not directly cause the heavy haze in Changchun and Jilin in the end of October and early November. In addition, the water-soluble iron composition of PM2.5 coal power plant emissions is compared with environment, which further proves that the heating supply in coal power plants is not the cause of high concentration of PM2.5 in Jilin province.

  11. NREL/PG&E Condensation System Increases Geothermal Power Plant Efficiency

    Science.gov Websites

    . Geothermal power plants like The Geysers produce energy by collecting steam from underground reservoirs and NREL/PG&E Condensation System Increases Geothermal Power Plant Efficiency For more information world's largest producer of geothermal power has improved its power production efficiency thanks to a new

  12. 77 FR 8903 - Environmental Assessment and Finding of No Significant Impact; Carolina Power and Light Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Finding of No Significant Impact; Carolina Power and Light Company Shearon Harris Nuclear Power Plant... Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).'' Agencies...

  13. Concentrating Solar Power Projects - Redstone Solar Thermal Power Plant |

    Science.gov Websites

    Concentrating Solar Power | NREL Redstone Solar Thermal Power Plant Status Date: September 8 , 2016 Project Overview Project Name: Redstone Solar Thermal Power Plant Country: South Africa Location ): 100.0 MW Turbine Capacity (Net): 100.0 MW Cooling Method: Dry cooling Thermal Storage Storage Type: 2

  14. Concentrating Solar Power Projects - Linear Fresnel Reflector Projects |

    Science.gov Websites

    Kimberlina solar thermal power plant, a linear Fresnel reflector system located near Bakersfield, California Solar Thermal Project eLLO Solar Thermal Project (Llo) IRESEN 1 MWe CSP-ORC pilot project Kimberlina Solar Thermal Power Plant (Kimberlina) Liddell Power Station Puerto Errado 1 Thermosolar Power Plant

  15. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  16. Stability assessment of the chemical composition of the treated mining water used to replenish the cooling circuit in Jaworzno III Power Plant - Power Plant II

    NASA Astrophysics Data System (ADS)

    Karpiński, Marcin; Kmiecik, Ewa

    2017-11-01

    In Poland, electricity is still produced mainly in conventional power plants where fuel and water are materials necessary to generate the electricity. Even in modern power plants operating according to the principles of the sustainable development, this involves a high intake of water and considerable production of wastewater. This, in turn, necessi-tates the application of some technological solutions aimed at limiting the negative impact on the environment. The Jaworzno III Power Plant - Power Plant II is located in Jaworzno, Silesian Province, Poland. In order to minimise the negative impact on the surface water, the plant replenishes the cooling circuit with the mining water obtained from the closed-down Jan Kanty mine. The paper presents a stability assessment of the chemical composition of the treated mining water used to replenish the cooling circuit based on the data from 2007-2017.

  17. Short-Term Planning of Hybrid Power System

    NASA Astrophysics Data System (ADS)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  18. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  19. Energy comparison between solar thermal power plant and photovoltaic power plant

    NASA Astrophysics Data System (ADS)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  20. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft...) biomass plant and related facilities (Proposal) in Warren County, Georgia. The purpose of the Proposal is...

  1. Ocean thermal gradient as a generator of electricity. OTEC power plant

    NASA Astrophysics Data System (ADS)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  2. Risk in nuclear power plants due to natural hazard phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.C.

    1995-12-01

    For the safety of nuclear power plants, it is important to identify potential areas of vulnerabilities to internal as well as external events to which nuclear power plants are exposed. This paper summarizes the risk in nuclear power plants due to natural hazard phenomena such as earthquakes, winds and tornadoes, floods, etc. The reported results are based on a limited number of probabilistic risk assessments (PRAS) performed for a few of the operating nuclear power plants within the United States. The summary includes an importance ranking of various natural hazard phenomena based on their contribution to the plant risk alongmore » with insights observed from the PRA studies.« less

  3. The State-of-the-Art of Materials Technology Used for Fossil and Nuclear Power Plants in China

    NASA Astrophysics Data System (ADS)

    Weng, Yuqing

    Combined with the development of energy in China during the past 30 years, this paper clarified that high steam parameters ultra-supercritical (USC) coal-fired power plants and 1000MW nuclear power plants are the most important method to optimize energy structure and achieve national goals of energy saving and CO2 emission in China. Additionally, requirement of materials technology in high steam parameters USC coal-fired power plants and 1000MW nuclear power plants, current research and major development of relevant materials technology in China were briefly described in this paper.

  4. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  5. Report Card on Nuclear Power

    ERIC Educational Resources Information Center

    Novick, Sheldon

    1974-01-01

    Problems facing the nuclear power industry include skyrocketing construction costs, technical failures, fuel scarcity, power plant safety, and the disposal of nuclear wastes. Possible solutions include: reductions in nuclear power plant construction, a complete moratorium on new plant construction, the construction of fast breeder reactors and the…

  6. 76 FR 66089 - Access Authorization Program for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0245] Access Authorization Program for Nuclear Power... Program for Nuclear Power Plants.'' This guide describes a method that NRC staff considers acceptable to... Regulations (10 CFR), section 73.56, ``Personnel Access Authorization Requirements for Nuclear Power Plants...

  7. Nuclear Power Plants | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-06-22

    Nuclear power plants produce electricity from the heat created by splitting uranium atoms. In the event of a nuclear power plant emergency, follow instructions from emergency responders and public officials.

  8. Radon emissions from natural gas power plants at The Pennsylvania State University.

    PubMed

    Stidworthy, Alison G; Davis, Kenneth J; Leavey, Jeff

    2016-11-01

    Burning natural gas in power plants may emit radon ( 222 Rn) into the atmosphere. On the University Park campus of The Pennsylvania State University, atmospheric radon enhancements were measured and modeled in the vicinity of their two power plants. The three-part study first involved measuring ambient outdoor radon concentrations from August 2014 through January 2015 at four sites upwind and downwind of the power plants at distances ranging from 80 m to 310 m. For each plant, one site served as a background site, while three other sites measured radon concentration enhancements downwind. Second, the radon content of natural gas flowing into the power plant was measured, and third, a plume dispersion model was used to predict the radon concentrations downwind of the power plants. These predictions are compared to the measured downwind enhancements in radon to determine whether the observed radon concentration enhancements could be attributed to the power plants' emissions. Atmospheric radon concentrations were consistently low as compared to the EPA action level of 148 Bq m -3 , averaging 34.5 ± 2.7 Bq m -3 around the East Campus Steam Plant (ECSP) and 31.6 ± 2.7 Bq m -3 around the West Campus Steam Plant (WCSP). Significant concentrations of radon, ranging from 516 to 1,240 Bq m -3 , were detected in the natural gas. The measured enhancements downwind of the ECSP averaged 6.2 Bq m -3 compared to modeled enhancements of 0.08 Bq m -3 . Measured enhancements around the WCSP averaged -0.2 Bq m -3 compared to the modeled enhancements of 0.05 Bq m -3 , which were not significant compared to observational error. The comparison of the measured to modeled downwind radon enhancements shows no correlation over time. The measurements of radon levels in the vicinity of the power plants appear to be unaffected by the emissions from the power plants. Radon measurements at sites surrounding power plants that utilize natural gas did not indicate that the radon concentrations originated from the plants' emissions. There were elevated radon concentrations in the natural gas supply flowing into the power plants, but combustion dilution puts the concentration below EPA action levels coming out of the stack, so no hazardous levels were expected downwind. Power plant combustion of natural gas is not likely to pose a radiation health hazard unless very different gas radon concentrations or combustion dilution ratios are encountered.

  9. Analysis of the environmental issues concerning the deployment of an OTEC power plant in Martinique.

    PubMed

    Devault, Damien A; Péné-Annette, Anne

    2017-11-01

    Ocean thermal energy conversion (OTEC) is a form of power generation, which exploits the temperature difference between warm surface seawater and cold deep seawater. Suitable conditions for OTEC occur in deep warm seas, especially the Caribbean, the Red Sea and parts of the Indo-Pacific Ocean. The continuous power provided by this renewable power source makes a useful contribution to a renewable energy mix because of the intermittence of the other major renewable power sources, i.e. solar or wind power. Industrial-scale OTEC power plants have simply not been built. However, recent innovations and greater political awareness of power transition to renewable energy sources have strengthened the support for such power plants and, after preliminary studies in the Reunion Island (Indian Ocean), the Martinique Island (West Indies) has been selected for the development of the first full-size OTEC power plant in the world, to be a showcase for testing and demonstration. An OTEC plant, even if the energy produced is cheap, calls for high initial capital investment. However, this technology is of interest mainly in tropical areas where funding is limited. The cost of innovations to create an operational OTEC plant has to be amortized, and this technology remains expensive. This paper will discuss the heuristic, technical and socio-economic limits and consequences of deploying an OTEC plant in Martinique to highlight respectively the impact of the OTEC plant on the environment the impact of the environment on the OTEC plant. After defining OTEC, we will describe the different constraints relating to the setting up of the first operational-scale plant worldwide. This includes the investigations performed (reporting declassified data), the political context and the local acceptance of the project. We will then provide an overview of the processes involved in the OTEC plant and discuss the feasibility of future OTEC installations. We will also list the extensive marine investigations required prior to installation and the dangers of setting up OTEC plants in inappropriate locations.

  10. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    NASA Astrophysics Data System (ADS)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous construction of new coal-fired power plants driven by increased electricity demand would pose a potential threat to climate change mitigation and China's peak carbon pledge, and more aggressive CO2 emission reduction policy should be implemented in the future.

  11. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  12. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  13. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, James; Macknick, Jordan; Macknick, Jordan

    Water temperatures and water availability can affect the reliable operations of power plants in the United States. Data on water-related impacts on the energy sector are not consolidated and are reported by multiple agencies. This study provides an overview of historical incidents where water resources have affected power plant operations, discusses the various data sources providing information, and creates a publicly available and open access database that contains consolidated information about water-related power plant curtailment and shut-down incidents. Power plants can be affected by water resources if incoming water temperatures are too high, water discharge temperatures are too high, ormore » if there is not enough water available to operate. Changes in climate have the potential to exacerbate uncertainty over water resource availability and temperature. Power plant impacts from water resources include curtailment of generation, plant shut-downs, and requests for regulatory variances. In addition, many power plants have developed adaptation approaches to reducing the potential risks of water-related issues by investing in new technologies or developing and implementing plans to undertake during droughts or heatwaves. This study identifies 42 incidents of water-related power plant issues from 2000-2015, drawing from a variety of different datasets. These incidents occur throughout the U.S., and affect coal and nuclear plants that use once-through, recirculating, and pond cooling systems. In addition, water temperature violations reported to the Environmental Protection Agency are also considered, with 35 temperature violations noted from 2012-2015. In addition to providing some background information on incidents, this effort has also created an open access database on the Open Energy Information platform that contains information about water-related power plant issues that can be updated by users.« less

  14. 4. View of south elevation of power plant, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of south elevation of power plant, looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. 8. View of power plant and radar tower, looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of power plant and radar tower, looking southwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. 2. View of north elevation of power plant, looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of north elevation of power plant, looking south - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. 50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  18. 7. ISLAND PLANT AND HORSESHOE DAM FROM WEST BANK (negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ISLAND PLANT AND HORSESHOE DAM FROM WEST BANK (negative reversed) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  19. 17. Photocopy of a photograph1921 EASTSIDE PLANT LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of a photograph--1921 EASTSIDE PLANT LOOKING NORTHEAST - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  20. 29. ISLAND PLANT: INTERIOR VIEW LOOKING SOUTHWEST ON GROUND FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ISLAND PLANT: INTERIOR VIEW LOOKING SOUTHWEST ON GROUND FLOOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  1. 52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  2. 9. GENERAL VIEW OF ISLAND PLANT LOOKING NORTH (negative reversed) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GENERAL VIEW OF ISLAND PLANT LOOKING NORTH (negative reversed) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  3. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less

  4. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Review of Safety Analysis Reports for Nuclear Power... Analysis Reports for Nuclear Power Plants: LWR Edition.'' The new subsection is the Standard Review Plan... Nuclear Power Plants: Integral Pressurized Water Reactor (iPWR) Edition.'' DATES: Comments must be filed...

  5. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...

  6. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...

  7. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...

  8. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Personnel access authorization requirements for nuclear power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power...

  9. 75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... date for all operating nuclear power plants, but noted that the Commission's regulations provide... Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power...

  10. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  11. Simulation of hybrid solar power plants

    NASA Astrophysics Data System (ADS)

    Dieckmann, Simon; Dersch, Jürgen

    2017-06-01

    Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.

  12. Ways to Improve Russian Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G.

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas.more » Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.« less

  13. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  14. Biomass "Green" Power Vs. Coal "Traditional" Power: Who is the Largest Emitter in Humboldt County and How Should Regulations be Addressed?

    NASA Astrophysics Data System (ADS)

    Zurawski, A. M.

    2016-12-01

    The objective of this research is to study how emissions from a fossil fuel power plant compare to emissions from a biomass power plant, and how these results can be used to improve current air-quality regulations. Outdoor air quality transcends national and political boundaries. Air pollution monitoring is essential to maintaining quality of life for humans and ecosystems. Due to anthropogenic disturbances (primarily related to burning of fossil fuels), air- quality management has become a priority on a long list of environmental issues. Quantifying and monitoring the largest emitters of greenhouse gases and toxic pollutants is crucial to the creation and enforcement of appropriate environmental protection regulations. Emissions data were collected from January 2010 to January 2016 from sensors installed close to a biomass power plant, and sensors installed close to a fossil fuel and natural gas power plant, in Humboldt County, California. In Humboldt County, where air quality serves as a baseline of air pollution in the United States, data showed that the "green" biomass power plant emitted higher levels of particulate matter compared to the fossil fuel power plant. Additionally, the biomass power plant showed levels of CO2, NOx, and SO2 emissions that suggest its place as a "green" power source should be reconsidered. Our research suggests that regulations need to be reconsidered given the potential for high pollutant emissions from biomass plants.

  15. Increase in NOx emissions from Indian thermal power plants during 1996-2010: unit-based inventories and multisatellite observations.

    PubMed

    Lu, Zifeng; Streets, David G

    2012-07-17

    Driven by rapid economic development and growing electricity demand, NO(x) emissions (E) from the power sector in India have increased dramatically since the mid-1990s. In this study, we present the NO(x) emissions from Indian public thermal power plants for the period 1996-2010 using a unit-based methodology and compare the emission estimates with the satellite observations of NO(2) tropospheric vertical column densities (TVCDs) from four spaceborne instruments: GOME, SCIAMACHY, OMI, and GOME-2. Results show that NO(x) emissions from Indian power plants increased by at least 70% during 1996-2010. Coal-fired power plants, NO(x) emissions from which are not regulated in India, contribute ∼96% to the total power sector emissions, followed by gas-fired (∼4%) and oil-fired (<1%) ones. A number of isolated NO(2) hot spots are observed over the power plant areas, and good agreement between NO(2) TVCDs and NO(x) emissions is found for areas dominated by power plant emissions. Average NO(2) TVCDs over power plant areas were continuously increasing during the study period. We find that the ratio of ΔE/E to ΔTVCD/TVCD changed from greater than one to less than one around 2005-2008, implying that a transition of the overall NO(x) chemistry occurred over the power plant areas, which may cause significant impact on the atmospheric environment.

  16. Dynamic analysis of a pumped-storage hydropower plant with random power load

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  17. Energy analysis of coal, fission, and fusion power plants

    NASA Astrophysics Data System (ADS)

    Tsoulfanidis, N.

    1981-04-01

    The method of net energy analysis has been applied to coal, fission, and fusion power plants. Energy consumption over the lifetime of the plants has been calculated for construction, operation and maintenance, fuel, public welfare, and land use and restoration. Thermal and electric energy requirements were obtained separately for each energy consuming sector. The results of the study are presented in three ways: total energy requirements, energy gain ratio, and payback periods. All three types of power plants are net producers of energy. The coal and fusion power plants are superior to fission plants from the energy efficiency point of view. Fission plants will improve considerably if the centrifuge replaces the gaseous diffusion as a method of enrichment.

  18. Large-Scale Paraphrasing for Natural Language Understanding

    DTIC Science & Technology

    2018-04-01

    to manufacture , use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research deemed...station contaminated local fish populations Atomic power generation in Springfield polluted indigenous seafood stocks Radioactive power generation...from PPDB. Springfield’s nuclear power plant contaminated local fish populations nuclear power station nuclear plant power plant fish stocks

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, O.H.

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as tenmore » miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations.« less

  20. 4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  1. 11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  2. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  3. 19. Power plant engine pipinglower level plan, sheet 80 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Power plant engine piping-lower level plan, sheet 80 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  4. 20. Power plant engine piping details and schedules, sheet 82 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Power plant engine piping details and schedules, sheet 82 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  5. 18. Power plant engine piping floor plan, sheet 71 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Power plant engine piping floor plan, sheet 71 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  6. 16. Power plant roof plan and wall sections, sheet 65 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Power plant roof plan and wall sections, sheet 65 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  7. 15. Power plant elevations and cross sections, sheet 64 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power plant elevations and cross sections, sheet 64 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  8. 36. ISLAND PLANT: Nos. 1 AND 2 TWENTYSIX INCH HORIZONTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ISLAND PLANT: Nos. 1 AND 2 TWENTY-SIX INCH HORIZONTAL SAMSON TURBINES - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  9. 53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  10. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  11. Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modeling: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yin; Gao, Wenzhong; Momoh, James

    In this paper, an economic dispatch model with probabilistic modeling is developed for a microgrid. The electric power supply in a microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Because of the fluctuation in the output of solar and wind power plants, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar power plants, the parameters for probabilistic distribution are further adjusted individually for both. On the other hand, with the growing trend in plug-in electric vehicles (PHEVs), an integrated microgridmore » system must also consider the impact of PHEVs. The charging loads from PHEVs as well as the discharging output via the vehicle-to-grid (V2G) method can greatly affect the economic dispatch for all of the micro energy sources in a microgrid. This paper presents an optimization method for economic dispatch in a microgrid considering conventional power plants, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in a modern microgrid.« less

  12. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    NASA Astrophysics Data System (ADS)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  13. Application of Spatial Models in Making Location Decisions of Wind Power Plant in Poland

    NASA Astrophysics Data System (ADS)

    Płuciennik, Monika; Hełdak, Maria; Szczepański, Jakub; Patrzałek, Ciechosław

    2017-10-01

    In this paper,we explore the process of making decisions on the location of wind power plants in Poland in connection with a gradually increasing consumption of energy from renewable sources and the increase of impact problems of such facilities. The location of new wind power plants attracts much attention, and both positive and negative publicity. Visualisations can be of assistance when choosing the most advantageous location for a plant, as three-dimensional variants of the facility to be constructed can be prepared. This work involves terrestrial laser scanning of an existing wind power plant and 3D modelling followed by. The model could be subsequently used in visualisation of real terrain, with special purpose in local land development plan. This paper shows a spatial model of a wind power plant as a new element of a capital investment process in Poland. Next, we incorporate the model into an undeveloped site, intended for building a wind farm, subject to the requirements for location of power plants.

  14. CHANGES IN TERRESTRIAL ECOLOGY RELATED TO A COAL-FIRED POWER PLANT: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    This report summarizes the effects of a coal-fired power plant on terrestrial plants and animals. Research was conducted from 1971 through 1977 at the Columbia Generating Station in the eastern flood-plain of the Wisconsin River in south-central Wisconsin. Initial studies were la...

