Sample records for nasa astronomers find

  1. NASA astronomical findings highlighted on This Week @NASA – January 8, 2016

    NASA Image and Video Library

    2016-01-08

    New NASA astrophysics findings were highlighted at the 227th American Astronomical Society meeting, Jan. 4-8 in Kissimmee, Florida. The findings, which ranged from runaway stars to a burping galaxy, were made with the help of several NASA observation instruments, including the Spitzer Space Telescope, the Wide-field Infrared Survey Explorer, the Chandra X-ray Observatory, the Nuclear Spectroscopic Telescope Array and others. Also, Next space station crew preparing for mission, Economical new era of aviation, A new level of coral reef studies and more!

  2. Night Sky Network: A partnership with NASA, the ASP and Astronomical League

    NASA Astrophysics Data System (ADS)

    Chippindale, S.; Berendsen, M.

    2003-12-01

    In 2002, the Astronomical Society of the Pacific (ASP) surveyed amateur astronomers to determine their views and experiences with public outreach. The ultimate goal was to discover methods to support amateur astronomers in their outreach efforts. The survey discovered that they are looking for ready-made, themed materials, training in astronomy content and presentation skills, mentoring, and networking to enhance their astronomy events and support their ability to do educational outreach. Acting on these results and with funding from NASA, the ASP is forming a nationwide coalition of amateur astronomy clubs whose members bring the science, technology and inspiration of NASA's missions to the general public. The program consists of three primary components: outreach materials, training, and community building. Member-based astronomy clubs will receive kits of materials on various astronomy topics to supplement and enhance their events as well as a "professional development" component that includes training on how to use the materials and tips to strengthen their individual presentation skills. The Night Sky Network web site includes public pages and a user area where success stories and challenges can be exchanged, new information downloaded, and a support area for amateur astronomers doing outreach. We are currently testing our first kit, "PlanetQuest: The Search for Another Earth", in over two dozen clubs across the country. The second kit, "Big Bang to Black Holes" is under development for NASA's Structure and Evolution of the Universe Forum through the SAO and will be beta tested over the spring and summer of 2004. Sponsored and supported by NASA-Navigator Program, NASA-SAO Education Forum, the Astronomical Society of the Pacific, and the Astronomical League.

  3. Astronomers Find Elusive Planets in Decade-Old Hubble Data

    NASA Image and Video Library

    2017-12-08

    NASA image release Oct. 6, 2011 This is an image of the star HR 8799 taken by Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in 1998. A mask within the camera (coronagraph) blocks most of the light from the star. In addition, software has been used to digitally subtract more starlight. Nevertheless, scattered light from HR 8799 dominates the image, obscuring the faint planets. Object Name: HR 8799 Image Type: Astronomical Credit: NASA, ESA, and R. Soummer (STScI) To read more go to: www.nasa.gov/mission_pages/hubble/science/elusive-planets... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Astronomers Find the First 'Wind Nebula' Around a Rare Ultra-Magnetic Neutron Star

    NASA Image and Video Library

    2017-12-08

    Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe. A neutron star is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. Each one compresses the equivalent mass of half a million Earths into a ball just 12 miles (20 kilometers) across, or about the length of New York's Manhattan Island. Neutron stars are most commonly found as pulsars, which produce radio, visible light, X-rays and gamma rays at various locations in their surrounding magnetic fields. When a pulsar spins these regions in our direction, astronomers detect pulses of emission, hence the name. Read more: go.nasa.gov/28PVUop Credit: ESA/XMM-Newton/Younes et al. 2016 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Astronomers Find Enormous Hole in the Universe

    NASA Astrophysics Data System (ADS)

    2007-08-01

    Astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies, and gas, and the mysterious, unseen "dark matter." While earlier studies have shown holes, or voids, in the large-scale structure of the Universe, this new discovery dwarfs them all. Void Illustration Hole in Universe revealed by its effect on Cosmic Microwave Background radiation. CREDIT: Bill Saxton, NRAO/AUI/NSF, NASA Click on image for page of graphics and detailed information "Not only has no one ever found a void this big, but we never even expected to find one this size," said Lawrence Rudnick of the University of Minnesota. Rudnick, along with Shea Brown and Liliya R. Williams, also of the University of Minnesota, reported their findings in a paper accepted for publication in the Astrophysical Journal. Astronomers have known for years that, on large scales, the Universe has voids largely empty of matter. However, most of these voids are much smaller than the one found by Rudnick and his colleagues. In addition, the number of discovered voids decreases as the size increases. "What we've found is not normal, based on either observational studies or on computer simulations of the large-scale evolution of the Universe," Williams said. The astronomers drew their conclusion by studying data from the NRAO VLA Sky Survey (NVSS), a project that imaged the entire sky visible to the Very Large Array (VLA) radio telescope, part of the National Science Foundation's National Radio Astronomy Observatory (NRAO). Their careful study of the NVSS data showed a remarkable drop in the number of galaxies in a region of sky in the constellation Eridanus. "We already knew there was something different about this spot in the sky," Rudnick said. The region had been dubbed the "WMAP Cold Spot," because it stood out in a map of the Cosmic Microwave Background (CMB) radiation made by the Wilkinson Microwave Anisotopy Probe (WMAP) satellite

  6. Providing comprehensive and consistent access to astronomical observatory archive data: the NASA archive model

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas; Fabbiano, Giuseppina; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; Pevunova, Olga; Imel, David; Berriman, Graham B.; Teplitz, Harry I.; Groom, Steve L.; Desai, Vandana R.; Landry, Walter

    2016-07-01

    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.

  7. Providing Comprehensive and Consistent Access to Astronomical Observatory Archive Data: The NASA Archive Model

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas; Guiseppina, Fabbiano A; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; hide

    2016-01-01

    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.

  8. NASA Hubble Finds a True Blue Planet

    NASA Image and Video Library

    2017-12-08

    This illustration shows HD 189733b, a huge gas giant that orbits very close to its host star HD 189733. The planet's atmosphere is scorching with a temperature of over 1000 degrees Celsius, and it rains glass, sideways, in howling 7000 kilometre-per-hour winds. At a distance of 63 light-years from us, this turbulent alien world is one of the nearest exoplanets to Earth that can be seen crossing the face of its star. By observing this planet before, during, and after it disappeared behind its host star during orbit, astronomers were able to deduce that HD 189733b is a deep, azure blue — reminiscent of Earth's colour as seen from space. Credit: NASA, ESA, M. Kornmesser Read more: 1.usa.gov/1dnDZPu NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting students from San Francisco Bay Area Schools Documentation Technology Branch Video communications van (code-JIT)

  10. NASA Find Clues that May Help Identify Dark Matter

    NASA Image and Video Library

    2015-03-26

    Using observations from NASA’s Hubble Space Telescope and Chandra X-ray Observatory, astronomers have found that dark matter does not slow down when colliding with itself, meaning it interacts with itself less than previously thought. Researchers say this finding narrows down the options for what this mysterious substance might be. Dark matter is an invisible matter that makes up most of the mass of the universe. Because dark matter does not reflect, absorb or emit light, it can only be traced indirectly by, such as by measuring how it warps space through gravitational lensing, during which the light from a distant source is magnified and distorted by the gravity of dark matter. Read more: 1.usa.gov/1E5LcpO Caption: Here are images of six different galaxy clusters taken with NASA's Hubble Space Telescope (blue) and Chandra X-ray Observatory (pink) in a study of how dark matter in clusters of galaxies behaves when the clusters collide. A total of 72 large cluster collisions were studied. Credit: NASA and ESA mage Credit: NASA and ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. ADF/ADC Web Tools for Browsing and Visualizing Astronomical Catalogs and NASA Astrophysics Mission Metadata

    NASA Astrophysics Data System (ADS)

    Shaya, E.; Kargatis, V.; Blackwell, J.; Borne, K.; White, R. A.; Cheung, C.

    1998-05-01

    Several new web based services have been introduced this year by the Astrophysics Data Facility (ADF) at the NASA Goddard Space Flight Center. IMPReSS is a graphical interface to astrophysics databases that presents the user with the footprints of observations of space-based missions. It also aids astronomers in retrieving these data by sending requests to distributed data archives. The VIEWER is a reader of ADC astronomical catalogs and journal tables that allows subsetting of catalogs by column choices and range selection and provides database-like search capability within each table. With it, the user can easily find the table data most appropriate for their purposes and then download either the subset table or the original table. CATSEYE is a tool that plots output tables from the VIEWER (and soon AMASE), making exploring the datasets fast and easy. Having completed the basic functionality of these systems, we are enhancing the site to provide advanced functionality. These will include: market basket storage of tables and records of VIEWER output for IMPReSS and AstroBrowse queries, non-HTML table responses to AstroBrowse type queries, general column arithmetic, modularity to allow entrance into the sequence of web pages at any point, histogram plots, navigable maps, and overplotting of catalog objects on mission footprint maps. When completed, the ADF/ADC web facilities will provide astronomical tabled data and mission retrieval information in several hyperlinked environments geared for users at any level, from the school student to the typical astronomer to the expert datamining tools at state-of-the-art data centers.

  12. Amateur Astronomers as Champions of IYA

    NASA Astrophysics Data System (ADS)

    Berendsen, M.; White, V.; Hawkins, I.; Mayo, L.; Pompea, S. M.; Sparks, R.; Day, B.; Mann, T.; Walker, C.; Fienberg, R. T.

    2008-11-01

    One of the main goals of the International Year of Astronomy 2009 (IYA2009) is to provide the public with opportunities to experience the universe through the eyepiece of a telescope. Amateur astronomers are uniquely equipped to fulfill this goal by offering their knowledge, time, and telescopes at public events in their communities. The NASA Night Sky Network (http://nightsky.jpl.nasa.gov) will be a hub for access to programs that support amateur astronomers doing such outreach during IYA2009, including a set of monthly themes with materials and activities to complement each theme. Many of the programs will be available to amateur astronomers worldwide. Among the other programs and organizations collaborating with the ASP to provide resources to amateur astronomers in their roles as informal educators during IYA2009 are: GLOBE at Night, Dark Skies Discovery Sites, NASA's LCROSS Mission, IYA's Looking through a Telescope working group, NASA's Sun-Earth Connection, and Galileoscopes.

  13. Astronomers Identify a New Mid-size Black Hole

    NASA Image and Video Library

    2017-12-08

    Nearly all black holes come in one of two sizes: stellar mass black holes that weigh up to a few dozen times the mass of our sun or supermassive black holes ranging from a million to several billion times the sun’s mass. Astronomers believe that medium-sized black holes between these two extremes exist, but evidence has been hard to come by, with roughly a half-dozen candidates described so far. A team led by astronomers at the University of Maryland and NASA’s Goddard Space Flight Center has found evidence for a new intermediate-mass black hole about 5,000 times the mass of the sun. The discovery adds one more candidate to the list of potential medium-sized black holes, while strengthening the case that these objects do exist. The team reported its findings in the September 21, 2015 online edition of Astrophysical Journal Letters. This image, taken with the European Southern Observatory’s Very Large Telescope, shows the central region of galaxy NGC1313. This galaxy is home to the ultraluminous X-ray source NCG1313X-1, which astronomers have now determined to be an intermediate-mass black hole candidate. NGC1313 is 50,000 light-years across and lies about 14 million light-years from the Milky Way in the southern constellation Reticulum. Read more: www.nasa.gov/feature/goddard/astronomers-identify-a-new-m... Image credit: European Southern Observatory #nasagoddard #blackhole #space NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Astronomers Find New Evidence for the Violent Demise of Sun-like Stars

    NASA Astrophysics Data System (ADS)

    2005-06-01

    Two astronomers have used NASA's Chandra X-ray Observatory to discover a shell of superheated gas around a dying star in the Milky Way galaxy. Joel Kastner, professor of imaging science at the Rochester Institute of Technology, and Rodolpho Montez, a graduate student in physics and astronomy at the University of Rochester, will present their results today at the American Astronomical Society meeting in Minneapolis. Their discovery shows how material ejected at two million miles per hour during the final, dying stages of sun-like stars can heat previously ejected gas to the point where it will emit X-rays. The study also offers new insight into how long the ejected gas around dying stars can persist in such a superheated state. According to Kastner, the hot gas shows up in high-resolution Chandra X-ray images of the planetary nebula NGC 40, which is located about 3,000 light years away from Earth in the direction of the constellation Cepheus. Chandra X-ray & NOAO Optical Composite of NGC 40 Chandra X-ray & NOAO Optical Composite of NGC 40 "Planetary nebulae are shells of gas ejected by dying stars," Kastner explains. "They offer astronomers a 'forecast' of what could happen to our own sun about five billion years from now - when it finally exhausts the reservoir of hydrogen gas at its core that presently provides its source of nuclear power." In his research, Montez discovered the X-ray emitting shell in NGC 40 by generating an image that uses only specific energy-selected X-rays - revealing a ring of superheated gas that lies just within the portions of the nebula that appear in optical and infrared images. "This hot bubble of gas vividly demonstrates how, as a planetary nebula forms, the gas ejection process of the central, dying star becomes increasingly energetic," Kastner notes. "Mass ejection during stellar death can result in violent collisions that can heat the ejected gas up to temperatures of more than a million degrees." The detection of X-rays from NGC

  15. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  16. 21-cm Observations with the NASA ADAS 18-meter Antenna System: Baseline Astronomical Observations and Measurements of Performance Characteristics

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.; Combs, M. S.; Kruth, J.

    2001-12-01

    Herein we report astronomical observations made with the NASA Advanced Data Acquisition System (ADAS). The NASA ADAS antenna, located at NASA Goddard Spaceflight Center's Wallops Flight Facility, Virginia, is an 18-meter X-band antenna system that has been primarily used for satellite tracking and served as the telecommunication station for the NASA IUE satellite until ca. 1997. A joint NASA-Morehead State University (MSU)-Kentucky NSF EPSCoR venture has been initiated to upgrade and relocate the antenna system to MSU's Astrophysics Laboratory where it will provide a research instrument and active laboratory for undergraduate students as well as be engaged in satellite tracking missions. As part of the relocation efforts, many systems will be upgraded including replacement of a hydrostatic azimuth bearing with a high-precision electromechanical bearing, a new servo system, and Ku-capable reflector surface. It is widely believed that there are still contributions that small aperture centimeter-wave instruments can make utilizing three primary observing strategies: 1.) longitudinal studies of RF variations in cosmic phenomena, 2.) surveys of large areas of sky, and 3.) fast reactions to transient phenomena. MSU faculty and staff along with NASA engineers re-outfitted the ADAS system with RF systems and upgraded servo controllers during the spring and summer of 2001. Empirical measurements of primary system performance characteristics were made including G/T (at S- and L bands), noise figures, pointing and tracking accuracies, and drive speeds and accelerations. Baseline astronomical observations were made with the MSU L-band receiver using a 6 MHz bandwidth centered at 1420 MHz (21-cm) and observing over a range of frequencies (up to 2.5 MHz, tunable over the 6 MHz window) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. Baseline observations of radio sources herein reported include Cygnus A, 3C 157, 3C 48 and the Andromeda

  17. Nobel Prize In Physics Awarded To Astronomer For NASA-Funded Research

    NASA Astrophysics Data System (ADS)

    2002-10-01

    Riccardo Giacconi, the "father of X-ray astronomy," has received the Nobel Prize in physics for "pioneering contributions to astrophysics," which have led to the discovery of cosmic X-ray sources. Giaconni, president of the Associated Universities Inc., in Washington, and Research Professor of Physics and Astronomy at Johns Hopkins University, Baltimore, discovered the first X-ray stars and the X-ray background in the 1960s and conceived of and led the implementation of the Uhuru and High Energy Astronomy Observatory-2 (HEAO-2) X-ray observatories in the 1970s. With funding from NASA, he also detected sources of X-rays that most astronomers now consider to contain black holes. Giacconi said that receiving the award confirms the importance of X-ray astronomy. "I think I'm one of the first to get the Nobel prize for work with NASA, so that's good for NASA and I think it's also good for the field," he said. "It's also nice for all the other people who've worked in this field. I recognize that I was never alone. I'm happy for me personally, I'm happy for my family, and I'm happy for the field and for NASA," Giacconi added. In 1976, Giacconi along with Harvey Tananbaum of the Harvard- Smithsonian Center for Astrophysics, Cambridge, Mass., submitted a proposal letter to NASA to initiate the study and design of a large X-ray telescope. In 1977 work began on the program, which was then known as the Advanced X-ray Astrophysics Facility and in 1998 renamed the Chandra X-ray Observatory. "Partnerships with universities and scientists are essential in our quest to answer the fundamental questions of the universe," said Dr. Ed Weiler, NASA Associate Administrator for Space Science, Headquarters, Washington. "Dr. Giacconi's achievements are a brilliant example of this synergy among NASA, universities and their community of scientists and students," he said. Giacconi is Principal Investigator for the ultradeep survey with Chandra - the "Chandra Deep Field South" - that has

  18. NASA's Hubble Spots a Relic from a Shredded Galaxy

    NASA Image and Video Library

    2017-12-08

    February 17, 2012: Astronomers using NASA's Hubble Space Telescope may have found evidence for a cluster of young, blue stars encircling HLX-1, one of the first intermediate-mass black holes ever discovered. Astronomers believe the black hole may once have been at the core of a now-disintegrated dwarf galaxy. The discovery of the black hole and the possible star cluster has important implications for understanding the evolution of supermassive black holes and galaxies To read more go to: www.nasa.gov/mission_pages/hubble/science/shredded-relic.... Credit: NASA, ESA, and S. Farrell (Sydney Institute for Astronomy, University of Sydney) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  20. Amateur Astronomers As Public Outreach Partners

    NASA Astrophysics Data System (ADS)

    Bennett, M. A.

    2006-08-01

    Amateur astronomers involved in public outreach represent a huge, largely untapped source of energy and enthusiasm to help astronomers reach the general public. Even though many astronomy educators already work with amateur astronomers, the potential educational impact of amateur astronomers as public outreach ambassadors remains largely unrealized. Surveys and other work by the ASP in the US show that more than 20% of astronomy club members routinely participate in public engagement and educational events, such as public star parties, classroom visits, work with youth and community groups, etc. Amateur astronomers who participate in public outreach events are knowledgeable about astronomy and passionate about sharing their hobby with other people. They are very willing to work with astronomers and astronomy educators. They want useful materials, support, and training. In the USA, the ASP operates "The Night Sky Network," (funded by NASA). We have developed specialized materials and training, tested by and used by amateur astronomers. This project works with nearly 200 local astronomy clubs in 50 states to help them conduct more effective public outreach events. It has resulted in nearly 3,600 outreach events (reaching nearly 300,000 people) in just two years. In this presentation we examine key success factors, lessons learned, and suggest how astronomers outside the US can recruit and work with "outreach amateur astronomers" in their own countries.

