Sample records for nasa astrobiology institute

  1. The NASA Astrobiology Institute: early history and organization.

    PubMed

    Blumberg, Baruch S

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  2. The NASA Astrobiology Institute: early history and organization

    NASA Technical Reports Server (NTRS)

    Blumberg, Baruch S.

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  3. Assessment of the NASA Astrobiology Institute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astrobiology is a scientific discipline devoted to the study of life in the universe--its origins, evolution, distribution, and future. It brings together the physical and biological sciences to address some of the most fundamental questions of the natural world: How do living systems emerge? How do habitable worlds form and how do they evolve? Does life exist on worlds other than Earth? As an endeavor of tremendous breadth and depth, astrobiology requires interdisciplinary investigation in order to be fully appreciated and examined. As part of a concerted effort to undertake such a challenge, the NASA Astrobiology Institute (NAI) was established in 1998 as an innovative way to develop the field of astrobiology and provide a scientific framework for flight missions. Now that the NAI has been in existence for almost a decade, the time is ripe to assess its achievements. At the request of NASA's Associate Administrator for the Science Mission Directorate (SMD), the Committee on the Review of the NASA Astrobiology Institute undertook the assignment to determine the progress made by the NAI in developing the field of astrobiology. It must be emphasized that the purpose of this study was not to undertake a review of the scientific accomplishments of NASA's Astrobiology program, in general, or of the NAI, in particular. Rather, the objective of the study is to evaluate the success of the NAI in achieving its stated goals of: 1. Conducting, supporting, and catalyzing collaborative interdisciplinary research; 2. Training the next generation of astrobiology researchers; 3. Providing scientific and technical leadership on astrobiology investigations for current and future space missions; 4. Exploring new approaches, using modern information technology, to conduct interdisciplinary and collaborative research among widely distributed investigators; and 5. Supporting outreach by providing scientific content for use in K-12 education programs, teaching undergraduate classes, and

  4. Astrobiology Drilling Program of the NASA Astrobiology Institute

    NASA Astrophysics Data System (ADS)

    Runnegar, B.

    2004-12-01

    Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores

  5. The NASA astrobiology program

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  6. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  7. The Living Universe: NASA and the Development of Astrobiology

    NASA Technical Reports Server (NTRS)

    Dick, Steven J.; Strick, James E.

    2004-01-01

    In the opening weeks of 1998 a news article in the British journal Nature reported that NASA was about to enter biology in a big way. A "virtual" Astrobiology Institute was gearing up for business, and NASA administrator Dan Goldin told his external advisory council that he would like to see spending on the new institute eventually reach $100 million per year. "You just wait for the screaming from the physical scientists (when that happens)," Goldin was quoted as saying. Nevertheless, by the time of the second Astrobiology Science Conference in 2002, attended by seven hundred scientists from many disciplines, NASA spending on astrobiology had reached nearly half that amount and was growing at a steady pace. Under NASA leadership numerous institutions around the world applied the latest scientific techniques in the service of astrobiology's ambitious goal: the study of what NASA's 1996 Strategic Plan termed the "living universe." This goal embraced nothing less than an understanding of the origin, history, and distribution of life in the universe, including Earth. Astrobiology, conceived as a broad interdisciplinary research program, held the prospect of being the science for the twenty-first century which would unlock the secrets to some of the great questions of humanity. It is no surprise that these age-old questions should continue into the twenty-first century. But that the effort should be spearheaded by NASA was not at all obvious to those - inside and outside the agency - who thought NASA's mission was human spaceflight, rather than science, especially biological science. NASA had, in fact, been involved for four decades in "exobiology," a field that embraced many of the same questions but which had stagnated after the 1976 Viking missions to Mars. In this volume we tell the colorful story of the rise of the discipline of exobiology, how and why it morphed into astrobiology at the end of the twentieth century, and why NASA was the engine for both the

  8. The NASA Astrobiology Institute: A Decade of Education and Outreach

    NASA Astrophysics Data System (ADS)

    Scalice, Daniella

    The mission statement of the NASA Astrobiology Institute (NAI) charts a course to establishing astrobiology as a new and influential field of scientific inquiry. It integrates world class, interdisciplinary research with training for the next generation of astrobiologists. It enables collaboration between distributed research teams by prioritizing the use of modern information technologies, and empowers astrobiologists to provide leadership for space missions. But this unique vision would not have been complete without the inclusion of an Education and Public Outreach (E/PO) program. Over the past ten years, NAI's E/PO program has taken shape - from bootstrapping in the early days, to partnering with the likes of Disney and PBS - in pursuit of inspiring young people onto the scientific path. The E/PO program's highly collaborative group of education specialists has worked with museums, national parks, filmmakers, radio broadcasters, families, teachers, and students to ensure that the bright young faces of today find themselves in the labs of tomorrow's astrobiologists.

  9. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  10. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  11. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  12. Report on a NASA astrobiology institute-funded workshop without walls: stellar stoichiometry.

    PubMed

    Desch, Steven J; Young, Patrick A; Anbar, Ariel D; Hinkel, Natalie; Pagano, Michael; Truitt, Amanda; Turnbull, Margaret

    2014-04-01

    We report on the NASA Astrobiology Institute-funded Workshop Without Walls entitled "Stellar Stoichiometry," hosted by the "Follow the Elements" team at Arizona State University in April 2013. We describe several innovative practices we adopted that made effective use of the Workshop Without Walls videoconferencing format, including use of information technologies, assignment of scientific tasks before the workshop, and placement of graduate students in positions of authority. A companion article will describe the scientific results arising from the workshop. Our intention here is to suggest best practices for future Workshops Without Walls.

  13. Astrobiology Research Experience for Undergraduates: An Interdisciplinary REU Program at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Devore, E. K.

    2009-12-01

    The SETI Institute hosts a summer Astrobiology Research Experience for Undergraduates program for highly motivated students interested in astrobiology research. Students work with scientists at the SETI Institute and at the nearby NASA Ames Research Center on projects spanning the field of astrobiology from microbiology to planetary geology to astronomy and astrophysics. Each student is mentored by a scientist for his/her summer research project. As astrobiology is interdisciplinary, the first week includes a seminar series to provide a broad foundation in the field as the students begin their research projects. The 10-week program includes a week-long field trip to the SETI Institute’s Allen Telescope Array, located at the Hat Creek Radio Astronomy Observatory in Northern California, as well as a field experience at hydrothermal systems at nearby Lassen Volcanic National Park. Students also participate in local field trips to places like the California Academy of Sciences and other nearby locations of scientific interest, and attend seminars, lectures, and discussions on astrobiology. Students are also invited to attend events at nearby NASA Ames Research Center, which offers the opportunity to interact with other undergraduate and graduate students participating in NASA summer programs. At the end of the program, students write up and present their research projects, and mentors recommend some projects for submission to a national scientific conference, which the selected students will be funded to attend. The Astrobiology REU program emphasizes three main areas, which are listed in the table along with typical project themes. Each year, specific student research projects are described on the website, and students are asked to select the three that most interest them as a part of their applications. Applications are due in early February. Typically, 10 students apply for each available position. Students have been selected from colleges and universities

  14. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such

  15. NASA Virtual Institutes: International Bridges for Space Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  16. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Dan Goldin, NASA's longest serving Administrator from 1992-2001 speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: ‚"How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?‚" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  17. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James L. Green, Director for Planetary Science in NASA's Science Mission Directorate, helps kick off the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  18. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James Lovelock, Honorary Visiting Fellow of Green Templeton College, University of Oxford speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  19. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Lynn Margulis, Distinguished University Professor in the Department of Geosciences at the University of Massachusetts-Amherst speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  20. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Stephen Price from Lockheed Martin Space Systems Company kicks off the ‚Äö√Ñ√∫Seeking Signs of Life‚Äö√Ñ√π Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  1. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  2. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  3. Astrobiology Student Intern Program at Lassen Volcanic National Park

    NASA Astrophysics Data System (ADS)

    Dueck, S. L.; Zachary, S.; Michael, D.; Parenteau, M.; Kubo, M.; Jahnke, L. L.; Scalice, D.; Des Marais, D. J.

    2010-04-01

    The NASA Astrobiology Institute (NAI) Ames Team has partnered with Lassen Volcanic National Park and Red Bluff High School to engage high school students in the collection of scientific data for NASA astrobiologists and the National Park Service.

  4. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, director, Astrobiology Program, NASA Headquarters, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  5. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, a lead researcher and NASA astrobiology research fellow, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  6. Astrobiology and society: building an interdisciplinary research community.

    PubMed

    Race, Margaret; Denning, Kathryn; Bertka, Constance M; Dick, Steven J; Harrison, Albert A; Impey, Christopher; Mancinelli, Rocco

    2012-10-01

    This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers-astrobiologists as well as scholars in the humanities and social sciences-to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology.

  7. Astrobiology Workshop: Leadership in Astrobiology

    NASA Technical Reports Server (NTRS)

    DeVincenzi, D. (Editor); Briggs, G.; Cohen, M.; Cuzzi, J.; DesMarais, D.; Harper, L.; Morrison, D.; Pohorille, A.

    1996-01-01

    Astrobiology is defined in the 1996 NASA Strategic Plan as 'The study of the living universe.' At NASA's Ames Research Center, this endeavor encompasses the use of space to understand life's origin, evolution, and destiny in the universe. Life's origin refers to understanding the origin of life in the context of the origin and diversity of planetary systems. Life's evolution refers to understanding how living systems have adapted to Earth's changing environment, to the all-pervasive force of gravity, and how they may adapt to environments beyond Earth. Life's destiny refers to making long-term human presence in space a reality, and laying the foundation for understanding and managing changes in Earth's environment. The first Astrobiology Workshop brought together a diverse group of researchers to discuss the following general questions: Where and how are other habitable worlds formed? How does life originate? How have the Earth and its biosphere influenced each other over time? Can terrestrial life be sustained beyond our planet? How can we expand the human presence to Mars? The objectives of the Workshop included: discussing the scope of astrobiology, strengthening existing efforts for the study of life in the universe, identifying new cross-disciplinary programs with the greatest potential for scientific return, and suggesting steps needed to bring this program to reality. Ames has been assigned the lead role for astrobiology by NASA in recognition of its strong history of leadership in multidisciplinary research in the space, Earth, and life sciences and its pioneering work in studies of the living universe. This initial science workshop was established to lay the foundation for what is to become a national effort in astrobiology, with anticipated participation by the university community, other NASA centers, and other agencies. This workshop (the first meeting of its kind ever held) involved life, Earth, and space scientists in a truly interdisciplinary sharing

  8. Astrobiology and Society: Building an Interdisciplinary Research Community

    PubMed Central

    Denning, Kathryn; Bertka, Constance M.; Dick, Steven J.; Harrison, Albert A.; Impey, Christopher; Mancinelli, Rocco

    2012-01-01

    Abstract This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers—astrobiologists as well as scholars in the humanities and social sciences—to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology. Key Words: Astrobiology—Extraterrestrial life—Life detection. Astrobiology 12, 958–965. PMID:23046203

  9. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, a lead researcher and NASA astrobiology research fellow, speaks during a press conference, as Mary Voytek, Steven Benner and Pamela Conrad look on, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  10. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution, right, speaks during a press conference as Mary Voytek, director of the Astrobiology Program at NASA looks on, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  11. Data Sharing in Astrobiology: The Astrobiology Habitable Environments Database (AHED)

    NASA Technical Reports Server (NTRS)

    Lafuente, B.; Bristow, T.; Stone, N.; Pires, A.; Keller, R.; Downs, Robert; Blake, D.; Fonda, M.

    2017-01-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. NASA uses the results of Astrobiology research to help define targets for future missions that are searching for life elsewhere in the universe. The understanding of complex questions in Astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for Astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. The Astrobiology Habitable Environments Database (AHED), developed with a consolidated group of astrobiologists from different active research teams at NASA Ames Research Center, is designed to help to address these issues. AHED is a central, high-quality, long-term data repository for mineralogical, textural, morphological, inorganic and organic chemical, isotopic and other information pertinent to the advancement of the field of Astrobiology.

  12. Data Sharing in Astrobiology: the Astrobiology Habitable Environments Database (AHED)

    NASA Technical Reports Server (NTRS)

    Lafuente, B.; Bristow, T.; Stone, N.; Pires, A.; Keller, R. M.; Downs, R. T.; Blake, D.; Fonda, M.

    2017-01-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. NASA uses the results of Astrobiology research to help define targets for future missions that are searching for life elsewhere in the universe. The understanding of complex questions in Astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for Astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. The Astrobiology Habitable Environments Database (AHED), developed with a consolidated group of astrobiologists from different active research teams at NASA Ames Research Center, is designed to help to address these issues. AHED is a central, high-quality, long-term data repository for mineralogical, textural, morphological, inorganic and organic chemical, isotopic and other information pertinent to the advancement of the field of Astrobiology.

  13. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    PubMed

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  14. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  15. Development, Evaluation, and Dissemination of an Astrobiology Curriculum for Secondary Students: Establishing a Successful Model for Increasing the Use of Scientific Data by Underrepresented Students.

    NASA Astrophysics Data System (ADS)

    Arino de La Rubia, L.; Butler, J.; Gary, T.; Stockman, S.; Mumma, M.; Pfiffner, S.; Davis, K.; Edmonds, J.

    2009-12-01

    The Minority Institution Astrobiology Collaborative began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms modules are being developed to emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Since this time, more NASA Astrobiology Institute Teams have joined this education and public outreach (EPO)effort. Field-testing of the Astrobiology in Secondary Classrooms materials began in 2007 in five US locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics.

  16. The Astrobiology Field Guide in World Wind

    NASA Astrophysics Data System (ADS)

    Scalice, D. M.

    2004-12-01

    In collaboration with the Australian Centre for Astrobiology (ACA), and NASA Learning Technologies (NLT), and utilizing the powerful visualization capabilities of their "World Wind" software, the NASA Astrobiology Institute (NAI) is crafting a prototype "Astrobiology Field Guide" to bring the field experiences and stories of astrobiology science to the public and classrooms around the world. The prototype focuses on one region in particular - The Pilbara in Western Australia. This first Field Guide "hotspot" is an internationally recognized area hosting the best known example of the earliest evidence of life on Earth - a stromatolitic chert precipitation in the 3.45 Ga Warrawoona Group. The goal of the Astrobiology Field Guide is to engage students of all ages with the ongoing field expeditions of today's astrobiologists as they explore the ends of the Earth searching for clues to life's origin, evolution, and distribution in the Universe. The NAI hopes to expand this Field Guide to include many more astrobiologically relevant areas across the globe such as Cuatro Cienegas in Mexico, the Rio Tinto in Spain, Yellowstone National Park in the US, and the Lost City hydrothermal vent field on the mid-Atlantic ridge - and possibly sites on Mars. To that end, we will be conducting feasibility studies and evaluations with informal and formal education contacts. The Astrobiology Field Guide is also serving as a cornerstone to educational materials being developed focused on the Pilbara region for use in classrooms in Australia, the UK, and potentially the US. These materials are being developed by the Australian Centre for Astrobiology, and the ICT Innovations Centre at Macquarie University in Sydney, in collaboration with the NAI and the Centre for Astronomy and Science Education at the University of Glamorgan in the UK.

  17. Undergraduate Research at SETI in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kress, Monika; Phillips, C.; DeVore, E.; Hubickyj, O.

    2012-05-01

    The SETI Institute and San Jose State University (SJSU) have begun a partnership (URSA: Undergraduate Research at the SETI Institute in Astrobiology) in which undergraduate science and engineering majors from SJSU participate in research at the SETI Institute during the academic year. We are currently in our second year of the three-year NASA-funded grant. The goal of this program is to expose future scientists, engineers and educators to the science of astrobiology and to NASA in general, and by so doing, to prepare them for the transition to their future career in the Silicon Valley or beyond. The URSA students are mentored by a SETI Institute scientist who conducts research at the SETI Institute headquarters or nearby at NASA Ames Research Center. The SETI Institute is a private, nonprofit organization dedicated to scientific research, education and public outreach. Its mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. SJSU is a large urban public university that serves the greater Silicon Valley area in California. Students at SJSU come from diverse ethnic, cultural and socioeconomic backgrounds. Many of them face financial pressures that force them to pursue part-time work. URSA students are paid to work for 10 hours/week during the academic year, and also participate in monthly group meetings where they practice their presentation skills and discuss future plans. We encourage underserved and underrepresented students, including women, minority, and those who are the first in their family to go to college, to apply to the URSA program and provide ongoing mentoring and support as needed. While preparing students for graduate school is not a primary goal, some of our students have gone on to MS or PhD programs or plan to do so. The URSA program is funded by NASA EPOESS.

  18. Data Management in Astrobiology: Challenges and Opportunities for an Interdisciplinary Community

    PubMed Central

    Suomela, Todd; Malone, Jim

    2014-01-01

    Abstract Data management and sharing are growing concerns for scientists and funding organizations throughout the world. Funding organizations are implementing requirements for data management plans, while scientists are establishing new infrastructures for data sharing. One of the difficulties is sharing data among a diverse set of research disciplines. Astrobiology is a unique community of researchers, containing over 110 different disciplines. The current study reports the results of a survey of data management practices among scientists involved in the astrobiology community and the NASA Astrobiology Institute (NAI) in particular. The survey was administered over a 2-month period in the first half of 2013. Fifteen percent of the NAI community responded (n=114), and additional (n=80) responses were collected from members of an astrobiology Listserv. The results of the survey show that the astrobiology community shares many of the same concerns for data sharing as other groups. The benefits of data sharing are acknowledged by many respondents, but barriers to data sharing remain, including lack of acknowledgement, citation, time, and institutional rewards. Overcoming technical, institutional, and social barriers to data sharing will be a challenge into the future. Key Words: Data management—Data sharing—Data preservation. Astrobiology 14, 451–461. PMID:24840364

  19. UK Astrobiology : Vanguard: a new development in experimental astrobiology

    NASA Astrophysics Data System (ADS)

    Ellery, Alex; Wynn-Williams, David

    2002-04-01

    Alex Ellery and David Wynn-Williams propose a new UK astrobiology project, in which a micro-rover would deploy ground-penetrating moles to burrow into the Martian subsurface. One of the linchpins of the UK's contribution to the burgeoning field of astrobiology is the Beagle 2 mission, due to fly to Mars in 2003 on the Mars Express bus. Given that NASA has declared its intention to focus on ``whole planet'' geological investigation in its future Mars missions, beginning with the Mars Exploration Rovers which are due to fly in 2003/2004, the UK is well placed to consider post-Beagle 2 astrobiology-focused Mars missions to ensure its leadership in the future in astrobiology. In this paper we present such a proposal - Vanguard.

  20. The Lassen Astrobiology Intern Program - Concept, Implementation and Evaluation

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Dueck, S. L.; Davis, H. B.; Parenteau, M. N.; Kubo, M. D.

    2014-12-01

    The program goal was to provide a hands-on astrobiology learning experience to high school students by introducing astrobiology and providing opportunities to conduct field and lab research with NASA scientists. The program sought to increase interest in interdisciplinary science, technology, engineering, math and related careers. Lassen Volcanic National Park (LVNP), Red Bluff High School and the Ames Team of the NASA Astrobiology Institute led the program. LVNP was selected because it shares aspects of volcanism with Mars and it hosts thermal springs with microbial mat communities. Students documented volcanic deposits, springs and microbial mats. They analyzed waters and sampled rocks, water and microorganisms. They cultured microorganisms and studied chemical reactions between rocks and simulated spring waters. Each student prepared a report to present data and discuss relationships between volcanic rocks and gases, spring waters and microbial mats. At a "graduation" event the students presented their findings to the Red Bluff community. They visited Ames Research Center to tour the facilities and learn about science and technology careers. To evaluate program impact, surveys were given to students after lectures, labs, fieldwork and discussions with Ames scientists. Students' work was scored using rubrics (labs, progress reports, final report, presentation). Students took pre/post tests on core astrobiology concepts. Parents, teachers, rangers, Ames staff and students completed end-of-year surveys on program impact. Several outcomes were documented. Students had a unique and highly valued learning experience with NASA scientists. They understood what scientists do through authentic scientific work, and what scientists are like as individuals. Students became knowledgeable about astrobiology and how it can be pursued in the lab and in the field. The students' interest increased markedly in astrobiology, interdisciplinary studies and science generally.

  1. Astrobiology and Microbial Diversity Websites at MBL

    NASA Astrophysics Data System (ADS)

    Bahr, M.; Bordenstein, S. R.

    2006-12-01

    The NASA Astrobiology Institute (NAI) mission is to study the origin, evolution and future of life in the Universe. The MBL Astrobiology team explores the evolution and interaction of genomes of diverse organisms that play significant roles in environmental biology over evolutionary time scales. Communication about our research includes the personal contact of teacher workshops, and the development of web-based resources. Microbial Life Educational Resources (MLER) provides an expanding internet resource about the ecology, diversity and evolution for students, K-12 teachers, university faculty, and the general public. MLER includes websites, PowerPoint presentations, teaching activities, data sets, and other useful materials for creating or enhancing courses related to astrobiology. Our second site, micro*scope (http://microscope.mbl.edu), has images of microbes, classification schemes, descriptions of organisms, talks and other educational resources to improve awareness of the biodiversity of our microbial partners.

  2. A concept for NASA's Mars 2016 astrobiology field laboratory.

    PubMed

    Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  3. Data Sharing in Astrobiology: the Astrobiology Habitable Environments Database (AHED)

    NASA Astrophysics Data System (ADS)

    Bristow, T.; Lafuente Valverde, B.; Keller, R.; Stone, N.; Downs, R. T.; Blake, D. F.; Fonda, M.; Pires, A.

    2016-12-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. The understanding of complex questions in astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. Astrobiology, as any other scientific discipline, needs to respond to these mandates. The Astrobiology Habitable Environments Database (AHED) is a central, high quality, long-term searchable repository designed to help the community by promoting the integration and sharing of all the data generated by these diverse disciplines. AHED provides public and open-access to astrobiology-related research data through a user-managed web portal implemented using the open-source software The Open Data Repository's (ODR) Data Publisher [1]. ODR-DP provides a user-friendly interface that research teams or individual scientists can use to design, populate and manage their own databases or laboratory notebooks according to the characteristics of their data. AHED is then a collection of databases housed in the ODR framework that store information about samples, along with associated measurements, analyses, and contextual information about field sites where samples were collected, the instruments or equipment used for analysis, and people and institutions involved in their collection. Advanced graphics are implemented together with advanced online tools for data analysis (e.g. R, MATLAB, Project Jupyter-http://jupyter.org). A permissions system will be put in place so that

  4. Cultural Aspects of Astrobiology: A Preliminary Reconnaissance at

    NASA Astrophysics Data System (ADS)

    Dick, Steven

    NASA's Astrobiology Roadmap, developed in 1998 by an interdisciplinary team of more than 150 individuals, recognizes ten science goals, 17 more specific science objectives, and four broad principles for the Astrobiology Program. Among the four operating principles, which emphasize multidisciplinarity, planetary stewardship and public outreach, is one that also recognizes broad societal interest for the implications of astrobiology, especially its extraterrestrial life component. Although several meetings ahve been convened in the past decade to discuss the implications of extraterrestrial intelligence, including NASA's own CASETI workshops in 1991-1992, none have surveyed the broader implications of astrobiology as now defined at NASA. In this paper we survey these societal questions raised by astrobiology, and then focus on those related to extraterrestrial life, and in particular how they might differ from SETI concerns already discussed. As we enter the new millennium, the necessity for interdisciplinary studies is increasingly recognized in academia, industry and government. Astrobiology provides an unprecedented opportunity to encourage the unity of knowledge, as recently proposed in E. O. Wilson's book Consilience: The Unity of Knowledge. It is incumbent on scientists to support research on the implications of their work, in particular large government-funded scientific projects. The deep insights such study may yield has been amply demonstrated by the Human Genome Project, among others.

  5. Astrobiology and the Biological Universe

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2002-12-01

    Four hundred years ago two astronomical world views hung in the balance: the geocentric and the heliocentric. Today astronomy faces a similar choice between two grand world views: a purely physical universe, in which cosmic evolution commonly ends in planets, stars and galaxies, and a biological universe, in which cosmic evolution routinely results in life, mind and intelligence. Astrobiology is the science providing the data to make this critical choice. This 20th century overview shows how we have arrived at the view that cosmic evolution may have resulted in life and intelligence in the universe. It examines how our astronomical world view has changed over the last century, recalls the opinions of astronomical pioneers like Russell, Shapley, and Struve on life in the universe, and shows how planetary science, planetary systems science, origins of life studies and SETI have combined to form a new discipline. Astrobiology now commands \\$50 million in direct funding from NASA, funds 15 Astrobiology Institute members around the country and four affiliates around the world, and seeks to answer one of astronomy's oldest questions. Whether we live in a mostly physical universe, as exemplified in Isaac Asimov's Foundation series, or in a biological universe, as portrayed in Arthur C. Clarke's works, this reality will have profound consequences, no less than the Copernican theory. Astrobiology also looks to the future of life; taking a long-term ``Stapledonian" view, it is possible we may live in a postbiological universe.

  6. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  7. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Pamela Conrad, an astrobiologist from Goddard Space Flight Center, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  8. Summer Research Experiences for Science and Art Teachers to Explore Astrobiology

    NASA Astrophysics Data System (ADS)

    Cola, J.; Gaucher, E.; Snell, T.; Greenwood, J.; Angra, A.; Zimmerman, C.; Williams, L. D.

    2012-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational program titled, "Life on the Edge: Astrobiology." The purpose of the program was to provide high school educators with the exposure, materials, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with undergraduate students interested in becoming a teacher through the NSF Pre-Teaching REU program. The GIFT and Pre-Teaching fellows investigated extremophiles, which became the focus of a week-long, "Life on the Edge: Astrobiology " summer program developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty high school students were introduced to hands-on activities, such as astrobiology inspired art and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact of the Astrobiology program on the GIFT researchers, Pre-Teaching REU students, high school students, and faculty are discussed.

  9. The narrative power of astrobiology

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    The narrative power of astrobiology: Telling the story of the quest to understand life's origins and the search for evidence of extraterrestrial life INTRODUCTION The story of the origins and evolution of life is a narrative with nearuniversal appeal. The story of life on Earth is meaningful to all people, and the search for life elsewhere is appealing across cultural boundaries. The U.S. National Aeronautics and Space Administration (NASA) funds an Astrobiology Program in NASA's Science Mission Directorate that is dedicated to the study of the origin, evolution, distribution, and future of life in the universe. Because public interest in astrobiology is great and advances in the field are rapid, the NASA Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. This strategic approach to communication is intended to promote the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by the Astrobiology Program. This paper will address how scientists in the field of astrobiology can participate in the telling of an ongoing story of interest to multicultural audiences and why it is important to tell this story. SUMMARY Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Goals of the NASA Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of

  10. Astrobiological Studies Plan at UCSD and the University of Buckingham

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Wickramasinghe, N. Chandra

    2011-10-01

    A UC-HBCU grant is requested to assist undergraduate and masters level HBCU Interns to achieve their professional and academic goals by attending summer school classes at UCSD along with graduate students in the UCSD Astrobiology Studies program, and by also attending a NASA sponsored scientific meeting in San Diego on Astrobiology organized by NASA scientist Richard Hoover (the 14th in a sequence). Hoover has recently published a paper in the Journal of Cosmology claiming extraterrestrial life fossils in three meteorites. Students will attend a workshop to prepare research publications on Astrobiological Science for the Journal of Cosmology or equivalent refereed journal, mentored by UCSD faculty and graduate students as co-authors and referees, all committed to the several months of communication usually required to complete a publishable paper. The program is intended to provide pathways to graduate admissions in the broad range of science and engineering fields, and by exposure to fundamental science and engineering disciplines needed by Astrobiologists. A three year UC-HBCU Astrobiological Studies program is proposed: 2011, 2012 and 2013. Interns would be eligible to enter this program when they become advanced graduate students. A center of excellence in astrobiology is planned for UCSD similar to that Directed by Professor Wickramasinghe for many years with Fred Hoyle at Cardiff University, http://www.astrobiology.cf.ac.uk /chandra1.html. Professor Wickramasinghe's CV is attached as Appendix 1. Figures A2-1,2 of Appendix 2 compare Astrobiology timelines of modern fluid mechanical and astrobiological models of Gibson/Wickramasinghe/Schild of the Journal of Cosmology with standard NASA- CDMHC models. NASA support will be sought to support research and educational aspects of both initiatives. Overload teaching of up to two courses a year by UCSD faculty of key astrobiology courses at either UCSD or at HBCU campuses is authorized by recent guidelines of UCSD

  11. The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016.

    PubMed

    Cockell, Charles S; Biller, Beth; Bryce, Casey; Cousins, Claire; Direito, Susana; Forgan, Duncan; Fox-Powell, Mark; Harrison, Jesse; Landenmark, Hanna; Nixon, Sophie; Payler, Samuel J; Rice, Ken; Samuels, Toby; Schwendner, Petra; Stevens, Adam; Nicholson, Natasha; Wadsworth, Jennifer

    2018-02-01

    The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology-Centre-Education-Subsurface-Analog research. Astrobiology 18, 224-243.

  12. Real Science for Real Science Teachers: Providing Astrobiology Science Content and Contemporary Pedagogy for Today's Educators Online

    NASA Astrophysics Data System (ADS)

    Offerdahl, E. G.; Prather, E. E.; Slater, T. F.

    2003-12-01

    As teachers strive to improve the way science is taught in the classroom, many are turning to the interdisciplinary science of astrobiology as a way integrate inquiry effectively in the science classroom. However, it is generally recognized that teachers do not often have easy access to understandable and usable cutting-edge science to enrich their science lessons. Through the generous support of the NASA Astrobiology Institute (NAI), middle and high school teachers have the opportunity to learn current and provocative scientific results within the context of astrobiology as well as receive training in pedagogically sound methods of incorporating astrobiology appropriately in the classroom. In Astrobiology for Teachers, a 15-week on-line distance learning course co-sponsored by NAI, the National Science Teachers Association (NSTA) Professional Development Institute, National Teachers Enhancement Network (NTEN), Montana State University, and the Department of Astronomy at University of Arizona, teachers engage in a virtual classroom facilitated by an integrated teaching team of educators and scientists using a standards-based, inquiry curriculum. The collaborative nature of the course encourages, demonstrates, and enhances a professional exchange among scientists and educators which, in turn, fosters implementation of innovative science teaching in today's classroom.

  13. Exo/Astrobiology in Europe

    NASA Astrophysics Data System (ADS)

    Brack, André; Horneck, Gerda; Wynn-Williams, David

    2001-08-01

    The question of the chemical origins of life is engraved in the European scientific patrimony as it can be traced back to the pioneer ideas of Charles Darwin, Louis Pasteur, and more recently to Alexander Oparin. During the last decades, the European community of origin of life scientists has organized seven out of the twelve International Conferences on the Origins of Life held since 1957. This community contributed also to enlarge the field of research to the study of life in extreme environments and to the search for extraterrestrial life, i.e. exobiology in its classical definition or astrobiology if one uses a more NASA-inspired terminology. The present paper aims to describe the European science background in exo/astrobiology as well as the project of a European Network of Exo/Astrobiology.

  14. The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011–2016

    PubMed Central

    Biller, Beth; Bryce, Casey; Cousins, Claire; Direito, Susana; Forgan, Duncan; Fox-Powell, Mark; Harrison, Jesse; Landenmark, Hanna; Nixon, Sophie; Payler, Samuel J.; Rice, Ken; Samuels, Toby; Schwendner, Petra; Stevens, Adam; Nicholson, Natasha; Wadsworth, Jennifer

    2018-01-01

    Abstract The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology—Centre—Education—Subsurface—Analog research. Astrobiology 18, 224–243. PMID:29377716

  15. Educational Outreach for Astrobiology

    NASA Astrophysics Data System (ADS)

    Kadooka, M.; Meech, K.

    2009-12-01

    Astrobiology, the search for life in the universe, has fascinating research areas that can excite students and teachers about science. Its integrative nature, relating to astronomy, geology, oceanography, physics, and chemistry, can be used to encourage students to pursue physical sciences careers. Since 2004, the University of Hawaii NASA Astrobiology Institute (NAI) team scientists have shared their research with secondary teachers at our ALI’I national teacher program to promote the inclusion of astrobiology topics into science courses. Since 2007, our NAI team has co-sponsored the HI STAR program for Hawaii’s middle and high school students to work on authentic astronomy research projects and to be mentored by astronomers. The students get images of asteroids, comets, stars, and extrasolar planets from the Faulkes Telescope North located at Haleakala Observatories on the island of Maui and owned by Las Cumbres Observatory Global Telescope network. They also do real time observing with DeKalb Observatory telescope personally owned by Donn Starkey who willing allows any student access to his telescope. Student project results include awards at the Hawaii State Science Fair and the Intel International Science and Engineering Fair. We believe that research experience stimulates these students to select STEM (science, technology, engineering and mathematics) majors upon entering college so a longitudinal study is being done. Plans are underway with California and Hawaii ALI’I teachers cooperating on a joint astronomy classroom project. International collaborations with Brazil, Portugal, and Italy astronomers have begun. We envision joint project between hemispheres and crossing time zones. The establishment of networking teachers, astronomers, students and educator liaisons will be discussed.

  16. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  17. Astrobiological stoichiometry.

    PubMed

    Young, Patrick A; Desch, Steven J; Anbar, Ariel D; Barnes, Rory; Hinkel, Natalie R; Kopparapu, Ravikumar; Madhusudhan, Nikku; Monga, Nikhil; Pagano, Michael D; Riner, Miriam A; Scannapieco, Evan; Shim, Sang-Heon; Truitt, Amanda

    2014-07-01

    Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the "Stellar Stoichiometry" Workshop Without Walls hosted at Arizona State University April 11-12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors. The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ∼ 2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport.

