Sample records for nasa astep project

  1. ASTEP user's guide and software documentation

    NASA Technical Reports Server (NTRS)

    Gliniewicz, A. S.; Lachowski, H. M.; Pace, W. H., Jr.; Salvato, P., Jr.

    1974-01-01

    The Algorithm Simulation Test and Evaluation Program (ASTEP) is a modular computer program developed for the purpose of testing and evaluating methods of processing remotely sensed multispectral scanner earth resources data. ASTEP is written in FORTRAND V on the UNIVAC 1110 under the EXEC 8 operating system and may be operated in either a batch or interactive mode. The program currently contains over one hundred subroutines consisting of data classification and display algorithms, statistical analysis algorithms, utility support routines, and feature selection capability. The current program can accept data in LARSC1, LARSC2, ERTS, and Universal formats, and can output processed image or data tapes in Universal format.

  2. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  3. A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.

    2016-10-01

    We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.

  4. NASA Taxonomy 2.0 Project Overview

    NASA Technical Reports Server (NTRS)

    Dutra, Jayne; Busch, Joseph

    2004-01-01

    This viewgraph presentation reviews the project to develop a Taxonomy for NASA. The benefits of this project are: Make it easy for various audiences to find relevant information from NASA programs quickly, specifically (1) Provide easy access for NASA Web resources (2) Information integration for unified queries and management reporting ve search results targeted to user interests the ability to move content through the enterprise to where it is needed most (3) Facilitate Records Management and Retention Requirements. In addition the project will assist NASA in complying with E-Government Act of 2002 and prepare NASA to participate in federal projects.

  5. NASA PC software evaluation project

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kuan, Julie C.

    1986-01-01

    The USL NASA PC software evaluation project is intended to provide a structured framework for facilitating the development of quality NASA PC software products. The project will assist NASA PC development staff to understand the characteristics and functions of NASA PC software products. Based on the results of the project teams' evaluations and recommendations, users can judge the reliability, usability, acceptability, maintainability and customizability of all the PC software products. The objective here is to provide initial, high-level specifications and guidelines for NASA PC software evaluation. The primary tasks to be addressed in this project are as follows: to gain a strong understanding of what software evaluation entails and how to organize a structured software evaluation process; to define a structured methodology for conducting the software evaluation process; to develop a set of PC software evaluation criteria and evaluation rating scales; and to conduct PC software evaluations in accordance with the identified methodology. Communication Packages, Network System Software, Graphics Support Software, Environment Management Software, General Utilities. This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of context of the full Final Report.

  6. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    martian meteorite, evidence of past and perhaps even present liquid water on Mars, the likelihood of a liquid water ocean on Europa, the possibility of liquid water beneath the surface of Titan, observations of a growing number of extrasolar planets, and identification of new forms of microbial life in an ever-widening range of extreme Earth environments. Consequently, in the 21st century the pace of robotic planetary exploration is speeding up and scientific and public attention is increasingly focusing on astrobiology research, especially the search for signs of life on Mars and in other environments in our solar system. NASA's ASTEP program is sponsoring field campaigns to test science strategies and robotic technologies that could be useful in conducting astrobiological investigations in planetary environments, focusing on Mars and Europa. Public interest in astrobiology research is substantial, and advances in the field are rapid. Thus the NASA Astrobiology Program encourages Principal Investigators to incorporate communication, education, and public outreach initiatives in their research plans. NASA ASTEP projects provide especially good opportunities for communication, education, and outreach. The work of ASTEP projects takes place in remote terrestrial environments, places typically inaccessible to "civilians": the Norwegian protectorate of Svalbard, above the Arctic Circle; the far-northern reaches of the Arctic Ocean; the dry valleys of Antarctica; deep-sea hydrothermal vent systems and other unmapped underwater environments. ASTEP projects involve human researchers working with robotic adjuncts. ASTEP teams often combine include senior and student researchers. Some have even included "embedded" journalists and public affairs officers. ASTEP expeditions typically unfold in visually interesting, sometimes stunning, physical environments. ASTEP expeditions are virtually always intensive learning experiences for their researchers, and thus they provide good

  7. K-12 Project Management Education: NASA Hunch Projects

    ERIC Educational Resources Information Center

    Morgan, Joe; Zhan, Wei; Leonard, Matt

    2013-01-01

    To increase the interest in science, technology, engineering, and math (STEM) among high school students, the National Aeronautics and Space Administration (NASA) created the "High Schools United with NASA to Create Hardware" (HUNCH) program. To enhance the experience of the students, NASA sponsored two additional projects that require…

  8. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  9. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1992-01-01

    This volume is the fifth in an ongoing series on aerospace project management at NASA. Articles in this volume cover: an overview of the project cycle; SE&I management for manned space flight programs; shared experiences from NASA Programs and Projects - 1975; cost control for Mariner Venus/Mercury 1973; and the Space Shuttle - a balancing of design and politics. A section on resources for NASA managers rounds out the publication.

  10. Development of Risk Uncertainty Factors from Historical NASA Projects

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.

    2011-01-01

    NASA is a good investment of federal funds and strives to provide the best value to the nation. NASA has consistently budgeted to unrealistic cost estimates, which are evident in the cost growth in many of its programs. In this investigation, NASA has been using available uncertainty factors from the Aerospace Corporation, Air Force, and Booz Allen Hamilton to develop projects risk posture. NASA has no insight into the developmental of these factors and, as demonstrated here, this can lead to unrealistic risks in many NASA Programs and projects (P/p). The primary contribution of this project is the development of NASA missions uncertainty factors, from actual historical NASA projects, to aid cost-estimating as well as for independent reviews which provide NASA senior management with information and analysis to determine the appropriate decision regarding P/p. In general terms, this research project advances programmatic analysis for NASA projects.

  11. The NASA Bed Rest Project

    NASA Technical Reports Server (NTRS)

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  12. Managemant of NASA's major projects

    NASA Technical Reports Server (NTRS)

    James, L. B.

    1973-01-01

    Approaches used to manage major projects are studied and the existing documents on NASA management are reviewed. The work consists of: (1) the project manager's role, (2) request for proposal, (3) project plan, (4) management information system, (5) project organizational thinking, (6) management disciplines, (7) important decisions, and (8) low cost approach.

  13. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1990-01-01

    This volume is the third in an ongoing series on aerospace project management at NASA. Articles in this volume cover the attitude of the program manager, program control and performance measurement, risk management, cost plus award fee contracting, lessons learned from the development of the Far Infrared Absolute Spectrometer (FIRAS), small projects management, and age distribution of NASA scientists and engineers. A section on resources for NASA managers rounds out the publication.

  14. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1991-01-01

    This volume is the third in an ongoing series on aerospace project management at NASA. Articles in this volume cover the attitude of the program manager, program control and performance measurement, risk management, cost plus award fee contracting, lessons learned from the development of the Far Infrared Absolute Spectrometer (FIRAS), small projects management, and age distribution of NASA scientists and engineers. A section on resources for NASA managers rounds out the publication.

  15. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor)

    1994-01-01

    This volume is the eighth in an ongoing series addressing current topics and lessons learned in NASA program and project management. Articles in this volume cover the following topics: (1) power sources for the Galileo and Ulysses Missions; (2) managing requirements; (3) program control of the Tropical Rainfall Measuring Mission; (4) project management method; (5) career development for project managers; and (6) resources for NASA managers.

  16. The MY NASA DATA Project

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Alston, Erica J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.; Mims, Forrest M., III

    2006-01-01

    On the one hand, locating the right dataset, then figuring out how to use it, is a daunting task that is familiar to almost any scientist or graduate student in the fields of Earth system science. On the other hand, the ability to explore authentic Earth system science data, through inquiry-based education, is an important goal in US national education standards. Fortunately, in the digital age, tools are emerging that can make such data exploration commonplace at all educational levels. This paper describes the conception and development of one project that aims to bridge this gap: Mentoring and inquiry using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA; mynasadata.larc.nasa.gov). With funding from NASA's Science Mission Directorate, this project was launched in early 2004 with the aim of developing microsets and identifying other enablers for making data accessible. A key feature of the project is a Live Access Server, the first educational implementation of this open source software, developed by NOAA, that makes it possible to explore multiple data formats through a single interface. This powerful tool is made more useful to the primary target audiences (K-12 and amateur scientists) through careful selection of the data offered, user-friendly explanations of the tool itself, and age-appropriate explanations of the parameters. However experience already shows that graduate students and even practicing scientists can also make use of this resource. The website also hosts teacher-contributed lesson plans, and seeks to feature reports of research projects that use the data.

  17. NASA SBIR abstracts of 1991 phase 1 projects

    NASA Technical Reports Server (NTRS)

    Schwenk, F. Carl; Gilman, J. A.; Paige, J. B.

    1992-01-01

    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included.

  18. The MINE project: Minority Involvement in NASA Engineering

    NASA Technical Reports Server (NTRS)

    Allen, H., Jr.

    1977-01-01

    The Mine Project developed by Lewis Research Center (LRC) along with Tennessee State University and Tuskegee Institute, is described. The project calls for LRC to assemble on-going NASA university affairs programs aimed at benefiting the school, its faculty, and its student body. The schools receive grants to pursue research and technology projects that are relevant to NASA's missions. Upon request from the universities, LRC furnishes instructors and lecturers. The schools have use of surplus government equipment and access to NASA research facilities for certain projects. Both the faculty and students of the universities are eligible for summer employment at LRC through special programs. The MINE Project is designed to establish a continuing active relationship of 3 to 5 years between NASA and the universities, and will afford LRC with an opportunity to increase its recruitment of minority and women employees.

  19. NASA SBIR abstracts of 1992, phase 1 projects

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Gilman, J. A.; Paige, J. B.; Sacknoff, S. M.

    1993-01-01

    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included.

  20. Project Management in NASA: The system and the men

    NASA Technical Reports Server (NTRS)

    Pontious, R. H.; Barnes, L. B.

    1973-01-01

    An analytical description of the NASA project management system is presented with emphasis on the human element. The NASA concept of project management, program managers, and the problems and strengths of the NASA system are discussed.

  1. Risk Management of NASA Projects

    NASA Technical Reports Server (NTRS)

    Sarper, Hueseyin

    1997-01-01

    Various NASA Langley Research Center and other center projects were attempted for analysis to obtain historical data comparing pre-phase A study and the final outcome for each project. This attempt, however, was abandoned once it became clear that very little documentation was available. Next, extensive literature search was conducted on the role of risk and reliability concepts in project management. Probabilistic risk assessment (PRA) techniques are being used with increasing regularity both in and outside of NASA. The value and the usage of PRA techniques were reviewed for large projects. It was found that both civilian and military branches of the space industry have traditionally refrained from using PRA, which was developed and expanded by nuclear industry. Although much has changed with the end of the cold war and the Challenger disaster, it was found that ingrained anti-PRA culture is hard to stop. Examples of skepticism against the use of risk management and assessment techniques were found both in the literature and in conversations with some technical staff. Program and project managers need to be convinced that the applicability and use of risk management and risk assessment techniques is much broader than just in the traditional safety-related areas of application. The time has come to begin to uniformly apply these techniques. The whole idea of risk-based system can maximize the 'return on investment' that the public demands. Also, it would be very useful if all project documents of NASA Langley Research Center, pre-phase A through final report, are carefully stored in a central repository preferably in electronic format.

  2. Issues in NASA Program and Project Management: Focus on Project Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics addressed include: Planning and scheduling training for working project teams at NASA, overview of project planning and scheduling workshops, project planning at NASA, new approaches to systems engineering, software reliability assessment, and software reuse in wind tunnel control systems.

  3. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor); Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1995-01-01

    This volume is the ninth in an ongoing series on aerospace project management at NASA. Articles in this volume cover evolution of NASA cost estimating; SAM 2; National Space Science Program: strategies to maximize science return; and human needs, motivation, and results of the NASA culture surveys. A section on resources for NASA managers rounds out the publication.

  4. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1993-01-01

    This volume is the sixth in an ongoing series on aerospace project management at NASA. Articles in this volume cover evolution of NASA cost estimating; SAM 2; National Space Science Program: strategies to maximize science return; and human needs, motivation, and results of the NASA culture surveys. A section on resources for NASA managers rounds out the publication.

  5. The δ Scuti pulsations of β Pictoris as observed by ASTEP from Antarctica

    NASA Astrophysics Data System (ADS)

    Mékarnia, D.; Chapellier, E.; Guillot, T.; Abe, L.; Agabi, A.; De Pra, Y.; Schmider, F.-X.; Zwintz, K.; Stevenson, K. B.; Wang, J. J.; Lagrange, A.-M.; Bigot, L.; Crouzet, N.; Fanteï-Caujolle, Y.; Christille, J.-M.; Kalas, P.

    2017-12-01

    Aims: The Antarctica Search for Transiting Extrasolar Planets (ASTEP), an automatized 400 mm telescope located at Concordia station in Antarctica, monitored β Pictoris continuously to detect any variability linked to the transit of the Hill sphere of its planet β Pictoris b. The long observation sequence, from March to September 2017, combined with the quality and high level duty cycle of our data, enables us to detect and analyse the δ Scuti pulsations of the star. Methods: Time series photometric data were obtained using aperture photometry by telescope defocussing. The 66 418 data points were analysed using the software package Period04. We only selected frequencies with amplitudes that exceed four times the local noise level in the amplitude spectrum. Results: We detect 31 δ Scuti pulsation frequencies, 28 of which are new detections. All the frequencies detected are in the interval 34.76-75.68 d-1. We also find that β Pictoris exhibits at least one pulsation mode that varies in amplitude over our monitoring duration of seven months.

  6. NASA SBIR abstracts of 1990 phase 1 projects

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Gilman, J. A.; Paige, J. B.

    1991-01-01

    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number.

  7. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  8. Issues in NASA program and project management. Special Report: 1993 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, ED (Editor); Kishiyama, Jenny S. (Editor)

    1993-01-01

    This volume is the seventh in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1993 Conference: perspectives in NASA program/project management; the best job in aerospace; improvements in project management at NASA; strategic planning...mapping the way to NASA's future; new NASA procurement initiatives; international cooperation; and industry, government and university partnership. A section on resources for NASA managers rounds out the publication.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 10: The NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The role of the NASA/DOD Aerospace Knowledge DIffusion Research Project in helping to maintain U.S. competitiveness is addressed. The phases of the project are examined in terms of the focus, emphasis, subjects, methods, and desired outcomes. The importance of the project to aerospace R&D is emphasized.

  10. NASA Redox system development project status

    NASA Technical Reports Server (NTRS)

    Nice, A. W.

    1981-01-01

    NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.

  11. The Mars Express - NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Horttor, Richard L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.

    2006-01-01

    This viewgraph presentation gives a general overview of the Mars Express NASA Project at JPL. The contents include: 1) Mars Express/NASA Project Overview; 2) Experiment-Investigator Matrix; 3) Mars Express Support of NASA's Mars Exploration Objectives; 4) U.S./NASA Support of Mars Express; 5) Mars Express Schedule (2003-2007); 6) Mars Express Data Rates; 7) MARSIS Overview Results; 8) MARSIS with Antennas Deployed; 9) MARSIS Science Objectives; 10) Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) Experiment Overview; 11) Mars Express Orbit Evolution; 12) MARSIS Science - Subsurface Sounding; 13) MARSIS-North Polar Ice Cap; 14) MARSIS Data-Buried Basin; 15) MARSIS over a Crater Basin; 16) MARSIS-Buried Basin; 17) Ionogram - Orbit 2032 (example from Science paper); 18) Ionogram-Orbit 2018 (example from Science paper); and 19) Recent MARSIS Results ESA Press Releases.

  12. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  13. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  14. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matt

    2009-01-01

    This slide presentation reviews the NASA/DOD projects to select an alternative to hexavalent chrome in the aerospace industry. The Phase I process of the project performed: (1) Evaluation and testing of non-chromated coating systems as replacements for hexavalent chrome coatings in aircraft and aerospace applications. (2) Testing of coating systems to DoD and NASA specifications for corrosion resistance and adhesion. (3) Bare corrosion resistance and atmospheric exposure will be focus areas of Phase II Testing. The description includes a chart that summarizes the 3000 hour salt fog test results. The second phase of the project includes (1) Evaluation and testing of coating systems that do not contain hexavalent chrome as replacements for aerospace applications. (2) Evaluation of coatings at Beach Test Site and Launch Complex 39B (3) Evaluation of non-chrome coatings for electronic housings (bare corrosion resistance and electrical impedance) is a part of this round of testing. This project was performed for the Technology Evaluation for Environmental Risk Mitigation (TEERM)

  15. NASA Project Planning and Control Handbook

    NASA Technical Reports Server (NTRS)

    Moreland, Robert; Claunch, Cathy L.

    2016-01-01

    This handbook provides an overview of the fundamental principles and explains the functions and products that go into project planning and control. The 2010 Interim Results of the NASA Program Planning and Control (PPC) Study identified seven categories of activities for PPC, and those provide the basis for the seven functions described in this handbook. This handbook maps out the interfaces and interactions between PPC functions, as well as their external interfaces. This integration of information and products within and between functions is necessary to form the whole picture of how a project is progressing. The handbook descriptions are meant to facilitate consistent, common, and comprehensive approaches for providing valued analysis, assessment, and evaluation focused on the project level at NASA. The handbook also describes activities in terms of function rather than the job title or the specific person or organization responsible for the activity, which could differ by Center or size of a project. This handbook is primarily guidance for project planning and control: however, the same principles apply to programs and generally apply to institutional planning and control.

  16. Project ELaNa and NASA's CubeSat Initiative

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2010-01-01

    This slide presentation reviews the NASA program to use expendable lift vehicles (ELVs) to launch nanosatellites for the purpose of enhancing educational research. The Education Launch of Nanosatellite (ELaNa) project, run out of the Launch Services Program is requesting proposals for CubeSat type payload to provide information that will aid or verify NASA Projects designs while providing higher educational research

  17. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  18. Recent Results from NASA's Morphing Project

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Washburn, Anthony E.; Horta, Lucas G.; Bryant, Robert G.; Cox, David E.; Siochi, Emilie J.; Padula, Sharon L.; Holloway, Nancy M.

    2002-01-01

    The NASA Morphing Project seeks to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles. In the context of the project, the word "morphing" is defined as "efficient, multi-point adaptability" and may include macro, micro, structural and/or fluidic approaches. The project includes research on smart materials, adaptive structures, micro flow control, biomimetic concepts, optimization and controls. This paper presents an updated overview of the content of the Morphing Project including highlights of recent research results.

  19. Replacement of SSE with NASA's POWER Project GIS-enabled Web Data Portal

    Atmospheric Science Data Center

    2018-04-30

    Replacement of SSE with NASA's POWER Project GIS-enabled Web Data Portal Friday, March ... 2018 Replacement of SSE (Release 6) with NASA's Prediction of Worldwide Energy Resource (POWER) Project GIS-enabled Web ... Worldwide Energy Resource (POWER) Project funded largely by NASA Earth Applied Sciences program.   The new POWER web portal ...

  20. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Dr. Amber Straughn, Lead Scientist for James Webb Space Telescope Education & Public Outreach at NASA's Goddard Space Flight Center, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014 Photo Credit: (NASA/Joel Kowsky)

  1. Mars Analog Research and Technology Experiment (MARTE): A Simulated Mars Drilling Mission to Search for Subsurface Life at the Rio Tinto, Spain

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Lemke, Larry; Mandell, Humboldt; McKay, David; George, Jeffrey; Gomez-Alvera, Javier; Amils, Ricardo; Stevens, Todd; Miller, David

    2003-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project was selected by the new NASA ASTEP program, which supports field experiments having an equal emphasis on Astrobiology science and technology development relevant to future Astrobiology missions. MARTE will search for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River in southwestern Spain while also demonstrating technology needed to search for a subsurface biosphere on Mars. The experiment is informed by the strategy for searching for life on Mars.

  2. NASA Redox Storage System Development Project

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1984-01-01

    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

  3. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1989-01-01

    This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

  4. The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.

  5. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  6. NASA Space Flight Program and Project Management Handbook

    NASA Technical Reports Server (NTRS)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  7. Integrating Engineering Data Systems for NASA Spaceflight Projects

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert E.; Tollinger, Irene; Bell, David G.; Berrios, Daniel C.

    2012-01-01

    NASA has a large range of custom-built and commercial data systems to support spaceflight programs. Some of the systems are re-used by many programs and projects over time. Management and systems engineering processes require integration of data across many of these systems, a difficult problem given the widely diverse nature of system interfaces and data models. This paper describes an ongoing project to use a central data model with a web services architecture to support the integration and access of linked data across engineering functions for multiple NASA programs. The work involves the implementation of a web service-based middleware system called Data Aggregator to bring together data from a variety of systems to support space exploration. Data Aggregator includes a central data model registry for storing and managing links between the data in disparate systems. Initially developed for NASA's Constellation Program needs, Data Aggregator is currently being repurposed to support the International Space Station Program and new NASA projects with processes that involve significant aggregating and linking of data. This change in user needs led to development of a more streamlined data model registry for Data Aggregator in order to simplify adding new project application data as well as standardization of the Data Aggregator query syntax to facilitate cross-application querying by client applications. This paper documents the approach from a set of stand-alone engineering systems from which data are manually retrieved and integrated, to a web of engineering data systems from which the latest data are automatically retrieved and more quickly and accurately integrated. This paper includes the lessons learned through these efforts, including the design and development of a service-oriented architecture and the evolution of the data model registry approaches as the effort continues to evolve and adapt to support multiple NASA programs and priorities.

  8. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  9. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  10. Issues in NASA Program and Project Management. Special Edition: A Collection of Papers on NASA Procedures and Guidance 7120.5A. Volume 14

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1998-01-01

    A key aspect of NASA's new Strategic Management System is improving the way we plan, approve, execute and evaluate our programs and projects. To this end, NASA has developed the NASA Program and Project Management processes and Requirements-NASA Procedures and Guidelines (NPG) 7120.5A, which formally documents the "Provide Aerospace Products and Capabilities" crosscutting process, and defines the processes and requirements that are responsive to the Program/Project Management-NPD 7120.4A. The Program/Project Management-NPD 7120.4A, issued November 14, 1996, provides the policy for managing programs and projects in a new way that is aligned with the new NASA environment. An Agencywide team has spent thousands of hours developing the NASA Program and Project Management Processes and Requirements-NPG 7120.5A. We have created significant flexibility, authority and discretion for the program and project managers to exercise and carry out their duties, and have delegated the responsibility and the accountability for their programs and projects.

  11. How Project Managers Really Manage: An Indepth Look at Some Managers of Large, Complex NASA Projects

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Impaeilla, Cliff (Technical Monitor)

    2000-01-01

    This paper reports on a research study by the author that examined ten contemporary National Aeronautics and Space Administration (NASA) complex projects. In-depth interviews with the project managers of these projects provided qualitative data about the inner workings of the project and the methodologies used in establishing and managing the projects. The inclusion of a variety of space, aeronautics, and ground based projects from several different NASA research centers helped to reduce potential bias in the findings toward any one type of project, or technical discipline. The findings address the participants and their individual approaches. The discussion includes possible implications for project managers of other large, complex, projects.

  12. NASA-DoD Lower Process Temperature Lead-Free Solder Project Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    This project is a follow-on effort to the Joint Council on Aging AircraftJoint Group on Pollution Prevention (JCAAJG-PP) Pb-free Solder Project and NASA-DoD Lead-Free Electronics Project which were the first projects to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community. This effort would continue to build on the results from the JCAAJG-PP Lead-Free Solder Project and NASA-DoD Lead-Free Electronics Project while focusing on a particular failure mechanism currently plaguing Pb-free assemblies, pad cratering.The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. Pad Cratering is a latent defect that may occur during assembly, rework, and post assembly handling and testing.

  13. Issues in NASA Program and Project Management. Special Report: 1997 Conference. Project Management Now and in the New Millennium

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics Considered Include: NASA's Shared Experiences Program; Core Issues for the Future of the Agency; National Space Policy Strategic Management; ISO 9000 and NASA; New Acquisition Initiatives; Full Cost Initiative; PM Career Development; PM Project Database; NASA Fast Track Studies; Fast Track Projects; Earned Value Concept; Value-Added Metrics; Saturn Corporation Lessons Learned; Project Manager Credibility.

  14. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  15. Design of components for the NASA OCEAN project

    NASA Technical Reports Server (NTRS)

    Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark

    1993-01-01

    The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.

  16. Issues in NASA program and project management. Special report: 1995 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1995-01-01

    This volume is the tenth in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1996 Conference as follows: international partnerships; industry/interagency collaboration; technology transfer; and project management development process. A section on resources for NASA managers rounds out the publication.

  17. Best Practices in NASA's Astrophysics Education and Public Outreach Projects

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D.

    2015-11-01

    NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.

  18. The 1994 NASA/USRA/ADP Design Projects

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas; Richardson, Joseph; Tryon, Robert

    1994-01-01

    The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design.

  19. The Mars Express/NASA Project at JPL

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.

    2006-03-01

    The Mars Express/NASA Project at JPL supports much of the U.S. involvement in ESA's Mars Express mission. Mars Express has just completed its prime mission in late 2005 and has embarked on its first extended mission cycle.

  20. NASA's UAS NAS Access Project

    NASA Technical Reports Server (NTRS)

    Johnson, Charles W.

    2011-01-01

    this Project is limited ($150M over the five years), the focus is on reducing the technical barriers where NASA has unique capabilities. As a result, technical areas, such as Sense and Avoid (SAA) and beyond line of sight command and control will not be addressed. While these are critical barriers to UAS access, currently, there is a great deal of global effort being exercised to address these challenge areas. Instead, specific technology development in areas where there is certainty that NASA can advance the research to high technology readiness levels will be the Project's focus. Specific sub-projects include Separation Assurance, Human Systems Integration, Communications, Certification, and Integrated Test and Evaluation. Each sub-project will transfer technologies to relevant key stakeholders and decision makers through research transition teams, technology forums, or through other analogous means.

  1. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  2. NASA Photovoltaic Village Project in Arizona

    NASA Image and Video Library

    1978-11-21

    National Aeronautics and Space Administration (NASA) Lewis Research Center. NASA signed an agreement with the Papago tribe in May 1978 to provide the village with solar-generated electricity within the year. The project was funded by the Department of Energy and managed by NASA Lewis. Lewis provided all of the equipment and technical assistance while the tribe’s construction team built the arrays and support equipment, seen here. The 3.5-kilowatt system was modest in scope, but resulted in the first solar electric village. The system provided power to operate a refrigerator, freezer, washing machine, and water pump for the village and lights in each of the 16 homes. The system was activated on December 16, 1978. During the next year officials from around the world travelled to Schuchuli to ascertain if the system was applicable to their areas. The major television networks and over 100 publications covered the story. Less than one percent of the cells failed during the first year of operation.

  3. DOE/NASA Automotive Stirling Engine Project overview '83

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.

    1982-01-01

    An overview of the DOE/NASA Automotive Stirling Engine Project is presented. The background and objectives of the project are reviewed. Project activities are described and technical progress and status are presented and assessed. Prospects for achieving the objective 30% fuel economy improvement are considered good. The key remaining technology issues are primarily related to life, reliability and cost, such as piston rod seals, and low cost heat exchanges.

  4. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  5. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  6. NASA Desert RATS 2011 Education Pilot Project and Classroom Activities

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; McGlone, M.; Allen, J.; Tobola, K.; Graff, P.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of hardware and operations carried out annually in the high desert of Arizona, as an analog to future exploration activities beyond low Earth orbit [1]. For the past several years, these tests have occurred in the San Francisco Volcanic Field, north of Flagstaff. For the 2011 Desert RATS season, the Exploration Systems Mission Directorate (ESMD) at NASA headquarters provided support to develop an education pilot project that would include student activities to parallel the Desert RATS mission planning and exploration activities in the classroom, and educator training sessions. The development of the pilot project was a joint effort between the NASA Johnson Space Center (JSC) Astromaterials Research and Exploration Science (ARES) Directorate and the Aerospace Education Services Project (AESP), managed at Penn State University.

  7. Current Status of NASA's NEXT-C Ion Propulsion System Development Project

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Soulas, George; Aulisio, Michael; Schmidt, George

    2017-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is a 7-kW class gridded ion thruster-based propulsion system that was initially developed from 2002 to 2012 under NASAs In-Space Propulsion Technology Program to meet future science mission requirements. In 2015, a contract was awarded to Aerojet Rocketdyne, with subcontractor ZIN Technologies, to design, build and test two NEXT flight thrusters and two power processing units that would be available for use on future NASA science missions. Because an additional goal of this contract is to take steps towards offering NEXT as a commercialized system, it is called the NEXT-Commercial project, or NEXT-C. This paper reviews the capabilities of the NEXT-C system, status of the NEXT-C project, and the forward plan to build, test, and deliver flight hardware in support of future NASA and commercial applications. It also briefly addresses some of the potential applications that could utilize the hardware developed and built by the project.

  8. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  9. NASA Global Hawk: Project Overview and Future Plans

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Global Hawk Project became operational in 2009 and began support of Earth science in 2010. Thus far, the NASA Global Hawk has completed three Earth science campaigns and preparations are under way for two extensive multi-year campaigns. One of the most desired performance capabilities of the Global Hawk aircraft is very long endurance: the Global Hawk aircraft can remain airborne longer than almost all other jet-powered aircraft currently flying, and longer than all other aircraft available for airborne science use. This paper describes the NASA Global Hawk system, payload accommodations, concept of operations, and the scientific data-gathering campaigns.

  10. DOE/NASA Automotive Stirling Engine Project Overview 83

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.

    1983-01-01

    An overview of the DOE/NASA Automotive Stirling Engine Project is presented. The background and objectives of the project are reviewed. Project activities are described and technical progress and status are presented and assessed. Prospects for achieving the objective 30 percent fuel economy improvement are considered good. The key remaining technology issues are primarily related to life, reliability and cost, such as piston rod seals, and low cost heat exchanges. Previously announced in STAR as N83-27924

  11. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  12. NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  13. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1988-01-01

    This collection of papers and resources on aerospace management issues is inspired by a desire to benefit from the lessons learned from past projects and programs. Inherent in the NASA culture is a respect for divergent viewpoints and innovative ways of doing things. This publication presents a wide variety of views and opinions. Good management is enhanced when program and project managers examine the methods of veteran managers, considering the lessons they have learned and reflected on their own guiding principles.