  1. Astronomers Find Rare Beast by New Means

    NASA Astrophysics Data System (ADS)

    2010-01-01

    For the first time, astronomers have found a supernova explosion with properties similar to a gamma-ray burst, but without seeing any gamma rays from it. The discovery, using the National Science Foundation's Very Large Array (VLA) radio telescope, promises, the scientists say, to point the way toward locating many more examples of these mysterious explosions. "We think that radio observations will soon be a more powerful tool for finding this kind of supernova in the nearby Universe than gamma-ray satellites," said Alicia Soderberg, of the Harvard-Smithsonian Center for Astrophysics. The telltale clue came when the radio observations showed material expelled from the supernova explosion, dubbed SN2009bb, at speeds approaching that of light. This characterized the supernova, first seen last March, as the type thought to produce one kind of gamma-ray burst. "It is remarkable that very low-energy radiation, radio waves, can signal a very high-energy event," said Roger Chevalier of the University of Virginia. When the nuclear fusion reactions at the cores of very massive stars no longer can provide the energy needed to hold the core up against the weight of the rest of the star, the core collapses catastrophically into a superdense neutron star or black hole. The rest of the star's material is blasted into space in a supernova explosion. For the past decade or so, astronomers have identified one particular type of such a "core-collapse supernova" as the cause of one kind of gamma-ray burst. Not all supernovae of this type, however, produce gamma-ray bursts. "Only about one out of a hundred do this," according to Soderberg. In the more-common type of such a supernova, the explosion blasts the star's material outward in a roughly-spherical pattern at speeds that, while fast, are only about 3 percent of the speed of light. In the supernovae that produce gamma-ray bursts, some, but not all, of the ejected material is accelerated to nearly the speed of light. The superfast

  2. A Workshop on High Energy Astrophysical for Amateur Astronomers

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Mattei, J. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Amateur astronomers are, in general, an enthusiastic and dynamic group of individuals who can help greatly in astronomy public outreach and education programs. In the U.S., they outnumber professional astronomers by over a factor of ten. Over eighty amateur astronomers from all over the U.S. and abroad attended a unique workshop in Huntsville, Alabama in April of this year. Most attendees were provided with travel grants under the condition that they disseminate knowledge gained at the workshop to civic groups, astronomy clubs and science teacher groups in their home communities. Twelve lecturers were given over two days, primarily by active high-energy researchers from NASA-MSFC and NASA-GSFC. Funding for the workshop was provided by a variety of NASA-sponsored projects, offices within OSS and private funding sources. The workshop attendees were selected by the AAVSO, which also administered the funding for the workshop. This high-leverage educational and public outreach program was deemed to be highly successful and bodes well for similar, future workshops. Many of the participants have already begun to give public talks on HEA and GRBs.

  3. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  4. Infrared Astronomical Satellite View of the Sky

    NASA Image and Video Library

    2009-11-03

    Nearly the entire sky, as seen in infrared wavelengths and projected at one-half degree resolution, is shown in this image, assembled from six months of data from the NASA Infrared Astronomical Satellite, or IRAS.

  5. A Graduate Seminar on Astronomical Citizenship at Indiana University

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Durisen, Richard H.

    A series of graduate seminars on the activities of professional astronomers in the astronomical community was held at Indiana University during the spring 2002 semester. The seminars covered such topics as the role of professional societies, scholarly publishing, teaching, public outreach, the NSF and NASA, and the federal research budget. The goal of the series was first to inform our students about the many aspects of being a professional astronomer that are not covered in their normal coursework, and second, to foster in our students an appreciation of the value of service to the community.

  6. Astronomical Data and Information Visualization

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa A.

    2010-01-01

    As the size and complexity of data sets increases, the need to "see" them more clearly increases as well. In the past, many scientists saw "fancy" data and information visualization as necessary for "outreach," but not for research. In this talk, I wlll demonstrate, using specific examples, why more and more scientists--not just astronomers--are coming to rely upon the development of new visualization strategies not just to present their data, but to understand it. Principal examples will be drawn from the "Astronomical Medicine" project at Harvard's Initiative in Innovative Computing, and from the "Seamless Astronomy" effort, which is co-sponsored by the VAO (NASA/NSF) and Microsoft Research.

  7. Astronomers Find World with Thick, Inhospitable Atmosphere and an Icy Heart

    NASA Astrophysics Data System (ADS)

    2009-12-01

    is a planet orbiting a star other than the Sun. [2] The star GJ1214 is five times smaller than our Sun and intrinsically three hundred times less bright. [3] Corot-7b is the smallest and fastest-orbiting exoplanet known and has a density quite similar to the Earth's, suggesting a solid, rocky world. Discovered by the CoRoT satellite as a transiting object, its true nature was revealed by HARPS (eso0933). [4] The MEarth project uses an armada of eight small telescopes each with a diameter of 40 cm, located on top of Mount Hopkins, Arizona, USA. MEarth looks for stars that change brightness. The goal is to find a planet that crosses in front of, or transits, its star. During such a mini-eclipse, the planet blocks a small portion of the star's light, making it dimmer. NASA's Kepler mission also uses transits to look for Earth-sized planets orbiting Sun-like stars. However, such systems dim by only one part in ten thousand. The higher precision required to detect the drop means that such worlds can only be found from space. In contrast, a super-Earth transiting a small, red dwarf star yields a greater proportional decrease in brightness and a stronger signal that is detectable from the ground. More information This research was presented in a paper appearing this week in Nature ("A Super-Earth Transiting a Nearby Low-Mass Star", by David Charbonneau et al.). The team is composed of David Charbonneau, Zachory K. Berta, Jonathan Irwin, Christopher J. Burke, Philip Nutzman, Lars Buchhave, David W. Latham, Ruth A. Murray-Clay, Matthew J. Holman, and Emilio E. Falco (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), Christophe Lovis, Stephane Udry, Didier Queloz, Francesco Pepe, and Michel Mayor (Observatoire de l'Université de Genève, Switzerland), Xavier Bonfils, Xavier Delfosse, and Thierry Forveille (University Joseph Fourier - Grenoble 1/CNRS, LOAG, Grenoble, France), and Joshua N. Winn (Kavli Institute for Astrophysics and Space Research, MIT, Cambridge

  8. SAO/NASA joint investigation of astronomical viewing quality at Mount Hopkins Observatory: 1969-1971

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Bufton, J. L.; Hogan, D.; Kurtenbach, D.; Goodwin, K.

    1974-01-01

    Quantitative measurements of the astronomical seeing conditions have been made with a stellar-image monitor system at the Mt. Hopkins Observatory in Arizona. The results of this joint SAO-NASA experiment indicate that for a 15-cm-diameter telescope, image motion is typically 1 arcsec or less and that intensity fluctuations due to scintillation have a coefficient of irradiance variance of less than 0.12 on the average. Correlations between seeing quality and local meteorological conditions were investigated. Local temperature fluctuations and temperature gradients were found to be indicators of image-motion conditions, while high-altitude-wind conditions were shown to be somewhat correlated with scintillation-spectrum bandwidth. The theoretical basis for the relationship of atmospheric turbulence to optical effects is discussed in some detail, along with a description of the equipment used in the experiment. General site-testing comments and applications of the seeing-test results are also included.

  9. Astronomers Discover Dizzying Spin of the Milky Way Galaxy’s “Halo”

    NASA Image and Video Library

    2017-12-08

    Our Milky Way galaxy and its small companions are surrounded by a giant halo of million-degree gas (seen in blue in this artists' rendition) that is only visible to X-ray telescopes in space. University of Michigan astronomers discovered that this massive hot halo spins in the same direction as the Milky Way disk and at a comparable speed. Read more: go.nasa.gov/29VgLdK Credit: NASA/CXC/M.Weiss/Ohio State/A Gupta et al NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Astronomers Find the First 'Wind Nebula' Around a Rare Ultra-Magnetic Neutron Star

    NASA Image and Video Library

    2016-06-21

    Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe. A neutron star is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. Each one compresses the equivalent mass of half a million Earths into a ball just 12 miles (20 kilometers) across, or about the length of New York's Manhattan Island. Neutron stars are most commonly found as pulsars, which produce radio, visible light, X-rays and gamma rays at various locations in their surrounding magnetic fields. When a pulsar spins these regions in our direction, astronomers detect pulses of emission, hence the name. Credit: ESA/XMM-Newton/Younes et al. 2016

  11. "Movie Star" Acting Strangely, Radio Astronomers Find

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Astronomers have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to make the first-ever time-lapse "movie" showing details of gas motions around a star other than our Sun. The study, the largest observational project yet undertaken using Very Long Baseline Interferometry, has produced surprising results that indicate scientists do not fully understand stellar atmospheres. The "movie" shows that the atmosphere of a pulsating star more than 1,000 light-years away continues to expand during a part of the star's pulsation period in which astronomers expected it to start contracting. Philip Diamond and Athol Kemball, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, announced their findings at the American Astronomical Society's meeting in Austin, TX, today. "The continued expansion we're seeing contradicts current theoretical models for how these stars work," Diamond said. "The models have assumed spherical symmetry in the star's atmosphere, and our movie shows that this is not the case. Such models suggest that a shock wave passes outward from the star. Once it's passed, then the atmosphere should begin to contract because of the star's gravity. We've long passed that point and the contraction has not begun." The time-lapse images show that the gas motions are not uniform around the star. Most of the motion is that of gas moving directly outward from the star's surface. However, in about one-fourth of the ring, there are peculiar motions that do not fit this pattern. The scientists speculate that the rate of mass loss may not be the same from all parts of the star's surface. "A similar star behaved as predicted when studied a few years ago, so we're left to wonder what's different about this one," Diamond said. "Right now, we think that different rates of mass loss in the two stars may be the cause of the difference. This star is losing mass at 100 times the rate of the star in the earlier study." "This

  12. Thomas Kuhn's Influence on Astronomers.

    ERIC Educational Resources Information Center

    Shipman, Harry L.

    2000-01-01

    Surveys the astronomical community on their familiarity with the work of Thomas Kuhn. Finds that for some astronomers, Kuhn's thought resonated well with their picture of how science is done and provided perspectives on their scientific careers. (Author/CCM)

  13. Astronomical Prospecting of Asteroid Resources

    NASA Astrophysics Data System (ADS)

    Elvis, M.

    2017-09-01

    To make asteroid mining profitable will require professional astronomers using some of the largest telescopes on Earth to make precision measurements. This "astronomical prospecting" information is cheaper to obtain than flying even one or two spacecraft and will drastically cut the number of space probes that have to be sent to find an ore-bearing rock in space. Astronomical prospecting could make the business case for asteroid mining a solid one.

  14. The Astronomical Photographic Data Archive

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Barker, T.; Castelaz, M.

    2010-01-01

    Pisgah Astronomical Research Institute is the home of the Astronomical Photographic Data Archive (APDA), a national effort to preserve, archive, and digitize astronomical photographic plate collections. APDA was formed in 2007 and presently holds more than 100,000 plates and films from more than a dozen observatory collections. While the photographic data pre-dates modern observational data taken with electronic instruments, it is nevertheless of extremely high quality. When one considers 100,000 plates and films in the APDA collection, some with 100's or 1000's of objects per plate, and plates taken over 100 years the value of the data in APDA becomes apparent. In addition to the astronomical photographic data collections, APDA also possesses two high precision glass plate measuring machines, GAMMA I and GAMMA II that were built for NASA and the Space Telescope Science Institute. The measuring machines were used by a team of scientists under the leadership of the late Dr. Barry Lasker to develop the Guide Star Catalog and Digitized Sky Survey that guide and direct the Hubble Space Telescope. We will describe the current set of collections, plans for the measuring machines, and the efforts that have been made to assure preservation of plate collections.

  15. Education and Outreach with the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Eisenhamer, B.; Raddick, M. J.; Mattson, B. J.; Harris, J.

    2012-01-01

    The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. Many future missions will also be incorporated into the VAO tools when they launch. The Education and Public Outreach (E/PO) program for the VAO is led by the Space Telescope Science Institute in collaboration with the HEASARC E/PO program and Johns Hopkins University. VAO E/PO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public, formal education, and informal education communities. Our E/PO efforts will be structured to provide uniform access to VAO information, enabling educational opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that many VO programs have built powerful tools for E/PO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. We are building partnerships with Microsoft, Zooniverse, and NASA's Night Sky Network to leverage the communities and tools that already exist to meet the needs of our audiences. Our formal education program is standards-based and aims to give teachers the tools to use real astronomical data to teach the STEM subjects. To determine which tools the VAO will incorporate into the formal education program, needs assessments will be conducted with educators across the U.S.

  16. Recent Activity at the Astronomical Photographic Data Archive

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Barker, T.

    2011-01-01

    The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 300 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 100,000 photographic plates and film collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, that were built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. We will present the status of GAMMA II and the recent donations of astronomical plates and current research projects.

  17. FITSManager: Management of Personal Astronomical Data

    NASA Astrophysics Data System (ADS)

    Cui, Chenzhou; Fan, Dongwei; Zhao, Yongheng; Kembhavi, Ajit; He, Boliang; Cao, Zihuang; Li, Jian; Nandrekar, Deoyani

    2011-07-01

    With the increase of personal storage capacity, it is easy to find hundreds to thousands of FITS files in the personal computer of an astrophysicist. Because Flexible Image Transport System (FITS) is a professional data format initiated by astronomers and used mainly in the small community, data management toolkits for FITS files are very few. Astronomers need a powerful tool to help them manage their local astronomical data. Although Virtual Observatory (VO) is a network oriented astronomical research environment, its applications and related technologies provide useful solutions to enhance the management and utilization of astronomical data hosted in an astronomer's personal computer. FITSManager is such a tool to provide astronomers an efficient management and utilization of their local data, bringing VO to astronomers in a seamless and transparent way. FITSManager provides fruitful functions for FITS file management, like thumbnail, preview, type dependent icons, header keyword indexing and search, collaborated working with other tools and online services, and so on. The development of the FITSManager is an effort to fill the gap between management and analysis of astronomical data.

  18. NASA's Chandra Finds Black Holes Are "Green"

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  19. A new astronomical dating of Odysseus return to Ithaca.

    NASA Astrophysics Data System (ADS)

    Papamarinopoulos, St. P.; Preka-Papadema, P.; Antonopoulos, P.; Mitropetrou, H.; Tsironi, A.; Mitropetros, P.

    The annular solar eclipse, of 30 October 1207 B.C. (Julian Day-JD 1280869), calculated by NASA together with the analysis of the weather's and the environment's description (long nights, plants, animals and peoples' habits) and the astronomical data (guiding constellations and Venus in the east horizon) mentioned by Homer in the epic, constitute an autumn return of Odysseus to Ithaca five days before the above characterized day. The latter offers a precise astronomical dating of the event and dates the legendary Trojan War's end as well.

  20. The astronomical data base and retrieval system at NASA

    NASA Technical Reports Server (NTRS)

    Mead, J. M.; Nagy, T. A.; Hill, R. S.; Warren, W. H., Jr.

    1982-01-01

    More than 250 machine-readable catalogs of stars and extended celestial objects are now available at the NASA/Goddard Space Flight Center (GSFC) as the result of over a decade of catalog acquisition, verification and documentation. Retrieval programs are described which permit the user to obtain from a remote terminal bibliographical listings for stars; to find all celestial objects from a given list that are within a defined angular separation from each object in another list; to plot celestial objects on overlays for sky survey plate areas; and to search selected catalogs for objects by criteria of position, identification number, magnitude or spectral type.

  1. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  2. NASA Advisory Council: Fact-Finding Session

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron; Martin, Franklin D.; Craig, Mark K.; Duke, Michael B.

    1992-01-01

    The principal agenda item for this fact-finding meeting of the NASA Advisory Council was NASA's preliminary planning of options to implement the President's initiative for establishing a base on the Moon and launching a human expedition to Mars. NASA's presentation (1) reviewed the key elements in the President's speech of July 20, 1989, summoning the Nation to launch a new exploration initiative to the Moon and Mars; (2) outlined five candidate options analyzed in terms of schedule and scale of effort (for a return to the Moon and for a voyage to Mars); (3) outlined tentative robotic mission milestones for both a 'vigorous deployment' option and a 'paced deployment' option; (4) reviewed Earth-to-orbit delivery requirements for a lunar heavy-lift launch vehicle, the National Space Transportation System, and a Mars heavy-lift launch vehicle; (5) summarized the associated Space Station Freedom requirements; (6) outlined the technology as well as human factors requirements for the candidate options; and (7) summarized the themes and approaches that could be employed for the science aspects of a national Moon/Mars exploration program.

  3. NASA Telescopes Help Discover Surprisingly Young Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release April 12, 2011 Astronomers have uncovered one of the youngest galaxies in the distant universe, with stars that formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The finding addresses questions about when the first galaxies arose, and how the early universe evolved. NASA's Hubble Space Telescope was the first to spot the newfound galaxy. Detailed observations from the W.M. Keck Observatory on Mauna Kea in Hawaii revealed the observed light dates to when the universe was only 950 million years old; the universe formed about 13.7 billion years ago. Infrared data from both Hubble and NASA's Spitzer Space Telescope revealed the galaxy's stars are quite mature, having formed when the universe was just a toddler at 200 million years old. The galaxy's image is being magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear 11 times brighter. This phenomenon is called gravitational lensing. Hubble imaged the lensing galaxy Abell 383 with the Wide Field Camera 3 and the Advanced Camera for Surveys in November 2010 through March 2011. Credit: NASA, ESA, J. Richard (Center for Astronomical Research/Observatory of Lyon, France), and J.-P. Kneib (Astrophysical Laboratory of Marseille, France) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  4. Astronomers Set a New Galaxy Distance Record

    NASA Image and Video Library

    2015-05-06

    This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Read more: www.nasa.gov/feature/goddard/astronomers-set-a-new-galaxy... Credits: NASA, ESA, P. Oesch (Yale U.) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. NASA's Hubble Finds Life is Too Fast, Too Furious for This Runaway Galaxy

    NASA Image and Video Library

    2014-03-05

    This image combines NASA/ESA Hubble Space Telescope observations with data from the Chandra X-ray Observatory. As well as the electric blue ram pressure stripping streaks seen emanating from ESO 137-001, a giant gas stream can be seen extending towards the bottom of the frame, only visible in the X-ray part of the spectrum. Credit: NASA, ESA, CXC The spiral galaxy ESO 137-001 looks like a dandelion caught in a breeze in this new Hubble Space Telescope image. The galaxy is zooming toward the upper right of this image, in between other galaxies in the Norma cluster located over 200 million light-years away. The road is harsh: intergalactic gas in the Norma cluster is sparse, but so hot at 180 million degrees Fahrenheit that it glows in X-rays. The spiral plows through the seething intra-cluster gas so rapidly – at nearly 4.5 million miles per hour — that much of its own gas is caught and torn away. Astronomers call this "ram pressure stripping." The galaxy’s stars remain intact due to the binding force of their gravity. Tattered threads of gas, the blue jellyfish-tendrils trailing ESO 137-001 in the image, illustrate the process. Ram pressure has strung this gas away from its home in the spiral galaxy and out over intergalactic space. Once there, these strips of gas have erupted with young, massive stars, which are pumping out light in vivid blues and ultraviolet. The brown, smoky region near the center of the spiral is being pushed in a similar manner, although in this case it is small dust particles, and not gas, that are being dragged backwards by the intra-cluster medium. Read more here: 1.usa.gov/P0HSFh NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us

  6. The Networks and Services of the Astronomical Society of the Pacific

    NASA Astrophysics Data System (ADS)

    Manning, J. G.; Fraknoi, A.; Gibbs, M. G.; Gurton, S.; Hurst, A.; Berendesen, M.; Deans, P.; White, V.

    2008-11-01

    Founded in 1889, the Astronomical Society of the Pacific (ASP) is an international organization dedicated to advancing science literacy through engagement in astronomy. Its programs, many with sponsorship from the National Science Foundation, NASA, and astronomical institutions around the world, are particularly designed to assist those who work to improve the public understanding of science. In recent years, the ASP has been expanding the impact of its diverse projects through a variety of networks and services.