  18. Astrobiology: The Search for Life in the Universe

    NASA Technical Reports Server (NTRS)

    Pacchioli, David

    2003-01-01

    Each of the 11 lead members of NASA's Astrobiology Institute has a specific mission. According to Hiroshi Ohmoto, director of Penn State s Astrobiology Research Center, Here we are mainly concerned with the origin of life and the evolution and extinction of important organisms. These include bacteria that live on methane, cyanobacteria (the inventors of photosynthesis), eukaryotes (a big category, covering anything with a nucleus, from single-celled organisms to humans), land-dwelling organisms, and early animals. Penn State astrobiologists are studying the environment before there was life on Earth, the origin of oxygen in the atmosphere, the chemical and thermal structures of oceans, and the role of metals in the evolution of life. Overall, they want to understand the connection between changes in environment and changes in life forms in the early Earth. PSARC offers research assistantships for graduate and undergraduate students, fellowships for graduate students and post-doctoral fellows, and an undergraduate minor in astrobiology. The minor covers 18 credits in earth sciences, geochemistry, geophysics, astronomy, biology, biochemistry, meteorology, and microbiology. The goal, says Ohmoto, is to teach students to critically evaluate claims related to this field that they encounter well after their college education has ended. Under a scanning electron microscope, Martian meteorite ALH84001 yields tube-like structures that look a lot like remnants of Earthly bacteria except smaller by a factor of ten.

  19. Exploring Astrobiology: Future and In-Service Teacher Research Experiences

    NASA Astrophysics Data System (ADS)

    Cola, J.; Williams, L. D.; Snell, T.; Gaucher, E.; Harris, B.; Usselman, M. C.; Millman, R. S.

    2009-12-01

    The Georgia Tech Center for Ribosome Adaptation and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational Astrobiology program titled, “Life on the Edge: Astrobiology.” The purpose of the program was to provide educators with the materials, exposure, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. A one-week, non-residential summer enrichment program for high school students was conducted and tested by two high school educators, an undergraduate student, and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired in-service teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with an undergraduate student interested in becoming a teacher through the Tech to Teaching program. The GIFT and Tech to Teaching fellows investigated extremophiles which have adapted to life under extreme environmental conditions. As a result, extremophiles became the focus of a week-long, “Life on the Edge: Astrobiology” curriculum aligned with the Georgia Performance Standards in Biology. Twenty-five high school students explored the adaptation and survival rates for various types of extremophiles exposed to UV radiation and desiccation; students were also introduced to hands-on activities and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact on everyone invested and involved in the Astrobiology program including the GIFT and Tech to Teaching fellows, high school students, and faculty are discussed.

  20. Space Environment Survivability of Live Organisms: Results From a NASA Astrobiology Nanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Santos, Orlando; Ehrenfreund, Pascale; Mancinelli, Rocco; Nicholson, Wayne; Ricco, Antonio

    NASA's Organism/Organic Exposure to Orbital Stresses, or O/OREOS, nanosatellite is a sci-ence demonstration mission that showcases achievements in using hardware from a technology development program led by the Small Spacecraft Division at NASA's Ames Research Center, Moffett Field, California. Continuing Ames' development of triple-cube nanosatellite tech-nology and flight systems, which includes the successful GeneSat-1 and PharmaSat missions, O/OREOS is constructed from off-the-shelf commercial and NASA-designed parts to create a fully self-contained, automated, stable, light-weight space science laboratory with innovative environment and power control techniques; sensors to monitor the levels of pressure, temper-ature, humidity, radiation and acceleration; and a communications system able to regularly accept commands from the ground and transmit data back to Earth for scientific analysis. The overall goal of the O/OREOS mission is to demonstrate the capability to do low-cost sci-ence experiments on autonomous nanosatellites in space in support of the Astrobiology Small Payloads program under the Planetary Science Division of the Science Mission Directorate at NASA Headquarters. The spacecraft houses two science payloads: the Space Environment Viability of Organics (SEVO) experiment will monitor the stability and changes in four classes of organic matter (results presented at another COSPAR session); and the Space Environment Survivability of Live Organisms (SESLO) experiment (presented here). SESLO will charac-terize the growth, activity, health, and ability of microorganisms to adapt to the stresses of the space environment. The experiment is sealed in a vessel at one atmosphere and contains two types of microbes commonly found in salt ponds and soil, in a dried and dormant state: Halorubrum chaoviator and Bacillus subtilis. After it reaches orbit, the experiment will initiate and begin to rehydrate and grow three sets of the microbes at three different times

  1. NASA Science Institutes Plan. Report of the NASA Science Institutes Team: Final Publication (Incorporating Public Comments and Revisions)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.

  2. AstRoMap European Astrobiology Roadmap

    PubMed Central

    Horneck, Gerda; Westall, Frances; Grenfell, John Lee; Martin, William F.; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R.; Rettberg, Petra; Capria, Maria Teresa

    2016-01-01

    Abstract The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems• Research Topic 2: Origins of Organic Compounds in Space• Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life• Research Topic 4: Life and Habitability• Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. Key Words: Astrobiology roadmap—Europe—Origin and evolution of life—Habitability—Life detection—Life in extreme environments. Astrobiology 16, 201–243. PMID:27003862

  3. 2016 Summer Series - Penelope Boston - Subsurface Astrobiology: Cave Habitats on Earth, Mars and Beyond

    NASA Image and Video Library

    2016-08-09

    In our quest to explore other planets, we only have our own planet as an analogue to the environments we may find life. By exploring extreme environments on Earth, we can model conditions that may be present on other celestial bodies and select locations to explore for signatures of life. Dr. Penelope Boston, the new director of the NASA Astrobiology Institute at Ames, will describe her work in some of Earth’s most diverse caves and how they inform future exploration of Mars and the search for life in our solar system.

  4. Life Out There: An Astrobiological Multimedia Experience for the Digital Planetarium

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Grinspoon, D.

    2013-04-01

    Planetariums have a long history of experimentation with audio and visuals to create new multimedia experiences. We report on a series of innovative experiences in the Gates Planetarium at the Denver Museum of Nature & Science in 2009-2011 combining live performances of music and navigation through scientific visualizations. The Life Out There productions featured a story showcasing astrobiology concepts at scales ranging from galactic to molecular, and told using VJ-ing of immersive visualizations and musical performances from the House Band to the Universe. Funded by the NASA Astrobiology Institute's JPL-Titan Team, these hour-long shows were broken into four separate themed musical movements, with an improvisatory mix of music, dome visuals, and spoken science narrative which resulted in no two performances being exactly alike. Post-performance dissemination is continuing via a recorded version of the performance available as a DVD and online streaming video. Written evaluations from visitors who were present at the live shows reveal high satisfaction, while one of the Life Out There concerts was used to inaugurate a new evening program to draw in a younger audience demographic to DMNS.

  5. Robots for Astrobiology!

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  6. The astrobiology primer: an outline of general knowledge--version 1, 2006.

    PubMed

    Billings, L; Cameron, V; Claire, M; Dick, G J; Domagal-Goldman, S D; Javaux, E J; Johnson, O J; Laws, C; Race, M S; Rask, J; Rummel, J D; Schelble, R T; Vance, S

    2006-10-01

    The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Each section includes a brief overview of a topic and a short list of readable and important literature for those interested in deeper knowledge. Because of the great diversity of material, each section was written by a different author with a different expertise. Contributors, authors, and editors are listed at the beginning, along with a list of those chapters and sections for which they were responsible. We are deeply indebted to the NASA Astrobiology Institute (NAI), in particular to Estelle Dodson, David Morrison, Ed Goolish, Krisstina Wilmoth, and Rose Grymes for their continued enthusiasm and support. The Primer came about in large part because of NAI support for graduate student research, collaboration, and inclusion as well as direct funding. We have entitled the Primer version 1 in hope that it will be only the first in a series, whose future volumes will be produced every 3-5 years. This way we can insure that the Primer keeps up with the current state of research. We hope that it will be a great resource for anyone trying to stay abreast of an ever-changing field.

  7. The Astrobiological Landscape

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.

    2012-06-01

    Introduction; Acknowledgements; 1. Astrobiology: the colour out of space?; 2. Cosmology, life, and duration of the past; 3. Cosmology, life, and selection effects; 4. Cosmology, life, and the archipelago; 5. Astrobiology as a natural extension of Darwinism; 6. Rare Earths and the continuity thesis; 7. SETI and its discontents; 8. Natural and artificial: cosmic domain of Arnheim; 9. Astrobiology as the neo-Copernican synthesis?; Index.

  8. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This

  9. NASA-ESA Joint Mission to Explore Two Worlds of Great Astrobiological Interest - Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Coustenis, A.; Lunine, J.; Matson, D.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.

    2009-04-01

    Rugged shorelines, laced with canyons, leading to ethane/methane seas glimpsed through an organic haze, vast fields of dunes shaped by alien sciroccos… An icy moon festooned with plumes of water-ice and organics, whose warm watery source might be glimpsed through surface cracks that glow in the infrared… The revelations by Cassini-Huygens about Saturn's crown jewels, Titan and Enceladus, have rocked the public with glimpses of new worlds unimagined a decade before. The time is at hand to capitalize on those discoveries with a broad mission of exploration that combines the widest range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology,Chemistry, Magnetospheres—in a single NASA/ESA collaboration. The Titan Saturn System Mission will explore these exciting new environments, flying through Enceladus' plumes and plunging deep into Titan's atmosphere with instruments tuned to find what Cassini could only hint at. Exploring Titan with an international fleet of vehicles; from orbit, from the surface of a great polar sea, and from the air with the first hot air balloon to ride an extraterrestrial breeze, TSSM will turn our snapshot gaze of these worlds into an epic film. This paper will describe a collaborative NASA-ESA Titan Saturn System Mission that will open a new phase of planetary exploration by projecting robotic presence on the land, on the sea, and in the air of an active, organic-rich world.

  10. Astrobiology: A pathway to adult science literacy?

    NASA Astrophysics Data System (ADS)

    Oliver, C. A.; Fergusson, J.

    2007-10-01

    Adult science illiteracy is widespread. This is concerning for astrobiology, or indeed any other area of science in the communication of science to public audiences. Where and how does this scientific illiteracy arise in the journey to adulthood? Two astrobiology education projects have hinted that science illiteracy may begin in high school. This relationship between high school science education and the public understanding of science is poorly understood. Do adults forget their science education, or did they never grasp it in the first place? A 2003 science education project raised these questions when 24 16-year-olds from 10 Sydney high schools were brought into contact with real science. The unexpected results suggested that even good high school science students have a poor understanding of how science is really undertaken in the field and in the laboratory. This concept is being further tested in a new high school science education project, aimed at the same age group, using authentic astrobiology cutting-edge data, NASA Learning Technologies tools, a purpose-built research Information and Communication Technology-aided learning facility and a collaboration that spans three continents. In addition, a first year university class will be tested for evidence of science illiteracy immediately after high school among non-science oriented but well-educated students.

  11. An Astrobiology Microbes Exhibit and Education Module

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  12. Benchmarks: Reports of the NASA Science Institutes Team

    NASA Technical Reports Server (NTRS)

    Diaz, A. V.

    1995-01-01

    This report results from a benchmarking study undertaken by NASA as part of its planning for the possible creation of new science Institutes. Candidate Institutes under consideration cover a range of scientific and technological activities ranging from biomedical to astrophysical research and from the global hydrological cycle to microgravity material science. Should NASA create these Institutes, the intent will be to preserve and strengthen key science and technology activities now being performed by Government employees at NASA Field Centers. Because the success of these projected non-Government-operated Institutes is vital for the continued development of space science and applications, NASA has sought to identify the best practices of successful existing scientific and technological research institutions as they carry out those processes that will be most important for the new science Institutes. While many individuals and organizations may be interested in our findings, the primary use of this report will be to formulate plas for establishing the new science Institutes. As a result, the report is organized to that the "best practices" of the finest institutes are associated with characteristics of all institutes. These characteristics or "attributes" serve as the headings for the main body of this report.

  13. Survey on astrobiology research and teaching activities within the United kingdom.

    PubMed

    Dartnell, Lewis R; Burchell, Mark J

    2009-10-01

    While astrobiology is apparently growing steadily around the world, in terms of the number of researchers drawn into this interdisciplinary area and teaching courses provided for new students, there have been very few studies conducted to chart this expansion quantitatively. To address this deficiency, the Astrobiology Society of Britain (ASB) conducted a questionnaire survey of universities and research institutions nationwide to ascertain the current extent of astrobiology research and teaching in the UK. The aim was to provide compiled statistics and an information resource for those who seek research groups or courses of study, and to facilitate new interdisciplinary collaborations. The report here summarizes details gathered on 33 UK research groups, which involved 286 researchers (from undergraduate project students to faculty members). The survey indicates that around 880 students are taking university-level courses, with significant elements of astrobiology included, every year in the UK. Data are also presented on the composition of astrobiology students by their original academic field, which show a significant dominance of physics and astronomy students. This survey represents the first published systematic national assessment of astrobiological academic activity and indicates that this emerging field has already achieved a strong degree of penetration into the UK academic community.

  14. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  15. Philosophy and data in astrobiology

    NASA Astrophysics Data System (ADS)

    Mix, Lucas John

    2018-04-01

    Creating a unified model of life in the universe - history, extent and future - requires both scientific and humanities research. One way that humanities can contribute is by investigating the relationship between philosophical commitments and data. Making those commitments transparent allows scientists to use the data more fully. Insights in four areas - history, ethics, religion and probability - demonstrate the value of careful, astrobiology-specific humanities research for improving how we talk and think about astrobiology as a whole. First, astrobiology has a long and influential history. Second, astrobiology does not decentre humanity, either physically or ethically. Third, astrobiology is broadly compatible with major world religions. Finally, claims about the probability of life arising or existing elsewhere rest heavily on philosophical priors. In all four cases, identifying philosophical commitments clarifies the ways in which data can tell us about life.

  16. Homemade ice cream, à la NASA

    NASA Image and Video Library

    2017-12-08

    Pictured above, Goddard's astrobiology lab makes cookies and cream ice cream using liquid nitrogen at the Science Jamboree. The NASA Goddard Science Jamboree took place on July 16, 2013. The event allowed the different departments at Goddard a chance to showcase their research and projects to other employees and summer interns. #nasa #nasagoddard #icecream Credit: NASA/Goddard Sawyer Rosenstein

  17. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  18. Low-latency teleoperations, planetary protection, and astrobiology

    NASA Astrophysics Data System (ADS)

    Lupisella, Mark L.

    2018-07-01

    The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.

  19. Life in the Universe - Astronomy and Planetary Science Research Experience for Undergraduates at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Chiar, J.; Phillips, C. B.; Rudolph, A.; Bonaccorsi, R.; Tarter, J.; Harp, G.; Caldwell, D. A.; DeVore, E. K.

    2016-12-01

    The SETI Institute hosts an Astrobiology Research Experience for Undergraduates (REU) program. Beginning in 2013, we partnered with the Physics and Astronomy Dept. at Cal Poly Pomona, a Hispanic-serving university, to recruit underserved students. Over 11 years, we have served 155 students. We focus on Astrobiology since the Institute's mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. Our REU students work with mentors at the Institute - a non-profit organization located in California's Silicon Valley-and at the nearby NASA Ames Research Center. Projects span research on survival of microbes under extreme conditions, planetary geology, astronomy, the Search for Extraterrestrial Intelligence (SETI), extrasolar planets and more. The REU program begins with an introductory lectures by Institute scientists covering the diverse astrobiology subfields. A week-long field trip to the SETI Institute's Allen Telescope Array (Hat Creek Radio Astronomy Observatory in Northern California) and field experiences at hydrothermal systems at nearby Lassen Volcanic National Park immerses students in radio astronomy and SETI, and extremophile environments that are research sites for astrobiologists. Field trips expose students to diverse environments and allow them to investigate planetary analogs as our scientists do. Students also participate in local trips to the California Academy of Sciences and other nearby locations of scientific interest, and attend the weekly scientific colloquium hosted by the SETI Institute at Microsoft, other seminars and lectures at SETI Institute and NASA Ames. The students meet and present at a weekly journal club where they hone their presentation skills, as well as share their research progress. At the end of the summer, the REU interns present their research projects at a session of the Institute's colloquium. As a final project, students prepare a 2-page formal abstract and 15-minute

  20. Astrobiology Results from ILEWG EuroMoonMars Analogue Field Research

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    . v’t Houd (8), A. Bruneau (6,9), M. Cross (6,7), V. Maivald (10), C. Orgel (6), A. Elsaesser (4), S.O.L. Direito (2,4), W.F.M. Röling (2), G.R. Davies (2); EuroGeoMars2009 Team, DOMMEX-ILEWG EuroMoonMars 2010-2013 Teams (1) ESA/ ESTEC, Postbus 299, 2200 AG Noordwik, NL; (2) Vrije Universiteit, Amsterdam, Faculty of Earth & Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, NL; (3) NASA Ames Research Centre; US; (4) Leiden Institute of Chemistry, NL; (5) Space Policy Institute, GWU, Washington D.C., USA; (6) ILEWG; (7) CPSX; (8) Cerberus Blackshore, ESIC Noordwijk, NL; (9) ENSC Bordeaux; (10) DLR, Bremen References: Foing, Stoker & Ehrenfreund (Editors, 2011) “Astrobiology field Research in Moon/Mars Analogue Environments”, Special Issue of International Journal of Astrobiology , IJA 2011, 10, vol.3. 137-305; [1] Foing B. et al. (2011) Field astrobiology research at Moon-Mars analogue site: Instruments and methods, IJA 2011, 10 (3), 141; [2] Clarke, J., Stoker, C. Concretions in exhumed & inverte channels near Hanksville Utah: implications for Mars, (IJA 2011, 10 (3), 162; [3] Thiel et al., (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. (IJA 2011, 10 (3), 177; [4] Direito et al. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). (IJA 2011, 10 (3), 191; [5] Orzechowska, G. et al (20110 analysis of Mars Analog soils using solid Phase Microextraction, Organics solvent extraction and GCMS, (IJA 2011, 10 (3), 209; [6] Kotler et al. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah Desert. (IJA 2011, 10 (3), 221; [7] Martins et al. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. (IJA 2011, 10 (3), 231; [8] Ehrenfreund et al. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals

  1. Introducing NASA's Solar System Exploration Research Virtual Institute

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners

  2. The Astrobiology Habitable Environments Database (AHED)

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Stone, N.; Downs, R. T.; Blake, D. F.; Bristow, T.; Fonda, M.; Pires, A.

    2015-12-01

    The Astrobiology Habitable Environments Database (AHED) is a central, high quality, long-term searchable repository for archiving and collaborative sharing of astrobiologically relevant data, including, morphological, textural and contextural images, chemical, biochemical, isotopic, sequencing, and mineralogical information. The aim of AHED is to foster long-term innovative research by supporting integration and analysis of diverse datasets in order to: 1) help understand and interpret planetary geology; 2) identify and characterize habitable environments and pre-biotic/biotic processes; 3) interpret returned data from present and past missions; 4) provide a citable database of NASA-funded published and unpublished data (after an agreed-upon embargo period). AHED uses the online open-source software "The Open Data Repository's Data Publisher" (ODR - http://www.opendatarepository.org) [1], which provides a user-friendly interface that research teams or individual scientists can use to design, populate and manage their own database according to the characteristics of their data and the need to share data with collaborators or the broader scientific community. This platform can be also used as a laboratory notebook. The database will have the capability to import and export in a variety of standard formats. Advanced graphics will be implemented including 3D graphing, multi-axis graphs, error bars, and similar scientific data functions together with advanced online tools for data analysis (e. g. the statistical package, R). A permissions system will be put in place so that as data are being actively collected and interpreted, they will remain proprietary. A citation system will allow research data to be used and appropriately referenced by other researchers after the data are made public. This project is supported by the Science-Enabling Research Activity (SERA) and NASA NNX11AP82A, Mars Science Laboratory Investigations. [1] Nate et al. (2015) AGU, submitted.

  3. The AstroBiology Explorer (ABE) MIDEX Mission: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2002-01-01

    The AstroBiology Explorer (ABE) mission is one of four selected for Phase A Concept Study in NASA's current call for MIDEX class missions. ABE is a cooled space telescope equipped with spectrographs covering the 2.5-20 micron spectral range. The ABE mission is devoted to the detection and identification of organic and related molecular species in space. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace.

  4. The Astrobiology Matrix and the "Drake Matrix" in Education

    NASA Technical Reports Server (NTRS)

    Mizser, A.; Kereszturi, A.

    2003-01-01

    We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.

  5. Philosophy of astrobiology: some recent developments

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2015-09-01

    We present some recent developments in philosophy of astrobiology which illustrate usefulness of philosophy to astrobiology. We cover applications of Aristotelian views to definition of life, of Priest's dialetheism to the question if viruses are alive, and various thought experiments in regard to these and other astrobiology issues. Thought experiments about the survival of life in the Solar system and about the role of viruses at the beginning and towards the end of life are also described.

  6. Astrobiology in Brazil: early history and perspectives

    NASA Astrophysics Data System (ADS)

    Rodrigues, Fabio; Galante, Douglas; Paulino-Lima, Ivan G.; Duarte, Rubens T. D.; Friaça, Amancio C. S.; Lage, Claudia; Janot-Pacheco, Eduardo; Teixeira, Ramachrisna; Horvath, Jorge E.

    2012-10-01

    This review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies.

  7. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    ,9), M. Cross (6,7), V. Maivald (10), C. Orgel (6), A. Elsaesser (4), S.O.L. Direito (2,4), W.F.M. Röling (2), G.R. Davies (2); EuroGeoMars2009 Team, DOMMEX-ILEWG EuroMoonMars 2010-2013 Teams (1) ESA/ ESTEC, Postbus 299, 2200 AG Noordwik, NL; (2) Vrije Universiteit, Amsterdam, NL; (3) NASA Ames Research Centre; US; (4) Leiden U. , NL; (5) Space Policy Institute, GWU, Washington D.C., USA; (6) ILEWG; (7) CPSX; (8) Cerberus Blackshore, ESIC Noordwijk, NL; (9) ENSC Bordeaux; (10) DLR, Bremen

  8. Astrobiology Road Mapping (AstRoMap) - A project within FP7 of the European Commission: First results

    NASA Astrophysics Data System (ADS)

    Gomez-Gomez, Felipe; Capria, Maria Teresa; Palomba, Ernesto; Walter, Nicolas; Rettberg, Petra; Muller, Christian; Horneck, Gerda

    AstRoMap (Astrobiology and Planetary Exploration Road Mapping) is a funded project formulated in the 5th Call of the European Commission FP7 framework. The main objectives of the AstRoMap are: 1. Identify the main astrobiology issues to be addressed by Europe in the next decades in relation with space exploration 2. Identify potential mission concepts that would allow addressing these issues 3. Identify the technology developments required to enable these missions 4. Provide a prioritized roadmap integrating science and technology activities as well as ground-based approach 5. Map scientific knowledge related to astrobiology in Europe To reach those objectives, AstRoMap is executed within the following steps: 1. Community consultation. In order to map the European astrobiology landscape and to provide a collaborative networking platform for this community, the AstRoMap project hosts a database of scientists (European and beyond) interested in astrobiology and planetary exploration (see: http://www.astromap.eu/database.html). It reflects the demography and the research and teaching activities of the astrobiology community, as well as their professional profiles and involvement in astrobiology projects. Considering future aspects of astrobiology in Europe, the need for more astrobiology-dedicated funding programmes at the EU level, especially for cross-disciplinary groups, was stressed. This might eventually lead to the creation of a European laboratory of Astrobiology, or even of a European Astrobiology Institute. 2. Workshops organisation. On the basis of the feedbacks from the community consultation, the potential participants and interesting topics are being identified to take part in the following workshops: 1-. Origin of organic compounds, steps to life; 2. Physico-chemical boundary conditions for habitability 3. Biosignatures as facilitating life detection 4. Origin of the Solar system 3. Astrobiology road-mapping. Based on the results and major conclusions

  9. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  10. 14 CFR 1232.104 - Implementation procedures by non-NASA institutions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Implementation procedures by non-NASA... CARE AND USE OF ANIMALS IN THE CONDUCT OF NASA ACTIVITIES § 1232.104 Implementation procedures by non-NASA institutions. (a) Proposal Information. No animal subjects may be utilized unless a proposal...

  11. 14 CFR 1232.104 - Implementation procedures by non-NASA institutions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Implementation procedures by non-NASA... CARE AND USE OF ANIMALS IN THE CONDUCT OF NASA ACTIVITIES § 1232.104 Implementation procedures by non-NASA institutions. (a) Proposal Information. No animal subjects may be utilized unless a proposal...

  12. 14 CFR 1232.104 - Implementation procedures by non-NASA institutions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Implementation procedures by non-NASA... CARE AND USE OF ANIMALS IN THE CONDUCT OF NASA ACTIVITIES § 1232.104 Implementation procedures by non-NASA institutions. (a) Proposal Information. No animal subjects may be utilized unless a proposal...

  13. 14 CFR 1232.104 - Implementation procedures by non-NASA institutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Implementation procedures by non-NASA... CARE AND USE OF ANIMALS IN THE CONDUCT OF NASA ACTIVITIES § 1232.104 Implementation procedures by non-NASA institutions. (a) Proposal Information. No animal subjects may be utilized unless a proposal...

  14. AstroBiology Explorer (ABE) MIDEX mission concept

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Cox, Sylvia; Ellis, Benton; Gallagher, Dennis J.; Gautier, Nick; Greene, Thomas P.; McCreight, Craig R.; Mills, Gary; Purcell, William R.

    2002-02-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept under study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp. ABE will conduct IR spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Cassegrain telescope and two moderate resolution (R equals 2000-3000) spectrographs covering the 2.5-16 micron spectral region. Large format (1024x1024 pixel or larger) IR detector arrays and bandpass filters will allow each spectrograph to cover an entire octave of spectral range or more per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~8K. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1-2 year mission lifetime.

  15. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    NASA Astrophysics Data System (ADS)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  16. Mars Atmospheric Chemistry and Astrobiology Workshop Summary

    NASA Astrophysics Data System (ADS)

    Allen, M.; Wennberg, P.

    2002-09-01

    The Mars Atmospheric Chemistry and Astrobiology (MACA) Workshop was held on the California Institute of Technology campus December 17-18, 2001. The prime objective of the workshop was to consider whether extant life beneath the surface, if it exists, would be in contact with the atmosphere and introduce a detectable signature in the atmosphere. To answer this question, the workshop also explored how well we understood the abiotic chemistry of the current atmosphere and other drivers of atmospheric composition (volcanoes, surface-atmosphere interactions, escape). The conclusions from this workshop will be presented.

  17. Whitson Receives Call from President Trump on This Week @NASA - April 28, 2017

    NASA Image and Video Library

    2017-04-28

    On April 24 aboard the International Space Station, NASA astronaut Peggy Whitson set a new record for cumulative time spent in space by a U.S. astronaut. President Donald Trump marked the milestone with a call from the Oval Office, with First Daughter Ivanka Trump, and NASA astronaut Kate Rubins – to the station, where Whitson was joined by NASA’s Jack Fischer. Whitson, who in 2008 became the first woman to command the space station, also holds the record for most spacewalks by a female astronaut. NASA worked with the Department of Education, on behalf of the White House, to make the president’s call to the station available to schools across America. Whitson encouraged students to think about how the steps they take in the classroom today could someday help NASA make the next giant leap in space exploration. Also, First Live 4K Broadcast from Space, Kate Rubins Visits National Institutes of Health, Cassini Begins its Grand Finale, and 2017 Astrobiology Science Conference!

  18. Astrobiology, Sustainability and Ethical Perspectives

    NASA Astrophysics Data System (ADS)

    Arnould, Jacques

    2009-12-01

    Astrobiology, a new field of research associating the prospects and constraints of prebiotic chemistry, mineralogy, geochemistry, astrophysics, theoretical physics, microbial ecology, etc., is assessed in terms of sustainability through the scientific and social functions it fulfils, and the limits it encounters or strives to overcome. In the same way as sustainable development, astrobiology must also take into account the temporal dimension specific to its field of investigation and examine its underlying conception of Nature.

  19. Astrobiological complexity with probabilistic cellular automata.

    PubMed

    Vukotić, Branislav; Ćirković, Milan M

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.

  20. Lower Secondary Students' Views in Astrobiology

    ERIC Educational Resources Information Center

    Hansson, Lena; Redfors, Andreas

    2013-01-01

    Astrobiology is, on a profound level, about whether life exists outside of the planet Earth. The question of existence of life elsewhere in the universe has been of interest to many societies throughout history. Recently, the research area of astrobiology has grown at a fast rate, mainly due to the development of observational methods, and the…

  1. NASA's Solar System Exploration Research Virtual Institute (SSERVI)

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne J.

    2015-11-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA’s Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies.NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships.The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  2. STARLIFE-An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems.

    PubMed

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms. Key Words: Space radiation environment-Sparsely ionizing radiation-Densely ionizing radiation-Heavy ions-Gamma radiation-Astrobiological model systems. Astrobiology 17, 101-109.

  3. Collaboration as a Strategy to Transform the Impact of EPO Efforts in the New York Center for Astrobiology

    NASA Astrophysics Data System (ADS)

    Svirsky, A.; Rogers, K. L.; Meissner, M.; Busby, G.; Roberge, W.

    2014-12-01

    The New York Center for Astrobiology (NYCA) EPO effort is a collaboration combining expertise in evaluation and assessment of STEM educational modules with disciplinary expertise in astrobiology. In practice, the NYCA partners with external experts in professional development, informal education and evaluation to assist in developing and implementing certain programs of the NYCA EPO activities. Two specific program initiatives of the NYCA EPO effort offer excellent examples of programs with strong science content knowledge as well as using effective tools to address the NSF impact categories. These are the ExxonMobil Bernard Harris Summer Science Camp (EMBHSSC, in conjunction with RPI's STEM Pipeline Initiative) and the Astrobiology Teachers Academy (ATA). The EMBHSSC for middle school students focuses on NASA astrobiology initiatives around the "Quest for Life" theme. The Camp has a comprehensive evaluation component and uses pre-and post- assessment of student knowledge and interest in STEM. Recent data suggest that every student has shown a measurable gain in these areas. The ATA is a weeklong summer intensive professional development program for P-12 STEM teachers that combines discipline scientists in the NYCA with an external evaluation organization, the Association for the Cooperative Advancement of Science and Education (ACASE). The goal is for teachers to develop a new learning module for a course they teach that uses astrobiology as a content focus to engage students. The Academy has scientists collaborating with teachers in this effort, providing content and assistance in designing instructional activities. Assessments are woven into the fabric of the work in a few ways: 1. There is a purposeful focus on assessment as part of the learning module, and the content of the ATA; 2. ACASE offers teachers a tool for tracking their students' attainment of the learning goals identified in their learning module; 3. There are daily evaluations of the teachers

  4. 14 CFR § 1232.104 - Implementation procedures by non-NASA institutions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Implementation procedures by non-NASA... ADMINISTRATION CARE AND USE OF ANIMALS IN THE CONDUCT OF NASA ACTIVITIES (Eff. until 2-14-14) § 1232.104 Implementation procedures by non-NASA institutions. (a) Proposal Information. No animal subjects may be utilized...

  5. NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Cassanova, Robert A.

    1999-01-01

    The purpose of NASA Institute for Advanced Concepts (NIAC) is to provide an independent, open forum for the external analysis and definition of space and aeronautics advanced concepts to complement the advanced concepts activities conducted within the NASA Enterprises. The NIAC will issue Calls for Proposals during each year of operation and will select revolutionary advanced concepts for grant or contract awards through a peer review process. Final selection of awards will be with the concurrence of NASA's Chief Technologist. The operation of the NIAC is reviewed biannually by the NIAC Science, Exploration and Technology Council (NSETC) whose members are drawn from the senior levels of industry and universities. The process of defining the technical scope of the initial Call for Proposals was begun with the NIAC "Grand Challenges" workshop conducted on May 21-22, 1998 in Columbia, Maryland. These "Grand Challenges" resulting from this workshop became the essence of the technical scope for the first Phase I Call for Proposals which was released on June 19, 1998 with a due date of July 31, 1998. The first Phase I Call for Proposals attracted 119 proposals. After a thorough peer review, prioritization by NIAC and technical concurrence by NASA, sixteen subgrants were awarded. The second Phase I Call for Proposals was released on November 23, 1998 with a due date of January 31, 1999. Sixty-three (63) proposals were received in response to this Call. On December 2-3, 1998, the NSETC met to review the progress and future plans of the NIAC. The next NSETC meeting is scheduled for August 5-6, 1999. The first Phase II Call for Proposals was released to the current Phase I grantees on February 3,1999 with a due date of May 31, 1999. Plans for the second year of the contract include a continuation of the sequence of Phase I and Phase II Calls for Proposals and hosting the first NIAC Annual Meeting and USRA/NIAC Technical Symposium in NASA HQ.

  6. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Allamandola, Louis; Bregman, Jesse D.; Cohen, Martin; Cruikshank, Dale; Greene, Thomas P.; Hudgins, Douglas; Kwok, Sun; Lord, Steven D.; Madden, Suzanne; McCreight, Craig R.; Roellig, Thomas L.; Strecker, Donald W.; Tielens, A. G. G. M.; Werner, Michael W.

    2003-03-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace &Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1.5 year mission lifetime.

  7. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; hide

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  8. Institutional Memory Preservation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Coffey, J.; Moreman, Douglas; Dyer, J.; Hemminger, J. A.

    1999-01-01

    In this era of downsizing and deficit reduction, the preservation of institutional memory is a widespread concern for U.S. companies and governmental agencies. The National Aeronautical and Space Administration faces the pending retirement of many of the agency's long-term, senior engineers. NASA has a marvelous long-term history of success, but the agency faces a recurring problem caused by the loss of these engineers' unique knowledge and perspectives on NASA's role in aeronautics and space exploration. The current work describes a knowledge elicitation effort aimed at demonstrating the feasibility of preserving the more personal, heuristic knowledge accumulated over the years by NASA engineers, as contrasted with the "textbook" knowledge of launch vehicles. Work on this project was performed at NASA Glenn Research Center and elsewhere, and focused on launch vehicle systems integration. The initial effort was directed toward an historic view of the Centaur upper stage which is powered by two RL-10 engines. Various experts were consulted, employing a variety of knowledge elicitation techniques, regarding the Centaur and RL-10. Their knowledge is represented in searchable Web-based multimedia presentations. This paper discusses the various approaches to knowledge elicitation and knowledge representation employed, and assesses successes and challenges in trying to perform large-scale knowledge preservation of institutional memory. It is anticipated that strategies for knowledge elicitation and representation that have been developed in this grant will be utilized to elicit knowledge in a variety of domains including the complex heuristics that underly use of simulation software packages such as that being explored in the Expert System Architecture for Rocket Engine Numerical Simulators.