  14. Demonstrating Robotic Autonomy in NASA's Intelligent Systems Project

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Smith, Ben; Estlin, Tara; Pedersen, Liam

    2004-01-01

    This paper will provide an overview of NASA's investments in autonomy during the past five years within the Intelligent Systems Project, with particular attention paid to investments that have resulted in mission infusion of autonomy technology, in particular, into the recent Mars Exploration Rover (MER) mission. The content of the paper will be divided into two primary topic areas: a technical overview of the component technologies developed under the program, and a programmatic overview of the history and organization of the NASA IS project itself, with a focus on describing the program elements related to autonomy and intelligent robotics. The paper will also provide an overview of the September 2004 autonomy demonstrations, including a discussion of objectives, organization, and preliminary results (to the extent they are available before the submission deadline).

  15. The USL NASA PC R and D project: Detailed specifications of objects

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1984-01-01

    The specifications for a number of projects which are to be implemented within the University of Southwestern Louisiana NASA PC R and D Project are discussed. The goals and objectives of the PC development project and the interrelationships of the various components are discussed. Six projects are described. They are a NASA/RECON simulator, a user interface to multiple remote information systems, evaluation of various personal computer systems, statistical analysis software development, interactive presentation system development, and the development of a distributed processing environment. The relationships of these projects to one another and to the goals and objectives of the overall project are discussed.

  16. NASA historical data book. Volume 2: Programs and projects 1958-1968

    NASA Technical Reports Server (NTRS)

    Ezell, Linda Neuman

    1988-01-01

    This is Volume 2, Programs and Projects 1958-1968, of a multi-volume series providing a 20-year compilation of summary statistical and other data descriptive of NASA's programs in aeronautics and manned and unmanned spaceflight. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies.

  17. NASA historical data book. Volume 3: Programs and projects 1969-1978

    NASA Technical Reports Server (NTRS)

    Ezell, Linda Neuman

    1988-01-01

    This is Volume 3, Programs and Projects 1969-1978, of a multi-volume series providing a 20-year compilation of summary statistical and other data descriptive of NASA's programs in aeronautics and manned and unmanned spaceflight. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies.

  18. NASA Space Radiation Risk Project: Overview and Recent Results

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  19. NASA's Aviation Safety and Modeling Project

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  20. The Mars Express/NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.

    2005-01-01

    An overview of the Mars Express/NASA Project at JPL is presented. The topics include: 1) Mars Express Mission Experiments and Investigators; 2) Mars Advanced Radar for Subsurface and Ionospheric Soundig (MARSIS) Overview; 3) MARSIS Experiment Overview; 4) Interoperability Concept; 5) Mars Express Science Operations; 6) Mars Express Schedule (2003-2007);

  1. The USL NASA PC R and D project: General specifications of objectives

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor)

    1984-01-01

    Given here are the general specifications of the objectives of the University of Southwestern Louisiana Data Base Management System (USL/DBMS) NASA PC R and D Project, a project initiated to address future R and D issues related to PC-based processing environments acquired pursuant to the NASA contract work; namely, the IBM PC/XT systems.

  2. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt; Rothgeb, Matt

    2011-01-01

    This slide presentation reviews the NASA project to select an alternative to hexavalent chrome in the aerospace industry. Included is a recent historic testing and research that the Agency has performed on (1) the external tank, (2) the shuttle orbiter, (3) the Shuttle Rocket Booster, and (4) the Space Shuttle Main Engine. Other related Technology Evaluation for Environmental Risk Mitigation (TEERM) projects are reviewed. The Phase I process of the project performed testing of alternatives the results are shown in a chart for different coating systems. International collaboration was also reviewed. Phase II involves further testing of pretreatment and primers for 6 and 12 months of exposure to conditions at Launch Pad and the beach. Further test were performed to characterize the life cycle corrosion of the space vehicles. A new task is described as a joint project with the Department of Defense to identify a Hex Chrome Free Coatings for Electronics.

  3. The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft

    NASA Image and Video Library

    2006-08-16

    The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  4. Strategic Project Management at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Lavelle, Jerome P.

    2000-01-01

    This paper describes Project Management at NASA's Kennedy Space Center (KSC) from a strategic perspective. It develops the historical context of the agency and center's strategic planning process and illustrates how now is the time for KSC to become a center which has excellence in project management. The author describes project management activities at the center and details observations on those efforts. Finally the author describes the Strategic Project Management Process Model as a conceptual model which could assist KSC in defining an appropriate project management process system at the center.

  5. Update on the NASA GRC Stirling Technology development project

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2001-02-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .

  6. Update on the NASA GRC Stirling Technology Development Project

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project.

  7. NASA Advanced Refrigerator/Freezer Technology Development Project Overview

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.

    1995-01-01

    NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

  8. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  9. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  10. Review of NASA's Hypersonic Research Engine Project

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1993-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a hypersonic research ramjet/scramjet engine for high performance and to flight-test the developed concept over the speed range from Mach 3 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research aircraft, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of engine models then became the focus of the project. Two axisymmetric full-scale engine models having 18-inch-diameter cowls were fabricated and tested: a structural model and a combustion/propulsion model. A brief historical review of the project with salient features, typical data results, and lessons learned is presented.

  11. NASA's University Program: Active projects, fiscal year 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Active university R and D activities funded by NASA which contribute to mission needs are documented. Technical rather than fiscal information is emphasized. A classification of government sponsored research is included. A cross index providing access to the project description is also included.

  12. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  13. ERDA-NASA wind energy project ready to involve users

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1976-01-01

    The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.

  14. NASA Project Develops Next-Generation Low-Emissions Combustor Technologies

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chang, Clarence T.; Herbon, John T.; Kramer, Stephen K.

    2013-01-01

    NASA's Environmentally Responsible Aviation (ERA) Project is working with industry to develop the fuel flexible combustor technologies for a new generation of low-emissions engine targeted for the 2020 timeframe. These new combustors will reduce nitrogen oxide (NOx) emissions to half of current state-of-the-art (SOA) combustors, while simultaneously reducing noise and fuel burn. The purpose of the low NOx fuel-flexible combustor research is to advance the Technology Readiness Level (TRL) and Integration Readiness Level (IRL) of a low NOx, fuel flexible combustor to the point where it can be integrated in the next generation of aircraft. To reduce project risk and optimize research benefit NASA chose to found two Phase 1 contracts. The first Phase 1 contracts went to engine manufactures and were awarded to: General Electric Company, and Pratt & Whitney Company. The second Phase 1 contracts went to fuel injector manufactures Goodrich Corporation, Parker Hannifin Corporation, and Woodward Fuel System Technology. In 2012, two sector combustors were tested at NASA's ASCR. The results indicated 75% NOx emission reduction below the 2004 CAEP/6 regulation level.

  15. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  16. The New Approach to Self-Achievement (N.A.S.A.) Project 2004

    NASA Technical Reports Server (NTRS)

    Thomas, Candace J.

    2004-01-01

    The New Approach to Self-Achievement Program is designed to target rising seventh, eighth, and ninth grade students who require assistance in refining their mathematical skills, science awareness and knowledge, and test taking strategies. During the six week duration of the program, students are challenged in these areas through the application of robotic and aeronautic projects which encourage the students to practically apply their mathematical and science awareness accordingly. The first three weeks of my tenure were designated to assisting Mrs. Tammy Allen in the preparation of the 2004 NASA Project. As her assistant, I was held accountable for organizing, filing, preparing, analyzing, and completing the applications for the NASA Project. Additionally, I constructed the apposite databases which contained imperative information which aided in the selection of our participants. During the latter portion of those three weeks, Mrs. Allen, various staff members, and I, interviewed the numerous first-time applicants of the NASA Project. Furthermore, I was assigned to contact the accepted applicants of the program and provide all necessary information for the initiation of the child into the NASA Project. During the six week duration of the program, I will be working as a Project Leader at the Lorain Middle School site located in Lorain, Oh, with Mr. Fondriest Fountain. Mr. Fountain and I Will work with the eighth and ninth grade students in constructing robots, in which the students are told are made for NASA research which is being conducted on the surface of planet Mars. The robots, which are built from LEGOS and programmed through RoboLab computer software, are prepared to complete assigned Missions such as running obstacle courses; plowing and retrieving LEGOS; and scanning surfaces for intense regions of light.

  17. NASA's Hypersonic Research Engine Project: A review

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1994-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a high-performance hypersonic research ramjet/scramjet engine for flight tests of the developed concept over the speed range of Mach 4 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research airplane, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of full-scale engine models then became the focus of the project. Two axisymmetric full-scale engine models, having 18-inch-diameter cowls, were fabricated and tested: a structural model and combustion/propulsion model. A brief historical review of the project, with salient features, typical data results, and lessons learned, is presented. An extensive number of documents were generated during the HRE Project and are listed.

  18. The MY NASA DATA Project: Tools and a Collaboration Space for Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-05-01

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is charged with serving a wide user community that is interested in its large data holdings in the areas of Aerosols, Clouds, Radiation Budget, and Tropospheric Chemistry. Most of the data holdings, however, are in large files with specialized data formats. The MY NASA DATA (mynasadata.larc.nasa.gov) project began in 2004, as part of the NASA Research, Education, and Applications Solutions Network (REASoN), in order to open this important resource to a broader community including K-12 education and citizen scientists. MY NASA DATA (short for Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs) consists of a web space that collects tools, lesson plans, and specially developed documentation to help the target audience more easily use the vast collection of NASA data about the Earth System. The core piece of the MY NASA DATA project is the creation of microsets (both static and custom) that make data easily accessible. The installation of a Live Access Server (LAS) greatly enhanced the ability for teachers, students, and citizen scientists to create and explore custom microsets of Earth System Science data. The LAS, which is an open source software tool using emerging data standards, also allows the MY NASA DATA team to make available data on other aspects of the Earth System from collaborating data centers. We are currently working with the Physical Oceanography DAAC at the Jet Propulsion Laboratory to bring in several parameters describing the ocean. In addition, MY NASA DATA serves as a central space for the K-12 community to share resources. The site already includes a dozen User-contributed lesson plans. This year we will be focusing on the Citizen Science portion of the site, and will be welcoming user-contributed project ideas, as well as reports of completed projects. An e-mentor network has also been created to involve a wider community in

  19. Louisiana NASA EPSCoR Project

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    2002-01-01

    In 1994, the National Aeronautics and Space Administration issued a Cooperative Agreement (CA) to the State of Louisiana, through the Louisiana Board of Regents (BOB), for the performance of scientific research under the Experimental Program to Stimulate Competitive Research (EPSCoR) Project. Originally constructed as a three-year program with an optional two-year follow on, this federal-state partnership culminated on 31 October 2001, including two CA extensions. The total value of the project reached $3.3M in NASA funding, matched by $2.75M in BOB funds, and supplemented by several million dollars in institutional contributions. Three Research Clusters comprised the state-wide research effort coupled with scientific/technical management and a teacher involvement component. The three research clusters addressed the Enterprises of Space Science, Earth Science and Aerospace Technology with research in High Energy Astrophysics, the Global Carbon Cycle, and Propulsion. Ten universities, over two dozen faculty, over 150 students and numerous support personnel were involved. All of the scientific and technical objectives were met or exceeded. In aggregate, the clusters generated about $18M in outside support, better than a 2:1 return on investment (better than 5:1 considering only the NASA investment). Moreover, two of the clusters have advanced to the level of applying for major NSF research center designation. This project was a trial of the model of building research infrastructure through mentoring. While not completely successful, the results at the smaller institutions were, none the less, positive. Faculty were engaged in major research and involved their students. Administrations improved their capabilities to handle grants and contracts. Faculty release time was granted, research space was provided and, in some cases, equipment was made available for the research. Some of the faculty at these schools have remained involved in research and/or formed

  20. NASA Design Projects at UC Berkeley for NASA's HEDS-UP Program

    NASA Astrophysics Data System (ADS)

    Kuznetz, Lawrence

    1998-01-01

    Missions to Mars have been a topic for study since the advent of the space age. But funding has been largely reserved for the unmanned probes such as Viking, Pathfinder and Global Surveyer. Financial and political constraints have relegated human missions, on the other hand, to backroom efforts such as the Space Exploration Initiative (SEI) of 1989-1990. With the new found enthusiasm from Pathfinder and the meteorite ALH84001, however, there is renewed interest in human exploration of Mars. This is manifest in the new Human Exploration and Development of Space (HEDS) program that NASA has recently initiated. This program, through its University Projects (HEDS-UP) office has taken the unusual step of soliciting creative solutions from universities. For its part in the HEDS-UP program, the University of California at Berkeley was asked to study the issues of Habitat design, Space Suits for Mars, Environmental Control and Life Support Systems, Countermeasures to Hypogravity and Crew Size/Mix. These topics were investigated as design projects in "Mars by 2012", an on-going class for undergraduates and graduate students. The methodology of study was deemed to be as important as the design projects themselves and for that we were asked to create an Interactive Design Environment. The Interactive Design Environment (IDE) is an electronic "office" that allows scientists and engineers, as well as other interested parties, to interact with and critique engineering designs as they progress. It usually takes the form of a website that creates a "virtual office" environment. That environment is a place where NASA and others can interact with and critique the university designs for potential inclusion in the Mars Design Reference Mission.

  1. A systems approach to the management of large projects: Review of NASA experience with societal implications

    NASA Technical Reports Server (NTRS)

    Vaccaro, M. J.

    1973-01-01

    The application of the NASA type management approach to achieve objectives in other fields is considered. The NASA management outlook and the influences of the NASA environment are discussed along with project organization and management, and applications to socio-economic projects.

  2. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  3. NASA In-Situ Resource Utilization Project-and Seals Challenges

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt; Linne, Diane

    2006-01-01

    A viewgraph presentation on NASA's In-Situ Resource Utilization Project and Seals Challenges is shown. The topics include: 1) What Are Space Resources?; 2) Space Resource Utilization for Exploration; 3) ISRU Enables Affordable, Sustainable & Flexible Exploration; 4) Propellant from the Moon Could Revolutionize Space Transportation; 5) NASA ISRU Capability Roadmap Study, 2005; 6) Timeline for ISRU Capability Implementation; 7) Lunar ISRU Implementation Approach; 8) ISRU Technical-to-Mission Capability Roadmap; 9) ISRU Resources & Products of Interest; and 10) Challenging Seals Requirements for ISRU.

  4. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; hide

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  5. NASA Small Business Innovation Research Program. Composite List of Projects, 1983 to 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA SBIR Composite List of Projects, 1983 to 1989, includes all projects that have been selected for support by the Small Business Innovation Research (SBIR) Program of NASA. The list describes 1232 Phase 1 and 510 Phase 2 contracts that had been awarded or were in negotiation for award in August 1990. The main body is organized alphabetically by name of the small businesses. Four indexes cross-reference the list. The objective of this listing is to provide information about the SBIR program to anyone concerned with NASA research and development activities.

  6. Academy Sharing Knowledge (ASK). The NASA Source for Project Management Magazine, Volume 11, March 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    APPL is a research-based organization that serves NASA program and project managers, as well as project teams, at every level of development. In 1997, APPL was created from an earlier program to underscore the importance that NASA places on project management and project teams through a wide variety of products and services, including knowledge sharing, classroom and online courses, career development guidance, performance support, university partnerships, and advanced technology tools. ASK Magazine grew out of APPL's Knowledge Sharing Initiative. The stories that appear in ASK are written by the 'best of the best' project managers, primarily from NASA, but also from other government agencies and industry. Contributors to this issue include: Teresa Bailey, a librarian at the Jet Propulsion Laboratory, Roy Malone, Deputy Director in the Safety and Mission Assurance (S&MA) Office at the NASA Marshall Space Flight Center (MSFC), W. Scott Cameron, Capital Systems Manager for the Food and Beverage Global Business Unit of Procter and Gamble, Ray Morgan, recent retiree as Vice President of AeroVironment, Inc., Marty Davis, Program Manager of the Geostationary Operational Environmental Satellite (GOES) at the NASA Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, Todd Post, editor of ASK Magazine, and works for EduTech Ltd. in Silver Spring, Maryland, Dr. Owen Gadeken, professor of Engineering Management at the Defense Acquisition University, Ken Schwer, currently the Project Manager of Solar Dynamics Observatory, Dr. Edward Hoffmwan, Director of the NASA Academy of Program and Project Leadership, Frank Snow, a member of the NASA Explorer Program at Goddard Space Flight Center since 1992, Dr. Alexander Laufer, Editor-in-Chief of ASK Magazine and a member of the Advisory Board of the NASA Academy of Program and Project Leadership, Judy Stokley, presently Air Force Program Executive Officer for Weapons in Washington, D.C. and Terry Little, Director of the Kinetic

  7. NASA's Atmospheric Effects of Aviation Project

    NASA Technical Reports Server (NTRS)

    Cofer, W. Randy, III; Anderson, Bruce E.; Connors, V. S.; Wey, C. C.; Sanders, T.; Winstead, E. L.; Pui, C.; Chen, Da-ren; Hagen, D. E.; Whitefield, P.

    2001-01-01

    During August 1-14, 1999, NASA's Atmospheric Effects of Aviation Project (AEAP) convened a workshop at the NASA Langley Research Center to try to determine why such a wide variation in aerosol emissions indices and chemical and physical properties has been reported by various independent AEAP-supported research teams trying to characterize the exhaust emissions of subsonic commercial aircraft. This workshop was divided into two phases, a laboratory phase and a field phase. The laboratory phase consisted of supplying known particle number densities (concentrations) and particle size distributions to a common manifold for the participating research teams to sample and analyze. The field phase was conducted on an aircraft run-up pad. Participating teams actually sampled aircraft exhaust generated by a Langley T-38 Talon aircraft at 1 and 9 m behind the engine at engine powers ranging from 48 to 100 percent. Results from the laboratory phase of this intercomparison workshop are reported in this paper.

  8. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder

  9. Technology transfer in New York City - The NASA/NYC Applications Project.

    NASA Technical Reports Server (NTRS)

    Karen, A.; Orrick, D.; Anuskiewicz, T.

    1973-01-01

    New York City faces many varied and complex problems ranging from truck hijacking to graffiti. In answer to a request from NYC officials NASA is sponsoring the efforts of a project aimed at applying aerospace-derived solutions to a series of city technical problems. An immediate result has been a pilot experiment to improve security in the City's schools. Other problem areas for NASA review have been selected from the Fire, Police and Air Resources Departments. The Project offers a significant example of a viable approach to the crucial process of bridging the communications gap between urban officials and technologists.

  10. NASA/Haughton-Mars Project 2006 Lunar Medical Contingency Simulation

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.

    2007-01-01

    A viewgraph presentation describing NASA's Haughton-Mars Project (HMP) medical requirements and lunar surface operations is shown. The topics onclude: 1) Mission Purpose/ Overview; 2) HMP as a Moon/Mars Analog; 3) Simulation objectives; 4) Discussion; and 5) Forward work.

  11. Designing and Developing a NASA Research Projects Knowledge Base and Implementing Knowledge Management and Discovery Techniques

    NASA Astrophysics Data System (ADS)

    Dabiru, L.; O'Hara, C. G.; Shaw, D.; Katragadda, S.; Anderson, D.; Kim, S.; Shrestha, B.; Aanstoos, J.; Frisbie, T.; Policelli, F.; Keblawi, N.

    2006-12-01

    The Research Project Knowledge Base (RPKB) is currently being designed and will be implemented in a manner that is fully compatible and interoperable with enterprise architecture tools developed to support NASA's Applied Sciences Program. Through user needs assessment, collaboration with Stennis Space Center, Goddard Space Flight Center, and NASA's DEVELOP Staff personnel insight to information needs for the RPKB were gathered from across NASA scientific communities of practice. To enable efficient, consistent, standard, structured, and managed data entry and research results compilation a prototype RPKB has been designed and fully integrated with the existing NASA Earth Science Systems Components database. The RPKB will compile research project and keyword information of relevance to the six major science focus areas, 12 national applications, and the Global Change Master Directory (GCMD). The RPKB will include information about projects awarded from NASA research solicitations, project investigator information, research publications, NASA data products employed, and model or decision support tools used or developed as well as new data product information. The RPKB will be developed in a multi-tier architecture that will include a SQL Server relational database backend, middleware, and front end client interfaces for data entry. The purpose of this project is to intelligently harvest the results of research sponsored by the NASA Applied Sciences Program and related research program results. We present various approaches for a wide spectrum of knowledge discovery of research results, publications, projects, etc. from the NASA Systems Components database and global information systems and show how this is implemented in SQL Server database. The application of knowledge discovery is useful for intelligent query answering and multiple-layered database construction. Using advanced EA tools such as the Earth Science Architecture Tool (ESAT), RPKB will enable NASA and

  12. Latest Changes to NASA's Laser Communication Relay Demonstration Project

    NASA Technical Reports Server (NTRS)

    Edwards, Bernard L.; Israel, David J.; Vithlani, Seema K.

    2018-01-01

    Over the last couple of years, NASA has been making changes to the Laser Communications Relay Demonstration Project (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). The changes made makes LCRD more like a future Earth relay system that has both high speed optical and radio frequency links. This will allow LCRD to demonstrate a more detailed concept of operations for a future operational mission critical Earth relay. LCRD is expected to launch in June 2019 and is expected to be followed a couple of years later with a prototype user terminal on the International Space Station. LCRD's architecture will allow it to serve as a testbed in space and this paper will provide an update of its planned capabilities and experiments.

  13. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  14. Monitoring the Mesoamerican Biological Corridor: A NASA/CCAD Cooperative Research Project

    NASA Technical Reports Server (NTRS)

    Sever, Thomas; Irwin, Daniel; Sader, Steven A.; Saatchi, Sassan

    2004-01-01

    To foster scientific cooperation under a Memorandum of Understanding between NASA and the Central American countries, the research project developed regional databases to monitor forest condition and environmental change throughout the region. Of particular interest is the Mesoamerican Biological Corridor (MBC), a chain of protected areas and proposed conservation areas that will link segments of natural habitats in Central America from the borders of northern Columbia to southern Mexico. The first and second year of the project focused on the development of regional satellite databases (JERS-IC, MODIS, and Landsat-TM), training of Central American cooperators and forest cover and change analysis. The three regional satellite mosaics were developed and distributed on CD-ROM to cooperators and regional outlets. Four regional remote sensing training courses were conducted in 3 countries including participants from all 7 Central American countries and Mexico. In year 3, regional forest change assessment in reference to Mesoamerican Biological Corridor was completed and land cover maps (from Landsat TM) were developed for 7 Landsat scenes and accuracy assessed. These maps are being used to support validation of MODIS forest/non forest maps and to examine forest fragmentation and forest cover change in selected study sites. A no-cost time extension (2003-2004) allowed the completion of an M.S. thesis by a Costa Rican student and preparation of manuscripts for future submission to peer-reviewed outlets. Proposals initiated at the end of the project have generated external funding from the U.S. Forest Service (to U. Maine), NASA-ESSF (Oregon State U.) and from USAID and EPA (to NASA-MSFC-GHCC) to test MODIS capabilities to detect forest change; conduct literature review on biomass estimation and carbon stocks and develop a regional remote sensing monitoring center in Central America. The success of the project has led to continued cooperation between NASA, other federal

  15. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  16. Integration of a NASA faculty fellowship project within an undergraduate engineering capstone design class

    NASA Astrophysics Data System (ADS)

    Carmen, C.

    2012-11-01

    The United States (US) National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) provides university faculty fellowships that prepare the faculty to implement engineering design class projects that possess the potential to contribute to NASA ESMD objectives. The goal of the ESMD is to develop new capabilities, support technologies and research that will enable sustained and affordable human and robotic space exploration. In order to create a workforce that will have the desire and skills necessary to achieve these goals, the NASA ESMD faculty fellowship program enables university faculty to work on specific projects at a NASA field center and then implement the project within their capstone engineering design class. This allows the senior - or final year - undergraduate engineering design students, the opportunity to develop critical design experience using methods and design tools specified within NASA's Systems Engineering (SE) Handbook. The faculty fellowship projects focus upon four specific areas critical to the future of space exploration: spacecraft, propulsion, lunar and planetary surface systems and ground operations. As the result of a 2010 fellowship, whereby faculty research was conducted at Marshall Space Flight Center (MSFC) in Huntsville, Alabama (AL), senior design students in the Mechanical and Aerospace Engineering (MAE) department at the University of Alabama in Huntsville (UAH) had the opportunity to complete senior design projects that pertained to current work conducted to support ESMD objectives. Specifically, the UAH MAE students utilized X-TOOLSS (eXploration Toolset for the Optimization Of Launch and Space Systems), an Evolutionary Computing (EC) design optimization software, as well as design, analyze, fabricate and test a lunar regolith burrowing device - referred to as the Lunar Wormbot (LW) - that is aimed at exploring and retrieving samples of lunar regolith. These two projects were

  17. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    NASA Technical Reports Server (NTRS)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  18. System Safety in Early Manned Space Program: A Case Study of NASA and Project Mercury

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick D.; Pitts, Donald

    2005-01-01

    This case study provides a review of National Aeronautics and Space Administration s (NASA's) involvement in system safety during research and evolution from air breathing to exo-atmospheric capable flight systems culminating in the successful Project Mercury. Although NASA has been philosophically committed to the principals of system safety, this case study points out that budget and manpower constraints-as well as a variety of internal and external pressures can jeopardize even a well-designed system safety program. This study begins with a review of the evolution and early years of NASA's rise as a project lead agency and ends with the lessons learned from Project Mercury.

  19. NASA Exercise Physiology and Countermeasures Project Overview

    NASA Technical Reports Server (NTRS)

    Loerch, Linda; Ploutz-Snyder, Lori

    2009-01-01

    Efficient exercise countermeasures are necessary to offset or minimize spaceflight-induced deconditioning and to maximize crew performance of mission tasks. These countermeasure protocols should use the fewest crew and vehicle resources. NASA s Exercise Physiology and Countermeasures (ExPC) Project works to identify, collect, interpret, and summarize evidence that results in effective exercise countermeasure protocols which protect crew health and performance during International Space Station (ISS) and future exploration-class missions. The ExPC and NASA s Human Research Program are sponsoring multiple studies to evaluate and improve the efficacy of spaceflight exercise countermeasures. First, the Project will measure maximal aerobic capacity (VO2max) during cycle ergometry before, during, and after ISS missions. Second, the Project is sponsoring an evaluation of a new prototype harness that offers improved comfort and increased loading during treadmill operations. Third, the Functional Tasks Test protocol will map performance of anticipated lunar mission tasks with physiologic systems before and after short and long-duration spaceflight, to target system contributions and the tailoring of exercise protocols to maximize performance. In addition to these studies that are actively enrolling crewmember participants, the ExPC is planning new studies that include an evaluation of a higher-intensity/lower-volume exercise countermeasure protocol aboard the ISS using the Advanced Resistive Exercise Device and second-generation treadmill, studies that evaluate bone loading during spaceflight exercise, and ground-based studies that focus on fitness for duty standards required to complete lunar mission tasks and for which exercise protocols need to protect. Summaries of these current and future studies and strategies will be provided to international colleagues for knowledge sharing and possible collaboration.

  20. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.

    NASA Astrophysics Data System (ADS)

    Coughlan, J. C.

    2005-12-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.

  1. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.

  2. Electric Propulsion Requirements and Mission Analysis Under NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.

    2007-01-01

    The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.

  3. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  4. SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.

    2004-01-01

    SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.

  5. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 7:] The NASA/DOD Aerospace Knowledge Diffusion Research Project: The DOD perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    This project will provide descriptive and analytical data regarding the flow of STI at the individual, organizational, national, and international levels. It will examine both the channels used to communicate information and the social system of the aerospace knowledge diffusion process. Results of the project should provide useful information to R and D managers, information managers, and others concerned with improving access to and use of STI. Objectives include: (1) understanding the aerospace knowledge diffusion process at the individual, organizational, and national levels, placing particular emphasis on the diffusion of Federally funded aerospace STI; (2) understanding the international aerospace knowledge diffusion process at the individual and organizational levels, placing particular emphasis on the systems used to diffuse the results of Federally funded aerospace STI; (3) understanding the roles NASA/DoD technical report and aerospace librarians play in the transfer and use of knowledge derived from Federally funded aerospace R and D; (4) achieving recognition and acceptance within NASA, DoD and throughout the aerospace community that STI is a valuable strategic resource for innovation, problem solving, and productivity; and (5) providing results that can be used to optimize the effectiveness and efficiency of the Federal STI aerospace transfer system and exchange mechanism.

  6. NASA newsletters for the Weber Student Shuttle Involvement Project

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III

    1988-01-01

    Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.

  7. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  8. NASA atmospheric effects of aviation projects: Status and plans

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Thompson, Anne M.; Stolarski, Richard S.

    1994-01-01

    NASA's Atmospheric Effects of Aviation Project is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. Issues addressed include predicted ozone changes and climatic impact, and related uncertainties. A primary goal is to assist assessments of United Nations scientific organizations and, hence, consideration of emission standards by the International Civil Aviation Organization. Project focus is on simulation of atmospheric processes by computer models, but studies of aircraft operations, laboratory studies, and remote and in situ observations of chemical, dynamic, and radiative processes are also included.