  7. Astronomical Software Directory Service

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Payne, Harry; Hayes, Jeffrey

    1997-01-01

    With the support of NASA's Astrophysics Data Program (NRA 92-OSSA-15), we have developed the Astronomical Software Directory Service (ASDS): a distributed, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URLs indexed for full-text searching. Users are performing about 400 searches per month. A new aspect of our service is the inclusion of telescope and instrumentation manuals, which prompted us to change the name to the Astronomical Software and Documentation Service. ASDS was originally conceived to serve two purposes: to provide a useful Internet service in an area of expertise of the investigators (astronomical software), and as a research project to investigate various architectures for searching through a set of documents distributed across the Internet. Two of the co-investigators were then installing and maintaining astronomical software as their primary job responsibility. We felt that a service which incorporated our experience in this area would be more useful than a straightforward listing of software packages. The original concept was for a service based on the client/server model, which would function as a directory/referral service rather than as an archive. For performing the searches, we began our investigation with a decision to evaluate the Isite software from the Center for Networked Information Discovery and Retrieval (CNIDR). This software was intended as a replacement for Wide-Area Information Service (WAIS), a client/server technology for performing full-text searches through a set of documents. Isite had some additional features that we considered attractive, and we enjoyed the cooperation of the Isite developers, who were happy to have ASDS as a demonstration project. We ended up staying with the software throughout the project, making modifications to take advantage of new features as they came along, as well as

  8. Developing a NASA strategy for the verification of large space telescope observatories

    NASA Astrophysics Data System (ADS)

    Crooke, Julie A.; Gunderson, Johanna A.; Hagopian, John G.; Levine, Marie

    2006-06-01

    In July 2005, the Office of Program Analysis and Evaluation (PA&E) at NASA Headquarters was directed to develop a strategy for verification of the performance of large space telescope observatories, which occurs predominantly in a thermal vacuum test facility. A mission model of the expected astronomical observatory missions over the next 20 years was identified along with performance, facility and resource requirements. Ground testing versus alternatives was analyzed to determine the pros, cons and break points in the verification process. Existing facilities and their capabilities were examined across NASA, industry and other government agencies as well as the future demand for these facilities across NASA's Mission Directorates. Options were developed to meet the full suite of mission verification requirements, and performance, cost, risk and other analyses were performed. Findings and recommendations from the study were presented to the NASA Administrator and the NASA Strategic Management Council (SMC) in February 2006. This paper details the analysis, results, and findings from this study.

  9. Astronomical Symbolism in Australian Aboriginal Rock Art

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Hamacher, Duane W.

    2011-05-01

    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  10. Preliminary design study of astronomical detector cooling system

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.

  11. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  12. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Astronomy Data Centre, Canadian

    2014-01-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  13. Astronomers Take the Measure of Dark Matter in the universe

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Using NASA's Chandra X-ray Observatory, astronomers have obtained their most accurate determination to date of the amount of dark matter in galaxy clusters, the most massive objects in the universe. The results provide an important step towards a precise measurement of the total matter density of the universe. These results were presented today by Steven W. Allen of the Institute of Astronomy in Cambridge, UK at a press conference at the `Two Years of Science with Chandra' symposium in Washington, DC. Allen and his colleagues Robert W. Schmidt and Andrew C. Fabian at the Institute of Astronomy observed a carefully chosen sample of five of the largest clusters of galaxies known, whose distances range from 1.5 to 4 billion light years. The team made temperature maps of the hot multimillion-degree gas that fills the clusters. "The temperature maps can be used to determine the mass needed to prevent the hot gas from escaping the clusters" explained Allen. "We found that the stars in the galaxies and hot gas together contribute only about 13 percent of the mass. The rest must be in the form of dark matter." The nature of the dark matter is not known, but most astronomers think that it is in the form of an as yet unknown type of elementary particle that contributes to gravity through its mass but otherwise interacts weakly with normal matter. These dark matter particles are often called WIMPs, an acronym for `weakly interacting massive particles'. Clusters of galaxies are vast concentrations of galaxies, hot gas and dark matter spanning millions of light years, held together by gravity. Because of their size, clusters of galaxies are thought to provide a fair sample of the proportion of dark matter in the universe as a whole. "The implication of our results is that we live in a low-density universe" said Allen. "The total mass-density is only about thirty percent of that needed to stop the universe from expanding forever." The result reinforces recent findings from

  14. NASA's Hubble Captures the Beating Heart of the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    astronomers in 1054 A.D. The nebula, bright enough to be visible in amateur telescopes, is located 6,500 light-years away in the constellation Taurus. Credits: NASA and ESA, Acknowledgment: J. Hester (ASU) and M. Weisskopf (NASA/MSFC) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Astronomers Surprised to Find Elongated Radio-Emitting Region At Center of Milky Way

    NASA Astrophysics Data System (ADS)

    1998-12-01

    For the first time, astronomers have determined the intrinsic size and shape of the highly charged region of radio emission surrounding what most scientists believe to be a supermassive black hole at the center of our own Milky Way Galaxy. The new evidence may force theorists to revise their ideas about how material behaves in the vicinity of black holes. Using the National Science Foundation's Very Long Baseline Array (VLBA) of radio telescopes, an international team of astronomers from the United States and Taiwan studied the area generally thought to mark the Galactic center. This object, known as Sgr A*, and commonly called "Sagittarius A-star," is some 26,000 light years from Earth in the constellation of Sagittarius. Instead of finding something symmetrical, as expected, the researchers observed an odd, cigar-shaped area of radio emission. "If placed in our Solar System at the Sun's location, it would extend beyond Mars," says K. Y. Lo of the Academia Sinica Institute of Astronomy and Astrophysics in Taipei and leader of the research team. "But it would be only a quarter of that distance wide." The VLBA data support the current hypothesis that the central object has a mass about 2.5 million times that of the Sun. The researchers think Sgr A* may be an extremely energetic inner region of ionized gas accreting onto a supermassive black hole. "However, none of the competing models for a black hole can completely explain both the small size and asymmetrical shape of Sgr A* we have observed," says Jun-Hui Zhao, a member of the team from the Harvard-Smithsonian Center for Astrophysics. "The models would have to be changed to include some other mechanism such as a jet or wind to help explain the VLBA data." The nature of Sgr A* has been a long-standing puzzle in astronomy since its discovery in 1974 by Bruce Balick and Bob Brown. Since then, there have been many theories about the structure and emission mechanism of Sgr A*, but, in the past few years, astronomers

  16. How I Became an Astronomer

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    2001-01-01

    Life as an astronomer has taken me to view eclipses of the Sun from the Gaspe' Peninsula to the Pacific Ocean and the China and Coral Seas, and to observe the stars at observatories across the USA and as far south as Chile. I've also enjoyed working with NASA's telescopes in space, including the Hubble Space Telescope and the International Ultraviolet Explorer. It seems funny to reflect that it all began in the Sixth Grade by a fluke - the consequence of a hoax letter whose author I never identified.

  17. NASA Rocket Experiment Finds the Universe Brighter Than We Thought

    NASA Image and Video Library

    2017-12-08

    A NASA sounding rocket experiment has detected a surprising surplus of infrared light in the dark space between galaxies, a diffuse cosmic glow as bright as all known galaxies combined. The glow is thought to be from orphaned stars flung out of galaxies. The findings redefine what scientists think of as galaxies. Galaxies may not have a set boundary of stars, but instead stretch out to great distances, forming a vast, interconnected sea of stars. Observations from the Cosmic Infrared Background Experiment, or CIBER, are helping settle a debate on whether this background infrared light in the universe, previously detected by NASA’s Spitzer Space Telescope, comes from these streams of stripped stars too distant to be seen individually, or alternatively from the first galaxies to form in the universe. This is a time-lapse photograph of the Cosmic Infrared Background Experiment (CIBER) rocket launch, taken from NASA's Wallops Flight Facility in Virginia in 2013. The image is from the last of four launches. Read more: www.nasa.gov/press/2014/november/nasa-rocket-experiment-f... Image Credit: T. Arai/University of Tokyo NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. NRAO Astronomer Honored by American Astronomical Society

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Dr. Scott Ransom, an astronomer at the National Radio Astronomy Observatory (NRAO), received the American Astronomical Society's (AAS) Helen B. Warner Prize on January 11, at the society's meeting in Seattle, Washington. The prize is awarded annually for "a significant contribution to observational or theoretical astronomy during the five years preceding the award." Presented by AAS President Debra Elmegreen, the prize recognized Ransom "for his astrophysical insight and innovative technical leadership enabling the discovery of exotic, millisecond and young pulsars and their application for tests of fundamental physics." "Scott has made landmark contributions to our understanding of pulsars and to using them as elegant tools for investigating important areas of fundamental physics. We are very proud that his scientific colleagues have recognized his efforts with this prize," said NRAO Director Fred K.Y. Lo. A staff astronomer at the NRAO since 2004, Ransom has led efforts using the National Science Foundation's Green Bank Telescope and other facilities to study pulsars and use them to make advances in areas of frontier astrophysics such as gravitational waves and particle physics. In 2010, he was on a team that discovered the most massive pulsar yet known, a finding that had implications for the composition of pulsars and details of nuclear physics, gravitational waves, and gamma-ray bursts. Ransom also is a leader in efforts to find and analyze rapidly-rotating millisecond pulsars to make the first direct detection of the gravitational waves predicted by Albert Einstein. In other work, he has advanced observational capabilities for finding millisecond pulsars in globular clusters of stars and investigated how millisecond pulsars are formed. A graduate of the United States Military Academy at West Point, NY, Ransom served as an artillery officer in the U.S. Army. After leaving the Army, he earned a Ph.D. at Harvard University in 2001, and was a postdoctoral fellow

  19. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Lawton, Brandon L.; Gurton, Suzanne; Smith, Denise Anne; Schultz, Gregory; Astrophysics Community, NASA

    2015-08-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of the current generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov and specifically from http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.The presentation will describe the collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists

  20. Celescope catalog of ultraviolet stellar observations. Magnetic tape version. [Orbiting Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Davis, R. J.; Deutschman, W. A.; Haramundanis, K. L.

    1973-01-01

    Observational results obtained by the celescope experiment during the first 16 months of operation of NASA's Orbiting Astronomical Observatory are presented. Results of the stellar observations are listed along with selected ground-based information obtained from the available literature.

  1. Blind Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  2. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Lawton, Brandon; Berendsen, Marni; Gurton, Suzanne; Smith, Denise A.; NASA SMD Astrophysics E/PO Community, The

    2014-06-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of a new generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov.The presenter will share the Forum-led Collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, students and the public.

  3. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance

  4. NASA Space Telescopes See Weather Patterns in Brown Dwarf

    NASA Image and Video Library

    2017-12-08

    JANUARY 8, 2013: Astronomers using NASA's Hubble and Spitzer space telescopes have probed the stormy atmosphere of a brown dwarf named 2MASSJ22282889-431026, creating the most detailed "weather map" yet for this class of cool, star-like orbs. The forecast shows wind-driven, planet-sized clouds enshrouding these strange worlds. Brown dwarfs form out of condensing gas, as stars do, but lack the mass to fuse atoms and produce energy. Instead, these objects, which some call failed stars, are more similar to gas planets with their complex, varied atmospheres. The new research is a stepping stone toward a better understanding not only brown dwarfs, but also of the atmospheres of planets beyond our solar system. Hubble and Spitzer simultaneously watched the brown dwarf as its light varied in time, brightening and dimming about every 90 minutes as the body rotated. Astronomers found the timing of this change in brightness depended on whether they looked using different wavelengths of infrared light. The variations are the result of different layers or patches of material swirling around in the brown dwarf in windy storms as large as Earth itself. Spitzer and Hubble see different atmospheric layers because certain infrared wavelengths are blocked by vapors of water and methane high up, while other infrared wavelengths emerge from much deeper layers. Daniel Apai, the principal investigator of the research from the University of Arizona, Tucson, presented the results at the American Astronomical Society meeting on January 8 in Long Beach, Calif. A study describing the results, led by Esther Buenzli, also of the University of Arizona, is published in the Astrophysical Journal Letters. For more information about this study, visit www.nasa.gov/spitzer . NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA

  5. NASA's Hubble Sees A New Supernova Remnant Light Up

    NASA Image and Video Library

    2011-06-10

    NASA image release June 10, 2011 Astronomers using NASA's Hubble Space Telescope are witnessing the unprecedented transition of a supernova to a supernova remnant, where light from an exploding star in a neighboring galaxy, the Large Magellanic Cloud, reached Earth in February 1987. Named Supernova 1987A, it was the closest supernova explosion witnessed in almost 400 years. The supernova's close proximity to Earth has allowed astronomers to study it in detail as it evolves. Now, the supernova debris, which has faded over the years, is brightening. This means that a different power source has begun to light the debris. The debris of SN 1987A is beginning to impact the surrounding ring, creating powerful shock waves that generate X-rays observed with NASA's Chandra X-ray Observatory. Those X-rays are illuminating the supernova debris and shock heating is making it glow in visible light. The results are being reported in the June 9, 2011, issue of the journal Nature by a team including Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics (CfA), who leads a long-term study of SN 1987A with Hubble. Since its launch in 1990, the Hubble telescope has provided a continuous record of the changes in SN 1987A. Credit: NASA, ESA, and P. Challis (Harvard-Smithsonian Center for Astrophysics) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  6. Infrared Fourier spectrometer for laboratory use and for astronomical studies from aircraft and ground-based telescopes

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.

    1975-01-01

    A portable, versatile, IR Fourier spectrometer is described that provides 0.5 per cm spectral resolution in the 0.87-5.6-micron region. This spectrometer is employed in a varied program of astronomical observations from ground-based telescopes and from the NASA 91.5-cm airborne IR telescope. A number of spectral results are presented to illustrate the performance of this spectrometer in astronomical applications.

  7. The NASA/IPAC Teacher Archive Research Program (NITARP): Lessons Learned

    NASA Astrophysics Data System (ADS)

    Rebull, Luisa M.; Gorjian, Varoujan; Squires, Gordon K.

    2017-01-01

    NITARP, the NASA/IPAC Teacher Archive Research Program, gets teachers involved in authentic astronomical research. We partner small groups of educators with a professional astronomer mentor for a year-long original research project. The teams echo the entire research process, from writing a proposal, to doing the research, to presenting the results at an American Astronomical Society (AAS) meeting. The program runs from January through January. Applications are available annually in May and are due in September. The educators’ experiences color their teaching for years to come, influencing hundreds of students per teacher. In support of other teams planning programs similar to NITARP, in this poster we present our top lessons learned from running NITARP for more than 10 years. Support is provided for NITARP by the NASA ADP program.

  8. How did the Supreme Court ruling on DOMA affect astronomers?

    NASA Astrophysics Data System (ADS)

    Rigby, Jane R.; The AAS Working Group on LGBTIQ Equality

    2014-01-01

    In June 2013, the United States Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA) was unconstitutional. Section 3 had barred the federal government from recognizing same-sex marriages. The decision in United States v. Windsor, made headlines around the world, and particularly affected astronomers, since astronomers in the US are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In this poster, we highlight some of the real-world ways that the Windsor case has affected US astronomers and our profession. Bi-national couples can now apply for green cards granting permanent residency. Scientists who work for the federal government, including NASA and the NSF, can now obtain health insurance for a same-sex spouse. From taxes to death benefits, health insurance to daycare, immigration to ethics laws, the end of S3 of DOMA has had profoundly improved the lives of US scientists who are lesbian, gay, bisexual, or transgender (LGBT). Here we, highlight several real-world examples of how DOMA's demise has improved the lives and careers of US astronomer.

  9. The la Plata Astronomical Data Center

    NASA Astrophysics Data System (ADS)

    Marraco, H. G.

    1990-11-01

    RESUMEN. El Centro de Datos Astron6micos tiene su sede en la Facuitad de Ciencias Astron6micas y Geofisicas d la Universidad Nacional de La Plata y funciona por convenio entre esta facultad y el Centre des Stellaires de la Universite' Louis Pasteur en Estrasburgo (CDS), Francia. La finalidad de este centro es la de proveer a los astr6nomos del area con copias de los alrededor de 500 acumulados y/o preparados por el CDS a la vez que promover la producci6n y/o acumulaci6n de en el rea. Para la realizaci6n de esta tarea se cuenta con el apoyo del Centro Superior para el Procesamiento de la Informaci6n (CESPI) de la UNLP cuyos equipos se describen. Las tareas que se estan realizando incluyen la distribuci6n de SIMBAD a los astr6nomos argentinos y se efectuan ensayos de distribuci6n en linea de CD-ROM TEST DISK del Astronomical Data Center (ADC) de la NASA que contiene los 31 mas solicitados por los astr6nomos de todo el mundo. ABSTRACl The La Plata Astronomical Data Center operates by an agreement between the Facultad de Ciencias Astron6micas y Geofisicas at La Plata University and the Centre des Donnees Stellaires of Louis Pasteur University at Strasbourg (CDS), France. The purpose of the Center is to provide to the area astronomers with copies of the catalogs they need amongst those stored and/or prepared at CDS. At the same time the center will act of the astronomical data produced within its area. K words: DATA ANALYSIS

  10. Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

    NASA Image and Video Library

    2017-12-08

    Caption: Glowing a dark magenta, the newly discovered exoplanet GJ 504b weighs in with about four times Jupiter's mass, making it the lowest-mass planet ever directly imaged around a star like the sun. Credit: NASA/Goddard/S. Wiessinger Using infrared data from the Subaru Telescope in Hawaii, an international team of astronomers has imaged a giant planet around the bright star GJ 504. Several times the mass of Jupiter and similar in size, the new world, dubbed GJ 504b, is the lowest-mass planet ever detected around a star like the sun using direct imaging techniques. "If we could travel to this giant planet, we would see a world still glowing from the heat of its formation with a color reminiscent of a dark cherry blossom, a dull magenta," said Michael McElwain, a member of the discovery team at NASA's Goddard Space Flight Center in Greenbelt, Md. "Our near-infrared camera reveals that its color is much more blue than other imaged planets, which may indicate that its atmosphere has fewer clouds." Read more: 1.usa.gov/15Ba6fI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Astronomers and the Media: What Reporters Expect

    NASA Astrophysics Data System (ADS)

    Siedgfried, Tom; Witze, Alexandra

    2006-01-01

    Journalists writing about astronomy bring varying levels of knowledge to the task. Most rely on astronomers for help. To be most helpful, astronomers should familiarize themselves with the practices and needs of journalists and learn effective methods for presenting astronomy via news releases, interviews and news conferences. In all aspects of communicating with the media, the ability to express technical findings in plain language is essential.