  9. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  10. Capturing Student Interest in Astrobiology through Dilemmas and Paradoxes

    ERIC Educational Resources Information Center

    Slater, Timothy F.

    2006-01-01

    Astrobiology is an interdisciplinary science course that combines essential questions from life, physical, and Earth sciences. An effective astrobiology course also capitalizes on students' natural curiosity about social science implications of studying the origin of life and the impact of finding life elsewhere in the universe. (Contains 2…

  11. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne J.

    2016-10-01

    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  12. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  13. Synergy Between Individual and Institutional Capacity Building: Examples from the NASA DEVELOP National Program

    NASA Astrophysics Data System (ADS)

    Ross, K. W.; Childs-Gleason, L. M.; Favors, J.; Rogers, L.; Ruiz, M. L.; Allsbrook, K. N.

    2016-12-01

    The NASA DEVELOP National Program seeks to simultaneously build capacity to use Earth observations in early career and transitioning professionals while building capacity with institutional partners to apply Earth observations in conducting operations, making decisions, or informing policy. Engaging professionals in this manner lays the foundation of the NASA DEVELOP experience and provides a fresh perspective into institutional challenges. This energetic engagement of people in the emerging workforce elicits heightened attention and greater openness to new resources and processes from project partners. This presentation will describe how NASA DEVELOP provides over 350 opportunities for individuals to engage with over 140 partners per year. It will discuss how the program employs teaming approaches, logistical support, and access to science expertise to facilitate increased awareness and use of NASA geospatial information. It will conclude with examples of how individual/institutional capacity building synergies have led to useful capacity building outcomes.

  14. Astrobiology in culture: the search for extraterrestrial life as "science".

    PubMed

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.

  15. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  16. Astrosociological Implications of Astrobiology (Revisited)

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving the search for extraterrestrial life should be viewed as consisting of two interrelated parts (i.e., two sides of the same coin): astrobiology and astrosociology. Together, these two fields broadly combine the two major branches of science as they relate to the relationship between human life and alien life, as appropriate. Moreover, with a formalized system of collaboration, these two complimentary fields would also focus on the implications of their research to human beings as well as their cultures and social structures. By placing the astrosociological implications of astrobiology at a high enough priority, scientists interested in the search for alien life can augment their focus to include the social, cultural, and behavioral implications that were always associated with their work (yet previously overlooked or understated, and too often misunderstood). Recognition of the astrosociological implications expands our perception about alien life by creating a new emphasis on their ramifications to human life on Earth.

  17. Introduction to NASA Living With a Star (LWS) Institute GIC Working Group Special Collection

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.

    2017-01-01

    This paper is a brief introduction to the NASA Living With a Star (LWS) Institute GIC Working Group Special Collection that is product of work by a group of researchers from more than 20 different international organizations. In this introductory paper, I summarize the group's work in the context of novel NASA LWS Institute element and introduce the individual contributions in the collection.

  18. STARLIFE - An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.

  19. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.

    2000-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. The most direct approach to this problem is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing energy and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following questions about these proteins: (1) How do small proteins self-organize into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides form membrane-spanning structures (e.g. channels)? (3) By what mechanisms do such structures perform their functions? The simulations are performed using the molecular dynamics method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated in real space while long-range forces are evaluated in reciprocal space, using a particle-mesh algorithm which is of order O(NInN). With a time step of 2 femtoseconds, problems occurring on multi-nanosecond time scales (10(exp 6)-10(exp 8) time steps) are accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude, which requires algorithmic improvements and codes scalable to a large number of processors. Work in this direction is in progress. Two series of simulations are discussed. In one series, it is shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and fold into helical structures (see Figure). Once in the membrane, the peptides

  20. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  1. Advanced Curation Activities at NASA: Implications for Astrobiological Studies of Future Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  2. Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues.

    PubMed

    Oreiro, Raquel; Solbes, Jordi

    2017-01-01

    Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education. Key Words: Astrobiology-Students' views-Science education. Astrobiology 17, 91-99.

  3. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  4. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  5. The O/OREOS mission—Astrobiology in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Landis, D.; Luzzi, E.; Ly, D.; Mai, N.; Minelli, G.; McIntyre, M.; Neumann, M.; Parra, M.; Piccini, M.; Rasay, R.; Ricks, R.; Schooley, A.; Stackpole, E.; Timucin, L.; Yost, B.; Young, A.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small-Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72°), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cm3) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA's scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  6. NASAs Solar System Exploration Research Virtual Institute- Expanded Goals and More Partners

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.; Daou, D.; Pendleton, Y.; Bailey, B. E.

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  7. "NASA's Solar System Exploration Research Virtual Institute"; - Expanded Goals and New Teams

    NASA Astrophysics Data System (ADS)

    Daou, D.; Schmidt, G. K.; Pendleton, Y.; Bailey, B. E.

    2014-04-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  8. Systems astrobiology for a reliable biomarker on exo-worlds

    NASA Astrophysics Data System (ADS)

    Chela Flores, Julian

    2013-04-01

    Although astrobiology is a science midway between biology and astrophysics, it has surprisingly remained largely disconnected from recent trends in certain branches of both of these disciplines. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology and should also yield insights into astrobiology. This is feasible since new large data banks in the case of astrobiology are of a geophysical/astronomical kind, rather than the also large molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry. The application of systems biology is illustrated for our own planetary system, where 3 Earth-like planets are within the habitable zone of a G2V star and where the process of photosynthesis has led to a single oxygenic atmosphere that was triggered during the Great Oxidation Event some 2,5 billion years before the present. The significance of the biogenic origin of a considerable fraction of our atmosphere has been discussed earlier (Kiang et al., 2007). Bonding of O2 ensures that it is stable enough to accumulate in a world's atmosphere if triggered by a living process. The reduction of F and Cl deliver energy release per e+-transfer, but unlike O2 the weaker bonding properties inhibit large atmospheric accumulation (Catling et al., 2005). The evolution of O2-producing photosynthesis is very likely on exo-worlds (Wolstencroft and Raven, 2002). With our simplifying assumption of evolutionary convergence, we show how to probe for a reliable biomarker in the exo-atmospheres of planets, or their satellites, orbiting stars of different luminosities and ages (Chela-Flores, 2013). We treat the living process as a system of exo-environments capable of radically modifying their geology and atmospheres, both for exo-planets, and especially for exo-moons, the presence of which can be extracted from the Kepler data (Kipping et al., 2012). What we are learning about the

  9. Proposed biomimetic molecular sensor array for astrobiology applications

    NASA Astrophysics Data System (ADS)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  10. "NASA's Solar System Exploration Research Virtual Institute" - Expanded Goals and More Partners

    NASA Astrophysics Data System (ADS)

    Daou, D.; Schmidt, G.; Pendleton, Y.; Bailey, B.; Morrison, D.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inceptionas the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the I nstitute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan- European lunar science consortium, which promises both new scientific approaches and mission concepts.International partner membership requires longterm commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner.International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists.This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  11. The Astrobiology Graduate Conference - A Unique Early Career Opportunity

    NASA Astrophysics Data System (ADS)

    Knowles, E. J.; Domagal-Goldman, S. D.; Anderson, R.; Som, S. M.

    2011-12-01

    The Astrobiology Graduate Conference (AbGradCon) is an extremely successful annual meeting of early career researchers and educators involved and interested in the field of astrobiology. The conference has been held eight times in various locations, each time organized by a different group of students. The primary objective of AbGradCon is to stimulate the future of astrobiology research by bringing together graduate students and early post-doctoral fellows in order to create and strengthen interdisciplinary and international networks of early-career astrobiologists who will lead such research in the years to come. The conference is unique in that it is a student-led meeting, from the organization to the presentations. AbGradCon strives to remove the "pressures" of typical scientific meetings by providing a relaxed atmosphere in which presentations and round-table discussions are fostered along with numerous social activities. The success of previous AbGradCons can be attributed to the sheer enthusiasm of the participants for astrobiology, and to the spirit and format of the conference, which is outlined in a charter written by past conference organizers and participants. Because it is organized and attended by only graduate students and early career astrobiologists, AbGradCon is an ideal venue for the next generation of early career astrobiologists to form bonds, share ideas, and discuss the issues that will shape the future of the field.

  12. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis; Bregman, Jesse; Ennico, Kimberly; Greene, Thomas; Hudgins, Douglas; Strecker, Donald; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be described.

  13. Astrobiology from exobiology: Viking and the current Mars probes.

    PubMed

    Soffen, G A

    1997-01-01

    The development of an Astrobiology Program is an extension of current exobiology programs. Astrobiology is the scientific study of the origin, distribution, evolution, and future of life in the universe. It encompasses exobiology; formation of elements, stars, planets, and organic molecules; initiation of replicating organisms; biological evolution; gravitational biology; and human exploration. Current interest in life on Mars provides the scientific community with an example of scientific inquiry that has mass appeal. Technology is mature enough to search for life in the universe.

  14. Prospects for nasa s astrobiology mission Leonid Mac and ground-based observations during the upcoming 2002 Leonid storms

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Schmidt, G.

    Meteors represent a unique pathway from organic matter in space to prebiotic molecules on Earth. In the process, the organic material is changed in ways that are not easily simulated in the laboratory. An essential step to knowing what molecules may have been delivered from space at the time of the origin of life is understanding the physical conditions in the meteor phenomenon and to trace the fate of organic compounds in real-live meteors. This was the objective of the NASA and USAF sponsored Leonid Multi-Instrument Aircraft Campaign, wth successful missionsi during the strong Leonid showers of November 1998, 1999 and 2001. The research aircraft offer an international team of observers the opportunity to be above clouds and scattered Moon light and to be at the right place, at the right time. One further campaign is being prepared for a mission on November 19, 2002, when the Leonid meteor shower is expected to peak twice in succession, at rates of around ZHR = 4000/hr and 5000/hr, which will be best seen over western Europe and the America's, respectively. This presentation serves to encourage ground-based observations for observers at those locations. To that purpose, a summary will be given of the results to date, with emphasis on the progress made during the spectacular storms of 2001. We will briefly outline the new meteor model that has evolved and our new understanding of persistent emissions and the fate of meteoric matter after deposition. The new data have answered some questions, but also raised numerous issues that need to be addressed further. Finally, past Leonid storms have proven ideal to involve the public in astrobiology and provided a trilling experience, examples of which will be given. The 2002 Leonid storms are expected to be the last until 2099.

  15. Life, the universe, and everything: an education outreach proposal to build a traveling astrobiology exhibit.

    PubMed

    Barge, Laura M; Pulschen, André A; Emygdio, Ana Paula Mendes; Congreve, Curtis; Kishimoto, Darío E; Bendia, Amanda G; de Morais M Teles, Antonio; DeMarines, Julia; Stoupin, Daniel

    2013-03-01

    Astrobiology is a transdisciplinary field with extraordinary potential for the scientific community. As such, it is important to educate the community at large about the growing importance of this field to increase awareness and scientific content learning and expose potential future scientists. To this end, we propose the creation of a traveling museum exhibit that focuses exclusively on astrobiology and utilizes modern museum exhibit technology and design. This exhibit (the "Astrobiology Road Show"), organized and evaluated by an international group of astrobiology students and postdocs, is planned to tour throughout the Americas.

  16. Robotic astrobiology - prospects for enhancing scientific productivity of mars rover missions

    NASA Astrophysics Data System (ADS)

    Ellery, A. A.

    2018-07-01

    Robotic astrobiology involves the remote projection of intelligent capabilities to planetary missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii) continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return for astrobiology missions, but together, they will provide full autonomous science capability.

  17. Astrobiological Implications of Titan Tholin in Methane Lakes

    NASA Astrophysics Data System (ADS)

    Khare, Bishun N.; McKay, C. P.; McPherson, S.; Cruikshank, D.; Nna-Mvondo, D.; Sekine, Y.

    2010-10-01

    We report here on our ongoing research in the Laboratory for Planetary Studies at NASA Ames Research Center dedicated to determine the degree of solubility of Titan tholin in the methane-ethane lakes. Our work is also directed toward confirming the presence of any astrobiologically significant molecules via hydrolysis and pyrolysis of a simulated lake sample. Our previous work conducted at Cornell University and subsequently in the Laboratory for Planetary Studies at NASA Ames Research Center has established that Titan tholin produces amino acids (Khare et al. Icarus 1986) on hydrolysis, and many compounds including adenine on pyrolysis (Khare et al. Adv. Space Res. 1984). Also, our previous work by Thompson et al. (Icarus 1991) has clearly indicated that when energy is supplied to Titan's atmospheric composition (methane and nitrogen), tholin results from hundreds of contemporary compounds, including highly reactive compounds such as azides and isocyanides. Cassini showed that photolysis of methane produces benzene and many polycyclic aromatic hydrocarbons, along with compounds with very high molecular weights (up to 10000 amu), resulting from the photolytic reactions of CH4 with nitrogen. These heavy aerosols, termed "tholins” by Sagan and Khare (Nature 1979), are also synthesized when Titan intercepts charged particles from the magnetosphere of Saturn. Tholins resulting from both of these syntheses eventually descend to the surface of Titan, where some quantity collects in the methane-ethane lakes. This research is supported by a grant from Planetary Atmospheres.

  18. Astrobiology, Evolution, and Society: Public Engagement Insights

    NASA Astrophysics Data System (ADS)

    Bertka, C. M.

    2009-12-01

    It is unavoidable that the science of astrobiology will intersect with, and inevitably challenge, many deeply held beliefs. Exploration possibilities, particularly those that may include the discovery of extraterrestrial life, will continue to challenge us to reconsider our views of nature and our connection to the rest of the universe. As a scientific discipline, astrobiology works from the assumption that the origin and evolution of life can be accounted for by natural processes, that life could emerge naturally from the physical materials that make up the terrestrial planets. The search for life on other terrestrial planets is focused on “life as we know it.” The only life we currently know of is the life found on Earth, and for the scientific community the shared common ancestry of all Earth life, and its astounding diversity, is explained by the theory of evolution. The work of astrobiology, at its very core, is fueled by the theory of evolution. However, a survey by the Pew Forum on Religion and Public Life (2005) revealed that 42% of US adults believe that “life has existed in its present form since the beginning of time”. This answer persists nearly 150 years after the publication of Charles Darwin’s "On the Origin of the Species", the landmark work in which Darwin proposed that living things share common ancestors and have “descended with modification” from these ancestors through a process of natural selection . Perhaps even more distressing is the fact that these numbers have not changed in decades, despite the astounding advancements in science that have resulted over this same time period. How will these facts bear on the usefulness of astrobiology as a tool for encouraging a US public to share in the excitement of scientific discovery and be informed participants in a public dialogue concerning next steps? When people were asked “to identify the biggest influence on your thinking about how life developed,” the response chosen most

  19. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  20. Robotic astrobiology - the need for sub-surface penetration of Mars

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Ball, A.; Cockell, C.; Coste, P.; Dickensheets, D.; Edwards, H.; Hu, H.; Kolb, C.; Lammer, H.; Lorenz, R.; McKee, G.; Richter, L.; Winfield, A.; Welch, C.

    2002-11-01

    Recent interest in the astrobiological investigation of Mars has culminated in the only planned astrobiology-focussed robotic mission to Mars - the Beagle2 mission to be carried to Mars by the Mars Express spacecraft in 2003. Beagle2 will be primarily investigating the surface and near-surface environment of Mars. However, the results from the Viking Mars lander indicated that the Martian surface is saturated in peroxides and super-oxides which would rapidly degrade any organic material. Furthermore, recent models of gardening due to meteoritic impacts on the Martian surface suggest that the depth of this oxidising layer could extend to depths of 2-3m. Given that the discovery of organic fossilised residues will be the primary target for astrobiological investigation, this implies that future robotic astrobiology missions to Mars must penetrate to below these depths. The need to penetrate into the sub-surface of Mars has recently been given greater urgency with the discovery of extensive water ice-fields as little as 1m from the surface. We review the different technologies that make this penetration into the sub-surface a practical possibility on robotic missions. We further briefly present one such implementation of these technologies through the use of ground-penetrating moles - The Vanguard Mars mission proposal.

  1. On the parallels between cosmology and astrobiology: a transdisciplinary approach to the search for extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Santos, Charles Morphy D.; Alabi, Leticia P.; Friaça, Amâncio C. S.; Galante, Douglas

    2016-10-01

    The establishment of cosmology as a science provides a parallel to the building-up of the scientific status of astrobiology. The rise of astrobiological studies is explicitly based on a transdisciplinary approach that reminds of the Copernican Revolution, which eroded the basis of a closed Aristotelian worldview and reinforced the notion that the frontiers between disciplines are artificial. Given the intrinsic complexity of the astrobiological studies, with its multifactorial evidences and theoretical/experimental approaches, multi- and interdisciplinary perspectives are mandatory. Insulated expertise cannot grasp the vastness of the astrobiological issues. This need for integration among disciplines and research areas is antagonistic to excessive specialization and compartmentalization, allowing astrobiology to be qualified as a truly transdisciplinary enterprise. The present paper discusses the scientific status of astrobiological studies, based on the view that every kind of life, Earth-based or not, should be considered in a cosmic context. A confluence between 'astro' and 'bio' seeks the understanding of life as an emerging phenomenon in the universe. Thus, a new epistemological niche is opened, pointing to the development of a pluralistic vision for the philosophy of astrobiology.

  2. NASA's Solar System Exploration Research Virtual Institute: Combining Science and Exploration

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Schmidt, G.; Daou, D.; Pendleton, Y.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science andexploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. complement of the Institute and how we will engage the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  3. Astrobiology: Life in Extreme Environments

    ERIC Educational Resources Information Center

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  4. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  5. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    NASA Technical Reports Server (NTRS)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  6. Cosmic evolution: the context for astrobiology and its cultural implications

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2012-10-01

    Astrobiology must be seen in the context of cosmic evolution, the 13.7 billion-year master narrative of the universe. The idea of an evolving universe dates back only to the 19th century, and became a guiding principle for astronomical research only in the second half of the 20th century. The modern synthesis in evolutionary biology hastened the acceptance of the idea in its cosmic setting, as did the confirmation of the Big Bang theory for the origin of the universe. NASA programmes such as Origins incorporated it as a guiding principle. Cosmic evolution encompasses physical, biological and cultural evolution, and may result in a physical, biological or postbiological universe, each with its own implications for long-term human destiny, and each imbuing the meaning of life with different values. It has the status of an increasingly accepted worldview that is beginning to have a profound effect not only in science but also in religion and philosophy.

  7. A Bioinformatics Facility for NASA

    NASA Technical Reports Server (NTRS)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  8. Astrobiology: Discovering New Worlds of Life.

    ERIC Educational Resources Information Center

    James, Charles C.; Van Dover, Cindy Lee

    2001-01-01

    Emphasizes discoveries at the frontiers of science. Includes an instructional poster illustrating the hydrothermal vent communities on the deep ocean floor. Describes research activities related to the new discipline of astrobiology, a multidisciplinary approach to studying the emergence of life in the universe. Research activities include the…

  9. Capturing Student Interest in Astrobiology through Dilemmas and Paradoxes

    NASA Astrophysics Data System (ADS)

    Slater, T. F.

    2005-12-01

    Traditionally, many non-science majoring undergraduates readily reveal fairly negative opinions about their introductory science survey courses that serve as general education distribution requirements. Often seen as unimportant and unrelated to helping them acquire knowledge and skills for the workplace, such general education courses carry nicknames such as "Physics for Poets" (PHYSICS101), "Bugs for Thugs" (BIOLOGY101), "Rocks for Jocks" (GEOLOGY101), and "Moons for Goons" or "Scopes for Dopes" (ASTRONOMY101). In response, many faculty are experimenting with more modern science course offerings as general education courses in an effort to improve students' attitudes, values, and interests. One might think that ASTROBIOLOGY has natural curb appeal for students. However, despite the seemingly innate appeal of a course on extraterrestrial life, when it comes right down to it, an astrobiology course is still a natural science course at its core. As such, it can suffer from the same student apathy that afflicts traditional science courses if students can not find some personal relevance or interest in the topics. One approach to more fully engaging students is to couch core course concepts in terms of what Grant Wiggin and Jay McTighe (2004, 2000) call "essential questions." Essential questions are intended create enduring understanding in students and help students find deeply meaningful personal relevance to concepts. In response, we have created a series of probing essential questions that tie central concepts in astrobiology to dilemmas, paradoxes, and moral questions with the goal of intellectually engaging our students in the human-side of the astrobiology enterprise.

  10. Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues

    NASA Astrophysics Data System (ADS)

    Oreiro, Raquel; Solbes, Jordi

    2017-01-01

    Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education.

  11. Case studies approach for an undergraduate astrobiology course

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Enger, Sandra

    2013-04-01

    Case studies is a well known and widely used method in law schools, medical schools, and business schools, but relatively little used in physics or astronomy courses. We developed an astrobiology course based strongly on the case studies approach, and after teaching it first at the University of Alabama in Huntsville, we have adapted it and are now teaching it at Alabama A&M University, a HBCU. The case studies approach uses several well tested and successful teaching methods - including group work, peer instruction, current interest topics, just-in-time teaching, &c. We have found that certain styles of cases are more popular among students than other styles, and will revise our cases to reflect such student preferences. We chose astrobiology -- an inherently multidisciplinary field -- because of the popularity of the subject matter, its frequent appearance in the popular media (news stories about searches for life in the universe, the discovery of Earth-like exoplanets, etc, in addition to SciFi movies and novels), and the rapid current progress in the field. In this talk we review briefly the case studies method, the styles of cases used in our astrobiology course, and student response to the course as found in our assessment analysis.

  12. Raman spectroscopic analysis of arctic nodules: relevance to the astrobiological exploration of Mars.

    PubMed

    Jorge-Villar, Susana E; Edwards, Howell G M; Benning, Liane G

    2011-11-01

    The discovery of small, spherical nodules termed 'blueberries' in Gusev Crater on Mars, by the NASA rover Opportunity has given rise to much debate on account of their interesting and novel morphology. A terrestrial analogue in the form of spherical nodules of similar size and morphology has been analysed using Raman spectroscopy; the mineralogical composition has been determined and evidence found for the biological colonisation of these nodules from the spectral signatures of cyanobacterial protective biochemical residues such as scytonemin, carotenoids, phycocyanins and xanthophylls. This is an important result for the recognition of future sites for the planned astrobiological exploration of planetary surfaces using remote robotic instrumentation in the search for extinct and extant life biosignatures and for the expansion of putative terrestrial Mars analogue geological niches and morphologies.

  13. NASA Explorer Institutes: Exploring the Possibilities for Collaboration with the Informal Education Community. Report of the NASA Explorer Institutes--Focus Groups and Pilot Workshops, September 2004-March 2005; Planning and Evaluation Meeting, March 14-17, 2005

    ERIC Educational Resources Information Center

    Gallaway, Debbie; Freeman, Jason; Walker, Gretchen; Davis, Hilarie

    2005-01-01

    This report contains summary information and conclusions from the pilot workshops, focus groups, and the NEI (NASA Explorer Institutes) Planning and Evaluation Conference which united representatives of the workshops, focus groups, and NASA education. The culmination of these NEI pilot initiatives resulted in the identification of strategies that…

  14. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  15. Understanding the nineteenth century origins of disciplines: lessons for astrobiology today?

    NASA Astrophysics Data System (ADS)

    Brazelton, William J.; Sullivan, Woodruff T., III

    2009-10-01

    Astrobiology's goal of promoting interdisciplinary research is an attempt to reverse a trend that began two centuries ago with the formation of the first specialized scientific disciplines. We have examined this era of discipline formation in order to make a comparison with the situation today in astrobiology. Will astrobiology remain interdisciplinary or is it becoming yet another specialty? As a case study, we have investigated effects on the scientific literature when a specialized community is formed by analyzing the citations within papers published during 1802-1856 in Philosophical Transactions of the Royal Society (Phil. Trans.), the most important ‘generalist’ journal of its day, and Transactions of the Geological Society of London (Trans. Geol. Soc.), the first important disciplinary journal in the sciences. We find that these two journals rarely cited each other, and papers published in Trans. Geol. Soc. cited fewer interdisciplinary sources than did geology papers in Phil. Trans. After geology had become established as a successful specialized discipline, geologists returned to publishing papers in Phil. Trans., but they wrote in the new, highly specialized style developed in Trans. Geol. Soc. They had succeeded in not only creating a new scientific discipline, but also a new way of doing science with its own modes of research and communication. A similar citation analysis was applied to papers published over the period 2001-2008 in the contemporary journals Astrobiology and the International Journal of Astrobiology to test the hypothesis that astrobiologists are in the early stages of creating their own specialized community. Although still too early to reliably detect any but the largest trends, there is no evidence yet that astrobiologists are drifting into their own isolated discipline. Instead, to date they appear to remain interdisciplinary.

  16. Astrobiology Objectives for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Meyer, M. A.

    2002-05-01

    Astrobiology is the study of life in the Universe, and a major objective is to understand the past, present, and future biologic potential of Mars. The current Mars Exploration Program encompasses a series of missions for reconnaissance and in-situ analyses to define in time and space the degree of habitability on Mars. Determining whether life ever existed on Mars is a more demanding question as evidenced by controversies concerning the biogenicity of features in the Mars meteorite ALH84001 and in the earliest rocks on Earth. In-situ studies may find samples of extreme interest but resolution of the life question most probably would require a sample returned to Earth. A selected sample from Mars has the many advantages: State-of-the-art instruments, precision sample handling and processing, scrutiny by different investigators employing different techniques, and adaptation of approach to any surprises It is with a returned sample from Mars that Astrobiology has the most to gain in determining whether life did, does, or could exist on Mars.

  17. The Role of Synthetic Biology in NASA's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  18. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2003-01-01

    We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.

  19. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.; Vincenzi, Donald L. (Technical Monitor)

    2001-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. In the absence of any record of the earliest ancestors of contemporary cells, protocells, the most direct way to test our understanding of their characteristics is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs of molecules that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing and storing energy, and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following, questions about these proteins: (1) How do small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides aggregate to form membrane-spannin(y structures (e.g., channels)? (3) By what mechanisms do such aggregates perform their functions? The simulations are performed using the molecular dynamics (MD) method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated directly in real space while long-range forces are evaluated in reciprocal space, usually using a particle-mesh algorithm which is of order O(NlnN). Currently, a time step of 2 femtoseconds is typically used, thereby making studies of problems occurring on multi-nanosecond time scales (10(exp 6) - 10(exp 8) time steps) accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude. Such an extension requires both algorithmic improvements and codes scalable to a large number of parallel

  20. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  1. A Survey of Educational Activities and Resources Relevant to Mars and Astrobiology

    NASA Astrophysics Data System (ADS)

    Manning, Heidi L. K.; Bleacher, L.

    2009-09-01

    Sample Analysis at Mars (SAM) is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover, which was recently named Curiosity in a student-naming contest. SAM's three instruments are devoted to studying the chemical composition of the Martian surface and atmosphere and to understanding the planet's past habitability and potential habitability today. Curiosity is scheduled to launch in 2011, however many Education and Public Outreach (EPO) activities supported by the MSL mission are well underway. The SAM EPO plan includes elements of both formal and informal education in addition to outreach, such as incorporating data into the Mars Exploration Student Data Teams program, developing a museum exhibit and associated educational materials about SAM's research, and writing articles about the MSL mission and SAM's findings for ChemMatters magazine. One of the EPO projects currently being carried out by members of the SAM team is training secondary education teachers in Mars geology, astrobiology, and SAM science goals via professional development workshops. Several of the recent Mars missions have had extensive EPO components to them. As a result, numerous educational activities and resources have already been developed relating to understanding Mars and astrobiology. We have conducted a survey of these activities and resources previously created and have compiled those relevant and useful for our SAM teacher training workshops. Resources and activities have been modified as needed. In addition, we have identified areas in which no educational activities exist and are developing new curriculum specifically to address these gaps. This work is funded by the MN Space Grant Consortium and NASA's Science Mission Directorate.

  2. Automated payload and instruments for astrobiology research developed and studied by German medium-sized space industry in cooperation with European academia

    NASA Astrophysics Data System (ADS)

    Schulte, Wolfgang; Hofer, Stefan; Hofmann, Peter; Thiele, Hans; von Heise-Rotenburg, Ralf; Toporski, Jan; Rettberg, Petra

    2007-06-01

    For more than a decade Kayser-Threde, a medium-sized enterprise of the German space industry, has been involved in astrobiology research in partnership with a variety of scientific institutes from all over Europe. Previous projects include exobiology research platforms in low Earth orbit on retrievable carriers and onboard the Space Station. More recently, exobiology payloads for in situ experimentation on Mars have been studied by Kayser-Threde under ESA contracts, specifically the ExoMars Pasteur Payload. These studies included work on a sample preparation and distribution systems for Martian rock/regolith samples, instrument concepts such as Raman spectroscopy and a Life Marker Chip, advanced microscope systems as well as robotic tools for astrobiology missions. The status of the funded technical studies and major results are presented. The reported industrial work was funded by ESA and the German Aerospace Center (DLR).

  3. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on

  4. The NASA Solar System Exploration Virtual Institute: International Efforts in Advancing Lunar Science with Prospects for the Future

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.

    2014-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI), originally chartered in 2008 as the NASA Lunar Science Institute (NLSI), is chartered to advance both the scientific goals needed to enable human space exploration, as well as the science enabled by such exploration. NLSI and SSERVI have in succession been "institutes without walls," fostering collaboration between domestic teams (7 teams for NLSI, 9 for SSERVI) as well as between these teams and the institutes' international partners, resulting in a greater global endeavor. SSERVI teams and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists and bringing the scientific results and excitement of exploration to the public. The domestic teams also respond to NASA's strategic needs, providing community-based responses to NASA needs in partnership with NASA's Analysis Groups. Through the many partnerships enabled by NLSI and SSERVI, scientific results have well exceeded initial projections based on the original PI proposals, proving the validity of the virtual institute model. NLSI and SSERVI have endeavored to represent not just the selected and funded domestic teams, but rather the entire relevant scientific community; this has been done through many means such as the annual Lunar Science Forum (now re-named Exploration Science Forum), community-based grass roots Focus Groups on a wide range of topics, and groups chartered to further the careers of young scientists. Additionally, NLSI and SSERVI have co-founded international efforts such as the pan-European lunar science consortium, with an overall goal of raising the tide of lunar science (and now more broadly exploration science) across the world.

  5. Lunar and Planetary Science XXXV: Astrobiology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology" included the following reports:The Role of Cometary and Meteoritic Delivery in the Origin and Evolution of Life: Biogeological Evidences Revisited; Hopane Biomarkers Traced from Bedrock to Recent Sediments and Ice at the Haughton Impact Structure, Devon Island: Implications for the Search for Biomarkers on Mars; and Survival of Organic Matter After High Temperature Events (Meteorite Impacts, Igneous Intrusions).

  6. Astrobiology: Life on Earth (and Elsewhere?)

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2016-01-01

    Astrobiology investigates the origins, evolution and distribution of life in the universe. Scientists study how stellar systems and their planets can create planetary environments that sustain biospheres. They search for biosignatures, which are objects, substances and or patterns that indicate the presence of life. Studies of Earth's early biosphere enhance these search strategies and also provide key insights about our own origins.

  7. Fostering Visions for the Future: A Review of the NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  8. Detecting and Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  9. Detecting and Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 microns (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  10. Multispectral Microimager for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Farmer, Jack D.; Kieta, Andrew; Huang, Julie

    2006-01-01

    A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (i) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ii) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.

  11. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  12. NASA's Solar System Exploration Research Virtual Institute: Building Collaboration Through International Partnerships

    NASA Technical Reports Server (NTRS)

    Gibbs, K. E.; Schmidt, G. K.

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  13. Patchwork Chemical Garden

    NASA Image and Video Library

    2015-08-05

    A laboratory-created "chemical garden" made of a combination of black iron sulfide and orange iron hydroxide/oxide is shown in this photo. Chemical gardens are a nickname for chimney-like structures that form at bubbling vents on the seafloor. Some researchers think that life may have originated at structures like these billions of years ago. JPL's research team is part of the Icy Worlds team of the NASA Astrobiology Institute, based at NASA's Ames Research Center in Moffett Field, California. JPL is managed by the California Institute of Technology in Pasadena for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA19835

  14. Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    NASA Technical Reports Server (NTRS)

    Culclasure, D. F.; Sigmon, J. L.; Carter, J. M.

    1973-01-01

    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts.

  15. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  16. Astrobiology Outreach and the Nature of Science: The Role of Creativity

    PubMed Central

    Oliver, Carol; Walter, Malcolm R.

    2012-01-01

    Abstract There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research–related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science. Key Words: Science education—School science—Creativity—Nature and processes of science—Attitudes—Astrobiology. Astrobiology 12, 1143–1153. PMID:23134090

  17. Astrobiological Research on Tardigrades: Implications for Extraterrestrial Life Forms

    NASA Astrophysics Data System (ADS)

    Horikawa, D. D.

    2013-11-01

    Tardigrades have been considered as a model for astrobiological studies based on their tolerance to extreme environments. Future research on tardigrades might provide important insight into the possibilities of existence of multicellular life forms.