  9. Use of NASA Satellite Data in Aiding Mississippi Barrier Island Restoration Projects

    NASA Technical Reports Server (NTRS)

    Giardino, Marco; Spruce, Joseph; Kalcic, Maria; Fletcher, Rose

    2009-01-01

    This presentation discusses a NASA Stennis Space Center project in which NASA-supported satellite and aerial data is being used to aid state and federal agencies in restoring the Mississippi barrier islands. Led by the Applied Science and Technology Project Office (ASTPO), this project will produce geospatial information products from multiple NASA-supported data sources, including Landsat, ASTER, and MODIS satellite data as well as ATLAS multispectral, CAMS multispectral, AVIRIS hyperspectral, EAARL, and other aerial data. Project objectives include the development and testing of a regional sediment transport model and the monitoring of barrier island restoration efforts through remote sensing. Barrier islands provide invaluable benefits to the State of Mississippi, including buffering the mainland from storm surge impacts, providing habitats for valuable wildlife and fisheries habitat, offering accessible recreational opportunities, and preserving natural environments for educating the public about coastal ecosystems and cultural resources. Unfortunately, these highly valued natural areas are prone to damage from hurricanes. For example, Hurricane Camille in 1969 split Ship Island into East and West Ship Island. Hurricane Georges in 1998 caused additional land loss for the two Ship Islands. More recently, Hurricanes Ivan, Katrina, Rita, Gustav, and Ike impacted the Mississippi barrier islands. In particular, Hurricane Katrina caused major damage to island vegetation and landforms, killing island forest overstories, overwashing entire islands, and causing widespread erosion. In response, multiple state and federal agencies are working to restore damaged components of these barrier islands. Much of this work is being implemented through federally funded Coastal Impact Assessment and Mississippi Coastal Improvement programs. One restoration component involves the reestablishment of the island footprints to that in 1969. Our project will employ NASA remote sensing

  10. Issues in NASA Program and Project Management:: A Collection of Papers on Aerospace Management Issues (Supplement 11)

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1996-01-01

    Papers address the following topics: NASA's project management development process; Better decisions through structural analysis; NASA's commercial technology management system; Today's management techniques and tools; Program control in NASA - needs and opportunities; and Resources for NASA managers.

  11. Integrated Risk Management Within NASA Programs/Projects

    NASA Technical Reports Server (NTRS)

    Connley, Warren; Rad, Adrian; Botzum, Stephen

    2004-01-01

    As NASA Project Risk Management activities continue to evolve, the need to successfully integrate risk management processes across the life cycle, between functional disciplines, stakeholders, various management policies, and within cost, schedule and performance requirements/constraints become more evident and important. Today's programs and projects are complex undertakings that include a myriad of processes, tools, techniques, management arrangements and other variables all of which must function together in order to achieve mission success. The perception and impact of risk may vary significantly among stakeholders and may influence decisions that may have unintended consequences on the project during a future phase of the life cycle. In these cases, risks may be unintentionally and/or arbitrarily transferred to others without the benefit of a comprehensive systemic risk assessment. Integrating risk across people, processes, and project requirements/constraints serves to enhance decisions, strengthen communication pathways, and reinforce the ability of the project team to identify and manage risks across the broad spectrum of project management responsibilities. The ability to identify risks in all areas of project management increases the likelihood a project will identify significant issues before they become problems and allows projects to make effective and efficient use of shrinking resources. By getting a total team integrated risk effort, applying a disciplined and rigorous process, along with understanding project requirements/constraints provides the opportunity for more effective risk management. Applying an integrated approach to risk management makes it possible to do a better job at balancing safety, cost, schedule, operational performance and other elements of risk. This paper will examine how people, processes, and project requirements/constraints can be integrated across the project lifecycle for better risk management and ultimately improve the

  12. NASA's Morphing Project Research Summaries in Fiscal Year 2002

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Waszak, Martin R.

    2005-01-01

    The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.

  13. VLBI2010 in NASA's Space Geodesy Project

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  14. NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability

    NASA Astrophysics Data System (ADS)

    Dankanich, John

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.

  15. Implementation of Risk Management in NASA's CEV Project- Ensuring Mission Success

    NASA Astrophysics Data System (ADS)

    Perera, Jeevan; Holsomback, Jerry D.

    2005-12-01

    Most project managers know that Risk Management (RM) is essential to good project management. At NASA, standards and procedures to manage risk through a tiered approach have been developed - from the global agency-wide requirements down to a program or project's implementation. The basic methodology for NASA's risk management strategy includes processes to identify, analyze, plan, track, control, communicate and document risks. The identification, characterization, mitigation plan, and mitigation responsibilities associated with specific risks are documented to help communicate, manage, and effectuate appropriate closure. This approach helps to ensure more consistent documentation and assessment and provides a means of archiving lessons learned for future identification or mitigation activities.A new risk database and management tool was developed by NASA in 2002 and since has been used successfully to communicate, document and manage a number of diverse risks for the International Space Station, Space Shuttle, and several other NASA projects and programs including at the Johnson Space Center. Organizations use this database application to effectively manage and track each risk and gain insight into impacts from other organization's viewpoint to develop integrated solutions. Schedule, cost, technical and safety issues are tracked in detail through this system.Risks are tagged within the system to ensure proper review, coordination and management at the necessary management level. The database is intended as a day-to- day tool for organizations to manage their risks and elevate those issues that need coordination from above. Each risk is assigned to a managing organization and a specific risk owner who generates mitigation plans as appropriate. In essence, the risk owner is responsible for shepherding the risk through closure. The individual that identifies a new risk does not necessarily get assigned as the risk owner. Whoever is in the best position to effectuate

  16. NASA tire/runway friction projects

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  17. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  18. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... obtain public comments on construction and operation of the wind farm. The purpose of constructing and...

  19. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  20. NASA Hybrid Reflectometer Project

    NASA Technical Reports Server (NTRS)

    Lynch, Dana; Mancini, Ron (Technical Monitor)

    2002-01-01

    Time-domain and frequency-domain reflectometry have been used for about forty years to locate opens and shorts in cables. Interpretation of reflectometry data is as much art as science. Is there information in the data that is being missed? Can the reflectometers be improved to allow us to detect and locate defects in cables that are not outright shorts or opens? The Hybrid Reflectometer Project was begun this year at NASA Ames Research Center, initially to model wire physics, simulating time-domain reflectometry (TDR) signals in those models and validating the models against actual TDR data taken on testbed cables. Theoretical models of reflectometry in wires will give us an understanding of the merits and limits of these techniques and will guide the application of a proposed hybrid reflectometer with the aim of enhancing reflectometer sensitivity to the point that wire defects can be detected. We will point out efforts by some other researchers to apply wire physics models to the problem of defect detection in wires and we will describe our own initial efforts to create wire physics models and report on testbed validation of the TDR simulations.

  1. Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.

    2012-01-01

    NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.

  2. NASA Computational Case Study SAR Data Processing: Ground-Range Projection

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Rincon, Rafael

    2013-01-01

    Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.

  3. NASA's Quiet Aircraft Technology Project

    NASA Technical Reports Server (NTRS)

    Whitfield, Charlotte E.

    2004-01-01

    NASA's Quiet Aircraft Technology Project is developing physics-based understanding, models and concepts to discover and realize technology that will, when implemented, achieve the goals of a reduction of one-half in perceived community noise (relative to 1997) by 2007 and a further one-half in the far term. Noise sources generated by both the engine and the airframe are considered, and the effects of engine/airframe integration are accounted for through the propulsion airframe aeroacoustics element. Assessments of the contribution of individual source noise reductions to the reduction in community noise are developed to guide the work and the development of new tools for evaluation of unconventional aircraft is underway. Life in the real world is taken into account with the development of more accurate airport noise models and flight guidance methodology, and in addition, technology is being developed that will further reduce interior noise at current weight levels or enable the use of lighter-weight structures at current noise levels.

  4. NASA GRC Technology Development Project for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.

  5. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  6. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    For the past 5 years, the MY NASA DATA (MND) project at NASA Langley has developed and adapted tools and materials aimed at enabling student access to real NASA Earth science satellite data. These include web visualization tools including Google Earth capabilities, but also GPS and graphing calculator exercises, Excel spreadsheet analyses, and more. The project team, NASA scientists, and over 80 classroom science teachers from around the country, have created over 85 lesson plans and science fair project ideas that demonstrate NASA satellite data use in the classroom. With over 150 Earth science parameters to choose from, the MND Live Access Server enables scientific inquiry on numerous interconnected Earth and environmental science topics about the Earth system. Teachers involved in the project report a number of benefits, including networking with other teachers nationwide who emphasize data collection and analysis in the classroom, as well as learning about other NASA resources and programs for educators. They also indicate that the MND website enhances the inquiry process and facilitates the formation of testable questions by students (a task that is typically difficult for students to do). MND makes science come alive for students because it allows them to develop their own questions using the same data scientists use. MND also provides educators with a rich venue for science practice skills, which are often overlooked in traditional curricula as teachers concentrate on state and national standards. A teacher in a disadvantaged school reports that her students are not exposed to many educational experiences outside the classroom. MND allows inner city students to be a part of NASA directly. They are able to use the same information that scientists are using and this gives them inspiration. In all classrooms, the MND microsets move students out of their local area to explore global data and then zoom back into their homes realizing that they are a part of the

  7. Systems Analysis Approach for the NASA Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Kimmel, William M.

    2011-01-01

    This conference paper describes the current systems analysis approach being implemented for the Environmentally Responsible Aviation Project within the Integrated Systems Research Program under the NASA Aeronautics Research Mission Directorate. The scope and purpose of these systems studies are introduced followed by a methodology overview. The approach involves both top-down and bottoms-up components to provide NASA s stakeholders with a rationale for the prioritization and tracking of a portfolio of technologies which enable the future fleet of aircraft to operate with a simultaneous reduction of aviation noise, emissions and fuel-burn impacts to our environment. Examples of key current results and relevant decision support conclusions are presented along with a forecast of the planned analyses to follow.

  8. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  9. NASA Overview

    NASA Technical Reports Server (NTRS)

    Sheffner, Edwin J.

    2007-01-01

    The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.

  10. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  11. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  12. NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Anderson, David J.

    2008-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  13. Applying Formal Methods to NASA Projects: Transition from Research to Practice

    NASA Technical Reports Server (NTRS)

    Othon, Bill

    2009-01-01

    NASA project managers attempt to manage risk by relying on mature, well-understood process and technology when designing spacecraft. In the case of crewed systems, the margin for error is even tighter and leads to risk aversion. But as we look to future missions to the Moon and Mars, the complexity of the systems will increase as the spacecraft and crew work together with less reliance on Earth-based support. NASA will be forced to look for new ways to do business. Formal methods technologies can help NASA develop complex but cost effective spacecraft in many domains, including requirements and design, software development and inspection, and verification and validation of vehicle subsystems. To realize these gains, the technologies must be matured and field-tested so that they are proven when needed. During this discussion, current activities used to evaluate FM technologies for Orion spacecraft design will be reviewed. Also, suggestions will be made to demonstrate value to current designers, and mature the technology for eventual use in safety-critical NASA missions.

  14. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    NASA Technical Reports Server (NTRS)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  15. NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business

  16. Energy Remote Sensing Applications Projects at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Likens, W. C.; Mouat, D. A.

    1982-01-01

    The NASA Ames Research Center is active in energy projects primarily in the role of providing assistance to users in the solution of a number of problems related to energy. Data bases were produced which can be used, in combination with other sources of information, to solve spatially related energy problems. Six project activities at Ames are described which relate to energy and remote sensing. Two projects involve power demand forecasting and estimations using remote sensing and geographic information systems; two others involve transmission line routing and corridor analysis; one involves a synfuel user needs assessment through remote sensing; and the sixth involves the siting of energy facilities.

  17. NASA Countermeasures Evaluation and Validation Project

    NASA Technical Reports Server (NTRS)

    Lundquist, Charlie M.; Paloski, William H. (Technical Monitor)

    2000-01-01

    To support its ISS and exploration class mission objectives, NASA has developed a Countermeasure Evaluation and Validation Project (CEVP). The goal of this project is to evaluate and validate the optimal complement of countermeasures required to maintain astronaut health, safety, and functional ability during and after short- and long-duration space flight missions. The CEVP is the final element of the process in which ideas and concepts emerging from basic research evolve into operational countermeasures. The CEVP is accomplishing these objectives by conducting operational/clinical research to evaluate and validate countermeasures to mitigate these maladaptive responses. Evaluation is accomplished by testing in space flight analog facilities, and validation is accomplished by space flight testing. Both will utilize a standardized complement of integrated physiological and psychological tests, termed the Integrated Testing Regimen (ITR) to examine candidate countermeasure efficacy and intersystem effects. The CEVP emphasis is currently placed on validating the initial complement of ISS countermeasures targeting bone, muscle, and aerobic fitness; followed by countermeasures for neurological, psychological, immunological, nutrition and metabolism, and radiation risks associated with space flight. This presentation will review the processes, plans, and procedures that will enable CEVP to play a vital role in transitioning promising research results into operational countermeasures necessary to maintain crew health and performance during long duration space flight.

  18. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  19. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  20. An Overview Of NASA's Solar Sail Propulsion Project

    NASA Technical Reports Server (NTRS)

    Garbe, Gregory; Montgomery, Edward E., IV

    2003-01-01

    Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.

  1. NASA Scientific Data Purchase Project: From Collection to User

    NASA Technical Reports Server (NTRS)

    Nicholson, Lamar; Policelli, Fritz; Fletcher, Rose

    2002-01-01

    NASA's Scientific Data Purchase (SDP) project is currently a $70 million operation managed by the Earth Science Applications Directorate at Stennis Space Center. The SDP project was developed in 1997 to purchase scientific data from commercial sources for distribution to NASA Earth science researchers. Our current data holdings include 8TB of remote sensing imagery consisting of 18 products from 4 companies. Our anticipated data volume is 60 TB by 2004, and we will be receiving new data products from several additional companies. Our current system capacity is 24 TB, expandable to 89 TB. Operations include tasking of new data collections, archive ordering, shipment verification, data validation, distribution, metrics, finances, customer feedback, and technical support. The program has been included in the Stennis Space Center Commercial Remote Sensing ISO 9001 registration since its inception. Our operational system includes automatic quality control checks on data received (with MatLab analysis); internally developed, custom Web-based interfaces that tie into commercial-off-the-shelf software; and an integrated relational database that links and tracks all data through operations. We've distributed nearly 1500 datasets, and almost 18,000 data files have been downloaded from our public web site; on a 10-point scale, our customer satisfaction index is 8.32 at a 23% response level. More information about the SDP is available on our Web site.

  2. NASA/DOE automotive Stirling engine project: Overview 1986

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  3. DOE/NASA automotive Stirling engine project - Overview 86

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100 hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  4. Annotated directory of US Government information system projects of potential interest to NASA/SSPO

    NASA Technical Reports Server (NTRS)

    Legrand, Sue

    1988-01-01

    The purpose of this research activity was to develop a list for NASA of major U.S. government information systems contacts who are able to cooperate with NASA on technical interchange. The list contains the names of appropriate managers involved in major information system projects, U.S. government office officials, and their hierarchy up to the highest officials whose major responsibilities include government information systems development.

  5. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  6. Overview of the NASA Dryden Flight Research Facility aeronautical flight projects

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    1992-01-01

    Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

  7. The NASA/DOD aerospace knowledge diffusion research project: A research agenda

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The project has both immediate and long term purposes. In the first instance it provides a practical and pragmatic basis for understanding how the results of NASA/DoD research diffuse into the aerospace R and D process. Over the long term it provides an empirical basis for understanding the aerospace knowledge diffusion process itself, and its implications at the individual, organizational, national, and international levels. The project is studying the major barriers to effective knowledge diffusion. This project will provide descriptive and analytical data regarding the flow of scientific and technical information (STI). It will examine both channels used to communicate information and the social system of the aerospace knowledge diffusion process.

  8. Creating a Rackspace and NASA Nebula compatible cloud using the OpenStack project (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R.

    2010-12-01

    NASA and Rackspace have both provided technology to the OpenStack that allows anyone to create a private Infrastructure as a Service (IaaS) cloud using open source software and commodity hardware. OpenStack is designed and developed completely in the open and with an open governance process. NASA donated Nova, which powers the compute portion of NASA Nebula Cloud Computing Platform, and Rackspace donated Swift, which powers Rackspace Cloud Files. The project is now in continuous development by NASA, Rackspace, and hundreds of other participants. When you create a private cloud using Openstack, you will have the ability to easily interact with your private cloud, a government cloud, and an ecosystem of public cloud providers, using the same API.

  9. Structures and Design Phase I Summary for the NASA Composite Cryotank Technology Demonstration Project

    NASA Technical Reports Server (NTRS)

    Johnson, Ted; Sleight, David W.; Martin, Robert A.

    2013-01-01

    A description of the Phase I structures and design work of the Composite Cryotank Technology Demonstration (CCTD) Project is in this paper. The goal of the CCTD Project in the Game Changing Development (GCD) Program is to design and build a composite liquid-hydrogen cryogenic tank that can save 30% in weight and 25% in cost compared to state-of-the-art aluminum metallic cryogenic tank technology when the wetted composite skin wall is at an allowable strain of 5000 in/in. Three Industry teams developed composite cryogenic tank concepts that are compared for weight to an aluminum-lithium (Al-Li) cryogenic tank designed by NASA in Phase I of the CCTD Project. The requirements used to design all of the cryogenic tanks in Phase I will be discussed and the resulting designs, analyses, and weight of the concepts developed by NASA and Industry will be reviewed and compared.

  10. Developing Young Researchers: 15 Years of Authentic Science Experiences for K-12 with NASA's S'COOL Project

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Crecelius, S.; Rogerson, T.; Lewis, P. M.; Moore, S.; Madigan, J. J.; Deller, C.; Taylor, J.

    2012-12-01

    In late 1996, members of the Atmospheric Science Directorate at NASA's Langley Research Center decided that there had to be a better way to share the excitement of our research than black and white, text-heavy Fact Sheets. We invited a group of local teachers to a half-day session on Center to help guide an improved approach. We suggested a variety of approaches to them, and asked for feedback. They were eager for anything other than black and white Fact Sheets! Fortunately, one local middle school science teacher took us up on the offer to stick around and talk over lunch. In that conversation, she said that anything that would connect the science her kids studied in the classroom to the outside world - especially to NASA! - would be very motivating to her students. From that conversation was born the Students' Cloud Observations On-Line (S'COOL Project), now a nearly 16-year experiment in K-12 science, technology, engineering, and math (STEM) engagement. S'COOL is the Education and Public Outreach (EPO) arm of the Clouds and the Earth's Radiant Energy System (CERES) project, and involves K-12 students as a source of ground truth for satellite cloud retrievals. It was designed from the beginning as a 2-way project, with communication of information from the students to NASA, but also from NASA back to the students. With technology evolution since the project began, we have continued to enhance this focus on 2-way interaction. S'COOL involves students with observation skills, math skills (to compute cloud cover from multiple observers or convert units), geography skills (locating their school on a map and comparing to satellite imagery), and exposes them to cutting edge engineering in the form of a series of NASA satellites. As a priority Earth Observing Instrument, CERES currently flies on Terra, Aqua and NPP, with an additional instrument in development for JPSS. Students are involved in occasional Intensive Observing Periods (as with the launch of NPP), and are

  11. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  12. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  13. NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal

    Atmospheric Science Data Center

    2018-03-01

    The Prediction Of Worldwide Energy Resource (POWER) Project facilitates access to NASA's satellite and modeling analysis for Renewable Energy, Sustainable Buildings and Agroclimatology applications.  A   new ...

  14. USL/DBMS NASA/PC R and D project system testing standards

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kavi, Srinu; Moreau, Dennis R.; Yan, Lin

    1984-01-01

    A set of system testing standards to be used in the development of all C software within the NASA/PC Research and Development Project is established. Testing will be considered in two phases: the program testing phase and the system testing phase. The objective of these standards is to provide guidelines for the planning and conduct of program and software system testing.

  15. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    NASA Technical Reports Server (NTRS)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  16. NASA's In-Situ Resource Utilization Project: Current Accomplishments and Exciting Future Plans

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Sanders, Gerald B.; Sacksteder, Kurt R.

    2010-01-01

    The utilization of Space resources has been identified in publications for over 40 years for its potential as a "game changing" technology for the human exploration of Space. It is called "game changing" because of the mass leverage possible when local resources at the exploration destination arc used to reduce or even eliminate resources that are brought from the Earth. NASA, under the Exploration Technology Development Program has made significant investments in the development of Space resource utilization technologies as a part of the In-Situ Resource Utilization (ISRU) project. Over the last four years, the ISRU project has taken what was essentially an academic topic with lots of experimentation but little engineering and produced near-full-scale systems that have been demonstrated. In 2008 & again in early 2010, systems that could produce oxygen from lunar soils (or their terrestrial analogs) were tested at a lunar analog site on a volcano in Hawaii. These demonstrations included collaborations with International Partners that made significant contributions to the tests. The proposed federal budget for Fiscal Year 2011 encourages the continued development and demonstration of ISRU. However it goes beyond what the project is currently doing and directs that the scope of the project be expanded to cover destinations throughout the inner solar system with the potential for night demonstrations. This paper will briefly cover the past accomplishments of the ISRU project then move to a di scussion of the plans for the project's future as NASA moves to explore a new paradigm for Space Exploration that includes orbital fuel depots and even refueling on other planetary bodies in the solar system.

  17. NASA Human Health and Performance Center: Open innovation successes and collaborative projects

    NASA Astrophysics Data System (ADS)

    Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-11-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, setting the course for development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the successful execution of the strategy, driving organizational change through open innovation efforts and collaborative projects, including efforts of the NASA Human Health and Performance Center (NHHPC).

  18. NASA Ames DEVELOP Interns: Helping the Western United States Manage Natural Resources One Project at a Time

    NASA Technical Reports Server (NTRS)

    Justice, Erin; Newcomer, Michelle

    2010-01-01

    The western half of the United States is made up of a number of diverse ecosystems ranging from arid desert to coastal wetlands and rugged forests. Every summer for the past 7 years students ranging from high school to graduate level gather at NASA Ames Research Center (ARC) as part of the DEVELOP Internship Program. Under the guidance of Jay Skiles [Ames Research Center (ARC) - Ames DEVELOP Manager] and Cindy Schmidt [ARC/San Jose State University Ames DEVELOP Coordinator] they work as a team on projects exploring topics including: invasive species, carbon flux, wetland restoration, air quality monitoring, storm visualizations, and forest fires. The study areas for these projects have been in Washington, Utah, Oregon, Nevada, Hawaii, Alaska and California. Interns combine data from NASA and partner satellites with models and in situ measurements to complete prototype projects demonstrating how NASA data and resources can help communities tackle their Earth Science related problems.

  19. NASA Dryden Status

    NASA Technical Reports Server (NTRS)

    Jacobson, Steve R.

    2009-01-01

    This slide presentation reviews several projects that NASA Dryden personnel are involved with: Integrated Resilient Aircraft Controls Project (IRAC), NASA G-III Research Aircraft, X-48B Blended Wing Body aircraft, Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Orion CEV Launch Abort Systems Tests.

  20. NASA GRC UAS Project: Communications Modeling and Simulation Status

    NASA Technical Reports Server (NTRS)

    Kubat, Greg

    2013-01-01

    The integration of Unmanned Aircraft Systems (UAS) in the National Airspace represents new operational concepts required in civil aviation. These new concepts are evolving as the nation moves toward the Next Generation Air Transportation System (NextGen) under the leadership of the Joint Planning and Development Office (JPDO), and through ongoing work by the Federal Aviation Administration (FAA). The desire and ability to fly UAS in the National Air Space (NAS) in the near term has increased dramatically, and this multi-agency effort to develop and implement a national plan to successfully address the challenges of UAS access to the NAS in a safe and timely manner is well underway. As part of the effort to integrate UAS in the National Airspace, NASA Glenn Research Center is currently involved with providing research into Communications systems and Communication system operations in order to assist with developing requirements for this implementation. In order to provide data and information regarding communication systems performance that will be necessary, NASA GRC is tasked with developing and executing plans for simulations of candidate future UAS command and control communications, in line with architectures and communications technologies being developed and/or proposed by NASA and relevant aviation organizations (in particular, RTCA SC-203). The simulations and related analyses will provide insight into the ability of proposed communications technologies and system architectures to enable safe operation of UAS, meeting UAS in the NAS project goals (including performance requirements, scalability, and interoperability), and ultimately leading to a determination of the ability of NextGen communication systems to accommodate UAS. This presentation, compiled by the NASA GRC team, will provide a view of the overall planned simulation effort and objectives, a description of the simulation concept and status of the design and development that has occurred to date.

  1. Ada (trademark) projects at NASA. Runtime environment issues and recommendations

    NASA Technical Reports Server (NTRS)

    Roy, Daniel M.; Wilke, Randall W.

    1988-01-01

    Ada practitioners should use this document to discuss and establish common short term requirements for Ada runtime environments. The major current Ada runtime environment issues are identified through the analysis of some of the Ada efforts at NASA and other research centers. The runtime environment characteristics of major compilers are compared while alternate runtime implementations are reviewed. Modifications and extensions to the Ada Language Reference Manual to address some of these runtime issues are proposed. Three classes of projects focusing on the most critical runtime features of Ada are recommended, including a range of immediately feasible full scale Ada development projects. Also, a list of runtime features and procurement issues is proposed for consideration by the vendors, contractors and the government.

  2. Hyperspectral Technology Transfer to the US Department of Interior: Summary of Results of the NASA/DOI Hyperspectral Technology Transfer Project

    NASA Technical Reports Server (NTRS)

    Root, Ralph; Wickland, Diane

    2001-01-01

    In 1997 the Office of Biological Informatics and Outreach (OBIO), Biological Resources Division, US Geological Survey and NASA, Office of Earth Science (OES), initiated a coordinated effort for applying Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data and analysis, as a technology transfer project, to critical DOI environmental issues in four study sites throughout the United States. This work was accomplished by four US Department of the Interior (DOI) study teams with support from NASA/OES principal investigators and the Office of Earth Science programs. The studies, including personnel, objectives, background, project plans, and milestones were documented in a project website at . This report summarizes the final outcomes of the project, detailing accomplishments, lessons learned, and benefits realized to NASA, the US Geological Survey, and the participating DOI bureaus.

  3. The NASA Environmentally Responsible Aviation Project/General Electric Open Rotor Test Campaign

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale

    2013-01-01

    The Open Rotor is a modern version of the UnDucted Fan (UDF) that was flight tested in the late 1980's through a partnership between NASA and General Electric (GE). Tests were conducted in the 9'x15' Low Speed Wind Tunnel and the 8'x6' Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic and acoustic data were obtained for takeoff, approach and cruise simulations. GE was the primary partner, but other organizations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. This test campaign provided the acoustic and performance characteristics for modern open rotor blades designs." NASA and GE conducted joint systems analysis to evaluate how well new blade designs would perform on a B737 class aircraft, and compared the results to an advanced higher bypass ratio turbofan." Acoustic shielding experiments were performed at NASA GRC and Boeing LSAF facilities to provide data for noise estimates of unconventional aircraft configurations with Open Rotor propulsion systems." The work was sponsored by NASA's aeronautics programs, including the Subsonic Fixed Wing (SFW) and the Environmentally Responsible Aviation (ERA) projects."

  4. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  6. The NASA Smart Probe Project for real-time multiple microsensor tissue recognition

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.; Mah, Robert W.

    2003-01-01

    BACKGROUND: Remote surgery requires automated sensors, effectors and sensor-effector communication. The NASA Smart Probe Project has focused on the sensor aspect. METHODS: The NASA Smart Probe uses neural networks and data from multiple microsensors for a unique tissue signature in real time. Animal and human trials use several probe configurations: (1) 8-microsensor probe (2.5 mm in diameter) for rodent studies (normal and subcutaneous mammary tumor tissues), and (2) 21-gauge needle probe with 3 spectroscopic fibers and an impedance microelectrode for breast cancer diagnosis in humans. Multisensor data are collected in real time (update 100 times/s) using PCs. RESULTS: Human data (collected by NASA licensee BioLuminate) from 15 women undergoing breast biopsy distinguished normal tissue from both benign tumors and breast carcinoma. Tumor margins and necrosis are rapidly detected. CONCLUSION: Real-time tissue identification is achievable. Potential applications, including probes incorporating nanoelectrode arrays, are presented. Copyright 2003 S. Karger AG, Basel.

  7. Development of the NASA Digital Astronaut Project Muscle Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.

    2015-01-01

    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.

  8. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  9. NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal

    Atmospheric Science Data Center

    2018-03-16

    NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal ... current POWER home page. The new POWER will include improved solar and meteorological data with all parameters available on a 0.5-degree ...

  10. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  11. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  12. Working at NASA

    NASA Technical Reports Server (NTRS)

    Harding, Adam

    2010-01-01

    This slide presentation reviews the author's educational and work background prior to working at NASA. It then presents an overview of NASA Dryden, a brief review of the author's projects while working at NASA, and some closing thoughts.

  13. NASA Project Constellation Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2005-01-01

    NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.

  14. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  15. Realizing NASA's Goal of Societal Benefits From Earth Observations in Mesoamerica Through the SERVIR Project

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Irwin, D.; Sever, T.; Graves, S.

    2006-12-01

    One of the goals of NASA's Applied Sciences Program is to manifest societal benefits from the vast store of Earth Observations through partnerships with public, private and academic organizations. The SERVIR project represents an early success toward this goal. By combining Earth Observations from NASA missions, results from environmental models and decision support tools from its partners the SERVIR project has produced an integrated systems solution that is yielding societal benefits for the region of Mesoamerica. The architecture of the SERVIR system consists of an operational facility in Panama with regional nodes in Costa Rica, Nicaragua, Honduras, Guatemala, El Salvador and Belize plus a Rapid Prototyping Center (RPC), located in Huntsville, Alabama. The RPC, funded by NASA's Applied Sciences Division, and developed by the Information Technology and Systems Center at the University of Alabama in Huntsville, and NASA Marshall Space Flight Center, produces scientifically strong decision support products and applications. When mature, the products and applications migrate to the operational center in Panama. There, they are available to environmental ministers and decision makers in Mesoamerica. In June 2004, the SERVIR project was contacted by the environmental ministry of El Salvador, which urgently requested remote sensing imagery of the location, direction, and extent of a HAB event off the coast of El Salvador and Guatemala. Using MODIS data the SERVIR team developed a value added product that predicts the location, direction, and extent of HABs. The products are produced twice daily and are used by the El Salvadoran and Guatemalan governments to alert their tourism and fishing industries of potential red tide events. This has enabled these countries to save millions of dollars for their industries as well as improve the health of harvested fish. In the area of short term weather forecasting the SERVIR team, in collaboration with the NASA Short

  16. RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M.; Rajagopalan, Ganesh; Stevenson, Thomas; Turner, Charles; Bulcha, Berhanu

    2017-01-01

    Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.