  15. 75 FR 5355 - Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ..., Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment AGENCY... 1019195), Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment... Plant Fire Modeling Application Guide (NPP FIRE MAG)'' is available electronically under ADAMS Accession...

  16. 10. WEST WALL OF POWER PLANT BUILDING LOOKING EAST SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. WEST WALL OF POWER PLANT BUILDING LOOKING EAST SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  17. 14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  18. 12. CANAL SLUICE GATE LOCATED 150' WEST OF POWER PLANT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CANAL SLUICE GATE LOCATED 150' WEST OF POWER PLANT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  19. 2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  20. 1. View of east elevation of power plant, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of east elevation of power plant, radar tower in background, looking west - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  1. 14. Photocopy of a photograph1921 SUSPENSION BRIDGE TO WESTSIDE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of a photograph--1921 SUSPENSION BRIDGE TO WESTSIDE PLANT AND WESTSIDE PENSTOCK - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  2. Thermal power systems, small power systems application project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    Current small power system technology as applied to power plants up to 10 MWe in size was assessed. Markets for small power systems were characterized and cost goals were established. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Economic studies were conducted and breakeven capital costs were determined for leading contenders among the candidate systems. An application study was made of the potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, estimated to be 1000 MWe by 1985. Criteria and methodologies were developed for application to the ranking of candidate power plant system design concepts. Experimental power plants concepts of 1 MWe rating were studied leading toward the definition of a power plant configuration for subsequent detail design, construction, testing and evaluation as Engineering Experiment No. 1 (EE No. 1). Site selection criteria and ground rules for the solicitation of EE No. 1 site participation proposals by DOE were developed.

  3. Monitoring and management of tritium from the nuclear power plant effluent

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoe; Liu, Ting; Yang, Lili; Meng, De; Song, Dahu

    2018-01-01

    It is important to regulate tritium nuclides from the nuclear power plant effluent, the paper briefly analyzes the main source of tritium, and the regulatory requirements associated with tritium in our country and the United States. The monitoring methods of tritium from the nuclear power plant effluent are described, and the purpose to give some advice to our national nuclear power plant about the effluent of tritium monitoring and management.

  4. Control and protection system for an installation for the combined production of electrical and thermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agazzone, U.; Ausiello, F.P.

    1981-06-23

    A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less

  5. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  6. A parametric simulation of solar chimney power plant

    NASA Astrophysics Data System (ADS)

    Beng Hooi, Lim; Kannan Thangavelu, Saravana

    2018-01-01

    The strong solar radiation, continuous supplies of sunlight and environmental friendly factors have made the solar chimney power plant becoming highly feasible to build in Malaysia. Solar chimney power plant produces upward buoyancy force through the greenhouse effect. Numerical simulation was performed on the model of a solar chimney power plant using the ANSYS Fluent software by applying standard k-epsilon turbulence model and discrete ordinates (DO) radiation model to solve the relevant equations. A parametric study was carried out to evaluate the performance of solar chimney power plant, which focused on the temperature rise in the collector, air velocity at the chimney base, and pressure drop inside the chimney were based on the results of temperature, velocity, and static pressure distributions. The results demonstrate reliability by comparing a model with the experimental data of Manzanares Spanish prototype. Based on the numerical results, power capacity and efficiency were analysed theoretically. Results indicate that a stronger solar radiation and larger prototype will improve the performance of solar chimney power plant.

  7. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    NASA Astrophysics Data System (ADS)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  8. Gaseous and particulate emissions from thermal power plants operating on different technologies.

    PubMed

    Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain

    2010-07-01

    This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel.

  9. Demand of the power industry of Russia for gas turbines: the current state and prospects

    NASA Astrophysics Data System (ADS)

    Filippov, S. P.; Dil'man, M. D.; Ionov, M. S.

    2017-11-01

    The use of gas-turbine plants (GTPs) in the power industry of Russia is analyzed. Attention is paid to microturbines and low-, medium-, high-, and superhigh-power GTPs. The efficiency of the gas-turbine plants of domestic and foreign manufacture is compared. The actual values of the installed capacity utilization factor and the corresponding efficiency values are calculated for most GTPs operating in the country. The long-term demand of the country's electric power industry for GTPs for the period until 2040 is determined. The estimates have been obtained for three basic applications of the gas turbines, viz., for replacement of the GTPs that have exhausted their lifetime, replacement of outdated gas-turbine plants at gas-and-oilburning power plants, and construction of new thermal power plants to cover the anticipated growing demand for electric power. According to the findings of the research, the main item in the structure of the demand for GTPs will be their use to replace the decommissioned steam-turbine plants, predominantly those integrated into combined-cycle plants. The priority of the reconstruction of the thermal power plants in operation over the construction of new ones is determined by the large excess of accumulated installed capacities in the country and considerable savings on capital costs using production sites with completed infrastructure. It is established that medium- and high-power GTPs will be the most in-demand plants in the electric power industry. The demand for low-power GTPs will increase at high rates. The demand for microturbines is expected to be rather great. The demand for superhigh-power plants will become quantitatively significant after 2025 and grow rapidly afterwards. The necessity of accelerated development of competitive domestic GTPs with a wide range of capacities and mastering of their series manufacture as well as production of licensed gas turbines at a high production localization level on the territory of the country is shown. Considerable home demand for the power-generating GTPs and vast external markets will make the development of efficient domestic GTPs economically viable.

  10. Competitiveness of biomass-fueled electrical power plants.

    Treesearch

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  11. 76 FR 52355 - NUREG-1482, Revision 2, “Guidelines for Inservice Testing at Nuclear Power Plants, Draft Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Testing at Nuclear Power Plants, Draft Report for Comment'' AGENCY: Nuclear Regulatory Commission. ACTION... Testing at Nuclear Power Plants, Draft Report for Comment,'' and subtitled ``Inservice Testing of Pumps and Valves, and Inservice Examination and Testing of Dynamic Restraints (Snubbers) at Nuclear Power...

  12. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power... nuclear power plants that were licensed before January 1, 1979, satisfy the requirements of 10 CFR Part 50...

  13. 75 FR 11575 - James A. Fitzpatrick Nuclear Power Plant Environmental Assessment and Finding of No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... Power Plant Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory... Code of Federal Regulations (10 CFR), Appendix R, ``Fire Protection Program for Nuclear Power...), for the operation of the James A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County...

  14. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  15. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  16. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  17. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  18. Safety Regulation of Nuclear Power Plant License Renewal

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoe; Liu, Ting; Qi, Yuan; Yang, LiLi

    2018-01-01

    China’s regulations stipulate that a nuclear power plant license is valid for a design life period (generally 30 or 40 years). Whether the nuclear power plant’s license is renewed after the expiration of the license is to be determined based on the safety and economy of the nuclear power plant..

  19. Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios

    NASA Astrophysics Data System (ADS)

    Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca

    2016-05-01

    The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (<550°C) and high (>550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.

  20. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  1. Associations Between Residential Proximity to Power Plants and Adverse Birth Outcomes

    PubMed Central

    Ha, Sandie; Hu, Hui; Roth, Jeffrey; Kan, Haidong; Xu, Xiaohui

    2015-01-01

    Few studies have assessed the associations between residential proximity to power plants and adverse birth outcomes including preterm delivery (PTD), very preterm delivery (VPTD), and term low birth weight (LBW). We geocoded 423,719 singleton Florida births born from 2004 to 2005 and all active power plants and determined residential proximity to the nearest power plant for each birth. Prenatal exposure to particulate matter less than 2.5 µm in diameter for women living near different types of power plants was also determined by using National Environmental Public Health Tracking Network data. Logistic regression models were used to test the hypothesized associations. Women who lived closer to coal and solid waste power plants were exposed to higher levels of particulate matter less than 2.5 µm in diameter compared with other types. We observed a 1.8% (95% confidence interval (CI): 1.3, 2.3) increased odds for PTD, 2.2% (95% CI: 1.0, 3.4) for VPTD, and 1.1% (95% CI: 0.2, 2.0) for term LBW for each 5 km closer to any power plant. When stratifying by different fuel type, we found that only solid waste had an association with term LBW, whereas oil, gas, and solid waste all had an association with PTD and VPTD. Results were consistent when exposure was categorized by number of power plants. Our study found evidence of increasing odds of adverse birth outcomes among infants born to pregnant women living closer to power plants. More research is warranted to better understand the causal relationship. PMID:26121989

  2. Association between Residential Proximity to Fuel-Fired Power Plants and Hospitalization Rate for Respiratory Diseases

    PubMed Central

    Liu, Xiaopeng; Lessner, Lawrence

    2012-01-01

    Background: Air pollution is known to cause respiratory disease. Unlike motor vehicle sources, fuel-fired power plants are stationary. Objective: Using hospitalization data, we examined whether living near a fuel-fired power plant increases the likelihood of hospitalization for respiratory disease. Methods: Rates of hospitalization for asthma, acute respiratory infection (ARI), and chronic obstructive pulmonary disease (COPD) were estimated using hospitalization data for 1993–2008 from New York State in relation to data for residences near fuel-fired power plants. We also explored data for residential proximity to hazardous waste sites. Results: After adjusting for age, sex, race, median household income, and rural/urban residence, there were significant 11%, 15%, and 17% increases in estimated rates of hospitalization for asthma, ARI, and COPD, respectively, among individuals > 10 years of age living in a ZIP code containing a fuel-fired power plant compared with one that had no power plant. Living in a ZIP code with a fuel-fired power plant was not significantly associated with hospitalization for asthma or ARI among children < 10 years of age. Living in a ZIP code with a hazardous waste site was associated with hospitalization for all outcomes in both age groups, and joint effect estimates were approximately additive for living in a ZIP code that contained a fuel-fired power plant and a hazardous waste site. Conclusions: Our results are consistent with the hypothesis that exposure to air pollution from fuel-fired power plants and volatile compounds coming from hazardous waste sites increases the risk of hospitalization for respiratory diseases. PMID:22370087

  3. Research on the Intensive Material Management System of Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Ruosi; Hao, Tianyi; Li, Yunxiao; Zhang, Fangqing; Ding, Sheng

    2017-05-01

    In view of the universal problem which the material management is loose, and lack of standardization and interactive real-time in the biomass power plant, a system based on the method of intensive management is proposed in this paper to control the whole process of power plant material. By analysing the whole process of power plant material management and applying the Internet of Things, the method can simplify the management process. By making use of the resources to maximize and data mining, material utilization, circulation rate and quality control management can be improved. The system has been applied in Gaotang power plant, which raised the level of materials management and economic effectiveness greatly. It has an important significance for safe, cost-effective and highly efficient operation of the plant.

  4. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less

  5. 8. VIEW OF WESTERN END OF THE POWER PLANT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF WESTERN END OF THE POWER PLANT BUILDING LOOKING NORTH. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  6. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  7. 11. Interior view, east side of power plant, close of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view, east side of power plant, close of up fuel tanks, looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  8. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  9. 37. ISLAND PLANT: Nos. 1 AND 2 TWENTYSIX INCH SPECIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ISLAND PLANT: Nos. 1 AND 2 TWENTY-SIX INCH SPECIAL HORIZONTAL SAMSON TURBINE (RIVITED CASE) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  10. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  11. Design and implementation of a simple nuclear power plant simulator

    NASA Astrophysics Data System (ADS)

    Miller, William H.

    1983-02-01

    A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.

  12. Analysis of Axial Turbine Pico-Hydro Electrical Power Plant in North Sulawesi Indonesia

    NASA Astrophysics Data System (ADS)

    Sangari, F. J.; Rompas, P. T. D.

    2018-02-01

    This study presents analysis of pico-hydro electrical power plant in North Sulawesi, Indonesia. The objective of this study is to get a design of axial turbine pico-hydro electrical power plant. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of study, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design of axial turbine pico-hydro installation is connected to a generator to produce electrical energy maximum can be used for household needs in villages. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia.

  13. Dustfall design of open coal yard in the power plant-a case study on the closed reconstruction project of coal storage yard in shengli power plant

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Ji, Weidong; Zhang, Feifei; Yu, Wei; Zheng, Runqing

    2018-02-01

    This thesis, based on the closed reconstruction project of the coal storage yard of Shengli Power Plant which is affiliated to Sinopec Shengli Petroleum Administration, first makes an analysis on the significance of current dustfall reconstruction of open coal yard, then summarizes the methods widely adopted in the dustfall of large-scale open coal storage yard of current thermal power plant as well as their advantages and disadvantages, and finally focuses on this project, aiming at providing some reference and assistance to the future closed reconstruction project of open coal storage yard in thermal power plant.

  14. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  15. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  16. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  17. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  18. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power plant structures, systems, and components important to safety be designed to withstand the effects of... proposed sites for nuclear power plants and the suitability of the plant design bases established in...

  19. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Yan, Yulong; Yang, Chao; Peng, Lin; Li, Rumei; Bai, Huiling

    2016-10-01

    Face the large electricity demand, thermal power generation still derives the main way of electricity supply in China, account for 78.19% of total electricity production in 2013. Three types of thermal power plants, including coal-fired power plant, coal gangue-fired power plant and biomass-fired power plant, were chosen to survey the source profile, chemical reactivity and emission factor of VOCs during the thermal power generation. The most abundant compounds generated during coal- and coal gangue-fired power generation were 1-Butene, Styrene, n-Hexane and Ethylene, while biomass-fired power generation were Propene, 1-Butenen, Ethyne and Ethylene. The ratios of B/T during thermal power generation in this study was 0.8-2.6, which could be consider as the characteristics of coal and biomass burning. The field tested VOCs emission factor from coal-, coal gangue- and biomass-fired power plant was determined to be 0.88, 0.38 and 3.49 g/GJ, or showed as 0.023, 0.005 and 0.057 g/kg, with the amount of VOCs emission was 44.07, 0.08, 0.45 Gg in 2013, respectively. The statistical results of previous emission inventory, which calculated the VOCs emission used previous emission factor, may overestimate the emission amount of VOCs from thermal power generation in China.

  20. Inertial Fusion Power Plant Concept of Operations and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anklam, T.; Knutson, B.; Dunne, A. M.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oilmore » refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.« less

  1. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  2. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and construct OSC and USC head power plants, joint efforts of the government, experts in power industry and metallurgy, scientific institutions, and equipment manufacturers are required.

  3. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  4. Climate change impacts on thermoelectric-power generation in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2015-12-01

    Thermoelectric-power generation accounts for more than 70% of the total electricity generation in the United States, which requires large amounts of water for cooling purposes. Water withdrawals for thermoelectric-power generation accounted for 45% of total water use in the United States in 2010. Across the country, water demand from power plants is increasing due to pressures from growing populations and other needs, and is straining existing water resources. Moreover, temperature exceedance in receiving waters has increasingly caused power plants shut downs across parts of the country. Thermoelectric power is vulnerable to climate change owing to the combined effects of lower summer river flows and higher receiving water temperatures. In addition, the efficiency of production is reduced as air temperature rises, which propagates to more unfulfilled power demand during peak seasons. Therefore, a holistic modeling framework of water-energy-climate for the contiguous U.S. is presented here to quantify thermal output from power plants and estimate water use and energy production fluctuations due to ambient climate as well as environmental regulations. The model is calibrated on a plant-by-plant basis for year 2010 and 2011 using the available power plant inventory from the Energy Information Administration (EIA). Simulations were carried out for years 2012 and 2013, and results show moderate improvements in capturing thermal output variabilities after calibration. Future power plant operations under scenarios featuring different climate and regulatory settings were investigated. Results demonstrate the interplay among water, energy and climate, and that future changes in climate and socioeconomics significantly affect power plant operations, which may provide insights to climate change mitigation considerations and energy decisions.

  5. 6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL BED TO THE LEFT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  6. 9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY CANAL BED IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  7. 1. VIEW OF POWER PLANT LOOKING SOUTHEAST. SEVEN TURBINE FLUMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF POWER PLANT LOOKING SOUTHEAST. SEVEN TURBINE FLUMES VISIBLE IN FRONT OF BUILDING. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  8. 3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS OF THE TURBINE FLUMES. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  9. 7. EXTERIOR OF POWER PLANT BUILDING LOOKING NORTHWEST. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR OF POWER PLANT BUILDING LOOKING NORTHWEST. DETAIL OF TRASH RACK IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  10. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  11. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI) report NEI 06-11...(c)(25). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment...

  12. Regulatory Actions - Final Mercury and Air Toxics Standards (MATS) for Power Plants

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. This page describes Federal regulatory actions.

  13. Regulatory Actions - Proposed Mercury and Air Toxics Standards (MATS) for Power Plants

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. This page includes supporting documentation and

  14. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    PubMed

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle pollution is challenging when fossil-fuel-based electricity production is increasing. We show that an air quality forecasting system based on a photochemical model can be utilized to efficiently estimate PM2.5 contributions from and health impacts of domestic power plants. We derived PM2.5 concentrations per unit amount of electricity production from existing fossil-fuel power plants in South Korea. We assessed the health impacts of existing fossil-fuel power plants and the PM2.5 concentrations per unit electricity production to quantify the significance of existing and future fossil-fuel power plants with respect to the planned PM2.5 reduction target.

  15. JPL - Small Power Systems Applications Project. [for solar thermal power plant development and commercialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Marriott, A. T.; Truscello, V.

    1978-01-01

    The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.

  16. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be fired in Cabras Power Plant Units Nos. 1 through 3 and in Piti Power Plant Units Nos. 4 and 5... conditionally exempts Piti Power Plant Units No. 8 and No. 9 from certain CAA requirements. (2) A waiver of the... Administrator of EPA conditionally exempts Guam Power Authority (“GPA”) from certain CAA requirements. (1) A...

  17. 78 FR 25486 - Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Company, LLC., Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4... Regulations (10 CFR), for the Comanche Peak Nuclear Power Plant (CPNPP), Units 3 and 4, Combined License (COL... Peak Nuclear Power Plant, Units 3 and 4,'' dated May 13, 2011. Agencies and Persons Consulted On March...

  18. Alternative Fuels Data Center: Rhode Island Transportation Data for

    Science.gov Websites

    (million cubic feet) 94,453 Conventional Power Plants 10 Generating Capacity (nameplate, MW) 1,991 Oil Refineries 0 Oil Refinery Capacity (bbl/day) 0 Renewable Power Plants 2 Renewable Power Plant Capacity More Rhode Island Videos on YouTube Video thumbnail for Cooking Oil Powers Biodiesel Vehicles in Rhode

  19. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2014-10-21

    We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively.

  20. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    NASA Astrophysics Data System (ADS)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  1. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  2. Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.

    PubMed

    Barker, Zachary A; Stillwell, Ashlynn S

    2016-05-17

    Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy.

  3. Electricity Market Liberalisation and Flexibility of Conventional Generation to Balance Intermittent Renewable Energy - Is It Possible to Stay Competitive?

    NASA Astrophysics Data System (ADS)

    Linkevics, O.; Ivanova, P.; Balodis, M.

    2016-12-01

    Intermittent generation (solar PV and wind energy) integration in power production portfolio as well as electricity price fluctuations have changed the running manner of conventional combined heat and power (CHP) plants: the shift from base load operation to running in cyclic modes. These cogeneration power plants are not adapted to new running conditions. The level of CHP plant flexibility should be improved to operate profitably and efficiently from both technical and fuel usage point of view. There are different ways to increase the flexibility of power plants. Before any improvements, the situation at power plants should be evaluated and the weakest points defined. In this publication, such measures are presented on Riga CHP-2 plant example: installation of heat storage tank; extension of operation rang; acceleration of start-ups.

  4. The optimization of nuclear power plants operation modes in emergency situations

    NASA Astrophysics Data System (ADS)

    Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.

    2018-01-01

    An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.