  12. Wisconsin's Role in the First Orbiting Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Code, A.

    2005-12-01

    The Orbiting Astronomical Observatory (OAO-II) launched on December 7, 1968, was the first optical observatory to be operated above the earth's atmosphere. It contained two major instruments, the Smithsonian Celescope and the Wisconsin Experiment Package (WEP), composed of ultraviolet photometers and spectrometers. In 1957 the Soviet "Sputnik" Satellite started the race to space. The National Academy of Science circulated a letter drafted by Lloyd Berkner soliciting suggestions for scientific payloads for a 100 lb satellite. The University of Wisconsin was one of the organizations that responded with a proposal for an ultraviolet photometer. Shortly afterwards when NASA came into existence Wisconsin was one of those that received funding for a study of a 100 lb UV photometric telescope. By the time our preliminary design was completed NASA had developed a plan for an astronomical platform to support all varieties of experiments requiring pointing, power and command and data capability and payload weights over 1000 lbs. To adapt to this new dimension we clustered our telescopes and shared the volume with the four telescope of the Smithsonian Celescope. Celescope would look out one end of the spacecraft and the Wisconsin Experiment Package WEP would look out the other end. Since no one had ever done this before both NASA and ourselves had a lot to learn. One feature of our design was redundancy. The clustering contributed to this approach but there was both hardware and software redundancy throughout. This paper will describe elements of the origin of WEP, it's fabrication, operation and scientific yield

  13. Sociological profile of astronomers in Spain.

    NASA Astrophysics Data System (ADS)

    de Ussel, J. I.; Trinidad, A.; Ruíz, D.; Battaner, E.; Delgado, A. J.; Rodríguez-Espinosa, J. M.; Salvador-Solé, E.; Torrelles, J. M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of astronomy in Spain in comparison with that of other European countries.

  14. Sociological Profile of Astronomers in Spain

    NASA Astrophysics Data System (ADS)

    Iglesias de Ussel, Julio; Trinidad, Antonio; Ruiz, Diego; Battaner, Eduardo; Delgado, Antonio J.; Rodriguez-Espinosa, José M.; Salvador-Solé, Eduard; Torrelles, José M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of Astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish Astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of Astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines Astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of Astronomy in Spain in comparison with that of other European countries.

  15. Plans for future on-line access to the historical astronomical literature through the Astrophysics Data System.

    NASA Astrophysics Data System (ADS)

    Eichhorn, G.; Kurtz, M. J.; Coletti, D.

    1997-09-01

    The NASA Astrophysics Data System provides access to about 1 million abstracts and 50,000 journal articles. This service is funded by NASA and is accessible world-wide through the World Wide Web free without restrictions at: http://adswww.harvard.edu We currently have on-line journals starting with 1975. We plan to extend the coverage for the journals and also include scans from observatory publications in our database. Eventually we plan to provide access to scans of the complete journal literature and as much observatory literature as possible. In order to accomplish this, we have started discussions with the preservation group at the Harvard University Library. Harvard University Library, together with the Library at the Center for Astrophysics is in the process of microfilming their collection of observatory publications. We are working together with this project to prepare for scanning the microfilms and make these scans available through the ADS. We are also collecting older journals and preparing them for scanning. We already have the Monthly Notices of the Royal Astronomical Society in hand from Volume 1, and have been promised a large part of the Astronomische Nachrichten prior to 1945. We will start scanning these volumes soon. All volumes that can be fed automatically through the scanning machine should be scanned and put on-line within the next 6 - 12 months. In order to scan volumes that are too brittle, we need additional funding. We hope to obtain additional funding to cover such scanning for 1998. In order to cover more of the astronomical literature, we need donations of astronomical literature. We have a web page that lists the volumes that we need so we can scan them. If you have any of these journals (or other astronomical literature), please contact us. the web page is at: http://adshome.harvard.edu/pubs/missing_journals.html We would appreciate any contributions, even smaller sets, since it will be more and more difficult to find complete sets.

  16. NASA's Universe of Learning: The Integral Role of Research Astronomers and Other Subject Matter Experts

    NASA Astrophysics Data System (ADS)

    Lee, Janice; Universe of Learning Team

    2018-01-01

    Astronomy seeks to understand the workings of the Universe on its largest scales, and to answer fundamental questions about the story of our origins. The science of astronomy thus naturally lends itself to informal education and public outreach activities, as it broadly captures the human imagination. There are at least three overall goals for investment of resources in Astronomy E/PO: to interest students in pursuing STEM education and careers; to develop Astronomy as context for teaching more basic physical and computer science in service of US National Education Goals; to help motivate continued public support of federally funded Astronomy research and technology development. Providing a full spectrum of opportunities for the public to learn about recent Astronomy discoveries is key to achieving these societal goals. Thus, the E/PO professional community must have an understanding of recent scientific/technological results, and engage with the researchers who are creating new knowledge to explicate that knowledge to the public. It stands to reason that researchers (or “subject matter experts, SMEs”) must be involved in and remain connected to the E/PO endeavor. In this talk, I will describe how research astronomers and other SMEs play an integral role in a full range of informal education programming developed by the NASA Universe of Learning collaboration, and opportunities to get involved.

  17. He2-90'S APPEARANCE DECEIVES ASTRONOMERS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them. The Hubble picture at top shows a centrally bright object with jets, appearing like strings of beads, emanating from both sides of center. (The other streaks of light running diagonally from He2-90 are artificial effects of the telescope's optical system.) Each jet possesses at least six bright clumps of gas, which are speeding along at rates estimated to be at least 375,000 miles an hour (600,000 kilometers an hour). These gaseous salvos are being ejected into space about every 100 years, and may be caused by periodic instabilities in He2-90's accretion disk. The jets from very young stars behave in a similar way. Deep images taken from terrestrial observatories show each jet extending at least 100,000 astronomical units (one astronomical unit equals the Earth-Sun distance, 93 million miles). The jets' relatively modest speed implies that one member of the duo is a white dwarf. Observations by the Compton Gamma-Ray Observatory, however, discovered a

  18. Astronomers gossip about the (cosmic) neighborhood.

    PubMed

    Jayawardhana, R

    1994-09-09

    The Hague, Netherlands, last month welcomed 2000 astronomers from around the world for the 22nd General Assembly of the International Astronomical Union (IAU). From 15 to 27 August, they participated in symposia and discussions on topics ranging from the down-to-Earth issue of light and radio-frequency pollution to the creation of elements at the farthest reaches of time and space, in the big bang. Some of the most striking news, however, came in new findings from our galaxy and its immediate surroundings.

  19. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA DFRC after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA's Dryden Flight Research Center after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  20. Meeting Archival Standards in the Astronomical Photographic Data Archive at PARI

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Barker, T.; Rottler, L.

    2013-01-01

    The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 400 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 200,000 photographic plates and films from more than 40 collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. GAMMA II has been rebuilt and we will report on its status as an astrometric measuring instrument.

  1. Technology advancements for future astronomical missions

    NASA Astrophysics Data System (ADS)

    Barnes, Arnold A.; Knight, J. Scott; Lightsey, Paul A.; Harwit, Alex; Coyle, Laura

    2017-09-01

    Future astronomical telescopes in space will have architectures with complex and demanding requirements in order to meet their science goals. The missions currently being studied by NASA for consideration in the next Decadal Survey range in wavelength from the X-ray to Far infrared; examining phenomenon from imaging exoplanets and characterizing their atmospheres to detecting gravitational waves. These missions have technical challenges that are near or beyond the state of the art from the telescope to the detectors. This paper describes some of these challenges and possible solutions. Promising measurements and future demonstrations are discussed that can enhance or enable these missions.

  2. The Research Tools of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  3. Astronomical Data in Undergraduate courses

    NASA Astrophysics Data System (ADS)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  4. NASA seeks to revive lost probe that traced solar storms

    NASA Astrophysics Data System (ADS)

    Voosen, Paul

    2018-02-01

    NASA's Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), a satellite that failed in 2005, was recently discovered to be reactivated by an amateur astronomer. Until its demise, IMAGE provided unparalleled views of solar storms crashing into Earth's magnetosphere, a capability that has not been replaced since. The amateur astronomer was on the search for Zuma, a classified U.S. satellite that's believed to have failed after launch. He instead discovered IMAGE, broadcasting again, likely thanks to a reboot that occurred after its batteries drained during a past solar eclipse. NASA scientists are now working to communicate with the satellite in the hopes of reviving its six scientific instruments.

  5. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Laughlin, Greg; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary transits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software procedures developed by scientists at NASA's Ames Research Center and the University of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the 'solar' planet Uranus.

  6. The NASA Astrophysics Data System: Overview

    NASA Astrophysics Data System (ADS)

    Kurtz, Michael J.; Eichhorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Murray, Stephen S.; Watson, Joyce M.

    2000-04-01

    The NASA Astrophysics Data System Abstract Service has become a key component of astronomical research. It provides bibliographic information daily, or near daily, to a majority of astronomical researchers worldwide. We describe the history of the development of the system and its current status. Urania (Boyce 1996), and the ADS role in the emerging electronic astronomical data environment are discussed. Astronomy is unique in that it already has a fully functional data resource, where several of the most important data sources exist on-line and inter-operate nearly seamlessly. The ADS and the Strasbourg Data Center (CDS; Genova et~al. 2000) form the core of this resource. We show several examples of how to use the ADS, and we show how ADS use has increased as a function of time. Currently it is still increasing exponentially, with a doubling time for number of queries of 17 months. Using the ADS logs we make the first detailed model of how scientific journals are read as a function of time since publication. We find four distinct components. We directly compare the readership rate with the citation rate for scientific articles as a function of age. Citations generally follow reads, but there are some differences. The main journals of astronomy have differences in the ways they are read and cited. We discuss these from a number of different aspects. The impact of the ADS on astronomy can be calculated after making some simple assumptions. We find that the ADS increases the efficiency of astronomical research by 333 Full Time Equivalent (2000 hour) research years per year, and that the value of the early development of the ADS for astronomy, compared with waiting for mature technologies to be adopted, is 2332 FTE research years. A full technical description of the ADS is in three companion articles: \\cite{gei}, \\cite{aa}, and \\cite{csg}. The ADS is available at http://adsabs.harvard.edu/.

  7. NASA's SDO Captures Mercury Transit Time-lapses SDO Captures Mercury Transit Time-lapse

    NASA Image and Video Library

    2017-12-08

    Less than once per decade, Mercury passes between the Earth and the sun in a rare astronomical event known as a planetary transit. The 2016 Mercury transit occurred on May 9th, between roughly 7:12 a.m. and 2:42 p.m. EDT. The images in this video are from NASA’s Solar Dynamics Observatory Music: Encompass by Mark Petrie For more info on the Mercury transit go to: www.nasa.gov/transit This video is public domain and may be downloaded at: svs.gsfc.nasa.gov/12235 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. The NASA 2017 Eclipse Education Program: Through the Eyes of NASA to the Hearts of a Nation

    NASA Astrophysics Data System (ADS)

    Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy D.; Lewis, Elaine; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Bleacher, Lora; Kirk, Michael S.; jones, andrea

    2016-05-01

    The August 21, 2017, eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships from across the country being leveraged to enhance our reach and impact. We also discuss the observations and science of current and future NASA missions such as SDO, Hinode and Solar Probe Plus along with their relationship to such a unique celestial event as a total solar eclipse.

  9. Atlas-Centaur Orbiting Astronomical Observatory Shroud Test

    NASA Image and Video Library

    1968-04-21

    Researchers at the National Aeronautics and Space Administration (NASA) Lewis Research Center conducted a series of shroud jettison tests for the second Orbiting Astronomical Observatory (OAO-2) in the Space Power Chambers during April 1968. The Orbiting Astronomical Observatory satellites were designed by Goddard Space Flight Center to study and retrieve ultraviolet data on stars and galaxies which earthbound and atmospheric telescopes could not view due to ozone absorption. The shroud jettison system was tested in the Space Power Chambers. In 1961, NASA Lewis management decided to convert its Altitude Wind Tunnel into two large test chambers and later renamed it the Space Power Chambers. The conversion, which took over two years, included removing the tunnel’s internal components and inserting bulkheads to seal off the new chambers. The larger chamber, seen here, could simulate altitudes of 100,000 feet. These chambers were used for a variety of tests on the Centaur second-stage rocket until the early 1970s. The first OAO mission in 1965 failed due to problems with the satellite. OAO-2 would be launched on an Atlas/Centaur with a modified Agena shroud. The new shroud was 18 feet longer than the normal Centaur payload shrouds. This new piece of hardware was successfully qualified during three tests at 90,000 feet altitude in the Space Power Chambers in April 1968. For the first time, x-rays were used to verify the payload clearance once the shroud was sealed. OAO-2 was launched on December 7, 1968 and proved to be an extremely successful mission.

  10. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and

  11. The Astronomical League

    NASA Astrophysics Data System (ADS)

    Stevens, J. A.; Stevens, B. L.

    2000-10-01

    Founded over fifty years ago, the League is the largest general astronomy society in the world. It is a recognized non-profit, educational organization, promoting the science of astronomy. This includes astronomical education, research, individual observing of the heavens and coordination between the amateur and professional astronomy communities. The Astronomical League publishes a quarterly newsletter, the "Reflector", which details amateur activities and amateur collaboration with professional astronomers. The League's Observing Clubs hone the skills of the amateur astronomer in using their telescopes. These clubs provide awards to encourge observing and learning the sky. More general awards are presented to encourage amateur astronomy and the science of astronomy. These include the National Young Astronomer Award, amd the Horkheimer Planetary Imaging Award. They also sponsor conventions on both the National and Regional levels. This year's national is in Ventura, California, next year, near Washington, D.C.

  12. NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test

    NASA Image and Video Library

    2007-05-31

    NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  13. Communicable Astronomy for IYA: Using the Networks of the Astronomical Society of the Pacific for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Manning, J.; Gibbs, M.; Gurton, S.; Fraknoi, A.

    2008-12-01

    At the forefront of sharing the excitement of the exploration of the universe for 120 years, the Astronomical Society of the Pacific (ASP) is poised to use its networks and services to implement education and outreach programs for the 2009 International Year of Astronomy (IYA). The ASP is partnering with NASA, the International Astronomical Union (IAU), the American Astronomical Society (AAS) and other organizations on IYA projects, and is developing signature programs for implementation--with the overarching goal of employing its networks of scientists, educators and amateur astronomers in efforts to improve science education and science literacy. This presentation will describe the ASP's efforts to make astronomy and science "communicable" through these astronomy intermediaries--to reach the larger public, to link astronomy to other sciences, and to create legacy programs that will continue beyond 2009.

  14. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  15. Science Initiatives of the US Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  16. http://www.nasa.gov/feature/goddard/2016/hubble-team-breaks-cosmic-distance-record

    NASA Image and Video Library

    2016-03-03

    By pushing NASA’s Hubble Space Telescope to its limits, an international team of astronomers has shattered the cosmic distance record by measuring the farthest galaxy ever seen in the universe. This surprisingly bright infant galaxy, named GN-z11, is seen as it was 13.4 billion years in the past, just 400 million years after the Big Bang. GN-z11 is located in the direction of the constellation of Ursa Major. Read more: go.nasa.gov/1oSqHad NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA Missions Monitor a Waking Black Hole

    NASA Image and Video Library

    2015-06-30

    On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this system, a stream of gas from a star much like the sun flows toward a 10 solar mass black hole. Instead of spiraling toward the black hole, the gas accumulates in an accretion disk around it. Every couple of decades, the disk switches into a state that sends the gas rushing inward, starting a new outburst. Read more: www.nasa.gov/feature/goddard/nasa-missions-monitor-a-waki... Credits: NASA's Goddard Space Flight Center Download this video in HD formats from NASA Goddard's Scientific Visualization Studio svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11110

  18. [French astronomical journals an interactivity of the scientific world].

    PubMed

    Vassilieff, Catherine

    2014-01-01

    Astronomical data issued from observatories find multiple uses on land, as well as on sea. Due to their structure and periodicity, scientific reviews are particularly adapted to peer review and sharing of data between astronomers as well as between astronomers and hobbyists. During the 19(th) century regional observatories first gather together professionals interested in the practical applications of the observations and later, under the influence of personalities such as Camille Flammarion, they bring together a larger non-professional audience. Being the epicentre of scientific exchange, the reviews have in the 20(th) century found their place on the websites of academic institutions as well as users forums.

  19. Bringing the Virtual Astronomical Observatory to the Education Community

    NASA Astrophysics Data System (ADS)

    Lawton, B.; Eisenhamer, B.; Mattson, B. J.; Raddick, M. J.

    2012-08-01

    The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. The Education and Public Outreach (EPO) program for the VAO will be led by the Space Telescope Science Institute in collaboration with the High Energy Astrophysics Science Archive Research Center (HEASARC) EPO program and Johns Hopkins University. VAO EPO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public and education community. Our EPO efforts will be structured to provide uniform access to VAO information, enabling educational and research opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that the VO has already built many tools for EPO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. However, it is not enough to simply provide tools. Tools must meet the needs of the education community and address national education standards in order to be broadly utilized. To determine which tools the VAO will incorporate into the EPO program, needs assessments will be conducted with educators across the U.S.

  20. Latin American astronomers and the International Astronomical Union

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  1. Pro-Am Collaboration for Support of NASA Comet ISON Observing Campaign (CIOC)

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.; Warner, E.

    2013-09-01

    From the initial discovery of C/2012 S1 (ISON) by Russian amateur astronomers in September 2012 [1] to the present day, amateur astronomers provide valuable resources of global coverage, data, and legacy knowledge to the professional community. The NASA Comet ISON Observing Campaign (CIOC) has leveraged professional-amateur collaborations via web and social media as part of its mission to facilitate a multi-spectral and multi-facility observation campaign that includes an armada of NASA's ground-based facilities, orbital observatories, and spacecraft. One of the most important goals of these pro-am collaborations is the monitoring of the morphological, photometric, and activity-related evolution of the comet.

  2. The Quito Astronomical Instruments Heritage

    NASA Astrophysics Data System (ADS)

    Lopez, Ericsson

    The Quito Astronomical Observatory was build in the 1873s thanks to the generous sponsoring of the president of the Republic of Ecuador Dr. Gabriel García Moreno who desire was to build a long-lasting monument to Ecuadorian science . Thanks to the collaboration of father J. B. Menten one of the leading german astronomer the President' s dream came true. The Observatory with its splendid buildings was in fact equipped with a series of very important instruments such as the 30-cm Mertz refractor a large Molteni meridian instrument and a Bamber of 10 cm. Other instruments were subsequently added in the course of the 20th century. Recently we have performed a detailed inventory of all the historical instruments still preserved at the Observatory. This paper is dedicated to briefly trace the history of the Quito Observatory and describe its most characteristic instruments. Moreover it is presented the work done for preserving this important scientific heritage and discuss some of the typical problems that the researchers the students amateur astronomers and the public find in a still active scientific institution in a developing country.

  3. Early Results from NASA's Assessment of Satellite Servicing

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Reed, Benjamin B.; Townsend, Jacqueline A.; Ahmed, Mansoor; Whipple, Arthur O.; Oegerle, William R.

    2010-01-01

    Following recommendations by the NRC, NASA's FY 2008 Authorization Act and the FY 2009 and 2010 Appropriations bills directed NASA to assess the use of the human spaceflight architecture to service existing/future observatory-class scientific spacecraft. This interest in satellite servicing, with astronauts and/or with robots, reflects the success that NASA achieved with the Shuttle program and HST on behalf of the astronomical community as well as the successful construction of ISS. This study, led by NASA GSFC, will last about a year, leading to a final report to NASA and Congress in autumn 2010. We will report on its status, results from our March satellite servicing workshop, and recent concepts for serviceable scientific missions.

  4. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  5. On Tokugawa Bakufu's astronomical officials

    NASA Astrophysics Data System (ADS)

    Yamada, Keiji

    2005-06-01

    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  6. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  7. Finding the Fortunate Islands and Other Astrolabe Tricks of Early Astronomical Navigation

    NASA Astrophysics Data System (ADS)

    Lattis, James

    2007-12-01

    Explorers of the late 16th and early 17th centuries had at their disposal a very limited set of tools and techniques useful for astronomical navigation. At least one author, Christoph Clavius, saw the traditional planispheric astrolabe as an important adjunct for mapping, navigation, and other tasks useful in an age of exploration. This paper will explain some of the applications Clavius recommends and evaluate some of their important limitations.