  18. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2017-07-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our

  19. Critical issues in the history, philosophy, and sociology of astrobiology.

    PubMed

    Dick, Steven J

    2012-10-01

    Fifty years after serious scientific research began in the field of exobiology, and forty years after serious historical research began on the subject of extraterrestrial life, this paper identifies and examines some of the most important issues in the history, philosophy, and sociology of what is today known as astrobiology. As in the philosophy of science in general, and in the philosophies of particular sciences, critical issues in the philosophy and sociology of astrobiology are both stimulated and illuminated by history. Among those issues are (1) epistemological issues such as the status of astrobiology as a science, the problematic nature of evidence and inference, and the limits of science; (2) metaphysical/scientific issues, including the question of defining the fundamental concepts of life, mind, intelligence, and culture in a universal context; the role of contingency and necessity in the origin of these fundamental phenomena; and whether or not the universe is in some sense fine-tuned for life and perhaps biocentric; (3) societal issues such as the theological, ethical, and worldview impacts of the discovery of microbial or intelligent life; and the question of whether the search for extraterrestrial life should be pursued at all, and with what precautions; and (4) issues related to the sociology of scientific knowledge, including the diverse attitudes and assumptions of different scientific communities and different cultures to the problem of life beyond Earth, the public "will to believe," and the formation of the discipline of astrobiology. All these overlapping issues are framed by the concept of cosmic evolution-the 13.7 billion year Master Narrative of the Universe-which may result in a physical, biological, or postbiological universe and determine the long-term destiny of humanity.

  20. An Ultrasonic Sampler and Sensor Platform for In-Situ Astrobiological Exploration

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoaz E.; Bao, X.; Chang, Z.; Sherrit, S.

    2003-01-01

    The search for existing or past life in the Universe is one of the most important objectives of NASA's mission. In support of this objective, ultrasonic based mechanisms are currently being developed at JPL to allow probing and sampling rocks as well as perform as a sensor platform for in-situ astrobiological analysis. The technology is based on the novel Ultrasonic/Sonic Driller/Corer (USDC), which requires low axial force, thereby overcoming one of the major limitations of planetary sampling in low gravity using conventional drills. The USDC was demonstrated to: 1) drill ice and various rocks including granite, diorite, basalt and limestone, 2) not require bit sharpening, and 3) operate at high and low temperatures. The capabilities that are being investigated including probing the ground to select sampling sites, collecting various forms of samples, and hosting sensors for measuring chemical/physical properties. A series of modifications of the USDC basic configuration were implemented leading an ultrasonic abrasion tool (URAT), Ultrasonic Gopher for deep Drilling, and the lab-on-a-drill.

  1. An Explorer-Class Astrobiology Mission

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Greene, Thomas; Allamandola, Louis; Arno, Roger; Bregman, Jesse; Cox, Sylvia; Davis, Paul K.; Gonzales, Andrew; Haas, Michael; Hanel, Robert; hide

    2000-01-01

    In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.

  2. The 2002 NASA Faculty Fellowship Program Research Reports

    NASA Technical Reports Server (NTRS)

    Bland, J. (Compiler)

    2003-01-01

    Contents include the following: System Identification of X-33. Neural Network Advanced Ceramic Technology for Space Applications at NASA MSFC. Developing a MATLAB-Based Tool for Visualization and Transformation. Subsurface Stress Fields in Single Crystal (Anisotropic). Contacts Our Space Future: A Challenge to the Conceptual Artist Concept Art for Presentation and Education. Identification and Characterization of Extremophile Microorganisms. Significant to Astrobiology. Mathematical Investigation of Gamma Ray and Neutron. Absorption Grid Patterns for Homeland Defense-Related Fourier Imaging Systems. The Potential of Microwave Radiation for Processing Martian Soil. Fuzzy Logic Trajectory Design and Guidance for Terminal Area.

  3. Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies

    NASA Astrophysics Data System (ADS)

    Zawierucha, Krzysztof; Ostrowska, Marta; Kolicka, Małgorzata

    2017-06-01

    For several years it has been of interest to astrobiologists to focus on Earth's glaciers as a habitat that can be similar to glaciers on other moons and planets. Microorganisms on glaciers form consortia - cryoconite granules (cryoconites). They are granular/spherical mineral particles connected with archaea, cyanobacteria, heterotrophic bacteria, algae, fungi, and micro animals (mainly Tardigrada and Rotifera). Cryophilic organisms inhabiting glaciers have been studied in different aspects: from taxonomy, ecology and biogeography, to searching of biotechnological potentials and physiological strategies to survive in extreme glacial habitats. However, they have never been used in astrobiological experiments. The main aim of this paper is brief review of literature and supporting assumptions that cryoconite granules and microinvertebrates on glaciers, are promising models in astrobiology for looking for analogies and survival strategies in terms of icy planets and moons. So far, astrobiological research have been conducted on single strains of prokaryotes or microinvertebrates but never on a consortium of them. Due to the hypothetical similarity of glaciers on the Earth to those on other planets these cryoconites consortia of microorganisms and glacier microinvertebrates may be applied in astrobiological experiments instead of the limno-terrestrial ones used currently. Those consortia and animals have qualities to use them in such studies and they may be the key to understanding how organisms are able to survive, reproduce and remain active at low temperatures.

  4. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  5. The NASA Exoplanet Science Institute Archives: KOA and NStED

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Ciardi, D.; Abajian, M.; Barlow, T.; Bryden, G.; von Braun, K.; Good, J.; Kane, S.; Kong, M.; Laity, A.; Lynn, M.; Elroy, D. M.; Plavchan, P.; Ramirez, S.; Schmitz, M.; Stauffer, J.; Wyatt, P.; Zhang, A.; Goodrich, R.; Mader, J.; Tran, H.; Tsubota, M.; Beekley, A.; Berukoff, S.; Chan, B.; Lau, C.; Regelson, M.; Saucedo, M.; Swain, M.

    2010-12-01

    The NASA Exoplanet Science Institute (NExScI) maintains a series of archival services in support of NASA’s planet finding and characterization goals. Two of the larger archival services at NExScI are the Keck Observatory Archive (KOA) and the NASA Star and Exoplanet Database (NStED). KOA, a collaboration between the W. M. Keck Observatory and NExScI, serves raw data from the High Resolution Echelle Spectrograph (HIRES) and extracted spectral browse products. As of June 2009, KOA hosts over 28 million files (4.7 TB) from over 2,000 nights. In Spring 2010, it will begin to serve data from the Near-Infrared Echelle Spectrograph (NIRSPEC). NStED is a general purpose archive with the aim of providing support for NASA’s planet finding and characterization goals, and stellar astrophysics. There are two principal components of NStED: a database of (currently) all known exoplanets, and images; and an archive dedicated to high precision photometric surveys for transiting exoplanets. NStED is the US portal to the CNES mission CoRoT, the first space mission dedicated to the discovery and characterization of exoplanets. These archives share a common software and hardware architecture with the NASA/IPAC Infrared Science Archive (IRSA). The software architecture consists of standalone utilities that perform generic query and retrieval functions. They are called through program interfaces and plugged together to form applications through a simple executive library.

  6. Astrobiology Science and Technology: A Path to Future Discovery

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Lavaery, D. B.

    2001-01-01

    The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.

  7. Astrobiology as a tool for getting high school students interested in science

    NASA Astrophysics Data System (ADS)

    Van der Meer, B. W.; Alletto, James J.; Bryant, Dudley; Carini, Mike; Elliott, Larry; Gelderman, Richard; Mason, Wayne; McDaniel, Kerrie; McGruder, Charles H.; Rinehart, Claire; Tyler, Rico; Walker, Linda

    2000-12-01

    A workshop was held (10/99) for high school students and teachers on astrobiology. NASA provided support through an IDEAS grant. Out of 63 qualified applicants, 29 were accepted: 22 students (11 minorities) and 7 teachers. The worship was held on 2 successive weekends. Activities included: culturing microbes from human skin, discussing 'what is life?', building and using a 2-inch refractive telescope and a van-Leeuwenhoek- type microscope (each participant built and kept them), listening to lectures by Dr. Richard Gelderman on detecting extra solar planets and by Dr. Richard Hoover on life in extreme environments. Other activities included: collecting samples and isolating micro-organisms from the lost river cave, studying microbial life from extreme environments in the laboratory, using the internet as a research tool and debating the logistics and feasibility of a lunar colony. Written evaluations of the workshop led to the following conclusions: 48% of the students considered a possible career in the biological and/or astrophysical sciences, and half of these stated they were spurred on by the workshop itself.

  8. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  9. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  10. Astrobiology : is humankind ready for the next revolution ?

    NASA Astrophysics Data System (ADS)

    Arnould, Jacques

    2012-07-01

    The discovery of a first exoplanet, in 1995, did not revolutionize but knocked astronomical sciences over. At the same time, by opening new prospects of research, in particular in the search of planets similar to the Earth and in a possible extraterrestrial life, this discovery, since then abundantly repeated, gave a new breath to the public interest for this scientific field. But is humanity ready to learn the existence from extraterrestrial forms of life or to remain, in spite of its efforts, in ignorance? The question of the plurality of the worlds is one of the oldest interrogations conveyed by the human cultures, as testified by the multiple answers which were brought to it. In the same way, the concept of life is itself an inexhaustible source of philosophical and religious reflexions, with many consequences in moral domains. It is today necessary to accompany the scientific development in the field of astrobiology by attaching the greatest importance to this intellectual patrimony. It constitutes even one of the first stages of an ethical responsibility in astrobiology, as important as that concerning planetary protection.

  11. "The NASA Solar System Exploration n Research Vistula Institute: Year 1 with New Teams with New and Old Partners!"

    NASA Astrophysics Data System (ADS)

    Daou, Doris

    2015-08-01

    Recognizing that science enables exploration, and exploration enables science, NASA created the Solar System Exploration Research Virtual Institute (SSERVI) to address basic and applied scientific questions fundamental to understanding the Moon, Near Earth Asteroids, and the moons of Mars. Primarily using virtual tools to communicate has eliminated the need for a traditional bricks and mortar institute, allowing the hundreds of researchers across the U.S. and the eight international partners to easily communicate and collaborate, from wherever they are. The small, central office located at NASA Ames Research Center in the heart of Silicon Valley, coordinates the institute activities. Newly found synergies across the teams, the sharing of data and facilities, and the ease of communication increase the efficiencies of scientific discovery. More importantly, the birth of ideas formed at the intersection of disparate disciplines can readily be pursued by groups that might not otherwise have formed, or even met! SSERVI follows on the heels of the highly successful NASA Lunar Science Institute (NLSI), a virtual institute dedicated solely to studies of the Moon. The creation of SSERVI has not only expanded our knowledge of the Earth’s nearest neighbor to include other stepping-stones to Mars, but also furthered our ability to address the scientific and technological questions we need to know…before we go!

  12. Astrobiology Courses--A Useful Framework for Teaching Interdisciplinary Science.

    ERIC Educational Resources Information Center

    Sauterer, Roger

    2000-01-01

    Explains astrobiology and indicates the possibility of life on other planets and the interest of humankind in this possibility. Defines topics open to public misconception and their primary reinforcements by television shows. Expresses the need for students to learn the connections between different science majors. (YDS)

  13. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Jaffe, Richard; Liang, Shoudan; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2002-01-01

    We present results from several projects in the new field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. We have developed a procedure for calculating long-range effects in molecular dynamics using a plane wave expansion of the electrostatic potential. This method is expected to be highly efficient for simulating biological systems on massively parallel supercomputers. We have perform genomics analysis on a family of actin binding proteins. We have performed quantum mechanical calculations on carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible sources of organic material on the early earth. Finally, we have developed a model of protobiological chemistry using neural networks.

  14. Brazilian research on extremophiles in the context of astrobiology

    NASA Astrophysics Data System (ADS)

    Duarte, Rubens T. D.; Nóbrega, Felipe; Nakayama, Cristina R.; Pellizari, Vivian H.

    2012-10-01

    Extremophiles are organisms adapted to grow at extreme ranges of environmental variables, such as high or low temperatures, acid or alkaline medium, high salt concentration, high pressures and so forth. Most extremophiles are micro-organisms that belong to the Archaea and Bacteria domains, and are widely spread across the world, which include the polar regions, volcanoes, deserts, deep oceanic sediments, hydrothermal vents, hypersaline lakes, acid and alkaline water bodies, and other extreme environments considered hostile to human life. Despite the tropical climate, Brazil has a wide range of ecosystems which include some permanent or seasonally extreme environments. For example, the Cerrado is a biome with very low soil pH with high Al+3 concentration, the mangroves in the Brazilian coast are anaerobic and saline, Pantanal has thousands of alkaline-saline lakes, the Caatinga arid and hot soils and the deep sea sediments in the Brazilian ocean shelf. These environments harbour extremophilic organisms that, coupled with the high natural biodiversity in Brazil, could be explored for different purposes. However, only a few projects in Brazil intended to study the extremophiles. In the frame of astrobiology, for example, these organisms could provide important models for defining the limits of life and hypothesize about life outside Earth. Brazilian microbiologists have, however, studied the extremophilic micro-organisms inhabiting non-Brazilian environments, such as the Antarctic continent. The experience and previous results obtained from the Brazilian Antarctic Program (PROANTAR) provide important results that are directly related to astrobiology. This article is a brief synopsis of the Brazilian experience in researching extremophiles, indicating the most important results related to astrobiology and some future perspectives in this area.

  15. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    PubMed Central

    Lemus, Judith D.

    2015-01-01

    Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292

  16. Impact of the Arizona NExSS Winter School on Astrobiology Knowledge and Attitudes.

    PubMed

    Burnam-Fink, Michael; Desch, Steven J; Scalice, Daniella; Davis, Hilarie; Huff, Cierra J; Apai, Dániel

    2018-03-01

    Astrobiology is an inherently interdisciplinary area of study, demanding communication across multiple fields: astronomy, geochemistry, planetary science, and so on. Successful communication requires that researchers be aware of the basic findings, open questions, and tools and techniques of allied fields and possess an appreciation and respect for what these fields consider good science. To facilitate this communication between early-career researchers, the Arizona NExSS Winter School was hosted in February 2016, bringing together graduate students and postdoctoral researchers from backgrounds spanning the field of astrobiology. Students virtually attended a scientific Workshop Without Walls and participated in lectures, discussions, field trips, and hands-on activities, culminating in the writing and review of mock proposals by interdisciplinary teams. We assess the impact of the school on interdisciplinarity using a pre- and posttest survey of 24 students, informed by National Science Foundation impact categories (Friedman et al., 2008 ) within the Impact Analysis Method (IAM) described by Davis and Scalice ( 2015 ). We demonstrate that students gained knowledge, especially in fields outside their home discipline. Furthermore, an underlying disciplinary divide between geochemists and planetary scientists on the role of life in planetary evolution is observed and interpreted. These findings demonstrate that the Arizona NExSS Winter School had measurable impact on interdisciplinarity and that the IAM rubric has utility in measuring impact. We make recommendations for further research to understand the interdisciplinary gaps in astrobiology and how best to bridge them. Key Words: Interdisciplinarity-Attitudes-Knowledge-Scientific dialogue-Training. Astrobiology 18, 365-375.

  17. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  18. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  19. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  20. The NASA Electronic Parts and Packaging (NEPP) Program - Presentation to Korean Aerospace Research Institute

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation will provide basic information about NASA's Electronic Parts and Packaging Program (NEPP), for sharing with representatives of the South Korean Aerospace Research Institute (KARI) as part of a larger presentation by Headquarters Office of Safety and Mission Assurance. The NEPP information includes mission and goals, history of the program, basic focus areas, strategies, deliverables and some examples of current tasks.

  1. New Developments At The Science Archives Of The NASA Exoplanet Science Institute

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce

    2018-06-01

    The NASA Exoplanet Science Institute (NExScI) at Caltech/IPAC is the science center for NASA's Exoplanet Exploration Program and as such, NExScI operates three scientific archives: the NASA Exoplanet Archive (NEA) and Exoplanet Follow-up Observation Program Website (ExoFOP), and the Keck Observatory Archive (KOA).The NASA Exoplanet Archive supports research and mission planning by the exoplanet community by operating a service that provides confirmed and candidate planets, numerous project and contributed data sets and integrated analysis tools. The ExoFOP provides an environment for exoplanet observers to share and exchange data, observing notes, and information regarding the Kepler, K2, and TESS candidates. KOA serves all raw science and calibration observations acquired by all active and decommissioned instruments at the W. M. Keck Observatory, as well as reduced data sets contributed by Keck observers.In the coming years, the NExScI archives will support a series of major endeavours allowing flexible, interactive analysis of the data available at the archives. These endeavours exploit a common infrastructure based upon modern interfaces such as JuypterLab and Python. The first service will enable reduction and analysis of precision radial velocity data from the HIRES Keck instrument. The Exoplanet Archive is developing a JuypterLab environment based on the HIRES PRV interactive environment. Additionally, KOA is supporting an Observatory initiative to develop modern, Python based pipelines, and as part of this work, it has delivered a NIRSPEC reduction pipeline. The ensemble of pipelines will be accessible through the same environments.

  2. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors

  3. From systems chemistry to systems astrobiology: life in the universe as an emergent phenomenon

    NASA Astrophysics Data System (ADS)

    Chela-Flores, J.

    2013-01-01

    Although astrobiology is a science midway between the life and physical sciences, it has surprisingly remained largely disconnected from recent trends in certain branches of both life and physical sciences. We discuss potential applications to astrobiology of approaches that aim at integrating rather than reducing. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology. The systems approach should also yield insights into astrobiology, especially concerning the ongoing search for alternative abodes for life. This is feasible since new data banks in the case of astrobiology - considered as a branch of biology - are of a geophysical/astronomical kind, rather than the molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry for solving fundamental problems, such as protein or proteome folding. By focusing on how systems properties emerge in astrobiology we consider the question: can life in the universe be interpreted as an emergent phenomenon? In the search for potential habitable worlds in our galactic sector with current space missions, extensive data banks of geophysical parameters of exoplanets are rapidly emerging. We suggest that it is timely to consider life in the universe as an emergent phenomenon that can be approached with methods beyond the science of chemical evolution - the backbone of previous research in questions related to the origin of life. The application of systems biology to incorporate the emergence of life in the universe is illustrated with a diagram for the familiar case of our own planetary system, where three Earth-like planets are within the habitable zone (HZ) of a G2 V (the complete terminology for the Sun in the Morgan-Keenan system) star. We underline the advantage of plotting the age of Earth-like planets against large atmospheric fraction of a biogenic gas, whenever such anomalous atmospheres are discovered in

  4. The Astrobiology Primer - an Early Career Scientist Education, Outreach and Professional Development Project

    NASA Astrophysics Data System (ADS)

    Wright, K. E.; Domagal-Goldman, S. D.

    2011-12-01

    We are early-career scientists jointly leading a project to write 'The Astrobiology Primer', a brief but comprehensive introduction to astrobiology, and we are using the process of producing the document as an innovative way of strengthening the international community of early-career astrobiologists. Astrobiology is the study of the origin, evolution, distribution and future of life in our universe. It includes not just study of life on Earth, but also the potential for life to exist beyond Earth, and the development of techniques to search for such life. It therefore incorporates geological and earth sciences, life sciences, chemistry, astronomy and planetary sciences. This requires astrobiologists to integrate these different disciplines in order to address questions such as 'How did Earth and its biosphere originate?', 'How do life and the physical, chemical and geological cycles on Earth interact, and affect each other?' and so 'What does life on Earth tell us about the habitability of environments outside Earth?'. The primer will provide a brief but comprehensive introduction to the field; it will be significantly more comprehensive than a normal review paper but much shorter than a textbook. This project is an initiative run entirely by early-career scientists, for the benefit of other early-career scientists and others. All the writers and editors of the primer are graduate/post-graduate students or post-doctoral fellows, and our primary target group for the primer is other early-career scientists, although we hope and expect that the primer will also be useful far more broadly in education and outreach work. An Astrobiology Primer was first published in 2006(Ref1), written and edited by a small group of early-career astrobiologists to provide an introduction to astrobiology for other early-career scientists new to the field. It has been used not only by the target group for private study, but in formal education and outreach settings at universities and

  5. Astrobiology at Arizona State University: An Overview of Accomplishments

    NASA Technical Reports Server (NTRS)

    Farmer, Jack

    2005-01-01

    During our five years as an NAI charter member, Arizona State University sponsored a broadly-based program of research and training in Astrobiology to address the origin, evolution and distribution of life in the Solar System. With such a large, diverse and active team, it is not possible in a reasonable space, to cover all details of progress made over the entire five years. The following paragraphs provide an overview update of the specific research areas pursued by the Arizona State University (ASU) Astrobiology team at the end of Year 5 and at the end of the 4 month and subsequent no cost month extensions. for a more detailed review, the reader is referred to the individual annual reports (and Executive Summaries) submitted to the NAI at the end of each of our five years of membership. Appended in electronic form is our complete publication record for all five years, plus a tabulation of undergraduates, graduate students and post-docs supported by our program during this time. The overarching theme of ASU s Astrobiology program was "Exploring the Living Universe: Studies of the Origin, Evolution and Distribution of Life in the Solar System". The NAi-funded research effort was organized under three basic sub- themes: 1. Origins of the Basic Building Blocks of Life. 2. Early Biosphere Evolution. and 3. Exploring for Life in the Solar System. These sub-theme areas were in turn, subdivided into Co-lead research modules. In the paragraphs that follow, accomplishments for individual research modules are briefly outlined, and the key participants presented in tabular form. As noted, publications for each module are appended in hard copy and digital formats, under the name(s) of lead co-Is.

  6. Astrobiology: The Case for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    The scientific discipline of astrobiology addresses one of the most fundamental unanswered questions of science: are we alone? Is there life elsewhere in the universe, or is life unique to Earth? The field of astrobiology includes the study of the chemical precursors for life in the solar system; it also includes the search for both presently existing life and fossil signs of previously existing life elsewhere in our own solar system, as well as the search for life outside the solar system. Two of the promising environments within the solar system being currently considered are the surface of the planet Mars, and the hypothesized oceans underneath the ice covering the moon Europa. Both of these environments differ in several key ways from the environments where life is found on Earth; the Mars environment in most places too cold and at too low pressure for liquid water to be stable, and the sub-ice environment of Europa lacking an abundance of free energy in the form of sunlight. The only place in the solar system where we know that life exists today is the Earth. To look for life elsewhere in the solar system, one promising search strategy would be to find and study the environment in the solar system with conditions that are most similar to the environmental conditions where life thrives on the Earth. Specifically, we would like to study a location in the solar system with atmospheric pressure near one bar; temperature in the range where water is liquid, 0 to 100 C; abundant solar energy; and with the primary materials required for life, carbon, oxygen, nitrogen, and hydrogen, present. Other than the surface of the Earth, the only other place where these conditions exist is the atmosphere of Venus, at an altitude of about fifty kilometers above the surface.

  7. Ethical issues in astrobiology: a Christian perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Randolph, R. O.

    2009-12-01

    With its focus on the origin, extent, and future of life, Astrobiology raises exciting, multidisciplinary questions for science. At the same time, Astrobiology raises important questions for the humanities. For instance, the prospect of discovering extraterrestrial life - either intelligent or unintelligent - raises questions about humans’ place in the universe and our relationship with nature on planet Earth. Fundamentally, such questions are rooted in our understanding of what it means to be human. From a Christian perspective, the foundational claim about human nature is that all persons bear the "imago dei", the image of God. This concept forms the basis for how humans relate to one another (dignity) and how humans relate to nature (stewardship). For many Christians the "imago dei" also suggests that humans are at the center of the universe. The discovery of extraterrestrial life would be another scientific development - similar to evolution - that essentially de-centers humanity. For some Christian perspectives this de-centering may be problematic, but I will argue that the discovery of extraterrestrial life would actually offer a much needed theological corrective for contemporary Christians’ understanding of the "imago dei". I will make this argument by examining two clusters of ethical issues confronting Astrobiology: 1. What ethical obligations would human explorers owe to extraterrestrial life? Are there ethical obligations to protect extraterrestrial ecosystems from harm or exploitation by human explorers? Do our ethical considerations change, if the extraterrestrial life is a “second genesis;” in other words a form of life completely different and independent from the carbon-based life that we know on Earth? 2. Do we have an ethical obligation to promote life as much as we can? If human explorers discover extraterrestrial life and through examination determine that it is struggling to survive, do we have an ethical obligation to assist that

  8. Role of the observer in the scientific process in astrobiology and in defining life

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2010-09-01

    The role of the observer in the scientific process has been studied in various contexts, including philosophical. It is notorious that the experiments are theory-loaded, that the observers pick and choose what they consider important based on their scientific and cultural backgrounds, and that the same phenomenon may be studied by different observers from different angles. In this paper we critically review various authors' views of the role of the observer in the scientific process, as they apply to astrobiology. Astrobiology is especially vulnerable to the role of the observer, since it is an interdisciplinary science. Thus, the backgrounds of the observers in the astrobiology field are even more heterogeneous than in the other sciences. The definition of life is also heavily influenced by the observer of life who injects his/her own prejudices in the process of observing and defining life. Such prejudices are often dictated by the state of science, instrumentation, and the science politics at the time, as well as the educational, scientific, cultural and other background of the observer.

  9. Space Biology Meets Astrobiology: Critical Synergies and Concerns

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.; Kirven-Brooks, Melissa

    2016-01-01

    The broad fields of space biology and astrobiology share much in common in terms of science questions, approaches, and goals. However, historical circumstances and funding agency practices have frequently resulted in a wide separation between the two related areas. Is this a good thing? We believe that it is not, and that much is to be gained in each field from sharing ideas, resources, and perhaps projects between investigators traditionally working in one discipline or the other. Some of the strengths that the Space Biology community offers include sophistication and experience in flying experiments on space missions. In turn, Astrobiology has focused heavily on ground-based and field research. Challenging physical and chemical conditions experienced in space and on other planets partially overlap, and much can be gleaned from the body of work of each community along these topical lines. A combination of these areas of expertise and experience could result in major advances to all involved. When possible, avoiding having to reinvent methods or approaches already used by a sister community can result in greater efficiencies of resource use. We will discuss some case studies where we believe there are significant overlaps including adaptation to a variety of environmental stresses, extremophiles as potential flight organisms, microfluidics as applied to planetary environment simulations, and others.

  10. Astrobiology - The New Synthesis

    NASA Astrophysics Data System (ADS)

    Sik, A.; Simon, T.

    Background In connection with the complex planetology-education in Hungary [1] we have compiled an Astrobiology coursebook - as a base of its teaching in universities and perhaps in secondary schools as well. We tried to collect and assemble in a logical and thematical order the scientific breakthroughs of the last years, that made possible the fast improvement of astrobiology. The followings are a kind of summary of these. Introduction - The ultimate science Astrobiology is a young science, that search for the possibility, forms and places of extraterrestrial life. But it is not SETI, because do not search for intelligent life, just for living organisms, so SETI is a part of astrobiology. and an extremely important statement: we can search for life-forms that similar to terrestrial life in physiology so we can recognize it as life. Astrobiology is one of the most dynamical-developing sciences of the 21st century. To determine its boundaries is difficult because the complex nature of it: astrobiology melt into itself lot of other sciences, like a kind of ultimate science. The fundamental questions are very simple [2]: When, where and how converted the organic matter into life?; How does life evolve in the Universe?; Has it appeared on other planets?; How does it spread in time and space?; and What is the future of terrestrial life? However, trying to find the answers is quite difficult. So an astrobiologist has to be aware of the basics of astronomy, space research, earth and planetary sciences, and life sciences (mainly ecology, genetics, molecular and evolution biology). But it is not enough - the newest results of these at least as important as the basic knowledge. Part I. - Astro 1. Exoplanets 1995 was a particular year in astronomy: we have found the first planet out of the Solar System. Since that time the discovery of exoplanets progress fast: nowdays more than 80 examples are known and just 6 years passed [3]. The detailed analysis of these distant objects

  11. Astrobiological Significance of Microbial Extremophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative p

  12. Measuring the effect of an astrobiology course on student optimism regarding extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Morgan, David L.

    2017-07-01

    Students in an introductory undergraduate Astrobiology course were given a pre/post-test based on the Drake Equation in an attempt to measure changes in their perceptions regarding the prevalence of life in the Galaxy after taking the course. The results indicated that, after taking the course, the students were considerably more optimistic, by a 2 to 1 margin or more, about the prospect of habitable planets, the origin of life, and the evolution of intelligence in other planetary systems. The results suggest that, while it may not be the explicit goal of an astrobiology course to change student beliefs about the abundance or rarity of extraterrestrial life, such changes in opinion can and do occur.

  13. Aspicilia fruticulosa: A new model for Astrobiology

    NASA Astrophysics Data System (ADS)

    Sánchez Iñigo, Fco. Javier; de La Torre Noetzel, Rosa; Martinez-Frias, Jesus; Mateo Mart, Eva; Horneck, Gerda

    In order to avoid the technological constraints that prevent the performance of experiments in other planets, Astrobiology research implies the development of models that simulate the conditions present in outer space or in planetary bodies. Extremophile organisms, like lichens have been widely studied in Astrobiology due to their high resistance to extremely harsh envi-ronments(5). The vagrant lichen species, Aspicilia fruticulosa lives detached from the substrate, and has a coralloid thalli up to 2.5 cm, which provides a very compact internal structure(6). This species typically grows in deserts and arid areas. Its resistance has been tested several times and amazing results about their vitality have been obtained. Two main experiments have been per-formed: 1. LITHOPANSPERMIA experiment(1): Integrated on board of BIOPAN (multi-user exposure facility, designed for exobiology, radiation biology, radiation dosimetry and material science investigations in space (http://www.spaceflight.esa.int/users/index.cfm?act=default.pagelevel=11p foton-next-pay-Bpan) launched on the Foton M3 satellite in September 2007); the resistance of this lichen species to the combination of the following space conditions during 10 days was tested: Ultraviolet (UV) extraterrestrial radiation, Mars UV-climate, UV-B radiation and Photosynthetically Active Radiation (PAR), microgravity, space vacuum of 1x10-6 mbar and extreme temperatures ranging from -23o C to +16o C. After the flight, the samples were revital-ized for a 72h period in a climatic chamber before taking measurements of their photosynthetic activity with a Mini-PAM fluorometer (Heinz Walz GmbH) as described by R. de la Torre et al. 2007b (2). The results showed that the samples exposed to space environment except solar UV radiation, reached a 76.5-1002. A step further on these investigations was carried out in order to study how the viability of this lichen species were affected by a combination of different sim-ulated martian

  14. The challenges of educating the public about astrobiology via the mass media

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    Scientific information in astrobiology is being generated at a pace that traditional textbooks cannot easily match. For the most part, students, teachers and the general public will continue to learn piecemeal about the latest advances in the field through headlines and mass media coverage centered around discoveries and new interpretations as they occur. Yet journalists and reporters are themselves unschooled in this emerging interdisciplinary field. While it is important to continue developing astrobiological curricular materials for future use by students in formal settings, it is equally important to find novel ways for educating the mass media in the interim. Current planning in anticipation of a Mars sample return mission has focused on a variety of ways to enlist the mass media in an educational as well as informational role.

  15. Take Me Out to the Ball Game: Science Outreach to Non-traditional Audiences

    NASA Astrophysics Data System (ADS)

    Norsted, B. A.

    2010-08-01

    Science outreach often targets audiences that are already interested in science and are looking for related educational experiences for themselves or their families. The University of Wisconsin Geology Museum (UWGM) with funding from the NASA Astrobiology Institute (NAI) is targeting unique venues and thereby new audiences who may not typically seek out science outreach events. With this goal in mind, in June, 2009 the UWGM and NAI sponsored an "Astrobiology Night at the Ballpark" at the Madison Mallards Ballpark, the local Madison, Wisconsin minor league baseball venue. At the game, 6,250 attendees were exposed to current NASA-funded astrobiology research being conducted at the University of Wisconsin-Madison. Fans were greeted at the gate by volunteers passing out a nine-card pack of extremophile trading cards, each of which featured a different extremophile group (e.g. halophiles, cryophiles, and barophiles). Next, participants could interact with project scientists, graduate students and museum staff at four exploration stations, where each station highlighted astrobiology themes (i.e. extremophiles, banded iron formation, earth's oldest rocks, earth's oldest fossils). Before the game began, the video board on the field was used to broadcast short NASA videos about recent Mars missions as well as the search for life in space. Additionally, inning breaks were used as fun opportunities to engage fans through an "Alien vs. Kids" tug-of-war as well as the distribution of Frisbees with an astrobiology timeline printed on them. Engaging the broader public at a non-science venue is a means to breaking down perceived barriers between scientists and the general public. We found Mallards fans to be receptive and ready to connect with our science themes. Tapping into a new audience also builds a larger awareness of our museum and University, expanding our impact in the community.

  16. An Introduction to Astrobiology

    NASA Astrophysics Data System (ADS)

    Gilmour, Iain; Sephton, Mark A.

    2004-05-01

    Compiled by a team of experts, this textbook has been designed for elementary university courses in astrobiology. It begins with an examination of how life may have arisen on Earth and then reviews the evidence for possible life on Mars, Europa and Titan. The potential for life in exoplanetary systems and the search for extraterrestrial intelligence are also discussed. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials. Written in an accessible style that avoids complex mathematics, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a webstite hosting further teaching materials.

  17. Widening perspectives: the intellectual and social benefits of astrobiology (regardless of whether extraterrestrial life is discovered or not)

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.

    2018-01-01

    Astrobiology is usually defined as the study of the origin, evolution, distribution and future of life in the Universe. As such it is inherently interdisciplinary and cannot help but engender a worldview infused by cosmic and evolutionary perspectives. Both these attributes of the study of astrobiology are, and will increasingly prove to be, beneficial to society regardless of whether extraterrestrial life is discovered or not.

  18. Recent Aqueous Environments in Impact Craters and the Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Wynn-Williams, D. D.; Crawford, D. A.; Grin, E. A.

    2001-01-01

    Three cases of recent aqueous environments are surveyed at Mars Orbiting Camera (MOC) high-resolution in the E-Gorgonum, Newton and Hale craters and their astrobiological implications assessed. Additional information is contained in the original extended abstract.

  19. The International Journal of Astrobiology

    NASA Astrophysics Data System (ADS)

    Wynn-Williams, David D.