  17. NASA Human Health and Performance Center: Open Innovation Successes and Collaborative Projects

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2014-01-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, which resulted in the development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the open innovation successes and collaborative projects developed over this timeframe, including the efforts of the NASA Human Health and Performance Center (NHHPC), which was established to advance human health and performance innovations for spaceflight and societal benefit via collaboration in new markets.

  18. Replacement of SSE (Release 6) with NASA's Prediction of Worldwide Energy Resource (POWER) Project GIS-enabled Web Data Portal:

    Atmospheric Science Data Center

    2018-03-15

    ... effort has been developed under the Prediction Of Worldwide Energy Resource (POWER) Project funded largely by NASA Earth Applied Sciences ... to NASA's satellite and modeling analysis for Renewable Energy, Sustainable Buildings and Agroclimatology applications.  A new POWER ...

  19. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  20. Implementing EVM Data Analysis Adding Value from a NASA Project Manager's Perspective

    NASA Technical Reports Server (NTRS)

    Counts, Stacy; Kerby, Jerald

    2006-01-01

    Data Analysis is one of the keys to an effective Earned Value Management (EVM) Process. Project Managers (PM) must continually evaluate data in assessing the health of their projects. Good analysis of data can assist PMs in making better decisions in managing projects. To better support our P Ms, National Aeronautics and Space Administration (NASA) - Marshall Space Flight Center (MSFC) recently renewed its emphasis on sound EVM data analysis practices and processes, During this presentation we will discuss the approach that MSFC followed in implementing better data analysis across its Center. We will address our approach to effectively equip and support our projects in applying a sound data analysis process. In addition, the PM for the Space Station Biological Research Project will share her experiences of how effective data analysis can benefit a PM in the decision making process. The PM will discuss how the emphasis on data analysis has helped create a solid method for assessing the project s performance. Using data analysis successfully can be an effective and efficient tool in today s environment with increasing workloads and downsizing workforces

  1. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  2. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  3. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  4. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  5. Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton

    2017-01-01

    The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.

  6. NASA Schedule Management Handbook

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  7. From Engineering Science to Big Science: The NACA and NASA Collier Trophy Research Project Winners

    NASA Technical Reports Server (NTRS)

    Mack, Pamela E. (Editor)

    1998-01-01

    The chapters of this book discuss a series of case studies of notable technological projects carried out at least in part by the NACA and NASA. The case studies chosen are those projects that won the National Aeronautic Association's (NAA) Collier Trophy for "the greatest achievement in aviation in America, the value of which has been thoroughly demonstrated by use during the preceding year." Looking back on the whole series of projects we can examine both what successes were seen as important at various times, and how the goals and organization of these notable projects changed over time.

  8. NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen

    2006-01-01

    The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.

  9. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    Wind energy is investigated as a source of energy. The wind energy program that is managed by the NASA-Lewis Research Center is described. The Lewis Research Center's Wind Power Office, its organization, plans, and status are discussed. Major elements of the wind power project included are: an experimental 100 kW wind-turbine generator; first generation industry-built and user-operated wind turbine generators; and supporting research and technology tasks.

  10. NASA Engine Icing Research Overview: Aeronautics Evaluation and Test Capabilities (AETC) Project

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2015-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported by airlines under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion by the engine. The ice crystals can result in degraded engine performance, loss of thrust control, compressor surge or stall, and flameout of the combustor. The Aviation Safety Program at NASA has taken on the technical challenge of a turbofan engine icing caused by ice crystals which can exist in high altitude convective clouds. The NASA engine icing project consists of an integrated approach with four concurrent and ongoing research elements, each of which feeds critical information to the next element. The project objective is to gain understanding of high altitude ice crystals by developing knowledge bases and test facilities for testing full engines and engine components. The first element is to utilize a highly instrumented aircraft to characterize the high altitude convective cloud environment. The second element is the enhancement of the Propulsion Systems Laboratory altitude test facility for gas turbine engines to include the addition of an ice crystal cloud. The third element is basic research of the fundamental physics associated with ice crystal ice accretion. The fourth and final element is the development of computational tools with the goal of simulating the effects of ice crystal ingestion on compressor and gas turbine engine performance. The NASA goal is to provide knowledge to the engine and aircraft manufacturing communities to help mitigate, or eliminate turbofan engine interruptions, engine damage, and failures due to ice crystal ingestion.

  11. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  12. NASA. Lewis Research Center Advanced Modulation and Coding Project: Introduction and overview

    NASA Technical Reports Server (NTRS)

    Budinger, James M.

    1992-01-01

    The Advanced Modulation and Coding Project at LeRC is sponsored by the Office of Space Science and Applications, Communications Division, Code EC, at NASA Headquarters and conducted by the Digital Systems Technology Branch of the Space Electronics Division. Advanced Modulation and Coding is one of three focused technology development projects within the branch's overall Processing and Switching Program. The program consists of industry contracts for developing proof-of-concept (POC) and demonstration model hardware, university grants for analyzing advanced techniques, and in-house integration and testing of performance verification and systems evaluation. The Advanced Modulation and Coding Project is broken into five elements: (1) bandwidth- and power-efficient modems; (2) high-speed codecs; (3) digital modems; (4) multichannel demodulators; and (5) very high-data-rate modems. At least one contract and one grant were awarded for each element.

  13. The NASA teleconferencing system: An evaluation

    NASA Technical Reports Server (NTRS)

    Connors, M. M.; Lindsey, G.; Miller, R. H.

    1976-01-01

    The communication requirements of the Apollo project led to the development of a teleconferencing network which linked together, in an audio-fax mode, the several NASA centers and supporting contractors of the Apollo project. The usefulness of this communication linkage for the Apollo project suggested that the system might be extended to include all NASA centers, enabling them to conduct their in-house business more efficiently than by traveling to other centers. A pilot project was run in which seventeen NASA center and subcenters, some with multiple facilities, were connected into the NASA teleconferencing network. During that year, costs were charted and, at the end of the year, an evaluation was made to determine how the system had been used and with what results. The year-end evaluation of the use of NASA teleconferencing system is summarized.

  14. Progress update of NASA's free-piston Stirling space power converter technology project

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  15. NASA GRC UAS Project - Communications Modeling and Simulation Development Status

    NASA Technical Reports Server (NTRS)

    Apaza, Rafael; Bretmersky, Steven; Dailey, Justin; Satapathy, Goutam; Ditzenberger, David; Ye, Chris; Kubat, Greg; Chevalier, Christine; Nguyen, Thanh

    2014-01-01

    The integration of Unmanned Aircraft Systems (UAS) in the National Airspace represents new operational concepts required in civil aviation. These new concepts are evolving as the nation moves toward the Next Generation Air Transportation System (NextGen) under the leadership of the Joint Planning and Development Office (JPDO), and through ongoing work by the Federal Aviation Administration (FAA). The desire and ability to fly UAS in the National Air Space (NAS) in the near term has increased dramatically, and this multi-agency effort to develop and implement a national plan to successfully address the challenges of UAS access to the NAS in a safe and timely manner is well underway. As part of the effort to integrate UAS in the National Airspace, NASA Glenn Research Center is currently involved with providing research into Communications systems and Communication system operations in order to assist with developing requirements for this implementation. In order to provide data and information regarding communication systems performance that will be necessary, NASA GRC is tasked with developing and executing plans for simulations of candidate future UAS command and control communications, in line with architectures and communications technologies being developed and or proposed by NASA and relevant aviation organizations (in particular, RTCA SC-203). The simulations and related analyses will provide insight into the ability of proposed communications technologies and system architectures to enable safe operation of UAS, meeting UAS in the NAS project goals (including performance requirements, scalability, and interoperability), and ultimately leading to a determination of the ability of NextGen communication systems to accommodate UAS. This presentation, compiled by the NASA GRC Modeling and Simulation team, will provide an update to this ongoing effort at NASA GRC as follow-up to the overview of the planned simulation effort presented at ICNS in 2013. The objective

  16. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or

  17. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  18. NASA DEVELOP students

    NASA Image and Video Library

    2008-07-08

    NASA DEVELOP students at Stennis Space Center recently held a midterm review with George Crozier, who serves as a science adviser to the team. The team also was joined by Jamie Favors of the Mobile (Ala.) County Health Department DEVELOP Team; Cheri Miller, the team's NASA adviser; and Kenton Ross, a team science adviser. Students participating in the meeting included: Lauren Childs, Jason Jones, Maddie Brozen, Matt Batina, Jenn Frey, Angie Maki and Aaron Brooks. The primary purpose of the meeting was to update Crozier on the status of the team's work for the summer 2008 term and discuss plans for the fiscal year 2009 project proposal. This included discussion of a possible project to study the effects of hurricanes on the Florida panhandle. DEVELOP is a NASA-sponsored, student-led, student-run program focused on developing projects to help communities.

  19. Origins of NASA names

    NASA Technical Reports Server (NTRS)

    Wells, H. T.; Whiteley, S. H.; Karegeannes, C. E.

    1976-01-01

    Names are selected for NASA spaceflight projects and programs from various sources. Some have their foundations in mythology and astrology or legend and folklore. Some have historic connotations; others are based on a description of their mission, often resulting in an acronym. Included are names of launch vehicles, spacecraft, manned spaceflight programs, sounding rockets, and NASA field installations. This study is limited to names of approved projects through 1974; it does not include names of numerous projects which have been or are being studied or projects that were canceled or postponed before reaching actual flight.

  20. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick; Proctor, Margaret; Delgado, Irebert; Finkbeiner, Josh; DeMange, Jeff; Daniels, Christopher C.; Taylor, Shawn; Oswald, Jay

    2006-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage through applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. NASA Glenn is developing seal technology and providing technical consultation for the Agency s key aero- and space technology development programs.

  1. Ulysses - An ESA/NASA cooperative programme

    NASA Technical Reports Server (NTRS)

    Meeks, W.; Eaton, D.

    1990-01-01

    Cooperation between ESA and NASA is discussed, noting that the Memorandum of Understanding lays the framework for this relationship, defining the responsibilities of ESA and NASA and providing for appointment of leadership and managers for the project. Members of NASA's Jet Propulsion Laboratory and ESA's ESTEC staff have been appointed to leadership positions within the project and ultimate control of the project rests with the Joint Working Group consisting of two project managers and two project scientists, equally representing both organizations. Coordination of time scales and overall mission design is discussed, including launch cooperation, public relations, and funding of scientific investigations such as Ulysses. Practical difficulties of managing an international project are discussed such as differing documentation requirements and communication techniques, and assurance of equality on projects.

  2. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.; Rothgeb, Matthew

    2011-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders. The technical stakeholders have agreed that this protocol will focus specifically on Class 3 coatings. Original Equipment Manufacturers (OEMs), depots, and support contractors have to be prepared to deal with an electronics supply chain that increasingly provides parts with lead-free finishes, some labeled no differently and intermingled with their SnPb counterparts. Allowance of lead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free terminations, termination finishes, or circuit boards presents a host of concerns to customers, suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers 2. Incompatibility of lead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system 3. Unknown material properties and incompatibilities that could reduce solder joint reliability

  3. Citizen Science Opportunity With the NASA Heliophysics Education Consortium (HEC)-Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Fung, S. F.; Higgins, C.; Thieman, J.; Garcia, L. N.; Young, C. A.

    2016-12-01

    The Radio JOVE project nasa.gov/> has long been a hands-on inquiry-based educational project that allows students, teachers and the general public to learn and practice radio astronomy by building their own radio antenna and receiver system from an inexpensive kit that operates at 20.1 MHz and/or using remote radio telescopes through the Internet. Radio JOVE participants observe and analyze natural radio emissions from Jupiter and the Sun. Within the last few years, several Radio JOVE amateurs have upgraded their equipment to make semi-professional spectrographic observations in the frequency band of 15-30 MHz. Due to the widely distributed Radio JOVE observing stations across the US, the Radio JOVE observations can uniquely augment observations by professional telescopes, such as the Long Wavelength Array (LWA) . The Radio JOVE project has recently partnered with the NASA Heliophysics Education Consortium (HEC) to work with students and interested amateur radio astronomers to establish additional spectrograph and single-frequency Radio JOVE stations. These additional Radio JOVE stations will help build a larger amateur radio science network and increase the spatial coverage of long-wavelength radio observations across the US. Our presentation will describe the Radio JOVE project within the context of the HEC. We will discuss the potential for citizen scientists to make and use Radio JOVE observations to study solar radio bursts (particularly during the upcoming solar eclipse in August 2017) and Jovian radio emissions. Radio JOVE observations will also be used to study ionospheric radio scintillation, promoting appreciation and understanding of this important space weather effect.

  4. Continuous Risk Management at NASA

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions. This risk management structure of functions has been taught to projects at all NASA Centers and is being successfully implemented on many projects. This presentation will give project managers the information they need to understand if risk management is to be effectively implemented on their projects at a cost they can afford.

  5. The NASA Global Climate Change Education Project: An Integrated Effort to Improve the Teaching and Learning about Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Pippin, M. R.; Welch, S.; Spruill, K.; Matthews, M. J.; Person, C.

    2010-12-01

    The NASA Global Climate Change Education (GCCE) Project, initiated in 2008, seeks to: - improve the teaching and learning about global climate change in elementary and secondary schools, on college campuses, and through lifelong learning; - increase the number of people, particularly high school and undergraduate students, using NASA Earth observation data, Earth system models, and/or simulations to investigate and analyze global climate change issues; - increase the number of undergraduate students prepared for employment and/or to enter graduate school in technical fields relevant to global climate change. Through an annual solicitation, proposals are requested for projects that address these goals using a variety of approaches. These include using NASA Earth system data, interactive models and/or simulations; providing research experiences for undergraduate or community college students, or for pre- or in-service teachers; or creating long-term teacher professional development experiences. To date, 57 projects have been funded to pursue these goals (22 in 2008, 18 in 2009, and 17 in 2010), each for a 2-3 year period. The vast majority of awards address either teacher professional development, or use of data, models, or simulations; only 7 awards have been made for research experiences. NASA, with assistance from the Virginia Space Grant Consortium, is working to develop these awardees into a synergistic community that works together to maximize its impact. This paper will present examples of collaborations that are evolving within this developing community. It will also introduce the opportunities available in fiscal year 2011, when a change in emphasis is expected for the project as it moves within the NASA Office of Education Minority University Research and Education Program (MUREP).

  6. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  7. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2011-01-01

    The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.

  8. Bridging the Gap Between NASA Earth Observations and Decision Makers Through the NASA Develop National Program

    NASA Astrophysics Data System (ADS)

    Remillard, C. M.; Madden, M.; Favors, J.; Childs-Gleason, L.; Ross, K. W.; Rogers, L.; Ruiz, M. L.

    2016-06-01

    The NASA DEVELOP National Program bridges the gap between NASA Earth Science and society by building capacity in both participants and partner organizations that collaborate to conduct projects. These rapid feasibility projects highlight the capabilities of satellite and aerial Earth observations. Immersion of decision and policy makers in these feasibility projects increases awareness of the capabilities of Earth observations and contributes to the tools and resources available to support enhanced decision making. This paper will present the DEVELOP model, best practices, and two case studies, the Colombia Ecological Forecasting project and the Miami-Dade County Ecological Forecasting project, that showcase the successful adoption of tools and methods for decision making. Through over 90 projects each year, DEVELOP is always striving for the innovative, practical, and beneficial use of NASA Earth science data.

  9. Health and Environment Linked for Information Exchange (HELIX)-Atlanta: A CDC-NASA Joint Environmental Public Health Tracking Collaborative Project

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Luvall, Jeff; Crosson, Bill; Estes, Maury; Limaye, Ashutosh; Quattrochi, Dale; Rickman, Doug

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstration projects which could be part of the CDC EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  10. NASA STI Program Coordinating Council Eleventh Meeting: NASA STI Modernization Plan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The theme of this NASA Scientific and Technical Information Program Coordinating Council Meeting was the modernization of the STI Program. Topics covered included the activities of the Engineering Review Board in the creation of the Infrastructure Upgrade Plan, the progress of the RECON Replacement Project, the use and status of Electronic SCAN (Selected Current Aerospace Notices), the Machine Translation Project, multimedia, electronic document interchange, the NASA Access Mechanism, computer network upgrades, and standards in the architectural effort.

  11. NASA Parts Selection List (NPSL) WWW Site http://nepp.nasa.gov/npsl

    NASA Technical Reports Server (NTRS)

    Brusse, Jay

    2000-01-01

    The NASA Parts Selection List (NPSL) is an on-line resource for electronic parts selection tailored for use by spaceflight projects. The NPSL provides a list of commonly used electronic parts that have a history of satisfactory use in spaceflight applications. The objective of this www site is to provide NASA projects, contractors, university experimenters, et al with an easy to use resource that provides a baseline of electronic parts from which designers are encouraged to select. The NPSL is an ongoing resource produced by Code 562 in support of the NASA HQ funded NASA Electronic Parts and Packaging (NEPP) Program. The NPSL is produced as an electronic format deliverable made available via the referenced www site administered by Code 562. The NPSL does not provide information pertaining to patented or proprietary information. All of the information contained in the NPSL is available through various other public domain resources such as US Military procurement specifications for electronic parts, NASA GSFC's Preferred Parts List (PPL-21), and NASA's Standard Parts List (MIL-STD975).

  12. A Report of Bethune-Cookman College NASA JOVE Projects

    NASA Technical Reports Server (NTRS)

    Agba, Lawrence C.; David, Sunil K.; Rao, Narsing G.; Rahmani, Munir A.

    1997-01-01

    This document is the final report for the Joint Venture (JOVE) in Space Sciences, and describes the tasks, performed with the support of the contract. These tasks include work in: (1) interfacing microprocessor systems to high performance parallel interface chips, SCSI drive and memory, needed for the implementation of a Space Optical Data Recorder; (2) designing a digital interface architecture for a microprocessor controlled sensors monitoring unit for a NASA Jitter Attenuation and Dynamics Experiment (JADE) project; (3) developing an enhanced back-propagation training algorithm; (4) studying the effect of simulated spaceflight on Aortic Contractility; (5) developing a course in astronomy; and (6) improving internet access by running cables, and installing hubs in various places on the campus; and (7) researching the characteristics of Nd:YALO laser resonator.

  13. NASA as a Convener: Government, Academic and Industry Collaborations Through the NASA Human Health and Performance Center

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2011-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 60 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed below. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations are in development: Space Act Agreement between NASA and GE for collaborative projects, NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011), NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011), NASA and the San Diego Zoo

  14. A Multimedia Telematics Network for On-the-Job Training, Tutoring and Assessment.

    ERIC Educational Resources Information Center

    Ferreira, J. M. Martins; MacKinnon, Lachlan; Desmulliez, Marc; Foulk, Patrick

    This paper describes an educational multimedia network developed in Advanced Software for Training and Evaluation of Processes (ASTEP). ASTEP started in February 1998 and was set up by a mixed industry-academia consortium with the objective of meeting the educational/training demands of the highly competitive microelectronics/semiconductor…

  15. A report on the USL NASA/RECON project. Part 2: PC-based R and D in support of IS and R applications

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1984-01-01

    This Working Paper Series entry describes the PC R and D development effort initiated as part of the NASA/RECON Project at the University of Southwestern Louisiana. This effort involves the development of a PC-based environment for the prototyping and evaluation of various tools designed to enhance the interaction between scientists and engineers and remote information systems. The design of PC-based tools for the enhancement of the NASA/RECON university-level courses is described as well as the design of a multi-functional PC-based workstation to support access to and processing of information from local, distributed, and remote sources. Course preparation activities are described in a companion report entitled A Report on the USL NASA/RECON Project: Part 1, the Development of a Transportable, University-Level, IS and R Educational Program, by Suzy Gallagher and Martin Granier, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-7.

  16. Citizen Science participation in the NASA CERES Students' Cloud Observations Online Project (S'COOL)

    NASA Astrophysics Data System (ADS)

    Lewis, P. M.; Moore, S.; Crecelius, S.; Rogerson, T.; Chambers, L. H.

    2012-12-01

    Many science programs designed for the classroom see little participation when school is not in session. Many factors, such as materials, cost, needing a teacher to lead discussion, and reporting/assessment criteria are classroom-centric. The S'COOL project has the ability to serve not only as a classroom-teaching tool, but as a citizen science project in which anyone can help NASA collect cloud data. Since its inception in 1997, the S'COOL project has invited help from the citizen science community from age 6 to 99. The S'COOL project has the ability to reach everyone in the world through satellite overpasses. This provides the citizen scientist with a temporal "match", i.e., the opportunity to make cloud observations "looking up" as various NASA Earth observing satellites make cloud observations "looking down" at the same location. After an observation is made, the observing scientist completes an online report form and sends this directly to NASA Langley Research Center's Atmospheric Science Data Center. After the satellite data are processed, generally within a week, an auto-generated email informs the observer of what the satellite observed, compared side-by-side with what they observed. All of the observations are stored in a database for later viewing and analysis. The ability to view satellite matches and past observations allows the citizen scientist to develop good scientific practices, particularly skills in cloud observation and data analysis techniques. Much of the success of the S'COOL project can be associated with its aim as a classroom-based program that transcends to the citizen science community. This allows both parties to have access to the same materials and data, creating an authentic science experience. Another avenue of success can be found in the project's translation of materials into French and Spanish. Translation provides a multicultural perspective and enables broader participation. Since the aim of the S'COOL project is to collect

  17. Using Model-Based System Engineering to Provide Artifacts for NASA Project Life-Cycle and Technical Reviews Presentation

    NASA Technical Reports Server (NTRS)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This is the presentation for the AIAA Space conference in September 2017. It highlights key information from Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews paper.

  18. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  19. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and

  20. Operations planning and analysis handbook for NASA/MSFC phase B development projects

    NASA Technical Reports Server (NTRS)

    Batson, Robert C.

    1986-01-01

    Current operations planning and analysis practices on NASA/MSFC Phase B projects were investigated with the objectives of (1) formalizing these practices into a handbook and (2) suggesting improvements. The study focused on how Science and Engineering (S&E) Operational Personnel support Program Development (PD) Task Teams. The intimate relationship between systems engineering and operations analysis was examined. Methods identified for use by operations analysts during Phase B include functional analysis, interface analysis methods to calculate/allocate such criteria as reliability, Maintainability, and operations and support cost.

  1. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    This report describes that portion of the national five-year wind energy program that is being managed by the NASA-Lewis Research Center for the ERDA. The Lewis Research Center's Wind Power Office, its organization and plans and status are briefly described. The three major elements of the wind energy project at Lewis are the experimental 100 kW wind-turbine generator; the first generation industry-built and user-operated wind turbine generators; and the supporting research and technology tasks which are each briefly described.

  2. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    2007-01-01

    NASA Glenn hosted the Seals/Secondary Air System Workshop on November 14-15, 2006. At this workshop NASA and our industry and university partners shared their respective seal technology developments. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing the presentations from this workshop in two volumes. Volume I will be publicly available and individual papers will be made available on-line through the web page address listed at the end of this presentation. Volume II will be restricted as Sensitive But Unclassified (SBU) under International Traffic and Arms Regulations (ITAR).

  3. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn; hide

    2009-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.

  4. NASA Ames DEVELOP Interns Collaborate with the South Bay Salt Pond Restoration Project to Monitor and Study Restoration Efforts using NASA's Satellites

    NASA Technical Reports Server (NTRS)

    Newcomer, Michelle E.; Kuss, Amber Jean; Nguyen, Andrew; Schmidt, Cynthia L.

    2012-01-01

    In the past, natural tidal marshes in the south bay were segmented by levees and converted into ponds for use in salt production. In an effort to provide habitat for migratory birds and other native plants and animals, as well as to rebuild natural capital, the South Bay Salt Pond Restoration Project (SBSPRP) is focused on restoring a portion of the over 15,000 acres of wetlands in California's South San Francisco Bay. The process of restoration begins when a levee is breached; the bay water and sediment flow into the ponds and eventually restore natural tidal marshes. Since the spring of 2010 the NASA Ames Research Center (ARC) DEVELOP student internship program has collaborated with the South Bay Salt Pond Restoration Project (SBSPRP) to study the effects of these restoration efforts and to provide valuable information to assist in habitat management and ecological forecasting. All of the studies were based on remote sensing techniques -- NASA's area of expertise in the field of Earth Science, and used various analytical techniques such as predictive modeling, flora and fauna classification, and spectral detection, to name a few. Each study was conducted by a team of aspiring scientists as a part of the DEVELOP program at Ames.

  5. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  6. Educational Projects in Unmanned Aerial Systems at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Dahlgren, Robert P.

    2017-01-01

    Unmanned aerial systems (UAS), autonomy and robotics technology have been fertile ground for developing a wide variety of interdisciplinary student learning opportunities. In this talk, several projects will be described that leverage small fixed-wing UAS that have been modified to carry science payloads. These aircraft provide a unique hands-on experience for a wide range of students from college juniors to graduate students pursuing degrees in electrical engineering, aeronautical engineering, mechanical engineering, applied mathematics, physics, structural engineering and other majors. By combining rapid prototyping, design reuse and open-source philosophies, a sustainable educational program has been organized structured as full-time internships during the summer, part-time internships during the school year, short details for military cadets, and paid positions. As part of this program, every summer one or more UAS is developed from concept through design, build and test phases using the tools and facilities at the NASA Ames Research Center, ultimately obtaining statements of airworthiness and flight release from the Agency before test flights are performed. In 2016 and 2017 student projects focused on the theme of 3D printed modular airframes that may be optimized for a given mission and payload. Now in its fifth year this program has served over 35 students, and has provided a rich learning experience as they learn to rapidly develop new aircraft concepts in a highly regulated environment, on systems that will support principal investigators at university, NASA, and other US federal agencies.

  7. Validation of Solar Sail Simulations for the NASA Solar Sail Demonstration Project

    NASA Technical Reports Server (NTRS)

    Braafladt, Alexander C.; Artusio-Glimpse, Alexandra B.; Heaton, Andrew F.

    2014-01-01

    NASA's Solar Sail Demonstration project partner L'Garde is currently assembling a flight-like sail assembly for a series of ground demonstration tests beginning in 2015. For future missions of this sail that might validate solar sail technology, it is necessary to have an accurate sail thrust model. One of the primary requirements of a proposed potential technology validation mission will be to demonstrate solar sail thrust over a set time period, which for this project is nominally 30 days. This requirement would be met by comparing a L'Garde-developed trajectory simulation to the as-flown trajectory. The current sail simulation baseline for L'Garde is a Systems Tool Kit (STK) plug-in that includes a custom-designed model of the L'Garde sail. The STK simulation has been verified for a flat plate model by comparing it to the NASA-developed Solar Sail Spaceflight Simulation Software (S5). S5 matched STK with a high degree of accuracy and the results of the validation indicate that the L'Garde STK model is accurate enough to meet the potential future mission requirements. Additionally, since the L'Garde sail deviates considerably from a flat plate, a force model for a non-flat sail provided by L'Garde sail was also tested and compared to a flat plate model in S5. This result will be used in the future as a basis of comparison to the non-flat sail model being developed for STK.

  8. NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Kayali, Sammy

    2000-01-01

    NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.

  9. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  10. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  11. NASA Guidelines for Promoting Scientific and Research Integrity

    NASA Technical Reports Server (NTRS)

    Kaminski, Amy P.; Neogi, Natasha A.

    2017-01-01

    This guidebook provides an overarching summary of existing policies, activities, and guiding principles for scientific and research integrity with which NASA's workforce and affiliates must conform. This document addresses NASA's obligations as both a research institution and as a funder of research, NASA's use of federal advisory committees, NASA's public communication of research results, and professional development of NASA's workforce. This guidebook is intended to provide a single resource for NASA researchers, NASA research program administrators and project managers, external entities who do or might receive funding from NASA for research or technical projects, evaluators of NASA research proposals, NASA advisory committee members, NASA communications specialists, and members of the general public so that they can understand NASA's commitment to and expectations for scientific and integrity across the agency.

  12. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The objective of the NASA/DOD Aerospace Knowledge Diffusion Research Project is to provide descriptive and analytical data regarding the flow of scientific and technical information (STI) at the individual, organizational, national, and international levels, placing emphasis on the systems used to diffuse the results of federally funded aerospace STI. An overview of project assumptions, objectives, and design is presented and preliminary results of the phase 2 aerospace library survey are summarized. Phase 2 addressed aerospace knowledge transfer and use within the larger social system and focused on the flow of aerospace STI in government and industry and the role of the information intermediary in knowledge transfer.

  14. NASA SAVE Award Winner

    NASA Image and Video Library

    2012-01-09

    NASA Goddard Space Flight Center Financial Manager and White House 2011 SAVE award winner Matthew Ritsko is seen during a television interview at NASA Headquarters shortly after meeting with President Obama at the White House on Monday, Jan. 9, 2011, in Washington. The Presidential Securing Americans' Value and Efficiency (SAVE) program gives front-line federal workers the chance to submit their ideas on how their agencies can save money and work more efficiently. Matthew's proposal calls for NASA to create a "lending library" where specialized space tools and hardware purchased by one NASA organization will be made available to other NASA programs and projects. Photo Credit: (NASA/Bill Ingalls)

  15. NASA's Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Evans, Cody; Mogford, Richard; Wing, David; Stallmann, Summer L.

    2017-01-01

    NASA's working with airlines and industry partners to introduce innovative concepts and new technology. This presentation will describe some of the research efforts at NASA Ames and NASA Langley and discuss future projects and research in aviation.