  8. Stargate: An Open Stellar Catalog for NASA Exoplanet Exploration

    NASA Astrophysics Data System (ADS)

    Tanner, Angelle

    NASA is invested in a number of space- and ground-based efforts to find extrasolar planets around nearby stars with the ultimate goal of discovering an Earth 2.0 viable for searching for bio-signatures in its atmosphere. With both sky-time and funding resources extremely precious it is crucial that the exoplanet community has the most efficient and functional tools for choosing which stars to observe and then deriving the physical properties of newly discovered planets via the properties of their host stars. Historically, astronomers have utilized a piecemeal set of archives such as SIMBAD, the Washington Double Star Catalog, various exoplanet encyclopedias and electronic tables from the literature to cobble together stellar and planetary parameters in the absence of corresponding images and spectra. The mothballed NStED archive was in the process of collecting such data on nearby stars but its course may have changed if it comes back to NASA mission specific targets and NOT a volume limited sample of nearby stars. This means there is void. A void in the available set of tools many exoplanet astronomers would appreciate to create comprehensive lists of the stellar parameters of stars in our local neighborhood. Also, we need better resources for downloading adaptive optics images and published spectra to help confirm new discoveries and find ideal target stars. With so much data being produced by the stellar and exoplanet community we have decided to propose for the creation of an open access archive in the spirit of the open exoplanet catalog and the Kepler Community Follow-up Program. While we will highly regulate and constantly validate the data being placed into our archive the open nature of its design is intended to allow the database to be updated quickly and have a level of versatility which is necessary in today's fast moving, big data exoplanet community. Here, we propose to develop the Stargate Open stellar catalog for NASA exoplanet exploration.

  9. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A., E-mail: vribeiro@ast.uct.ac.za, E-mail: russo@strw.leidenuniv.nl

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' withmore » a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.« less

  10. Examination and notes to the astronomical records in >SUISHU<.

    NASA Astrophysics Data System (ADS)

    Liu, Ciyuan

    1996-06-01

    Astronomical records are an important part in Chinese official historical books. Their main purpose was for astrology and they are an obstacle for historians who read those books. With modern astronomical methods, one can compute and examine most of those ancient records. By comparing the computed results with the original texts, one can examine the texts, find their mistakes, study their observation method and regulation, inspect astrological theory, take a deeper understanding to those important historical materials. As an example the author deals with the astronomcial records of Dynasties Liang and Chen for 60 years in >SUISHU<, the official history of Dynasty Sui. He also synthesized other historical sources in addition to the astronomical computation.

  11. The Practical Astronomer

    NASA Astrophysics Data System (ADS)

    Koester, Jack

    "The Practical Astronomer" by Thomas Dick, LLD, E.C. & J. Biddle, Philadelphia, 1849, is reviewed. Information on telescope makers and astronomers can be found. Mentioned are: Fraunhofer; John Herschel; Lawson; Dollond; Tulley; W. & S. Jones; and S.W. Burnham.

  12. NASA Telescopes Help Identify Most Distant Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2011-01-01

    WASHINGTON -- Astronomers have uncovered a burgeoning galactic metropolis, the most distant known in the early universe. This ancient collection of galaxies presumably grew into a modern galaxy cluster similar to the massive ones seen today. The developing cluster, named COSMOS-AzTEC3, was discovered and characterized by multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space telescopes, and the ground-based W.M. Keck Observatory and Japan's Subaru Telescope. "This exciting discovery showcases the exceptional science made possible through collaboration among NASA projects and our international partners," said Jon Morse, NASA's Astrophysics Division director at NASA Headquarters in Washington. Scientists refer to this growing lump of galaxies as a proto-cluster. COSMOS-AzTEC3 is the most distant massive proto-cluster known, and also one of the youngest, because it is being seen when the universe itself was young. The cluster is roughly 12.6 billion light-years away from Earth. Our universe is estimated to be 13.7 billion years old. Previously, more mature versions of these clusters had been spotted at 10 billion light-years away. The astronomers also found that this cluster is buzzing with extreme bursts of star formation and one enormous feeding black hole. "We think the starbursts and black holes are the seeds of the cluster," said Peter Capak of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "These seeds will eventually grow into a giant, central galaxy that will dominate the cluster -- a trait found in modern-day galaxy clusters." Capak is first author of a paper appearing in the Jan. 13 issue of the journal Nature. Most galaxies in our universe are bound together into clusters that dot the cosmic landscape like urban sprawls, usually centered around one old, monstrous galaxy containing a massive black hole. Astronomers thought that primitive versions of these clusters, still forming and clumping

  13. Hera: High Energy Astronomical Data Analysis via the Internet

    NASA Astrophysics Data System (ADS)

    Valencic, Lynne A.; Chai, P.; Pence, W.; Snowden, S.

    2011-09-01

    The HEASARC at NASA Goddard Space Flight Center has developed Hera, a data processing facility for analyzing high energy astronomical data over the internet. Hera provides all the software packages, disk space, and computing resources needed to do general processing of and advanced research on publicly available data from High Energy Astrophysics missions. The data and data products are kept on a server at GSFC and can be downloaded to a user's local machine. This service is provided for free to students, educators, and researchers for educational and research purposes.

  14. The Future is Hera! Analyzing Astronomical Over the Internet

    NASA Technical Reports Server (NTRS)

    Valencic, L. A.; Chai, P.; Pence, W.; Shafer, R.; Snowden, S.

    2008-01-01

    Hera is the data processing facility provided by the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the pre-installed software packages, local disk space, and computing resources need to do general processing of FITS format data files residing on the users local computer, and to do research using the publicly available data from the High ENergy Astrophysics Division. Qualified students, educators and researchers may freely use the Hera services over the internet of research and educational purposes.

  15. X-ray optic developments at NASA's MSFC

    NASA Astrophysics Data System (ADS)

    Atkins, C.; Ramsey, B.; Kilaru, K.; Gubarev, M.; O'Dell, S.; Elsner, R.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    2013-05-01

    NASA's Marshall Space Flight Center (MSFC) has a successful history of fabricating optics for astronomical x-ray telescopes. In recent years optics have been created using electroforming replication for missions such as the balloon payload HERO (High energy replicated optics) and the rocket payload FOXSI (Focusing Optics x-ray Solar Imager). The same replication process is currently being used in the creation seven x-ray mirror modules (one module comprising of 28 nested shells) for the Russian ART-XC (Astronomical Rontgen Telescope) instrument aboard the Spectrum-Roentgen-Gamma mission and for large-diameter mirror shells for the Micro-X rocket payload. In addition to MSFC's optics fabrication, there are also several areas of research and development to create the high resolution light weight optics which are required by future x-ray telescopes. Differential deposition is one technique which aims to improve the angular resolution of lightweight optics through depositing a filler material to smooth out fabrication imperfections. Following on from proof of concept studies, two new purpose built coating chambers are being assembled to apply this deposition technique to astronomical x-ray optics. Furthermore, MSFC aims to broaden its optics fabrication through the recent acquisition of a Zeeko IRP 600 robotic polishing machine. This paper will provide a summary of the current missions and research and development being undertaken at NASA's MSFC.

  16. Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital camera mounted in the rear cockpit of a NASA Dryden F/A-18B before taking off on an astronomy mission to search for small vulcanoids (asteroids) that may be orbiting between the sun and the planet Mercury.

  17. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Using ESO's Very Large Telescope and its ability to obtain images as sharp as if taken from space, astronomers have made the first time-lapse movie of a rather unusual shell ejected by a "vampire star", which in November 2000 underwent an outburst after gulping down part of its companion's matter. This enabled astronomers to determine the distance and intrinsic brightness of the outbursting object. It appears that this double star system is a prime candidate to be one of the long-sought progenitors of the exploding stars known as Type Ia supernovae, critical for studies of dark energy. "One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova," says Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. "As these supernovae play a crucial role in showing that the Universe's expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing." The astronomers studied the object known as V445 in the constellation of Puppis ("the Stern") in great detail. V445 Puppis is the first, and so far only, nova showing no evidence at all for hydrogen. It provides the first evidence for an outburst on the surface of a white dwarf [1] dominated by helium. "This is critical, as we know that Type Ia supernovae lack hydrogen," says co-author Danny Steeghs, from the University of Warwick, UK, "and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf." In November 2000, this system underwent a nova outburst, becoming 250 times brighter than before and ejecting a large quantity of matter into space. The team of astronomers used the NACO adaptive optics instrument [2] on ESO's Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow

  18. The NASA Astrophysics Data System joins the Revolution

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, Michael J.; Henneken, Edwin; Grant, Carolyn S.; Thompson, Donna M.; Chyla, Roman; Holachek, Alexandra; Sudilovsky, Vladimir; Elliott, Jonathan; Murray, Stephen S.

    2015-08-01

    Whether or not scholarly publications are going through an evolution or revolution, one comforting certainty remains: the NASA Astrophysics Data System (ADS) is here to help the working astronomer and librarian navigate through the increasingly complex communication environment we find ourselves in. Born as a bibliographic database, today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and physics. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles, enriching its metadata through the extraction of citations and acknowledgments and the ingest of bibliographies and data links maintained by astronomy institutions and data archives. In addition, ADS generates and maintains citation and co-readership networks to support discovery and bibliometric analysis.In this talk I will summarize new and ongoing curation activities and technology developments of the ADS in the face of the ever-changing world of scholarly publishing and the trends in information-sharing behavior of astronomers. Recent curation efforts include the indexing of non-standard scholarly content (such as software packages, IVOA documents and standards, and NASA award proposals); the indexing of additional content (full-text of articles, acknowledgments, affiliations, ORCID ids); and enhanced support for bibliographic groups and data links. Recent technology developments include a new Application Programming Interface which provides access to a variety of ADS microservices, a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming.

  19. The Future is Hera: Analyzing Astronomical Data Over the Internet

    NASA Astrophysics Data System (ADS)

    Valencic, Lynne A.; Snowden, S.; Chai, P.; Shafer, R.

    2009-01-01

    Hera is the new data processing facility provided by the HEASARC at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the preinstalled software packages, local disk space, and computing resources needed to do general processing of FITS format data files residing on the user's local computer, and to do advanced research using the publicly available data from High Energy Astrophysics missions. Qualified students, educators, and researchers may freely use the Hera services over the internet for research and educational purposes.

  20. NASA Study Hints at Possible Change in Water ‘Fingerprint’ of Comet

    NASA Image and Video Library

    2017-12-08

    A trip past the sun may have selectively altered the production of one form of water in a comet – an effect not seen by astronomers before, a new NASA study suggests. Astronomers from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, observed the Oort cloud comet C/2014 Q2, also called Lovejoy, when it passed near Earth in early 2015. Through NASA’s partnership in the W. M. Keck Observatory on Mauna Kea, Hawaii, the team observed the comet at infrared wavelengths a few days after Lovejoy passed its perihelion – or closest point to the sun. The team focused on Lovejoy’s water, simultaneously measuring the release of H2O along with production of a heavier form of water, HDO. Water molecules consist of two hydrogen atoms and one oxygen atom. A hydrogen atom has one proton, but when it also includes a neutron, that heavier hydrogen isotope is called deuterium, or the “D” in HDO. From these measurements, the researchers calculated the D-to-H ratio – a chemical fingerprint that provides clues about exactly where comets (or asteroids) formed within the cloud of material that surrounded the young sun in the early days of the solar system. Researchers also use the D-to-H value to try to understand how much of Earth’s water may have come from comets versus asteroids. Read more: go.nasa.gov/2lvd6Vt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. NASA's SOFIA 747SP bearing a German-built 2.5-meter infrared telescope in its rear fuselage taxis up to NASA Dryden's ramp after a ferry flight from Waco, TX

    NASA Image and Video Library

    2007-05-31

    NASA's SOFIA 747SP bearing a German-built 2.5-meter infrared telescope in its rear fuselage taxis up to NASA Dryden's ramp after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  2. NASA's Hubble Space Telescope Finds Dead Stars 'Polluted with Planet Debris'

    NASA Image and Video Library

    2017-12-08

    This is an artist’s impression of a white dwarf (burned-out) star accreting rocky debris left behind by the star’s surviving planetary system. It was observed by Hubble in the Hyades star cluster. At lower right, an asteroid can be seen falling toward a Saturn-like disk of dust that is encircling the dead star. Infalling asteroids pollute the white dwarf’s atmosphere with silicon. Credit: NASA, ESA, and G. Bacon (STScI) --- NASA's Hubble Space Telescope has found the building blocks for Earth-sized planets in an unlikely place-- the atmospheres of a pair of burned-out stars called white dwarfs. These dead stars are located 150 light-years from Earth in a relatively young star cluster, Hyades, in the constellation Taurus. The star cluster is only 625 million years old. The white dwarfs are being polluted by asteroid-like debris falling onto them. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2017-12-08

    NASA image release April 6, 2011 NASA's Chandra X-ray Observatory completed this four-hour exposure of GRB 110328A on April 4. The center of the X-ray source corresponds to the very center of the host galaxy imaged by Hubble (red cross). Credit: NASA/CXC/ Warwick/A. Levan NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  4. Amateur and Professional Astronomers Team Up to Create a Cosmological Masterpiece

    NASA Image and Video Library

    2017-12-08

    To view a video of this story go to: www.flickr.com/photos/gsfc/8448332724 Working with astronomical image processors at the Space Telescope Science Institute in Baltimore, Md., renowned astro-photographer Robert Gendler has taken science data from the Hubble Space Telescope (HST) archive and combined it with his own ground-based observations to assemble a photo illustration of the magnificent spiral galaxy M106. Gendler retrieved archival Hubble images of M106 to assemble a mosaic of the center of the galaxy. He then used his own and fellow astro-photographer Jay GaBany's observations of M106 to combine with the Hubble data in areas where there was less coverage, and finally, to fill in the holes and gaps where no Hubble data existed. The center of the galaxy is composed almost entirely of HST data taken by the Advanced Camera for Surveys, Wide Field Camera 3, and Wide Field Planetary Camera 2 detectors. The outer spiral arms are predominantly HST data colorized with ground-based data taken by Gendler's and GaBany's 12.5-inch and 20-inch telescopes, located at very dark remote sites in New Mexico. The image also reveals the optical component of the "anomalous arms" of M106, seen here as red, glowing hydrogen emission. To read more go to: www.nasa.gov/mission_pages/hubble/science/m106.html Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), R. Gendler (for the Hubble Heritage Team), and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. NASA Telescopes Uncover Early Construction of Giant Galaxy

    NASA Image and Video Library

    2014-08-27

    Astronomers have for the first time caught a glimpse of the earliest stages of massive galaxy construction. The building site, dubbed “Sparky,” is a dense galactic core blazing with the light of millions of newborn stars that are forming at a ferocious rate. The discovery was made possible through combined observations from NASA’s Hubble and Spitzer space telescopes, the W.M. Keck Observatory in Mauna Kea, Hawaii, and the European Space Agency's Herschel space observatory, in which NASA plays an important role. A fully developed elliptical galaxy is a gas-deficient gathering of ancient stars theorized to develop from the inside out, with a compact core marking its beginnings. Because the galactic core is so far away, the light of the forming galaxy that is observable from Earth was actually created 11 billion years ago, just 3 billion years after the Big Bang. Read more: 1.usa.gov/1rAMSSr Credit: NASA, Z. Levay, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2011-04-06

    NASA image releaes April 6, 2011 This is a visible-light image of GRB 110328A's host galaxy (arrow) taken on April 4 by the Hubble Space Telescope's Wide Field Camera 3. The galaxy is 3.8 billion light-years away. Credit: NASA/ESA/A. Fruchter (STScI) NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  7. NASA's future plans for lunar astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Stachnik, Robert V.; Kaplan, Michael S.

    1994-01-01

    An expanding scientific interest in astronomical observations from the Moon has led the National Aeronautics and Space Administration (NASA) to develop a two-part strategy for lunar-astrophysics planning. The strategy emphasizes a systematic review process involving both the external scientific community and internal NASA engineering teams, coupled with the rigorous exclusion of projects inappropriate to lunar emplacement. Five major candidate lunar-astronomy projects are described, together with a modest derivative of one of them that could be implemented early in the establishment of a lunar base.

  8. Armenian Astronomical Society (ArAS) activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    A review on the activities and achievements of Armenian Astronomical Society (ArAS) and Armenian astronomy in general during the last years is given. ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, Annual Meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, local and international summer schools, science camps, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, amateur astronomy, astronomy outreach and ArAS further projects are described and discussed.

  9. How to Find a Planetary Hot Spot

    NASA Image and Video Library

    2010-10-19

    This graph of data from NASA Spitzer Space Telescope shows how astronomers located a hot spot on a distant gas planet named upsilon Andromedae b. Termed an exoplanet, it orbits a star beyond our sun, and whips around very closely to its star.

  10. AstroFrauenNetzwerk Survey Results - Career situation of female astronomers in Germany

    NASA Astrophysics Data System (ADS)

    Fohlmeister, J.; Helling, Ch.

    2012-04-01

    We survey the job situation of women in astronomy in Germany and of German women abroad and review indicators for their career development. Our sample includes women astronomers from all academic levels from doctoral students to professors, as well as female astronomers who have left the field. We find that networking and human support are among the most important factors for success. Experience shows that students should carefully choose their supervisor and collect practical knowledge abroad. We reflect the private situation of female German astronomers and find that prejudices are abundant, and are perceived as discriminating. We identify reasons why women are more likely than men to quit astronomy after they obtain their PhD degree. We give recommendations to young students on what to pay attention to in order to be on the successful path in astronomy.

  11. Education and Public Outreach in the International Year of Astronomy at the Astronomical Society of the Pacific

    NASA Astrophysics Data System (ADS)

    Gibbs, M. G.; Manning, J. G.; Gurton, S.; Fraknoi, A.; Berendsen, M.; Hurst, A.; White, V.

    2008-11-01

    At the forefront of sharing the excitement of our exploration of the universe for 120 years, the Astronomical Society of the Pacific (ASP) is poised to use its networks and services to implement education and outreach programs for the 2009 International Year of Astronomy (IYA). The ASP is working with the National Aeronautics and Space Administration (NASA), the American Astronomical Society (AAS), National Optical Astronomy Observatory (NOAO), Association of Science---Technology Centers (ASTC), and several other astronomical and educational organizations on IYA projects. The ASP will develop and implement four key signature programs, pending funding, for the IYA: a) IYA 2009 Cosmic Companion, with astronomy activities primarily for amateur astronomy clubs; b) Galileo Teacher Training Program, designed primarily for in-service teachers; c) Expanding the Informal Universe, to bring astronomy into smaller museums and nature centers; and d) Cosmic Clearing-House, an online educational resource for the best astronomy outreach resources and activities. The overarching goal for these programs is to bring together scientists, educators, and amateurs astronomers to improve science education and literacy through astronomy. The Society welcomes additional partners who seek to cooperate on IYA programs or work with the networks of formal and informal educators and amateur astronomers the ASP continues to support.