    2002-01-01

    The launch of a new journal is appropriately like a space mission. It is the result of a scientific need, the inspiration of a group of committed scientists and technologists, a series of draft proposals, an approved mission protocol, and a launch. Today is the launch day for a journal whose remit has only recently consolidated from diverse disciplines. Cambridge University Press has an international reputation for astronomy. To this we add extreme biology and its associated environmental research to integrate astrobiology as: 'the study of the origin, evolution, adaptation and distribution of past and present life in the Universe'. Astrobiology has three main themes: (1) Origin, evolution and limits of life on Earth; (2) Future of life, both on Earth and elsewhere; (3) Search for habitats, biomolecules and life in the Solar System and elsewhere. These fundamental concepts require the integration of various disciplines, including biology (especially microbiology), chemistry, geology, palaeontology, and the physics of atmospheres, planets and stars. We must also keep our minds wide open about the nature and limits of life. We can safely assume a carbon-based system within Solar Systems as we know them, but our concept of habitable zones expands yearly. We were taught that only the spores of certain bacilli could survive temperatures above the boiling point of water, and yet we now know that the deep-sea vent microbe Pyrolobus can survive an hour at 121 °C, which is the temperature used for sterilising medical instruments. We know of cyanobacteria which can not only live inside deep-frozen Antarctic rocks but also survive on roof-tops in Jerusalem at 80 °C. The bacterium Deinococcus radiodurans tolerates lethal doses of nuclear radiation, and cyanobacteria inside Antarctic desert sandstone receive so little moisture that their carbon turnover time (from its fixation by photosynthesis to its release as carbon dioxide during respiration) is 10,000 years. Life is

  20. Origins of Life Research: a Bibliometric Approach

    NASA Astrophysics Data System (ADS)

    Aydinoglu, Arsev Umur; Taşkın, Zehra

    2018-03-01

    This study explores the collaborative nature and interdisciplinarity of the origin(s) of life (OoL) research community. Although OoL research is one of the oldest topics in philosophy, religion, and science; to date there has been no review of the field utilizing bibliometric measures. A dataset of 5647 publications that are tagged as OoL, astrobiology, exobiology, and prebiotic chemistry is analyzed. The most prolific authors (Raulin, Ehrenfreund, McKay, Cleaves, Cockell, Lazcano, etc.), most cited scholars and their articles (Miller 1953, Gilbert 1986, Chyba & Sagan 1992, Wolchtershauser 1988, etc.), and popular journals ( Origins of Life and Evolution of Biospheres and Astrobiology) for OoL research are identified. Moreover, interdisciplinary research conducted through research networks, institutions (NASA, Caltech, University of Arizona, University of Washington, CNRS, etc.), and keywords & concepts (astrobiology, life, Mars, amino acid, prebiotic chemistry, evolution, RNA) are explored.

  1. Lunar and Planetary Science XXXV: Astrobiology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The presentations in this session are: 1. A Prototype Life Detection Chip 2. The Geology of Atlantis Basin, Mars, and Its Astrobiological Interest 3. Collecting Bacteria Together with Aerosols in the Martian Atmosphere by the FOELDIX Experimental Instrument Developed with a Nutrient Detector Pattern: Model Measurements of Effectivity 4. 2D and 3D X-ray Imaging of Microorganisms in Meteorites Using Complexity Analysis to Distinguish Field Images of Stromatoloids from Surrounding Rock Matrix in 3.45 Ga Strelley Pool Chert, Western Australia 4. Characterization of Two Isolates from Andean Lakes in Bolivia Short Time Scale Evolution of Microbiolites in Rapidly Receding Altiplanic Lakes: Learning How to Recognize Changing Signatures of Life 5. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode 6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence 7. Microbial D/H Fractionation in Extraterrestrial Materials: Application to Micrometeorites and Mars 8. Carbon Isotope Characteristics of Spring-fed Iron-precipitating Microbial Mats 9. Amino Acid Survival Under Ambient Martian Surface UV Lighting Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions 10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods 11. Thermal Decomposition of Siderite-Pyrite Assemblages: Implications for Sulfide Mineralogy in Martian Meteorite ALH84001 Carbonate Globules 12. Determination of the Three-Dimensional Morphology of ALH84001 and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy 13. On the Possibility of a Crypto-Biotic Crust on Mars Based on Northern and Southern Ringed Polar Dune Spots 14. Comparative Planetology of the Terrestrial Inner Planets: Implications for Astrobiology 15. A Possible Europa Exobiology 16. A Possible Biogeochemical Model for Titan

  2. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

  3. Reaching out to Hispanic Serving and Historically Black Institutions in Houston: Why are these institutions important to NASA's space science program?

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Obot, V.

    2005-12-01

    Research institutions welcome the idea of recruiting and retaining minority students for their graduate programs. If they are offered the opportunity to select a minority student from a "recognized majority" or from a minority institution, the preference will be to select the student from the "recognized majority" institution. There are many reasons, including their perception that the minority institutions are disconnected from mainstream science programs and that their students lack research experience. Other reasons are that minority institutions are not interested in promoting research, especially space science (Sakimoto et al. 2005), and their faculties are not capable of participating in NASA missions. Why should majority institutions work with students and faculty from minority institutions? First of all, there are a number of faculty members at minority universities who received their Ph.D. from tier one research institutions and have excellent backgrounds, but lack research facilities. Treating these individuals with courtesy, respect, and allowing them to participate as equal partners and supporting their scientific endeavors will positively impact the minority community. The research skills of the minority faculty will be updated and this will ultimately result in improving the training and scientific background of their students. The population in the United States is changing as our newest immigrants are predominantly from Latin American countries, Africa and Asia. Many representatives of these populations, will be attending minority institutions, especially if they are the first generation of their family endeavoring to become college students. The potential collaboration of between majority and minority institutions will be important in training these populations to be successful members of society and participate in future space science programs. Sakimoto, P. J., J. D. Rosendhal. 2005. Physics Today, Vol 58.

  4. The NASA Ames Research Center Institutional Scientific Collection: History, Best Practices and Scientific Opportunities

    NASA Technical Reports Server (NTRS)

    Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen

    2017-01-01

    The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique

  5. NASA LWS Institute GIC Working Group: GIC science, engineering and applications readiness

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A. A.; Thomson, A. W. P.; Bernabeu, E.

    2016-12-01

    In recognition of the rapidly growing interest on the topic, this paper is based on the findings of the very first NASA Living With a Star (LWS) Institute Working Group that was specifically targeting the GIC issue. The new LWS Institutes program element was launched 2014 and the concept is built around small working group style meetings that focus on well defined problems that demand intense, direct interactions between colleagues in neighboring disciplines to facilitate the development of a deeper understanding of the variety of processes that link the solar activity to Earth's environment. The LWS Institute Geomagnetically Induced Currents (GIC) Working Group (WG) led by A. Pulkkinen (NASA GSFC) and co-led by E. Bernabeu (PJM) and A. Thomson (BGS) was selected competitively as the pilot activity for the new LWS element. The GIC WG was tasked to 1) identify, advance, and address the open scientific and engineering questions pertaining to GIC, 2) advance predictive modeling of GIC, 3) advocate and act as a catalyst to identify resources for addressing the multidisciplinary topic of GIC. In this paper, we target the goal 1) of the GIC WG. More specifically, the goal of this paper is to review the current status and future challenges pertaining to science, engineering and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allow improved understanding and physics-based modeling of physical processes behind GIC. Engineering in turn is understood here as the "impact" aspect of GIC. The impact includes any physical effects GIC may have on the performance of the manmade infrastructure. Applications is understood as the models, tools and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government for managing any potential consequences from GIC impact to critical infrastructure. In this sense, applications can be considered as

  6. A possible first use of the word astrobiology?

    PubMed

    Briot, Danielle

    2012-12-01

    The word astrobiology was possibly first used in 1935, in an article published in a French popular science magazine. The author was Ary J. Sternfeld (1905-1980), a pioneer of astronautics who wrote numerous scientific books and papers. The article is remarkable because his portrayal of the concept is very similar to the way it is used today. Here I review the 1935 article and provide a brief history of Sternfeld's life, which was heavily influenced by the tragic events of 20(th) century history.

  7. Woodpeckers and Diamonds: Some Aspects of Evolutionary Convergence in Astrobiology.

    PubMed

    Ćirković, Milan M

    2018-05-01

    Jared Diamond's argument against extraterrestrial intelligence from evolutionary contingency is subjected to critical scrutiny. As with the earlier arguments of George Gaylord Simpson, it contains critical loopholes that lead to its unraveling. From the point of view of the contemporary debates about biological evolution, perhaps the most contentious aspect of such arguments is their atemporal and gradualist usage of the space of all possible biological forms (morphospace). Such usage enables the translation of the adaptive value of a trait into the probability of its evolving. This procedure, it is argued, is dangerously misleading. Contra Diamond, there are reasons to believe that convergence not only plays an important role in the history of life, but also profoundly improves the prospects for search for extraterrestrial intelligence success. Some further considerations about the role of observation selection effects and our scaling of complexity in the great debate about contingency and convergence are given. Taken together, these considerations militate against the pessimism of Diamond's conclusion, and suggest that the search for traces and manifestations of extraterrestrial intelligences is far from forlorn. Key Words: Astrobiology-Evolution-Contingency-Convergence-Complex life-SETI-Major evolutionary transitions-Selection effects-Jared Diamond. Astrobiology 18, 491-502.

  8. Vanguard: A New Science Mission For Experimental Astrobiology

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Wynn-Williams, D.; Edwards, H.; Dickensheets, D.; Welch, C.; Curley, A.

    As an alternative to technically and financially problemat ic sample return missions, a rover-mounted laser Raman spectrometer sensitive to biomolecules and their mineral substrata is a promising alternative in the search for evidence of former life on Mars. We presented a new remote in situ analysis package being designed for experimental astrobiology on terrestrial-type planetary surfaces. The science is based on the hypothesis that if life arose on Mars, the selective pressure of solar radiation would have led to the evolution of pigmented systems to harness the energy of sunlight and to protect cells from concurrent UV stress. Microbial communities would have therefore become stratified by the light gradient, and our remote system would penetrate the near-subsurface profile in a vertical transect of horizontal strata in ancient sediments (such as palaeolake beds). The system will include an extensive array of robotic support to translocate and deploy a Raman spectrometer detectors beneath the surface of Mars ­ it will comprise of a base station lander to support communications, a robotic micro-rover to permit well- separated triplicate profiles made by three ground-penetrating moles mounted in a vertical configuration. Each mole will deploy a tether carrying fibre optic cables coupling the Raman spectrometer onboard the rover and the side-scanning sensor head on the mole. The complete system has been named Vanguard, and it represents a close collaboration between a space robotics engineer (Ellery), an astrobiologist (Wynn-Williams), a molecular spectroscopist (Edwards), an opto-electronic technologist (Dickensheets), a spacecraft engineer (Welch) and a robotic vision specialist (Curley). The autonomy requirement for the Vanguard instrument requires that significant scientific competence is imparted to the instrument through an expert system to ensure that quick-look analysis is performed onboard in real-time as the mole penetrates beneath the surface. Onboard

  9. The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park

    PubMed Central

    Siefert, Janet L.; Escalante, Ana E.; Elser, James J.; Eguiarte, Luis E.

    2012-01-01

    Abstract The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a “Precambrian Park” for astrobiology. Key Words: Microbial mats—Stromatolites—Early Earth—Extremophilic microorganisms—Microbial ecology. Astrobiology 12, 641–647. PMID:22920514

  10. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    PubMed

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  11. Lunar and Planetary Science XXXV: Astrobiology: Analogs and Applications to the Search for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology: Analogs and Applications to the Search for Life" included the folowing reports:The Search for Life on Mars Using Macroscopically Visible Microbial Mats (Stromatolites) in 3.5/3.3 Ga Cherts from the Pilbara in Australia and Barberton in South Africa as Analogues; Life in a Mars Analog: Microbial Activity Associated with Carbonate Cemented Lava Breccias from NW Spitsbergen; Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features; Episodic Fossilization of Microorganisms on an Annual Timescale in an Anthropogenically Modified Natural Environment: Geochemical Controls and Implications for Astrobiology; Proterozoic Microfossils and Their Implications for Recognizing Life on Mars; Microbial Alteration of Volcanic Glass in Modern and Ancient Oceanic Crust as a Proxy for Studies of Extraterrestrial Material ; Olivine Alteration on Earth and Mars; Searching for an Acidic Aquifer in the R!o Tinto Basin. First Geobiology Results of MARTE Project; In-Field Testing of Life Detection Instruments and Protocols in a Mars Analogue Arctic Environment; Habitability of the Shallow Subsurface on Mars: Clues from the Meteorites; Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain; Characterization of the Organic Matter in an Archean Chert (Warrawoona, Australia); and The Solfatara Crater, Italy: Characterization of Hydrothermal Deposits, Biosignatures and Their Astrobiological Implication.

  12. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  13. Aliens are us. An innovative course in astrobiology

    NASA Astrophysics Data System (ADS)

    Oliveira, Carlos F.; Barufaldi, James P.

    2009-01-01

    We live in a scientific world; paradoxically, the scientific literacy of the population is minimal at best. Science is an ongoing process, a human endeavour; paradoxically, students tend to believe that science is a finished enterprise. Many non-science major students are not motivated in science classes; paradoxically, there is a public fascination with the possibility of life in the Universe, which is nowadays a scientific endeavour. An astrobiology course was developed at the Center for Science and Mathematics Education at The University of Texas at Austin to address these paradoxes and includes the following objectives: (a) to improve scientific literacy; (b) to demonstrate that science is a work in progress; (c) to enhance the inherent interdisciplinary aspect of science; (d) to demonstrate that science is embedded in society and relates with several social sciences; (e) to improve the content knowledge about the nature of science; (f) to illustrate how engaging learning science can be; and (g) to draw from the intrinsic motivation already incorporated in the general population. The course has been offered, taught and revised for the past three years. The informal course student feedback has been very positive and encouraging. The purpose of this paper is to provide a general overview of the course. In addition, the course's background, content, themes and mode of delivery are outlined, discussed and analysed in this paper. This paper subscribes to an educational philosophy that focuses on the multidisciplinary nature of science and includes critical thinking-based teaching strategies using the dynamic discipline of astrobiology.

  14. Enzyme Amplified Detection of Microbial Cell Wall Components

    NASA Technical Reports Server (NTRS)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  15. EXPOSE-E: an ESA astrobiology mission 1.5 years in space.

    PubMed

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, André; Panitz, Corinna; Horneck, Gerda; von Heise-Rotenburg, Ralf; Hoppenbrouwers, Tom; Willnecker, Rainer; Baglioni, Pietro; Demets, René; Dettmann, Jan; Reitz, Guenther

    2012-05-01

    The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110 nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10 s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.

  16. Extraterrestrial Life as the Great Analogy, Two Centuries Ago and in Modern Astrobiology

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    Mainstream ideas on the existence of extraterrestrial life in the late 18th and early 19th centuries are examined, with a focus on William Herschel, one of the greatest astronomers of all time. Herschel viewed all of the planets and moons of our solar system as inhabited, and gave logical arguments that even the Sun, and by extension all of the stars, was a giant planet fit for habitation by intelligent beings. The importance for astrobiology both two centuries ago and now of the type of inductive reasoning called "analogy" is emphasized. Analogy is an imperfect tool, but given that we have only one known case of life and of a life-bearing planet, it is very difficult to make progress in astrobiology without resorting to analogy, in particular between known life and possible other life. We cannot overcome the "N = 1 Problem" without resorting to this "Great Analogy" to guide our research.

  17. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in

  18. The Effect of High-Dose Ionizing Radiation on the Isolated Photobiont of the Astrobiological Model Lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    Meeßen, Joachim; Backhaus, Theresa; Brandt, Annette; Raguse, Marina; Böttger, Ute; de Vera, Jean-Pierre; de la Torre, Rosa

    2017-02-01

    Lichen symbioses between fungi and algae represent successful life strategies to colonize the most extreme terrestrial habitats. Consequently, space exposure and simulation experiments have demonstrated lichens' high capacity for survival, and thus, they have become models in astrobiological research with which to discern the limits and limitations of terrestrial life. In a series of ground-based irradiation experiments, the STARLIFE campaign investigated the resistance of astrobiological model organisms to galactic cosmic radiation, which is one of the lethal stressors of extraterrestrial environments. Since previous studies have identified that the alga is the more sensitive lichen symbiont, we chose the isolated photobiont Trebouxia sp. of the astrobiological model Circinaria gyrosa as a subject in the campaign. Therein, γ radiation was used to exemplify the deleterious effects of low linear energy transfer (LET) ionizing radiation at extremely high doses up to 113 kGy in the context of astrobiology. The effects were analyzed by chlorophyll a fluorescence of photosystem II (PSII), cultivation assays, live/dead staining and confocal laser scanning microscopy (CLSM), and Raman laser spectroscopy (RLS). The results demonstrate dose-dependent impairment of photosynthesis, the cessation of cell proliferation, cellular damage, a decrease in metabolic activity, and degradation of photosynthetic pigments. While previous investigations on other extraterrestrial stressors have demonstrated a high potential of resistance, results of this study reveal the limits of photobiont resistance to ionizing radiation and characterize γ radiation-induced damages. This study also supports parallel STARLIFE studies on the lichens Circinaria gyrosa and Xanthoria elegans, both of which harbor a Trebouxia sp. photobiont.

  19. Vibrational Spectroscopy and Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  20. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  1. Astrobiological phase transition: towards resolution of Fermi's paradox.

    PubMed

    Cirković, Milan M; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi's paradox or the "Great Silence" problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are gamma-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the "Great Silence", it is not supportive of the "contact pessimist" position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  2. Life in the Cosmic Context. An Astrobiology Course as an Experiment in Transdisciplinarity

    NASA Astrophysics Data System (ADS)

    Friaça, A. C. S.; Janot Pacheco, E.

    2014-10-01

    ``Life in the Cosmic Context" (AGA0316) is the astrobiology course offered by University of São Paulo to undergraduate students of science and humanities majors. The variety of background of the population attending AGA0316 and the broad scope of the addresssed issues makes this course a laboratory of transdisciplinarity.

  3. SAO/NASA ADS at SAO: Mirror Sites

    Science.gov Websites

    , Garching, Germany Astronomisches Rechen-Institut, Heidelberg, Germany Institute of Astronomy of the Russian Observatory, Chinese Academy of Science, Beijing, China Inter-University Centre for Astronomy and Astrophysics Intensive Astronomy, South Africa [ADS] ADS [CfA] CfA [NASA] NASA ads at cfa.harvard.edu

  4. Question 2: why an astrobiological study of titan will help us understand the origin of life.

    PubMed

    Raulin, Francois

    2007-10-01

    For understanding the origin(s) of life on Earth it is essential to search for and study extraterrestrial environments where some of the processes which participated in the emergence of Life on our planet are still occurring. This is one of the goals of astrobiology. In that frame, the study of extraterrestrial organic matter is essential and is certainly not of limited interest regarding prebiotic molecular evolution. Titan, the largest satellite of Saturn and the only planetary body with an atmosphere similar to that of the Earth is one of the places of prime interest for these astrobiological questions. It presents many analogies with the primitive Earth, and is a prebiotic-like laboratory at the planetary scale, where a complex organic chemistry in is currently going on.

  5. Enabling Exploration: NASA's Technology Needs

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.

    2012-01-01

    Deputy Director of Science, Carol W. Carroll has been invited by University of Oregon's Materials Science Institute to give a presentation. Carol's Speech explains NASA's Technologies that are needed where NASA was, what NASA's current capabilities are. Carol will highlight many of NASA's high profile projects and she will explain what NASA needs for its future by focusing on the next steps in space exploration. Carol's audience will be University of Oregon's future scientists and engineer's and their professor's along with various other faculty members.

  6. NASA AMES Remote Operations Center for 2001

    NASA Technical Reports Server (NTRS)

    Sims, M.; Marshall, J.; Cox, S.; Galal, K.

    1999-01-01

    There is a Memorandum of Agreement between NASA Ames, JPL, West Virginia University and University of Arizona which led to funding for the MECA microscope and to the establishment of an Ames facility for science analysis of microscopic and other data. The data and analysis will be by agreement of the Mars Environmental Compatibility Assessment (MECA), Robotic Arm Camera (RAC) and other PI's. This facility is intended to complement other analysis efforts with one objective of this facility being to test the latest information technologies in support of actual mission science operations. Additionally, it will be used as a laboratory for the exploration of collaborative science activities. With a goal of enhancing the science return for both Human Exploration and Development of Space (HEDS) and Astrobiology we shall utilize various tools such as superresolution and the Virtual Environment Vehicle Interface (VEVI) virtual reality visualization tools. In this presentation we will describe the current planning for this facility.

  7. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Roger Launius, senior curator, Smithsonian Institution National Air and Space Museum, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  8. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Bobby Braun, professor, Georgia Institute of Technology, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  9. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, moderates the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  10. Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology

    NASA Astrophysics Data System (ADS)

    Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

    2014-06-01

    Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

  11. NASA-ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Keith, Theo G., Jr.; Montegani, Francis J.

    1996-01-01

    During the summer of 1996, a ten-week Summer Faculty Fellowship Program was conducted at the NASA Lewis Research Center (LeRC) in collaboration with Case Western Reserve University (CWRU), and the Ohio Aerospace Institute (OAI). This is the thirty-third summer of this program at Lewis. It was one of nine summer programs sponsored by NASA in 1996, at various field centers under the auspices of the American Society for Engineering Education (ASEE). The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science educators, (2) to stimulate an exchange of ideas between participants and NASA, (3) to enrich and refresh the research activities of participants' institutions. (4) to contribute to the research objectives of LeRC. This report is intended to recapitulate the activities comprising the 1996 Lewis Summer Faculty Fellowship Program, to summarize evaluations by the participants, and to make recommendations regarding future programs.

  12. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    PubMed Central

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging

  13. Selecting A Landing Site Of Astrobiological Interest For Mars Landers And Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Wills, Danielle; Monaghan, E.; Foing, B.

    2008-09-01

    The landscape of Mars, despite its apparent hostility to life, is riddled with geological and mineralogical signs of past or present hydrological activity. As such, it is a key target for astrobiological exploration. The aim of this work is to combine data and studies to select top priority landing locations for in-situ landers and sample return missions to Mars. We report in particular on science and technical criteria and our data analysis for sites of astrobiological interest. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidence for volatiles, organics and habitability conditions). We discuss key mission objectives, and consider the accessibility of chosen locations. We describe what additional measurements are needed, and outline the technical and scientific operations requirements of in-situ landers and sample return missions to Mars.

  14. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  15. The NASA Technical Report Server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.; Paulson, Sharon S.; Binkley, Robert L.; Kellogg, Yvonne D.; Beaumont, Chris J.; Schmunk, Robert B.; Kurtz, Michael J.; Accomazzi, Alberto

    1995-01-01

    The National Aeronautics and Space Act of 1958 established NASA and charged it to "provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." The search for innovative methods to distribute NASA's information lead a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems as search engines. The NTRS is an inter-center effort which provides uniform access to various distributed publication servers residing on the Internet. Users have immediate desktop access to technical publications from NASA centers and institutes. The NTRS is comprised of several units, some constructed especially for inclusion in NTRS, and others that are existing NASA publication services that NTRS reuses. This paper presents the NTRS architecture, usage metrics, and the lessons learned while implementing and maintaining the service. The NTRS is largely constructed with freely available software running on existing hardware. NTRS builds upon existing hardware and software, and the resulting additional exposure for the body of literature contained ensures that NASA's institutional knowledge base will continue to receive the widest practicable and appropriate dissemination.

  16. After Years of Neglecting Academe, NASA Reaches Out to Universities.

    ERIC Educational Resources Information Center

    Southwick, Ron

    2000-01-01

    Reports that the National Aeronautics and Space Administration (NASA) is increasing its solicitation of university-based research on space missions, biotechnology, and information technology. Notes NASA's existing ties to institutions and the perception of a "closed community" of institutions with which NASA deals. Identifies the top 10 university…

  17. NASA Symposium 76. [opportunities for minorities and women in NASA programs

    NASA Technical Reports Server (NTRS)

    1976-01-01

    New Mexico State University and the National Aeronautics and Space Administration hosted a symposium to promote NASA's efforts to increase the available pool of minority and women scientists and engineers to meet affirmative hiring goals. The conferences also provided an opportunity for key NASA officials to meet with appropriate officials of participating institutions to stimulate greater academic interest (among professors and students) in NASA's research and development programs. Minority aerospace scientists and engineers had opportunity to interact with the minority community, particulary with young people at the junior high, high school, and college levels. One aim was to raise minority community's level of understanding regarding NASA's Regional Distribution System for storage and retrieval of scientific and technical information.

  18. Harnessing Electricity from Chemical Gardens

    NASA Image and Video Library

    2015-08-05

    This photo simulation shows a laboratory-created "chemical garden," which is a chimney-like structure found at bubbling vents on the seafloor. Some researchers think life on Earth might have got its start at structures like these billions of years ago, partly due to their ability to transfer electrical currents -- an essential trait of life as we know it. The battery-like property of these chemical gardens was demonstrated by linking several together in series to light an LED (light-emitting diode) bulb. In this photo simulation, the bulb is not really attached to the chimney. The chimney membranes are made of iron sulfides and iron hydroxides, geologic materials that conduct electrons. JPL's research team is part of the Icy Worlds team of the NASA Astrobiology Institute, based at NASA's Ames Research Center in Moffett Field, California. JPL is managed by the California Institute of Technology in Pasadena for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA19834

  19. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  20. On Beyond Star Trek, the Role of Synthetic Biology in Nasa's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit the nascent field of synthetic biology in pursuit of its mission, including aeronautics, earth science, astrobiology and notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particularly space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement and the 2012 team has expanded the use of synthetic biology to estimate the potential for life in the clouds of other planets (http://2012.igem.org/Team:Stanford-Brown; http://www.calacademy.org/sciencetoday/igem-competition/). More recent projects from the Stanford-Brown team have expanded our ideas of how synthetic biology can aid NASA's missions from "Synthetic BioCommunication" (http://2013.igem.org/Team:Stanford-Brown) to a "Biodegradable UAS (drone)" in collaboration with Spelman College (http://2014.igem.org/Team:StanfordBrownSpelman#SBS%20iGEM) and most recently, "Self-Folding Origami" (http://2015.igem.org/Team:Stanford-Brown), the winner of the 2015 award for Manufacturing.

  1. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, left, Dr. Jeffrey Moore, senior scientist at NASA Ames Researh Center, center, and Dr. David H. Grinspoon, senior scientist at the Plentary Science Institute, left, are seen during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  2. Enigmatic Isovaline: Investigating the Stability, Racemization, and Formation of a Non-biological Meteoritic Amino Acid

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie; Moore, Marla; Lewis, Ariel; Dworkin, Jason

    2008-01-01

    Among the Murchison meteoritic amino acids, isovaline stands out as being both nonbiological (non-protein) and having a relatively high abundance. While approximately equal amounts of D- and L-isovaline have been reported in Murchison and other CM meteorites, the molecule's structure appears to prohibit its racemization in aqueous solutions. We recently have investigated the low-temperature solid-phase chemistry of both isovaline and valine with an eye toward each molecule's formation, stability, and possible interconversions of D and L enantiomers. Ion-irradiated isovaline- and valinecontaining ices were examined by IR spectroscopy and highly-sensitive liquid chromatography/time-of-flight mass spectral methods to assess both amino acid destruction and racemization. Samples were studied in the presence and in the absence of water-ice, and the destruction of both isovaline and valine was measured as a function of radiation dose. In addition, we have undertaken experiments to synthesize isovaline, valine, and their amino acid isomers by solid-phase radiation-chemical pathways other than the oft-invoked Strecker process. This presentation will review and summarize some of our recent findings. -- Our work has been supported by a grant to the Goddard Center for Astrobiology through the NASA Astrobiology Institute. Experiments were performed in the Cosmic Ice Laboratory (RLH, MHM, AL) and the Astrobiology Analytical Laboratory (JPD, DPG) at the NASA Goddard Space Flight Center.

  3. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  4. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.

  5. Congress Examines Efforts to Search for Life in the Universe

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-06-01

    "It is not hyperbolic to suggest that scientists could very well discover extraterrestrial intelligence within 2 decades' time or less, given resources to conduct the search," Seth Shostak, senior astronomer with the SETI Institute, in Mountain View, Calif., testified at a 21 May congressional hearing held by the House of Representatives' Committee on Science, Space, and Technology. He pointed to the progress in extrasolar planet discovery made possible by NASA's Kepler space telescope, the enormous number of potential planets in the Milky Way and other galaxies, the increasing power of digital electronics to find and sort out radio and other signals, and other work related to exoplanets and astrobiology. It was the committee's third hearing on astrobiology and the search for life in the universe in roughly 1 year.

  6. From Extremophiles to Star Trek, The Use of Synthetic Biology in Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Fujishima, Kosuke; Lima, Ivan Paulino; Gentry, Diana; Phan, Samson; Navarette, Jesica; Palmer, Jesse; Burnier, Andre

    2012-01-01

    Synthetic biology – the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes – has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as bio-mining, human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  7. Astrobiological and Geological Implications of Convective Transport in Icy Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert T.; Zhong, Shi-Jie; Barr, Amy

    2005-01-01

    The oceans of large icy outer planet satellites are prime targets in the search for extraterrestrial life in our solar system. The goal of our project has been to develop models of ice convection in order to understand convection as an astrobiologically relevant transport mechanism within icy satellites, especially Europa. These models provide valuable constraints on modes of surface deformation and thus the implications of satellite surface geology for astrobiology, and for planetary protection. Over the term of this project, significant progress has been made in three areas: (1) the initiation of convection in large icy satellites, which we find probably requires tidal heating; (2) the relationship of surface features on Europa to internal ice convection, including the likely role of low-melting-temperature impurities; and (3) the effectiveness of convection as an agent of icy satellite surface-ocean material exchange, which seems most plausible if tidal heating, compositional buoyancy, and solid-state convection work in combination. Descriptions of associated publications include: 3 published papers (including contributions to 1 review chapter), 1 manuscript in revision, 1 manuscript in preparation (currently being completed under separate funding), and 1 published popular article. A myriad of conference abstracts have also been published, and only those from the past year are listed.

  8. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Student Ambassadors and Facilitator are seen on a panel at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. From left to right are: Quenton Bonds, University of South Florida; Geoffrey Wawrzyniak, Purdue University; Heriberto Reynoso, University of Texas at Brownsville; Marie Kingbird-Lowry, Leech Lake Tribal College; Kareen Borders, University of Washington; Katelyn Doran, University of North Carolina at Charlotte and Ashanti Johnson, PhD, Executive Director, Institute for Broadening Participation. (Photo Credit: NASA/Carla Cioffi)

  9. Microorganisms in extreme environments with a view to astrobiology in the outer solar system

    NASA Astrophysics Data System (ADS)

    Seckbach, Joseph; Chela-Flores, Julian

    2015-09-01

    We review the various manifestations of the evolution of life in extreme environments. We review those aspects of extremophiles that are most relevant for astrobiology. We are aware that geothermal energy triggering sources of heat in oceanic environments are not unique to our planet, a fact that was exposed by the Voyager mission images of volcanic activity on Io, the Jovian moon. Such activity exceeded by far what was known form terrestrial geology. The science of astrobiology has considered the possible presence of several moon oceans in the vicinity of both giant gas and icy planets. These watery environments include, not only Europa (strongly suggested by data from the Galileo mission), but the Voyager flybys exposed, not only the unusual geothermal activity on Io, but also the possible presence of subsurface oceans and some geothermal activity on the Neptune's moon Triton. More recently, calculations of Hussmann and coworkers with available data do not exclude that even Uranus moons may be candidates for bearing subsurface oceans. These possibilities invite a challenge that we gladly welcome, of preliminary discussions of habitability of extremophiles in so far novel environments for the science of astrobiology. Nevertheless, such exploration is currently believed to be feasible with the new generations of missions suggested for the time window of 2030 - 2040, or even earlier. We are envisaging, not only the current exploration of the moons of Saturn, but in the coming years we expect to go beyond to Uranus and Neptune to include dwarf planets and trans-neptunian worlds. Consequently, it is necessary to begin questioning whether the Europa-like conditions for the evolution of microorganisms are repeatable elsewhere. At present three new missions are in the process of being formulated, including the selection of payloads that will be necessary for the exploration of the various so far unexplored moons.

  10. NASA SCIENTIFIC AND TECHNICAL INFORMATION (STI) PROGRAM PLAN

    EPA Science Inventory

    NASA's scientific and technical information (STI) is an essential product of research, facilitates technology transfer, and enhances the competitive edge of U.S. companies and educational institutions. NASA's STI is an integral part of NASA's information transfer and is critical...

  11. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.

  12. Astrobiology: An astronomer's perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less

  13. Cosmic Origins: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2003-12-01

    The Space Science Institute of Boulder, Colorado, is developing a 3,000 square-foot traveling exhibition, called Cosmic Origins, which will bring origins-related research and discoveries to students and the American public. Cosmic Origins will have three interrelated exhibit areas: Star Formation, Planet Quest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists' use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. Exhibit content will address age-old questions that form the basis of NASA's Origins and Astrobiology programs: Where did we come from? Are we alone? In addition to the exhibit, our project will include workshops for educators and docents at host sites, as well as a public Web site that will use a virtual rendering of exhibit content. The exhibit's size will permit it to visit medium sized museums in underserved regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005. A second 3-year tour is also planned for 2008. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. Current partners in the Cosmic Origins project include ASTC, the Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (e.g. PlanetQuest, SIRTF, and Kepler), New York Hall of Science, the SETI Institute, and the Space Telescope Science Institute. The exhibition is supported by grants from NSF and NASA. This report will focus on the Planet Quest part of the exhibition.