  16. NASA Software Documentation Standard

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as "Standard") is designed to support the documentation of all software developed for NASA; its goal is to provide a framework and model for recording the essential information needed throughout the development life cycle and maintenance of a software system. The NASA Software Documentation Standard can be applied to the documentation of all NASA software. The Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. The basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  17. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  18. NASA Risk Management Handbook. Version 1.0

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Maggio, Gaspare; Stamatelatos, Michael; Youngblood, Robert; Guarro, Sergio; Rutledge, Peter; Sherrard, James; Smith, Curtis; hide

    2011-01-01

    The purpose of this handbook is to provide guidance for implementing the Risk Management (RM) requirements of NASA Procedural Requirements (NPR) document NPR 8000.4A, Agency Risk Management Procedural Requirements [1], with a specific focus on programs and projects, and applying to each level of the NASA organizational hierarchy as requirements flow down. This handbook supports RM application within the NASA systems engineering process, and is a complement to the guidance contained in NASA/SP-2007-6105, NASA Systems Engineering Handbook [2]. Specifically, this handbook provides guidance that is applicable to the common technical processes of Technical Risk Management and Decision Analysis established by NPR 7123.1A, NASA Systems Engineering Process and Requirements [3]. These processes are part of the \\Systems Engineering Engine. (Figure 1) that is used to drive the development of the system and associated work products to satisfy stakeholder expectations in all mission execution domains, including safety, technical, cost, and schedule. Like NPR 7123.1A, NPR 8000.4A is a discipline-oriented NPR that intersects with product-oriented NPRs such as NPR 7120.5D, NASA Space Flight Program and Project Management Requirements [4]; NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Management Requirements [5]; and NPR 7120.8, NASA Research and Technology Program and Project Management Requirements [6]. In much the same way that the NASA Systems Engineering Handbook is intended to provide guidance on the implementation of NPR 7123.1A, this handbook is intended to provide guidance on the implementation of NPR 8000.4A. 1.2 Scope and Depth This handbook provides guidance for conducting RM in the context of NASA program and project life cycles, which produce derived requirements in accordance with existing systems engineering practices that flow down through the NASA organizational hierarchy. The guidance in this handbook is not meant

  19. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.

  20. NASA/USRA University Advanced Design Program Fifth Annual Summer Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.

  1. NASA ARIA Project Maps Deformation of Earth Surface from Nepal Quake

    NASA Image and Video Library

    2015-05-02

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the European Union's Copernicus Sentinel-1A satellite, operated by the European Space Agency and also available from the Alaska Satellite Facility (https://www.asf.alaska.edu), to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 12-day interval between two Sentinel-1 images acquired on April 17 and April 29, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 8 inches (20 centimeters) of surface motion. The contours show the land around Kathmandu has moved upward by more than 40 inches (1 meter). Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The background image is from Google Earth. The map contains Copernicus data (2015). http://photojournal.jpl.nasa.gov/catalog/PIA19535

  2. NASA-DoD Lead-Free Electronics Project: Vibration Test

    NASA Technical Reports Server (NTRS)

    Woodrow, Thomas A.

    2010-01-01

    Vibration testing was conducted by Boeing Research and Technology (Seattle) for the NASA-DoD Lead-Free Electronics Solder Project. This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-Free Solder Project which was the first group to test the reliability of lead-free solder joints against the requirements of the aerospace/miLItary community. Twenty seven test vehicles were subjected to the vibration test conditions (in two batches). The random vibration Power Spectral Density (PSD) input was increased during the test every 60 minutes in an effort to fail as many components as possible within the time allotted for the test. The solder joints on the components were electrically monitored using event detectors and any solder joint failures were recorded on a Labview-based data collection system. The number of test minutes required to fail a given component attached with SnPb solder was then compared to the number of test minutes required to fail the same component attached with lead-free solder. A complete modal analysis was conducted on one test vehicle using a laser vibrometer system which measured velocities, accelerations, and displacements at one . hundred points. The laser vibrometer data was used to determine the frequencies of the major modes of the test vehicle and the shapes of the modes. In addition, laser vibrometer data collected during the vibration test was used to calculate the strains generated by the first mode (using custom software). After completion of the testing, all of the test vehicles were visually inspected and cross sections were made. Broken component leads and other unwanted failure modes were documented.

  3. USL NASA/RECON project presentations at the 1985 ACM Computer Science Conference: Abstracts and visuals

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Gallagher, Suzy; Granier, Martin; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1985-01-01

    This Working Paper Series entry represents the abstracts and visuals associated with presentations delivered by six USL NASA/RECON research team members at the above named conference. The presentations highlight various aspects of NASA contract activities pursued by the participants as they relate to individual research projects. The titles of the six presentations are as follows: (1) The Specification and Design of a Distributed Workstation; (2) An Innovative, Multidisciplinary Educational Program in Interactive Information Storage and Retrieval; (3) Critical Comparative Analysis of the Major Commercial IS and R Systems; (4) Design Criteria for a PC-Based Common User Interface to Remote Information Systems; (5) The Design of an Object-Oriented Graphics Interface; and (6) Knowledge-Based Information Retrieval: Techniques and Applications.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: Aerospace knowledge diffusion research

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; White, Terry F.; Jones, Ray (Editor)

    1991-01-01

    The project is a cooperative US effort between NASA, DoD, and Indiana University. This research was endorsed by the AGARD Technical Information Panel and the American Institute of Aeronautics and Astronautics (AIAA) Technical Information Committee. The four-phase inquiry focuses on scientific and technical information (STI) as knowledge, the channels through which this knowledge is communicated, and the members of the social system associated with and involved in diffusing this knowledge throughout the aerospace community. The project is based on two premises: (1) although STI is essential to innovation, STI by itself does not ensure innovation; and (2) utilizing existing STI or creating new STI, does often facilitate technological innovation. The topics covered include the following: information-seeking habits, knowledge transfer, academic sector, non-US organizations, present status, comparative study, and timetable.

  5. ePORT, NASA's Computer Database Program for System Safety Risk Management Oversight (Electronic Project Online Risk Tool)

    NASA Technical Reports Server (NTRS)

    Johnson, Paul W.

    2008-01-01

    ePORT (electronic Project Online Risk Tool) provides a systematic approach to using an electronic database program to manage a program/project risk management processes. This presentation will briefly cover the standard risk management procedures, then thoroughly cover NASA's Risk Management tool called ePORT. This electronic Project Online Risk Tool (ePORT) is a web-based risk management program that provides a common framework to capture and manage risks, independent of a programs/projects size and budget. It is used to thoroughly cover the risk management paradigm providing standardized evaluation criterion for common management reporting, ePORT improves Product Line, Center and Corporate Management insight, simplifies program/project manager reporting, and maintains an archive of data for historical reference.

  6. NASA EEE Parts and Advanced Interconnect Program (AIP)

    NASA Technical Reports Server (NTRS)

    Gindorf, T.; Garrison, A.

    1996-01-01

    none given From Program Objectives: I. Accelerate the readiness of new technologies through development of validation, assessment and test method/tools II. Provide NASA Projects infusion paths for emerging technologies III. Provide NASA Projects technology selection, application and validation guidelines for harware and processes IV. Disseminate quality assurance, reliability, validation, tools and availability information to the NASA community.

  7. NASA Work Breakdown Structure (WBS) Handbook

    NASA Technical Reports Server (NTRS)

    Fleming, Jon F.; Poole, Kenneth W.

    2016-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements. The WBS and WBS dictionary are effective management processes for planning, organizing, and administering NASA programs and projects. The guidance contained in this document is applicable to both in-house, NASA-led effort and contracted effort. It assists management teams from both entities in fulfilling necessary responsibilities for successful accomplishment of project cost, schedule, and technical goals. Benefits resulting from the use of an effective WBS include, but are not limited to: providing a basis for assigned project responsibilities, providing a basis for project schedule and budget development, simplifying a project by dividing the total work scope into manageable units, and providing a common reference for all project communication.

  8. NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Schweiss, Robert J.

    2007-01-01

    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.

  9. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  10. Enabling Exploration: NASA's Technology Needs

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.

    2012-01-01

    Deputy Director of Science, Carol W. Carroll has been invited by University of Oregon's Materials Science Institute to give a presentation. Carol's Speech explains NASA's Technologies that are needed where NASA was, what NASA's current capabilities are. Carol will highlight many of NASA's high profile projects and she will explain what NASA needs for its future by focusing on the next steps in space exploration. Carol's audience will be University of Oregon's future scientists and engineer's and their professor's along with various other faculty members.

  11. 2008 NASA Seal/Secondary Air System Workshop

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert R. (Editor)

    2009-01-01

    The 2008 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA s fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.

  12. NASA-SETI microwave observing project: Targeted Search Element (TSE)

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1991-01-01

    The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.

  13. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  14. NASA Hazard Analysis Process

    NASA Technical Reports Server (NTRS)

    Deckert, George

    2010-01-01

    This viewgraph presentation reviews The NASA Hazard Analysis process. The contents include: 1) Significant Incidents and Close Calls in Human Spaceflight; 2) Subsystem Safety Engineering Through the Project Life Cycle; 3) The Risk Informed Design Process; 4) Types of NASA Hazard Analysis; 5) Preliminary Hazard Analysis (PHA); 6) Hazard Analysis Process; 7) Identify Hazardous Conditions; 8) Consider All Interfaces; 9) Work a Preliminary Hazard List; 10) NASA Generic Hazards List; and 11) Final Thoughts

  15. University Program Management Information System: NASA's University Program Active Projects

    NASA Technical Reports Server (NTRS)

    Gans, Gary (Technical Monitor)

    2003-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA's objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well being. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data. This report was prepared by the Office of Education/N.

  16. Assessing the maturity and re-usability of NASA's Advanced Information System Technology (AIST) Projects

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Hines, K.

    2016-12-01

    Considerable funding has been invested in Earth science information technology (IT) projects by NASA over the past 15 years. While many of these projects succeeded at completing their objectives, rapid improvements in technology and growth in available data could further enhance the capabilities available to the Earth science community. Independent evaluation of these projects has become more and more important. Not only do they qualify the maturity of the work, but they give potential adopters the chance to kick the tires. One approach that has been used is to task Federally Funded Research and Development Corporations (FFRDC) with reviews and paper studies. Another approach involves field testing by third parties. Over the past three years, the AIST Program has tried both. This paper will describe both approaches and lessons learned from the experiences. The audience will be asked for their suggestions as to how to qualify and value these results.

  17. NASA Standard Measures Overview

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.

    2008-01-01

    Due to the limited in-flight resources available for human physiological research in the foreseeable future, NASA has increased its reliance on head-down bed rest. NASA has created the Bed Rest Project at the Johnson Space Center, which is implemented on the 6th floor of the Children's Hospital at UTMB. It has been conducted for three years. The overall objective of the Project is to use bed rest to develop and evaluate countermeasures for the ill effects of space flight before flight resources are requested for refinement and final testing.

  18. The Use of Social Media and Mobile applications in content delivery for the MY NASA DATA and SCOOL Projects in support of Education and Outreach Initiatives

    NASA Astrophysics Data System (ADS)

    Lewis, P. M.; Oostra, D.; Moore, S. W.; Crecelius, S. A.

    2011-12-01

    So you have a social media site for the project you are working on. Now what? How do you know if you are reaching your target audience? What are the demographics of those that you are reaching? These are just a few of the questions to ask when venturing into the social media world as a way to further your outreach opportunities. With this important information you will have the ability to make small changes "on the fly", or to switch focus to other Web 2.0 tools for the project. An important aspect to social media tools as an outreach strategy is the ease of development and implementation for use in reaching your targeted audience. They are also equally easy to remove from use. This allows a project to shift to a new method of communication should your metrics point you in that direction. The MY NASA DATA (MND) project enables K-12 teachers, students and citizen scientists to explore the large volumes of satellite data that NASA collects from space. With the large number of interactions that surround conference and outreach meetings, social media plays several important roles in the project. The main function of social media is to be an open channel for communication and discovery of the project. The other important role is as a vehicle to share new information, media and other useful educational tools. With a target age of middle school and older, the MY NASA DATA project is able to effectively utilize a wide variety of social media tools through proper monitoring of metrics and usage. Some of the social media tools utilized by the MY NASA DATA project include, Facebook, YouTube and the Observe Your World blog. Students' Clouds Observations On-Line (S'COOL) is a hands-on project, which supports NASA research on the Earth's climate. Students are engaged in identifying cloud-types and levels and sending that information to NASA. Since the topic of clouds is a popular one in many elementary curricula, the target age for the S'COOL project is younger than that of the

  19. Biophysics of NASA radiation quality factors.

    PubMed

    Cucinotta, Francis A

    2015-09-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. 78 FR 20359 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NASA Robotics Technologies project and NASA's work with the National Robotics Initiative; and an annual... Sail project --Update on NASA's Robotic Technologies and the National Robotics Initiative It is...

  1. NASA's EOSDIS, Trust and Certification

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, managing most of NASA's Earth science data from satellites, airborne sensors, filed campaigns and other activities. Having been designated by the Federal Government as a project responsible for production, archiving and distribution of these data through its Distributed Active Archive Centers (DAACs), the Earth Science Data and Information System Project (ESDIS) is responsible for EOSDIS, and is legally bound by the Office of Management and Budgets circular A-130, the Federal Records Act. It must follow the regulations of the National Institute of Standards and Technologies (NIST) and National Archive and Records Administration (NARA). It must also follow the NASA Procedural Requirement 7120.5 (NASA Space Flight Program and Project Management). All these ensure that the data centers managed by ESDIS are trustworthy from the point of view of efficient and effective operations as well as preservation of valuable data from NASA's missions. Additional factors contributing to this trust are an extensive set of internal and external reviews throughout the history of EOSDIS starting in the early 1990s. Many of these reviews have involved external groups of scientific and technological experts. Also, independent annual surveys of user satisfaction that measure and publish the American Customer Satisfaction Index (ACSI), where EOSDIS has scored consistently high marks since 2004, provide an additional measure of trustworthiness. In addition, through an effort initiated in 2012 at the request of NASA HQ, the ESDIS Project and 10 of 12 DAACs have been certified by the International Council for Science (ICSU) World Data System (WDS) and are members of the ICSUWDS. This presentation addresses questions such as pros and cons of the certification process, key outcomes and next steps regarding certification. Recently, the ICSUWDS and Data Seal of Approval (DSA) organizations

  2. The NASA ASTP Combined-Cycle Propulsion Database Project

    NASA Technical Reports Server (NTRS)

    Hyde, Eric H.; Escher, Daric W.; Heck, Mary T.; Roddy, Jordan E.; Lyles, Garry (Technical Monitor)

    2000-01-01

    The National Aeronautics and Space Administration (NASA) communicated its long-term R&D goals for aeronautics and space transportation technologies in its 1997-98 annual progress report (Reference 1). Under "Pillar 3, Goal 9" a 25-year-horizon set of objectives has been stated for the Generation 3 Reusable Launch Vehicle ("Gen 3 RLV") class of space transportation systems. An initiative referred to as "Spaceliner 100" is being conducted to identify technology roadmaps in support of these objectives. Responsibility for running "Spaceliner 100" technology development and demonstration activities have been assigned to NASA's agency-wide Advanced Space Transportation Program (ASTP) office located at the Marshall Space Flight Center. A key technology area in which advances will be required in order to meet these objectives is propulsion. In 1996, in order to expand their focus beyond "allrocket" propulsion systems and technologies (see Appendix A for further discussion), ASTP initiated technology development and demonstration work on combined-cycle airbreathing/rocket propulsion systems (ARTT Contracts NAS8-40890 through 40894). Combined-cycle propulsion (CCP) activities (see Appendix B for definitions) have been pursued in the U.S. for over four decades, resulting in a large documented knowledge base on this subject (see Reference 2). In the fall of 1999 the Combined-Cycle Propulsion Database (CCPD) project was established with the primary purpose of collecting and consolidating CCP related technical information in support of the ASTP's ongoing technology development and demonstration program. Science Applications International Corporation (SAIC) was selected to perform the initial development of the Database under its existing support contract with MSFC (Contract NAS8-99060) because of the company's unique combination of capabilities in database development, information technology (IT) and CCP knowledge. The CCPD is summarized in the descriptive 2-page flyer appended

  3. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees are seen during a science panel discussion with Cassini project scientist at JPL, Linda Spilker, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, and Cassini assistant project science systems engineer Morgan Cable, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The flow of U.S. government-funded and foreign scientific and technical information (STI) through libraries and related facilities to users in government and industry is examined, summarizing preliminary results of Phase 2 of the NASA/DOD Aerospace Knowledge Diffusion Research Project (NAKDRP). The design and objectives of NAKDRP are reviewed; the NAKDRP model of STI transfer among producers, STI intermediaries, surrogates (technical report repositories or clearinghouses), and users is explained and illustrated with diagrams; and particular attention is given to the organization and operation of aerospace libraries. In a survey of North American libraries it was found that 25-30 percent of libraries regularly receive technical reports from ESA and the UK; the corresponding figures for Germany and for France, Sweden, and Japan are 18 and 5 percent, respectively. Also included is a series of bar graphs showing the librarians' assessments of the quality and use of NASA Technical Reports.

  5. LISA and NASA's Physics of the Cosmos Theme

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    In the past year, the LISA Project at NASA has completed a major review and has thoroughly reviewed its cost estimates. This talk will summarize the conclusions of the Beyond Einstein Program Assessment, and review the main conclusions of the cost estimation work done at NASA, including reduced mission concepts. Astro2010, the decadal review which sets priorities for astronomy and astrophysics projects in the U.S., is getting organized. Preparing for and participating in Astro2010 will be a crucial activity for the NASA side of the LISA Project in thc next 18 months.

  6. Overview of the NASA Advanced In-Space Propulsion Project

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael

    2011-01-01

    In FY11, NASA established the Enabling Technologies Development and Demonstration (ETDD) Program, a follow on to the earlier Exploration Technology Development Program (ETDP) within the NASA Exploration Systems Mission Directorate. Objective: Develop, mature and test enabling technologies for human space exploration.

  7. NASA and Me

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2010-01-01

    Topics in this student project report include: biography, NASA history and structure, overview of Johnson Space Center facilities and major projects, and an overview of the Usability Testing and Analysis Facility (UTAF). The UTAF section slides include space habitat evaluations with mockups, crew space vehicle evaluations, and human factors research.

  8. Improving Organizational Productivity in NASA. Volume 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Recognizing that NASA has traditionally been in the forefront of technological change, the NASA Administrator challenged the Agency in 1982 to also become a leader in developing and applying advanced technology and management practices to increase productivity. One of the activities undertaken by the Agency to support this ambitious productivity goal was participation in a 2-year experimental action research project devoted to learning more about improving and assessing the performance of professional organizations. Participating with a dozen private sector organizations, NASA explored the usefulness of a productivity improvement process that addressed all aspects of organizational performance. This experience has given NASA valuable insight into the enhancement of professional productivity. More importantly, it has provided the Agency with a specific management approach that managers and supervisors can effectively use to emphasize and implement continuous improvement. This report documents the experiences of the five different NASA installations participating in the project, describes the improvement process that was applied and refined, and offers recommendations for expanded application of that process. Of particular interest is the conclusion that measuring white collar productivity may be possible, and at a minimum, the measurement process itself is beneficial to management. Volume I of the report provides a project overview, significant findings, and recommendations. Volume II presents individual case studies of the NASA pilot projects that were part of the action research effort.

  9. NASA space biology accomplishments, 1982

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Pleasant, L. G.

    1983-01-01

    Summaries of NASA's Space Biology Program projects are provided. The goals, objectives, accomplishments, and future plans of each project are described in this publication as individual technical summaries.

  10. The NASA master directory: Quick reference guide

    NASA Technical Reports Server (NTRS)

    Satin, Karen (Editor); Kanga, Carol (Editor)

    1989-01-01

    This is a quick reference guide to the NASA Master Directory (MD), which is a free, online, multidisciplinary directory of space and Earth science data sets (NASA and non-NASA data) that are of potential interest to the NASA-sponsored research community. The MD contains high-level descriptions of data sets, other data systems and archives, and campaigns and projects. It provides mechanisms for searching for data sets by important criteria such as geophysical parameters, time, and spatial coverage, and provides information on ordering the data. It also provides automatic connections to a number of data systems such as the NASA Climate Data System, the Planetary Data System, the NASA Ocean Data System, the Pilot Land Data System, and others. The MD includes general information about many data systems, data centers, and coordinated data analysis projects, It represents the first major step in the Catalog Interoperability project, whose objective is to enable researchers to quickly and efficiently identify, obtain information about, and get access to space and Earth science data. The guide describes how to access, use, and exit the MD and lists its features.

  11. An Overview of the Role of Systems Analysis in NASA's Hypersonics Project

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Martin John G.; Bowles, Jeffrey V> ; Mehta, Unmeel B.; Snyder, CHristopher A.

    2006-01-01

    NASA's Aeronautics Research Mission Directorate recently restructured its Vehicle Systems Program, refocusing it towards understanding the fundamental physics that govern flight in all speed regimes. Now called the Fundamental Aeronautics Program, it is comprised of four new projects, Subsonic Fixed Wing, Subsonic Rotary Wing, Supersonics, and Hypersonics. The Aeronautics Research Mission Directorate has charged the Hypersonics Project with having a basic understanding of all systems that travel at hypersonic speeds within the Earth's and other planets atmospheres. This includes both powered and unpowered systems, such as re-entry vehicles and vehicles powered by rocket or airbreathing propulsion that cruise in and accelerate through the atmosphere. The primary objective of the Hypersonics Project is to develop physics-based predictive tools that enable the design, analysis and optimization of such systems. The Hypersonics Project charges the systems analysis discipline team with providing it the decision-making information it needs to properly guide research and technology development. Credible, rapid, and robust multi-disciplinary system analysis processes and design tools are required in order to generate this information. To this end, the principal challenges for the systems analysis team are the introduction of high fidelity physics into the analysis process and integration into a design environment, quantification of design uncertainty through the use of probabilistic methods, reduction in design cycle time, and the development and implementation of robust processes and tools enabling a wide design space and associated technology assessment capability. This paper will discuss the roles and responsibilities of the systems analysis discipline team within the Hypersonics Project as well as the tools, methods, processes, and approach that the team will undertake in order to perform its project designated functions.

  12. NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.

  13. The NASA Space Place: A Plethora of Games, Projects, and Fun Facts for Celebrating Astronomy

    NASA Astrophysics Data System (ADS)

    Leon, N. J.; Fisher, D. K.

    2008-12-01

    out activities to tie in with the IYA April topic, Galaxies and the Distant Universe. The infrared Spitzer Space Telescope, as well as the Galaxy Evolution Explorer (GALEX) spacecraft are strongly represented on The Space Place web site, with interactive games, images, and crafts that explore the wonders of and latest discoveries about galaxies. In addition, in our mailings and other partner communications throughout the year, we will feature special activities and projects on spaceplace.nasa.gov, and suggest ways to use these resources in IYA-related events.

  14. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    PubMed

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-06-01

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  15. Aspects of Synthetic Vision Display Systems and the Best Practices of the NASA's SVS Project

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Jones, Denise R.; Young, Steven D.; Arthur, Jarvis J.; Prinzel, Lawrence J.; Glaab, Louis J.; Harrah, Steven D.; Parrish, Russell V.

    2008-01-01

    NASA s Synthetic Vision Systems (SVS) Project conducted research aimed at eliminating visibility-induced errors and low visibility conditions as causal factors in civil aircraft accidents while enabling the operational benefits of clear day flight operations regardless of actual outside visibility. SVS takes advantage of many enabling technologies to achieve this capability including, for example, the Global Positioning System (GPS), data links, radar, imaging sensors, geospatial databases, advanced display media and three dimensional video graphics processors. Integration of these technologies to achieve the SVS concept provides pilots with high-integrity information that improves situational awareness with respect to terrain, obstacles, traffic, and flight path. This paper attempts to emphasize the system aspects of SVS - true systems, rather than just terrain on a flight display - and to document from an historical viewpoint many of the best practices that evolved during the SVS Project from the perspective of some of the NASA researchers most heavily involved in its execution. The Integrated SVS Concepts are envisagements of what production-grade Synthetic Vision systems might, or perhaps should, be in order to provide the desired functional capabilities that eliminate low visibility as a causal factor to accidents and enable clear-day operational benefits regardless of visibility conditions.

  16. NASA Ames Environmental Sustainability Report 2011

    NASA Technical Reports Server (NTRS)

    Clarke, Ann H.

    2011-01-01

    The 2011 Ames Environmental Sustainability Report is the second in a series of reports describing the steps NASA Ames Research Center has taken toward assuring environmental sustainability in NASA Ames programs, projects, and activities. The Report highlights Center contributions toward meeting the Agency-wide goals under the 2011 NASA Strategic Sustainability Performance Program.

  17. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    Leland Melvin (right), NASA Associate Administrator for Education, along with the head of the Mexican Space Agency, Dr. Francisco Javier Mendieta Jimenez shake hands after signing a Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program as NASA Administrator Charles Bolden looks on, Monday, March 18, 2013 at NASA Headquarters in Washington. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  18. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    NASA Administrator Charles Bolden (center) presents Dr. Francisco Javier Mendieta Jimenez, Director General of the Mexican Space Agency, a NASA montage in honor of the Reimbursable Space Act Agreement (RSAA) signed between the two agencies, Monday, March 18, 2013 at NASA Headquarters in Washington. Leland Melvin (right), NASA Associate Administrator for Education looks on. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  19. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    Leland Melvin (right), NASA Associate Administrator for Education, along with the head of the Mexican Space Agency, Dr. Francisco Javier Mendieta Jimenez pose for a photo after signing a Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program as NASA Administrator Charles Bolden looks on, Monday, March 18, 2013 at NASA Headquarters in Washington. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  20. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  1. NASA Metrology and Calibration, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The proceedings of the fourth annual NASA Metrology and Calibration Workshop are presented. This workshop covered (1) review and assessment of NASA metrology and calibration activities by NASA Headquarters, (2) results of audits by the Office of Inspector General, (3) review of a proposed NASA Equipment Management System, (4) current and planned field center activities, (5) National Bureau of Standards (NBS) calibration services for NASA, (6) review of NBS's Precision Measurement and Test Equipment Project activities, (7) NASA instrument loan pool operations at two centers, (8) mobile cart calibration systems at two centers, (9) calibration intervals and decals, (10) NASA Calibration Capabilities Catalog, and (11) development of plans and objectives for FY 1981. Several papers in this proceedings are slide presentations only.

  2. The manager's guide to NASA graphics standards

    NASA Technical Reports Server (NTRS)

    1980-01-01

    NASA managers have the responsibility to initiate and carry out communication projects with a degree of sophistication that properly reflects the agency's substantial work. Over the course of the last decade, it has become more important to clearly communicate NASA's objectives in aeronautical research, space exploration, and related sciences. Many factors come into play when preparing communication materials for internal and external use. Three overriding factors are: producing the materials by the most cost-efficient method; ensuring that each item reflects the vitality, knowledge, and precision of NASA; and portraying all visual materials with a unified appearance. This guide will serve as the primary tool in meeting these criteria. This publication spells out the many benefits inherent in the Unified Visual Communication System and describes how the system was developed. The last section lists the graphic coordinators at headquarters and the centers who can assist with graphic projects. By understanding the Unified Visual Communication System, NASA managers will be able to manage a project from inception through production in the most cost-effective manner while maintaining the quality of NASA communications.

  3. The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.

  4. NASA Hispanic Profile Interview with Evan Pineda

    NASA Image and Video Library

    2017-10-20

    Evan Pineda received his Ph.D. at the University of Michigan which was funded by a NASA project. After receiving a co-op position, he became a full-time employee at NASA Glenn Research Center. He talks about his project involvement with Space Launch System (SLS) and receiving the Hispanic Engineer National Achievement Awards Conference (HENAAC).

  5. NASA Sounding Rocket Program educational outreach

    NASA Astrophysics Data System (ADS)

    Eberspeaker, P. J.

    2005-08-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NASA Sounding Rocket Program engages in a host of student flight projects providing unique and exciting hands-on student space flight experiences. These projects include single stage Orion missions carrying "active" high school experiments and "passive" Explorer School modules, university level Orion and Terrier-Orion flights, and small hybrid rocket flights as part of the Small-scale Educational Rocketry Initiative (SERI) currently under development. Efforts also include educational programs conducted as part of major campaigns. The student flight projects are designed to reach students ranging from Kindergarteners to university undergraduates. The programs are also designed to accommodate student teams with varying levels of technical capabilities - from teams that can fabricate their own payloads to groups that are barely capable of drilling and tapping their own holes. The program also conducts a hands-on student flight project for blind students in collaboration with the National Federation of the Blind. The NASA Sounding Rocket Program is proud of its role in inspiring the "next generation of explorers" and is working to expand its reach to all regions of the United States and the international community as well.

  6. NASA Ames 2016 Highlights

    NASA Image and Video Library

    2016-12-28

    2016 presented the opportunity for NASA's Ames Research Center to meet its challenges and opportunities head on. Projects ranged from testing the next generation of air traffic control software to studying the stars of our galaxy. From developing life science experiments that flew aboard the International Space Station to helping protect our planet through airborne Earth observation campaigns. NASA's missions and programs are challenging and the people at NASA Ames Research Center continue to reach new heights and reveal the unknown for the benefit of all humankind!

  7. This modified F/A-18A is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's D

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.

  8. The NASA Earthdata Forums - An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Astrophysics Data System (ADS)

    Hearty, T. J., III; Acker, J. G.; Meyer, D. L.; Northup, E. A.; Bagwell, R.

    2017-12-01

    In this presentation, we will demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  9. Homemade ice cream, à la NASA

    NASA Image and Video Library

    2017-12-08

    Pictured above, Goddard's astrobiology lab makes cookies and cream ice cream using liquid nitrogen at the Science Jamboree. The NASA Goddard Science Jamboree took place on July 16, 2013. The event allowed the different departments at Goddard a chance to showcase their research and projects to other employees and summer interns. #nasa #nasagoddard #icecream Credit: NASA/Goddard Sawyer Rosenstein

  10. A reinterpretation of the data from the NASA Stratosphere-Troposphere Exchange Project

    NASA Astrophysics Data System (ADS)

    Newman, Paul A.; Schoeberl, Mark R.

    Data obtained during the NASA Stratosphere Troposphere Exchange Project (STEP) Mid-Latitude Field Experiment displayed laminae of ozone, water, and condensation nuclei in the stratosphere in association with a mid-latitude stratosphere-troposphere folding event. Danielsen et al. (1991) constructed cross sections of these observations, and interpreted these quasi-horizontal laminae as evidence of ultra-low frequency gravity waves. We use a new technique to show that these laminae could have resulted from differential advection, rather than transport by ultra-low frequency gravity waves. This new technique uses reverse domain filling back trajectories on multiple isentropic surfaces in conjunction with modified potential vorticity to reveal the qualitative details of the constituent laminae.