  12. Hubble Finds Two Chaotically Tumbling Pluto Moons

    NASA Image and Video Library

    2015-06-03

    This computer animation illustrates how Pluto's moon Nix changes its spin unpredictably as it orbits the "double planet" Pluto-Charon. The view is from the surface of Pluto as the moon circles the Pluto-Charon system. This is a time-lapse view of the moon, compressing four years of motion into two minutes, with one complete orbit of Pluto-Charon every two seconds. (The apparent star movement rate is greatly slowed down for illustration purposes.) The animation is based on dynamical models of spinning bodies in complex gravitational fields — like the field produced by Pluto and Charon's motion about each other. Astronomers used this simulation to try to understand the unpredictable changes in reflected light from Nix as it orbits Pluto-Charon. They also found that Pluto's moon Hydra also undergoes chaotic spin. The football shape of both moons contributes to their wild motion. The consequences are that if you lived on either moon, you could not predict the time or direction the sun would rise the next morning. (The moon is too small for Hubble to resolve surface features, and so the surface textures used here are purely for illustration purposes.) Credit: NASA, ESA, M. Showalter (SETI Institute), and G. Bacon (STScI) Read more: www.nasa.gov/press-release/nasa-s-hubble-finds-pluto-s-mo... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Hubble Finds Planet Orbiting Pair of Stars

    NASA Image and Video Library

    2017-12-08

    Two's company, but three might not always be a crowd — at least in space. Astronomers using NASA's Hubble Space Telescope, and a trick of nature, have confirmed the existence of a planet orbiting two stars in the system OGLE-2007-BLG-349, located 8,000 light-years away towards the center of our galaxy. The planet orbits roughly 300 million miles from the stellar duo, about the distance from the asteroid belt to our sun. It completes an orbit around both stars roughly every seven years. The two red dwarf stars are a mere 7 million miles apart, or 14 times the diameter of the moon's orbit around Earth. The Hubble observations represent the first time such a three-body system has been confirmed using the gravitational microlensing technique. Gravitational microlensing occurs when the gravity of a foreground star bends and amplifies the light of a background star that momentarily aligns with it. The particular character of the light magnification can reveal clues to the nature of the foreground star and any associated planets. The three objects were discovered in 2007 by an international collaboration of five different groups: Microlensing Observations in Astrophysics (MOA), the Optical Gravitational Lensing Experiment (OGLE), the Microlensing Follow-up Network (MicroFUN), the Probing Lensing Anomalies Network (PLANET), and the Robonet Collaboration. These ground-based observations uncovered a star and a planet, but a detailed analysis also revealed a third body that astronomers could not definitively identify. Image caption: This artist's illustration shows a gas giant planet circling a pair of red dwarf stars in the system OGLE-2007-BLG-349, located 8,000 light-years away. The Saturn-mass planet orbits roughly 300 million miles from the stellar duo. The two red dwarf stars are 7 million miles apart. Credit: NASA, ESA, and G. Bacon (STScI) Read more: go.nasa.gov/2dcfMns NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four

  14. Astronomical Heritage in the National Culture

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.; Mickaelian, A. M.; Parsamian, E. S.

    2014-10-01

    The book contains Proceedings of the Archaeoastronomical Meeting "Astronomical Heritage in the National Culture" Dedicated to Anania Shirakatsi's 1400th Anniversary and XI Annual Meeting of the Armenian Astronomical Society. It consists of 3 main sections: "Astronomical Heritage", "Anania Shirakatsi" and "Modern Astronomy", as well as Literature about Anania Shirakatsi is included. The book may be interesting for astronomers, historians, archaeologists, linguists, students and other readers.

  15. Virtual Astronomy: The Legacy of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, J.; Szalay, A. S.; Fabbiano, G.; Plante, R. L.; McGlynn, T. A.; Evans, J.; Emery Bunn, S.; Claro, M.; VAO Project Team

    2014-01-01

    Over the past ten years, the Virtual Astronomical Observatory (VAO, http://usvao.org) and its predecessor, the National Virtual Observatory (NVO), have developed and operated a software infrastructure consisting of standards and protocols for data and science software applications. The Virtual Observatory (VO) makes it possible to develop robust software for the discovery, access, and analysis of astronomical data. Every major publicly funded research organization in the US and worldwide has deployed at least some components of the VO infrastructure; tens of thousands of VO-enabled queries for data are invoked daily against catalog, image, and spectral data collections; and groups within the community have developed tools and applications building upon the VO infrastructure. Further, NVO and VAO have helped ensure access to data internationally by co-founding the International Virtual Observatory Alliance (IVOA, http://ivoa.net). The products of the VAO are being archived in a publicly accessible repository. Several science tools developed by the VAO will continue to be supported by the organizations that developed them: the Iris spectral energy distribution package (SAO), the Data Discovery Tool (STScI/MAST, HEASARC), and the scalable cross-comparison service (IPAC). The final year of VAO is focused on development of the data access protocol for data cubes, creation of Python language bindings to VO services, and deployment of a cloud-like data storage service that links to VO data discovery tools (SciDrive). We encourage the community to make use of these tools and services, to extend and improve them, and to carry on with the vision for virtual astronomy: astronomical research enabled by easy access to distributed data and computational resources. Funding for VAO development and operations has been provided jointly by NSF and NASA since May 2010. NSF funding will end in September 2014, though with the possibility of competitive solicitations for VO-based tool

  16. Superconductor Semiconductor Research for NASA's Submillimeter Wavelength Missions

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.

    1997-01-01

    Wideband, coherent submillimeter wavelength detectors of the highest sensitivity are essential for the success of NASA's future radio astronomical and atmospheric space missions. The critical receiver components which need to be developed are ultra- wideband mixers and suitable local oscillator sources. This research is focused on two topics, (1) the development of reliable varactor diodes that will generate the required output power for NASA missions in the frequency range from 300 GHZ through 2.5 THz, and (2) the development of wideband superconductive mixer elements for the same frequency range.

  17. Girl Scout Camps and Badges: Engaging Girls in NASA Science

    NASA Astrophysics Data System (ADS)

    Harman, P. K.; DeVore, E. K.

    2017-12-01

    Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) disseminates NASA STEM education-related resources, fosters interaction between Girl Scouts and NASA Subject Matter Experts (SMEs), and engages Girl Scouts in NASA science and programs through space science badges and summer camps. A space science badge is in development for each of the six levels of Girl Scouts: Daisies, Grades K - 1; Brownies, Grades 2 -3; Juniors, Grades 4 -5; Cadettes, Grades 6 -8; Seniors, Grades 9 -10: and Ambassadors, Grades 11 -12. Daisy badge will be accomplished by following three steps with two choices each. Brownie to Ambassador badges will be awarded by completing five steps with three choices for each. The badges are interwoven with science activities, role models (SMEs), and steps that lead girls to explore NASA missions. External evaluators monitor three rounds of field-testing and deliver formative assessment reports. Badges will be released in Fall of 2018 and 2019. Girl Scout Stars supports two unique camp experiences. The University of Arizona holds an Astronomy Destination, a travel and immersion adventure for individual girls ages 13 and older, which offers dark skies and science exploration using telescopes, and interacting with SMEs. Girls lean about motion of celestial objects and become astronomers. Councils send teams of two girls, a council representative and an amateur astronomer to Astronomy Camp at Goddard Space Flight Center. The teams were immersed in science content and activities, and a star party; and began to plan their new Girl Scout Astronomy Clubs. The girls will lead the clubs, aided by the council and amateur astronomer. Camps are evaluated by the Girl Scouts Research Institute. In Girl Scouting, girls discover their skills, talents and what they care about; connect with other Girl Scouts and people in their community; and take action to change the world. This is called the Girl Scout Leadership Experience. With girl-led, hands on

  18. UkrVO astronomical WEB services

    NASA Astrophysics Data System (ADS)

    Mazhaev, A.

    2017-02-01

    Ukraine Virtual Observatory (UkrVO) has been a member of the International Virtual Observatory Alliance (IVOA) since 2011. The virtual observatory (VO) is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS) of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.

  19. International Astronomical Search Collaboration: Online Educational Outreach Program in Astronomical Discovery for Middle School, High School, & College Students and Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2016-12-01

    The International Astronomical Search Collaboration (IASC = "Isaac") in an online educational outreach program in planetary science. Citizen scientists and students from middle schools, high schools, and colleges make original discoveries of Main Belt asteroids. They discover trans-Neptunian objects and near-Earth objects. To date there have been discoveries of 1300 provisional MBAs, 7 TNOs, 2 potentially hazardous NEOs, and one Jupiter-family comet 276P/Vorobjov. IASC receives images from the Institute for Astronomy, University of Hawaii. Images are provided by the 1.8-m Pan-STARRS telescopes (PS1, PS2). These telescopes have the world's largest CCD cameras that produce 3o fields containing 1.4 billion pixels. These images are partitioned into 208 sub-images that are distributed online to the participating citizen scientists and schools (see http://iasc.hsutx.edu). Using the software Astrometrica, the sub-images are searched for moving object discoveries that are recorded with astrometry then reported to the Minor Planet Center (Smithsonian Astrophysical Observatory, Harvard). There are >5,000 citizen scientists and 700 schools that participate in the IASC asteroid searches. They come from more than 80 countries. And, the cost to participate…is free. Of the 1300 provisional MBA discoveries, 39 have been numbered and cataloged by the International Astronomical Union (Paris). The numbered discoveries are named by their citizen scientist and student discoverers. IASC works in conjunction with the NASA Asteroid Grand Challenge providing digital badging to the students (https://www.nasa.gov/feature/the-asteroid-grand-challenge-digital-badging-effort). IASC works online with the teachers from the participating schools, training them using videoconferencing to use Astrometrica in the search for, measurement of, and reporting of MBA discoveries by their students.

  20. Astronomical Ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  1. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2017-12-08

    NASA image release April 6, 2011 Images from Swift's Ultraviolet/Optical (white, purple) and X-ray telescopes (yellow and red) were combined in this view of GRB 110328A. The blast was detected only in X-rays, which were collected over a 3.4-hour period on March 28. Credit: NASA/Swift/Stefan Immler NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  2. NASA's Laboratory Astrophysics Workshop: Opening Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2002-01-01

    The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.

  3. Astronomers celebrate a year of new Hubble results

    NASA Astrophysics Data System (ADS)

    1995-02-01

    Space Telescope to make accurate measurements of the distance of Ml 00, a far away galaxy located in the Virgo cluster of galaxies. To do this they used a number of Cepheid variable stars, rare objects that change in brightness over a regular period. Because astronomers know that there is a direct link between the period of the Cepheid's pulsation and its actual brightness, they can do a simple calculation to work out the distance to the object by comparing its actual brightness with how bright it appears to Hubble. The astronomers had to study more than 40,000 stars before finding the 20 Cepheids they used for their calculations. The results revealed that M100 lies 56 million light years from Earth. With this, astronomers calculated that the Universe is expanding at a rate of 80 kilometres per second per megaparsec (a megaparsec is 3,261,600 light years). This is much faster than astronomers had expected. On the basis of this value for the Hubble Constant, the Universe must be aged somewhere between eight and twelve billion years old. But, this flies in the face of established facts. We know there are stars in our Universe that are 16 billion years old - how can they be older than the Universe in which they exist? It could be that the theory that explains the evolution of stars or the Big Bang theory are wrong. Or perhaps it is the observations that are incorrect. Hubble astronomers soon hope to solve this riddle by taking further measurements to refine their figures. "This is a programme that we know is going to give us some really firm answers in the next three to five years," said Dr Macchetto, one of the 15 European astronomers at the Space Telescope Science Institute. "It will take that time to collect and analyse enough data." Part of the Universe is missing ! Once astronomers know the expansion rate of the Universe they will be one step away from determining its fate. But it will be a big step - for astronomers will have to work out the mass of the Universe and

  4. Astronomical variation experiments with a Mars general circulation model

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Haberle, R. M.; Murphy, J. R.; Schaeffer, J.; Lee, H.

    1992-01-01

    In time scales of a hundred thousand to a million years, the eccentricity of Mars orbit varies in a quasi-periodic manner between extremes as large as 0.14 and as small as 0 and the tilt of its axis of rotation with respect to the orbit normal also varies quasi-periodically between extremes as large as 35 deg and as small as 15 deg. In addition, the orientation of the axis precesses on comparable time scales. These astronomical variations are much more extreme than those experienced by the Earth. These variations are thought to have strongly modulated the seasonal cycles of dust, carbon dioxide, and water. One manifestation of the induced quasiperiodic climate changes may be the layered terrain of the polar regions, with individual layers perhaps recording variations in the absolute and/or relative deposition rates of dust and water in the polar regions, most likely in association with the winter time deposition of carbon dioxide ice. In an attempt to understand the manner in which atmospheric temperatures and winds respond to the astronomical forcings, we have initiated a series of numerical experiments with the NASA/Ames general circulation model of the Martian Atmosphere.

  5. NASA's Planetary Defense Coordination Office at NASA HQ

    NASA Astrophysics Data System (ADS)

    Daou, D.; Johnson, L.; Fast, K. E.; Landis, R.; Friedensen, V. P.; Kelley, M.

    2017-09-01

    NASA and its partners maintain a watch for near-Earth objects (NEOs), asteroids and comets that pass close to the Earth, as part of an ongoing effort to discover, catalog, and characterize these bodies. The PDCO is responsible for: • Ensuring the early detection of potentially hazardous objects (PHOs) - asteroids and comets whose orbit are predicted to bring them within 0.05 Astronomical Units of Earth; and of a size large enough to reach Earth's surface - that is, greater than perhaps 30 to 50 meters; • Tracking and characterizing PHOs and issuing warnings about potential impacts; • Providing timely and accurate communications about PHOs; and • Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat. The PDCO collaborates with other U.S. Government agencies, other national and international agencies, and professional and amateur astronomers around the world. The PDCO also is responsible for facilitating communications between the science community and the public should any potentially hazardous NEO be discovered. In addition, the PDCO works closely with the United Nations Office of Outer Space Affairs, its Committee on the Peaceful Uses of Outer Space, and its Action Team on Near Earth Objects (also known as Action Team 14). The PDCO is a leading member of the International Asteroid Warning Network (IAWN) and the Space Missions Planning Advisory Group (SMPAG), multinational endeavors recommended by the United Nations for an international response to the NEO impact hazard and established and operated by the spacecapable nations. The PDCO also communicates with the scientific community through channels such as NASA's Small Bodies Assessment Group (SBAG). In this talk, we will provide an update to the office's various efforts and new opportunities for partnerships in the continuous international effort for Planetary Defense.

  6. NASA's Planetary Defense Coordination Office at NASA HQ

    NASA Astrophysics Data System (ADS)

    Daou, D.; Johnson, L.; Fast, K. E.; Landis, R.; Friedensen, V. P.; Kelley, M.

    2017-12-01

    NASA and its partners maintain a watch for near-Earth objects (NEOs), asteroids and comets that pass close to the Earth, as part of an ongoing effort to discover, catalog, and characterize these bodies. The PDCO is responsible for: Ensuring the early detection of potentially hazardous objects (PHOs) - asteroids and comets whose orbit are predicted to bring them within 0.05 Astronomical Units of Earth; and of a size large enough to reach Earth's surface - that is, greater than perhaps 30 to 50 meters; Tracking and characterizing PHOs and issuing warnings about potential impacts; Providing timely and accurate communications about PHOs; and Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat. The PDCO collaborates with other U.S. Government agencies, other national and international agencies, and professional and amateur astronomers around the world. The PDCO also is responsible for facilitating communications between the science community and the public should any potentially hazardous NEO be discovered. In addition, the PDCO works closely with the United Nations Office of Outer Space Affairs, its Committee on the Peaceful Uses of Outer Space, and its Action Team on Near Earth Objects (also known as Action Team 14). The PDCO is a leading member of the International Asteroid Warning Network (IAWN) and the Space Missions Planning Advisory Group (SMPAG), multinational endeavors recommended by the United Nations for an international response to the NEO impact hazard and established and operated by the space-capable nations. The PDCO also communicates with the scientific community through channels such as NASA's Small Bodies Assessment Group (SBAG). In this talk, we will provide an update to the office's various efforts and new opportunities for partnerships in the continuous international effort for Planetary Defense.

  7. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  8. Korean Astronomical Calendar, Chiljeongsan

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  9. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Payne, H.; Hayes, J.

    1998-01-01

    This is the final report on the development of the Astronomical Software Directory Service (ASDS), a distributable, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URL's indexed for full-text searching.

  10. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    NASA Astrophysics Data System (ADS)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  11. Photonic ring resonator filters for astronomical OH suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  12. Photonic ring resonator filters for astronomical OH suppression

    DOE PAGES

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; ...

    2017-01-01

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  13. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  14. Astronomical Instrumentation System Markup Language

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  15. A Mythological, Philosophical and Astronomical approach of our solar system

    NASA Astrophysics Data System (ADS)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  16. The Astronomical Society of the Pacific - Education and Public Outreach in the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Gibbs, Michael; Manning, J.; Gurton, S.; Fraknoi, A.; Berendsen, M.; Hurst, A.; White, V.

    2008-05-01

    At the forefront of sharing the excitement of our exploration of the universe for 120 years, the Astronomical Society of the Pacific (ASP) is poised to use its networks and services to implement education and outreach programs for the 2009 International Year of Astronomy (IYA). The ASP is working with NASA, the AAS, NOAO, ASTC, and several other astronomical and educational organizations on IYA projects. The ASP will develop and implement four key signature programs, pending funding, for the IYA: a) "IYA Cosmic Calendar: A Year of Outreach Resources” with astronomy activities primarily for amateur astronomy clubs; b) "In the Footsteps of Galileo: A Teacher Training Program,” designed primarily for in-service teachers; c) an expanded "Astronomy from the Ground Up” program in IYA to bring astronomy into smaller museums and nature centers; and d) "The Cosmic Clearing-House,” an online educational resource for the best astronomy outreach resources and activities. The overarching goal for these programs is to bring together scientists, educators, and amateurs astronomers to improve science education and literacy through astronomy. The Society welcomes additional partners who seek to cooperate on IYA programs or work with the networks of formal and informal educators and amateur astronomers the ASP continues to support.

  17. NASA finds Shrimp Under Antarctic Ice [Video

    NASA Image and Video Library

    2017-12-08

    At a depth of 600 feet beneath the West Antarctic ice sheet, a small shrimp-like creature managed to brighten up an otherwise gray polar day in late November 2009. This critter is a three-inch long Lyssianasid amphipod found beneath the Ross Ice Shelf, about 12.5 miles away from open water. NASA scientists were using a borehole camera to look back up towards the ice surface when they spotted this pinkish-orange creature swimming beneath the ice. Credit: NASA

  18. Ares V and Future Very Large Launch Vehicles to Enable Major Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.; Langhoff, Stephanie R.; Corell, Randy; Stahl, H. Philip

    2008-01-01

    The current NASA architecture intended to return humans to the lunar surface includes the Ares V cargo launch vehicle, which is planned to be available within a decade. The capabilities designed for Ares V would permit an 8.8-m diameter, 55 mT payload to be carried to Sun-Earth L1,2 locations. That is, this vehicle could launch very large optical systems to achieve major scientific goals that would otherwise be very difficult. For example, an 8-m monolith UV/visual/IR telescope appears able to be launched to a Sun-Earth L2 location. Even larger apertures that are deployed or assembled seem possible. Alternatively, multiple elements of a spatial array or two or three astronomical observatories might be launched simultaneously. Over the years, scientists and engineers have been evaluating concepts for astronomical observatories that use future large launch vehicles. In this presentation, we report on results of a recent workshop held at NASA Ames Research Center that have improved understanding of the science goals that can be achieved using Ares V. While such a vehicle uniquely enables few of the observatory concepts considered at the workshop, most have a baseline mission that can be flown on existing or near-future vehicles. However, the performance of the Ares V permits design concepts (e.g., large monolithic mirrors) that reduce complexity and risk.