  14. Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Billi, Daniela; Cockell, Charles; Demets, René; Ehrenfreund, Pascale; Elsaesser, Andreas; d'Hendecourt, Louis; van Loon, Jack J. W. A.; Martins, Zita; Onofri, Silvano; Quinn, Richard C.; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; de la Torre, Rosa; de Vera, Jean-Pierre; Westall, Frances; Carrasco, Nathalie; Fresneau, Aurélien; Kawaguchi, Yuko; Kebukawa, Yoko; Nguyen, Dara; Poch, Olivier; Saiagh, Kafila; Stalport, Fabien; Yamagishi, Akihiko; Yano, Hajime; Klamm, Benjamin A.

    2017-07-01

    The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format.

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Worcester Polytechnic Institute (WPI) President Laurie Leshin, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The entrance to Institute Park is seen during the level one challenge as during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. Micro-XRF : Elemental Analysis for In Situ Geology and Astrobiology Exploration

    NASA Technical Reports Server (NTRS)

    Allwood, Abigail; Hodyss, Robert; Wade, Lawrence

    2012-01-01

    The ability to make close-up measurements of rock chemistry is one of the most fundamental tools for astrobiological exploration of Mars and other rocky bodies of the solar system. When conducting surface-based exploration, lithochemical measurements provide critical data that enable interpretation of the local geology, which in turn is vital for determining habitability and searching for evidence of life. The value of lithochemical measurements for geological interpretations has been repeatedly demonstrated with virtually every landed Mars mission over the past four decades.

  18. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, left, Mason Peck, NASA Chief Technologist, 2nd from left, Ron Sega, Vice president and enterprise executive for Energy and the Environment, The Ohio State University and Colorado State University, Michael Donovan, technology consultant, New Services Development, Hewlett-Packard Company, and, Jordan Hansell, chairman and CEO, NetJets Inc., right, participate in the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  19. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  20. Field/Lab Training Workshops in Planetary Geology and Astrobiology for Secondary School Teachers

    NASA Astrophysics Data System (ADS)

    Treiman, A.; Newsom, H.; Hoehler, T.; Tsairides, C.; Karlstrom, K.; Crossey, L.; Kiefer, W.; Kadel, S.; Garcia-Pichel, F.; Aubele, J.; Crumpler, L.

    2003-12-01

    , with heightened appreciation, excited, and energetic. The teachers are asked to share their knowledge in their districts (in one case, saving the district thousands of dollars). For the presenters, the workshop format allows personal interactions with the teachers, leading to enhanced appreciation of their perspectives and needs. This year, teacher input assisted with an NSF-sponsored National Park education initiative. And in one case, a meaningful research collaboration has come from these workshops. Logistics is the greatest challenge of this workshop format. Hosts and teaching/lab venues need to be arranged early in sites dictated by science content, not convenience. Travel and lodging must be arranged for teachers and presenters at several sites, usually all distant from the organizing institution. Logistics also dictates that each workshop cannot serve more than about 30 teachers. The depth of knowledge imparted and its long-term effects on the teachers and their districts offsets the small number of teachers reached per year. Authors here are the 2003 organizers and presenters. Many others have organized and presented at past workshops - especially Dr. A.J. Irving of U. Wash. We are grateful for past support from NASA Broker/Facilitator, and now from Sandia National Laboratory and NASA OSS/EPO.

  1. The Formation of Organic Compounds of Astrobiological Interest by the Irradiation Processing of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2015-01-01

    Many environments in space contain very low temperature mixed molecular ices that are exposed to ionizing radiation in the form of cosmic rays and high-energy photons. While traditional chemistry would not be expected to occur at the temperatures typical of these ices (T < 50 K), ionizing radiation can break bonds in the original molecules in the ices to form highly reactive ions and radicals. These ions and radicals are subsequently free to react despite the low temperatures of the original ices. Laboratory experiments, many of them carried out at the Astrochemistry Laboratory at NASA-Ames, show that the irradiation of ices made of even simple molecules like H2O, CO, CO2, CH4, NH3, etc. can result in the robust formation of large numbers of far more complex organic compounds. Many of these new products are of direct interest to astrobiology. For example, the irradiation of mixed molecular ices has been shown to produce amino acids, amphiphiles, quinones, sugars, heterocyclic compounds, and nucleobases, all molecular building blocks used by terrestrial life. Insofar as the presence of these materials plays a role in the origin of life on planets, this has profound implications for the potential abundance of life in the universe since these experiments simulate universal conditions that are expected to be found wherever new stars and planets form.

  2. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George

    1998-01-01

    The NASA Ambassadors Program is designed to present the excitement and importance of NASA's programs to its customers, the general public. Those customers, which are identified in the "Science Communications Strategy" developed by the Space Sciences Laboratory at the MSFC, are divided into three categories: (1) Not interested and not knowledgeable; (2) Interested but not knowledgeable; and (3) Science attentive. In it they recognize that it makes the most sense to attempt to communicate with those described in the last two categories. However, their plan suggests that the media and the educational institutions are the only means of outreach. The NASA Ambassadors Program allows NASA to reach its target audience directly. Steps to be taken in order for the program to commence: (1) MSFC chooses to support the NASA Ambassadors Program - decision point; (2) Designate an "Office In Charge". (3) Assign the "Operation" phase to in-house MSFC personnel or to a contractor - decision point; (4) Name a point of contact; (5) Identify partners in the program and enlist their assistance; (6) Process an unsolicited proposal from an outside source to accomplish those tasks which MSFC chooses to out-source.

  3. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team AERO, from the Worcester Polytechnic Institute (WPI) transports their robot to the competition field for the level one of the competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. NASA's Big Data Task Force

    NASA Astrophysics Data System (ADS)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  6. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  7. Viking GCMS Data Restoral and Perceiving Temperature on Other Worlds: Astrobiology Projects at NASA Ames

    NASA Technical Reports Server (NTRS)

    Guzman, Melissa

    2015-01-01

    The primary task for the summer was to procure the GCMS data from the National Space Science Data Coordinated Archive (NSSDCA) and to assess the current state of the data set for possible reanalysis opportunities. After procurement of the Viking GCMS data set and analysis of its current state, the internship focus shifted to preparing a plan for restoral and archiving of the GCMS data set. A proposal was prepared and submitted to NASA Headquarters to restore and make available the 8000 mass chromatographs that are the basic data generated by the Viking GCMS instrument. The relevance of this restoral and the methodology we propose for restoral is presented. The secondary task for the summer is to develop a thermal model for the perceived temperature of a human standing on Mars, Titan, or Europa. Traditionally, an equation called "Fanger's comfort equation" is used to measure the perceived temperature by a human in a given reference environment. However, there are limitations to this model when applied to other planets. Therefore, the approach for this project has been to derive energy balance equations from first principles and then develop a methodology for correlating "comfort" to energy balance. Using the -20 C walk-in freezer in the Space Sciences building at NASA Ames, energy loss of a human subject is measured. Energy loss for a human being on Mars, Titan and Europa are calculated from first principles. These calculations are compared to the freezer measurements, e.g. for 1 minute on Titan, a human loses as much energy as x minutes in a -20 C freezer. This gives a numerical comparison between the environments. These energy calculations are used to consider the physiological comfort of a human based on the calculated energy losses.

  8. Heterocyclic Anions of Astrobiological Interest

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Demarais, Nicholas J.; Yang, Zhibo; Snow, Theodore P.; Bierbaum, Veronica M.

    2013-12-01

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N2O, O2, CO, OCS, CO2, and SO2) and other reactive species (CS2, CH3Cl, (CH3)3CCl, and (CH3)3CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  9. [Discovery of Gullies on Mars Apparently Formed by Recent Seepage of Fluids

    NASA Technical Reports Server (NTRS)

    Knauth, L. Paul

    2004-01-01

    Most of the proposed objectives in this grant were achieved during the 3 year duration of the grant and its one year extension. In addition, shortly after initiation of the grant, the discovery of gullies on Mars apparently formed by recent seepage of fluids was announced. Together with partial support from the Astrobiology Institute, I devoted considerable effort during the grant interval into understanding the origin of these gullies because of their astrobiological significance. In addition, longstanding investigations of the environmental conditions of the Early Earth initiated years ago under previous NASA and NSF funding reached fruition and these were presented and published. This report summarizes the significant findings reported during the grant interval. Some of the work initiated during this interval has been completed under the subsequent Exobiology grant and will be reported at the appropriate time.

  10. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from center, are Martin Still, TESS Program Scientist, NASA Headquarters, and Jessie Christiansen, Staff scientist, NASA Exoplanet Science Institute, California Institute of Technology. At far left is Jason Townsend, NASA Communications. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Kenneth Stafford, Assistant Director of Robotics Engineering and Director of the Robotics Resource Center at the Worcester Polytechnic Institute (WPI), verifies the location of the target sample during the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A pair of Worcester Polytechnic Institute (WPI) students walk past a pair of team KuuKulgur's robots on the campus quad, during a final tuneup before the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  14. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the

  15. Software Sharing Enables Smarter Content Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 2004, NASA established a technology partnership with Xerox Corporation to develop high-tech knowledge management systems while providing new tools and applications that support the Vision for Space Exploration. In return, NASA provides research and development assistance to Xerox to progress its product line. The first result of the technology partnership was a new system called the NX Knowledge Network (based on Xerox DocuShare CPX). Created specifically for NASA's purposes, this system combines Netmark-practical database content management software created by the Intelligent Systems Division of NASA's Ames Research Center-with complementary software from Xerox's global research centers and DocuShare. NX Knowledge Network was tested at the NASA Astrobiology Institute, and is widely used for document management at Ames, Langley Research Center, within the Mission Operations Directorate at Johnson Space Center, and at the Jet Propulsion Laboratory, for mission-related tasks.

  16. The 1982 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Barfield, B. F. (Editor); Kent, M. I. (Editor); Dozier, J. (Editor); Karr, G. (Editor)

    1982-01-01

    A NASA/ASEE Summer Faculty Fellowship Research Program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA, to enrich and refresh the research and teaching activities of participants' institutions, and to contribute to the research objectives of the NASA Centers.

  17. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  18. NASA-OAI Collaborative Aerospace Research and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2003-01-01

    During the summer of 2003, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). The objectives of CFP are: (1) to further the professional knowledge of qualified engineering and science faculty, (2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of Glenn. This report is intended primarily to summarize the research activities comprising the 2003 CFP Program at Glenn.

  19. NEIS (NASA Environmental Information System)

    NASA Technical Reports Server (NTRS)

    Cook, Beth

    1995-01-01

    The NASA Environmental Information System (NEIS) is a tool to support the functions of the NASA Operational Environment Team (NOET). The NEIS is designed to provide a central environmental technology resource drawing on all NASA centers' capabilities, and to support program managers who must ultimately deliver hardware compliant with performance specifications and environmental requirements. The NEIS also tracks environmental regulations, usages of materials and processes, and new technology developments. It has proven to be a useful instrument for channeling information throughout the aerospace community, NASA, other federal agencies, educational institutions, and contractors. The associated paper will discuss the dynamic databases within the NEIS, and the usefulness it provides for environmental compliance efforts.

  20. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ryan Watson, Team Mountaineers; Lucas Behrens, Team Mountaineers; Jarred Strader, Team Mountaineers; Yu Gu, Team Mountaineers; Scott Harper, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Laurie Leshin, Worcester Polytechnic Institute (WPI) President; David Miller, NASA Chief Technologist; Alexander Hypes, Team Mountaineers; Nick Ohi,Team Mountaineers; Marvin Cheng, Team Mountaineers; Sam Ortega, NASA Program Manager for Centennial Challenges; and Tanmay Mandal, Team Mountaineers;, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. NASA Guidelines for Promoting Scientific and Research Integrity

    NASA Technical Reports Server (NTRS)

    Kaminski, Amy P.; Neogi, Natasha A.

    2017-01-01

    This guidebook provides an overarching summary of existing policies, activities, and guiding principles for scientific and research integrity with which NASA's workforce and affiliates must conform. This document addresses NASA's obligations as both a research institution and as a funder of research, NASA's use of federal advisory committees, NASA's public communication of research results, and professional development of NASA's workforce. This guidebook is intended to provide a single resource for NASA researchers, NASA research program administrators and project managers, external entities who do or might receive funding from NASA for research or technical projects, evaluators of NASA research proposals, NASA advisory committee members, NASA communications specialists, and members of the general public so that they can understand NASA's commitment to and expectations for scientific and integrity across the agency.

  3. NASA/NSU Pre-Service Teacher Program Report: Narrative and Program Outcomes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The NASA/NSU Pre-Service Teacher Program seeks to address the critical role that NASA Langley Research Center and Norfolk State University, working in tandem with other institutions around the country, can play in support or pre-service teacher education. Pre-service teachers are selected from designated institutions that serve large minority populations.The program consists of a National Conference and a Summer Institute.

  4. NASA-OAI Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center at Lewis Field

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    During the summer of 2002, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA- ASEE Summer Faculty Fellowship Program, that operated for 38 years at Glenn. This year s program began officially on June 3, 2002 and continued through August 9, 2002. This report is intended primarily to summarize the research activities comprising the 2002 CFP Program at Glenn. Fifteen research summaries are included.

  5. Astrobiology and Venus exploration

    NASA Astrophysics Data System (ADS)

    Grinspoon, David H.; Bullock, Mark A.

    For hundreds of years prior to the space age, Venus was considered among the most likely homes for extraterrestrial life. Since planetary exploration began, Venus has not been considered a promising target for Astrobiological exploration. However, Venus should be central to such an exploration program for several reasons. At present Venus is the only other Earth-sized terrestrial planet that we know of, and certainly the only one we will have the opportunity to explore in the foreseeable future. Understanding the divergence of Earth and Venus is central to understanding the limits of habitability in the inner regions of habitable zones around solar-type stars. Thus Venus presents us with a unique opportunity for putting the bulk properties, evolution and ongoing geochemical processes of Earth in a wider context. Many geological and meteorological processes otherwise active only on Earth at present are currently active on Venus. Active volcanism most likely affects the climate and chemical equilibrium state of the atmosphere and surface, and maintains the global cloud cover. Further, if we think beyond the specifics of a particular chemical system required to build complexity and heredity, we can ask what general properties a planet must possess in order to be considered a possible candidate for life. The answers might include an atmosphere with signs of flagrant chemical disequilibrium and active, internally driven cycling of volatile elements between the surface, atmosphere and interior. At present, the two planets we know of which possess these characteristics are Earth and Venus. Venus almost surely once had warm, habitable oceans. The evaporation of these oceans, and subsequent escape of hydrogen, most likely resulted in an oxygenated atmosphere. The duration of this phase is poorly understood, but during this time the terrestrial planets were not isolated. Rather, due to frequent impact transport, they represented a continuous environment for early microbial

  6. Unraveling the Reaction Chemistry of Icy Ocean World Surfaces

    NASA Astrophysics Data System (ADS)

    Hudson, R.; Loeffler, M. J.; Gerakines, P.

    2017-12-01

    The diverse endogenic chemistry of ocean worlds can be divided among interior, surface, and above-surface process, with contributions from exogenic agents such as solar, cosmic, and magnetospheric radiation. Bombardment from micrometeorites to comets also can influence chemistry by both delivering new materials and altering pre-existing ones, and providing energy to drive reactions. Geological processes further complicate the chemistry by transporting materials from one environment to another. In this presentation the focus will be on some of the thermally driven and radiation-induced changes expected from icy materials, primarily covalent and ionic compounds. Low-temperature conversions of a few relatively simple molecules into ions possessing distinct infrared (IR) features will be covered, with an emphasis on such features as might be identified through either orbiting spacecraft or landers. The low-temperature degradation of a few bioorganic molecules, such as DNA nucleobases and some common amino acids, will be used as examples of the more complex, and potentially misleading, chemistry expected for icy moons of the outer solar system. This work was supported by NASA's Emerging Worlds and Outer Planets Research programs, as well as the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  7. The Co-Evolution of Life & Environment, and the Astrobiological Quest

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.

    2016-12-01

    Physicochemical and environmental conditions determine the range of possible biogeochemistries on planets and moons. Yet, the Earth shows that as soon as life took hold, it modified its environment, from the mineralogy of sediments to the global composition of the atmosphere. In their evolution, life and environment are intertwined and cannot be separated. This coevolution is one of the most fundamental concepts in astrobiology, one that is central to our understanding of what, where, and how to search for life beyond Earth. In that quest, Mars will be the first destination for planetary missions seeking biosignatures. Both Earth and Mars had shared traits during the Archean/Noachian period. However, for Mars, the impact of a different environmental evolution on the development of life and the preservation of biosignatures remains unclear. In addition to an irreversible global climate change, Mars always had greater environmental variability than Earth due to its astronomical characteristics. Biological evolution, if any, would have had to proceed in this distinct context. If parallels can be drawn, the major metabolisms supporting Earth's biogeochemical cycles had evolved early. Understanding the succession of physical and environmental processes and their combination in the first 700 million years of Mars history is, therefore, essential to envision possible metabolisms, adaptation strategies life would have required to survive changes, and the biosignatures that could still be preserved today. Ultimately, the astrobiological significance of exploring Mars is also about teaching us invaluable lessons about the uniqueness of each planetary experiment, regardless of similarities. Beyond the Solar System, this notion can be expanded to the search for earth-like exoplanets, and for what it means to search for life as we know it, simple or complex.

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  10. NASA's Postdoctoral Fellowship Programs

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.; Gelino, D. M.; Allen, R. J.; Prestwich, A. H.

    2013-01-01

    The three named fellowships --- the Einstein, Hubble and Sagan programs --- are among the most prestigious postdoctoral positions in astronomy. Their policies are closely coordinated to ensure the highest scientific quality, the broadest possible access to a diverse community of recent PhD graduates, and flexibility in completing the 3 year appointments in light of individual personal circumstances. We will discuss practical details related to "family-friendly" best practices such as no-cost extensions and the ability to transfer the host institution in response to "two body problems." We note, however, that the terms of the NASA fellowships are such that fellows become employees of their host institutions which set specific policies on issues such as parental leave. We look forward to participating in the discussion at this special session and conveying to NASA any suggestions for improving the fellowship program.

  11. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  12. New Solid-Phase IR Spectra of Solar-System Molecules: Methanol, Ethanol, and Methanethiol

    NASA Astrophysics Data System (ADS)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2017-10-01

    The presence and abundances of organic molecules in extraterrestrial environments, such as on TNOs, can be determined with infrared (IR) spectroscopy, but significant challenges exist. Reference IR spectra for organics under relevant conditions are vital for such work, yet for many compounds such data either are lacking or fragmentary. In this presentation we describe new laboratory results for methanol (CH3OH), the simplest alcohol, which has been reported to exist in planetary and interstellar ices. Our new results include near- and mid-IR spectra, band strengths, and optical constants at various ice temperatures. Moreover, the influence of H2O-ice is examined. In addition to CH3OH, we also have new results for the related cometary molecules CH3SH and CH3CH2OH. Although IR spectra of such molecules have been reported by many groups over the past 60 years, our work appears to be the first to cover densities, refractive indices, band strengths and optical constants of both the amorphous and crystalline phases. Our results are compared to earlier work, the influence of literature assumptions is explored, and possible revisions to the literature are described. Support from the following is acknowledged: (a) NASA-SSERVI's DREAM2 program, (b) the NASA Astrobiology Institute's Goddard Center for Astrobiology, and (c) a NASA-APRA award.

  13. The Alsep Data Recovery Focus Group of NASA's Solar System Exploration Research Virtual Institute

    NASA Astrophysics Data System (ADS)

    Nagihara, S.; Lewis, L. R.; Nakamura, Y.; Williams, D. R.; Taylor, P. T.; Hills, H. K.; Kiefer, W. S.; Neal, C. R.; Schmidt, G. K.

    2014-12-01

    Astronauts on Apollo 12, 14, 15, 16, and 17 deployed instruments on the Moon for 14 geophysical experiments (passive & active seismic, heat flow, magnetics, etc.) from 1969 to 1972. These instruments were called Apollo Lunar Surface Experiments Packages (ALSEPs). ALSEPs kept transmitting data to the Earth until September 1977. When the observation program ended in 1977, a large portion of these data were not delivered to the National Space Science Data Center for permanent archive. In 2010, for the purpose of searching, recovering, preserving, and analyzing the data that were not previously archived, NASA's then Lunar Science Institute formed the ALSEP Data Recovery Focus Group. The group consists of current lunar researchers and those involved in the ALSEP design and data analysis in the 1960s and 1970s. Among the data not previously archived were the 5000+ 7-track open-reel tapes that recorded raw data from all the ALSEP instruments from April 1973 to February 1976 ('ARCSAV tapes'). These tapes went missing in the decades after Apollo. One of the major achievements of the group so far is that we have found 450 ARCSAV tapes from April to June 1975 and that we are extracting data from them. There are 3 other major achievements by the group. First, we have established a web portal at the Lunar and Planetary Institute, where ~700 ALSEP-related documents, totaling ~40,000 pages, have been digitally scanned and cataloged. Researchers can search and download these documents at www.lpi.usra.edu/ lunar/ALSEP/. Second, we have been retrieving notes and reports left behind by the now deceased/retired ALSEP investigators at their home institutions. Third, we have been re-analyzing the ALSEP data using the information from the recently recovered metadata (instrument calibration data, operation logs, etc.). Efforts are ongoing to get these data permanently archived in the Planetary Data System (PDS).

  14. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. David H. Grinspoon, senior scientist at the Planetary Science Institute, speaks about working on NASA's Voyager team while serving as moderator for a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  15. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  16. Mars Analog Research and Technology Experiment (MARTE): A Simulated Mars Drilling Mission to Search for Subsurface Life at the Rio Tinto, Spain

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Lemke, Larry; Mandell, Humboldt; McKay, David; George, Jeffrey; Gomez-Alvera, Javier; Amils, Ricardo; Stevens, Todd; Miller, David

    2003-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project was selected by the new NASA ASTEP program, which supports field experiments having an equal emphasis on Astrobiology science and technology development relevant to future Astrobiology missions. MARTE will search for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River in southwestern Spain while also demonstrating technology needed to search for a subsurface biosphere on Mars. The experiment is informed by the strategy for searching for life on Mars.

  17. NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-06

    NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. AirSAR's 2004 campaign is a collaboration of many U.S. and Central American institutions and scientists, including NASA; the National Science Foundation; the Smithsonian Institution; National Geographic; Conservation International; the Organization of Tropical Studies; the Central American Commission for Environment and Development; and the Inter-American Development Bank.

  18. Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: Relevance to Astrobiology

    NASA Astrophysics Data System (ADS)

    Shapiro, Russell Scott

    2004-12-01

    Recovery of prokaryotic body fossils from methane seep carbonates such as those of the Cretaceous Tepee Buttes of Colorado serves as a model for sampling in future astrobiological missions. The fossils, found primarily at the interface between paragenetic fabrics, suggest a sharp physicochemical gradient. Evidence of these microbial fossils occurs at a variety of scales. In the field, microbialite is found as meter-scale thrombolitic zones and centimeterscale stromatolitic crusts lining voids inferred to be the sites of ancient methane seepage. Petrographic fabrics suggestive of microbialite include indistinct peloids (0.1-1 mm in diameter) and crusts of authigenic micrite. Primary evidence obtained from scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis comprises pinnate bacteria (0.3 µm in diameter and 1-1.5 µm long), sheaths (2-4 µm in diameter), coccoids (0.5-1 µm in diameter, up to 40 per cluster), and the presence of framboidal pyrite (6-8 µm in diameter). These results are in agreement with studies of other ancient and modern seeps and suggest a morphological conservatism of microbial form that can be incorporated into studies of extraterrestrial environments where it is presumed that reduced gases drive the metabolic activity of prokaryote-like organisms. Target areas that could serve as conduits for reduced gas seeps include tectonic or impact-driven faulting, zones of cryosphere melting, or other disruptions in crustal coherence. Ancient seeps, preserved as localized anomalous evaporite deposits in the sedimentary cover, could be detected by remote sensing. Astrobiology 4, 438-449.

  19. NASA Chief Technologist Speaks at Massachusetts Institute of Technology

    NASA Image and Video Library

    2018-02-15

    NASA Chief Technologist Douglas Terrier joined students, faculty and experts in Boston as part of MIT's "Better MIT Innovation Week 2018," a week-long program promoting leadership, entrepreneurship and action for a better future. During the February event, Terrier spoke about a culture of innovation at America's Space Program. (Photo: Damian Barabonkov/MIT Technique)

  20. Astrobiological Effects of Stellar Radiation in Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.

    2006-10-01

    The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.

  1. NASA's university program: Active grants and research contracts, fiscal year 1974

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Each entry includes institution and location, brief description of project, period of performance, principal investigator at institution, NASA technical officer (monitor), sponsoring NASA installation, interagency field of science or engineering classification C.A.S.E. category, grant or contract number, FY 74 obligations, cumulative obligations, and most recent RTOP coding. Entries are arranged alphabetically within state or country. Four cross indices are presented: (1) grant or contract number; (2) C.A.S.E. field or science or engineering; (3) NASA technical officer location; and (4) RTOP code.

  2. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute in Boulder, Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  3. An Astrobiological View on Sustainable Life

    NASA Astrophysics Data System (ADS)

    Naganuma, Takeshi

    2009-10-01

    Life on a global biosphere basis is substantiated in the form of organics and organisms, and defined as the intermediate forms (briefly expressed as CH2O) hovering between the reduced (CH4, methane) and (CO2, carbon dioxide) ends, different from the classical definition of life as a complex organization maintaining ordered structure and information. Both definitions consider sustenance of life meant as protection of life against chaos through an input of external energy. The CH2O-life connection is maintained as long as the supply of H and O lasts, which is in turn are provided by the splitting of the water molecule H2O. Water is split by electricity, as well-known from school-level experiments, and by solar radiation and geothermal heat on a global scale. In other words, the Sun's radiation and the Earth's heat as well as radioactivity split water to supply H and O for continued existence of life on the Earth. These photochemical, radiochemical and geothermal processes have influences on the evolution and current composition of the Earth's atmosphere, compared with those of Venus and Mars, and influences on the planetary climatology. This view of life may be applicable to the "search-for-life in space" and to sustainability assessment of astrobiological habitats.

  4. Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research I. Morphological and Anatomical Characteristics

    NASA Astrophysics Data System (ADS)

    Meeßen, J.; Sánchez, F. J.; Brandt, A.; Balzer, E.-M.; de la Torre, R.; Sancho, L. G.; de Vera, J.-P.; Ott, S.

    2013-06-01

    Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species— Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum—used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.

  5. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report outlines the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2003, the sixth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  6. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, answers a question from the audience during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  7. An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel; Sapers, Haley; Simoncini, Eugenio; Lutz, Stefanie; Alexandre, Marcelo da Rosa; Galante, Douglas

    2014-04-01

    We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.

  8. The NASA planetary biology internship experience

    NASA Technical Reports Server (NTRS)

    Hinkle, G.; Margulis, L.

    1991-01-01

    By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

  9. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Jessie Christiansen, staff scientiest, NASA Exoplaneet Science Institute, California Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  10. 2002 NASA-HU Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    DePriest, Douglas J. (Compiler); Murray, Deborah B. (Compiler); Berg, Jennifer J. (Compiler)

    2004-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering and science faculty members spend 10 weeks working with professional peers on research. NASA HQs and the American Society for Engineering Education supervise the program. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate an exchange of ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of the participants' institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program consisting of lectures and seminars relevant to the Fellows' research.

  11. NASA New England Outreach Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA New England Outreach Center in Nashua, New Hampshire was established to serve as a catalyst for heightening regional business awareness of NASA procurement, technology and commercialization opportunities. Emphasis is placed on small business participation, with the highest priority given to small disadvantaged businesses, women-owned businesses, HUBZone businesses, service disabled veteran owned businesses, and historically black colleges and universities and minority institutions. The Center assists firms and organizations to understand NASA requirements and to develop strategies to capture NASA related procurement and technology opportunities. The establishment of the NASA Outreach Center serves to stimulate business in a historically underserved area. NASA direct business awards have traditionally been highly present in the West, Midwest, South, and Southeast areas of the United States. The Center guides and assists businesses and organizations in the northeast to target opportunities within NASA and its prime contractors and capture business and technology opportunities. The Center employs an array of technology access, one-on-one meetings, seminars, site visits, and targeted conferences to acquaint Northeast firms and organizations with representatives from NASA and its prime contractors to learn about and discuss opportunities to do business and access the inventory of NASA technology. This stimulus of interaction also provides firms and organizations the opportunity to propose the use of their developed technology and ideas for current and future requirements at NASA. The Center provides a complement to the NASA Northeast Regional Technology Transfer Center in developing prospects for commercialization of NASA technology. In addition, the Center responds to local requests for assistance and NASA material and documents, and is available to address immediate concerns and needs in assessing opportunities, timely support to interact with NASA Centers on

  12. Summary data on all NASA procurement actions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summary data on all NASA procurement actions and detailed information on contracts, grants, agreements, and other procurements over $25,000 awarded by NASA during the first six months on fiscal year 1990 are presented. Areas addressed include competition in NASA awards, awards to business firms, awards to educational and other nonprofit institutions, contract for operation of Jet Propulsion Laboratory, and awards through other government agencies. Other topics covered are the U.S. geographical distribution of awards, awards placed outside the U.S., and procurement activity by installation.

  13. NASA Office of Small and Disadvantaged Business Utilization

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Office of Small and Disadvantaged Business Utilization (OSDBU) within NASA promotes the utilization of small, disadvantaged, and women-owned small businesses in compliance with Federal laws, regulations, and policies. We assist such firms in obtaining contracts and subcontracts with NASA and its prime contractors. The OSDBU also facilitates the participation of small businesses in NASA's technology transfer and commercialization activities. Our driving philosophy is to consider small businesses as our products. Our customers are the NASA Enterprises, Field Centers, Functional Staff Offices, major prime contractors, and other large institutions. We hone the skills of our products to make them marketable to our customers in the performance of NASA missions.

  14. NASA Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1999-01-01

    Managed for NASA by the California Institute of Technology, the Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system. JPL spacecraft have visited all known planets except Pluto (a Pluto mission is currently under study). In addition to its work for NASA, JPL conducts tasks for a variety of other federal agencies. In addition, JPL manages the worldwide Deep Space Network, which communicates with spacecraft and conducts scientific investigations from its complexes in California's Mojave Desert near Goldstone; near Madrid, Spain; and near Canberra, Australia. JPL employs about 6000 people.

  15. Workshop on Sustainable Infrastructure with NASA Science Mission Directorate and NASA's Office of Infrastructure Representatives

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Brown, Molly

    2009-01-01

    NASA conducted a workshop in July 2009 to bring together their experts in the climate science and climate impacts domains with their institutional stewards. The workshop serves as a pilot for how a federal agency can start to: a) understand current and future climate change risks, b) develop a list of vulnerable institutional capabilities and assets, and c) develop next steps so flexible adaptation strategies can be developed and implemented. 63 attendees (26 scientists and over 30 institutional stewards) participated in the workshop, which extended across all or part of three days.

  16. The widest practicable dissemination: The NASA technical report server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.; Binkley, Robert L.; Kellogg, Yvonne D.; Paulson, Sharon S.; Beaumont, Chris J.; Schmunk, Robert B.; Kurtz, Michael; Accomazzi, Alberto

    1995-01-01

    The search for innovative methods to distribute NASA's information lead a gross-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems as search engines. The NTRS is an inter-center effort which provides uniform access to various distributed publication servers residing on the Internet. Users have immediate desktop access to technical publications from NASA centers and institutes. This paper presents the NTRS architecture, usage metrics, and the lessons learned while implementing and maintaining the services over the initial 6-month period. The NTRS is largely constructed with freely available software running on existing hardware. NTRS builds upon existing hardware and software, and the resulting additional exposure for the body of literature contained will allow NASA to ensure that its institutional knowledge base will continue to receive the widest practicable and appropriate dissemination.

  17. Pre-Service Teachers Institute

    NASA Image and Video Library

    2008-07-18

    The Pre-Service Teachers Institute sponsored by Jackson (Miss.) State University participated in an agencywide Hubble Space Telescope workshop at Stennis Space Center on July 18. Twenty-five JSU junior education majors participated in the workshop, a site tour and educational presentations by Karma Snyder of the NASA SSC Engineering & Safety Center and Anne Peek of the NASA SSC Deputy Science & Technology Division.

  18. Pre-Service Teachers Institute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Pre-Service Teachers Institute sponsored by Jackson (Miss.) State University participated in an agencywide Hubble Space Telescope workshop at Stennis Space Center on July 18. Twenty-five JSU junior education majors participated in the workshop, a site tour and educational presentations by Karma Snyder of the NASA SSC Engineering & Safety Center and Anne Peek of the NASA SSC Deputy Science & Technology Division.

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is seen during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  1. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  2. NASA Technology Applications Team: Commercial applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  3. Simulating a Submarine Hydrothermal Vent

    NASA Image and Video Library

    2013-01-16

    A team of scientists at NASA Jet Propulsion Laboratory is testing whether organic molecules can be brewed in a simulated ocean vent. Pictured here is Lauren White, a member of the NASA Astrobiology Icy Worlds team.

  4. Thermal Desorption/GCMS Analysis of Astrobiologically Relevant Organic Materials

    NASA Technical Reports Server (NTRS)

    McDonald, Gene D.