  11. NASA's approach to space commercialization

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  12. A NASA F/A-18, participating in the Automated Aerial Refueling (AAR) project, flies over the Dryden

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA F/A-18 is participating in the Automated Aerial Refueling (AAR) project. The 300-gallon aerial refueling store seen on the belly of the aircraft carries fuel and a refueling drogue. This aircraft acts as a tanker in the study to develop an aerodynamic model for future automated aerial refueling, especially of unmanned vehicles.

  13. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  14. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini project scientist at JPL, Linda Spilker, left, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, second from left, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, second from right, and Cassini assistant project science systems engineer Morgan Cable, right, participate in a Cassini science panel discussion during the Cassini NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. These two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project o

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project over California's Mojave Desert. This second flight phase is mapping the wingtip vortex of the lead aircraft, the Systems Research Aircraft (tail number 847), on the trailing F/A-18 tail number 847. Wingtip vortex is a spiraling wind flowing from the wing during flight. The project is studying the drag and fuel reduction of precision formation flying.

  16. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  17. Experiences From NASA/Langley's DMSS Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage

  18. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Social media gather in Kennedy Space Center’s Press Site auditorium for a briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18. NASA Social Media Team includes: Emily Furfaro and Amber Jacobson. Guest speakers include: Badri Younes, Deputy Associate Administrator for Space Communications and Navigation at NASA Headquarters in Washington; Dave Littmann, Project Manager for TDRS-M at NASA’s Goddard Space Flight Center; Neil Mallik, NASA Deputy Network Director for Human Spaceflight; Nicole Mann, NASA Astronaut; Steve Bowen, NASA Astronaut; Skip Owen, NASA Launch Services; Scott Messer, United Launch Alliance Program Manager for NASA Missions.

  19. The writers guide to NASA. [NASA Centers and public affairs contacts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA services of interest to writers and to the news media include personal interviews, daily audio reports of major missions, and projects via automated telephone, research assistance from historians or history monitors at technical libraries, the use of a collection of historical photographs, and the free loan of sound films of NASA research and development activities. The names and phones numbers are listed for public affairs contacts at Headquarters and at each of the major centers and their component installations. An overview of the six NASA program offices is included along with a vicinity map of each center and a description of their facilities and management responsibilities.

  20. Distributed management of scientific projects - An analysis of two computer-conferencing experiments at NASA

    NASA Technical Reports Server (NTRS)

    Vallee, J.; Gibbs, B.

    1976-01-01

    Between August 1975 and March 1976, two NASA projects with geographically separated participants used a computer-conferencing system developed by the Institute for the Future for portions of their work. Monthly usage statistics for the system were collected in order to examine the group and individual participation figures for all conferences. The conference transcripts were analysed to derive observations about the use of the medium. In addition to the results of these analyses, the attitudes of users and the major components of the costs of computer conferencing are discussed.

  1. NASA's In-Space Manufacturing Project: Development of a Multimaterial, Multiprocess Fabrication Laboratory for the International Space Station

    NASA Technical Reports Server (NTRS)

    Prater, T.; Werkheiser, N.; Bean, Q.; Ledbetter, F.; Soohoo, H.; Wilkerson, M.; Hipp, B.

    2017-01-01

    NASA's long term goal is to send humans to Mars. Over the next two decades, NASA will work with private industry to develop and demonstrate the technologies and capabilities needed to support exploration of the red planet by humans and ensure their safe return to earth. To accomplish this goal, NASA is employing a capability driven approach to its human spaceflight strategy. This approach will develop a suite of evolving capabilities which provide specific functions to solve exploration challenges. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing project, its past and current activities, and how technologies under development will ultimately culminate in a multimaterial, multiprocess fabrication laboratory ('FabLab') to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit may result in a loss of mission in transit to Mars. In order to have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The paper will discuss the phased approach to FabLab development, desired capabilities, and requirements for the hardware. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the FabLab will be tested on ISS, the system is ultimately intended for use in a deep space habitat or transit vehicle.

  2. NASA Report to Education, Volume 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an edition of 'NASA Report to Education' covering NASA's Educational Workshop, Lewis Research Center's T-34 and the Space Exploration Initiative. The first segment shows NASA Education Workshop program (NEWEST - NASA Educational Workshops for Elementary School Teachers). Highlights of the 14 days of intense training, lectures, fieldtrips and simple projects that the educators went through to teach the program are included. Participants are shown working on various projects such as the electromagnetic spectrum, living in Space Station Freedom, experience in T-34, tour of tower at the Federal Aviation Administrative Facilities, conducting an egg survival system and an interactive video conference with astronaut Story Musgrave. Participants share impressions of the workshop. The second segment tells how Lewis Research Center's T-34 aircraft is used to promote aerospace education in several Cleveland schools and excite students.

  3. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  4. Lunar Landing Testing at NASA Langley

    NASA Image and Video Library

    1965-06-18

    Lunar Landing Testing at NASA Langley. Lunar Landing Testing at NASA Langley. A simulated environment that contributed in a significant way to the success of Apollo project was the Lunar Landing Research Facility, an imposing 250 foot high, 400 foot long gantry structure that became operational in 1965. Published in the book "Space Flight Revolution" NASA SP-4308 pg. 376

  5. NASA Ambassadors: A Speaker Outreach Program

    NASA Technical Reports Server (NTRS)

    McDonald, Malcolm W.

    1998-01-01

    The work done on this project this summer has been geared toward setting up the necessary infrastructure and planning to support the operation of an effective speaker outreach program. The program has been given the name, NASA AMBASSADORS. Also, individuals who become participants in the program will be known as "NASA AMBASSADORS". This summer project has been conducted by the joint efforts of this author and those of Professor George Lebo who will be issuing a separate report. The description in this report will indicate that the NASA AMBASSADOR program operates largely on the contributions of volunteers, with the assistance of persons at the Marshall Space Flight Center (MSFC). The volunteers include participants in the various summer programs hosted by MSFC as well as members of the NASA Alumni League. The MSFC summer participation programs include: the Summer Faculty Fellowship Program for college and university professors, the Science Teacher Enrichment Program for middle- and high-school teachers, and the NASA ACADEMY program for college and university students. The NASA Alumni League members are retired NASA employees, scientists, and engineers. The MSFC offices which will have roles in the operation of the NASA AMBASSADORS include the Educational Programs Office and the Public Affairs Office. It is possible that still other MSFC offices may become integrated into the operation of the program. The remainder of this report will establish the operational procedures which will be necessary to sustain the NASA AMBASSADOR speaker outreach program.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 33: Technical communications practices and the use of information technologies as reported by Dutch and US aerospace engineers

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA ARC (U.S.), and NASA LaRC (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions concerning four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  7. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  8. NASA Downscaling Project

    NASA Technical Reports Server (NTRS)

    Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa

    2017-01-01

    A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA-2 reanalyses were used to drive the NU-WRF regional climate model and a GEOS-5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000-2010. The results of these experiments were compared to observational datasets to evaluate the output.

  9. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  10. Academy Sharing Knowledge (ASK). The NASA Source for Project Management Magazine. Volume 5

    NASA Technical Reports Server (NTRS)

    Post, Todd (Editor)

    2001-01-01

    How big is your project world? Is it big enough to contain other cultures, headquarters, hierarchies, and weird harpoon-like guns? Sure it is. The great American poet Walt Whitman said it best, 'I am large/I contain multitudes.' And so must you, Mr. and Ms. Project Manager. In this issue of ASK, we look outside the project box. See how several talented project managers have expanded their definition of project scope to include managing environments outside the systems and subsystems under their care. Here's a sampling of what we've put together for you this issue: In 'Three Screws Missing,' Mike Skidmore tells about his adventures at the Plesetek Cosmodrome in northern Russia. Ray Morgan in his story, 'Our Man in Kauai,' suggests we take a broader view of what's meant by 'the team.' Jenny Baer-Riedhart, the NASA program manager on the same Pathfinder solar-powered airplane, schools us in how to sell a program to Headquarters in 'Know Thyself--But Don't Forget to Learn About the Customer Too.' Scott Cameron of Proctor and Gamble talks about sharpening your hierarchical IQ in 'The Project Manager and the Hour Glass.' Mike Jansen in 'The Lawn Dart' describes how he and the 'voodoo crew' on the Space Shuttle Advanced Solid Rocket Motor program borrowed a harpoon-like gun from the Coast Guard to catch particles inside of a plume. These are just some of the stories you'll find in ASK this issue. We hope they cause you to stop and reflect on your own project's relationship to the world outside. We are also launching a new section this issue, 'There are No Mistakes, Only Lessons.' No stranger to ASK readers, Terry Little inaugurates this new section with his article 'The Don Quixote Complex.'

  11. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  12. 2007 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.; Delgado, Irebert

    2008-01-01

    The 2007 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA's new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA's fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA's turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.

  13. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  14. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  15. NASA IYA Programs

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2009-05-01

    NASA's Science Mission Directorate (SMD) launched a variety of programs to celebrate the International Year of Astronomy (IYA) 2009. A few examples will be presented to demonstrate how the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics has been given an IYA2009 flavor and made available to students, educators and the public worldwide. NASA participated in the official kickoff of US IYA activities by giving a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions that are now traveling to 40 public libraries around the country. NASA IYA Student Ambassadors represented the USA at the international Opening Ceremony in Paris, and have made strides in connecting with local communities throughout the USA. NASA's Object of the Month activities have generated great interest in the public through IYA Discovery Guides. Images from NASA's Great Observatories are included in the From Earth to the Universe (FETTU) exhibition, which was inaugurated both in the US and internationally. The Hubble Space Telescope Project had a tremendous response to its 100 Days of Astronomy "You Decide” competition. NASA's IYA programs have started a journey into the world of astronomy by the uninitiated and cultivated the continuation of a quest by those already enraptured by the wonders of the sky.

  16. NASA's Big Data Task Force

    NASA Astrophysics Data System (ADS)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  17. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    NASA Technical Reports Server (NTRS)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  18. Haughton-Mars Project (HMP)/NASA 2006 Lunar Medical Contingency Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.

    2006-01-01

    Medical requirements are currently being developed for NASA's space exploration program. Lunar surface operations for crews returning to the moon will be performed on a daily basis to conduct scientific research and construct a lunar habitat. Inherent to aggressive surface activities is the potential risk of injury to crew members. To develop an evidence-base for handling medical contingencies on the lunar surface, a simulation project was conducted using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic. A review of the Apollo lunar surface activities and personal communications with Apollo lunar crew members provided a knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity. Objectives were established to 1) demonstrate stabilization, field extraction and transfer an injured crew member to the habitat and 2) evaluate audio, visual and biomedical communication capabilities with ground controllers at multiple mission control centers. The simulation project s objectives were achieved. Among these objectives were 1) extracting a crew member from a sloped terrain by a two-member team in a 1-g analog environment, 2) establishing real-time communication to multiple space centers, 3) providing biomedical data to flight controllers and crew members, and 4) establishing a medical diagnosis and treatment plan from a remote site. The simulation project provided evidence for the types of equipment and methods needed for planetary space exploration. During the project, the crew members were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges. These trials provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives of this project will be incorporated into the exploration medical requirements involving an incapacited

  19. Fission Power System Technology for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  20. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  1. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  2. NASA Experience with UAS Science Applications

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Jennison, Chris

    2007-01-01

    Viewgraphs of NASA's Unmanned Aerial Systems (UAS) as it applies to Earth science missions is presented. The topics include: 1) Agenda; 2) Background; 3) NASA Science Aircraft Endurance; 4) Science UAS Development Challenges; 5) USCG Alaskan Maritime Surveillance; 6) NOAA/NASA UAV Demonstration Project; 7) Western States Fire Mission; 8) Esperanza Fire Emergency Response; 9) Ikhana (Predator B); 10) UAV Synthetic Aperture Radar (UAVSAR); 11) Global Hawk; and 12) Related Technologies

  3. Everybody Dreams: Preparing a New Generation. NASA Explorer Schools Project

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, 2005

    2005-01-01

    NASA Explorer Schools provides unique opportunities for students and teachers by offering access to technology and resources that are seemingly beyond reach. Combining new technologies with NASA content, lesson plans, and real-world experiments enables teachers to enhance inquiry-based learning and augment student engagement. This publication…

  4. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine; Anderson, Terry; Johnson, Courtrina; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of Central Maryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  5. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  6. Simplifying the construction of domain-specific automatic programming systems: The NASA automated software development workstation project

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.; Holtzman, Peter L.

    1987-01-01

    An overview is presented of the Automated Software Development Workstation Project, an effort to explore knowledge-based approaches to increasing software productivity. The project focuses on applying the concept of domain specific automatic programming systems (D-SAPSs) to application domains at NASA's Johnson Space Center. A version of a D-SAPS developed in Phase 1 of the project for the domain of space station momentum management is described. How problems encountered during its implementation led researchers to concentrate on simplifying the process of building and extending such systems is discussed. Researchers propose to do this by attacking three observed bottlenecks in the D-SAPS development process through the increased automation of the acquisition of programming knowledge and the use of an object oriented development methodology at all stages of the program design. How these ideas are being implemented in the Bauhaus, a prototype workstation for D-SAPS development is discussed.

  7. Simplifying the construction of domain-specific automatic programming systems: The NASA automated software development workstation project

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.; Holtzman, Peter L.

    1988-01-01

    An overview is presented of the Automated Software Development Workstation Project, an effort to explore knowledge-based approaches to increasing software productivity. The project focuses on applying the concept of domain specific automatic programming systems (D-SAPSs) to application domains at NASA's Johnson Space Flight Center. A version of a D-SAPS developed in Phase 1 of the project for the domain of space station momentum management is described. How problems encountered during its implementation led researchers to concentrate on simplifying the process of building and extending such systems is discussed. Researchers propose to do this by attacking three observed bottlenecks in the D-SAPS development process through the increased automation of the acquisition of programming knowledge and the use of an object oriented development methodology at all stages of the program design. How these ideas are being implemented in the Bauhaus, a prototype workstation for D-SAPS development is discussed.

  8. Update on NASA Microelectronics Activities

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.; Casey, Megan; Lauenstein, Jean-Marie

    2017-01-01

    Mission Statement: The NASA Electronic Parts and Packaging (NEPP) Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test. and usage of EEE parts by NASA as well as in collaboration with other government Agencies and industry. NASA Space Technology Mission Directorate (STMD) "STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise." Mission Statement: The Space Environments Testing Management Office (SETMO) will identify, prioritize, and manage a select suite of Agency key capabilities/assets that are deemed to be essential to the future needs of NASA or the nation, including some capabilities that lack an adequate business base over the budget horizon. NESC mission is to perform value-added independent testing, analysis, and assessments of NASA's high-risk projects to ensure safety and mission success. NASA Space Environments and Avionics Fellows as well as Radiation and EEE Parts Community of Practice (CoP) leads.

  9. NASA Ocean Altimeter Pathfinder Project. Report 2; Data Set Validation

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.; Ray, Richard D.; Beckley, Brian D.; Bremmer, Anita; Tsaoussi, Lucia S.; Wang, Yan-Ming

    1999-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how existing satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-series data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. Details are currently presented in two technical reports: Report# 1: Data Processing Handbook Report #2: Data Set Validation This report describes the validation of the data sets against a global network of high quality tide gauge measurements and provides an estimate of the error budget. The first report describes the processing schemes used to produce the geodetic consistent data set comprised of SEASAT, GEOSAT, ERS-1, TOPEX/ POSEIDON, and ERS-2 satellite observations.

  10. The Rural Outreach Project

    NASA Technical Reports Server (NTRS)

    Coleman, Clarence D.

    2000-01-01

    The Rural Outreach Project was designed to increase the diversity of NASA's workforce by: 1) Conducting educational research designed to investigate the most effective strategies for expanding innovative, NASA-sponsored pre-college programs into rural areas; 2) Field-testing identified rural intervention strategies; 3) Implementing expanded NASA educational programs to include 300 rural students who are disabled, female and/or minority; and 4) Disseminating project strategies. The Project was a partnership that included NASA Langley Research Center's Office of Education, Norfolk State University, Cooperative Hampton Roads Organizations for Minorities in Engineering (CHROME) and Paul D. Camp Community College. There were four goals and activities identified for this project; 1) Ascertain effective strategies for expanding successful NASA-sponsored urban-based, pre-college programs into rural settings; 2) Field test identified rural intervention strategies; 3) Publish or disseminate two reports, concerning project research and activities at a national conference; 4) Provide educational outreach to 300, previously underserved, rural students who are disabled, female and /or minority.

  11. Space Projects: Improvements Needed in Selecting Future Projects for Private Financing

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Office of Management and Budget (OMB) and NASA jointly selected seven projects for commercialization to reduce NASA's fiscal year 1990 budget request and to help achieve the goal of increasing private sector involvement in space. However, the efforts to privately finance these seven projects did not increase the commercial sector's involvement in space to the extent desired. The General Accounting Office (GAO) determined that the projects selected were not a fair test of the potential of increasing commercial investment in space at an acceptable cost to the government, primarily because the projects were not properly screened. That is, neither their suitability for commercialization nor the economic consequences of seeking private financing for them were adequately evaluated before selection. Evaluations and market tests done after selection showed that most of the projects were not viable candidates for private financing. GAO concluded that projects should not be removed from NASA's budget for commercial development until after careful screening has been done to determine whether adequate commercial demand exists, development risks are commercially acceptable and private financing is found or judged to be highly likely, and the cost effectiveness of such a decision is acceptable. Premature removal of projects from NASA's budget ultimately can cause project delays and increased costs when unsuccessful commercialization candidates must be returned to the budget. NASA also needs to ensure appropriate comparisons of government and private financing options for future commercialization projects.

  12. NASA Pathways Internship: Spring 2016

    NASA Technical Reports Server (NTRS)

    Alvarez, Oscar, III

    2016-01-01

    I was selected to contribute to the Data Systems and Handling Branch under the Avionics Flight Systems Division at the Lyndon B. Johnson Space Center in Houston, Texas. There I used my knowledge from school, as well as my job experience from the military, to help me comprehend my assigned project and contribute to it. With help from my mentors, supervisors, colleagues, and an excellent NASA work environment, I was able to learn, as well as accomplish, a lot towards my project. Not only did I understand more about embedded systems, microcontrollers, and low-level programming, I also was given the opportunity to explore the NASA community.

  13. NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Sukanek, Peter C.

    2002-01-01

    The NASA EPSCoR project in Mississippi involved investigations into three areas of interest to NASA by researchers at the four comprehensive universities in the state. These areas involved: (1) Noninvasive Flow Measurement Techniques, (2) Spectroscopic Exhaust Plume Measurements of Hydrocarbon Fueled Rocket Engines and (3) Integration of Remote Sensing and GIS data for Flood Forecasting on the Mississippi Gulf Coast. Each study supported a need at the Stennis Space Center in Mississippi. The first two addressed needs in rocket testing, and the third, in commercial remote sensing. Students from three of the institutions worked with researchers at Stennis Space Center on the projects.

  14. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  15. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  16. Overview of NASA GRC's Efforts In SWBLI

    NASA Technical Reports Server (NTRS)

    Long-Davis, Mary Jo

    2017-01-01

    Overview of NASA Efforts (related to SWBLI research) An overview of NASA's restructured ARMD Program and the resulting new projects. Areas of research pertaining to shock wave boundary layer interaction are highlighted. Plans and status for specific tasks are presented.

  17. Using NASA's Reference Architecture: Comparing Polar and Geostationary Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Burnett, Michael

    2013-01-01

    The JPSS and GOES-R programs are housed at NASA GSFC and jointly implemented by NASA and NOAA to NOAA requirements. NASA's role in the JPSS Ground System is to develop and deploy the system according to NOAA requirements. NASA's role in the GOES-R ground segment is to provide Systems Engineering expertise and oversight for NOAA's development and deployment of the system. NASA's Earth Science Data Systems Reference Architecture is a document developed by NASA's Earth Science Data Systems Standards Process Group that describes a NASA Earth Observing Mission Ground system as a generic abstraction. The authors work within the respective ground segment projects and are also separately contributors to the Reference Architecture document. Opinions expressed are the author's only and are not NOAA, NASA or the Ground Projects' official positions.

  18. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Catherine Peddie, Wide Field Infrared Survey Telescope (WFIRST) Deputy Project Manager use a full-scale model of WFIRST to describe the features of the observatory. Photo Credit: NASA/Goddard/Rebecca Roth Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Jim Jeletic, Deputy Project Manager of Hubble Space Telescope (HST) talk about telescope operations just outside the HST control center at Goddard. Photo Credit: NASA/Goddard/Rebecca Roth Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXIII - Technical communications practices and the use of information technologies as reported by Dutch and U.S. aerospace engineers

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  1. The NASA rocky mountain space grant high altitude research balloon project

    NASA Astrophysics Data System (ADS)

    Moore, R. G.; Espy, P.

    1994-02-01

    A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System receiver, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command the transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere.

  2. The NASA rocky moutain space grant high altitude research balloon project

    NASA Astrophysics Data System (ADS)

    Moore, R. G.; Espy, P.

    1994-02-01

    A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System reciever, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere.

  3. Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    2012-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and the status and results to date will be presented.

  4. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  5. NASA ARIA Project Provides New Look at Earth Surface Deformation from Nepal Quake

    NASA Image and Video Library

    2015-05-04

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 70-day interval between two ALOS-2 images, acquired February 21 and May 2, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 4.7 inches (11.9 centimeters) of surface motion. The contours show the land around Kathmandu has moved toward the satellite by up to 4.6 feet (1.4 meter), or 5.2 feet (1.6 meters) if we assume purely vertical motion. Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19383

  6. A Research Design for NASA-Funded Professional Development Projects

    NASA Astrophysics Data System (ADS)

    Bleicher, R. E.; Lambert, J.; Getty, S. R.

    2011-12-01

    This proposal outlines a research plan designed to measure gains in student learning resulting from their teachers participating in professional development. Project Description Misconceptions about global climate change (GCC) are prevalent in the general public (Kellstedt, Zahran, & Vedlitz, 2008; Washington & Cook, 2011). One solution is to provide high school students with a better grounding in the basic science and data that underlie GCC. The overarching goal of a NASA-funded project, Promoting Educational Leadership in Climate Change Literacy (PEL), is to increase GCC literacy in high school students. Research Design The research design is interpretative (Erickson, 2006), framed within a multi-method design, synthesizing both quantitative and qualitative data sources (Morse, 2003). Overall, the data will provide rich information about the PEL's impact on curriculum development, teacher pedagogical knowledge, and student learning. The expectancy-value theory of achievement motivation (E-V-C) (Fan, 2011; Wigfield & Eccles, 1994) provides a theoretical foundation for the research. Expectancy is the degree to which a teacher or student has reason to expect that they will be successful in school. Value indicates whether they think that performance at school will be worthwhile to them. Cost is the perceived sacrifices that must be undertaken, or factors that can inhibit, a successful performance at school. For students, data from an embedded E-V-C investigation will help articulate how E-V-C factors relate to student interest in science, continuing to study science, or embarking on STEM related careers. For teachers, the E-V-C measures will give insight into a key mediating variable on student achievement in science. The evaluation will seek to address research questions at the student and teacher levels. Table 1 presents a sample of research questions and data sources. This is a sample of a much larger set of questions that will be addressed in the project. Data

  7. The NASA Integrated Information Technology Architecture

    NASA Technical Reports Server (NTRS)

    Baldridge, Tim

    1997-01-01

    This document defines an Information Technology Architecture for the National Aeronautics and Space Administration (NASA), where Information Technology (IT) refers to the hardware, software, standards, protocols and processes that enable the creation, manipulation, storage, organization and sharing of information. An architecture provides an itemization and definition of these IT structures, a view of the relationship of the structures to each other and, most importantly, an accessible view of the whole. It is a fundamental assumption of this document that a useful, interoperable and affordable IT environment is key to the execution of the core NASA scientific and project competencies and business practices. This Architecture represents the highest level system design and guideline for NASA IT related activities and has been created on the authority of the NASA Chief Information Officer (CIO) and will be maintained under the auspices of that office. It addresses all aspects of general purpose, research, administrative and scientific computing and networking throughout the NASA Agency and is applicable to all NASA administrative offices, projects, field centers and remote sites. Through the establishment of five Objectives and six Principles this Architecture provides a blueprint for all NASA IT service providers: civil service, contractor and outsourcer. The most significant of the Objectives and Principles are the commitment to customer-driven IT implementations and the commitment to a simpler, cost-efficient, standards-based, modular IT infrastructure. In order to ensure that the Architecture is presented and defined in the context of the mission, project and business goals of NASA, this Architecture consists of four layers in which each subsequent layer builds on the previous layer. They are: 1) the Business Architecture: the operational functions of the business, or Enterprise, 2) the Systems Architecture: the specific Enterprise activities within the context

  8. NASA Hydrogen Research at Florida Universities, Program Year 2003

    NASA Technical Reports Server (NTRS)

    Block, David L.; Raissi, Ali

    2006-01-01

    This document presents the final report for the NASA Hydrogen Research at Florida Universities project for program year 2003. This multiyear hydrogen research program has positioned Florida to become a major player in future NASA space and space launch projects. The program is funded by grants from NASA Glenn Research Center with the objective of supporting NASA's hydrogen-related space, space launch and aeronautical research activities. The program conducts over 40 individual projects covering the areas of cryogenics, storage, production, sensors, fuel cells, power and education. At the agency side, this program is managed by NASA Glenn Research Center and at the university side, co-managed by FSEC and the University of Florida with research being conducted by FSEC and seven Florida universities: Florida International University, Florida State University, Florida A&M University, University of Central Florida, University of South Florida, University of West Florida and University of Florida. For detailed information, see the documents section of www.hydrogenresearch.org. This program has teamed these universities with the nation's premier space research center, NASA Glenn, and the nation's premier space launch facility, NASA Kennedy Space Center. It should be noted that the NASA Hydrogen Research at Florida Universities program has provided a shining example and a conduit for seven Florida universities within the SUS to work collaboratively to address a major problem of national interest, hydrogen energy and the future of energy supply in the U.S.

  9. Expanded Guidance for NASA Systems Engineering. Volume 2: Crosscutting Topics, Special Topics, and Appendices

    NASA Technical Reports Server (NTRS)

    Hirshorn, Steven R.

    2017-01-01

    Historically, most successful NASA projects have depended on effectively blending project management, systems engineering, and technical expertise among NASA, contractors, and third parties. Underlying these successes are a variety of agreements (e.g., contract, memorandum of understanding, grant, cooperative agreement) between NASA organizations or between NASA and other Government agencies, Government organizations, companies, universities, research laboratories, and so on. To simplify the discussions, the term "contract" is used to encompass these agreements. This section focuses on the NASA systems engineering activities pertinent to awarding a contract, managing contract performance, and completing a contract. In particular, NASA systems engineering interfaces to the procurement process are covered, since the NASA engineering technical team plays a key role in the development and evaluation of contract documentation. Contractors and third parties perform activities that supplement (or substitute for) the NASA project technical team accomplishment of the NASA common systems engineering technical process activities and requirements outlined in this guide. Since contractors might be involved in any part of the systems engineering life cycle, the NASA project technical team needs to know how to prepare for, allocate or perform, and implement surveillance of technical activities that are allocated to contractors.

  10. The Electronic Documentation Project in the NASA mission control center environment

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Leigh, Albert

    1994-01-01

    NASA's space programs like many other technical programs of its magnitude is supported by a large volume of technical documents. These documents are not only diverse but also abundant. Management, maintenance, and retrieval of these documents is a challenging problem by itself; but, relating and cross-referencing this wealth of information when it is all on a medium of paper is an even greater challenge. The Electronic Documentation Project (EDP) is to provide an electronic system capable of developing, distributing and controlling changes for crew/ground controller procedures and related documents. There are two primary motives for the solution. The first motive is to reduce the cost of maintaining the current paper based method of operations by replacing paper documents with electronic information storage and retrieval. And, the other is to improve the efficiency and provide enhanced flexibility in document usage. Initially, the current paper based system will be faithfully reproduced in an electronic format to be used in the document viewing system. In addition, this metaphor will have hypertext extensions. Hypertext features support basic functions such as full text searches, key word searches, data retrieval, and traversal between nodes of information as well as speeding up the data access rate. They enable related but separate documents to have relationships, and allow the user to explore information naturally through non-linear link traversals. The basic operational requirements of the document viewing system are to: provide an electronic corollary to the current method of paper based document usage; supplement and ultimately replace paper-based documents; maintain focused toward control center operations such as Flight Data File, Flight Rules and Console Handbook viewing; and be available NASA wide.

  11. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  12. Freedom is an international partnership. [foreign contributions to NASA Space Station project

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.

    1990-01-01

    The NASA Space Station Freedom (SSF) project initiated in 1984 is a collaborative one among the U.S., Japan, Canada, and the 10 nations participating in ESA. The SSF partners have over the last six years defined user requirements, decided on the hardware to be manufactured, and constructed a framework for long-term cooperation. SSF will be composed of user elements furnished by the foreign partners and a U.S.-supplied infrastructure encompassing the truss assembly, electrical power system, and crew living quarters. The U.S. will also furnish a lab and a polar-orbit platform; ESA, a second lab and the coorbiting Free-Flying Laboratory, as well as a second polar platform. Japan's Japanese Experiment Module shall include an Exposed Facility and an Experimental Logistics module. Canada will contribute the Mobile Servicing System robotic assembler/maintainer for the whole of SFF.