  19. Astronomical catalog desk reference, 1994 edition

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Astronomical Catalog Desk Reference is designed to aid astronomers in locating machine readable catalogs in the Astronomical Data Center (ADC) archives. The key reference components of this document are as follows: A listing of shortened titles for all catalogs available from the ADC (includes the name of the lead author and year of publication), brief descriptions of over 300 astronomical catalogs, an index of ADC catalog numbers by subject keyword, and an index of ADC catalog numbers by author. The heart of this document is the set of brief descriptions generated by the ADC staff. The 1994 edition of the Astronomical Catalog Desk Reference contains descriptions for over one third of the catalogs in the ADC archives. Readers are encouraged to refer to this section for concise summaries of those catalogs and their contents.

  20. Computer version of astronomical ephemerides.

    NASA Astrophysics Data System (ADS)

    Choliy, V. Ya.

    A computer version of astronomical ephemerides for bodies of the Solar System, stars, and astronomical phenomena was created at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomy and Cosmic Physics Department of the Taras Shevchenko National University. The ephemerides will be distributed via INTERNET or in the file form. This information is accessible via the web servers space.ups.kiev.ua and alfven.ups.kiev.ua or the address choliy@astrophys.ups.kiev.ua.

  1. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  2. NASA Unveils Celestial Fireworks as Official Image for Hubble 25th Anniversary

    NASA Image and Video Library

    2015-04-23

    The brilliant tapestry of young stars flaring to life resemble a glittering fireworks display in the 25th anniversary NASA Hubble Space Telescope image, released to commemorate a quarter century of exploring the solar system and beyond since its launch on April 24, 1990. “Hubble has completely transformed our view of the universe, revealing the true beauty and richness of the cosmos” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate. “This vista of starry fireworks and glowing gas is a fitting image for our celebration of 25 years of amazing Hubble science.” The sparkling centerpiece of Hubble’s anniversary fireworks is a giant cluster of about 3,000 stars called Westerlund 2, named for Swedish astronomer Bengt Westerlund who discovered the grouping in the 1960s. The cluster resides in a raucous stellar breeding ground known as Gum 29, located 20,000 light-years away from Earth in the constellation Carina. Read more: www.nasa.gov/press-release/nasa-unveils-celestial-firewor... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA's MESSENGER Finds New Evidence for Water Ice at Mercury's Poles

    NASA Image and Video Library

    2017-12-08

    more go to: 1.usa.gov/TtNwM2 Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre

    2018-04-01

    This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  5. Amateur Astronomers: Secret Agents of EPO

    NASA Astrophysics Data System (ADS)

    Berendsen, M.; White, V.; Devore, E.; Reynolds, M.

    2008-06-01

    Amateur astronomers prime the public to be more interested, receptive, and excited about space science, missions, and programs. Through recent research and targeted programs, amateur astronomy outreach is being increasingly recognized by professional astronomers, educators, and other amateurs as a valued and important service. The Night Sky Network program, administered by the ASP, is the first nationwide research-based program specifically targeted to support outreach by amateur astronomers. This Network of trained and informed amateur astronomers can provide a stimulating introduction to your EPO programs as Network members share the night sky with families, students, and youth groups.

  6. Armenian Astronomical Society Annual Activities in 2014

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    A report is given on the achievements of the Armenian astronomy during the last year and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, annual meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, summer schools, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, astronomy outreach and ArAS further projects are discussed. The present meeting, BAO Science Camp, ArAS School lectures are among 2014 events as well.

  7. Hubble Finds Supernova Companion Star after Two Decades of Searching

    NASA Image and Video Library

    2017-12-08

    This is an artist's impression of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a double-star system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. The Hubble Space Telescope identified the ultraviolet glow of the surviving companion embedded in the fading glow of the supernova. More info: Using NASA’s Hubble Space Telescope, astronomers have discovered a companion star to a rare type of supernova. The discovery confirms a long-held theory that the supernova, dubbed SN 1993J, occurred inside what is called a binary system, where two interacting stars caused a cosmic explosion. "This is like a crime scene, and we finally identified the robber," said Alex Filippenko, professor of astronomy at University of California (UC) at Berkeley. "The companion star stole a bunch of hydrogen before the primary star exploded." SN 1993J is an example of a Type IIb supernova, unusual stellar explosions that contains much less hydrogen than found in a typical supernova. Astronomers believe the companion star took most of the hydrogen surrounding the exploding main star and continued to burn as a super-hot helium star. “A binary system is likely required to lose the majority of the primary star’s hydrogen envelope prior to the explosion. The problem is that, to date, direct observations of the predicted binary companion star have been difficult to obtain since it is so faint relative to the supernova itself,” said lead researcher Ori Fox of UC Berkeley. Read more: 1.usa.gov/1Az5Qb9 Credit: NASA, ESA, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  8. Astronomical Data Center Bulletin, volume 1, no. 1

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr. (Editor); Nagy, T. A. (Editor); Mead, J. M. (Editor)

    1980-01-01

    Information about work in progress on astronomical catalogs is presented. In addition to progress reports, an upadated status list for astronomical catalogs available at the Astronomical Data Center is included. Papers from observatories and individuals involved with astronomical data are also presented.

  9. NASA's Hubble Celebrates 21st Anniversary with "Rose" of Galaxies

    NASA Image and Video Library

    2017-12-08

    NASA image release April 20, 2011 To see a video of this image go here: www.flickr.com/photos/gsfc/5637796622 To celebrate the 21st anniversary of the Hubble Space Telescope's deployment into space, astronomers at the Space Telescope Science Institute in Baltimore, Md., pointed Hubble's eye at an especially photogenic pair of interacting galaxies called Arp 273. The larger of the spiral galaxies, known as UGC 1810, has a disk that is distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. This image is a composite of Hubble Wide Field Camera 3 data taken on December 17, 2010, with three separate filters that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum. Hubble was launched April 24, 1990, aboard Discovery's STS-31 mission. Hubble discoveries revolutionized nearly all areas of current astronomical research from planetary science to cosmology. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) To read more about this image go here: www.nasa.gov/mission_pages/hubble/science/hubble-rose.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  10. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  11. A website for astronomical news in Spanish

    NASA Astrophysics Data System (ADS)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  12. Advances in Exoplanet Observing by Amateur Astronomers (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.

    2017-06-01

    (Abstract only) This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.

  13. Astronomical Data Center Bulletin, volume 1, number 2

    NASA Technical Reports Server (NTRS)

    Nagy, T. A.; Warren, W. H., Jr.; Mead, J. M.

    1981-01-01

    Work in progress on astronomical catalogs is presented in 16 papers. Topics cover astronomical data center operations; automatic astronomical data retrieval at GSFC; interactive computer reference search of astronomical literature 1950-1976; formatting, checking, and documenting machine-readable catalogs; interactive catalog of UV, optical, and HI data for 201 Virgo cluster galaxies; machine-readable version of the general catalog of variable stars, third edition; galactic latitude and magnitude distribution of two astronomical catalogs; the catalog of open star clusters; infrared astronomical data base and catalog of infrared observations; the Air Force geophysics laboratory; revised magnetic tape of the N30 catalog of 5,268 standard stars; positional correlation of the two-micron sky survey and Smithsonian Astrophysical Observatory catalog sources; search capabilities for the catalog of stellar identifications (CSI) 1979 version; CSI statistics: blue magnitude versus spectral type; catalogs available from the Astronomical Data Center; and status report on machine-readable astronomical catalogs.

  14. NASA's Hubble Shows Jupiter's Great Red Spot is Smaller than Ever

    NASA Image and Video Library

    2014-05-15

    An image of Jupiter's Great Red Spot taken in 2014 with Hubble's WFC3 camera. The spot has a diameter here of 16 000km. -- Jupiter's trademark Great Red Spot -- a swirling anti-cyclonic storm larger than Earth -- has shrunk to its smallest size ever measured. According to Amy Simon of NASA's Goddard Space Flight Center in Greenbelt, Maryland, recent NASA Hubble Space Telescope observations confirm the Great Red Spot now is approximately 10,250 miles across. Astronomers have followed this downsizing since the 1930s. Historic observations as far back as the late 1800s gauged the storm to be as large as 25,500 miles on its long axis. NASA Voyager 1 and Voyager 2 flybys of Jupiter in 1979 measured it to be 14,500 miles across. In 1995, a Hubble photo showed the long axis of the spot at an estimated 13,020 miles across. And in a 2009 photo, it was measured at 11,130 miles across. Beginning in 2012, amateur observations revealed a noticeable increase in the rate at which the spot is shrinking -- by 580 miles per year -- changing its shape from an oval to a circle. Read more: 1.usa.gov/1mvuo0R Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. NASA's Hubble Shows Jupiter's Great Red Spot is Smaller than Ever

    NASA Image and Video Library

    2014-05-15

    This full-disc image of Jupiter was taken on 21 April 2014 with Hubble's Wide Field Camera 3 (WFC3). -- Jupiter's trademark Great Red Spot -- a swirling anti-cyclonic storm larger than Earth -- has shrunk to its smallest size ever measured. According to Amy Simon of NASA's Goddard Space Flight Center in Greenbelt, Maryland, recent NASA Hubble Space Telescope observations confirm the Great Red Spot now is approximately 10,250 miles across. Astronomers have followed this downsizing since the 1930s. Historic observations as far back as the late 1800s gauged the storm to be as large as 25,500 miles on its long axis. NASA Voyager 1 and Voyager 2 flybys of Jupiter in 1979 measured it to be 14,500 miles across. In 1995, a Hubble photo showed the long axis of the spot at an estimated 13,020 miles across. And in a 2009 photo, it was measured at 11,130 miles across. Beginning in 2012, amateur observations revealed a noticeable increase in the rate at which the spot is shrinking -- by 580 miles per year -- changing its shape from an oval to a circle. Read more: 1.usa.gov/1mvuo0R Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  17. Using XML and Java for Astronomical Instrument Control

    NASA Astrophysics Data System (ADS)

    Koons, L.; Ames, T.; Evans, R.; Warsaw, C.; Sall, K.

    1999-12-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests. Instrument description is too tightly coupled with details of implementation. NASA/Goddard Space Flight Center and AppNet, Inc. are developing a very general and highly extensible framework that applies to virtually any kind of instrument that can be controlled by a computer (e.g., telescopes, microscopes and printers). A key aspect of the object-oriented architecture, implemented in Java, involves software that is driven by an instrument description. The Astronomical Instrument Markup Language (AIML) is a domain-specific implementation of the more generalized Instrument Markup Language (IML). The software architecture combines the platform-independent processing capabilities of Java with the vendor-independent data description syntax of Extensible Markup Language (XML), a human-readable and machine-understandable way to describe structured data. IML is used to describe command sets (including parameters, datatypes, and constraints) and their associated formats, telemetry, and communication mechanisms. The software uses this description to present graphical user interfaces to control and monitor the instrument. Recent efforts have extended to command procedures (scripting) and representation of data pipeline inputs, outputs, and connections. Near future efforts are likely to include an XML description of data visualizations, as well as the potential use of XSL (Extensible Stylesheet Language) to permit astronomers to customize the user interface on several levels: per user, instrument, subsystem, or observatory-wide. Our initial prototyping effort was targeted for HAWC (High-resolution Airborne Wideband Camera), a first-light instrument of SOFIA (the Stratospheric Observatory for Infrared Astronomy

  18. Applications of Digital Micromirror Devices to Astronomical Instrumentation

    NASA Astrophysics Data System (ADS)

    Robberto, M.

    MEMS devices are among the major technological breakthroughs of the last two decades. Besides finding widespread use in high-tech and consumer market electronics, MEMS enable new types of astronomical instruments. I concentrate on Digital Micromirror Devices, which have been already adopted in astronomy and can enable scientific investigations that would otherwise remain beyond our technical capabilities.

  19. DeepLensing: The Use of Deep Machine Learning to Find Strong Gravitational Lenses in Astronomical Surveys

    NASA Astrophysics Data System (ADS)

    Nord, Brian

    2017-01-01

    Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.

  20. The First Astronomical Observatory in Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  1. Storing Astronomical Information on the Romanian Territory

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.; Mioc, V.

    2004-12-01

    Romanian astronomy has a more than 2000-year old tradition, which is, however, little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia, erected in the first century AD, having similarities with that of Stonehenge. After a gap of more than 1000 years, more sources of astronomical information become available, mainly records of astronomical events. Monasteries were the safest storage places of these genuine archives. We present a classification of the ways of storing astronomical information, along with characteristic examples.

  2. IYL Blog: Astronomers travel in time and space with light

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2015-01-01

    also using light to find out whether we are alone in the universe. The Kepler observatory showed that thousands of stars blink a little when their orbiting planets pass between us and them, and other observatories use light to measure the wobble of stars as their planets pull on them. Eventually, we will find out whether planets like Earth have atmospheres like Earth's too - with water, carbon dioxide, oxygen, methane, and other gases that would be evidence of photosynthetic life. I think in a few decades we will have evidence that some planets do have life, and it will be done using light for remote chemical analysis. Also, astronomers at the SETI project are using light (long wavelength light we can pick up with radio telescopes) to look for signals from intelligent civilizations. That's a harder project because we don't know what to look for. But if we wanted to send signals all the way across the Milky Way, we could do it with laser beams, and if somebody over there knew what to look for, he or she could decode the message. On with the search! Dr. John C. Mather is a Senior Astrophysicist and is the Senior Project Scientist for the James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, MD. His research centers on infrared astronomy and cosmology. With the Cosmic Background Explorer (COBE) team, he showed that the cosmic microwave background radiation has a blackbody spectrum within 50 parts per million, confirming the expanding universe model (aka the Big Bang Theory) to extraordinary accuracy, and initiating the study of cosmology as a precision science. The COBE team also made the first map of the hot and cold spots in the background radiation. The COBE maps have been confirmed and improved by two succeeding space missions, the Wilkinson Microwave Anisotropy Probe (WMAP, built by GSFC with Princeton University), and the Planck mission built by ESA. Based on these maps, astronomers have now developed a "standard model" of cosmology and have

  3. AAS Publishing News: Astronomical Software Citation Workshop

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.

  4. NASA Satellites Find High-Energy Surprises in 'Constant' Crab Nebula

    NASA Image and Video Library

    2011-01-12

    NASA image release January 12, 2010 NASA's Chandra X-ray Observatory reveals the complex X-ray-emitting central region of the Crab Nebula. This image is 9.8 light-years across. Chandra observations were not compatible with the study of the nebula's X-ray variations. To read more go to: geeked.gsfc.nasa.gov/?p=4945 Credit: NASA/CXC/SAO/F. Seward et al. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  5. Storing Astronomical Information on the Romanian Territory

    NASA Astrophysics Data System (ADS)

    Stavinschi, Magda; Mioc, Vasile

    The Romanian astronomy has a more than 2000-year old tradition which is however too little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia very similar to that of Stonehenge. After a gap of more than 1000 years sources of astronomical information became to be recovered. They consist mainly of records of astronomical events seen on the Romanian territory. The most safe places to store these genuine archives were the monasteries. We present a classification of the manners of storing astronomical information along with characteristic examples.

  6. Reaching for the Stars: NASA Space Science for Girl Scouts (Girl Scout Stars)

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.; Harman, P. K.; Berg, J.; Friedman, W.; Fahy, J.; Henricks, J.; Chin, W.; Hudson, A.; Grissom, C.; Lebofsky, L. A.; McCarthy, D.; Gurton, S. P.; White, V.; Summer, T.; Mayo, L.; Patel, R.; Bass, K.

    2016-12-01

    Girl Scout Stars aims to enhance science, technology, engineering and mathermatics (STEM) experiences for Girl Scouts in grades K-12 through the national Girl Scout Leadership Experience. New space science badges are being created for every Girl Scout level. Using best practices, we engage girls and volunteers with the fundamental STEM concepts that underpin our human quest to explore the universe. Through early and sustained exposure to the people and assets of NASA and the excitement of NASA's Mission, they explore STEM content, discoveries, and careers. Today's tech savvy Girl Scout volunteers prefer just-in-time materials and asynchronous learning. The Girl Scout Volunteer Tool Kit taps into the wealth of online materials provided by NASA for the new space science badges. Training volunteers supports troop activities for the younger girls. For older girls, we enhance Girl Scout summer camp activities, support in-depth experiences at University of Arizona's Astronomy Camp, and "Destination" events for the 2017 total solar eclipse. We partner with the Night Sky Network to engage amateur astronomers with Girl Scouts. Univeristy of Arizona also leads Astronomy Camp for Girl Scout volunteers. Aires Scientific leads eclipse preparation and summer sessions at NASA Goddard Space Flight Center for teams of volunteers, amateur astronomers and older Girl Scouts. There are 1,900,000 Girl Scouts and 800,000 volunteers in the USA. During development, we work with the Girl Scouts of Northern California (50,000 girl members and 31,000 volunteers) and expand across the USA to 121 Girl Scout councils over five years. SETI Institute leads the experienced space science educators and scientists at Astronomical Society of the Pacific, University of Arizona, and Aires Scientific. Girl Scouts of the USA leads dissemination of Girl Scout Stars to Councils across the USA with support of Girl Scouts of Northern California. Through professional development of Girl Scout volunteers, Girl

  7. Mingantu, 18th-Century Mongol Astronomer and Radioheliograph Namesake

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2013-01-01

    The 18th-century Mongol astronomer Mingantu (1692-1765) has been honored with a city named after him and a nearby solar telescope array. During the IAU/Beijing, my wife and I went to the new Chinese solar radioheliograph, the Mingantu Observing Station, in Inner Mongolia, ~400 km northwest of Beijing, a project of the National Astronomical Observatories, Chinese Academy of Sciences. It currently contains 40 dishes each 4.5 m across, with a correlator from Beijing. Within a year, 60 2-m dishes will be added. We passed by the 12-century ruins of Xanadu (about 20 km north of Zhangbei) about halfway. The radioheliograph is in a plane about 1 km across, forming a three-armed spiral for interferometric solar mapping, something colleagues and I had carried out with the Jansky Very Large Array, taking advantage of the lunar occultation before annularity at the 20 May 2012 solar eclipse. In the central square of Mingantu city, a statue ~10-m high of the Mongol astronomer Mingantu appears. Its base bears a plaque ~1-m high of IAU Minor Planet Circular MPC 45750 announcing the naming in 2002 of asteroid 28242 Mingantu, discovered at a Chinese observatory in 1999. Mingantu carried out orbital calculations, mapping, mathematical work on infinite series, and other scientific research. He is honored by a modern museum behind the statue. The museum's first 40% describes Mingantu and his work, and is followed by some artifacts of the region from thousands of years ago. The final, large room contains a two-meter-square scale model of the radioheliograph, flat-screen televisions running Solar Dynamics Observatory and other contemporary visualizations, orreries and other objects, and large transparencies of NASA and other astronomical imagery. See my post at http://www.skyandtelescope.com/community/skyblog/newsblog/ specfically Astro-Sightseeing_in_Inner_Mongolia-167712965.html. We thank Yihua Yan for arranging the visit and Wang Wei (both NAOC) for accompanying us. My solar research

  8. On astronomical drawing [1846

    NASA Astrophysics Data System (ADS)

    Smyth, Charles Piazzi

    Reprinted from the Memoirs of the Royal Astronomical Society 15, 1846, pp. 71-82. With annotations and illustrations added by Klaus Hentschel. The activities of the Astronomer Royal for Scotland, Charles Piazzi Smyth (1819-1900), include the triangulation of South African districts, landscape painting, day-to-day or tourist sketching, the engraving and lithographing of prominent architectural sites, the documentary photography of the Egyptian pyramids or the Tenerife Dragon tree, and `instant photographs' of the clouds above his retirement home in Clova, Ripon. His colorful records of the aurora polaris, and solar and terrestrial spectra all profited from his trained eye and his subtle mastery of the pen and the brush. As his paper on astronomical drawing, which we chose to reproduce in this volume, amply demonstrates, he was conversant in most of the print technology repertoire that the 19th century had to offer, and carefully selected the one most appropriate to each sujet. For instance, he chose mezzotint for the plates illustrating Maclear's observations of Halley's comet in 1835/36, so as to achieve a ``rich profundity of shadows, the deep obscurity of which is admirably adapted to reproduce those fine effects of chiaroscuro frequently found in works where the quantity of dark greatly predominates.'' The same expertise with which he tried to emulate Rembrandt's chiaroscuro effects he applied to assessing William and John Herschel's illustrations of nebulae, which appeared in print between 1811 and 1834. William Herschel's positive engraving, made partly by stippling and partly by a coarse mezzotint, receives sharp admonishment because of the visible ruled crossed lines in the background and the fact that ``the objects, which are also generally too light, [have] a much better definition than they really possess.'' On the other hand, John Herschel's illustration of nebulae and star clusters, given in negative, ``in which the lights are the darkest part of the

  9. International Schools for Young Astronomers Teaching for Astronomy Development: two programmes of the International Astronomical Union

    NASA Astrophysics Data System (ADS)

    Gerbaldi, Michèle; DeGreve, Jean-Pierre; Guinan, Edward

    2011-06-01

    This text outlines the main features of two educational programmes of the International Astronomical Union (IAU): the International Schools for Young Astronomers (ISYA) and the Teaching for Astronomy Development programme (TAD), developed since 1967. The main goal of the International Schools for Young Astronomers (ISYA) is to support astronomy (education and research) in developing countries in organizing a 3-week School for students with typically M.Sc. degrees. The context in which the ISYA were developed changed drastically during the last decade. From a time when access to large telescopes was difficult and mainly organized on a nation-basis, nowadays the archives of astronomical data have accumulated at the same time that many major telescope become accessible, and they are accessible from everywhere, the concept of virtual observatory reinforcing this access. A second programme of the IAU, Teaching for Astronomy Development (TAD), partially based on a School, but also of shorter duration (typically one week) has a complementary objective. It is dedicated to assist countries that have little or no astronomical activity, but that wish to enhance their astronomy education. The fast development of the TAD programme over the past years is emphasized.