    2001-01-01

    Several macromolecular organic materials, both biologically-derived (type II kerogen and humic acid) and abiotic in origin (Murchison insoluble organic material, cyanide polymer, and Titan tholin) were subjected to thermal desorption using a Chromatoprobe attachment on a Varian Saturn 2000 GCMS system. Each sample was heated sequentially at 100, 200, and 300 C to release volatile components. The evolved compounds were then separated on a Supelco EC-1 dimethylsilica GC column and detected by the Saturn 2000 ion trap mass spectrometer. The various types of macromolecular organic material subjected to thermal desorption produced distinctly different GCMS chromatograms at each temperature, containing fractions of both low and high chromatographic mobility. The relative amounts of detectable volatiles released at each temperature also differed, with type II kerogen and cyanide polymer containing the highest percentage of low-temperature components. In all the samples, the highest yield of released compounds occurred at 300 C. Only cyanide polymer evolved a homologous hydrocarbon series, suggesting that it is the only material among those examined that contains a truly polymeric structure. Pyrolysis/gas chromatography/mass spectrometry has been used extensively for analysis of terrestrial organic macromolecular materials, and was also part of the instrument package on the Viking landers. Thorough analysis by pyrolysis usually employs temperatures of 500 C or higher, which for in situ analyses can be problematic given spacecraft power and materials constraints. This study demonstrates that heating of organic materials of astrobiological relevance to temperatures as low as 200-300 C for short periods releases volatile components that can be analyzed by gas chromatography and mass spectrometry. Even in the absence of full pyrolysis, useful chemical information on samples can be obtained, and materials from different biological and abiological sources can be distinguished

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. A NASA-wide approach toward cost-effective, high-quality software through reuse

    NASA Technical Reports Server (NTRS)

    Scheper, Charlotte O. (Editor); Smith, Kathryn A. (Editor)

    1993-01-01

    NASA Langley Research Center sponsored the second Workshop on NASA Research in Software Reuse on May 5-6, 1992 at the Research Triangle Park, North Carolina. The workshop was hosted by the Research Triangle Institute. Participants came from the three NASA centers, four NASA contractor companies, two research institutes and the Air Force's Rome Laboratory. The purpose of the workshop was to exchange information on software reuse tool development, particularly with respect to tool needs, requirements, and effectiveness. The participants presented the software reuse activities and tools being developed and used by their individual centers and programs. These programs address a wide range of reuse issues. The group also developed a mission and goals for software reuse within NASA. This publication summarizes the presentations and the issues discussed during the workshop.

  8. NASA Earth Systems, Technology and Energy Education for Minority University and Research Education Program Promotes Climate Literacy by Engaging Students at Minority Serving Institutions in STEM

    NASA Astrophysics Data System (ADS)

    Murray, B.; Alston, E. J.; Chambers, L. H.; Bynum, A.; Montgomery, C.; Blue, S.; Kowalczak, C.; Leighton, A.; Bosman, L.

    2017-12-01

    NASA Earth Systems, Technology and Energy Education for Minority University Research & Education Program - MUREP (ESTEEM) activities enhance institutional capacity of minority serving institutions (MSIs) related to Earth System Science, Technology and energy education; in turn, increasing access of underrepresented groups to science careers and opportunities. ESTEEM is a competitive portfolio that has been providing funding to institutions across the United States for 10 years. Over that time 76 separate activities have been funded. Beginning in 2011 ESTEEM awards focused on MSIs and public-school districts with high under-represented enrollment. Today ESTEEM awards focus on American Indian/Alaska Native serving institutions (Tribal Colleges and Universities), the very communities most severely in need of ability to deal with climate adaptation and resiliency. ESTEEM engages a multi-faceted approach to address economic and cultural challenges facing MSI communities. PIs (Principal Investigators) receive support from a management team at NASA, and are supported by a larger network, the ESTEEM Cohort, which connects regularly through video calls, virtual video series and in-person meetings. The cohort acts as a collective unit to foster interconnectivity and knowledge sharing in both physical and virtual settings. ESTEEM partners with NASA's Digital Learning Network (DLNTM) in a unique non-traditional model to leverage technical expertise. DLN services over 10,000 participants each year through interactive web-based synchronous and asynchronous events. These events allow for cost effective (no travel) engagement of multiple, geographically dispersed audiences to share local experiences with one another. Events allow PIs to grow their networks, technical base, professional connections, and develop a sense of community, encouraging expansion into larger and broader interactions. Over 256 connections, beyond the 76 individual members, exist within the cohort. PIs report

  9. NASA metrology and calibration, 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Th sixteenth annual workshop of NASA's Metrology and Calibration Working Group was held April 20-22, 1993. The goals of the Working Group are to provide Agencywide standardization of individual metrology programs, where appropriate; to promote cooperation and exchange of information within NASA, with other Government agencies, and with industry; to serve as the primary Agency interface with the National Institute of Standards and Technology; and to encourage formal quality control techniques such as Measurement Assurance Programs. These proceedings contain unedited reports and presentations from the workshop and are provided for information only.

  10. Education News at NASA

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA s challenging missions provide unique opportunities for engaging and educating America s youth, the next generation of explorers. Led by Chief Education Officer Dr. Adena Williams Loston, the Agency coordinates education programs for students, faculty, and institutions in order to help inspire and motivate the scientists and engineers of the future.

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    David Miller, NASA Chief Technologist, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA Centennial Challenges Program Manager, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. Engaging Students and Teachers in Immersive Learning Experiences Alongside NASA Scientists and With Support from Institutional Partnerships

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Bleacher, L.; Glotch, T. D.; Heldmann, J. L.; Bleacher, J. E.; Young, K. E.; Selvin, B.; Firstman, R.; Lim, D. S. S.; Johnson, S. S.; Kobs-Nawotniak, S. E.; Hughes, S. S.

    2015-12-01

    The Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) teams of NASA's Solar System Exploration Research Virtual Institute conduct research that will help us more safely and effectively explore the Moon, Near Earth Asteroids, and the moons of Mars. These teams are committed to making their scientific research accessible and to using their research as a lens through which students and teachers can better understand the process of science. In partnership with the Alan Alda Center for Communicating Science at Stony Brook University, in spring of 2015 the RIS4E team offered a semester-long course on science journalism that culminated in a 10-day reporting trip to document scientific fieldwork in action during the 2015 RIS4E field campaign on the Big Island of Hawaii. Their work is showcased on ReportingRIS4E.com. The RIS4E science journalism course is helping to prepare the next generation of science journalists to accurately represent scientific research in a way that is appealing and understandable to the public. It will be repeated in 2017. Students and teachers who participate in FINESSE Spaceward Bound, a program offered in collaboration with the Idaho Space Grant Consortium, conduct science and exploration research in Craters of the Moon National Monument and Preserve. Side-by-side with NASA researchers, they hike through lava flows, operate field instruments, participate in science discussions, and contribute to scientific publications. Teachers learn about FINESSE science in the field, and bring it back to their classrooms with support from educational activities and resources. The second season of FINESSE Spaceward Bound is underway in 2015. We will provide more information about the RIS4E and FINESSE education programs and discuss the power of integrating educational programs within scientific programs, the strength institutional partnerships can

  15. The Widest Practicable Dissemination: The NASA Technical Report Server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.; Binkley, Robert L.; Kellogg, Yvonne D.; Paulson, Sharon S.; Beaumont, Chris J.; Schmunk, Robert B.; Kurtz, Michael J.; Accomazzi, Alberto

    1995-01-01

    The National Aeronautics and Space Act of 1958 established NASA and charged it to "provide for the widest practicable and appropriate dissemination of information concerning [...] its activities and the results thereof." The search for innovative methods to distribute NASA s information lead a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems as search engines. The NTRS is an inter-center effort which provides uniform access to various distributed publication servers residing on the Internet. Users have immediate desktop access to technical publications from NASA centers and institutes. The NTRS is comprised of several units, some constructed especially for inclusion in NTRS, and others that are existing NASA publication services that NTRS reuses. This paper presents the NTRS architecture, usage metrics, and the lessons learned while implementing and maintaining the services over the initial 6-month period. The NTRS is largely constructed with freely available software running on existing hardware. NTRS builds upon existing hardware and software, and the resulting additional exposure for the body of literature contained will allow NASA to ensure that its institutional knowledge base will continue to receive the widest practicable and appropriate dissemination.

  16. The widest practicable dissemination: The NASA technical report server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.; Binkley, Robert L.; Kellogg, Yvonne D.; Paulson, Sharon S.; Beaumont, Chris J.; Schmunk, Robert B.; Kurtz, Michael J.; Accomazzi, Alberto

    1995-01-01

    The National Aeronautics and Space Act of 1958 established NASA and charged it to 'provide for the widest practicable and appropriate dissemination of information concerning...its activities and the results thereof.' The search for innovative methods to distribute NASA's information lead a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems as search engines. The NTRS is an inter-center effort which provides uniform access to various distributed publication servers residing on the Internet. Users have immediate desktop access to technical publications from NASA centers and institutes. The NTRS is comprised of several units, some constructed especially for inclusion in NTRS, and others that are existing NASA publication services that NTRS reuses. This paper presents the NTRS architecture, usage metrics, and the lessons learned while implementing and maintaining the services over the initial six-month period. The NTRS is largely constructed with freely available software running on existing hardware. NTRS builds upon existing hardware and software, and the resulting additional exposure for the body of literature contained will allow NASA to ensure that its institutional knowledge base will continue to receive the widest practicable and appropriate dissemination.

  17. NASA's Universe of Learning: Engaging Learners in Discovery

    NASA Astrophysics Data System (ADS)

    Cominsky, L.; Smith, D. A.; Lestition, K.; Greene, M.; Squires, G.

    2016-12-01

    NASA's Universe of Learning is one of 27 competitively awarded education programs selected by NASA's Science Mission Directorate (SMD) to enable scientists and engineers to more effectively engage with learners of all ages. The NASA's Universe of Learning program is created through a partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University. The program will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of over 500 partners to advance the objectives of SMD's newly restructured education program. The multi-institutional team will develop and deliver a unified, consolidated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Exoplanet Exploration theme. Program elements include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; providing professional development for pre-service educators, undergraduate instructors, and informal educators; and, producing resources for special needs and underserved/underrepresented audiences. This presentation will provide an overview of the program and process for mapping discoveries to products and programs for informal, lifelong, and self-directed learning environments.

  18. NASA Chief Technologist on Panel at Massachusetts Institute of Technology

    NASA Image and Video Library

    2018-02-15

    During MIT's "Better MIT Innovation Week 2018," a group of experts discussed innovation as a critical component to and professional accomplishment. From left: Rebecca Chui, founder, RootsStudio; Reinaldo Normand, entrepreneur in residence, MIT; Douglas Terrier, NASA chief technologist; Linda Foster, chief technologist, Lockheed Martin. (Photo: Damian Barabonkov/MIT Technique)

  19. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  20. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  1. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  2. Productivity improvement and quality enhancement at NASA

    NASA Technical Reports Server (NTRS)

    Braunstein, D. R.

    1985-01-01

    NASA's Productivity Improvement and Quality Enhancement (PIQE) effort has as its objectives the encouragement of greater employee participation in management decision-making and the identification of impediments as well as opportunities for high productivity. Attempts are also made to try out novel management practices, and to evolve productivity trend analysis techniques. Every effort is made to note, reward, and diffuse successfully instituted PIQE approaches throughout the NASA-contractor organization.

  3. Tumbleweed: Wind-propelled Surficial Measurements for Astrobiology and Planetary Science

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Behar, A. E.; Jones, J. A.; Carsey, F.; Coleman, M.; Bearman, G.; Buehler, M.; Boston, P. J.; McKay, C. P.; Rothschild, L.

    2004-01-01

    Tumbleweed is a wind-propelled long-range vehicle based on well-developed and tested technology, instrumented to perform surveys Mars analog environments for habitability and suitable for a variety of missions on Mars. Tumbleweeds are light-weight and relatively inexpensive, making it very attractive for multiple deployments or piggy-backing on a larger mission. Tumbleweeds with rigid structures are also being developed for similar applications. Modeling and testing have shown that a 6 meter diameter Tumbleweed is capable of climbing 25 hills, traveling over 1 meter diameter boulders, and ranging over a thousand kilometers. Tumbleweeds have a potential payload capability of about 10 kilograms with approximately 10-20 Watts of power. Stopping for science investigations can also be accomplished using partial deflation or other braking mechanisms. Surveys for Astrobiology and other applications of tumbleweeds are shown.

  4. NASA Technology Applications Team: Commercial applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur watches as their robots attempt the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Retrievers team robot is seen as it attempts the level one challenge the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. Louisiana NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Savoie, E. Joseph

    2002-01-01

    In August, 1999, the National Aeronautics and Space Administration issued a Cooperative Agreement (CA) to the State of Louisiana, through the Louisiana Board of Regents (BOB), for the performance of scientific research and graduate fellowships under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) -- Preparation Grant. Originally constructed as a one year program, with an optional one year continuation, this federal-state partnership culminated on 14 August 2002, including a successful continuation proposal and a no cost extension. The total value of the project reached $450K in NASA funding, matched by state funds and institutional contributions. The purpose of the Preparation Grant program was to develop and nurture strong research ties between the state and NASA field centers and Enterprises, in order to prepare for the upcoming full competition for NASA EPSCoR.

  8. The radiation stability of the RNA base uracil in H2O-ice and CO2-ice: in-situ laboratory measurements with applications to comets, Europa, and Mars

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Frail, Sarah; Hudson, Reggie L.

    2017-10-01

    Planetary bodies of astrobiological interest, such as Mars, are often exposed to harsh incident radiation, which will influence the times that molecules can survive on them. Some or all of these bodies may well contain biologically-important organic molecules, some may even have supported life at some point in their history, and some may support life today. Future searches for organic molecules likely will include sampling the martian subsurface or a cometary surface sample return mission, where organics may be frozen in ices dominated by either H2O or CO2, which provide some protection from ionizing radiation.Recently, our research group has published studies of the radiation stability of amino acids, with a focus on glycine - in both undiluted form and in mixtures with H2O and CO2. Here, we present a similar study that focuses on the radiation-chemical kinetics of the RNA base uracil. We compare results for uracil decay for dilution in both H2O and CO2 ices. Moreover, we compare these new results with those for glycine. For each sample, we measured uracil’s destruction rate constant and half-life dose due to irradiation by 0.9-MeV protons. All measurements were made in situ at the temperature of irradiation using IR spectroscopy. Trends with dilution (up to ~300:1) and temperature (up to ~150 K) are considered, and results are discussed in the context of icy planetary surfaces.Acknowledgment: Our work is supported in part by the NASA Emerging Worlds Program and by the NASA Astrobiology Institute through the Goddard Center for Astrobiology.

  9. Psychrophiles and astrobiology: microbial life of frozen worlds

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    Most bodies of our Solar System are "Frozen Worlds" where the prevailing surface temperature remains at or below freezing. On Earth there are vast permanently frozen regions of permafrost, polar ice sheets, and glaciers and the deep oceans and deep-sea marine sediments have remained at 2 - 4°C for eons. Psychrophilic and psychrotrophic microbiota that inhabit these regimes provide analogs for microbial life that might inhabit ice sheets and permafrost of Mars, comets, or the ice/water interfaces or sediments deep beneath the icy crusts of Europa, Callisto, or Ganymede. Cryopreserved micro-organisms can remain viable (in a deep anabiotic state) for millions of years frozen in permafrost and ice. Psychrophilic and psychrotrophic (cold-loving) microbes can carry out metabolic processes in water films and brine, acidic, or alkaline chanels in permafrost or ice at temperatures far below 0°C. These microbes of the cryosphere help define the thermal and temporal limits of life on Earth and may provide clues to where and how to search for evidence of life elsewhere in the Cosmos. Astrobiologists at the NASA Marshall Space Flight Center have collected microbial extremophiles from the Pleistocene ice wedges and frozen thermokarst ponds from the Fox Permafrost Tunnel of Alaska. Microbes have also been isolated from samples of Magellanic Penguin guano from Patagonia; deep-sea marine muds near hydrothermal vents; snow and permafrost from Siberia, and deep ice cores, ice-bubble and cryoconite rocks of the Central Antarctic Ice Sheet. These samples have yielded microbial extremophiles representing a wide variety of anaerobic bacteria and archaea. These microbes have been isolated, cultured, characterized and analyzed by phylogenetic and genomic methods. Images were obtained by Phase Contrast, Environmental, Field Emission Scanning and Transmission Electron Microscopes to study the ultra-microstructure and elemental distribution in the composition of these micro-organisms. We

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate, speaks at the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is interviewed by a member of the media before the start of level two competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  13. Exobiology: The NASA program

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Harper, Lynn; Andersen, Dale

    1992-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life in the universe. To do this, the Exobiology Program seeks to provide a critical framework and some key research to allow NASA to bear the combined talents and capabilities of the agency and the scientific community, and the unique opportunities afforded by space exploration. To provide structure and direction to the quest for answers, the Exobiology Program has instituted a comprehensive research program divided into four elements which are being implemented at several of NASA's research centers and in the university community. These program elements correspond to the four major epochs in the evolution of living systems: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life. The overall research program is designed to trace the pathways leading from the origin of the universe through the major epochs in the story of life.

  14. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. From left are moderator Claire Saravia, NASA Communications; Paul Hertz, Astrophysics Division director, NASA Headquarters; George Ricker, TESS principal investigator, Massachusetts Institute of Technology; Padi Boyd, TESS Guest Investigator Program lead, NASA’s Goddard Space Flight Center; Stephen Rinehart, TESS Project scientist, NASA’s Goddard Space Flight Center; and Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  15. NASA Announces 2009 Astronomy and Astrophysics Fellows

    NASA Astrophysics Data System (ADS)

    2009-02-01

    WASHINGTON -- NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's post-doctoral fellowships will conduct independent research at institutions around the country. "The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers." Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009. "I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Cassiopeia A Comes Alive Across Time and Space A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include

  16. Life in ice: implications to astrobiology

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Pikuta, Elena V.

    2009-08-01

    During previous research expeditions to Siberia, Alaska and Antarctica, it was observed that glaciers and ice wedges contained bacterial cells that became motile as soon as the ice melted. This phenomenon of live bacteria in ice was first documented for microbes in ancient ice cores from Vostok, Antarctica. The first validly published species of Pleistocene bacteria alive on Earth today was Carnobacterium pleistocenium. This extremophile had remained for 32,000 years, encased in ice recently exposed in the Fox Tunnel of Alaska. These frozen bacteria began to swim as soon as the ice was thawed. Dark field microscopy studies revealed that large numbers of bacteria exhibited motility as soon as glacial ice was melted during our recent Expeditions to Alaska and Antarctica led to the conclusion that microbial life in ice was not a rare phenomenon. The ability of bacteria to remain alive while frozen in ice for long periods of time is of great significance to Astrobiology. In this paper, we describe the recent observations and advance the hypothesis that life in ice provides valuable clues to how we can more easily search for evidence of life on the Polar Caps of Mars, comets and other icy bodies of our Solar System. It is suggested that cryopanspermia may have played a far more important role in Origin of Life on Earth and the distribution of Life throughout the Cosmos and than previously thought possible.

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A team KuuKulgur Robot from Estonia is seen on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot retrieves a sample during a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team prepares their rover for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sample Return Robot Challenge staff members confer before the team Survey robots makes it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team's robot is seen during level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    Jerry Waechter of team Middleman from Dunedin, Florida, works on their robot named Ro-Bear during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Middleman is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the Intrepid Systems team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot is seen as it begins the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team Mountaineers robot is seen as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Members of the Oregon State University Mars Rover Team prepare their robot to attempt the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Stellar Automation Systems team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    All four of team KuuKulgur's robots are seen as they attempt the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Spectators watch as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team Middleman's robot, Ro-Bear, is seen as it starts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The team Mountaineers robot is seen after picking up the sample during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Two of team KuuKulgur's robots are seen as they attempt a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the University of Waterloo Robotics Team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Members of team Survey follow their robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    James Leopore, of team Fetch, from Alexandria, Virginia, speaks with judges as he prepares for the NASA 2014 Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Fetch is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot approaches the sample as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team survey robot is seen on the starting platform before begging it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Mountaineers team from West Virginia University, watches as their robot attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Team Survey's robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. Computer technologies and institutional memory

    NASA Technical Reports Server (NTRS)

    Bell, Christopher; Lachman, Roy

    1989-01-01

    NASA programs for manned space flight are in their 27th year. Scientists and engineers who worked continuously on the development of aerospace technology during that period are approaching retirement. The resulting loss to the organization will be considerable. Although this problem is general to the NASA community, the problem was explored in terms of the institutional memory and technical expertise of a single individual in the Man-Systems division. The main domain of the expert was spacecraft lighting, which became the subject area for analysis in these studies. The report starts with an analysis of the cumulative expertise and institutional memory of technical employees of organizations such as NASA. A set of solutions to this problem are examined and found inadequate. Two solutions were investigated at length: hypertext and expert systems. Illustrative examples were provided of hypertext and expert system representation of spacecraft lighting. These computer technologies can be used to ameliorate the problem of the loss of invaluable personnel.

  5. NASA/OAI Research Associates program

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1994-01-01

    The intent of this activity was the development of a cooperative program between the Ohio Aerospace Institute and the NASA Lewis Research Center with the objective of better preparing recent university graduates for careers in government aerospace research laboratories. The selected individuals were given the title of research associate. To accomplish the aims of this effort: (1) the research associates were introduced to the NASA Lewis Research Center and its mission/programs, (2) the research associates directly participated in NASA research and development programs, and (3) the research associates were given continuing educational opportunities in specialized areas. A number of individuals participated in this project during the discourse of this cooperative agreement. Attached are the research summaries of eight of the research associates. These reports give a very good picture of the research activities that were conducted by the associates.

  6. Preliminary investigation of proton and helium ion radiation effects on fluorescent dyes for use in astrobiology applications.

    PubMed

    Thompson, Daniel P; Wilson, Paul K; Sims, Mark R; Cullen, David C; Holt, John M C; Parker, David J; Smith, Mike D

    2006-04-15

    The Specific Molecular Identification of Life Experiment (SMILE) instrument (Sims et al. Planet. Space Science 2005, 53, 781-791) proposes to use specific molecular receptors for the detection of organic biomarkers on future astrobiology missions (e.g., to Mars). Such receptors will be used in assays with fluorescently labeled assay reagents. A key uncertainty of this approach is whether the fluorescent labels used in the system will survive exposure to levels of solar and galactic particle radiation encountered during a flight to Mars. Therefore, two fluorescent dyes (fluorescein and Alexa Fluor 633) have been exposed to low-energy proton and alpha radiation with total fluences comparable or exceeding that expected during an unshielded cruise to Mars. The results of these initial experiments are presented, which show that both dyes retain their fluorescent properties after irradiation. No significant alteration in the absorption and emission wavelengths or the quantum yields of the dyes with either radiation exposure was found. These results suggest other structurally similar fluorophores will likely retain their fluorescent properties after exposure to similar levels of proton and alpha radiation. However, more extensive radiation fluorophore testing is needed before their suitability for astrobiology missions to Mars can be fully confirmed.

  7. Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Owens, A.; Steffen, P. L.

    2004-12-01

    Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.

  8. The Future of the Internet in Science

    NASA Technical Reports Server (NTRS)

    Guice, Jon; Duffy, Robert

    2000-01-01

    How are scientists going to make use of the Internet several years from now? This is a case study of a leading-edge experiment in building a 'virtual institute'-- using electronic communication tools to foster collaboration among geographically dispersed scientists. Our experience suggests: Scientists will want to use web-based document management systems. There will be a demand for Internet-enabled meeting support tools. While internet videoconferencing will have limited value for scientists, webcams will be in great demand as a tool for transmitting pictures of objects and settings, rather than "talking heads." and a significant share of scientists who do fieldwork will embrace mobile voice, data and video communication tools. The setting for these findings is a research consortium called the NASA Astrobiology Institute.

  9. Life and the Universe: From Astrochemistry to Astrobiology

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2013-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the cosmos. In cold molecular clouds, the birthplace of planets and stars, interstellar atoms and molecules freeze onto extremely cold dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex organic materials delivered to habitable planets (including the primordial Earth) and their composition may be related to the origin of life. This talk will focus on the chemical evolution of these cosmic materials and their relevance to astrobiology.

  10. Selecting a landing site of astrobiological interest for Mars landers and sample return missions

    NASA Astrophysics Data System (ADS)

    Wills, D.; Monaghan, E.; Foing, B. H.

    2008-09-01

    Abstract The landscape of Mars, despite its apparent hostility to life, is riddled with geological and mineralogical signs of past or present hydrological activity. As such, it is a key target for astrobiological exploration. There are, however, many factors that will need to be considered when planning in-situ and sample return missions, if these missions are indeed to adequately exploit the science potential of this intriguing world. These will not only take into account the environment of the landing site in terms of topography and ambient atmosphere etc., but also the geochemical make up of the surface regolith, evidence of hydrological processes and various other considerations. The knowledge base in all aspects of Martian science is being added to on an almost daily basis, and the aim of this work is to combine data and studies to nominate top priority landing locations for the search for evidence of life on Mars. We report in particular on science and technical criteria and our data analysis for sites of astrobiological interest. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidences for volatiles, organics and habitability conditions). We discuss key mission objectives, and assess what sort of sites should be targeted in the light of these. We consider the accessibility of chosen locations, taking into account difficulties presented in accessing the polar regions and other regions of high altitude. We describe what additional measurements are needed, and outline the technical and scientific operations requirements of such in-situ landers and sample return missions. Approach In the first step of this study we focus on the science objectives of in-situ and sample return missions to Mars. We investigate the

  11. Research Reports: 1989 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1989-01-01

    For the twenty-fifth consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague.

  12. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Each item is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1996.

  13. The Myth, the Truth, the NASA IRB

    NASA Technical Reports Server (NTRS)

    Covington, M. D.; Flores, M. P.; Neutzler, V. P.; Schlegel, T. T.; Platts, S. H.; Lioyd, C. W.

    2017-01-01

    The purpose of the NASA Institutional Review Board (IRB) is to review research activities involving human subjects to ensure that ethical standards for the care and protection of human subjects have been met and research activities are in compliance with all pertinent federal, state and local regulations as well as NASA policies. NASA IRB's primary role is the protection of human subjects in research studies. Protection of human subjects is the shared responsibility of NASA, the IRB, and the scientific investigators. Science investigators who plan to conduct NASA-funded human research involving NASA investigators, facilities, or funds must submit and coordinate their research studies for review and approval by the NASA IRB prior to initiation. The IRB has the authority to approve, require changes in, or disapprove research involving human subjects. Better knowledge of the NASA IRB policies, procedures and guidelines should help facilitate research protocol applications and approvals. In this presentation, the myths and truths of NASA IRB policies and procedures will be discussed. We will focus on the policies that guide a protocol through the NASA IRB and the procedures that principal investigators must take to obtain required IRB approvals for their research studies. In addition, tips to help ensure a more efficient IRB review will be provided. By understanding the requirements and processes, investigators will be able to more efficiently prepare their protocols and obtain the required NASA IRB approval in a timely manner.

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Robots that will be competing in the Level one competition are seen as they sit in impound prior to the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Ahti Heinla, left, and Sulo Kallas, right, from Estonia, prepare team KuuKulgur's robot for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    A sample can be seen on the competition field as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Jascha Little of team Survey is seen as he follows the teams robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of California Santa Cruz Rover Team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team's robot is seen prior to starting it's second attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team poses for a picture with their robot following their attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The University of Waterloo Robotics Team, from Ontario, Canada, prepares their robot for the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The team from the University of Waterloo is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jim Rothrock, left, and Carrie Johnson, right, of the Wunderkammer Laboratory team pose for a picture with their robot after attempting the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jerry Waechter of team Middleman from Dunedin, Florida, speaks about his team's robot, Ro-Bear, as it makes it attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team, from Corvallis, Oregon, follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Sukanek, Peter C.

    2002-01-01

    The NASA EPSCoR project in Mississippi involved investigations into three areas of interest to NASA by researchers at the four comprehensive universities in the state. These areas involved: (1) Noninvasive Flow Measurement Techniques, (2) Spectroscopic Exhaust Plume Measurements of Hydrocarbon Fueled Rocket Engines and (3) Integration of Remote Sensing and GIS data for Flood Forecasting on the Mississippi Gulf Coast. Each study supported a need at the Stennis Space Center in Mississippi. The first two addressed needs in rocket testing, and the third, in commercial remote sensing. Students from three of the institutions worked with researchers at Stennis Space Center on the projects.

  8. First Light from Extrasolar Planets and Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  9. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  10. Physics of Granular Materials: Investigations in Support of Astrobiology

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    2002-01-01

    This publication list is submitted as a summary of the work conducted under Cooperative Agreement 1120. The goal of the 1120 research was to study granular materials within a planetary, astrophysical, and astrobiological context. This involved research on the physical, mechanical and electrostatic properties of granular systems, as well as the examination of these materials with atomic force microscopy and x-ray analysis. Instruments for analyzing said materials in planetary environments were developed, including the MECA (Mars Environment Compatibility Assessment) experiment for the MSP '01 lander, the ECHOS/MATADOR experiment for the MSP '03 lander, an ISRU experiment for the '03 lander, and MiniLEAP technology. Flight experiments for microgravity (Space Station and Shuttle) have also been developed for the study of granular materials. As expressed in the publications, work on 1120 encompassed laboratory research, theoretical modeling, field experiments, and flight experiments: a series of successful new models were developed for understanding the behavior of triboelectrostatically charged granular masses, and 4 separate instruments were selected for space flight. No inventions or patents were generated by the research under this Agreement.

  11. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars

    USGS Publications Warehouse

    Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.

  12. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    PubMed

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  13. 1992 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael; Chappell, Charles R.; Six, Frank; Karr, Gerald R.

    1992-01-01

    For the 28th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period June 1, 1992 through August 7, 1992. Operated under the auspices of the American Society for Engineering Education, the MSFC program, was well as those at other centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are the 29th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers.

  14. The NASA Constellation University Institutes Project: Thrust Chamber Assembly Virtual Institute

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Rybak, Jeffry A.; Hulka, James R.; Jones, Gregg W.; Nesman, Tomas; West, Jeffrey S.

    2006-01-01

    This paper documents key aspects of the Constellation University Institutes Project (CUIP) Thrust Chamber Assembly (TCA) Virtual Institute (VI). Specifically, the paper details the TCA VI organizational and functional aspects relative to providing support for Constellation Systems. The TCA VI vision is put forth and discussed in detail. The vision provides the objective and approach for improving thrust chamber assembly design methodologies by replacing the current empirical tools with verified and validated CFD codes. The vision also sets out ignition, performance, thermal environments and combustion stability as focus areas where application of these improved tools is required. Flow physics and a study of the Space Shuttle Main Engine development program are used to conclude that the injector is the key to robust TCA design. Requirements are set out in terms of fidelity, robustness and demonstrated accuracy of the design tool. Lack of demonstrated accuracy is noted as the most significant obstacle to realizing the potential of CFD to be widely used as an injector design tool. A hierarchical decomposition process is outlined to facilitate the validation process. A simulation readiness level tool used to gauge progress toward the goal is described. Finally, there is a description of the current efforts in each focus area. The background of each focus area is discussed. The state of the art in each focus area is noted along with the TCA VI research focus in the area. Brief highlights of work in the area are also included.

  15. NASA Worldwide Emergency Medical Assistance

    NASA Technical Reports Server (NTRS)

    Martin, George A.; Tipton, David A.; Long, Irene D.

    1997-01-01

    In an effort to maintain employee health and welfare, ensure customer satisfaction, and to deliver high quality emergency medical care when necessary to employees located overseas, NASA has instituted a new contract with International SOS Assistance INC. International SOS Assistance INC. will provide civil servants and contractors engaged in official NASA business with many services upon request during a medical or personal emergency. Through the years, International SOS Assistance INC. has developed the expertise necessary to provide medical service in all remote areas of the world. One phone call connects you to the SOS network of multilingual staff trained to help resolve travel, medical, legal, and security problems. The SOS network of critical care and aeromedical specialists operates 24 hours a day, 365 days a year from SOS Alarm Centers around the world. This exhibit illustrates the details of the NASA-International SOS Assistance INC. agreement.

  16. Volcanic Rocks As Targets For Astrobiology Missions

    NASA Astrophysics Data System (ADS)

    Banerjee, N.

    2010-12-01

    Almost two decades of study highlight the importance of terrestrial subaqueous volcanic rocks as microbial habitats, particularly in glass produced by the quenching of basaltic lava upon contact with water. On Earth, microbes rapidly begin colonizing glassy surfaces along fractures and cracks exposed to water. Microbial colonization of basaltic glass leads to enhanced alteration through production of characteristic granular and/or tubular bioalteration textures. Infilling of formerly hollow alteration textures by minerals enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggest the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend back ~3.5 billion years and is widespread in modern oceanic crust and its ancient metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  17. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Valdes, Carol (Editor); Brown, Tom (Editor)

    1993-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1993 NASA/ASEE Summer Faculty Fellowship Program at KSC. The basic common objectives of the Program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA centers. 1993 topics include wide band fiber optic communications, a prototype expert/information system for examining environmental risks of KSC activities, alternatives to premise wiring using ATM and microcellular technologies, rack insertion end effector (RIEE) automation, FTIR quantification of industrial hydraulic fluids in perchloroethylene, switch configuration for migration to optical fiber network, and more.

  18. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    NASA Technical Reports Server (NTRS)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  19. NASA Handbook for Models and Simulations: An Implementation Guide for NASA-STD-7009

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2013-01-01

    The purpose of this Handbook is to provide technical information, clarification, examples, processes, and techniques to help institute good modeling and simulation practices in the National Aeronautics and Space Administration (NASA). As a companion guide to NASA-STD- 7009, Standard for Models and Simulations, this Handbook provides a broader scope of information than may be included in a Standard and promotes good practices in the production, use, and consumption of NASA modeling and simulation products. NASA-STD-7009 specifies what a modeling and simulation activity shall or should do (in the requirements) but does not prescribe how the requirements are to be met, which varies with the specific engineering discipline, or who is responsible for complying with the requirements, which depends on the size and type of project. A guidance document, which is not constrained by the requirements of a Standard, is better suited to address these additional aspects and provide necessary clarification. This Handbook stems from the Space Shuttle Columbia Accident Investigation (2003), which called for Agency-wide improvements in the "development, documentation, and operation of models and simulations"' that subsequently elicited additional guidance from the NASA Office of the Chief Engineer to include "a standard method to assess the credibility of the models and simulations."2 General methods applicable across the broad spectrum of model and simulation (M&S) disciplines were sought to help guide the modeling and simulation processes within NASA and to provide for consistent reporting ofM&S activities and analysis results. From this, the standardized process for the M&S activity was developed. The major contents of this Handbook are the implementation details of the general M&S requirements ofNASA-STD-7009, including explanations, examples, and suggestions for improving the credibility assessment of an M&S-based analysis.