  13. The NASA Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  14. NASA and ESA Collaboration on Hexavalent Chrome Free Coatings

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2017-01-01

    Presentation on the NASA and ESA Collaboration on Hexavalent Chrome Free Coatings project. Project is in response to a Memorandum of Understanding between NASA and ESA Concerning Cooperation in the Field of Space Transportation - signed September 11, 2009. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) have expressed mutual interest in pursuing cooperation in the areas of evaluating hexavalent chrome-free coatings, environmentally-preferable coatings for maintenance of launch facilities and ground support equipment, citric acid as an alternative to nitric acid for passivation of stainless steel alloys.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 58; Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as (1) the order in which report components are read, (2) components used to determine if a report would be read, (3) those components that could be deleted, (4) the placement of such components as the symbols list, (e) the de-sirability of a table of contents, (5) the format of reference citations, (6) column layout and right margin treatment, and (7) and person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 65: Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this article, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as: (a) the order in which report components are read; (b) components used to determine if a report would be read; (c) those components that could be deleted; (d) the placement of such components as the symbols list; (e) the desirability of a table of contents; (f) the format of reference citations; (g) column layout and right margin treatment; and (h) writing style in terms of person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  17. A Framework for Evaluation of Climate Science Professional Development Projects: A NICE NASA Example

    NASA Astrophysics Data System (ADS)

    Comfort, K.; Bleicher, R. E.

    2012-12-01

    Purpose of Presentation This research presents the overall logic model for the evaluation plan for a three-year NASA-funded project focused on teacher professional development. This session will highlight how we are using data to continually revise the evaluation plan, and we will also share insights about communication between the external evaluator and the PI. Objectives and Research Questions PEL leverages three NASA NICE projects with a high school district, providing professional development for teachers, learning opportunities for students, parental involvement and interaction with NASA scientists. PEL aims to increase Climate Science literacy in high school students, with a focus on Hispanic students, through scientific argumentation using authentic NASA data. Our research will concentrate on investigating the following questions: 1. What do we know about the alternative conceptions students' hold about climate science and what is challenging for students? 2. Are students developing climate science literacy, especially in the difficult concept areas, after PEL implementation? 3. How effective is PEL in nurturing scientific argumentation skills? 4. How effective are the resources we are providing in PEL? 5. Is there evidence that teachers are establishing stronger leadership capacity in their schools? Theoretical Framework for PEL Evaluation The expectancy-value theory of achievement motivation (E-V-C) (Fan, 2011; Wigfield & Eccles, 1994) provides a theoretical foundation for the research. Expectancy is the degree to which a teacher or student has reason to expect that they will be successful in school. Value indicates whether they think that performance at school will be worthwhile to them. Cost is the perceived sacrifices that must be undertaken, or factors that can inhibit a successful performance at school. For students, data from an embedded E-V-C investigation will help articulate how E-V-C factors relate to student interest in science, continuing to

  18. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  19. NASA chief scientist visit

    NASA Image and Video Library

    2011-07-19

    NASA Chief Scientist Dr. Waleed Abdalati visited Stennis Space Center on July 19, to learn about the extensive science capabilities onsite. Shown at right are: (seated, l to r), Stennis Center Director Patrick Scheuermann; Dr. Abdalati; U.S. Navy Rear Adm. Jonathan White; NOAA National Data Buoy Center Program Manager Shannon McArthur; (standing, l to r) Stennis Project Directorate Assistant Director Anne Peek; Stennis Applied Science & Technology Project Office Chief Duane Armstrong; and Stennis Project Directorate Director Keith Brock.

  20. NASA to Launch Mars Rover in 2020 Artist Concept

    NASA Image and Video Library

    2016-07-14

    NASA's Mars 2020 Project will re-use the basic engineering of NASA's Mars Science Laboratory/Curiosity to send a different rover to Mars, with new objectives and instruments. This artist's concept depicts the top of the 2020 rover's mast. http://photojournal.jpl.nasa.gov/catalog/PIA20760

  1. A Study of Technical Engineering Peer Reviews at NASA

    NASA Technical Reports Server (NTRS)

    Chao, Lawrence P.; Tumer, Irem Y.; Bell, David G.

    2003-01-01

    This report describes the state of practices of design reviews at NASA and research into what can be done to improve peer review practices. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review and Critical Design Review are a required part of every project and mission development. However, the technical, engineering peer reviews that support teams' work on such projects are informal, some times ad hoc, and inconsistent across the organization. The goal of this work is to identify best practices and lessons learned from NASA's experience, supported by academic research and methodologies to ultimately improve the process. This research has determined that the organization, composition, scope, and approach of the reviews impact their success. Failure Modes and Effects Analysis (FMEA) can identify key areas of concern before or in the reviews. Product definition tools like the Project Priority Matrix, engineering-focused Customer Value Chain Analysis (CVCA), and project or system-based Quality Function Deployment (QFD) help prioritize resources in reviews. The use of information technology and structured design methodologies can strengthen the engineering peer review process to help NASA work towards error-proofing the design process.

  2. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to James Pontius, Global Ecosystem Dynamics Investigator (GEDI) Project Manager and Bryan Blair, GEDI Deputy Principal Investigator talk about mission and science of GEDI and the collaborative work being done with Sweden. Photo Credit: NASA/Goddard/Rebecca Roth Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  4. The Challenges of Integrating NASA's Human, Budget, and Data Capital within the Constellation Program's Exploration Launch Projects Office

    NASA Technical Reports Server (NTRS)

    Kidd, Luanne; Morris, Kenneth B.; Self, Tim

    2006-01-01

    The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into usehl knowledge that equips the team to design and develop superior products for customers and stakeholders. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates these resources to create an engineering business environment that promotes mission success.

  5. NASA and Public Libraries: Enhancing STEM Literacy in Underserved Communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Harold, J. B.; Randall, C.

    2016-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, and defining the conditions necessary to support life beyond Earth. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was recently funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are developing new ways to engage their patrons in STEM learning, and NCIL's STAR Library Education Network (STAR_Net) has been supporting their efforts for the last eight years, including through a vibrant community of practice that serves both librarians and STEM professionals. Project stakeholders include public library staff, state libraries, the earth and space science education community at NASA, subject matter experts, and informal science educators. The project will leverage high-impact SMD and library events to catalyze partnerships through dissemination of SMD assets and professional development. It will also develop frameworks for public libraries to increase STEM interest pathways in their communities (with supports for reaching underserved audiences). This presentation will summarize the key activities and expected outcomes of the 5-year project.

  6. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  7. The NASA Astrophysics Data System

    Science.gov Websites

    a digital library for researchers in astronomy and astrophysics. It also covers other subject areas related to astronomy and astrophysics. This data system is a NASA funded project and access to all ADS Eichhorn, Project Scientist for ADS, received the Physics, Astronomy and Mathematics Division Award from

  8. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    projects under five functional themes. I) Streamflow and Flood Forecasting 2) Water Supply and Irrigation (includes evapotranspiration) 3) Drought 4) Water Quality 5) Climate and Water Resources. To maximize this activity NASA Water Resources Program works closely with other government agencies (e.g., the National Oceanic and Atmospheric Administration (NOAA); the U.S. Department of Agriculture (USDA); the U.S. Geological Survey (USGS); the Environmental Protection Agency (EPA), USAID, the Air Force Weather Agency (AFWA)), universities, non-profit national and international organizations, and the private sector. The NASA Water Resources program currently is funding 21 active projects under the functional themes (http://wmp.gsfc.nasa.gov & http://science.nasa.gov/earth-science/applied-sciences/).

  9. 2012 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2012-01-01

    This report provides a NASA Range Safety (NRS) overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program (RSP) activities performed during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be conducted in the future. Specific topics discussed in the 2012 NASA Range Safety Annual Report include a program overview and 2012 highlights; Range Safety Training; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  10. Optical information processing for NASA's space exploration

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Ochoa, Ellen; Juday, Richard

    1990-01-01

    The development status of optical processing techniques under development at NASA-JPL, NASA-Ames, and NASA-Johnson, is evaluated with a view to their potential applications in future NASA planetary exploration missions. It is projected that such optical processing systems can yield major reductions in mass, volume, and power requirements relative to exclusively electronic systems of comparable processing capabilities. Attention is given to high-order neural networks for distortion-invariant classification and pattern recognition, multispectral imaging using an acoustooptic tunable filter, and an optical matrix processor for control problems.

  11. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  12. OAI and NASA's Scientific and Technical Information

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Rocker, JoAnne; Harrison, Terry L.

    2002-01-01

    The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is an evolving protocol and philosophy regarding interoperability for digital libraries (DLs). Previously, "distributed searching" models were popular for DL interoperability. However, experience has shown distributed searching systems across large numbers of DLs to be difficult to maintain in an Internet environment. The OAI-PMH is a move away from distributed searching, focusing on the arguably simpler model of "metadata harvesting". We detail NASA s involvement in defining and testing the OAI-PMH and experience to date with adapting existing NASA distributed searching DLs (such as the NASA Technical Report Server) to use the OAI-PMH and metadata harvesting. We discuss some of the entirely new DL projects that the OAI-PMH has made possible, such as the Technical Report Interchange project. We explain the strategic importance of the OAI-PMH to the mission of NASA s Scientific and Technical Information Program.

  13. NASA Johnson Style_ Gangnam Style Parody

    NASA Image and Video Library

    2012-12-14

    NASA Johnson Style is a volunteer outreach video project created by the students of NASA's Johnson Space Center. It was created as an educational parody of Psy's Gangnam Style. The lyrics and scenes in the video have been re-imagined in order to inform the public about the amazing work going on at NASA and the Johnson Space Center. Special thanks to astronauts Tracy Caldwell Dyson, Mike Massimino and Clay Anderson Special thanks to Mr. Mike Coats, Dr. Ellen Ochoa, and all supporting senior staff members

  14. NASA Global Hawk Overview

    NASA Technical Reports Server (NTRS)

    Naftel, Chris

    2014-01-01

    The NASA Global Hawk Project is supporting Earth Science research customers. These customers include: US Government agencies, civilian organizations, and universities. The combination of the Global Hawks range, endurance, altitude, payload power, payload volume and payload weight capabilities separates the Global Hawk platform from all other platforms available to the science community. This presentation includes an overview of the concept of operations and an overview of the completed science campaigns. In addition, the future science plans, using the NASA Global Hawk System, will be presented.

  15. A review of NASA-sponsored technology assessment projects

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Alexander, A. D., III; Wood, R. D.

    1978-01-01

    Recent technology assessment studies sponsored by NASA are reviewed, and a summary of the technical results as well as a critique of the methodologies are presented. The reviews include Assessment of Lighter-Than-Air Technology, Technology Assessment of Portable Energy RDT&P, Technology Assessment of Future Intercity Passenger Transportation Systems, and Technology Assessment of Space Disposal of Radioactive Nuclear Waste. The use of workshops has been introduced as a unique element of some of these assessments. Also included in this report is a brief synopsis of a method of quantifying opinions obtained through such group interactions. Representative of the current technology assessments, these studies cover a broad range of socio-political factors and issues in greater depth than previously considered in NASA sponsored studies. In addition to the lessons learned through the conduct of these studies, a few suggestions for improving the effectiveness of future technology assessments are provided.

  16. The NASA High Speed ASE Project: Computational Analyses of a Low-Boom Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; DeLaGarza, Antonio; Zink, Scott; Bounajem, Elias G.; Johnson, Christopher; Buonanno, Michael; Sanetrik, Mark D.; Yoo, Seung Y.; Kopasakis, George; Christhilf, David M.; hide

    2014-01-01

    A summary of NASA's High Speed Aeroservoelasticity (ASE) project is provided with a focus on a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The summary includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, structured and unstructured CFD grids, and discussion of the FEM development including sizing and structural constraints applied to the N+2 configuration. Linear results obtained to date include linear mode shapes and linear flutter boundaries. In addition to the tasks associated with the N+2 configuration, a summary of the work involving the development of AeroPropulsoServoElasticity (APSE) models is also discussed.

  17. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Senator Mikulski views the James Webb Space Telescope being assembled in a clean room at Goddard. Webb project manager Bill Oches talked to the Senator about the progress being made with the installation of its 18 primary mirrors. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6, 2015. She discussed her history with Goddard and appropriations for NASA in 2016. Credit: NASA/Goddard/Bill Hrybyk Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Continuing Evaluation of S'COOL, an Educational Outreach Project Focused on NASA's CERES Program

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Costulis, P. K.; Young, D. F.; Detweiler, P. T.; Sepulveda, R.; Stoddard, D. B.

    2002-12-01

    The Students' Cloud Observations On-Line (S'COOL) project began in early 1997 with 3 participating teachers acting as test sites. In the nearly 6 years since then, S'COOL has grown by leaps and bounds. Currently over 1250 sites in 61 countries are registered to participate. On the face of it, this seems like a huge success. However, to ensure that this effort continues to be useful to educators, we continue to use a variety of evaluation methods. S'COOL is a modest outreach effort associated with the Clouds and the Earth's Radiant Energy System (CERES) instrument of NASA's Earth Observing System. For most of its existence S'COOL has been run on the part-time efforts of a couple of CERES scientists, one or two web and database specialists, and a teacher-in-residence. Total funding for the project has never exceeded \\$300,000 per year, including everyone's time. Aside from the growth in registered participants, the number of cloud observations is also tracked. 6,500 were submitted in the past year, averaging about 20 per actively participating class, for a total of over 15,000 observations to date. S'COOL participation has always been at the discretion of the teacher; we do not require a set number of observations. Due to various difficulties with CERES data processing, only about 1,000 satellite matches to the observations are currently in the S'COOL database. However, examination of these matches has already provided some useful information about the problem of cloud detection from space. Less objective information is provided by extensive surveys of teachers attending our summer teacher workshops (run for 4 years and reaching 78 teachers so far), the on-line EDCATS survey run by NASA HQ which we ask our teachers to fill out annually, and day-to-day interaction with teachers - whether participants, conference attendees, or other interested educators. A new survey instrument is being designed (the last participant survey was in Fall 2000) and will be administered

  19. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  20. Understanding the Manager of the Project Front-End

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Imprescia, Cliff (Technical Monitor)

    2000-01-01

    Historical data and new findings from interviews with managers of major National Aeronautics and Space Administration (NASA) projects confirm literature reports about the criticality of the front-end phase of project development, where systems engineering plays such a key role. Recent research into the management of ten contemporary NASA projects, combined with personal experience of the author in NASA, provide some insight into the relevance and importance of the project manager in this initial part of the project life cycle. The research findings provide evidence of similar approaches taken by the NASA project manager.

  1. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael (Editor); Shaw, Tianna

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve

  2. NASA Update for Unidata Stratcomm

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2017-01-01

    The NASA representative to the Unidata Strategic Committee presented a semiannual update on NASAs work with and use of Unidata technologies. The talk updated Unidata on the program of cloud computing prototypes underway for the Earth Observing System Data and Information System (EOSDIS). Also discussed was a trade study on the use of the Open source Project for a Network Data Access Protocol (OPeNDAP) with Web Object Storage in the cloud.

  3. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  4. Partnering with Universities, a NASA Visitor Center, Schools, and the INSPIRE Project to Perform Research and Outreach Activities

    NASA Astrophysics Data System (ADS)

    Adams, M.; Smith, J. A.; Kloostra, E.; Knupp, K. R.; Taylor, K.; Anderson, S.; Baskauf, C. J.; Buckner, S.; DiMatties, J.; Fry, C. D.; Gaither, B.; Galben, C. W.; Gallagher, D. L.; Heaston, M. P.; Kraft, J.; Meisch, K.; Mills, R.; Nations, C.; Nielson, D.; Oelgoetz, J.; Rawlins, L. P.; Sudbrink, D. L.; Wright, A.

    2017-12-01

    For the August 2017 eclipse, NASA's Marshall Space Flight Center partnered with the U.S. Space and Rocket Center (USSRC), Austin Peay State University (APSU) in Clarksville, Tennessee, the University of Alabama in Huntsville (UAH), the Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE) Project, and the local school systems of Montgomery County, Tennessee, and Christian County, Kentucky. Multiple site visits and workshops were carried out during the first eight months of 2017 to prepare local teachers and students for the eclipse. A special curriculum was developed to prepare USSRC Space Camp and INSPIRE students to observe and participate in science measurements during the eclipse. Representatives from Christian County school system and APSU carried out observations for the Citizen Continental-America Telescopic Eclipse (CATE) Experiment in two separate locations. UAH and APSU as part of the Montana State Ballooning Project, launched balloons containing video cameras and other instruments. USSRC Space Camp students and counselors and INSPIRE students conducted science experiments that included the following: atmospheric science investigations of the atmospheric boundary layer, very-low frequency and Ham radio observations to investigate ionospheric responses to the eclipse, animal and insect observations, solar-coronal observations, eclipse shadow bands. We report on the results of all these investigations.

  5. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  6. A Novel Approach for Engaging Academia in Collaborative Projects with NASA through the X-Hab Academic Innovation Challenge

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Gattuso, Kelly

    2015-01-01

    The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility to be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.

  7. A Novel Approach for Engaging Academia in Collaborative Projects with NASA through the X-Hab Academic Innovation Challenge

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Gattuso, Kelly J.

    2015-01-01

    The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility of be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.

  8. FAA/NASA UAS Traffic Management Pilot Program (UPP)

    NASA Technical Reports Server (NTRS)

    Johnson, Ronald D.; Kopardekar, Parimal H.; Rios, Joseph L.

    2018-01-01

    NASA Ames is leading ATM R&D organization. NASA started working on UTM in 2012, it's come a long way primarily due to close relationship with FAA and industry. We have a research transition team between FAA and NASA for UTM. We have a few other RTTs as well. UTM is a great example of collaborative innovation, and now it's reaching very exciting stage of UTM Pilot Project (UPP). NASA is supporting FAA and industry to make the UPP most productive and successful.

  9. The Mars Express/NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.

    2005-01-01

    ESA s Mars Express Mission involves international collaboration between the European Space Agency (ESA) and the European space agencies with the National Aeronautics and Space Administration (NASA) as a junior partner. The primary objective of this mission is to search for hydrologic resources on the surface of Mars. Mars Express was launched from Baikonur, Kazakhstan on June 2, 2003 and arrived at Mars on December 25, 2003. Orbital science observations started in January 2004.

  10. NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project. The first flight was performed for evaluation purposes, and the spike was not extended. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  11. NDE Software Developed at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Rauser, Richard W.; Nichols, Charles; Bonacuse, Peter J.

    2014-01-01

    NASA Glenn Research Center has developed several important Nondestructive Evaluation (NDE) related software packages for different projects in the last 10 years. Three of the software packages have been created with commercial-grade user interfaces and are available to United States entities for download on the NASA Technology Transfer and Partnership Office server (https://sr.grc.nasa.gov/). This article provides brief overviews of the software packages.

  12. The NASA Library and Researchers at Goddard: A Visitor's Perspective

    ERIC Educational Resources Information Center

    Powell, Jill H.

    2014-01-01

    Jill Powell, engineering librarian from Cornell University, visited the library at NASA Goddard in Greenbelt, Maryland in July 2013, interviewing library staff and selected NASA scientists. She studied the library's digital projects, publications, services, and operations. She also interviewed several NASA scientists on information-seeking…

  13. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  14. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  15. NASA's Atmospheric Effects of Aviation Project: Results of the August 1999 Aerosol Measurement Intercomparison Workshop, Laboratory Phase

    NASA Technical Reports Server (NTRS)

    Cofer, W. Randy, III; Anderson, Bruce E.; Connors, V. S.; Wey, C. C.; Sanders, T.; Twohy, C.; Brock, C. A.; Winstead, E. L.; Pui, D.; Chen, Da-Ren

    2001-01-01

    During August 1-14, 1999, NASA's Atmospheric Effects of Aviation Project (AEAP) convened a workshop at the NASA Langley Research Center to try to determine why such a wide variation in aerosol emissions indices and chemical and physical properties have been reported by various independent AEAP-supported research teams trying to characterize the exhaust emissions of subsonic commercial aircraft. This workshop was divided into two phases, a laboratory phase and a field phase. The laboratory phase consisted of supplying known particle number densities (concentrations) and particle size distributions to a common manifold for the participating research teams to sample and analyze. The field phase was conducted on an aircraft run-up pad. Participating teams actually sampled aircraft exhaust generated by a Langley T-38 Talon aircraft at 1 and 9 m behind the engine at engine powers ranging from 48 to 100 percent. Results from the laboratory phase of this intercomparison workshop are reported in this paper.

  16. NASA software documentation standard software engineering program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  17. NASA Dryden's Lori Losey was named NASA's 2004 Videographer of the Year in part for her camera work during NASA's AirSAR 2004 science mission in Chile.

    NASA Image and Video Library

    2004-03-11

    Lori Losey, an employee of Arcata Associates at Dryden, was honored with NASA's 2004 Videographer of the Year award for her work in two of the three categories in the NASA video competition, public affairs and documentation. In the public affairs category, Losey received a first-place citation for her footage of an Earth Science mission that was flown aboard NASA's DC-8 Flying Laboratory in South America last year. Her footage not only depicted the work of the scientists aboard the aircraft and on the ground, but she also obtained spectacular footage of flora and fauna in the mission's target area that helped communicate the environmental research goals of the project. Losey also took first place in the documentation category for her acquisition of technical videography of the X-45A Unmanned Combat Air Vehicle flight tests. The video, shot with a hand-held camera from the rear seat of a NASA F/A-18 mission support aircraft, demonstrated her capabilities in recording precise technical visual data in a very challenging airborne environment. The award was presented to Losey during a NASA reception at the National Association of Broadcasters convention in Las Vegas April 19. A three-judge panel evaluated entries for public affairs, documentation and production videography on professional excellence, technical quality, originality, creativity within restrictions of the project, and applicability to NASA and its mission. Entries consisted of a continuous video sequence or three views of the same subject for a maximum of three minutes duration. Linda Peters, Arcata Associates' Video Systems Supervisor at NASA Dryden, noted, "Lori is a talented videographer who has demonstrated extraordinary abilities with the many opportunities she has received in her career at NASA." Losey's award was the second major NASA video award won by members of the Dryden video team in two years. Steve Parcel took first place in the documentation category last year for his camera and editing

  18. Orders of Magnitude: A History of NACA and NASA, 1915 - 1980

    NASA Technical Reports Server (NTRS)

    Anderson, F. W., Jr.

    1981-01-01

    The history of NACA and NASA from 1915 to 1980 is narrated. The impact of two world wars on aeronautics is reviewed. Research activity before and during World War II is presented. Postwar exploitation of new technologies is summarized. The creation of NASA and a comprehensive space program is discussed. Long range planning for a lunar mission is described. The Gemini project is reviewed. The Apollo project and side effects includng NASA's university and technology transfer programs are presented. Numerous scientific and application satellite projects are reviewed. The impact of budget reductions is explained. The value of space exploration is emphasized. Development of the Space Shuttle is reported.

  19. NASA Alternate Access to Station Service Concept

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.; Crumbly, Chris

    2001-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research - and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  20. NASA Alternate Access to Station Service Concept

    NASA Astrophysics Data System (ADS)

    Bailey, M. D.; Crumbly, C.

    2002-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  1. Identity Federation and Its Importance for NASA's Future: The SharePoint Extranet Pilot

    NASA Technical Reports Server (NTRS)

    Baturin, Rebecca R.

    2013-01-01

    My project at Kennedy Space Center (KSC) during the spring 2013 Project Management and Systems Engineering Internship was to functionalJy test and deploy the SharePoint Extranet system and ensure successful completion of the project's various lifecycle milestones as described by NASA Procedural Requirement (NPR) 7 120.7. I worked alongside NASA Project Managers, Systems Integration Engineers, and Information Technology (IT) Professionals to pilot this collaboration capability between NASA and its External Partners. The use of identity federation allows NASA to leverage externally-issued credentials of other federal agencies and private aerospace and defense companies, versus the traditional process of granting and maintaining full NASA identities for these individuals. This is the first system of its kind at NASA and it will serve as a pilot for the Federal Government. Recognizing the novelty of this service, NASA's initial approach for deployment included a pilot period where nearby employees of Patrick Air Force Base would assist in testing and deployment. By utilizing a credential registration process, Air Force users mapped their Air Force-issued Common Access Cards (CAC) to a NASA identity for access to the External SharePoint. Once the Air Force stands up an Active Directory Federation Services (ADFS) instance within their Data Center and establishes a direct trust with NASA, true identity federation can be established. The next partner NASA is targeting for collaboration is Lockheed Martin (LMCO), since they collaborate frequently for the ORION Program. Through the use of Exostar as an identity hub, LMCO employees will be able to access NASA data on a need to know basis, with NASA ultimately managing access. In a time when every dollar and resource is being scrutinized, this capability is an exciting new way for NASA to continue its collaboration efforts in a cost and resource effective manner.

  2. NASA Sees Winter Storm Slamming Eastern United States

    NASA Image and Video Library

    2017-12-08

    NASA satellite imagery captured the size of the massive winter storm that continued to pummel the U.S. East Coast early on January 23, 2016. This visible image of the major winter storm was taken from NOAA's GOES-East satellite on Saturday, January 23, 2016 at 1437 UTC (9:37 a.m. EST) as the Baltimore/Washington corridor was under a blizzard warning. Read more: go.nasa.gov/1RFv70u Credits: NASA/NOAA GOES Project NASA Sees Winter Storm Slamming Eastern United States

  3. Evaluating the Potential of NASA's Earth Science Research Results for Improving Future Operational Systems

    NASA Astrophysics Data System (ADS)

    Frederick, M. E.; Cox, E. L.; Friedl, L. A.

    2006-12-01

    NASA's Earth Science Theme is charged with implementing NASA Strategic Goal 3A to "study Earth from space to advance scientific understanding and meet societal needs." In the course of meeting this objective, NASA produces research results, such as scientific observatories, research models, advanced sensor and space system technology, data active archives and interoperability technology, high performance computing systems, and knowledge products. These research results have the potential to serve society beyond their intended purpose of answering pressing Earth system science questions. NASA's Applied Sciences Program systematically evaluates the potential of the portfolio of research results to serve society by conducting projects in partnership with regional/national scale operational partners with the statutory responsibility to inform decision makers. These projects address NASA's National Applications and the societal benefit areas under the IEOS and GEOSS. Prototyping methods are used in two ways in NASA's Applied Sciences Program. The first is part of the National Applications program element, referred to as Integrated Systems Solutions (ISS) projects. The approach for these projects is to use high fidelity prototypes to benchmark the assimilation of NASA research results into our partners' decision support systems. The outcome from ISS projects is a prototype system that has been rigorously tested with the partner to understand the scientific uncertainty and improved value of their modified system. In many cases, these completed prototypes are adopted or adapted for use by the operational partners. The second falls under the Crosscutting Solutions program element, referred to as Rapid Prototyping (RP) experiments. The approach for RP experiments is to use low fidelity prototypes that are low cost and quickly produced to evaluate the potential of the breadth of NASA research results to serve society. The outcome from the set of RP experiments is an

  4. Indexing NASA programs for technology transfer methods development and feasibility

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1972-01-01

    This project was undertaken to evaluate the application of a previously developed indexing methodology to ongoing NASA programs. These programs are comprehended by the NASA Program Approval Documents (PADS). Each PAD contains a technical plan for the area it covers. It was proposed that these could be used to generate an index to the complete NASA program. To test this hypothesis two PADS were selected by the NASA Technology Utilization Office for trial indexing. Twenty-five individuals indexed the two PADS using NASA Thesaurus terms. The results demonstrated the feasibility of indexing ongoing NASA programs using PADS as the source of information. The same indexing methodology could be applied to other documents containing a brief description of the technical plan. Results of this project showed that over 85% of the concepts in the technology should be covered by the indexing. Also over 85% of the descriptors chosen would be accurate. This completeness and accuracy for the indexing is considered satisfactory for application in technology transfer.

  5. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  6. The NASA SARP Software Research Infusion Initiative

    NASA Technical Reports Server (NTRS)

    Hinchey, Mike; Pressburger, Tom; Markosian, Lawrence; Feather, Martin

    2006-01-01

    A viewgraph presentation describing the NASA Software Assurance Research Program (SARP) research infusion projects is shown. The topics include: 1) Background/Motivation; 2) Proposal Solicitation Process; 3) Proposal Evaluation Process; 4) Overview of Some Projects to Date; and 5) Lessons Learned.

  7. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype: A New NASA Instrument Incubator Program Project

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Amzajerdian, Farzin; Wang, Jinxue; Petros, Mulugeta

    2005-01-01

    A new project, selected in 2005 by NASA s Science Mission Directorate (SMD) under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The packaged DWL will utilize the numerous advances in pulsed, solid-state, 2-micron laser technology at NASA s Langley Research Center (LaRC) in such areas as crystal composition, architecture, efficiency, cooling techniques, pulse energy, and beam quality. The extensive experience of Raytheon Space and Airborne Systems (RSAS) in coherent lidar systems, in spacebased sensors, and in packaging rugged lidar systems will be applied to this project. The packaged transceiver will be as close to an envisioned space-based DWL system as the resources and technology readiness allow. We will attempt to facilitate a future upgrade to a coherent lidar system capable of simultaneous wind and CO2 concentration profile measurements. Since aerosol and dust concentration is also available from the lidar signal, the potential for a triple measurement lidar system is attractive for both Earth and Mars remote sensing. A key follow on step after the IIP will be to add a telescope, scanner, and software for aircraft validation. This IIP should also put us in a position to begin a parallel formulation study in the 2006-2007 timeframe for a space-based DWL demonstration mission early next decade.

  8. NASA high performance computing and communications program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Smith, Paul; Hunter, Paul

    1993-01-01

    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project.

  9. NASA Glenn Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Roeder, James W.; Stark, David E.; Linne, Alan A.

    2004-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models that are to be tested in the wind tunnel facilities at the NASA Glenn Research Center. This report presents two methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it defines project procedures to test models in the NASA Glenn aeropropulsion facilities. Both customer-furnished and in-house model systems are discussed. The functions of the facility personnel and customers are defined. The format for the pretest meetings, safety permit process, and model reviews are outlined. The format for the model systems report (a requirement for each model that is to be tested at NASA Glenn) is described, the engineers responsible for developing the model systems report are listed, and the timetable for its delivery to the project engineer is given.

  10. Continuous Risk Management: A NASA Program Initiative

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.

  11. The NASA SBIR product catalog

    NASA Technical Reports Server (NTRS)

    Gilman, J. A.; Paige, J. B.; Schwenk, F. Carl

    1992-01-01

    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected.