  5. 75 FR 29785 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... or acceptance of a nuclear power plant simulation facility for use in operator and senior operator...

  6. Health Risks of Nuclear Power.

    ERIC Educational Resources Information Center

    Cohen, Bernard L.

    1978-01-01

    Deals with the wastes generated in nuclear power plants and the health risks involved as compared to those of wastes generated by coal-fired plants. Concludes that the risks of nuclear power plants are many times smaller than the risks from alternative energy resources. (GA)

  7. Solid Waste from the Operation and Decommissioning of Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  8. Go Nuclear? What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    The dialogue in this module (about a nuclear power plant in Morong, Bataan) is designed to help students answer these questions: (1) When did the construction of the plant begin? What delayed the construction? (2) How does a nuclear power plant produce electricity? What are the nuclear reactions involved? (3) How does a nuclear power plant control…

  9. Effectiveness of US state policies in reducing CO2 emissions from power plants

    NASA Astrophysics Data System (ADS)

    Grant, Don; Bergstrand, Kelly; Running, Katrina

    2014-11-01

    President Obama's landmark initiative to reduce the CO2 emissions of existing power plants, the nation's largest source of greenhouse gas (GHG) pollutants, depends heavily on states and their ability to devise policies that meet the goals set by the Environmental Protection Agency (EPA). Under the EPA's proposed Clean Power Plan, states will be responsible for cutting power plants' carbon pollution 30% from 2005 levels by 2030. States have already adopted several policies to reduce the electricity sector's climate impact. Some of these policies focus on reducing power plants' CO2 emissions, and others address this outcome in a more roundabout fashion by encouraging energy efficiency and renewable energy. However, it remains unclear which, if any, of these direct and indirect strategies actually mitigate plants' emissions because scholars have yet to test their effects using plant-level emission data. Here we use a newly released data source to determine whether states' policies significantly shape individual power plants' CO2 emissions. Findings reveal that certain types of direct strategy (emission caps and GHG targets) and indirect ones (public benefit funds and electric decoupling) lower plants' emissions and thus are viable building blocks of a federal climate regime.

  10. 2. Photocopy of a photograph1921 VIEW OF ALL THREE POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of a photograph--1921 VIEW OF ALL THREE POWER PLANTS FROM THE SOUTH - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  11. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  12. Technical data for concentrated solar power plants in operation, under construction and in project.

    PubMed

    Pelay, Ugo; Luo, Lingai; Fan, Yilin; Stitou, Driss; Rood, Mark

    2017-08-01

    This article presents technical data for concentrated solar power (CSP) plants in operation, under construction and in project all over the world in the form of tables. These tables provide information about plants (e.g., name of the CSP plant, country of construction, owner of the plant, aim of the plant) and their technical characteristics (e.g., CSP technology, solar power, area of the plant, presence and type of hybridization system, electricity cost, presence and type of TES, power cycle fluid, heat transfer fluid, operating temperature, operating pressure, type of turbine, type and duration of storage, etc.). Further interpretation of the data and discussions on the current state-of-the-art and future trends of CSP can be found in the associated research article (Pelay et al., 2017) [1].

  13. Power plant fault detection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul

    2018-02-01

    The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.

  14. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  15. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  16. Wind energy in electric power production, preliminary study

    NASA Astrophysics Data System (ADS)

    Lento, R.; Peltola, E.

    1984-01-01

    The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics estimates on the available wind energy were also made. Eight hundred wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics included is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions caused extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects to birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of the plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.

  17. Transmission system protection screening for integration of offshore wind power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadi, A.; Strezoski, L.; Clark, K.

    This paper develops an efficient methodology for protection screening of large-scale transmission systems as part of the planning studies for the integration of offshore wind power plants into the power grid. This methodology avails to determine whether any upgrades are required to the protection system. The uncertainty is considered in form of variability of the power generation by offshore wind power plant. This paper uses the integration of a 1000 MW offshore wind power plant operating in Lake Erie into the FirstEnergy/PJM service territory as a case study. This study uses a realistic model of a 63,000-bus test system thatmore » represents the U.S. Eastern Interconnection.« less

  18. Transmission system protection screening for integration of offshore wind power plants

    DOE PAGES

    Sajadi, A.; Strezoski, L.; Clark, K.; ...

    2018-02-21

    This paper develops an efficient methodology for protection screening of large-scale transmission systems as part of the planning studies for the integration of offshore wind power plants into the power grid. This methodology avails to determine whether any upgrades are required to the protection system. The uncertainty is considered in form of variability of the power generation by offshore wind power plant. This paper uses the integration of a 1000 MW offshore wind power plant operating in Lake Erie into the FirstEnergy/PJM service territory as a case study. This study uses a realistic model of a 63,000-bus test system thatmore » represents the U.S. Eastern Interconnection.« less

  19. Proceedings of the American Power Conference. Volume 58-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1996-10-01

    This is volume 58-I of the proceedings of the American Power Conference, 1996, Technology for Competition and Globalization. The topics of the papers include power plant DC issues; cost of environmental compliance; advanced coal systems -- environmental performance; technology for competition in dispersed generation; superconductivity technologies for electric utility applications; power generation trends and challenges in China; aging in nuclear power plants; innovative and competitive repowering options; structural examinations, modifications and repairs; electric load forecasting; distribution planning; EMF effects; fuzzy logic and neural networks for power plant applications; electrokinetic decontamination of soils; integrated gasification combined cycle; advances in fusion; coolingmore » towers; relays; plant controls; flue gas desulfurization; waste product utilization; and improved technologies.« less

  20. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmissionmore » requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.« less

  1. Mobile Nuclear Power Plants 1960-1970

    DTIC Science & Technology

    1960-11-01

    power for electricity for the Army in the Field cannot be realized until a satisfactory electri- cal power distribution system is developed or low...power plants in the 1960-70 period should be to provide electri- cal power to meet concentrated demands such as those im- posed by Army and Corps...Capital Letter - Order of initiation of field plants whoa« deslg- nationa do not Include thia final letter are prototype or pilot planta

  2. Strategic Deterrence in the Post-Start Era

    DTIC Science & Technology

    1992-04-15

    electricity, and supplies. Allegedly, weapons could be delivered so accurately that electric power plants were struck in such a fashion that repair time would... power plants , but also their relative outputs, then an analyst could construct a plot of electric power production capacity versus number of generating...target values being assigned which may be more appropriate to power plant size. Number of Targets Points per Target Power All sizes 17 58.82 1000 pts

  3. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  4. Comparison of three DNA extraction kits to establish maximum yield and quality of coral-associated microbial DNA

    USGS Publications Warehouse

    Baker, Erin J.; Kellogg, Christina A.

    2014-01-01

    Coral microbiology is an expanding field, yet there is no standard DNA extraction protocol. Although many researchers depend on commercial extraction kits, no specific kit has been optimized for use with coral samples. Both soil and plant DNA extraction kits from MO BIO Laboratories, Inc., have been used by many research groups for this purpose. MO BIO recently replaced their PowerPlant® kit with an improved PowerPlantPro kit, but it was unclear how these changes would affect the kit’s use with coral samples. In order to determine which kit produced the best results, we conducted a comparison between the original PowerPlant kit, the new PowerPlantPro kit, and an alternative kit, PowerSoil, using samples from several different coral genera. The PowerPlantPro kit had the highest DNA yields, but the lack of 16S rRNA gene amplification in many samples suggests that much of the yield may be coral DNA rather than microbial DNA. The most consistent positive amplifications came from the PowerSoil kit.

  5. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.

  6. Proposed Minor NSR Permit: Deseret Power Electric Cooperative - Bonanza Power Plant

    EPA Pesticide Factsheets

    Proposed minor NSR permit, technical support document, public notice bulletin, and supporting documentation for the Deseret Power Electric Cooperative Bonanza Power Plant, Uintah and Ouray Indian Reservation, Utah.

  7. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  8. ESP IMPROVEMENTS AT POWER PLANTS

    EPA Science Inventory

    An on-going ORD and OIA collaborative project in the Newly Independent States (NIS) is designed to upgrade ESPs used in NIS power plants and has laid the foundation for implementing cost-effective ESP modernization efforts at power plants. Thus far, state-of-the-art ESP performan...

  9. 10 CFR 50.54 - Conditions of licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality assurance... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...

  10. 10 CFR 50.54 - Conditions of licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality assurance... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...

  11. Assuring Structural Integrity in Army Systems

    DTIC Science & Technology

    1985-02-28

    power plants are* I. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code , Section III - Rules for Construction of Nuclear...Power Plant Components; 2. ASNE Boiler and Pressure Vessel Code , Section XI, Rules for In-Service Inspection of Nuclear Power Plant Components; and 3

  12. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  13. 75 FR 12533 - Combined Notice Of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ....; R.E. Ginna Nuclear Power Plant, LLC; Constellation Energy Commodities Group; Constellation Energy Commodities Group Maine; Raven Three, LLC; Raven Two, LLC; Raven One, LLC; Calvert Cliffs Nuclear Power Plant LLC. Description: Calvert Cliffs Nuclear Power Plant submits Substitute First Revised Sheet 1 et al...

  14. 8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  15. High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  16. Source selection problem of competitive power plants under government intervention: a game theory approach

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Reza; Hafezalkotob, Ashkan; Makui, Ahmad

    2014-06-01

    Pollution and environmental protection in the present century are extremely significant global problems. Power plants as the largest pollution emitting industry have been the cause of a great deal of scientific researches. The fuel or source type used to generate electricity by the power plants plays an important role in the amount of pollution produced. Governments should take visible actions to promote green fuel. These actions are often called the governmental financial interventions that include legislations such as green subsidiaries and taxes. In this paper, by considering the government role in the competition of two power plants, we propose a game theoretical model that will help the government to determine the optimal taxes and subsidies. The numerical examples demonstrate how government could intervene in a competitive market of electricity to achieve the environmental objectives and how power plants maximize their utilities in each energy source. The results also reveal that the government's taxes and subsidiaries effectively influence the selected fuel types of power plants in the competitive market.

  17. Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development.

    PubMed

    Govindaraju, M; Ganeshkumar, R S; Muthukumaran, V R; Visvanathan, P

    2012-05-01

    Thermal power plants emit various gaseous and particulate pollutants into the atmosphere. It is well known that trees help to reduce air pollution. Development of a greenbelt with suitable plant species around the source of emission will mitigate the air pollution. Selection of suitable plant species for a greenbelt is very important. Present study evaluates different plant species around Neyveli thermal power plant by calculating the Air Pollution Tolerance Index (APTI) which is based on their significant biochemical parameters. Also Anticipated Performance Index (API) was calculated for these plant species by combining APTI values with other socio-economic and biological parameters. Based on these indices, the most appropriate plant species were identified for the development of a greenbelt around the thermal power plant to mitigate air pollution. Among the 30 different plant species evaluated, Mangifere indica L. was identified as keystone species which is coming under the excellent category. Ambient air quality parameters were correlated with the biochemical characteristics of plant leaves and significant changes were observed in the plants biochemical characteristics due to the air pollution stress.

  18. The Power Plant Mapping Student Project: Bringing Citizen Science to Schools

    NASA Astrophysics Data System (ADS)

    Tayne, K.; Oda, T.; Gurney, K. R.; O'Keeffe, D.; Petron, G.; Tans, P. P.; Frost, G. J.

    2014-12-01

    An emission inventory (EI) is a conventional tool to quantify and monitor anthropogenic emissions of greenhouse gases and air pollutants into the atmosphere. Gridded EI can visually show geographical patterns of emissions and their changes over time. These patterns, when available, are often determined using location data collected by regional governments, industries, and researchers. Datasets such as Carbon Monitoring and Action (CARMA, www.carma.org) are particularly useful for mapping emissions from large point sources and have been widely used in the EI community. The EI community is aware of potentially significant errors in the geographical locations of point sources, including power plants. The big challenge, however, is to review tens of thousands of power plant locations around the world and correct them where needed. The Power Plant Mapping Student Project (PPMSP) is a platform designed for students in 4th through 12th grade to improve the geographical location of power plants indicated in existing datasets to benefit international EI research. In PPMSP, we use VENTUS, a web-based platform (http://ventus.project.asu.edu/) that invites citizens to contribute power plant location data. Using VENTUS, students view scenes in the vicinity of reported power plant coordinates on Google Maps. Students either verify the location of a power plant or search for it within a designated radius using various indicators, an e-guide, and a power plant photo gallery for assistance. If the power plant cannot be found, students mark the plant as unverified. To assure quality for research use, the project contains multiple checkpoints and levels of review. While participating in meaningful research that directly benefits the EI research community, students are engaged in relevant science curricula designed to meet each grade level's Next Generation Science Standards. Students study energy, climate change, the atmosphere, and geographical information systems. The curricula is integrated with math and writing, connecting to the Common Core Standards. PPMSP is designed to be accessible and relevant to all learners, including students learning English. With PPMSP, students are empowered to participate in relevant research and become future leaders in mitigating climate change.

  19. System-wide emissions implications of increased wind power penetration.

    PubMed

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  20. Optimized MPPT-based converter for TEG energy harvester to power wireless sensor and monitoring system in nuclear power plant

    NASA Astrophysics Data System (ADS)

    Xing, Shaoxu; Anakok, Isil; Zuo, Lei

    2017-04-01

    Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.

  1. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments.

    PubMed

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V K

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  2. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments

    NASA Astrophysics Data System (ADS)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V. K.

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  3. Energy Storage Opportunities and Capabilities in a Type 3 Wind Turbine Generator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy

    Wind power plants and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both governor and/or inertial response) to the grid by a control action; thus, the reduction of available online inertia as conventional power plants are retired can be compensated by designing renewable power plant controls to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation and control strategy chosen. The cost of energy storage is expected to drop over time, and global research activities on energy storage are very active, funded bothmore » by the private industry and governments. Different industry sectors (e.g., transportation, energy) are the major drivers of the recent storage research and development. This work investigates the opportunities and capabilities of deploying energy storage in renewable power plants. In particular, we focus on wind power plants with doubly-fed induction generators, or Type 3 wind turbine generator (WTGs). We find that the total output power of a system with Type 3 WTGs with energy storage can deliver a power boost during inertial response that is up to 45% higher than one without energy storage without affecting the torque limit, thus enabling an effective delivery of ancillary services to the grid.« less

  4. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error.more » The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.« less

  5. Structural considerations for underground nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarne, Y.

    The advantages and disadvantages of underground nuclear power plants are briefly reviewed. The impact of underground contruction on plant layout and structural design are discussed. Schedules and costs for construction are compared with those for conventional plants.

  6. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  7. Terrorism Risk Modeling for Intelligence Analysis and Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    comparatively high risk of CBRN attacks. Estimates of sabotage risk are highly dependent on proximity of nuclear power plants , chemical plants , or oil...and casinos, airports, nuclear power plants 3 Military, train and subway stations, stadiums, bridges and tunnels 4 Industrial facilities, oil and...airspace zones 8 Power plants , dams, railway networks levels. Collecting and incorporating such data for specific localities or industry sectors would

  8. Siting Issues for Solar Thermal Power Plants with Small Community Applications

    NASA Technical Reports Server (NTRS)

    Holbeck, J. J.; Ireland, S. J.

    1978-01-01

    Technologies for solar thermal plants are being developed to provide energy alternatives for the future. Implementation of these plants requires consideration of siting issues as well as power system technology. While many conventional siting considerations are applicable, there is also a set of unique siting issues for solar thermal plants. Early experimental plants will have special siting considerations. The siting issues associated with small, dispersed solar thermal power plants in the 1 to 10 MWe power range for utility/small community applications are considered. Some specific requirements refer to the first 1 MWe engineering experiment for the Small Power Systems Applications (SPSA) Project. The siting issues themselves are discussed in three categories: (1) system resource requirements, (2) environmental effects on the system, and (3) potential impact of the plant on the environment. Within these categories, specific issues are discussed in a qualitative manner. Examples of limiting factors for some issues are taken from studies of other solar systems.

  9. 15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ELECTRICAL PANEL ON LEFT, AND C. 1910 GENERATOR COVER ON RIGHT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  10. 77 FR 49833 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... with States at Commercial Nuclear Power Plants and Other Nuclear Production and Utilization Facilities... or asked to report: Nuclear Power Plant Licensees, Materials Security Licensees and those States... and interested in monitoring the safety status of nuclear power plants and radioactive materials. This...

  11. 10 CFR 50.54 - Conditions of licenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... chapter. (a)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality... irradiated fuel. (ff) For licensees of nuclear power plants that have implemented the earthquake engineering... of rated thermal power only if the Commission finds that the state of onsite emergency preparedness...

  12. ATMOSPHERIC RELEASES FROM STANDARDIZED NUCLEAR POWER PLANTS: A WIND TUNNEL STUDY

    EPA Science Inventory

    Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard design nuclear power plants. The main objective of the study was to compare the dispersion in the wake of the standardized nuclear power plants with that in a s...

  13. 77 FR 69449 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    .... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power...., Constellation Power Source Generation, Inc., Cow Branch Wind Power, L.L.C., CR Clearing, LLC, Criterion Power...

  14. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  15. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    NASA Astrophysics Data System (ADS)

    Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.

    2015-01-01

    The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  16. Method for assigning sites to projected generic nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for themore » site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.« less

  17. Cost analysis of a coal-fired power plant using the NPV method

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.

    2015-12-01

    The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.

  18. Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.R.

    This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.

  19. 9. View southeast corner of perimeter acquisition radar power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  20. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...

  1. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...

  2. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant... that the applicant wishes to have the application considered under 10 CFR part 52, appendix N, and must...

  3. 7. Perimeter acquisition radar power plant room #202, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Perimeter acquisition radar power plant room #202, battery equipment room; showing battery room (in background) and multiple source power converter (in foreground). The picture offers another look at the shock-isolation system developed for each platform - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  4. 8. Perimeter acquisition radar power plant room #211, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Perimeter acquisition radar power plant room #211, battery equipment room; showing battery racks. The dc power of these batteries is distributed to motor-control centers, the annunciator system, and fire alarm and tripping circuits - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  5. Achieving more reliable operation of turbine generators at nuclear power plants by improving the water chemistry of the generator stator cooling system

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.; Chudakova, I. Yu.; Alekseenko, O. A.

    2011-08-01

    Ways of improving the water chemistry used in the turbine generator stator's cooling systems at Russian nuclear power plants are considered. Data obtained from operational chemical monitoring of indicators characterizing the quality of cooling water in the turbine generator stator cooling systems of operating power units at nuclear power plants are presented.

  6. Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants

    NASA Astrophysics Data System (ADS)

    Morstyn, Thomas; Farrell, Niall; Darby, Sarah J.; McCulloch, Malcolm D.

    2018-02-01

    Power networks are undergoing a fundamental transition, with traditionally passive consumers becoming `prosumers' — proactive consumers with distributed energy resources, actively managing their consumption, production and storage of energy. A key question that remains unresolved is: how can we incentivize coordination between vast numbers of distributed energy resources, each with different owners and characteristics? Virtual power plants and peer-to-peer (P2P) energy trading offer different sources of value to prosumers and the power network, and have been proposed as different potential structures for future prosumer electricity markets. In this Perspective, we argue they can be combined to capture the benefits of both. We thus propose the concept of the federated power plant, a virtual power plant formed through P2P transactions between self-organizing prosumers. This addresses social, institutional and economic issues faced by top-down strategies for coordinating virtual power plants, while unlocking additional value for P2P energy trading.