  20. Building Effective Scientist-Educator Communities of Practice: NASA's Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.

    2014-12-01

    Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).

  1. The 1993 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1993-01-01

    For the 29th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period of 6-1-93 through 8-6-93. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are in the 30th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institution; and (4) to contribute to the research objectives of the NASA centers.

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey speaks with Sample Return Robot Challenge staff members after the team's robot failed to leave the starting platform during it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of the Mountaineers team from West Virginia University celebrate after their robot returned to the starting platform after picking up the sample during a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Irwin, Louis N.; Irwin, Troy

    2002-11-01

    The lower cloud level of the Venusian atmosphere is an environmental niche that could harbor microbial life. Particularly the mode 3 particles that are enriched in this atmospheric layer are of astrobiological interest. We propose here a sample collection mission to the atmosphere of Venus and evaluate three mission options. The first option is a Stardust-type spacecraft used for sample collection, the second option is a Rotating Probe Tether System, and the third option is a Parachute Drop - Balloon Floatation System. Given the current state of technology, the result of our preliminary analysis is that the Parachute Drop - Balloon Floatation Mission is the most feasible and practical option.

  5. AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.

    2003-01-01

    The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.

  6. Establishment of a Rearing System of the Extremotolerant Tardigrade Ramazzottius varieornatus: A New Model Animal for Astrobiology

    NASA Astrophysics Data System (ADS)

    Horikawa, Daiki D.; Kunieda, Takekazu; Abe, Wataru; Watanabe, Masahiko; Nakahara, Yuichi; Yukuhiro, Fumiko; Sakashita, Tetsuya; Hamada, Nobuyuki; Wada, Seiichi; Funayama, Tomoo; Katagiri, Chihiro; Kobayashi, Yasuhiko; Higashi, Seigo

    2008-06-01

    Studies on the ability of multicellular organisms to tolerate specific environmental extremes are relatively rare compared to those of unicellular microorganisms in extreme environments. Tardigrades are extremotolerant animals that can enter an ametabolic dry state called anhydrobiosis and have high tolerance to a variety of extreme environmental conditions, particularly while in anhydrobiosis. Although tardigrades have been expected to be a potential model animal for astrobiological studies due to their excellent anhydrobiotic and extremotolerant abilities, few studies of tolerance with cultured tardigrades have been reported, possibly due to the absence of a model species that can be easily maintained under rearing conditions. We report the successful rearing of the herbivorous tardigrade, Ramazzottius varieornatus, by supplying the green alga Chlorella vulgaris as food. The life span was 35 ± 16.4 d, deposited eggs required 5.7 ± 1.1 d to hatch, and animals began to deposit eggs 9 d after hatching. The reared individuals of this species had an anhydrobiotic capacity throughout their life cycle in egg, juvenile, and adult stages. Furthermore, the reared adults in an anhydrobiotic state were tolerant of temperatures of 90°C and -196°C, and exposure to 99.8% acetonitrile or irradiation with 4000 Gy 4He ions. Based on their life history traits and tolerance to extreme stresses, R. varieornatus may be a suitable model for astrobiological studies of multicellular organisms.

  7. Coordinating Council. First Meeting: NASA/RECON database

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A Council of NASA Headquarters, American Institute of Aeronautics and Astronautics (AIAA), and the NASA Scientific and Technical Information (STI) Facility management met (1) to review and discuss issues of NASA concern, and (2) to promote new and better ways to collect and disseminate scientific and technical information. Topics mentioned for study and discussion at subsequent meetings included the pros and cons of transferring the NASA/RECON database to the commercial sector, the quality of the database, and developing ways to increase foreign acquisitions. The input systems at AIAA and the STI Facility were described. Also discussed were the proposed RECON II retrieval system, the transmittal of document orders received by the Facility and sent to AIAA, and the handling of multimedia input by the Departments of Defense and Commerce. A second meeting was scheduled for six weeks later to discuss database quality and international foreign input.

  8. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  9. Continuous Risk Management at NASA

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions. This risk management structure of functions has been taught to projects at all NASA Centers and is being successfully implemented on many projects. This presentation will give project managers the information they need to understand if risk management is to be effectively implemented on their projects at a cost they can afford.

  10. NASA 2010 Pharmacology Evidence Review

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2011-01-01

    In 2008, the Institute of Medicine reviewed NASA's Human Research Program Evidence in assessing the Pharmacology risk identified in NASA's Human Research Program Requirements Document (PRD). Since this review there was a major reorganization of the Pharmacology discipline within the HRP, as well as a re-evaluation of the Pharmacology evidence. This panel is being asked to review the latest version of the Pharmacology Evidence Report. Specifically, this panel will: (1) Appraise the descriptions of the human health-related risk in the HRP PRD. (2) Assess the relevance and comprehensiveness of the evidence in identifying potential threats to long-term space missions. (3) Assess the associated gaps in knowledge and identify additional areas for research as necessary.

  11. NASA'S Solar System Exploration Research Virtual Institute: An international approach toward bringing science and human exploration together for mutual benefit

    NASA Astrophysics Data System (ADS)

    Schmidt, Gregory

    2016-07-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and explora-tion, training the next generation of lunar scientists, and community development. The institute is a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdis-ciplinary, research-focused collaborations. Its relative-ly large domestic teams work together along with in-ternational partners in both traditional and virtual set-tings to bring disparate approaches together for mutual benefit. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. com-plement of the Institute and how it is engaging the in-ternational science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. The Institute is centered on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. It focuses on interdisciplinary, exploration-related science cen-tered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Mar-tian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environ-ments as well as science uniquely enabled from these bodies. The technical focus ranges from investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. SSERVI enhances the widening knowledgebase of planetary research by acting as a bridge between several differ-ent groups and bringing together researchers from the scientific and exploration communities, multiple disci-plines across the full range of planetary sciences, and domestic and

  12. Astrobiology, space and the future age of discovery.

    PubMed

    Blumberg, Baruch S

    2011-02-13

    Astrobiology is the study of the origins, evolution, distribution and future of life in the Universe, and specifically seeks to understand the origin of life and to test the hypothesis that life exists elsewhere than on Earth. There is a general mathematics, physics and chemistry; that is, scientific laws that obtain on Earth also do so elsewhere. Is there a general biology? Is the Universe life-rich or is Earth an isolated island of biology? Exploration in the Age of Enlightenment required the collection of data in unexplored regions and the use of induction and empiricism to derive models and natural laws. The current search for extra-terrestrial life has a similar goal, but with a much greater amount of data and with computers to help with management, correlations, pattern recognition and analysis. There are 60 active space missions, many of them aiding in the search for life. There is not a universally accepted definition of life, but there are a series of characteristics that can aid in the identification of life elsewhere. The study of locations on Earth with similarities to early Mars and other space objects could provide a model that can be used in the search for extra-terrestrial life.

  13. Overview of military technology at NASA Langley

    NASA Technical Reports Server (NTRS)

    Sawyer, Wallace C.; Jackson, Charlie M., Jr.

    1989-01-01

    The Langley Research Center began addressing major research topics pertinent to the design of military aircraft under the egis of The National Advisory Council on Aeronautics in 1917, until 1958, when it passed under the control of the newly-instituted NASA research facilities system. A historical account is presented of NASA-Langley's involvement in the experimental investigation of twin-engined jet aircraft nozzle interfairings, thrust reversers, high-efficiency supersonic cruise configurations, high-alpha aerodynamics, air-to-air combat handling qualities, wing/stores flutter suppression, and store carriage and separation characteristics.

  14. NASA flight electronics environmental stress screening survey

    NASA Technical Reports Server (NTRS)

    Marian, E. J. (Compiler)

    1983-01-01

    Data compiled by the Institute of Environmental Sciences were used to establish guidelines for identifying defective, abnormal, or marginal parts as well as manufacturing defects. These data are augmented with other available sources of similar information in conjunction with NASA centers' data and presented in a form that may be useful to all NASA centers in planning and developing effective environmental stress screens. Information relative to thermal and vibration screens as the most effective methods for surfacing latent failures in electronic equipment at the component level is considered.

  15. The role of NASA for aerospace information

    NASA Technical Reports Server (NTRS)

    Chandler, G. P., Jr.

    1980-01-01

    The NASA Scientific and Technical Information Program operations are performed by two contractor operated facilities. The NASA STI Facility, located near Baltimore, Maryland, employs about 210 people who process report literature, operate the computer complex, and provide support for software maintenance and developments. A second contractor, the Technical Information Services of the American Institute of Aeronautics and Astronautics, employs approximately 80 people in New York City and processes the open literature such as journals, magazines, and books. Features of these programs include online access via RECON, announcement services, and international document exchange.

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey, center, works on a laptop to prepare the team's robot for a demonstration run after the team's robot failed to leave the starting platform during it's attempt at the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. NASA metric transition plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA science publications have used the metric system of measurement since 1970. Although NASA has maintained a metric use policy since 1979, practical constraints have restricted actual use of metric units. In 1988, an amendment to the Metric Conversion Act of 1975 required the Federal Government to adopt the metric system except where impractical. In response to Public Law 100-418 and Executive Order 12770, NASA revised its metric use policy and developed this Metric Transition Plan. NASA's goal is to use the metric system for program development and functional support activities to the greatest practical extent by the end of 1995. The introduction of the metric system into new flight programs will determine the pace of the metric transition. Transition of institutional capabilities and support functions will be phased to enable use of the metric system in flight program development and operations. Externally oriented elements of this plan will introduce and actively support use of the metric system in education, public information, and small business programs. The plan also establishes a procedure for evaluating and approving waivers and exceptions to the required use of the metric system for new programs. Coordination with other Federal agencies and departments (through the Interagency Council on Metric Policy) and industry (directly and through professional societies and interest groups) will identify sources of external support and minimize duplication of effort.

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ken Stafford, WPI Challenge technical advisor; Colleen Shaver, WPI Challenge Manager; Ryan Watson, Team Mountaineers; Marvin Cheng, Team Mountaineers; Alexander Hypes, Team Mountaineers; Jarred Strader, Team Mountaineers; Lucas Behrens, Team Mountaineers; Yu Gu, Team Mountaineers; Nick Ohi, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Scott Harper, Team Mountaineers; Tanmay Mandal, Team Mountaineers; David Miller, NASA Chief Technologist; Sam Ortega, NASA Program Manager for Centennial Challenges, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. NASA Astrophysics EPO Community: Enhancing STEM Experience of Undergraduates

    NASA Astrophysics Data System (ADS)

    Manning, J.; Meinke, B. K.; Lawton, B.; Smith, D. A.; Bartolone, L.; Schultz, G.; NASA Astrophysics EPO Community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance the Science, Technology, Engineering, and Math (STEM) experience of undergraduates. The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to faculty at two- and four-year institutions and in offering internships and student collaboration opportunities. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the higher education community in these ways, including associated metrics and evaluation findings.

  20. Research Reports: 1986 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Speer, Fridtjof A. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)

    1986-01-01

    For the 22th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted for the summer of 1986 by the University of Alabama and Marshall Space Flight Center. The basic objectives of the program are: (1)to further the professional knowledge of qualified engineering and science faculty members; (2)to stimulate an exchange of ideas between participants and NASA; (3)to enrich and refresh the research and teaching activities of the participants' institution; and (4)to contribute to the research objectives of the NASA center. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interest and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of Fellows' reports on their research.

  1. The MINE project: Minority Involvement in NASA Engineering

    NASA Technical Reports Server (NTRS)

    Allen, H., Jr.

    1977-01-01

    The Mine Project developed by Lewis Research Center (LRC) along with Tennessee State University and Tuskegee Institute, is described. The project calls for LRC to assemble on-going NASA university affairs programs aimed at benefiting the school, its faculty, and its student body. The schools receive grants to pursue research and technology projects that are relevant to NASA's missions. Upon request from the universities, LRC furnishes instructors and lecturers. The schools have use of surplus government equipment and access to NASA research facilities for certain projects. Both the faculty and students of the universities are eligible for summer employment at LRC through special programs. The MINE Project is designed to establish a continuing active relationship of 3 to 5 years between NASA and the universities, and will afford LRC with an opportunity to increase its recruitment of minority and women employees.

  2. Institute for Computational Mechanics in Propulsion (ICOMP)

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    1999-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Glenn Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1998, the Institutes thirteenth year of operation.

  3. Institute for Computational Mechanics in Propulsion (ICOMP)

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    2001-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Glenn Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1999, the Institute's fourteenth year of operation.

  4. Institute for Computational Mechanics in Propulsion (ICOMP)

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr. (Editor); Balog, Karen (Editor); Povinelli, Louis A. (Editor)

    1998-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) was formed to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. ICOMP is operated by the Ohio Aerospace Institute (OAI) and funded via numerous cooperative agreements by the NASA Lewis Research Center in Cleveland, Ohio. This report describes the activities at ICOMP during 1997, the Institute's twelfth year of operation.

  5. The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars.

    PubMed

    Fairén, Alberto G; Dohm, James M; Rodríguez, J Alexis P; Uceda, Esther R; Kargel, Jeffrey; Soare, Richard; Cleaves, H James; Oehler, Dorothy; Schulze-Makuch, Dirk; Essefi, Elhoucine; Banks, Maria E; Komatsu, Goro; Fink, Wolfgang; Robbins, Stuart; Yan, Jianguo; Miyamoto, Hideaki; Maruyama, Shigenori; Baker, Victor R

    2016-02-01

    At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.

  6. NASA Langley Research Center outreach in astronautical education

    NASA Technical Reports Server (NTRS)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  7. The europa initiative for esa's cosmic vision: a potential european contribution to nasa's Europa mission

    NASA Astrophysics Data System (ADS)

    Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.

    2016-04-01

    The assessment of the habitability of Jupiter's icy moons is considered of high priority in the roadmaps of the main space agencies, including the decadal survey and esa's cosmic vision plan. the voyager and galileo missions indicated that europa and ganymede may meet the requirements of habitability, including deep liquid aqueous reservoirs in their interiors. indeed, they constitute different end-terms of ocean worlds, which deserve further characterization in the next decade. esa and nasa are now both planning to explore these ice moons through exciting and ambitious missions. esa selected in 2012 the juice mission mainly focused on ganymede and the jupiter system, while nasa is currently studying and implementing the europa mission. in 2015, nasa invited esa to provide a junior spacecraft to be carried on board its europa mission, opening a collaboration scheme similar to the very successful cassini-huygens approach. in order to define the best contribution that can be made to nasa's europa mission, a europa initiative has emerged in europe. its objective is to elaborate a community-based strategy for the proposition of the best possible esa contribution(s) to nasa's europa mission, as a candidate for the upcoming selection of esa's 5th medium-class mission . the science returns of the different potential contributions are analysed by six international working groups covering complementary science themes: a) magnetospheric interactions; b) exosphere, including neutrals, dust and plumes; c) geochemistry; d) geology, including expressions of exchanges between layers; e) geophysics, including characterization of liquid water distribution; f) astrobiology. each group is considering different spacecraft options in the contexts of their main scientific merits and limitations, their technical feasibility, and of their interest for the development of esa-nasa collaborations. there are five options under consideration: (1) an augmented payload to the europa mission main

  8. Atmosphere of Freedom: Sixty Years at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bugos, Glenn E.; Launius, Roger (Technical Monitor)

    2000-01-01

    Throughout Ames History, four themes prevail: a commitment to hiring the best people; cutting-edge research tools; project management that gets things done faster, better and cheaper; and outstanding research efforts that serve the scientific professions and the nation. More than any other NASA Center, Ames remains shaped by its origins in the NACA (National Advisory Committee for Aeronautics). Not that its missions remain the same. Sure, Ames still houses the world's greatest collection of wind tunnels and simulation facilities, its aerodynamicists remain among the best in the world, and pilots and engineers still come for advice on how to build better aircraft. But that is increasingly part of Ames' past. Ames people have embraced two other missions for its future. First, intelligent systems and information science will help NASA use new tools in supercomputing, networking, telepresence and robotics. Second, astrobiology will explore lore the prospects for life on Earth and beyond. Both new missions leverage Ames long-standing expertise in computation and in the life sciences, as well as its relations with the computing and biotechnology firms working in the Silicon Valley community that has sprung up around the Center. Rather than the NACA missions, it is the NACA culture that still permeates Ames. The Ames way of research management privileges the scientists and engineers working in the laboratories. They work in an atmosphere of freedom, laced with the expectation of integrity and responsibility. Ames researchers are free to define their research goals and define how they contribute to the national good. They are expected to keep their fingers on the pulse of their disciplines, to be ambitious yet frugal in organizing their efforts, and to always test their theories in the laboratory or in the field. Ames' leadership ranks, traditionally, are cultivated within this scientific community. Rather than manage and supervise these researchers, Ames leadership merely

  9. NASA's X2000 Program: An Institutional Approach to Enabling Smaller Spacecraft

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Salvo, Chris; Woerner, David

    2000-01-01

    The number of NASA science missions per year is increasing from less than one to more than six. At the same time, individual mission budgets are smaller and cannot afford their own dedicated technology developments. In response to this, NASA has formed the X2000 Program. This program, which is divided into a set of subsequent "deliveries" will provide the basic avionics, power, communications, and software capability for future science missions. X2000 First Delivery, which will be completed in early 2001, will provide a full-functioned one MRAD tolerant flight computer, power switching electronics, a highly efficient radioisotope power source, and a transponder that provides high-level services at both 8.4 GHz and 32 GHz bands. The X2000 Second Delivery, which will be completed in the 2003 time frame, will enable complete spacecraft in the 10-50 kg class. All capabilities delivered by the X2000 program will be commercialized within the US and therefore will be available for others to use. Although the immediate customers for these technologies are deep space missions, most of the capabilities being delivered are generic in nature and will be equally applicable to Earth Observation missions.

  10. Searching for Amino Acids in Meteorites and Comet Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elsila

    2010-01-01

    Chemistry plays an important role in the interdisciplinary field of astrobiology, which strives to understand the origin, distribution, and evolution of life throughout the universe. Chemical techniques are used to search for and characterize the basic ingredients for life, from the elements through simple molecules and up to the more complex compounds that may serve as the ingredients for life. The Astrobiology Analytical Laboratory at NASA Goddard uses state-of-the-art laboratory analytical instrumentation in unconventional ways to examine extraterrestrial materials and tackle some of the big questions in astrobiology. This talk will discuss some of the instrumentation and techniques used for these unique samples, as well as some of our most interesting results. The talk will present two areas of particular interest in our laboratory: (1) the search for chiral excesses in meteoritic amino acids, which may help to explain the origin of homochirality in life on Earth; and (2) the detection of amino acids and amines in material returned by NASA's Stardust mission, which rendevouzed with a cornet and brought back cometary particles to the Earth.

  11. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  12. Implementing DSpace at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Lowe, Greta

    2007-01-01

    This presentation looks at the implementation of the DSpace institutional repository system at the NASA Langley Technical Library. NASA Langley Technical Library implemented DSpace software as a replacement for the Langley Technical Report Server (LTRS). DSpace was also used to develop the Langley Technical Library Digital Repository (LTLDR). LTLDR contains archival copies of core technical reports in the aeronautics area dating back to the NACA era and other specialized collections relevant to the NASA Langley community. Extensive metadata crosswalks were created to facilitate moving data from various systems and formats to DSpace. The Dublin Core metadata screens were also customized. The OpenURL standard and Ex Libris Metalib are being used in this environment to assist our customers with either discovering full-text content or with initiating a request for the item.

  13. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. Building effective learning experiences around visualizations: NASA Eyes on the Solar System and Infiniscope

    NASA Astrophysics Data System (ADS)

    Tamer, A. J. J.; Anbar, A. D.; Elkins-Tanton, L. T.; Klug Boonstra, S.; Mead, C.; Swann, J. L.; Hunsley, D.

    2017-12-01

    Advances in scientific visualization and public access to data have transformed science outreach and communication, but have yet to realize their potential impacts in the realm of education. Computer-based learning is a clear bridge between visualization and education, but creating high-quality learning experiences that leverage existing visualizations requires close partnerships among scientists, technologists, and educators. The Infiniscope project is working to foster such partnerships in order to produce exploration-driven learning experiences around NASA SMD data and images, leveraging the principles of ETX (Education Through eXploration). The visualizations inspire curiosity, while the learning design promotes improved reasoning skills and increases understanding of space science concepts. Infiniscope includes both a web portal to host these digital learning experiences, as well as a teaching network of educators using and modifying these experiences. Our initial efforts to enable student discovery through active exploration of the concepts associated with Small Worlds, Kepler's Laws, and Exoplanets led us to develop our own visualizations at Arizona State University. Other projects focused on Astrobiology and Mars geology led us to incorporate an immersive Virtual Field Trip platform into the Infiniscope portal in support of virtual exploration of scientifically significant locations. Looking to apply ETX design practices with other visualizations, our team at Arizona State partnered with the Jet Propulsion Lab to integrate the web-based version of NASA Eyes on the Eclipse within Smart Sparrow's digital learning platform in a proof-of-concept focused on the 2017 Eclipse. This goes a step beyond the standard features of "Eyes" by wrapping guided exploration, focused on a specific learning goal into standards-aligned lesson built around the visualization, as well as its distribution through Infiniscope and it's digital teaching network. Experience from this

  15. Enhancing a Person, Enhancing a Civilization: A Research Program at the Intersection of Bioethics, Future Studies, and Astrobiology.

    PubMed

    Ćirković, Milan M

    2017-07-01

    There are manifold intriguing issues located within largely unexplored borderlands of bioethics, future studies (including global risk analysis), and astrobiology. Human enhancement has for quite some time been among the foci of bioethical debates, but the same cannot be said about its global, transgenerational, and even cosmological consequences. In recent years, discussions of posthuman and, in general terms, postbiological civilization(s) have slowly gained a measure of academic respect, in parallel with the renewed interest in the entire field of future studies and the great strides made in understanding of the origin and evolution of life and intelligence in their widest, cosmic context. These developments promise much deeper synergic answers to questions regarding the long-term future of enhancement: how far can it go? Is human enhancement a further step toward building a true postbiological civilization? Should we actively participate and help shape this process? Is the future of humanity "typical" in the same Copernican sense as our location in space and time is typical in the galaxy, and if so, can we derive important insights about the evolutionary pathways of postbiological evolution from astrobiological and Search for ExtraTerrestrial Intelligence (SETI) studies? These and similar questions could be understood as parts of a possible unifying research program attempting to connect cultural and moral evolution with what we know and understand about their cosmological and biological counterparts.

  16. Astrobiology outreach and the nature of science: the role of creativity.

    PubMed

    Fergusson, Jennifer; Oliver, Carol; Walter, Malcolm R

    2012-12-01

    There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research-related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science.

  17. Introduction to NASA Symposium on Productivity and Quality

    NASA Technical Reports Server (NTRS)

    Braunstein, David

    1984-01-01

    The discussions will concentrate on white-collar organizational issues common to large organizations. The program will address a number of management issues for improving our nation's productivity and quality, and therefore its competitive position. executives have contributed their time to share /their experience with you. In addition, the American Institute of Astronautics & Aeronautics corporate members have helped to organize the sessions. I am most grateful for this support. The NASA Administrator has set the goal for NASA to become a leader in productivity and quality.

  18. On the formation of polyacetylenes and cyanopolyacetylenes in Titan's atmosphere and their role in astrobiology.

    PubMed

    Kaiser, Ralf I; Mebel, Alexander M

    2012-08-21

    This tutorial review compiles recent experimental and theoretical studies on the formation of polyacetylenes (H(C≡C)(n)H) and cyanopolyacetylenes (H(C≡C)(n)CN) together with their methyl-substituted counterparts (CH(3)(C≡C)(n)H, CH(3)(C≡C)(n)CN) as probed under single collision conditions in crossed beam studies via the elementary reactions of ethynyl (CCH) and cyano radicals (CN) with unsaturated hydrocarbons. The role of these key reaction classes in the chemical evolution of Titan's orange-brownish haze layers is also discussed. We further comment on astrobiological implications of our findings with respect to proto-Earth and present a brief outlook on future research directions.

  19. Research reports: 1991 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1991-01-01

    The basic objectives of the programs, which are in the 28th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of their research reports for summer 1991.

  20. Loral O’Hara/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; Woods Hole Oceanographic Institution research engineer Loral O’Hara talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  1. Research reports: 1994 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Karr, Gerald R. (Editor)

    1994-01-01

    For the 30th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs, which are in the 31st year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1994.

  2. Mars for Earthlings: An Analog Approach to Mars in Undergraduate Education

    PubMed Central

    Kahmann-Robinson, Julia

    2014-01-01

    Abstract Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html. Key Words: Mars—Geology—Planetary science—Astrobiology—NASA education. Astrobiology 14, 42–49. PMID:24359289

  3. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 200 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1994.

  4. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 150 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1995.

  5. Recent Progress on Sonic Boom Research at NASA

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  6. Institute for Computational Mechanics in Propulsion (ICOMP)

    NASA Technical Reports Server (NTRS)

    Feiler, Charles E. (Editor)

    1992-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described.

  7. NASA's Hubble Spots a Relic from a Shredded Galaxy

    NASA Image and Video Library

    2017-12-08

    February 17, 2012: Astronomers using NASA's Hubble Space Telescope may have found evidence for a cluster of young, blue stars encircling HLX-1, one of the first intermediate-mass black holes ever discovered. Astronomers believe the black hole may once have been at the core of a now-disintegrated dwarf galaxy. The discovery of the black hole and the possible star cluster has important implications for understanding the evolution of supermassive black holes and galaxies To read more go to: www.nasa.gov/mission_pages/hubble/science/shredded-relic.... Credit: NASA, ESA, and S. Farrell (Sydney Institute for Astronomy, University of Sydney) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Research reports: 1987 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Cothran, Ernestine K. (Editor); Freeman, L. Michael (Editor)

    1987-01-01

    For the 23rd consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period 1 June to 7 August 1987. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA Centers, was sponsored by the Office of University Affairs, NASA Headquarters, Washington, D.C. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. This document is a compilation of Fellow's reports on their research during the Summer of 1987.

  9. EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hood, Drew; Walker, Mary; Venkateswaran, Kasthuri J.; Schuerger, Andrew C.

    2018-01-01

    When we send humans to search for life on other planets, we'll need to know what we brought with us versus what may already be there. To ensure our crewed systems meet planetary protection requirements-and to protect our science from human contamination-we'll need to assess whether microorganisms may be leaking or venting from our spacecraft. Microbial sample collection outside of a pressurized spacecraft is complicated by temperature extremes, low pressures that preclude the use of laboratory standard (wetted) swabs, and operation either in bulky spacesuits or with robotic assistance. A team at the National Aeronautics and Space Administration (NASA) recently developed a swab kit for use in collecting microbial samples from the external surfaces of crewed spacecraft, including spacesuits. The Extravehicular Activity (EVA) Swab Kit consists of a single swab tool handle and an eight-canister sample caddy. The design team minimized development cost by re-purposing a heritage Space Shuttle tile repair handle that was designed to quickly snap into different tool attachments by engaging a mating device in each end effector. This allowed the tool handle to snap onto a fresh swab end effector much like popular shaving razor handles can snap onto a disposable blade cartridge. To disengage the handle from a swab, the user performs two independent functions, which can be done with a single hand. This dual operation mitigates the risk that a swab will be inadvertently released and lost in microgravity. Each swab end effector is fitted with commercially available foam swab tips, vendor-certified to be sterile for Deoxyribonucleic Acid (DNA). A microbial filter installed in the bottom of each sample container allows the container to outgas and re-pressurize without introducing microbial contaminants to internal void spaces. Extensive ground testing, post-test handling, and sample analysis confirmed the design is able to maintain sterile conditions as the canister moves between

  10. EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hood, Drew; Walker, Mary; Venkateswaran, Kasthuri J.; Schuerger, Andrew C.

    2018-01-01

    When we send humans to search for life on other planets, we'll need to know what we brought with us versus what may already be there. To ensure our crewed systems meet planetary protection requirements-and to protect our science from human contamination-we'll need to assess whether microorganisms may be leaking or venting from our spacecraft. Microbial sample collection outside of a pressurized spacecraft is complicated by temperature extremes, low pressures that preclude the use of laboratory standard (wetted) swabs, and operation either in bulky spacesuits or with robotic assistance. Engineers at the National Aeronautics and Space Administration (NASA) recently developed a swab kit for use in collecting microbial samples from the external surfaces of crewed spacecraft, including spacesuits. The Extravehicular Activity (EVA) Swab Kit consists of a single swab tool handle and an eight-canister sample caddy. The design team minimized development cost by re-purposing a heritage Space Shuttle tile repair handle that was designed to quickly snap into different tool attachments by engaging a mating device in each attachment. This allowed the tool handle to snap onto a fresh swab attachment much like popular shaving razor handles can snap onto a disposable blade cartridge. To disengage the handle from a swab, the user performs two independent functions, which can be done with a single hand. This dual operation mitigates the risk that a swab will be inadvertently released and lost in microgravity. Each swab attachment is fitted with commercially available foam swab tips, vendor-certified to be sterile for Deoxyribonucleic Acid (DNA). A microbial filter installed in the bottom of each sample container allows the container to outgas and repressurize without introducing microbial contaminants to internal void spaces. Extensive ground testing, post-test handling, and sample analysis confirmed the design is able to maintain sterile conditions as the canister moves between

  11. The Development of NASA's Fault Management Handbook

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine

    2011-01-01

    Disciplined approach to Fault Management (FM) has not always been emphasized by projects, contributing to major schedule and cost overruns. Progress is being made on a number of fronts outside of Handbook effort: (1) Processes, Practices and Tools being developed at some Centers and Institutions (2) Management recognition . Constellation FM roles, Discovery/New Frontiers mission reviews (3) Potential Technology solutions . New approaches could avoid many current pitfalls (3a) New FM architectures, including model ]based approach integrated with NASA fs MBSE efforts (3b) NASA fs Office of the Chief Technologist: FM identified in seven of NASA fs 14 Space Technology Roadmaps . opportunity to coalesce and establish thrust area to progressively develop new FM techniques FM Handbook will help ensure that future missions do not encounter same FM ]related problems as previous missions Version 1 of the FM Handbook is a good start.

  12. Continuous Risk Management: A NASA Program Initiative

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.

  13. Research Institute for Technical Careers

    NASA Technical Reports Server (NTRS)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  14. Reevaluation of the NOAA/CMDL carbon monoxide reference scale and comparisons with CO reference gases at NASA-Langley and the Fraunhofer Institut

    NASA Technical Reports Server (NTRS)

    Novelli, P. C.; Collins, J. E., Jr.; Myers, R. C.; Sachse, G. W.; Scheel, H. E.

    1994-01-01

    The carbon monoxide (CO) reference scale created by the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) is used to quantify measurements of CO in the atmosphere, calibrate standards of other laboratories and to otherwise provide reference gases to the community measuring atmospheric CO. This reference scale was created based upon a set of primary standards prepared by gravimetric methods at CMDL and has been propagated to a set of working standards. In this paper we compare CO mixing ratios assigned to the working standards by three approaches: (1) calibration against the original gravimetric standards, (2) calibration using only working standards as the reference gas, and (3) calibration against three new gravimetric standards prepared to CMDL. The agreement between these values was typically better than 1%. The calibration histories of CMDL working standards are reviewed with respect to expected rates of CO change in the atmosphere. Using a Monte Carlo approach to simulate the effect of drifting standards on calculated mixing ratios, we conclude that the error solely associated with the maintenance of standards will limit the ability to detect small CO changes in the atmosphere. We also report results of intercalibration experiments conducted between CMDL and the Diode Laser Sensor Group (DACOM) at the NASA Langley Research Center (Hampton, Virginia), and CMDL and the Fraunhofer-Institut (Garmisch-Partenkirchen, Germany). Each laboratory calibrated several working standards for CO using their reference gases, and these results were compared to calibrations conducted by CMDL. The intercomparison of eight standards (CO concentrations between approximately 100 and approximately 165 ppb) by CMDL and NASA agreed to better than +/- 2%. The calibration of six standards (CO concentrations between approximately 50 and approximately 210 ppb) by CMDL and the Fraunhofer-Institut agreed to within +/- 2% for four

  15. Institute for Computational Mechanics in Propulsion (ICOMP)

    NASA Technical Reports Server (NTRS)

    Feiler, Charles E. (Editor)

    1994-01-01

    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the accomplishments and activities at ICOMP during 1993.

  16. The Formation of Complex Organic Compounds in Astrophysical Ices and their Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2015-01-01

    Ices in astrophysical environments are generally dominated by very simple molecules like H2O, CH3OH, CH4, NH3, CO, CO2, etc, although they likely contain PAHs as well. These molecules, particularly H2O, are of direct interest to astrobiology in-and-of themselves since they represent some of the main carriers of the biogenic elements C, H, O, and N. In addition, these compounds are present in the dense interstellar clouds in which new stars and planetary systems are formed and may play a large role in the delivery of volatiles and organics to the surfaces of new planets. However, these molecules are all far simpler than the more complex organic compounds found in living systems.

  17. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    PubMed Central

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon K.-M. R.

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  18. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1990

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1990-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are to further the professional knowledge of qualified engineering and science members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center. The study program consists of lectures and seminars on topics of interest or that are directly relevant to the research topics.

  19. NASA Lunar Dust Filtration and Separations Workshop Report

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Stocker, Dennis P.

    2009-01-01

    NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.

  20. NASA Nebraska Space Grant 5 Year Proposal

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Vlasek, Karisa; Russell, Valerie; Woods, Sara; Webb, Cindy; Schaaf, Michaela; Vlasek, Scott; Wurdeman, Melissa; Lucas, Sarah; Tegeder, Amy

    2004-01-01

    The UNO Aviation Institute Monograph Series began in 1994 as a key component of the education outreach and information transfer missions of the Aviation Institute and the NASA Nebraska Space Grant & EPSCoR Programs. The series is an outlet for aviation materials to be indexed and disseminated through an efficient medium. Publications are welcome in all aspects of aviation. Publication formats may include, but are not limited to, conference proceedings, bibliographies, research reports, manuals, technical reports, and other documents that should be archived and indexed for future reference by the aviation and world wide communities.