  12. Program/project management resource lists

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Program/Project Management Collection at NASA Headquarters Library is part of a larger initiative by the Training and Development Division, Code FT, NASA Headquarters. The collection is being developed to support the Program/Project Management Initiative which includes the training of NASA managers. These PPM Resource Lists have proven to be a useful method of informing NASA employees nationwide about the subject coverage of the library collection. All resources included on the lists are available at or through NASA Headquarters Library. NASA employees at other Centers may request listed books through interlibrary loan, and listed articles by contacting me by phone, mail, or e-mail.

  13. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  14. Successes of Small Business Innovation Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Ganss, Meghan

    2002-01-01

    This booklet of success stories highlights the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. These success stories are the results of selecting projects that support NASA missions and also have high commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. This booklet emphasizes the integration and incorporation of technologies into NASA missions and other government projects. The company name and the NASA contact person are identified to encourage further usage and application of the SBIR developed technologies and also to promote further commercialization of these products.

  15. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for

  16. Using AVIRIS In The NASA BAA Project To Evaluate The Impact Of Natural Acid Drainage On Colorado Watersheds

    NASA Technical Reports Server (NTRS)

    Hauff, Phoebe L.; Coulter, David W.; Peters, Douglas C.; Sares, Matthew A.; Prosh, Eric C.; Henderson, Frederick B., III; Bird, David

    2004-01-01

    The Colorado Geological Survey and the co-authors of this paper were awarded one of 15 NASA Broad Agency Announcement (BAA) grants in 2001. The project focuses on the use of hyperspectral remote sensing to map acid-generating minerals that affect water quality within a watershed, and to identify the relative contributions of natural and anthropogenic sources to that drainage. A further objective is to define the most cost-effective remote sensing instrument configuration for this application.

  17. NASA's future plans for lunar astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Stachnik, Robert V.; Kaplan, Michael S.

    1994-01-01

    An expanding scientific interest in astronomical observations from the Moon has led the National Aeronautics and Space Administration (NASA) to develop a two-part strategy for lunar-astrophysics planning. The strategy emphasizes a systematic review process involving both the external scientific community and internal NASA engineering teams, coupled with the rigorous exclusion of projects inappropriate to lunar emplacement. Five major candidate lunar-astronomy projects are described, together with a modest derivative of one of them that could be implemented early in the establishment of a lunar base.

  18. Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized.

  19. My Career at NASA

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.

    2009-01-01

    This viewgraph presentation reviews the work of the presenter at NASA Dryden Flight Research Center. He describes what he does, the projects that he has worked on and the background that led him to his position. The presentation has many pictures of aircraft in flight

  20. NASA Glenn Research Center Support of the ASRG Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2014-01-01

    A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.

  1. NASA/USRA University advanced design program

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.; Prussing, John

    1989-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA University Advanced Design Program for the 1988 to 1989 academic year is reviewed. The University's design project was the Logistics Resupply and Emergency Crew Return System for Space Station Freedom. Sixty-one students divided into eight groups, participated in the spring 1989 semester. A presentation prepared by three students and a graduate teaching assistant for the program's summer conference summarized the project results. Teamed with the NASA Marshall Space Flight Center (MSFC), the University received support in the form of remote telecon lectures, reference material, and previously acquired applications software. In addition, a graduate teaching assistant was awarded a summer 1989 internship at MSFC.

  2. NASA Satellite Gives a Clear View for NASA's LADEE Launch

    NASA Image and Video Library

    2013-09-06

    NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new

  3. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  4. NASA Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation that was a review of NASA projects that support airline operations. It covered NASA tasks that have provided new tools to the airline operations center and flight deck including the Flight Awareness Collaboration Tool, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. This material is very similar to other previously approved presentations with the same title.

  5. Program/Project Management Resources: A collection of 50 bibliographies focusing on continual improvement, reinventing government, and successful project management

    NASA Technical Reports Server (NTRS)

    Michaels, Jeffrey

    1994-01-01

    These Program/Project Management Resource Lists were originally written for the NASA project management community. Their purpose was to promote the use of the NASA Headquarters Library Program/Project Management Collection funded by NASA Headquarters Code FT, Training & Development Division, by offering introductions to the management topics studied by today's managers. Lists were also written at the request of NASA Headquarters Code T, Office of Continual improvements, and at the request of NASA members of the National Performance Review. This is the second edition of the compilation of these bibliographies; the first edition was printed in March 1994.

  6. UAS in the NAS Project: Large-Scale Communication Architecture Simulations with NASA GRC Gen5 Radio Model

    NASA Technical Reports Server (NTRS)

    Kubat, Gregory

    2016-01-01

    This report provides a description and performance characterization of the large-scale, Relay architecture, UAS communications simulation capability developed for the NASA GRC, UAS in the NAS Project. The system uses a validated model of the GRC Gen5 CNPC, Flight-Test Radio model. Contained in the report is a description of the simulation system and its model components, recent changes made to the system to improve performance, descriptions and objectives of sample simulations used for test and verification, and a sampling and observations of results and performance data.

  7. 2005 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2006-01-01

    The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.

  8. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2011-01-01

    NASA now requires all flight hardware projects to develop and implement a Foreign Object Damage (FOD) Prevention Program. With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items. In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage. The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.

  9. The NASA Space Radiobiology Risk Assessment Project

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Huff, Janice; Ponomarev, Artem; Patel, Zarana; Kim, Myung-Hee

    The current first phase (2006-2011) has the three major goals of: 1) optimizing the conventional cancer risk models currently used based on the double-detriment life-table and radiation quality functions; 2) the integration of biophysical models of acute radiation syndromes; and 3) the development of new systems radiation biology models of cancer processes. The first-phase also includes continued uncertainty assessment of space radiation environmental models and transport codes, and relative biological effectiveness factors (RBE) based on flight data and NSRL results, respectively. The second phase of the (2012-2016) will: 1) develop biophysical models of central nervous system risks (CNS); 2) achieve comphrensive systems biology models of cancer processes using data from proton and heavy ion studies performed at NSRL; and 3) begin to identify computational models of biological countermeasures. Goals for the third phase (2017-2021) include: 1) the development of a systems biology model of cancer risks for operational use at NASA; 2) development of models of degenerative risks, 2) quantitative models of counter-measure impacts on cancer risks; and 3) indiviudal based risk assessments. Finally, we will support a decision point to continue NSRL research in support of NASA's exploration goals beyond 2021, and create an archival of NSRL research results for continued analysis. Details on near term goals, plans for a WEB based data resource of NSRL results, and a space radiation Wikepedia are described.

  10. An Overview of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Ultra High Bypass Partnership Research Goals

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2009-01-01

    An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.

  11. Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.

    2006-01-01

    Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.

  12. NASA TEERM Project: Corn Based Blast Media

    NASA Technical Reports Server (NTRS)

    Griffin, Chuck

    2009-01-01

    Coatings removal is a necessary part of the maintenance, repair, and overhaul activities at many NASA centers and contractor support sites. Sensitive substrates, such as composites and thin aluminum alloys require special handling such as the use of chemical stripping, pneumatic hand sanding, or softer blast media. Type V, acrylic based PMB is commonly used to de-coat, strip, or de-paint the delicate substrates of the Solid Rocket Boosters (SRBs) currently used in support of the Shuttle and slated to be used in support of CxP.

  13. 2013 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2013-01-01

    Welcome to the 2013 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides an Agency overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various activities performed during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be conducted in the future. Specific topics discussed in the 2013 NASA Range Safety Annual Report include a program overview and 2013 highlights, Range Safety Training, Independent Assessments, support to Program Operations at all ranges conducting NASA launch/flight operations, a continuing overview of emerging range safety-related technologies, and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. As is the case each year, we had a wide variety of contributors to this report from across our NASA Centers and the national range safety community at large, and I wish to thank them all. On a sad note, we lost one of our close colleagues, Dr. Jim Simpson, due to his sudden passing in December. His work advancing the envelope of autonomous flight safety systems software/hardware development leaves a lasting impression on our community. Such systems are being flight tested today and may one day be considered routine in the range safety business. The NASA family has lost a pioneer in our field, and he will surely be missed. In conclusion, it has been a very busy and productive year, and I look forward to working with all of you in NASA Centers/Programs/Projects and with the national Range Safety community in making Flight/Space activities as safe as they can be in the upcoming year.

  14. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  15. NASA, the first 25 years: 1958 - 1983

    NASA Technical Reports Server (NTRS)

    Dalelio, J. (Compiler); Tully, J. (Compiler); Cortesi, W. (Compiler)

    1983-01-01

    Because it is impossible to describe the 25 years of NASA's research and missions in detail, this book is designed to provide a reference base from which teachers can develop classroom concepts and activities. It begins with a prologue, a brief history of the National Advisory Committee for Aeronautics, NASA's predecessor. Succeeding chapters are devoted to major NASA programs, in alphabetical order; within the chapters projects are listed chronologically. Each chapter concludes with ideas for the classroom and space for notes and new information the user may wish to add.

  16. UAS Related Activities at NASA's Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2009-01-01

    NASA s Dryden Flight Research Center is completing its refurbishment and initial flights of one the pre-production Global Hawk aircraft it received from the U.S. Air Force. NASA Dryden has an agreement with the Global Hawk s manufacturer, Northrop Grumman, to partner in the refurbishment and flight operations of the vehicles. The National Oceanic and Atmospheric Administration (NOAA) has also partnered on the project and is assisting NASA with project management and pilot responsibilities for the aircraft. NASA and NOAA will be using the Global Hawks to conduct earth science research. The earth science community is increasing utilizing UAS of all sizes and capabilities to collect important data on a variety of issues including important global climate change issues. To pursue the data collection needs of the science community there is a growing demand for international collaboration with respect to operating UAS in global airspace. Operations of NASA s Ikhana aircraft continued this past year. The Ikhana is a modified Predator B UAS. A UAS dedicated to research at NASA Dryden is the X-48B blended wing body research aircraft. Flight tests with the 500- pound, remotely piloted test vehicle are now in a block 4 phase involving parameter identification and maneuvers to research the limits of the engine in stall situations. NASA s participation in the blended wing body research effort is focused on fundamental, advanced flight dynamics and structural design concepts within the Subsonic Fixed Wing project, part of the Fundamental Aeronautics program managed through NASA s Aeronautics Research Mission Directorate. Potential benefits of the aircraft include increased volume for carrying capacity, efficient aerodynamics for reduced fuel burn and possibly significant reductions in noise due to propulsion integration options. NASA Dryden continues to support the UAS industry by facilitating access to three specially designated test areas on Edwards Air Force Base for the

  17. Complexity analysis of the cost effectiveness of PI-led NASA science missions

    NASA Astrophysics Data System (ADS)

    Yoshida, J.; Cowdin, M.; Mize, T.; Kellogg, R.; Bearden, D.

    For the last 20 years, NASA has allowed Principal Investigators (PIs) to manage the development of many unmanned space projects. Advocates of PI-led projects believe that a PI-led implementation can result in a project being developed at lower cost and shorter schedule than other implementation modes. This paper seeks to test this hypothesis by comparing the actual costs of NASA and other comparable projects developed under different implementation modes. The Aerospace Corporation's Complexity-Based Risk Assessment (CoBRA) analysis tool is used to normalize the projects such that the cost can be compared for equivalent project complexities. The data is examined both by complexity and by launch year. Cost growth will also be examined for any correlation with implementation mode. Defined in many NASA Announcements of Opportunity (AOs), a PI-led project is characterized by a central, single person with full responsibility for assembling a team and for the project's scientific integrity and the implementation and integrity of all other aspects of the mission, while operating under a cost cap. PIs have larger degrees of freedom to achieve the stated goals within NASA guidelines and oversight. This study leverages the definitions and results of previous National Research Council studies of PI-led projects. Aerospace has defined a complexity index, derived from mission performance, mass, power, and technology choices, to arrive at a broad representation of missions for purposes of comparison. Over a decade of research has established a correlation between mission complexity and spacecraft development cost and schedule. This complexity analysis, CoBRA, is applied to compare a PI-led set of New Frontiers, Discovery, Explorers, and Earth System Science Pathfinder missions to the overall NASA mission dataset. This reveals the complexity trends against development costs, cost growth, and development era.

  18. NASA Integrated Services Environment

    NASA Technical Reports Server (NTRS)

    Ing, Sharon

    2005-01-01

    This slide presentation will begin with a discussion on NASA's current distributed environment for directories, identity management and account management. We will follow with information concerning the drivers, design, reviews and implementation of the NISE Project. The final component of the presentation discusses processes used, status and conclusions.

  19. Bibliography of NASA-related publications on wind turbine technology 1973-1995

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1995-01-01

    A major program of research and development projects on wind turbines for generating electricity was conducted at the NASA Lewis Research Center from 1973 to 1988. Most of these projects were sponsored by the U.S. Department of Energy (DOE), as a major element of its Federal Wind Energy Program. One other large-scale wind turbine project was sponsored by the Bureau of Reclamation of the Department of Interior (DOI). The peak years for wind energy work at Lewis were 1979-80, when almost 100 engineers, technicians, and administrative personnel were involved. From 1988 their conclusion in 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. Wind energy activities at NASA can be divided into two broad categories which are closely related and often overlapping: (1) Designing, building, and testing a series of 12 large-scale, experimental, horizontal-axis wind turbines (HAWT's); and (2) conducting supporting research and technology (SR&T) projects. The purpose of this bibliography is to assist those active in the field of wind energy in locating the technical information they need on wind power planning, wind loads, turbine design and analysis, fabrication and installation, laboratory and field testing, and operations and maintenance. This bibliography contains approximately 620 citations of publications by over 520 authors and co-authors. Sources are: (1) NASA reports authored by government grantee, and contractor personnel, (2) papers presented by attendees at NASA-sponsored workshops and conferences, (3) papers presented by NASA personnel at outside workshops and conferences, and (4) outside publications related to research performed at NASA/ DOE wind turbine sites.

  20. NASA SBIR product catalog, 1990

    NASA Technical Reports Server (NTRS)

    Schwenk, F. Carl; Gilman, J. A.

    1990-01-01

    Since 1983 the NASA Small Business Innovation Research (SBIR) program has benefitted both the agency and the high technology small business community. By making it possible for more small businesses to participate in NASA's research and development, SBIR also provides opportunities for these entrepreneurs to develop products which may also have significant commercial markets. Structured in three phases, the SBIR program uses Phase 1 to assess the technical feasibility of novel ideas proposed by small companies and Phase 2 to conduct research and development on the best concepts. Phase 3, not funded by SBIR, is the utilization and/or commercialization phase. A partial list of products of NASA SBIR projects which have advanced to some degree into Phase 3 are provided with a brief description.

  1. NASA Year 2000 (Y2K) Program Plan

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA initiated the Year 2000 (Y2K) program in August 1996 to address the challenges imposed on Agency software, hardware, and firmware systems by the new millennium. The Agency program is centrally managed by the NASA Chief Information Officer, with decentralized execution of program requirements at each of the nine NASA Centers, Headquarters and the Jet Propulsion Laboratory. The purpose of this Program Plan is to establish Program objectives and performance goals; identify Program requirements; describe the management structure; and detail Program resources, schedules, and controls. Project plans are established for each NASA Center, Headquarters, and the Jet Propulsion Laboratory.

  2. NASA Fixed Wing Project Propulsion Research and Technology Development Activities to Reduce Thrust Specific Energy Consumption

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Rosario, Ruben Del; Madavan, Nateri K.

    2013-01-01

    This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 percent relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030 to 2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.

  3. NASA Fixed Wing Project Propulsion Research and Technology Development Activities to Reduce Thrust Specific Energy Consumption

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; DelRasario, Ruben; Madavan, Nateri K.

    2013-01-01

    This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.

  4. NASA Administrator Visits Goddard, Discusses MMS

    NASA Image and Video Library

    2014-05-12

    NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. NASA Administrator Visits Goddard, Discusses MMS

    NASA Image and Video Library

    2014-05-12

    NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA Administrator Visits Goddard, Discusses MMS

    NASA Image and Video Library

    2017-12-08

    NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA Administrator Visits Goddard, Discusses MMS

    NASA Image and Video Library

    2017-12-08

    NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA Technology Readiness Level Definitions

    NASA Technical Reports Server (NTRS)

    Mcnamara, Karen M.

    2012-01-01

    This presentation will cover the basic Technology Readiness Level (TRL) definitions used by the National Aeronautics and Space Administration (NASA) and their specific wording. We will discuss how they are used in the NASA Project Life Cycle and their effectiveness in practice. We'll also discuss the recent efforts by the International Standards Organization (ISO) to develop a broadly acceptable set of TRL definitions for the international space community and some of the issues brought to light. This information will provide input for further discussion of the use of the TRL scale in manufacturing.

  9. An Overview of Electric Propulsion Activities at NASA

    NASA Technical Reports Server (NTRS)

    Dunning, John W., Jr.; Hamley, John A.; Jankovsky, Robert S.; Oleson, Steven R.

    2004-01-01

    This paper provides an overview of NASA s activities in the area of electric propulsion with an emphasis on project directions, recent progress, and a view of future project directions. The goals of the electric propulsion programs are to develop key technologies to enable new and ambitious science missions and to transfer these technologies to industry. Activities include the development of gridded ion thruster technology, Hall thruster technology, pulsed plasma thruster technology, and very high power electric propulsion technology, as well as systems technology that supports practical implementation of these advanced concepts. The performance of clusters of ion and Hall thrusters is being revisited. Mission analyses, based on science requirements and preliminary mission specifications, guide the technology projects and introduce mission planners to new capabilities. Significant in-house activity, with strong industrial/academia participation via contracts and grants, is maintained to address these development efforts. NASA has initiated a program covering nuclear powered spacecraft that includes both reactor and radioisotope power sources. This has provided an impetus to investigate higher power and higher specific impulse thruster systems. NASA continues to work closely with both supplier and user communities to maximize the understanding and acceptance of new technology in a timely and cost-effective manner. NASA s electric propulsion efforts are closely coordinated with Department of Defense and other national programs to assure the most effective use of available resources. Several NASA Centers are actively involved in these electric propulsion activities, including, the Glenn Research Center, Jet Propulsion Laboratory, Johnson Space Center, and Marshall Space Flight Center.

  10. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2003-01-01

    Aeroassist technology development is a vital part of the NASA ln-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  11. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2004-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  12. NASA Space Radiation Program Integrative Risk Model Toolkit

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  13. IYA2009 NASA Programs: Midyear Status

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D. A.

    2010-08-01

    NASA's Science Mission Directorate's (SMD) celebration of the International Year of Astronomy (IYA) 2009 was kicked off in January 2009 with a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions. Since then some of the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics, which has been given an IYA2009 flavor, has been made available to students, educators and the public worldwide. Some examples of the progress of NASA's programs are presented. The Visions of the Universe traveling exhibit of NASA images to public libraries around the country has been a spectacular success and is being extended to include more libraries. NASA IYA Student Ambassadors met at summer workshop and presented their projects. NASA's Afterschool Universe has provided IYA training to community-based organizations, while pre-launch teacher workshops associated with the Kepler and WISE missions have been designed to engage educators in the science of these missions. IYA activities have been associated with several missions launched this year. These include the Hubble Servicing Mission 4, Kepler, Herschel/Planck, and LCROSS. The NASA IYA website continues to be popular, getting visitors spanning a wide spectrum. NASA's IYA programs have captured the imagination of the public and continue to keep it engaged in the scientific exploration of the universe.

  14. The NASA/DoD Aerospace Knowledge Diffusion Research Project: A Research Agenda

    DTIC Science & Technology

    1990-01-01

    331-339. Technical Writing Teacher 4:3 (Spring 1977): 83-88. Monge, Peter R.; James D. Schriner Bettie F. Farace ; and Dewhirst, H. Dudley; Richard D...Avery; and Edward Richard V. Farace . The Assessment of NASA Tech- M. Brown. "Satisfaction and Performance in Re- nical Information. NASA CR-181367

  15. NASA Brevard Top Scholars

    NASA Image and Video Library

    2017-11-13

    Retired NASA astronaut Tom Jones is with top scholars from Brevard County public high schools in the Rocket Garden at the NASA Kennedy Space Center Visitor Complex in Florida. Top scholars from the high schools were invited to Kennedy Space Center for a tour of facilities, lunch and a roundtable discussion with engineers and scientists at the center. The 2017-2018 Brevard Top Scholars event was hosted by the center's Education Projects and Youth Engagement office to honor the top three scholars of the 2017-2018 graduating student class from each of Brevard County’s public high schools. They students received a personalized certificate at the end of the day.

  16. NASA Brevard Top Scholars

    NASA Image and Video Library

    2017-11-13

    Retired NASA astronaut Tom Jones talks to high school students during "Lunch with an Astronaut" at the NASA Kennedy Space Center Visitor Complex in Florida. Top scholars from Brevard County public high schools were invited to Kennedy Space Center for a tour of facilities, lunch and a roundtable discussion with engineers and scientists at the center. The 2017-2018 Brevard Top Scholars event was hosted by the center's Education Projects and Youth Engagement office to honor the top three scholars of the 2017-2018 graduating student class from each of Brevard County’s public high schools. The students received a personalized certificate at the end of the day.

  17. SBIR Success Stories at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Howe, Meghan R.; Novak, George D.

    1999-01-01

    This booklet of success stories summarizes the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. These success stories are the results of selecting projects that best support NASA missions and also have commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. The company name and the NASA contact person are identified to encourage further interest and communication to occur.

  18. 2006 NASA Seal/Secondary Air System Workshop; Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)

    2007-01-01

    The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).

  19. This NASA Dryden F/A-18 is participating in the Automated Aerial Refueling (AAR) project. F/A-18 (No

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Dryden F/A-18 is participating in the Automated Aerial Refueling (AAR) project. F/A-18 (No. 847) is acting as an in-flight refueling tanker in the study to develop analytical models for an automated aerial refueling system for unmanned vehicles. A 300-gallon aerodynamic pod containing air-refueling equipment is seen beneath the fuselage. The hose and refueling basket are extended during an assessment of their dynamics on the F/A-18A.

  20. NASA scientific and technical information for the 1990s

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.

    1990-01-01

    Projections for NASA scientific and technical information (STI) in the 1990s are outlined. NASA STI for the 1990s will maintain a quality bibliographic and full-text database, emphasizing electronic input and products supplemented by networked access to a wide variety of sources, particularly numeric databases.

  1. Briefing to University of Porto on NASA Airborne Science Program and Ames UAVs

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.

  2. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  3. NASA Collaborative Approach Mitigates Environmentally-Driven Obsolescence

    NASA Technical Reports Server (NTRS)

    Greene, Brian; Leeney, Bob; Richards, Joni

    2016-01-01

    National Aeronautics and Space Administration (NASA) missions, like Department of Defense (DoD) organizations, require the rigorous testing and qualification of critical materials. Obsolescence supply risks created by environmental requirements can affect the cost, schedule and performance of NASA missions and the resilience of critical infrastructure. The NASA Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center helps to identify obsolescence supply risks driven by environmental requirements and works proactively with NASA Centers and Programs, the DoD, the European Space Agency (ESA) and other agencies and partners to identify and evaluate environmentally friendly alternatives. TEERM tracks environmental regulations, identifies the potential loss of material availability and works with NASA programs and Centers to evaluate potential impacts through a risk assessment approach. TEERM collaborative projects identify, demonstrate and evaluate commercially viable alternative technologies and materials. A major focus during the Space Shuttle Program was the need to replace ozone depleting substances that were used in spray foam and cleaning applications. The potential obsolescence of coatings containing hexavalent chromium and the risks associated with lead free solder were also of concern for the Space Shuttle and present ongoing risks to new programs such as the Space Launch System. One current project teams NASA and ESA in the evaluation and testing of individual coatings and coating systems as replacements for hexavalent chromium coatings in aerospace applications. The proactive, collaborative approach used by TEERM helps reduce the cost burden on any one team partner, reduces duplication of effort, and enhances the technical quality and overall applicability of the testing and analysis.

  4. The Challenges of Integrating NASA's Human, Budget, and Data Capital within the Constellation Program's Exploration Launch Projects Office

    NASA Technical Reports Server (NTRS)

    Kidd, Luanne; Morris, Kenneth B.; Self, Timothy A.

    2007-01-01

    The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into useful knowledge that equips the team to design and develop superior products for customers and stakeholders. It has been more than 30 years since the Space Shuttle was designed; therefore, the current aerospace workforce has limited experience with developing new designs for human-rated spaceflight hardware. To accomplish these activities, NASA is using a wide range of state-of-the-art information technology tools that connect its diverse, decentralized teams and provide timely, accurate information for decision makers. In addition, business professionals are assisting technical managers with planning, tracking, and forecasting resource use against an integrated master schedule that horizontally and vertically interlinks hardware elements and milestone events. Furthermore, NASA is employing a wide variety of strategies to ensure that it has the motivated and qualified staff it needs for the tasks ahead. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates its resources to create an engineering business environment that promotes mission success, which is defined by replacing the Space Shuttle by 2014 and returning to the Moon by 2020.

  5. 1997 NASA Academy in Aeronautics

    NASA Technical Reports Server (NTRS)

    Andrisani, Dominick, II

    1998-01-01

    The NASA Academy in Aeronautics at the Dryden Flight Research Center (DFRC) was a ten-week summer leadership training program conducted for the first time in the summer of 1997. Funding was provided by a contract between DFRC and Purdue University. Mr. Lee Duke of DFRC was the contract monitor, and Professor Dominick Andrisani was the principal investigator. Five student research associates participated in the program. Biographies of the research associates are given in Appendix 1. Dominick Andrisani served as Dean of the NASA Academy in Aeronautics. NASA Academy in Aeronautics is a unique summer institute of higher learning that endeavors to provide insight into all of the elements that make NASA aeronautical research possible. At the same time the Academy assigns the research associate to be mentored by one of NASA!s best researchers so that they can contribute towards an active flight research program. Aeronautical research and development are an investment in the future, and NASA Academy is an investment in aeronautical leaders of the future. The Academy was run by the Indiana Space Grant Consortium at Purdue in strategic partnership with the National Space Grant College and Fellowship Program. Research associates at the Academy were selected with help from the Space Grant Consortium that sponsored the research associate. Research associate stipend and travel to DFRC were paid by the students' Space Grant Consortium. All other student expenses were paid by the Academy. Since the Academy at DFRC had only five students the opportunity for individual growth and attention was unique in the country. About 30% of the working time and most of the social time of the students were be spent as a "group" or "team." This time was devoted to exchange of ideas, on forays into the highest levels of decision making, and in executing aeronautical research. This was done by interviewing leaders throughout the aerospace industry, seminars, working dinners, and informal

  6. Louisiana NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Savoie, E. Joseph

    2002-01-01

    In August, 1999, the National Aeronautics and Space Administration issued a Cooperative Agreement (CA) to the State of Louisiana, through the Louisiana Board of Regents (BOB), for the performance of scientific research and graduate fellowships under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) -- Preparation Grant. Originally constructed as a one year program, with an optional one year continuation, this federal-state partnership culminated on 14 August 2002, including a successful continuation proposal and a no cost extension. The total value of the project reached $450K in NASA funding, matched by state funds and institutional contributions. The purpose of the Preparation Grant program was to develop and nurture strong research ties between the state and NASA field centers and Enterprises, in order to prepare for the upcoming full competition for NASA EPSCoR.

  7. 2009 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This year, NASA Range Safety transitioned to a condensed annual report to allow for Secretariat support to the Range Safety Group, Risk Committee. Although much shorter than in previous years, this report contains full-length articles concerning various subject areas, as well as links to past reports. Additionally, summaries from various NASA Range Safety Program activities that took place throughout the year are presented, as well as information on several projects that may have a profound impact on the way business will be done in the future. The sections include a program overview and 2009 highlights; Range Safety Training; Range Safety Policy; Independent Assessments Support to Program Operations at all ranges conducting NASA launch operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  8. Summaries of 1984-85 NASA space-gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, T. W. (Compiler); Dutcher, F. R. (Compiler); Pleasant, L. G. (Compiler)

    1985-01-01

    Individual technical summaries of research projects of NASA's Space/Gravitational Biology Program are presented. The summaries for each project include a description of the research, a listing of the accomplishments, and an explanation of the significance of the accomplishments. Bibliographies for each project are also included.

  9. NASA Facts: Voyager

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A news release on NASA's Voyager project is presented. The spacecraft, science instrumentation, experiments and a mission profile are described. A drawing identifying Voyager's major components and instrumentation was included along with diagrams showing the path of Voyager 1 (JST trajectory) past Jupiter, and the path of Voyager 2 (JXT trajectory) during its encounter with Jupiter. An exercise for student involvement was also provided.

  10. Novel Problem Solving - The NASA Solution Mechanism Guide

    NASA Technical Reports Server (NTRS)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the

  11. The 1990-1991 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1993-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the period May 1990 through May 1991. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and other environmental factors on biological systems and to using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  12. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  13. High Altitude Platform Aircraft at NASA Past, Present and Future

    NASA Technical Reports Server (NTRS)

    DelFrate, John H.

    2006-01-01

    This viewgraph presentation reviews NASA Dryden Flight Research Center's significant accomplishments from the Environment Research and Sensor Technology (ERAST) project, the present High Altitude Platform (HAP) needs and opportunities, NASA's Aeronautical focus shift, HAP Non-aeronautics challenges, and current HAP Capabilities.

  14. NASA's small planetary mission plan released

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.

  15. Adaptive Flight Control Research at NASA

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  16. NASA / GE Aviation Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Zeug, Theresa

    2008-01-01

    Current collaborative research with General Electric Aviation on Open Rotor propulsion as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. The current Open Rotor propulsion research activity at NASA and GE are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. GE Open Rotor propulsion technology and business plans currently and toward the future are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  17. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  18. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  19. EPO in NASA's Science Mission Directorate

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, A.; Cooper, L. P.

    2005-05-01

    The Science Mission Directorate (SMD) at NASA believes very strongly in education and public outreach (EPO) and has embedded such programs within its missions. There are also some funding opportunities that are available outside the mission context. We will provide an overview of the various funding opportunities available through the SMD at NASA to carry out EPO programs. We will introduce speakers who have won such EPO awards and they will discuss their experience with writing the proposals and carrying out their projects.

  20. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.