  7. 75 FR 880 - Sunshine Act; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... County Nuclear Power Plant, Units 1 and 2), LBP-09-10 (Tentative) e. Detroit Edison Co. (Fermi Power Plant Independent Spent Fuel Storage Installation), LBP-09-20 (Aug. 21, 2009), Docket No. 72-72-EA..., Petition for Review of LBP-09-7 (Tentative) g. Tennessee Valley Authority (Bellefonte Nuclear Power Plant...

  8. NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...

  9. AERIAL PHOTOGRAPHY AND GROUND VERIFICATION AT POWER PLANT SITES: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    This study demonstrated and evaluated nine methods for monitoring the deterioration of a large wetland on the site of a newly-constructed coal-fired power plant in Columbia, County, Wisconsin. Four of the nine methods used data from ground sampling; two were remote sensing method...

  10. 75 FR 2894 - Withdrawal of Regulatory Guide 1.148

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Valve Assemblies in Systems Important to Safety in Nuclear Power Plants.'' FOR FURTHER INFORMATION... for Active Valve Assemblies in Systems Important to Safety in Nuclear Power Plants.'' RG 1.148 was... qualifying active mechanical equipment used in nuclear power plants. The NRC is withdrawing RG 1.148 because...

  11. Environmental Cost of Electric Power, A Scientists' Institute for Public Information Workbook.

    ERIC Educational Resources Information Center

    Abrahamson, Dean E.

    Analyzed are the environmental and health hazards associated with different forms of power production: nuclear power plants, fossil fuel plants, and hydroelectric plants. Data are given relating to chemical pollution, thermal pollution, radioactive hazards and geological and geographical effects. Problems of setting standards, and criteria which…

  12. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft Report for Comment AGENCY: Nuclear Regulatory Commission... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...

  13. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... integral part of NRC-approved fire protection programs. However, compensatory measures are not expected to...

  14. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... CONTACT: Felix Gonzalez, Fire Research Branch, Division of Risk Analysis, Office of Nuclear Regulatory...

  15. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  16. 78 FR 48503 - Proposed Revision to Missiles Generated by Extreme Winds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR..., ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants,'' and Interim Staff Guidance DC... and Hurricane Missiles for Nuclear Power Plants'' (ADAMS, Accession No. ML110940300), and Interim...

  17. 10 CFR 50.120 - Training and qualification of nuclear power plant personnel.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Training and qualification of nuclear power plant personnel. 50.120 Section 50.120 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this...

  18. 10 CFR 50.120 - Training and qualification of nuclear power plant personnel.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Training and qualification of nuclear power plant personnel. 50.120 Section 50.120 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this...

  19. 76 FR 60939 - Metal Fatigue Analysis Performed by Computer Software

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... Nuclear Power Plants,'' Revision 2, issued December 2010, which recommends that the effects of the reactor... design control in accordance with Appendix B, ``Quality Assurance Criteria for Nuclear Power Plants and... Nuclear Power Plants.'' Intent The U.S. Nuclear Regulatory Commission (NRC) is issuing this regulatory...

  20. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  1. Thermal Storage Applications Workshop. Volume 2: Contributed Papers

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.

  2. A study on economic power dispatch grid connected PV power plant in educational institutes

    NASA Astrophysics Data System (ADS)

    Singh, Kuldip; Kumar, M. Narendra; Mishra, Satyasis

    2018-04-01

    India has main concerns on environment and escalation of fuel prices with respect to diminution of fossil fuel reserves and the major focus on renewable Energy sources for power generation to fulfill the present and future energy demand. Installation of PV power plants in the Educational Institutions has grown up drastically throughout India. More PV power plant are integrated with load and grid through net metering. Therefore, this paper is an analysis of the 75kWp PV plant at chosen buses, considering the need of minimum demand from the grid. The case study is carried out for different generation level throughout the day and year w.r.t load and climate changes, load sharing on grid. The economic dispatch model developed for PV plant integrated with Grid.

  3. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-09-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  4. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  5. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig Turchi; Guangdong Zhu; Michael Wagner

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less

  6. Effect of Hartha and Najibia power plants on water quality indices of Shatt Al-Arab River, south of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Aboodi, Ali H.; Abbas, Sarmad A.; Ibrahim, Husham T.

    2018-05-01

    The main object of this research is to assess the water quality of Shatt Al-Arab River and its suitability for various purposes near power plants (Hartha and Najibia) through physical and chemical analysis [temperature, pH, EC, Cl-, Na+, K+, Ca+2, Mg+2, HCO3 -, NO3 -, SO 4 -2 , Fe+, total alkalinity, total hardness, biological oxygen demand (BOD5), NH4 +, and NO2 -] using water quality index (WQI), organic pollution index (OPI), sodium adsorption ratio (SAR), and percentage of sodium ion (Na%) during the dry season (August, 2016) and the wet season (January, 2017). WQI of Shatt Al-Arab falls under very poor quality during summer season, while it ranges from very poor quality to unsuitable for drinking purposes during winter season. There is a clear effect of power plants on water quality. Hartha and Najibia power plants contribute to the deterioration of water quality by increasing the percentage ratio of WQI near these plants by 13.22 and 9.69%, respectively, compared to the north sites of these plants during summer season. The percentage ratios of increased WQI near Hartha and Najibia power plants compared to the north sites of these plants are 17.93 and 15.92%, respectively, during winter season. Water quality of Shatt Al-Arab falls under a high level of organic pollution during the summer and winter seasons. There is a slight effect by the power plants on the OPI. Hartha and Najibia power plants contributed to the change of the OPI by 10% compared to the north site of Hartha power plant. According to the comparison between the SAR values which represent the suitability of water for serve irrigation purposes and SAR values of Shatt Al-Arab, all sites lie in the first class (excellent). According to Na+%, the type of surface water in the studied area lies in good class during winter season and permissible class during summer season.

  7. Power Watch: Increasing Transparency and Accessibility of Data in the Global Power Sector to Accelerate the Transition to a Lower Carbon Economy

    NASA Astrophysics Data System (ADS)

    Hennig, R. J.; Friedrich, J.; Malaguzzi Valeri, L.; McCormick, C.; Lebling, K.; Kressig, A.

    2016-12-01

    The Power Watch project will offer open data on the global electricity sector starting with power plants and their impacts on climate and water systems; it will also offer visualizations and decision making tools. Power Watch will create the first comprehensive, open database of power plants globally by compiling data from national governments, public and private utilities, transmission grid operators, and other data providers to create a core dataset that has information on over 80% of global installed capacity for electrical generation. Power plant data will at a minimum include latitude and longitude, capacity, fuel type, emissions, water usage, ownership, and annual generation. By providing data that is both comprehensive, as well as making it publically available, this project will support decision making and analysis by actors across the economy and in the research community. The Power Watch research effort focuses on creating a global standard for power plant information, gathering and standardizing data from multiple sources, matching information from multiple sources on a plant level, testing cross-validation approaches (regional statistics, crowdsourcing, satellite data, and others) and developing estimation methodologies for generation, emissions, and water usage. When not available from official reports, emissions, annual generation, and water usage will be estimated. Water use estimates of power plants will be based on capacity, fuel type and satellite imagery to identify cooling types. This analysis is being piloted in several states in India and will then be scaled up to a global level. Other planned applications of of the Power Watch data include improving understanding of energy access, air pollution, emissions estimation, stranded asset analysis, life cycle analysis, tracking of proposed plants and curtailment analysis.

  8. 14. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. 4415, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  9. 54. Photocopy of a photograph1921 PANORAMA OF 1913 DAM FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Photocopy of a photograph--1921 PANORAMA OF 1913 DAM FROM ISLAND POWER PLANT - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  10. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  11. JPRS Report, Proliferation Issues

    DTIC Science & Technology

    1992-10-28

    the Kozloduy Nuclear Power mentary Union for Social Democracy for the town of Plant . Igor Kareyev, the embassy’s economic counselor, Svishtov, comments...are working at the nuclear the Belene Nuclear Power Plant is halted." It is evident that plant . unless this issue is finally resolved, no one will make...long-term investments in the region of the projected nuclear Russian organizations are doing everything possible to power plant . It is true that

  12. Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes

    NASA Astrophysics Data System (ADS)

    Kananda, Kiki; Nazir, Refdinal

    2017-12-01

    One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.

  13. Control system development for a 1 MW/e/ solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Daubert, E. R.; Bergthold, F. M., Jr.; Fulton, D. G.

    1981-01-01

    The point-focusing distributed receiver power plant considered consists of a number of power modules delivering power to a central collection point. Each power module contains a parabolic dish concentrator with a closed-cycle receiver/turbine/alternator assembly. Currently, a single-module prototype plant is under construction. The major control system tasks required are related to concentrator pointing control, receiver temperature control, and turbine speed control. Attention is given to operational control details, control hardware and software, and aspects of CRT output display.

  14. Layouts of trigeneration plants for centralized power supply

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.

    2016-06-01

    One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration plants designed to supply electricity, heat, and cold to the users are shown and the principles of their operation are described. The article presents results of qualitative analysis of different engineering solutions applied to select one combination of power- and heat-generating equipment and thermotransformers or another.

  15. Living near nuclear power plants and thyroid cancer risk: A systematic review and meta-analysis.

    PubMed

    Kim, Jaeyoung; Bang, Yejin; Lee, Won Jin

    2016-02-01

    There has been public concern regarding the safety of residing near nuclear power plants, and the extent of risk for thyroid cancer among adults living near nuclear power plants has not been fully explored. In the present study, a systematic review and meta-analysis of epidemiologic studies was conducted to investigate the association between living near nuclear power plants and the risk of thyroid cancer. A comprehensive literature search was performed on studies published up to March 2015 on the association between nuclear power plants and thyroid cancer risk. The summary standardized incidence ratio (SIR), standardized mortality ratio (SMR), and 95% confidence intervals (CIs) were calculated using a random-effect model of meta-analysis. Sensitivity analyses were performed by study quality. Thirteen studies were included in the meta-analysis, covering 36 nuclear power stations in 10 countries. Overall, summary estimates showed no significant increased thyroid cancer incidence or mortality among residents living near nuclear power plants (summary SIR=0.98; 95% CI 0.87-1.11, summary SMR=0.80; 95% CI 0.62-1.04). The pooled estimates did not reveal different patterns of risk by gender, exposure definition, or reference population. However, sensitivity analysis by exposure definition showed that living less than 20 km from nuclear power plants was associated with a significant increase in the risk of thyroid cancer in well-designed studies (summary OR=1.75; 95% CI 1.17-2.64). Our study does not support an association between living near nuclear power plants and risk of thyroid cancer but does support a need for well-designed future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Optimizing the Utility Power of a Geothermal Power Plant using Variable Frequency Drive (VFD) (Case Study: Sibayak Geothermal Power Plant)

    NASA Astrophysics Data System (ADS)

    Sinaga, R. H. M.; Manik, Y.

    2018-03-01

    Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.

  17. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  18. JPRS Report, Science & Technology China: Energy

    DTIC Science & Technology

    1992-10-26

    The Xiaolongtan power plant is located at the Xiaolongtan open-cut coal mine and uses its coal directly from the conveyer belt. The first...which has resulted in high coal consumption, large power use by the plants, and low full-staff labor productivity and economic results. Examine coal ...consuming an additional 70 million tons-plus of raw coal . Examine the power used at power plants. The efficiency of the blowers, water pumps,

  19. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Treesearch

    David Nicholls; Zackery Wright; Daisy Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  20. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    PubMed

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  1. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; O'Neill, Barbara

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015,more » testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.« less

  2. Study on key technologies of optimization of big data for thermal power plant performance

    NASA Astrophysics Data System (ADS)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  3. 15. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. PA-A-36692, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  4. Nuclear power for space based systems

    NASA Astrophysics Data System (ADS)

    Livingston, J. M.; Ivanenok, Joseph F., III

    1991-09-01

    A 100 kWe closed Brayton cycle power conversion system utilizing a recuperator coupled to a NERVA derivative reactor for a lunar power plant is presented. Power plant mass versus recuperator effectiveness, compressor inlet temperature, and turbine pressure ratio are described.

  5. 6. Photocopy of a photograph1921 PANORAMA OF EASTSIDE AND ISLAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of a photograph--1921 PANORAMA OF EASTSIDE AND ISLAND POWER PLANTS FROM THE SOUTH - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  6. POWER PLANT COOLING WATER CHLORINATION IN NORTHERN CALIFORNIA

    EPA Science Inventory

    A survey was conducted of chlorination practices at five power plants owned and operated by the Pacific Gas and Electric Company. Frequency and duration of chlorination varied significantly from plant to plant and was controlled analytically by the orthotolidine and/or amperometr...

  7. 30 CFR 1206.354 - How do I determine generating deductions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the power plant was placed into service or at a time concurrent with the beginning of your annual... power plant costs during the reporting period, including: (i) Operating and maintenance expenses under... purchase of real estate for a power plant site if: (A) The purchase is necessary; and, (B) The surface is...

  8. 30 CFR 1206.354 - How do I determine generating deductions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the power plant was placed into service or at a time concurrent with the beginning of your annual... power plant costs during the reporting period, including: (i) Operating and maintenance expenses under... purchase of real estate for a power plant site if: (A) The purchase is necessary; and, (B) The surface is...

  9. 5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH RACK' VISIBLE IN CENTER. THE STEEL FRAME STRUCTURE SUPPORTS MACHINES TO CLEAR DEBRIS CAUGHT ON THE TRASH RACK. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  10. 16. INTERIOR OF POWER PLANT BUILDING LOOKING SOUTH AT 1925 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR OF POWER PLANT BUILDING LOOKING SOUTH AT 1925 GE GENERATOR. GOVERNOR MECHANISM IN FOREGROUND MANUFACTURED BY THE WOODWARD GOVERNOR COMPANY, ROCKFORD, ILLINOIS (NAMEPLATE ON LEFT). - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  11. 78 FR 47804 - Verification, Validation, Reviews, and Audits for Digital Computer Software Used in Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ..., ``Configuration Management Plans for Digital Computer Software used in Safety Systems of Nuclear Power Plants... Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory..., Reviews, and Audits for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This...

  12. 78 FR 47805 - Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Documents Access and Management System (ADAMS): You may access publicly available documents online in the... Management Plans for Digital Computer Software used in Safety Systems of Nuclear Power Plants,'' issued for... Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Revision...

  13. Advanced Grid-Friendly Controls Demonstration for Utility-Scale

    Science.gov Websites

    PV power plant in CAISO's footprint. NREL, CAISO, and First Solar conducted demonstration tests that vendors, integrators, and utilities to develop and evaluate photovoltaic (PV) power plants with advanced grid-friendly capabilities. Graph of power over time that shows a PV plant varying output to follow an

  14. 78 FR 67206 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0079] Qualification Tests for Safety-Related Actuators in..., ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants.'' This RG is being revised to provide... power plants. This RG is proposed Revision 1 of RG 1.73, ``Qualification Tests of Electric Valve...

  15. 40 CFR 52.1923 - Best Available Retrofit Requirements (BART) for SO2 and Interstate pollutant transport provisions...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Sooner plant; and Units 3 and 4 of the American Electric Power/Public Service Company of Oklahoma... American Electric Power/Public Service Company of Oklahoma Northeastern plant affecting visibility? (a... American Electric Power/Public Service Company of Oklahoma Northeastern plant. (b) Compliance dates...

  16. 40 CFR 52.1923 - Best Available Retrofit Requirements (BART) for SO2 and Interstate pollutant transport provisions...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sooner plant; and Units 3 and 4 of the American Electric Power/Public Service Company of Oklahoma... American Electric Power/Public Service Company of Oklahoma Northeastern plant affecting visibility? (a... American Electric Power/Public Service Company of Oklahoma Northeastern plant. (b) Compliance Dates...

  17. 76 FR 53673 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    .... Ginna Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC. Description: Notice of Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed....17(b): Amendment to 1765R4 KCPL-GMO NITSA NOA to be effective 6/1/ 2011. Filed Date: 08/19/2011...

  18. 78 FR 31614 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... for Nuclear Power Plants,'' in support of NRC reviews of early site permit (ESP), standard design... NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants... License Applications for Nuclear Power Plants, (LWR Edition)'' (ML070630003) In addition, this ISG...

  19. 77 FR 70846 - Regulatory Guide 1.182, “Assessing and Managing Risk Before Maintenance Activities at Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... Risk Before Maintenance Activities at Nuclear Power Plants'' AGENCY: Nuclear Regulatory Commission... Activities at Nuclear Power Plants,'' published in May 2000. The document is redundant due to the inclusion... Risk Before Maintenance Activities at Nuclear Power Plants,'' published in May 2000. The requirements...

  20. 78 FR 16492 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...-2181-017; ER10-2182-017. Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et. al. Filed Date: 3/8/13. Accession Number: 20130308-5085...

  1. 78 FR 26348 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ...: Docket Numbers: ER10-2179-018; ER10-2181-018; ER10-2182-018. Applicants: R.E. Ginna Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, Calvert Cliffs Nuclear Power Plant, LLC. Description: Notice of Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed Date: 4/26/13...

  2. 78 FR 49742 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ...-2181-019; ER10-2182-019. Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power Plant, LLC, et al. Filed Date: 8/8/13. Accession Number: 20130808-5137...

  3. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  4. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  5. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  6. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  7. 33 CFR 165.115 - Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth, Massachusetts. 165.115 Section 165.115 Navigation and Navigable... Coast Guard District § 165.115 Safety and Security Zones; Pilgrim Nuclear Power Plant, Plymouth...

  8. Photocopy of drawing located at National Archives, San Bruno, California ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing located at National Archives, San Bruno, California (Navy # 121-A-9). Navy Yard Mare Island, Cal building 121 central power plant, power plant extension elevations; November 2, 1938. - Mare Island Naval Shipyard, Central Power Plant, California Avenue, norhtwest corner of California Avenue & Seventh Street, Vallejo, Solano County, CA

  9. Photocopy of drawing located at National Archives, San Bruno, California ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing located at National Archives, San Bruno, California (Navy # 121-A-10). Navy Yard Mare Island, Cal Building 121 central power plant power plant extension-details; November 2, 1938 - Mare Island Naval Shipyard, Central Power Plant, California Avenue, norhtwest corner of California Avenue & Seventh Street, Vallejo, Solano County, CA

  10. 10 CFR 51.95 - Postconstruction environmental impact statements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... determined by the Commission, a supplement on the operation of a nuclear power plant will not include a... the storage of spent fuel for the nuclear power plant within the scope of the generic determination in... the renewal of an operating license or combined license for a nuclear power plant under parts 52 or 54...

  11. Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India.

    PubMed

    Bajpai, Rajesh; Upreti, Dalip K; Nayaka, S; Kumari, B

    2010-02-15

    The lichen diversity assessment carried out around a coal-based thermal power plant indicated the increase in lichen abundance with the increase in distance from power plant in general. The photosynthetic pigments, protein and heavy metals were estimated in Pyxine cocoes (Sw.) Nyl., a common lichen growing around thermal power plant for further inference. Distributions of heavy metals from power plant showed positive correlation with distance for all directions, however western direction has received better dispersion as indicated by the concentration coefficient-R(2). Least significant difference analysis showed that speed of wind and its direction plays a major role in dispersion of heavy metals. Accumulation of Al, Cr, Fe, Pb and Zn in the thallus suppressed the concentrations of pigments like chlorophyll a, chlorophyll b and total chlorophyll, however, enhanced the level of protein. Further, the concentrations of chlorophyll contents in P. cocoes increased with the decreasing the distance from the power plant, while protein, carotenoid and phaeophytisation exhibited significant decrease.

  12. Use of meteorological information in the risk analysis of a mixed wind farm and solar

    NASA Astrophysics Data System (ADS)

    Mengelkamp, H.-T.; Bendel, D.

    2010-09-01

    Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it's relation to a climatologically stable long-term reference period. These components of uncertainty are of technical nature and based on subjective estimations rather than on a statistically sound data analysis. And then there is the temporal and spatial variability of the wind speed and radiation. Their influence on the overall risk is determined by the regional distribution of the power plants. These uncertainty components are calculated on the basis of wind speed observations and simulations and satellite derived radiation data. The respective volatility (temporal variability) is calculated from the site specific time series and the influence on the portfolio through regional correlation. For an exemplary portfolio comprising fourteen wind farms and eight solar power plants the annual mean energy production to be expected is calculated, the different components of uncertainty are estimated for each single wind farm and solar power plant and for the portfolio as a whole. The reduction in uncertainty (or risk) through bundling the wind farms and the solar power plants (the portfolio effect) is calculated by Markowitz' Modern Portfolio Theory. This theory is applied separately for the wind farm and the solar power plant bundle and for the combination of both. The combination of wind and photovoltaic assets clearly shows potential for a risk reduction. Even assets with a comparably low expected return can lead to a significant risk reduction depending on their individual characteristics.

  13. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.

    PubMed

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2012-09-18

    Regulations monitoring SO(2), NO(X), mercury, and other metal emissions in the U.S. will likely result in coal plant retirement in the near-term. Life cycle assessment studies have previously estimated the environmental benefits of displacing coal with natural gas for electricity generation, by comparing systems that consist of individual natural gas and coal power plants. However, such system comparisons may not be appropriate to analyze impacts of coal plant retirement in existing power fleets. To meet this limitation, simplified economic dispatch models for PJM, MISO, and ERCOT regions are developed in this study to examine changes in regional power plant dispatch that occur when coal power plants are retired. These models estimate the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs, with cheaper plants being dispatched first. Five scenarios of coal plant retirement are considered: retiring top CO(2) emitters, top NO(X) emitters, top SO(2) emitters, small and inefficient plants, and old and inefficient plants. Changes in fuel use, life cycle greenhouse gas emissions (including uncertainty), and SO(2) and NO(X) emissions are estimated. Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. In addition, changes in marginal damage costs due to SO(2), and NO(X) emissions are estimated using the county level marginal damage costs reported in the Air Pollution Emissions Experiments and Policy (APEEP) model, which are a proxy for measuring regional impacts of SO(2) and NO(X) emissions. Results suggest that location specific parameters should be considered within environmental policy frameworks targeting coal plant retirement, to account for regional variability in the benefits of reducing the impact of SO(2) and NO(X) emissions.

  14. Amistad Power Plant.

    DTIC Science & Technology

    1983-10-01

    Worh District AMISTAD POWEI PLANT DEL RIO, TEXAS DTICS LECTE DEC 2 11983 OCTOBER 1063 88 11 281 DISTRIBUTION STATEMENT A Approved fca public relea...A I I I 1 1 ... CORPS OF ENGINEERS FORT WORTH DISTRICT, TEXAS FINAL FOUNDATION REPORT AMISTAD POWER PLANT NTIS G- xi DTI’. T" Jus! if - Distr ’. Avai...Wayne E. McIntosh. Colonel Donald Palladino and Colonel Theodore Stroup served as District Engineers during construction of the Amistad Power Plant

  15. 18 CFR 420.51 - Hydroelectric power plant water use charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Hydroelectric power plant water use charges. 420.51 Section 420.51 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Hydroelectric Power Water...

  16. Efficient and equitable spatial allocation of renewable power plants at the country scale

    NASA Astrophysics Data System (ADS)

    Drechsler, Martin; Egerer, Jonas; Lange, Martin; Masurowski, Frank; Meyerhoff, Jürgen; Oehlmann, Malte

    2017-09-01

    Globally, the production of renewable energy is undergoing rapid growth. One of the most pressing issues is the appropriate allocation of renewable power plants, as the question of where to produce renewable electricity is highly controversial. Here we explore this issue through analysis of the efficient and equitable spatial allocation of wind turbines and photovoltaic power plants in Germany. We combine multiple methods, including legal analysis, economic and energy modelling, monetary valuation and numerical optimization. We find that minimum distances between renewable power plants and human settlements should be as small as is legally possible. Even small reductions in efficiency lead to large increases in equity. By considering electricity grid expansion costs, we find a more even allocation of power plants across the country than is the case when grid expansion costs are neglected.

  17. Steam plant startup and control in system restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mello, F.P. de; Westcott, J.C.

    1994-02-01

    The IEEE Working Group on Power System Restoration developed a panel session for the Summer Power Meeting on July 14, 1992 on Special Considerations in Power System Restoration. One of the contributions to this session is presented in this paper dealing with aspects of steam plant startup and control in scenarios of system restoration. The topics addressed include the complexity of a steam plant, the contrast between normal plant startups and shutdowns and those following major system blackouts including the effects of plant design, automatic controls, bypass valving and operator training.

  18. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    NASA Astrophysics Data System (ADS)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  19. Transitioning to Zero Freshwater Withdrawal for Thermoelectric Generation

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Tidwell, V. C.; Zemlick, K. M.; Sanchez, J.; Woldeyesus, T.

    2013-12-01

    The electricity sector is the largest withdrawer of freshwater in the United States. The primary demand for water from the electricity sector is for cooling thermoelectric power plants. Droughts and potential changes in water resources resulting from climate change pose important risks to thermoelectric power production in the United States. Power plants can minimize risk in a variety of ways. One method of reducing risk is to move away from dependency on freshwater resources. Here a scoping level analysis is performed to identify the technical tradeoffs and initial cost estimates for retrofitting all existing steam-powered generation to achieve zero freshwater withdrawal. Specifically, the conversion of existing freshwater-cooled plants to dry cooling or a wet cooling system utilizing non-potable water is considered. The least cost alternative is determined for each of the 1,178 freshwater using power plants in the United States. The use of non-potable water resources, such as municipal wastewater and shallow brackish groundwater, is considered based on the availability and proximity of those resources to the power plant, as well as the costs to transport and treat those resources to an acceptable level. The projected increase in levelized cost of electricity due to power plant retrofits ranges roughly from 0.20 to 20/MWh with a median value of 3.53/MWh. With a wholesale price of electricity running about 35/MWh, many retrofits could be accomplished at levels that would add less than 10% to current power plant generation expenses. Such retrofits could alleviate power plant vulnerabilities to thermal discharge limits in times of drought (particularly in the East) and would save 3.2 Mm3/d of freshwater consumption in watersheds with limited water availability (principally in the West). The estimated impact of retrofits on wastewater and brackish water supply is minimal requiring only a fraction of the available resource. Total parasitic energy requirements to achieve zero freshwater withdrawal are estimated at 140 million MWh or roughly 4.5% of the initial production from the retrofitted plants.

  20. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination withmore » shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.« less

  1. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    NASA Astrophysics Data System (ADS)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be safely achieved.

  2. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  3. Draft Title V Permit to Operate: Deseret Power Electric Cooperative Bonanza Power Plant

    EPA Pesticide Factsheets

    Draft operating permit, Statement of Basis, public notice, and supporting documentation for the Deseret Power Electric Cooperative Bonanza Power Plant located within the exterior boundaries of the Uintah and Ouray Indian Reservation in Uintah County, UT.

  4. Development and design of photovoltaic power prediction system

    NASA Astrophysics Data System (ADS)

    Wang, Zhijia; Zhou, Hai; Cheng, Xu

    2018-02-01

    In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.

  5. Atmospheric emission of 137Cs82 from Beloyarsk nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kolotkov, G. A.

    2018-01-01

    Citing Beloyarsk nuclear power plant (Russia) as an example, the problem of remote detection of radioactivity in the atmospheric pollution is examined. The comparative analysis of injected radionuclides into the atmosphere from the nuclear power plant with advanced fast neutron reactor is carried out. The main radionuclides throw out into the atmosphere from the nuclear power plant are beta-radionuclides. The secondary and tertiary spectra of beta-electrons decay for artificial radionuclide 137Cs82 is calculated, using Spencer-Fano’s equation. The averaged parameters of initial beta - electrons generated by 137Cs82 decay in the atmosphere is calculated.

  6. Plant maintenance and plant life extension issue, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Application of modeling and simulation to nuclear power plants, by Berry Gibson, IBM, and Rolf Gibbels, Dassault Systems; Steam generators with tight manufacturing procedures, by Ei Kadokami, Mitsubishi Heavy Industries; SG design based on operational experience and R and D, by Jun Tang, Babcock and Wilcox Canada; Confident to deliver reliable performance, by Bruce Bevilacqua, Westinghouse Nuclear; An evolutionary plant design, by Martin Parece, AREVA NP, Inc.; and, Designed for optimum production, by Danny Roderick, GE Hitachi Nuclear Energy. Industry Innovationmore » articles include: Controlling alloy 600 degradation, by John Wilson, Exelon Nuclear Corporation; Condensate polishing innovation, by Lewis Crone, Dominion Millstone Power Station; Reducing deposits in steam generators, by the Electric Power Research Institute; and, Minimizing Radiological effluent releases, by the Electric Power Research Institute. The plant profile article is titled 2008 - a year of 'firsts' for AmerenUE's Callaway plant, by Rick Eastman, AmerenUE.« less

  7. Comparative 4-E analysis of a bottoming pure NH3 and NH3-H2O mixture based power cycle for condenser waste heat recovery

    NASA Astrophysics Data System (ADS)

    Khankari, Goutam; Karmakar, Sujit

    2017-06-01

    This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable boiling temperature of NH3-H2O binary mixture in KCS11 and resulting in less irreversibility during the process of heat transfer. Levelized Cost of Electricity (LCoE) generation and the cost of implementation of ORC integrated power plant is about Rs.1.767/- per kWh and Rs. 2.187/- per kg of fuel saved, respectively whereas, the LCoE for KCS11 based combined power plant is slightly less than the ORC based combined cycle power plant and estimated as about Rs.1.734 /- per kWh. The cost of implementation of KCS11 based combined cycle power plant is about Rs. 0.332/- per kg of fuel saved. Though the energy and exergy efficiencies of ORC is better than KCS11 but considering the huge investment for developing the combined cycle power plant based on ORC in comparison with KCS11 below the operating pressure of 14 bar, KCS11 is superior than NH3 based ORC.

  8. Worldwide Report, Arms Control

    DTIC Science & Technology

    1985-08-29

    BRIEFS IAEA TO INSPECT SOVIET PLANTS —Vienna, 7 Aug (AFP)—The International Atomic Energy Agency (IAEA) will inspect two nuclear power stations and an... power —equal to the output of about 32 nuclear power plants —must be provided, which then, to be sure, would be needed for only about 2 minutes. But...which requires electric power plants conceived especially for this purpose. If, in installing this capacity, one assumes $300 per kilowatt—a value

  9. Electric plant cost and power production expenses 1989. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-29

    This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, federal, state, and local governments, and the general public. This report primarily presents aggregate operation, maintenance, and fuel expense data about all power plants owned and operated by the major investor-owned electric utilities in the United States. The power production expenses for the major investor-owned electric utilities are summarized. Plant-specific data are presented for a selection of both investor-owned and publicly owned plants. Summary statistics for each plantmore » type (prime mover), as reported by the electric utilities, are presented in the separate chapters as follows: Hydroelectric Plants; Fossil-Fueled Steam-Electric Plants; Nuclear Steam-Electric Plants; and Gas Turbine and Small Scale Electric Plants. These chapters contain plant level data for 50 conventional hydroelectric plants and 22 pumped storage hydroelectric plants, 50 fossil-fueled steam-electric plants, 71 nuclear steam-electric plants, and 50 gas turbine electric plants. Among the operating characteristics of each plant are the capacity, capability, generation and demand on the plant. Physical characteristics comprise the number of units in the plant, the average number of employees, and other information relative to the plant's operation. The Glossary section will enable the reader to understand clearly the terms used in this report. 4 figs., 18 tabs.« less

  10. Economic and Market Challenges Facing the U.S. Nuclear Commercial Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo; Sharpe, Phil; Kee, Edward

    This report identifies underlying economic and electricity market factors that have led to early retirements of U.S. operating nuclear power plants, assesses the Gap between operating revenues and operating costs for selected nuclear power plants, and discusses a range of actions that might be taken to stop early retirement of operating nuclear power plants. The Kewaunee and Vermont Yankee nuclear power plants were retired early for economic and financial reasons. Early retirement has been announced or proposed for Clinton and Quad Cities in Illinois, Fitzpatrick and Ginna in New York, Fort Calhoun in Nebraska. Other nuclear power plants, including Palisades,more » Davis-Besse, Prairie Island, and Three Mile Island Unit 1, have been identified as facing financial stress that might lead to early retirement. The early retirement of operating nuclear power plants will mean the loss of a large amount of zero-emission electricity, inconsistent with the goal of reducing carbon emissions in the electricity sector. This report provides a high-level view of the major factors driving early retirement: • The U.S. market and private ownership approach to the electricity sector; • Low electricity market prices resulting from low natural gas prices, low demand growth, increased penetration of renewable generation, and negative electricity market prices; and • No compensation to nuclear power plants for public benefits including zero-emission electricity.« less

  11. Performance and Simulation of a Stand-alone Parabolic Trough Solar Thermal Power Plant

    NASA Astrophysics Data System (ADS)

    Mohammad, S. T.; Al-Kayiem, H. H.; Assadi, M. K.; Gilani, S. I. U. H.; Khlief, A. K.

    2018-05-01

    In this paper, a Simulink® Thermolib Model has been established for simulation performance evaluation of Stand-alone Parabolic Trough Solar Thermal Power Plant in Universiti Teknologi PETRONAS, Malaysia. This paper proposes a design of 1.2 kW parabolic trough power plant. The model is capable to predict temperatures at any system outlet in the plant, as well as the power output produced. The conditions that are taken into account as input to the model are: local solar radiation and ambient temperatures, which have been measured during the year. Other parameters that have been input to the model are the collector’s sizes, location in terms of latitude and altitude. Lastly, the results are presented in graphical manner to describe the analysed variations of various outputs of the solar fields obtained, and help to predict the performance of the plant. The developed model allows an initial evaluation of the viability and technical feasibility of any similar solar thermal power plant.

  12. Conceptual design of ocean thermal energy conversion (OTEC) power plants in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haruo Uehara; Dilao, C.O.; Tsutomu Nakaoka

    1988-01-01

    Extensive temperature readings were obtained to determine suitable OTEC power plant sites in the Philippines. An analysis of temperature profiles reveals that surface seawater is in the range of 25 to 29{degree}C throughout the year while seawater at 500 to 700 m depth remains at a low temperature of 8 to 4{degree}C, respectively. In this article, 14 suitable sites within the Philippine seas are suggested. Conceptual designs for a 5-MW onland-type and a 25-MW floating-type OTEC power plant are proposed. Optimum conditions are determined and plant specifications are computed. Cost estimates show that a floating-type 25-MW OTEC power plant canmore » generate electricity at a busbar power cost of 5.33 to 7.57 cents/kW {times} h while an onshore type 5-MW plant can generate electricity at a busbar cost of 14.71 to 18.09 cents/kW {times} h.« less

  13. Operating results of a KU30 diesel cogeneration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shioda, Kiyoshi; Kakinuma, Takashi; Nishido, Takashi

    1995-11-01

    Diesel cogeneration plants provide high generation ratios, the ability to operate on heavy fuel oil, small space requirements, short delivery terms and easy starting and stopping. The Mitsubishi type KU30 diesel engine is well-suited for meeting the demands of these applications. The KU30 engine (bore 300 x stroke 380 mm) covers an output range from 3500 to 5000 kW at 720 or 750 r/min. Performance results show that total power failures have completely disappeared, thanks to improvements in stable power supply and the reliability of the power source. They also show that the rate of private power generation has accountedmore » for more than 90% of total power consumption in the plant, and that the unit cost of electric power could be reduced by three yen (per kilowatt hour) compared with that of purchased power. This paper describes the design and operating results from a typical plant.« less

  14. Solar pond power plant feasibility study for Davis, California

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Singer, M. J.; Marsh, H. E.; Harris, J.; Walton, A. L.

    1982-01-01

    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept.

  15. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  16. Coal-Fired Power Plant Heat Rate Reductions

    EPA Pesticide Factsheets

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  17. Manatee use of power plant effluents in Brevard County, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shane, S.H.

    The relationship between manatees and power plants was investigated at 2 power plants on the Indian River in Brevard County, Florida from January 1978-February 1980. Manatee presence in the power plant effluent zones was correlated with cold air and water temperatures. When air temperatures were below 16 C most manatees in the country were found in the effluent zones. Manatees in the effluent zones move with the wind-blown warm water plume, demonstrating a sensitivity to small changes in water temperature. Some individuals were frequently resighted at 1 plant, while others moved between the 2 plants. Because industrial warm water sourcesmore » are less reliable than natural warm water refuges, it is recommended that no new artificial warm water effluents be constructed north of the species' traditional winter range. 16 references, 3 figures, 1 table.« less

  18. Simulation of the visual effects of power plant plumes

    Treesearch

    Evelyn F. Treiman; David B. Champion; Mona J. Wecksung; Glenn H. Moore; Andrew Ford; Michael D. Williams

    1979-01-01

    The Los Alamos Scientific Laboratory has developed a computer-assisted technique that can predict the visibility effects of potential energy sources in advance of their construction. This technique has been employed in an economic and environmental analysis comparing a single 3000 MW coal-fired power plant with six 500 MW coal-fired power plants located at hypothetical...

  19. Visual sensitivity of river recreation to power plants

    Treesearch

    David H. Blau; Michael C. Bowie

    1979-01-01

    The consultants were asked by the Power Plant Siting Staff of the Minnesota Environmental Quality Council to develop a methodology for evaluating the sensitivity of river-related recreational activities to visual intrusion by large coal-fired power plants. The methodology, which is applicable to any major stream in the state, was developed and tested on a case study...

  20. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  1. 77 FR 75452 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... Cooperation with States at Commercial Nuclear Power Plants and Other Nuclear Production and Utilization... inspections for the NRC. 6. Who will be required or asked to report: Nuclear Power Plant Licensees, Materials.... Abstract: States are involved and interested in monitoring the safety status of nuclear power plants and...

  2. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...

  3. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...

  4. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General Design Criteria for Nuclear Power Plants A... FACILITIES Pt. 50, App. A Appendix A to Part 50—General Design Criteria for Nuclear Power Plants Table of... Design Bases for Protection Against Natural Phenomena 2 Fire Protection 3 Environmental and Dynamic...

  5. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    ERIC Educational Resources Information Center

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  6. Thermal impacts of a fossil-fueled electric power plant discharge on seagrass bed communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeth, J.C.; Garrett, R.A.; Imbur, W.E.

    1979-01-01

    This paper deals with a 316a demonstration for an older fossil-fueled electric power plant which is often overlooked but nevertheless a regultory compliance. In this report, the Lansing Smith coal-fired steam electric power plant went under a 316a demonstration and the results are recorded and tabulated.

  7. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  8. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  9. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  10. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  11. 76 FR 45609 - Notice of Availability of the Draft Environmental Impact Statement for the Gateway West 230/500...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Johnston Power Plant at Glenrock, Wyoming, to the proposed Hemingway Substation near Melba, Idaho. The... Johnston Power Plant at Glenrock, Wyoming, and the planned Aeolus Substation near Hanna, Wyoming. Segment... Anticline Substation near the Jim Bridger Power Plant, located approximately 30 miles east of Rock Springs...

  12. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  13. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  14. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  15. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  16. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: Seabrook Nuclear... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N...

  17. FEASIBILITY OF PRODUCING AND MARKETING BYPRODUCT GYPSUM FROM SO2 EMISSION CONTROL AT FOSSIL-FUEL-FIRED POWER PLANTS

    EPA Science Inventory

    The report gives results of a study to identify fossil-fuel-fired power plants that might, in competition with existing crude gypsum sources and other power plants, lower the cost of compliance with SO2 regulations by producing and marketing abatement gypsum. In the Eastern U.S.,...

  18. 75 FR 1416 - Final Memorandum of Understanding Between the U.S. Nuclear Regulatory Commission and the North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... nuclear power plants operating in the USA. II. Effective Date This MOU is effective December 30, 2009. III... requirements at commercial nuclear power plants operating in the United States of America (USA). The NRC's... digital assets at commercial nuclear power plants operating in the USA. This cooperation will ensure that...

  19. Combined-cycle plant built in record time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    This article reports that this low-cost cogeneration plant meets residential community`s environmental concerns with noise minimization, emissions control, and zero wastewater discharge. Supplying electricity to the local utility and steam to two hosts, the Auburndale cogeneration facility embodies the ``reference plant`` design approach developed by Westinghouse Power Generation (WPG), Orlando, Fla. With this approach customers meet their particular needs by choosing from a standard package of plant equipment and design options. Main goals of the concept are reduced construction time efficient and reliable power generation, minimal operating staff, and low cost. WPG built the plant on a turnkey basis formore » Auburndale Power Partners Limited Partnership (APP). APP is a partially owned subsidiary of Mission Energy, a California-based international developer and operator of independent-power facilities. The cogeneration facility supplies 150 MW of electric power to Florida Power Corp and exports 120,000 lb/hr of steam to Florida Distillers Co and Coca-Cola Foods.« less

  20. Thermodynamics Analysis of Binary Plant Generating Power from Low-Temperature Geothermal Resource

    NASA Astrophysics Data System (ADS)

    Maksuwan, A.

    2018-05-01

    The purpose in this research was to predict tendency of increase Carnot efficiency of the binary plant generating power from low-temperature geothermal resource. Low-temperature geothermal resources or less, are usually exploited by means of binary-type energy conversion systems. The maximum efficiency is analyzed for electricity production of the binary plant generating power from low-temperature geothermal resource becomes important. By using model of the heat exchanger equivalent to a power plant together with the calculation of the combined heat and power (CHP) generation. The CHP was solved in detail with appropriate boundary originating an idea from the effect of temperature of source fluid inlet-outlet and cooling fluid supply. The Carnot efficiency from the CHP calculation was compared between condition of increase temperature of source fluid inlet-outlet and decrease temperature of cooling fluid supply. Result in this research show that the Carnot efficiency for binary plant generating power from low-temperature geothermal resource has tendency increase by decrease temperature of cooling fluid supply.

  1. Second law analysis of advanced power generation systems using variable temperature heat sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliem, C.J.; Mines, G.L.

    1990-01-01

    Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discussesmore » the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.« less

  2. Tidd PFBC demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrocco, M.

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent ofmore » sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.« less

  3. The Role of Nuclear Power in Achieving the World We Want

    ERIC Educational Resources Information Center

    Driscoll, M. J.

    1970-01-01

    Supports the development of nuclear power plants and considers some problems and possible solutions: future power needs, power costs, thermal pollution, radionuclide discharge. Describes advantages and applications of dual purpose power plants for purifying water, producing phosphorus and ammonia, and serving as fast breeder reactors for Pu 239.…

  4. Model for the techno-economic analysis of common work of wind power and CCGT power plant to offer constant level of power in the electricity market

    NASA Astrophysics Data System (ADS)

    Tomsic, Z.; Rajsl, I.; Filipovic, M.

    2017-11-01

    Wind power varies over time, mainly under the influence of meteorological fluctuations. The variations occur on all time scales. Understanding these variations and their predictability is of key importance for the integration and optimal utilization of wind in the power system. There are two major attributes of variable generation that notably impact the participation on power exchanges: Variability (the output of variable generation changes and resulting in fluctuations in the plant output on all time scales) and Uncertainty (the magnitude and timing of variable generation output is less predictable, wind power output has low levels of predictability). Because of these variability and uncertainty wind plants cannot participate to electricity market, especially to power exchanges. For this purpose, the paper presents techno-economic analysis of work of wind plants together with combined cycle gas turbine (CCGT) plant as support for offering continues power to electricity market. A model of wind farms and CCGT plant was developed in program PLEXOS based on real hourly input data and all characteristics of CCGT with especial analysis of techno-economic characteristics of different types of starts and stops of the plant. The Model analyzes the followings: costs of different start-stop characteristics (hot, warm, cold start-ups and shutdowns) and part load performance of CCGT. Besides the costs, the technical restrictions were considered such as start-up time depending on outage duration, minimum operation time, and minimum load or peaking capability. For calculation purposes, the following parameters are necessary to know in order to be able to economically evaluate changes in the start-up process: ramp up and down rate, time of start time reduction, fuel mass flow during start, electricity production during start, variable cost of start-up process, cost and charges for life time consumption for each start and start type, remuneration during start up time regarding expected or unexpected starts, the cost and revenues for balancing energy (important when participating in electricity market), and the cost or revenues for CO2-certificates. Main motivation for this analysis is to investigate possibilities to participate on power exchanges by offering continues guarantied power from wind plants by backing-up them with CCGT power plant.

  5. Real options and asset valuation in competitive energy markets

    NASA Astrophysics Data System (ADS)

    Oduntan, Adekunle Richard

    The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation methodologies for gas-fired thermal power plants by factoring in uncertainty from gas supply/consumption imbalance which is usually faced by gas-fired power generators. This source of uncertainty arises because of mismatch between natural gas and electricity wholesale markets. Natural gas markets in North America operate on a day-ahead basis while power plants are dispatched in real time. Inability of a power generator to match its gas supply and consumption in real time, leading to unauthorized gas over-run or under-run, attracts penalty charges from the gas supplier to the extent that the generator can not manage the imbalance through other means. By considering an illustrative power plant operating in Ontario, we show effects of gas-imbalance on dispatch strategies on a daily cycling operation basis and the resulting impact on net revenue. Similarly, we employ the developed valuation framework to value a peaking hydroelectric power plant. This application also builds on previous real options valuation work for peaking hydroelectric power plants by considering their operations in a joint energy and ancillary services market. Specifically, the valuation model is developed to capture the value of a peaking power plant whose owner has the flexibility to participate in a joint operating reserve market and an energy market, which is currently the case in the Ontario wholesale power market. The model factors in water inflow uncertainty into the reservoir forebay of a hydroelectric facility and also considers uncertain energy and operating reserve prices. The switching options considered include (i) a joint energy and operating reserve bid (ii) an energy only bid and (iii) a do nothing (idle) strategy. Being an energy limited power plant, by doing nothing at a decision interval, the power asset operator is able to timeshift scarce water for use at a future period when market situations are expected to be better. Finally, the developed valuation framework was employed to optimize life-cycle management decisions of a baseload power plant, such as a nuclear power plant. Given uncertainty of long-term value drivers, including power prices, equipment performance and the relationship between current life cycle spending and future equipment degradation, optimization is carried out with the objective of minimizing overall life-cycle related costs. These life-cycle costs include (i) lost revenue during planned and unplanned outages, (ii) potential costs of future equipment degradation due to inadequate preventative maintenance, and (iii) the direct costs of implementing the life-cycle projects. The switching options in this context include the option to shutdown the power plant in order to execute a given preventative maintenance and inspection project and the option to keep the option "alive" by choosing to delay a planned life-cycle activity.

  6. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20 year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335 and 442 % for SO2, NOx and CO2, respectively, and decreased by 23 % for PM2.5. Driven by the accelerated economy growth, large power plants were constructed throughout the country after 2000, resulting in dramatic growth in emissions. Growth trend of emissions has been effective curbed since 2005 due to strengthened emission control measures including the installation of flue-gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination for temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  7. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  8. Sulphur isotopes as tracers of the influence of a coal-fired power plant on a Scots pine forest in Catalonia (NE Spain)

    NASA Astrophysics Data System (ADS)

    Puig, R.; Àvila, A.; Soler, A.

    Stable sulphur isotopes and major ionic composition were analysed in precipitation and throughfall samples from a Scots pine ( Pinus sylvestris, L.) forest near the Cercs coal-fired power plant (Catalonia, NE Spain). The purpose of the study was to determine the main sources of sulphur deposition on this pine forest. Sulphur isotope measurements from the SO 2 power plant stack emissions were used to identify the isotopic signature of this source. Net throughfall fluxes of sulphur (26.1 kg S ha 1 yr -1) and nitrogen (16.3 kg N ha -1 yr -1) were higher—5-25 times higher for S and 5-15 times for N—at this site than in other forests in Catalonia. Sulphur isotope analysis confirmed that the net throughfall fluxes of sulphur were mostly due to the dry deposition of the SO 2 power plant emissions onto the pine canopies. Two potential atmospheric end-members were distinguished: regional background rainwater (δ 34S=+7.2‰) and power plant emissions (δ 34S=-2.8‰). By applying a two-component sulphur isotope mixing model, we found that during periods of low power plant activity (⩽10 emission h day -1), 62% of the throughfall sulphate could be attributed to the power plant emissions. At higher activity periods (⩾14 emission h day -1), this contribution rose to 73%. Although power plant contribution to bulk deposition was lower in both cases (34% and 45%), the possible influence of sulphate coming with long-range transport events from the polluted areas in the Mediterranean basin (δ 34S≈0‰) was not discarded.

  9. Investigation of Propeller-power-plant Autoprecession Boundaries for a Dynamic-aeroelastic Model of a Four-engine Turboprop Transport Airplane

    NASA Technical Reports Server (NTRS)

    Abbott, Frank T., Jr.; Kelley, H. Neale; Hampton, Kenneth D.

    1963-01-01

    A flexibly mounted aircraft engine may under certain conditions experience a self-excited whirling instability involving a coupling between the gyroscopic and aerodynamic forces acting on the propeller, and the inertial, elastic, and damping forces contributed by the power plant, nacelle, and wing. This phenomenon has been called autoprecession, or whirl instability. An experimental investigation was made in the Langley transonic dynamics tunnel at Mach numbers below 0.3 to study some of the pertinent parameters influencing the phenomenon. These parameters included propeller rotational speed, stiffness of the power-plant assembly in the pitch and yaw planes and the ratio of pitch stiffness to yaw stiffness, structural damping of the power-plant assembly in the pitch and yaw planes, simulated fuel load in the wings, and the location and number of autoprecessing powerplant assemblies. A large dynamic-aeroelastic model of a four-engine turboprop transport airplane mounted on a vertical rod in a manner which provided several limited body degrees of freedom was used in the investigation. It was found that the boundary for autoprecession decreased markedly with Increasing proreduction of power-plant stiffness and/or damping, and to a lesser degree decreased with reduction of simulated fuel load in the wings. peller rotational speed generally lowered the autoprecession boundary. This effect was more pronounced as the stiffness was increased. An inboard power plant was found to be more susceptible to autoprecession than an outboard one. Combinations in which two or more power plants had the same level of reduced stiffness resulted in autoprecession boundaries considerably lower than that of a single power plant with the same level of reduced stiffness.

  10. Estimation of radionuclide (137Cs) emission rates from a nuclear power plant accident using the Lagrangian Particle Dispersion Model (LPDM).

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Ju, Jae-Won; Joo, Seung Jin

    2016-10-01

    A methodology for the estimation of the emission rate of 137 Cs by the Lagrangian Particle Dispersion Model (LPDM) with the use of monitored 137 Cs concentrations around a nuclear power plant has been developed. This method has been employed with the MM5 meteorological model in the 600 km × 600 km model domain with the horizontal grid scale of 3 km × 3 km centered at the Fukushima nuclear power plant to estimate 137 Cs emission rate for the accidental period from 00 UTC 12 March to 00 UTC 6 April 2011. The Lagrangian Particles are released continuously with the rate of one particle per minute at the first level modelled, about 15 m above the power plant site. The presently developed method was able to simulate quite reasonably the estimated 137 Cs emission rate compared with other studies, suggesting the potential usefulness of the present method for the estimation of the emission rate from the accidental power plant without detailed inventories of reactors and fuel assemblies and spent fuels. The advantage of this method is not so complicated but can be applied only based on one-time forward LPDM simulation with monitored concentrations around the power plant, in contrast to other inverse models. It was also found that continuously monitored radionuclides concentrations from possibly many sites located in all directions around the power plant are required to get accurate continuous emission rates from the accident power plant. The current methodology can also be used to verify the previous version of radionuclides emissions used among other modeling groups for the cases of intermittent or discontinuous samplings. Copyright © 2016. Published by Elsevier Ltd.

  11. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  12. Evaluation of solar thermal power plants using economic and performance simulations

    NASA Technical Reports Server (NTRS)

    El-Gabawali, N.

    1980-01-01

    An energy cost analysis is presented for central receiver power plants with thermal storage and point focusing power plants with electrical storage. The present approach is based on optimizing the size of the plant to give the minimum energy cost (in mills/kWe hr) of an annual plant energy production. The optimization is done by considering the trade-off between the collector field size and the storage capacity for a given engine size. The energy cost is determined by the plant cost and performance. The performance is estimated by simulating the behavior of the plant under typical weather conditions. Plant capital and operational costs are estimated based on the size and performance of different components. This methodology is translated into computer programs for automatic and consistent evaluation.

  13. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  14. Forest biomass supply logistics for a power plant using the discrete-event simulation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobini, Mahdi; Sowlati, T.; Sokhansanj, Shahabaddine

    This study investigates the logistics of supplying forest biomass to a potential power plant. Due to the complexities in such a supply logistics system, a simulation model based on the framework of Integrated Biomass Supply Analysis and Logistics (IBSAL) is developed in this study to evaluate the cost of delivered forest biomass, the equilibrium moisture content, and carbon emissions from the logistics operations. The model is applied to a proposed case of 300 MW power plant in Quesnel, BC, Canada. The results show that the biomass demand of the power plant would not be met every year. The weighted averagemore » cost of delivered biomass to the gate of the power plant is about C$ 90 per dry tonne. Estimates of equilibrium moisture content of delivered biomass and CO2 emissions resulted from the processes are also provided.« less

  15. The Observed Response of Ozone Monitoring Instrument (OMI) NO2 Columns to NOx Emission Controls on Power Plants in the United States: 2005-2011

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; deFoy, Benjamin; Lamsal, Lok N.; Streets, David G.; Lu, Zifeng; Pickering, Kenneth E.; Krotkov, Nickolay A.

    2013-01-01

    We show that Aura Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) tropospheric column data may be used to assess changes of the emissions of nitrogen oxides (NOx) from power plants in the United States, though careful interpretation of the data is necessary. There is a clear response for OMI NO2 data to NOx emission reductions from power plants associated with the implementation of mandated emission control devices (ECDs) over the OMI record (2005e2011). This response is scalar for all intents and purposes, whether the reduction is rapid or incremental over several years. However, it is variable among the power plants, even for those with the greatest absolute decrease in emissions. We document the primary causes of this variability, presenting case examples for specific power plants.

  16. Quantifying CO2 Emissions from Individual Power Plants using OCO-2 Observations

    NASA Astrophysics Data System (ADS)

    Nassar, R.; Hill, T. G.; McLinden, C. A.; Wunch, D.; Jones, D. B. A.; Crisp, D.

    2017-12-01

    In order to better manage anthropogenic CO2 emissions, improved methods of quantifying emissions are needed at all spatial scales from the national level down to the facility level. Although the Orbiting Carbon Observatory 2 (OCO-2) satellite was not designed for monitoring power plant emissions, we show that in select cases, CO2 observations from OCO-2 can be used to quantify daily CO2 emissions from individual mid- to large-sized coal power plants by fitting the data to plume model simulations. Emission estimates for US power plants are within 1-13% of reported daily emission values enabling application of the approach to international sites that lack detailed emission information. These results affirm that a constellation of future CO2 imaging satellites, optimized for point sources, could be used for the Monitoring, Reporting and Verification (MRV) of CO2 emissions from individual power plants to support the implementation of climate policies.

  17. Calculation of energetic characteristics of C-14 emitted from Beloyarsk nuclear power plant plume with fast neutron reactor

    NASA Astrophysics Data System (ADS)

    Kolotkov, Gennady A.; Penin, Sergei

    2017-11-01

    The paper examines an update of comparative analysis of radionuclides released into the atmosphere from Beloyarsk nuclear power plant with fast-neutron reactor for nine years in a row, from 2008 to 2016. It has been shown that the main radionuclides throw out into the atmosphere from Beloyarsk nuclear power plant are beta-active radionuclides. Based on data releases of the RPA "Typhoon", it has been conclude that radiation situation become worse insignificantly; beside on the new reactor BN-800 was put in operation in 2016. Using Spencer-Fano's equation, it was carried out the summary spectrum of emitted radionuclides. On example of Beloyarsk nuclear power plant, it was considered a question about ability of remote detection of raised radioactivity in the atmospheric radioactive plume. It has been shown that it possible to detect raised radioactivity in the emission plume from Beloyarsk nuclear power plant.

  18. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  19. Quantifying CO2 Emissions From Individual Power Plants From Space

    NASA Astrophysics Data System (ADS)

    Nassar, Ray; Hill, Timothy G.; McLinden, Chris A.; Wunch, Debra; Jones, Dylan B. A.; Crisp, David

    2017-10-01

    In order to better manage anthropogenic CO2 emissions, improved methods of quantifying emissions are needed at all spatial scales from the national level down to the facility level. Although the Orbiting Carbon Observatory 2 (OCO-2) satellite was not designed for monitoring power plant emissions, we show that in some cases, CO2 observations from OCO-2 can be used to quantify daily CO2 emissions from individual middle- to large-sized coal power plants by fitting the data to plume model simulations. Emission estimates for U.S. power plants are within 1-17% of reported daily emission values, enabling application of the approach to international sites that lack detailed emission information. This affirms that a constellation of future CO2 imaging satellites, optimized for point sources, could monitor emissions from individual power plants to support the implementation of climate policies.

  20. Research on the Application of Risk-based Inspection for the Boiler System in Power Plant

    NASA Astrophysics Data System (ADS)

    Li, Henan

    2017-12-01

    Power plant boiler is one of the three main equipment of coal-fired power plants, is very tall to the requirement of the safe and stable operation, in a significant role in the whole system of thermal power generation, a risk-based inspection is a kind of pursuit of security and economy of unified system management idea and method, can effectively evaluate equipment risk and reduce the operational cost.

  1. A Design Tool for Matching UAV Propeller and Power Plant Performance

    NASA Astrophysics Data System (ADS)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  2. Large eddy simulation of the tidal power plant deep green using the actuator line method

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Broström, G.; Jansson, M.; Nilsson, H.; Bergqvist, B.

    2017-12-01

    Tidal energy has the potential to provide a substantial part of the sustainable electric power generation. The tidal power plant developed by Minesto, called Deep Green, is a novel technology using a ‘flying’ kite with an attached turbine, moving at a speed several times higher than the mean flow. Multiple Deep Green power plants will eventually form arrays, which require knowledge of both flow interactions between individual devices and how the array influences the surrounding environment. The present study uses large eddy simulations (LES) and an actuator line model (ALM) to analyze the oscillating turbulent boundary layer flow in tidal currents without and with a Deep Green power plant. We present the modeling technique and preliminary results so far.

  3. Method for Prediction of the Power Output from Photovoltaic Power Plant under Actual Operating Conditions

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.

    2017-04-01

    Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.

  4. 75 FR 2531 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... Power, LLC, Terra-Gen VG Wind, LLC, Terra-Gen 251 Wind, LLC, Chandler Wind Partners, LLC. Description... Power Source Generation, Inc., Calvert Cliffs Nuclear Power Plant LLC, Constellation Energy Commodities..., Inc., Constellation Energy Commodities Group Maine, LLC, R.E. Ginna Nuclear Power Plant, Raven One...

  5. Grid Integration Research | Wind | NREL

    Science.gov Websites

    -generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant

  6. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOEpatents

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  7. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, J.O.

    This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world's first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC's CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, J.O.

    This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world`s first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC`s CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less

  10. Characterization of PAHs within PM 10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Shi, Jianwu; Lu, Bing; Qiu, Weiguang; Zhang, Baosheng; Peng, Yue; Zhang, Bowen; Bai, Zhipeng

    2011-07-01

    Polycyclic aromatic hydrocarbons within PM 10 fraction of ashes from two coke production plants, one iron smelt plant, one heating station and one power plant were analyzed with GC-MS technique in 2009. The sum of 17 selected PAHs varied from 290.20 to 7055.72 μg/g and the amounts of carcinogenic PAHs were between 140.33 and 3345.46 μg/g. The most toxic ash was from the coke production plants and then from the iron smelt plant, coal-fired power plant and heating station according to BaP-based toxic equivalent factor (BaPeq) and BaP-based equivalent carcinogenic power (BaPE). PAHs profile of the iron smelt ash was significantly different from others with coefficient of divergence value higher than 0.40. Indicatory PAHs for coke production plants, heating station and coal-fired power plant were mainly 3-ring species such as Acy, Fl and Ace. While for iron smelt plant, they were Chr and BbF. Diagnostic ratios including Ant/(Ant + Phe), Flu/(Flu + Pyr), BaA/Chr, BbF/BkF, Ind/BghiP, IND/(IND + BghiP), BaP/BghiP, BaP/COR, Pyr/BaP, BaA/(BaA + Chr), BaA/BaP and BaP/(BaP + Chr) were calculated which were mostly different from other stacks for the iron smelt plant.

  11. Comparative evaluation of distributed-collector solar thermal electric power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; El Gabalawi, N.; Herrera, G. G.; Caputo, R. S.

    1978-01-01

    Distributed-collector solar thermal-electric power plants are compared by projecting power plant economics of selected systems to the 1990-2000 timeframe. The approach taken is to evaluate the performance of the selected systems under the same weather conditions. Capital and operational costs are estimated for each system. Energy costs are calculated for different plant sizes based on the plant performance and the corresponding capital and maintenance costs. Optimum systems are then determined as the systems with the minimum energy costs for a given load factor. The optimum system is comprised of the best combination of subsystems which give the minimum energy cost for every plant size. Sensitivity analysis is done around the optimum point for various plant parameters.

  12. Environmental impact assessment of coal power plants in operation

    NASA Astrophysics Data System (ADS)

    Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan

    2017-11-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.

  13. Estimating pumping time and ground-water withdrawals using energy- consumption data

    USGS Publications Warehouse

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

  14. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan,T.; Adams,J.; Bender, M.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots ofmore » mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study found the following: (1) There was some correlation between the prevailing wind direction and measured soil and oak leaf concentrations. This correlation was not statistically significant, but higher soil concentrations were generally found in the east and southeast from the plants and lower soil concentrations were found west/southwest from the plants. The prevailing winds are to the east. The Conemaugh plant which was the most southeast of the three plants did have the highest average oak leaf and soil mercury concentrations. Based on emissions, the Keystone plant would be expected to see the highest concentrations as it emitted about 25% more mercury than the other two plants. (2) The results of this study did not turn up strong evidence for large areas (several square miles) of elevated mercury concentrations around the three coal-fired power plants that were tested. This does not mean that there is no effect, there was some evidence of increasing mercury content to the east and south of these plants, however, the trends were not statistically significant suggesting that if the effects exist, they are small.« less

  15. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  16. Wind Plant Preconstruction Energy Estimates. Current Practice and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Smith, Aaron; Fields, Michael

    2016-04-19

    Understanding the amount of energy that will be harvested by a wind power plant each year and the variability of that energy is essential to assessing and potentially improving the financial viability of that power plant. The preconstruction energy estimate process predicts the amount of energy--with uncertainty estimates--that a wind power plant will deliver to the point of revenue. This report describes the preconstruction energy estimate process from a technical perspective and seeks to provide insight into the financial implications associated with each step.

  17. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov Websites

    (CSP) project, with data organized by background, participants, and power plant configuration. Abengoa Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower percent. The 160-meter tower was designed to reduce the visual impact of its height. The plant has the

  18. World wide IFC phosphoric acid fuel cell implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  19. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  20. 76 FR 65458 - Approval and Promulgation of Implementation Plans and Designation of Areas for Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... control of power plant emissions, promulgation of the Transport Rule, also known as the Cross State Air Pollution Rule (CSAPR),\\2\\ was necessary to make recent reductions in power plant emissions (or equivalent... requirements of the CAA and required states to significantly reduce SO 2 and NO X emissions from power plants...

  1. Appraisal of Scientific Resources for Emergency Management.

    DTIC Science & Technology

    1983-09-01

    water, communications, computers, and oil refineries or storage facilities. In addition, the growth of the number of operative nuclear power plants ...one from a nuclear power plant accident); one involved hazardous waste disposal problems; and finally two involved wartime scenarios, one focusing on...pro- tection research, radiological protection from nuclear power plant accidents, concepts and operation of public shelters, and post attack

  2. 78 FR 53774 - Guide for the Evaluation of Alert and Notification Systems for Nuclear Power Plants, FEMA-REP-10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...] Guide for the Evaluation of Alert and Notification Systems for Nuclear Power Plants, FEMA-REP-10, Rev. 1... the Guide for the Evaluation of Alert and Notification Systems for Nuclear Power Plants, FEMA-REP-10... Agency (FEMA) issued FEMA-REP-10, Guide for the Evaluation of Alert and Notification Systems for Nuclear...

  3. Documentation of the status of international geothermal power plants and a list by country of selected geothermally active governmental and private sector entities

    NASA Astrophysics Data System (ADS)

    1992-10-01

    This report includes the printouts from the International Geothermal Power Plant Data Base and the Geothermally Active Entity Data Base. Also included are the explanation of the abbreviations used in the power plant data base, maps of geothermal installations by country, and data base questionnaires and mailing lists.

  4. 77 FR 55834 - Notice of Opportunity To Comment on a Methodology for Allocating Greenhouse Gas Emissions to a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... ethanol plant in Spiritwood, North Dakota, with a nameplate production capacity of 65 million gallons of... factor for the power plant when it is just generating electricity and not diverting steam to the Dakota... from the turbine, and applying the power plant's ``power only'' emissions factor to that value. The...

  5. User's manual for the BNW-I optimization code for dry-cooled power plants. Volume III. [PLCIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.

    1977-01-01

    This appendix to User's Manual for the BNW-1 Optimization Code for Dry-Cooled Power Plants provides a listing of the BNW-I optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using a plastic tube cooling surface and circular tower arrangement of the tube bundles. (LCL)

  6. Experience with ALARA and ALARA procedures in a nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamse, J.C.

    1995-03-01

    The nuclear power plant Borssele is a Siemens two-loop Pressurized Water Reactor having a capacity of 480 MWe and in operation since 1973. The nuclear power plant Borssle is located in the southwest of the Netherlands, near the Westerschelde River. In the first nine years of operation the radiation level in the primary system increased, reaching a maximum in 1983. The most important reason for this high radiation level was the cobalt content of the grid assemblies of the fuel elements. After resolving this problem, the radiation level decreased to a level comparable with that of other nuclear power plants.

  7. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  8. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat recovery during the power plant's life span. Furthermore, the recommendation from this research will be submitted to the Electricity Generating Authority of Thailand (EGAT) for implementation. This study will also be used as an example for other power plants in Thailand to consider waste energy utilization to improve plant efficiency and sustain fuel resources in the future.

  9. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  10. Opportunities of energy supply of farm holdings on the basis of small-scale renewable energy sources

    NASA Astrophysics Data System (ADS)

    Efendiev, A. M.; Nikolaev, Yu. E.; Evstaf'ev, D. P.

    2016-02-01

    One of the major national economic problems of Russia is raising of agricultural production, which will provide strategic security and sustainable supply of the population with provisions. Creation of subsidiary small holdings, farm holdings, and peasant farm holdings will require addressing issues of energy supply. At considerable distance of small farms from centralized energy systems (by fuel, electricity and thermal energy) it is proposed to create a system of local energy networks on the basis of low-powered power plants using renewable energy sources (RES). There is economic unreasonableness of use of imported components of small power plants. Creation of new combined small power plants on renewable energy sources produced by domestic manufacturers is recommended. Schemes of arrangements of small power plants based on renewable energy sources are proposed, variants and characteristics of a basic source are provided—biogas plants developed by the authors. Calculations revealed that heat and power supply of self-contained farms distant from small power plants based on renewable energy sources is 2.5-2.6 times cheaper than from centralized networks. Production of biogas through anaerobic fermentation of organic waste of cattle complexes is considered as the basis. The analysis of biowaste output in various cattle farms is carried out, and the volume of biogas is determined to meet the requirements of these farms in electrical and thermal energy. The objective of the present article is to study the possibility of creating small combined power plants in Russia based on renewable sources of energy for independent consumers.

  11. 77 FR 27046 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ..., Copper Mountain Solar 1, LLC, El Dorado Energy, LLC, Fowler Ridge II Wind Farm LLC, Mesquite Power, LLC..., AES Redondo Beach, LLC, Condon Wind Power, LLC, Indianapolis Power & Light Company, Mountain View... Sterling CT Limited Partnership, Bayonne Plant Holding, LLC, Camden Plant Holding, LLC, Dartmouth Power...

  12. Modelling of CO2 pipelines in dynamic CCS systems

    NASA Astrophysics Data System (ADS)

    Nimtz, M.; Klatt, M.; Krautz, H. J.

    2012-04-01

    The growing rate of renewable energies contributing to the power supply in Germany is starting to influence conventional thermal power plants. As a particular example, the state of Brandenburg in the eastern part of Germany has an installed capacity of 4.4 GW wind power [DEWI 2011] and 6.1 GW fossil fueled large-scale power plants (including the site in Boxberg, north-east saxony) [Vattenfall 2011] respectively. This ratio is disadvantageous, as the local thermal power plants have to provide all the balancing power to control the load of the power grid in the region. As long as there are bottlenecks in the grid, preventing the extra load from wind energy to be transported as well as a lack of technologies to store electrical energy, almost all load changes have to be balanced by the large fossil fueled power plants. The ability to provide balancing power will also be an essential criterion for new large-scale CCS (carbon dioxide capture and storage) power plants to be permitted. But this of course will influence the overall performance of the power plant and the connected peripheral systems. It is obvious that the additional equipment to capture, transport and store the CO2 and all related extra process steps will lower the flexibility and the speed of load changes that can be applied to the CCS system if no special measures are applied. All changes in load that are demanded from the power grid will be transferred to the capture and transport system, finally resulting in changes in mass flow and pressure of the CO2. These changes will also influence the performance of the storage reservoir. The presentation at the GeoEn session at the EGU 2012 will cover a look at a CCS system consisting of a coal fired Oxyfuel power plant, a pipeline to transport the CO2 and a saline aquifer as a storage reservoir. It is obvious that all parts of this system will influence each other due to the direct connection via pipeline and the physical limitations in mass flow and pressure deviations from design values. To track the effects of load changes on the system, the software program OLGA® [SPT 2011] is used. The software will give as simulation results detailed information about the dynamic changes of pressure, temperature and mass flow within the pipeline from the power plant down to the injection well and even is able to account for influences from the reservoir. The example which will be presented includes a power grid situation wherein high load changes due to fluctuating wind power induce changes in the CCS power plant load and all associated systems, especially the CO2 mass flow in the pipeline itself. Results will be discussed with regard to the design criterions of such CCS systems and the safe operation of a pipeline under high load changes to prevent critical situations that would force a stop of power plant and injection operation or other measures like a blow down of the pipeline.

  13. A Model of Water Resources & Thermoelectric Plant Productivity Considering Changing Climates & Environmental Policy

    NASA Astrophysics Data System (ADS)

    Miara, A.; Vorosmarty, C. J.; Stewart, R. J.; Wollheim, W. M.; Rosenzweig, B.

    2012-12-01

    In the Northeast US, approximately 80% of the available capacity of thermoelectric plants is dependent on the constant availability of water for cooling. Cooling is a necessary process whereby the waste thermal load of a power plant is released and the working fluid (typically steam) condensed to allow the continuation of the thermodynamic cycle and the extraction of electrical power through the action of turbines. Power plants rely on a minimum flow at a certain temperature, determined by the individual plant engineering design, to be sufficiently low for their cooling. Any change in quantity or temperature of water could reduce thermal efficiencies. As a result of the cooling process, power plants emit thermal pollution into receiving waters, which is harmful to freshwater aquatic ecosystems including its resident life forms and their biodiversity. The Clean Water Act of 1972 (CWA) was established to limit thermal pollution, particularly when rivers reach high temperatures. When river temperatures approach the threshold limit, the power plants that use freshwater for cooling are forced to reduce their thermal load and thus their output to comply with the regulations. Here we describe a model that quantifies, in a regional context, thermal pollution and estimates efficiency losses as a result of fluctuating river temperatures and flow. It does this using available data, standard engineering equations describing the heat cycle of power plants and their water use, and assumptions about the operations of the plant. In this presentation, we demonstrate the model by analyzing contrasting climates with and without the CWA, focusing on the productivity of 366 thermoelectric plants that rely on water for cooling in the Northeast between the years 2000-2010. When the CWA was imposed on all simulated power plants, the model shows that during the average winter and summer, 94% and 71% of required generation was met from the power plants, respectively. This suggests that if all power plants were to comply with the CWA and if temperatures do increase in the future as is expected under greenhouse warming, electric power generation in the Northeast may become limited, particularly in the summer. To avoid a potential energy gap, back-up generators and other electric infrastructure, such as hydropower, may have to come online in order to meet the total electric demand. Furthermore, it is clear that the methodology and steps taken in the model are required to more accurately understand, estimate and evaluate the relationship between energy production, environmental and energy policy and biodiversity under forecasted and historic climate conditions. Our ongoing work uses this model to explore various future scenarios of policy, climate and natural resource management in the Northeastern US for the period 2010-2100.

  14. 15. Photocopy of a photograph1921 ORIGINAL HEADRACE TUNNEL FOR WESTSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of a photograph--1921 ORIGINAL HEADRACE TUNNEL FOR WESTSIDE PLANT - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  15. 4. Photocopy of a photographWATER SPILLING OVER DAM FROM ISLAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of a photograph--WATER SPILLING OVER DAM FROM ISLAND PLANT - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  16. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  17. Integrated controls design optimization

    DOEpatents

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  18. Mathematical Modeling – The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation

    NASA Astrophysics Data System (ADS)

    Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun

    2018-03-01

    This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.

  19. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s

    NASA Astrophysics Data System (ADS)

    Severnini, Edson

    2017-04-01

    The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.

  20. Tidal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charlier, R.H.

    1982-01-01

    The various methods of extracting energy from the ocean are covered, along with information on what causes tides, how tides are used to generate electricity, and the locations of hundreds of potential sites for tidal power plants. The rehabilitation of old tide mills, new methods of building tidal power plants, and the plastic barrier scheme are described. A world-wide examination is provided of tidal power plant sites and the status of power projects in the US, France, the USSR, England, Canada, North and South Korea, Argentina, Australia, and India. (WHR)

  1. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic.

    PubMed

    Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora

    2017-12-01

    During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    NASA Astrophysics Data System (ADS)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  3. Flow Accelerated Erosion-Corrosion (FAC) considerations for secondary side piping in the AP1000{sup R} nuclear power plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderhoff, J. F.; Rao, G. V.; Stein, A.

    2012-07-01

    The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Duemore » to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)« less

  4. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Lance G.

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor andmore » replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100% after implementations of this method in March 2000. However, failures of instrumentation and control system components led to additional plant down time and damage to the bearings and seals. The enthalpy and pressure of well 103 declined substantially from the inception of the project. When the project was started the wellhead pressure and enthalpy were 760 psig and 882 Btu/lb respectively. At the time the plant was placed in standby the corresponding values were only 525 psig and 658 Btu/lb. This reduced the available plant power to only 400 kWe making the project economically unfeasible. However, replacement of the existing rotor with the Dual Pressure Rotor and replacement of the bearings and seals will enable the existing Biphase turbine to produce 1190 kWe at the present well conditions without the backpressure steam turbine. Operation with the present staff can then be sustained by selling power under the existing Agreement with CFE. Implementation of this option is recommended with operation of the facility to continue as a demonstration plant. Biphase turbine theory, design and performance are reported herein. The construction of the Biphase turbine and power plant and operational experience are detailed. Improvements in the Biphase turbine are indicated and analyzed. The impact of Biphase techonology on geothermal power production is discussed and recommendations made.« less

  5. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankinemore » Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.« less

  6. MSR performance enhancements and modifications at St. Lucie Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubano, V.F.; Ugelow, A.G.; Menocal, A.G.

    1989-01-01

    The St. Lucie Power Plant provides an excellent historical prospective on various moisture separator/reheater improvements. Between the two essentially identical units there is a total of 14 years of operating experience with various moisture separator/reheater configurations, with a combination of four different heat transfer surfaces and three moisture removal configurations. Through various modifications and enhancements, the performance and the reliability of the moisture separator/reheaters at the St. Lucie Power Plant and consequently the overall plant performance has been improved. This improvement has taken place over several years and involves changes in both the heat transfer and moisture removal areas. Thismore » paper provides an overview of the history and description of moisture separator/reheater modifications at the St. Lucie Power Plant with the resulting performance improvements.« less

  7. Evaluation of respiratory functions of residents around the Orhaneli thermal power plant in Turkey.

    PubMed

    Pala, Kayihan; Türkkan, Alpaslan; Gerçek, Harika; Osman, Erdinc; Aytekin, Hamdi

    2012-01-01

    The aim of this cross-sectional study was to evaluate the health and respiratory function of residents around the Orhaneli thermal power plant in Turkey. The study was conducted using face-to-face interviews, and respiratory functions were measured with a spirometer. The respiratory functions of 2350 residents, 15 years and older, living in communities near the coal-fired Orhaneli thermal power plant in Turkey were measured. The control group consisted of 469 persons from similar communities without a nearby power plant. The FEV1 (forced expiratory volume after 1 s) and FVC (forced vital capacity) values of the study participants were significantly lower than those of the control group, and residents directly downwind of the plant's smokestack showed greater impairment of respiratory functions compared with residents upwind.

  8. Derate Mitigation Options for Pulverized Coal Power Plant Carbon Capture Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Jeffrey W.; Hackett, Gregory A.; Lewis, Eric G.

    Carbon capture and storage (CCS) technologies available in the near-term for pulverized coal-fueled power plants (i.e., post combustion solvent technologies) require substantial capital investment and result in marked decrease in electricity available for sale to the grid. The impact to overall plant economics can be mitigated for new plant designs (where the entire plant can be optimized around the CCS system). However, existing coal-fueled power plants were designed without the knowledge or intent to retrofit a CCS process, and it is simply not possible to re-engineer an existing plant in a manner that it could achieve the same performance asmore » if it was originally designed and optimized for CCS technology. Pairing an auxiliary steam supply to the capture system is a technically feasible option to mitigate the derate resulting from diverting steam away from an existing steam turbine and continuing to run that turbine at steam flow rates and properties outside of the original design specifications. The results of this analysis strongly support the merits of meeting the steam and power requirements for a retrofitted post-combustion solvent based carbon dioxide (CO2) capture system with an auxiliary combined heat and power (CHP) plant rather than robbing the base plant (i.e., diverting steam from the existing steam cycle and electricity from sale to the grid).« less

  9. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...

  10. 78 FR 24438 - Evaluations of Explosions Postulated To Occur at Nearby Facilities and on Transportation Routes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants AGENCY: Nuclear Regulatory... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants.'' This regulatory guide describes for applicants seeking nuclear power reactor licenses and licensees of nuclear power reactors...

  11. 78 FR 9903 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ...-2181-016; ER10-2182-016. Applicants: R.E. Ginna Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, Calvert Cliffs Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in... Wind Power, L.L.C., CR Clearing, LLC, Criterion Power Partners, LLC, Exelon Framingham, LLC, Exelon...

  12. 76 FR 1416 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Wind Farm LLC; State Line Energy, LLC; Kincaid Generation, L.L.C.; Virginia Electric and Power Company...: Constellation Energy Commodities Group, R.E. Ginna Nuclear Power Plant, LLC, AES NewEnergy, Inc., Baltimore Gas..., Safe Harbor Water Power Corporation, Calvert Cliffs Nuclear Power Plant LLC, CER Generation, LLC...

  13. 35. SOUTH PLANT NORTHCENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS 325 AND 321) AT LEFT, FUEL TOWER AT CENTER AND CHLORINE EVAPORATOR (BUILDING 251) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  14. Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y. H.

    2013-01-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.

  15. A new framework to increase the efficiency of large-scale solar power plants.

    NASA Astrophysics Data System (ADS)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  16. Assessment of a satellite power system and six alternative technologies

    NASA Technical Reports Server (NTRS)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L. S.; Levine, E.; Tanzman, E.

    1981-01-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and institutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included.

  17. On-line condition monitoring applications in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastiemian, H. M.; Feltus, M. A.

    2006-07-01

    Existing signals from process instruments in nuclear power plants can be sampled while the plant is operating and analyzed to verify the static and dynamic performance of process sensors, identify process-to-sensor problems, detect instrument anomalies such as venturi fouling, measure the vibration of the reactor vessel and its internals, or detect thermal hydraulic anomalies within the reactor coolant system. These applications are important in nuclear plants to satisfy a variety of objectives such as: 1) meeting the plant technical specification requirements; 2) complying with regulatory regulations; 3) guarding against equipment and process degradation; 4) providing a means for incipient failuremore » detection and predictive maintenance; or 5) identifying the root cause of anomalies in equipment and plant processes. The technologies that are used to achieve these objectives are collectively referred to as 'on-line condition monitoring.' This paper presents a review of key elements of these technologies, provides examples of their use in nuclear power plants, and illustrates how they can be integrated into an on-line condition monitoring system for nuclear power plants. (authors)« less

  18. Benefits of production extension and shifting with thermal storage for a 1MW CSP-ORC plant in Morocco

    NASA Astrophysics Data System (ADS)

    Bennouna, El Ghali; Mimet, Abdelaziz; Frej, Hicham

    2016-05-01

    The importance of thermal storage for commercial CSP (concentrated Solar Power) plants has now become obvious, this regardless of the solar technology used and the power cycle. The availability of a storage system to a plant operator brings a lot of possibilities for production management, cash flow optimization and grid stabilizing. In particular, and depending on plant location and local grid strategy, thermal storage can contribute, when wisely used, to control production and adapt it to the demand and / or power unbalances and varying prices. Storage systems design, sizing and configuration are proper to each power plant, hence systems that are now widely installed within large commercial solar plants are not necessarily suited for small scale decentralized production, and will not have the same effects. In this paper the benefits of thermal storage are studied for a 1MWe CSP plant with an ORC (Organic Rankine Cycle), this plant has many specific features which call for a detail analysis about the appropriate storage design and optimum operating strategies for decentralized solutions.

  19. Phytomonitoring of air pollution around a thermal power plant

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Agrawal, S. B.

    This study was undertaken in order to assess the impact of air pollutants on vegetation around Obra thermal power plant (1550 M W capacity) in the Mirzapur district of Uttar Pradesh. For this purpose, Mangifera indica, Citrus medico and Bouganvillaea spectabilis plants, most common at all sites, were selected as test plants. Five study sites were selected northeast (prevailing wind) of the thermal power plant. A control site was also selected at a distance of 30 km north of Obra. Responses of plants to pollutants in terms of presence of foliar injury symptoms and changes in chlorophyll, ascorbic acid and S content were measured. These changes were correlated with ambient SO 2 and suspended particulate matter (SPM) concentrations and the amount of dust settled on leaf surfaces. The SO 2 and SPM concentrations were quite high in the immediate vicinity of the power plant. There also exists a direct relationship between the concentration of SPM in air and amount of dust deposited on leaf surfaces. Maximum dust deposition was observed on M. indica plants. The levels of foliar injury, chlorophyll and ascorbic acid were found to decrease and that of S increase in plants around the power plant in comparison to those growing at a control site. The magnitude of such changes was maximum in M. indica and minimum in C. medica. A species specific direct relationship between the increase in the amount of S and decrease in chlorophyll content was observed. The study suggests that differential sensitivity of plants to SO 2 may be used in evaluating the air pollution impact around emission sources and M. indica plants can be used as an indicator plant for quantifying biological changes.

  20. Rays as weapons.

    PubMed

    Vogel, H

    2007-08-01

    Ionizing radiation is being regarded as life threatening. Therefore, accidents in nuclear power plants are considered equal threatening as nuclear bomb explosions, and attacks with dirty bombs are thought as dangerous as nuclear weapon explosions. However, there are differences between a nuclear bomb explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. It is intended to point them out. The processes are described, which damage in a nuclear bomb explosion, in the largest imaginable accident in a nuclear power plant, and in an attack with a dirty bomb. Their effects are compared with each other, i.e. explosion, heat, shock wave (blast), ionizing radiation, and fallout. In the center of the explosion of a nuclear bomb, the temperature rises to 100Mio degrees C, this induces damaging heat radiation and shock wave. In the largest imaginable accident in a nuclear power plant and in the conventional explosion of a dirty bomb, the temperature may rise up to 3000 degrees C, heat radiation and blast are limited to a short distance. In nuclear power plants, explosions due to oxyhydrogen gas or steam may occur. In nuclear explosions the dispersed radioactive material (fall out) consists mainly of isotopes with short half-life, in nuclear power plants and in dirty bomb attacks with longer half-life. The amount of fall out is comparable in nuclear bomb explosions with that in the largest imaginable accident in a nuclear power plant, it is smaller in attacks with dirty bombs. An explosion in a nuclear power plant even in the largest imaginable accident is not a nuclear explosion. In Hiroshima and Nagasaki, there were 200,000 victims nearly all by heat and blast, some 300 died by ionizing radiation. In Chernobyl, there have been less than 100 victims due to ionizing radiation up till now. A dirty bomb kills possibly with the explosion of conventional explosive, the dispersed radioactive material may damage individuals. The incorporation of irradiating substances may kill and be difficult to detect (Litvinenko). A new form of (government supported) terrorism/crime appears possible. The differences are important between a nuclear weapon explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. Nuclear weapons kill by heat and blast; in the largest imaginable accident in a nuclear power plant, they are less strong and limited to the plant; an attack with a dirty bomb is as life threatening as an ("ordinary") bomb attack, dispersed radiating material may be a risk for individuals.

  1. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less

  2. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  3. Concentrating Solar Power Projects by Project Name | Concentrating Solar

    Science.gov Websites

    Tower Plant Gujarat Solar One Gulang 100MW Thermal Oil Parabolic Trough project Guzmán Hami 50 MW CSP ¼lich Solar Tower Kathu Solar Park KaXu Solar One Khi Solar One Kimberlina Solar Thermal Power Plant Solar Plant MINOS Mojave Solar Project Morón National Solar Thermal Power Facility Nevada Solar One

  4. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  5. Apros-based Kola 1 nuclear power plant compact training simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porkholm, K.; Kontio, H.; Nurmilaukas, P.

    1996-11-01

    Imatran Voima Oy`s subsidiary IVO International Ltd (IVO IN) and the Technical Research Centre of Finland (VTT) in co-operation with Kola staff supplies the Kola Nuclear Power Plant in the Murmansk region of Russia with a Compact Training Simulator. The simulator will be used for the training of the plant personnel in managing the plant disturbance and accident situations. By means of the simulator is is also possible to test how the planned plant modifications will affect the plant operation. The simulator delivery is financed by the Finnish Ministry of Trade and Industry and the Ministry of Foreign Affairs. Themore » delivery is part of the aid program directed to Russia for the improvement of the nuclear power plant safety.« less

  6. Development and Evaluation of a Reactive-Dispersive Plume Model: TexAQS II 2006 Case Study

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hoon; Kim, Hyun Soo; Song, Chul Han

    2015-04-01

    We describe the development and evaluation of a reactive-dispersive plume model (RDPM) that combines a photo-chemistry model with a plume dilution driven by turbulent dispersion of a power-plant plume. The plume transport and turbulent dispersion are derived from a Gaussian plume model and the plume chemistry model uses 71 HxOy-NxOy-CH4 chemistry-related reactions and 184 NMHC-related reactions. Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. To extensively understand and assess atmospheric impacts of the power-plant emissions, a general RDPM was applied to simultaneously simulate the dynamics and photo-chemistry of the Texas power-plant plumes. During the second Texas Air Quality Study 2006 (TexAQS II 2006) on 16 September 2006, pollutant concentrations were measured by NOAA WP-3D aircraft with successive transects across power-plant plumes in Texas, USA. The simulation performances of the RDPM were evaluated by a comparison study, using the observation data obtained from the measurements of a NOAA WP-3D flight during TexAQS II 2006 airborne field campaign. On 16 September, the WP-3D aircraft observed mainly meteorological parameters and particulate species concentrations, traversing the Monticello and Welsh power-plant plumes four times from transects A to D. In addition, some meteorological variables in an initial condition for model simulation were obtained from the Weather Research and Forecasting (WRF) model output for the specific objects. These power-plant plume cases were selected in this study, because a large number of nitrogen oxides and sulfur dioxide concentrations inside the power-plant plumes were measured without any interruption of other emission sources. For the Monticello and Welsh power-plant plumes, the model-predicted concentrations showed good agreements with the observed concentrations of ambient species (e.g., nitrogen oxides, ozone, sulfur dioxide, etc.) at the four transects. Based on these RDPM results, the power-plant plume chemistry and its possible impacts on atmospheric environments were also analyzed.

  7. Holocene development of the eastern Gulf of Finland coastal zone (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Ryabchuk, Daria; Sergeev, Alexander; Gusentsova, Tatiana; Gerasimov, Dmitry; Zhamoida, Vladimir; Amantov, Aleksey; Kulkova, Marianna; Sorokin, Peter

    2014-05-01

    In 2011-2013 geoarcheological and marine geological research of the eastern Gulf of Finland coasts and near-shore bottom were undertaken. Researches were concentrated within several key-areas (Sestroretskaya Lowland, Narva-Luga Klint Bay and southern coastal zone of the Gulf (near Bolshaya Izhora village). Study areas can provide important information about Gulf of Finland Holocene coastal development as since Ancylus time (about 10000 cal.BP). Development of numerous sand accretion forms (spits, bars, dunes) of different shape, age and genesis caused formation of lagoon systems, situated now on-land due to land uplift. Coasts of lagoons in Sestroretskaya Lowland and Narva-Luga Klint Bay were inhabited by Neolithic and Early Metal people. Analysis of coastal morphology and results of geological research (GIS relief analyses, ground penetrating radar, drilling, grain-size analyses, radiocarbon dating) and geoarcheological studies allowed to reconstruct the mechanism of large accretion bodies (bars and spits) and lagoon systems formation during last 8000 years. Geoarcheological studies carried out within eastern Gulf of Finland coasts permitted to find some features of the Neolithic - Early Metal settlements distribution. Another important features of the eastern Gulf of Finland coastal zone relief are the series of submarine terraces found in the Gulf bottom (sea water depths 10 to 2 m). Analyses of the submarine terraces morphology and geology (e.g. grain-size distribution, pollen analyses and organic matter dating) allow to suppose that several times during Holocene (including preAncylus (11000 cal.BP) and preLittorina (8500 cal.BP) regressions) the sea-water level was lower than nowadays. During the maximal stage of the Littorina transgression (7600-7200 cal. BP) several open bays connected with the Littorina Sea appeared in this area. The lagoon systems and sand accretion bodies (spits and bars) were formed during the following decreasing of the sea level. Late Neolithic-Early Metal Epoch archaeological contexts of the end of the 6th to the beginning of the 5th ka BP mark the rate of regression. The results of geological research of submarine terraces and modeling show that by the time period about 3000 cal. BP, relative water level decreased (in the vicinities of Sestroretskaya Lowland and Bolshaya Izhora village by modern depth of about 3 m). The main trend of the final stage of paleogeographical development was the gradual relative sea-level rise up to the modern shoreline. Studies are supported by Russian Foundation for Basic Research (projects 12-05-01121 and 12-05-31196).

  8. Power plant allocation in East Kalimantan considering total cost and emissions

    NASA Astrophysics Data System (ADS)

    Muslimin; Utomo, D. S.

    2018-04-01

    The fulfillment of electricity need in East Kalimantan is the responsibility of State Electricity Company/Perusahaan Listrik Negara (PLN). But PLN faces constraints in the lack of generating capacity it has. So the allocation of power loads in East Kalimantan has its own challenges. Additional power supplies from other parties are required. In this study, there are four scenarios tested to meet the electricity needs in East Kalimantan with the goal of minimizing costs and emissions. The first scenario is only by using PLN power plant. The second scenario is by combining PLN + Independent Power Producer (IPP) power plants. The third scenario is by using PLN + Rented power plants. The fourth scenario is by using PLN + Excess capacity generation. Numerical experiment using nonlinear programming is conducted with the help of the solver. The result shows that in the peak load condition, the best combination is scenario 2 (PLN + IPP). While at the lowest load condition, the cheapest scenario is PLN + IPP while the lowest emission is PLN + Rent.

  9. Research and application of thermal power unit’s load dynamic adjustment based on extraction steam

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Huicong; Li, Weiwei

    2018-02-01

    The rapid development of heat and power generation in large power plant has caused tremendous constraints on the load adjustment of power grids and power plants. By introducing the thermodynamic system of thermal power unit, the relationship between thermal power extraction steam and unit’s load has analyzed and calculated. The practical application results show that power capability of the unit affected by extraction and it is not conducive to adjust the grid frequency. By monitoring the load adjustment capacity of thermal power units, especially the combined heat and power generating units, the upper and lower limits of the unit load can be dynamically adjusted by the operator on the grid side. The grid regulation and control departments can effectively control the load adjustable intervals of the operating units and provide reliable for the cooperative action of the power grid and power plants, to ensure the safety and stability of the power grid.

  10. Environmental impacts of large-scale CSP plants in northwestern China.

    PubMed

    Wu, Zhiyong; Hou, Anping; Chang, Chun; Huang, Xiang; Shi, Duoqi; Wang, Zhifeng

    2014-01-01

    Several concentrated solar power demonstration plants are being constructed, and a few commercial plants have been announced in northwestern China. However, the mutual impacts between the concentrated solar power plants and their surrounding environments have not yet been addressed comprehensively in literature by the parties involved in these projects. In China, these projects are especially important as an increasing amount of low carbon electricity needs to be generated in order to maintain the current economic growth while simultaneously lessening pollution. In this study, the authors assess the potential environmental impacts of large-scale concentrated solar power plants. Specifically, the water use intensity, soil erosion and soil temperature are quantitatively examined. It was found that some of the impacts are favorable, while some impacts are negative in relation to traditional power generation techniques and some need further research before they can be reasonably appraised. In quantitative terms, concentrated solar power plants consume about 4000 L MW(-1) h(-1) of water if wet cooling technology is used, and the collectors lead to the soil temperature changes of between 0.5 and 4 °C; however, it was found that the soil erosion is dramatically alleviated. The results of this study are helpful to decision-makers in concentrated solar power site selection and regional planning. Some conclusions of this study are also valid for large-scale photovoltaic plants.

  11. 78 FR 29783 - Diablo Canyon Power Plant, Units 1 and 2; Application for Amendment to Facility Operating License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... of all onsite alternating current power supplies and the other offsite electric power circuit, to... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 50-275 and 50-323; NRC-2013-0100] Diablo Canyon Power... License Nos. DPR-80 and DPR-82 for the Diablo Canyon Power Plant, Units 1 and 2, located in San Luis...

  12. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has amore » low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.« less

  13. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  14. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; O'Neill, Barbara

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less

  15. Identifying Electricity Capacity at Risk to Changes in Climate and Water Resources in the United States

    NASA Astrophysics Data System (ADS)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Corsi, F.; Fekete, B. M.; Newmark, R. L.; Tidwell, V. C.; Cohen, S. M.

    2016-12-01

    Thermoelectric plants supply 85% of electricity generation in the United States. Under a warming climate, the performance of these power plants may be reduced, as thermoelectric generation is dependent upon cool ambient temperatures and sufficient water supplies at adequate temperatures. In this study, we assess the vulnerability and reliability of 1,100 operational power plants (2015) across the contiguous United States under a comprehensive set of climate scenarios (five Global Circulation Models each with four Representative Concentration Pathways). We model individual power plant capacities using the Thermoelectric Power and Thermal Pollution model (TP2M) coupled with the Water Balance Model (WBM) at a daily temporal resolution and 5x5 km spatial resolution. Together, these models calculate power plant capacity losses that account for geophysical constraints and river network dynamics. Potential losses at the single-plant level are put into a regional energy security context by assessing the collective system-level reliability at the North-American Electricity Reliability Corporation (NERC) regions. Results show that the thermoelectric sector at the national level has low vulnerability under the contemporary climate and that system-level reliability in terms of available thermoelectric resources relative to thermoelectric demand is sufficient. Under future climates scenarios, changes in water availability and warm ambient temperatures lead to constraints on operational capacity and increased vulnerability at individual power plant sites across all regions in the United States. However, there is a strong disparity in regional vulnerability trends and magnitudes that arise from each region's climate, hydrology and technology mix. Despite increases in vulnerabilities at the individual power plant level, regional energy systems may still be reliable (with no system failures) due to sufficient back-up reserve capacities.

  16. [Risk communication in construction of new nuclear power plant].

    PubMed

    He, Gui-Zhen; Lü, Yong-Long

    2013-03-01

    Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.

  17. 1. Photocopy of a photographca. 1920 VIEW OF AMERICAN FALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of a photograph--ca. 1920 VIEW OF AMERICAN FALLS PRIOR TO CONSTRUCTION OF HYDROELECTRIC PLANTS - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  18. 12. Photocopy of a photograph1921 GENERAL VIEW LOOKING NORTH TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of a photograph--1921 GENERAL VIEW LOOKING NORTH TO ISLAND AND WESTSIDE PLANTS - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  19. More on duel purpose solar-electric power plants

    NASA Astrophysics Data System (ADS)

    Hall, F. F.

    Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.

  20. Prospects for the development of coal-steam plants in Russia

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

Top