  10. Interstellar PAH Analogs in the Laboratory: Comparison with Astronomical Data

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the near-UV and visible range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations will also be presented.

  11. What Lies Behind NSF Astronomer Demographics? Subjectivities of Women, Minorities and Foreign-born Astronomers within Meshworks of Big Science Astronomy

    NASA Astrophysics Data System (ADS)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L. F.; Traweek, S.

    2011-01-01

    Our current research focuses on the trajectory of scientists working with large-scale databases in astronomy, following them as they strategically build their careers, digital infrastructures, and make their epistemological commitments. We look specifically at how gender, ethnicity, nationality intersect in the process of subject formation in astronomy, as well as in the process of enrolling partners for the construction of instruments, design and implementation of large-scale databases. Work once figured as merely technical support, such assembling data catalogs, or as graphic design, generating pleasing images for public support, has been repositioned at the core of the field. Some have argued that such databases enable a new kind of scientific inquiry based on data exploration, such as the "fourth paradigm" or "data-driven" science. Our preliminary findings based on oral history interviews and ethnography provide insights into meshworks of women, African-American, "Hispanic," Asian-American and foreign-born astronomers. Our preliminary data suggest African-American men are more successful in sustaining astronomy careers than Chicano and Asian-American men. A distinctive theme in our data is the glocal character of meshworks available to and created by foreign-born women astronomers working at US facilities. Other data show that the proportion of Asian to Asian American and foreign-born Latina/o to Chicana/o astronomers is approximately equal. Futhermore, Asians and Latinas/os are represented in significantly greater numbers than Asian Americans and Chicanas/os. Among professional astronomers in the US, each ethnic minority group is numbered on the order of tens, not hundreds. Project support is provided by the NSF EAGER program to University of California, Los Angeles under award 0956589.

  12. GNAT: A Global Network of Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Crawford, David L.

    1995-12-01

    Astronomical resources are increasingly directed toward development of very large telescopes, and many facilities are compelled to cease operations of smaller telescopes. A real concern is emerging with respect to issues of access to astronomical imaging systems for the majority of astronomers who will have little or no opportunity to work with the larger telescopes. Further concern is developing with regard to the means for conducting observationally intensive fundamental astronomical imaging programs, such as surveys, monitoring, and standards calibration. One attractive potential solution is a global network of (automated) astronomical telescopes (GNAT). Initial steps have been taken to turn this network into a reality. GNAT has been incorporated as a nonprofit corporation, membership drives have begun and several institutions have joined. The first two open GNAT meetings have now been held to define hardware and software systems, and an order has been placed for the first of the GNAT automated telescopes. In this presentation we discuss the goals and status of GNAT and its implications for astronomical imaging.

  13. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  14. Franklin Edward Kameny (1925-2011, Astronomer)

    NASA Astrophysics Data System (ADS)

    Wright, Jason

    2012-01-01

    Dr. Frank Kameny is best known today as one of the most important members of the gay rights movement in the United States, but he was also a PhD astronomer. In fact, it was his firing from his civil service position as astronomer for the US Army Map Service on the grounds of homosexuality that sparked his lifelong career of activism. Here, I explore some aspects of his short but interesting astronomical career and the role of the AAS in his life.

  15. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. The League of Astronomers

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Brandel, A.; Paat, A. M.; Schmitz, D.; Sharma, R.; Trujillo, J.; Laws, C. S.

    2014-01-01

    The League of Astronomers is committed to engaging the University of Washington (UW) and the greater Seattle communities through outreach, research, and events. Since its re-founding two years ago, the LOA has provided a clear connection between the UW Astronomy Department, undergraduate students, and members of the public. Weekly outreach activities such as public star parties and planetarium talks in both the UW Planetarium and the Mobile Planetarium have connected enthusiastic LOA volunteers with hundreds of public observers. In addition, collaboration with organizations like the Seattle Astronomical Society and the UW Society of Physics Students has allowed the LOA to reach an even greater audience. The club also provides opportunities for undergraduate students to participate in research projects. The UW Student Radio Telescope (SRT) and the Manastash Ridge Observatory (MRO) both allow students to practice collecting their own data and turning it into a completed project. Students have presented many of these research projects at venues like the UW Undergraduate Research Symposium and meetings of the American Astronomical Society. For example, the LOA will be observing newly discovered globular clusters at the Dominion Astrophysical Observatory (DAO) in Victoria, B.C. and constructing color-magnitude diagrams. The LOA also helps engage students with the Astronomy major through a variety of events. Bimonthly seminars led by graduate students on their research and personal experiences in the field showcase the variety of options available for students in astronomy. Social events hosted by the club encourage peer mentoring and a sense of community among the Astronomy Department’s undergraduate and graduate students. As a part of one of the nation’s largest undergraduate astronomy programs, members of the League of Astronomers have a unique opportunity to connect and interact with not only the Seattle public but also the greater astronomical community.

  17. Astronomical data analysis software and systems I; Proceedings of the 1st Annual Conference, Tucson, AZ, Nov. 6-8, 1991

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)

    1992-01-01

    Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.

  18. Old Star's "Rebirth" Gives Astronomers Surprises

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the

  19. The Victorian Amateur Astronomer: Independent Astronomical Research in Britain 1820-1920

    NASA Astrophysics Data System (ADS)

    Chapman, Allan

    1999-01-01

    This is the first book to look in detail at amateur astronomy in Victorian Britain. It deals with the technical issues that were active in Victorian astronomy, and reviews the problems of finance, patronage and the dissemination of scientific ideas. It also examines the relationship between the amateur and professional in Britain. It contains a wealth of previously unpublished biographical and anecdotal material, and an extended bibliography with notes incorporating much new scholarship. In The Victorian Amateur Astronomer, Allan Chapman shows that while on the continent astronomical research was lavishly supported by the state, in Britain such research was paid for out of the pockets of highly educated, wealthy gentlemen the so-called Grand Amateurs . It was these powerful individuals who commissioned the telescopes, built the observatories, ran the learned societies, and often stole discoveries from their state-employed colleagues abroad. In addition to the Grand Amateurs , Victorian Britain also contained many self-taught amateurs. Although they belonged to no learned societies, these people provide a barometer of the popularity of astronomy in that age. In the late 19th century, the comfortable middle classes clergymen, lawyers, physicians and retired military officers took to astronomy as a serious hobby. They formed societies which focused on observation, lectures and discussions, and it was through this medium that women first came to play a significant role in British astronomy. Readership: Undergraduate and postgraduate students studying the history of science or humanities, professional historians of science, engineering and technology, particularly those with an interest in astronomy, the development of astronomical ideas, scientific instrument makers, and amateur astronomers.

  20. The Production Rate and Employment of Ph.D. Astronomers

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2008-02-01

    In an effort to encourage self-regulation of the astronomy job market, I examine the supply of, and demand for, astronomers over time. On the supply side, I document the production rate of Ph.D. astronomers from 1970 to 2006 using the UMI Dissertation Abstracts database, along with data from other independent sources. I compare the long-term trends in Ph.D. production with federal astronomy research funding over the same time period, and I demonstrate that additional funding is correlated with higher subsequent Ph.D. production. On the demand side, I monitor the changing patterns of employment using statistics about the number and types of jobs advertised in the AAS Job Register from 1984 to 2006. Finally, I assess the sustainability of the job market by normalizing this demand by the annual Ph.D. production. The most recent data suggest that there are now annual advertisements for about one postdoctoral job, half a faculty job, and half a research/support position for every new domestic Ph.D. recipient in astronomy and astrophysics. The average new astronomer might expect to hold up to 3 jobs before finding a steady position.

  1. Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars)

    NASA Astrophysics Data System (ADS)

    DeVore, Edna; Harman, Pamela; Girl Scouts of the USA; Girl Scouts of Northern California; University of Arizona; Astronomical Society of the Pacific; Aires Scientific

    2017-01-01

    Girl Scout Stars aims to enhance STEM experiences for Girl Scouts in grades K-12. New space science badges are being created for every Girl Scout level. Using best practices, we engage girls and volunteers with the fundamental STEM concepts that underpin our human quest to explore the universe. Through early and sustained exposure to the people and assets of NASA and the excitement of NASA’s Mission, they explore STEM content, discoveries, and careers. Today’s tech savvy Girl Scout volunteers prefer just-in-time materials and asynchronous learning. The Volunteer Tool Kit taps into the wealth of NASA's online materials for the new space science badges. Training volunteers supports troop activities for the younger girls. For older girls, we enhance Girl Scout summer camp activities, support in-depth experiences at Univ. of Arizona’s Astronomy Camp, and “Destination” events for the 2017 total solar eclipse. We partner with the Night Sky Network to engage amateur astronomers with Girl Scouts. Univ. of Arizona also leads Astronomy Camp for Girl Scout volunteers. Aires Scientific leads eclipse preparation and summer sessions at NASA Goddard Space Flight Center for teams of volunteers, amateur astronomers and older Girl Scouts.There are 1,900,000 Girl Scouts and 800,000 volunteers in the USA. During development, we work with the Girl Scouts of Northern California (50,000 girl members and 31,000 volunteers) and expand across the USA to 121 Girl Scout councils over five years. SETI Institute leads the space science educators and scientists at Astronomical Society of the Pacific, Univ. of Arizona, and Aires Scientific. Girl Scouts of the USA leads dissemination of Girl Scout Stars with support of Girl Scouts of Northern California. Through professional development of Girl Scout volunteers, Girl Scout Stars enhances public science literacy. Girl Scout Stars supports the NASA Science Mission Directorate Science Education Objectives and NASA’s STEM Engagement and

  2. NASA Observatory Confirms Black Hole Limits

    NASA Astrophysics Data System (ADS)

    2005-02-01

    cosmic time. Such "cosmic downsizing" was previously observed for galaxies undergoing star formation. These results connect well with the observations of nearby galaxies, which find that the mass of a supermassive black hole is proportional to the mass of the central region of its host galaxy. The other co-authors on the paper in the February 2005 issue of The Astronomical Journal were Len Cowie, Wei-Hao Wang, and Peter Capak (Institute for Astronomy, Univ. of Hawaii), Yuxuan Yang (GSFC and the Univ. of Maryland, College Park), and Aaron Steffen (Univ. of Wisconsin, Madison). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Space Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  3. NASA's Swift Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Cominsky, L. R.; Graves, T.; Plait, P.; Silva, S.; Simonnet, A.

    2004-08-01

    Few astronomical objects excite students more than big explosions and black holes. Gamma Ray Bursts (GRBs) are both: powerful explosions that signal the births of black holes. NASA's Swift satellite mission, set for launch in Fall 2004, will detect hundreds of black holes over its two-year nominal mission timeline. The NASA Education and Public Outreach (E/PO) group at Sonoma State University is leading the Swift E/PO effort, using the Swift mission to engage students in science and math learning. We have partnered with the Lawrence Hall of Science to create a ``Great Explorations in Math and Science" guide entitled ``Invisible Universe: from Radio Waves to Gamma Rays," which uses GRBs to introduce students to the electromagnetic spectrum and the scale of energies in the Universe. We have also created new standards-based activities for grades 9-12 using GRBs: one activity puts the students in the place of astronomers 20 years ago, trying to sort out various types of stellar explosions that create high-energy radiation. Another mimics the use of the Interplanetary Network to let students figure out the direction to a GRB. Post-launch materials will include magazine articles about Swift and GRBs, and live updates of GRB information to the Swift E/PO website that will excite and inspire students to learn more about space science.

  4. Development and Flight-testing of Astronomical Instrumentation for Future NASA Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin

    We propose a four year suborbital research program to continue the University of Colorado's efforts in the development and flight testing of instrument designs and critical path technologies for ultraviolet spectroscopy in support of future NASA Explorer, Probe-, and Flagship-class missions. This proposal builds on our existing program of high-resolution spectroscopy for the 100 - 160 nm bandpass with the development of a new high-efficiency imaging spectrograph operating in the same band. The ultimate goal of the University of Colorado ultraviolet rocket program is to develop the technical capabilities to enable a future, highly multiplexed ultraviolet spectrograph (with both high-resolution and imaging spectroscopy modes), e.g., an analog to the successful HST-STIS instrument, with an order-of-magnitude higher efficiency. We do this in the framework of a university led program where undergraduate, graduate, and postdoctoral training is paramount and cutting edge science investigations support our baseline technology development program. In the proposed effort, we will optimize our high-resolution (R > 100,000) echelle spectrograph payload (CHESS) with the first science flight of a new, large-format CCD array provided by our collaborators at JPL and Arizona State University. We will launch CHESS to study our local interstellar environment with spectral resolving power and bandpass that cannot be achieved with any suite of current or planned space missions. In parallel with the proposed science flights of CHESS, we will design, calibrate, and launch a new high-throughput imaging spectrograph (SISTINE); the first sub-arcsecond imaging, medium spectral resolution (R = 10,000), spectrograph ever flown with spectral coverage over the entire 100 - 160 nm bandpass. SISTINE incorporates several novel optical technologies that were highlighted as major hardware drivers for NASA's next large ultraviolet/optical/near-IR observatory by the 2014 Cosmic Origins Technology

  5. Communicating the Science of Global Warming — the Role of Astronomers

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  6. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  7. Reporting Astronomical Discoveries: Past, Now, and Future

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Green, Daniel W. E.; Samus, Nikolai N.; West, Richard

    2015-08-01

    Many new astronomical objects have been discovered over the years by amateur astronomers, and this continues to be the case. They have traditionally reported them (as have professional astronomers) to the Central Bureau for Astronomical Telegrams (CBAT), which was established in the 19th century. This procedure has worked very well throughout the 20th century, moving under the umbrella of the newly established IAU in 1920. The discoverers have been honored by the formal announcement of their discoveries in the publications of the CBAT.In recent years, some professional research groups have established other ways of announcing their discoveries of explosive objects such as novae and supernovae; some do not now report their discoveries or spectroscopic confirmations of the transients to the CBAT, including often spectroscopic reports of objects posted to the CBAT "Transient Objects Confirmation Page" -- the highly successful TOCP webpage, which assigns official positional designations to new transients posted there by approved, registered users. This leads to a delay in formal announcements of discoveries by amateur astronomers in many cases, as well as inconsistent designations being put into use by individual groups. Amateur astronomers are feeling frustrated about this situation, and they hope that the IAU will help to settle the situation.We have proposed the new IAU commission NC-52, which will treat these phenomena in a continuation of Commission 6, through the CBAT. We hope to continuously support the reporting of the discoveries by amateur astronomers, as well as professional astronomers, who all deserve and desire proper recognition. Our strategy will maintain the firm trust between the amateur and professional astronomers, which is necessary for true collaboration. The plan is for the CBAT to work with collaborators to assure that discoveries posted on the TOCP are promptly designated and announced by the CBAT, even when confirmations are made elsewhere

  8. Some new astronomical facilities in China

    NASA Astrophysics Data System (ADS)

    Wang, Shouguan

    1989-10-01

    For the 1990's, plans for some astronomical facilities and related research are being carried out in China. This report describes in some detail plans for radio astronomical facilities, a 150/220 cm Schmidt telescope, and experiments on a porcelain mirror material.

  9. International Astronomical-Cultural Initiatives and Ukrainian Astronomical Heritage in the Context of World Heritage

    NASA Astrophysics Data System (ADS)

    Kazantseva, L.

    2011-09-01

    Astronomy as science of world view has left its mark in many areas of human culture. Astronomical movable and immovable monuments as cultural and scientific content recently started to be studied carefully, and finally receive their recognition for their further preservation. Various international organizations have initiated a diverse case studies of these monuments, produced some recommendations for their organization, typology, division into periods. In joint programs, experts of IAU, UNESCO, ICOMOS elaborate criteria for selection of monuments of global significance. Complete study of astronomical sights will allow to consider the history of scientific knowledge dissemination in time and in space. Ukraine has also carefully examined their stored astronomical monuments scattered in astronomical observatories, libraries, archives, museums, university collections, architectural ensembles, archaeological parks and cemeteries. In conditions of instability and crises it is important to establish uniqueness or typicality of certain historical sites, to study their characteristics and identity, relationship with global trends that will enable their successful promotion and protection. Part of these research works are conducted in our observatories, but not as intensively as in other countries. They have not engaged in related industries and professionals authorized state institutions. Not having used an active effort in this case, we can stay behind the big international project for study the intellectual and cultural heritage.

  10. Relativistic problems on astronomical constants.

    NASA Astrophysics Data System (ADS)

    Tao, Jinhe; Huang, Tianyi

    1999-06-01

    The fact that modern astronomical observational technique has made rapid progress and the 1PN approximation of general relativity has been extensively applied in celestial mechanics and astrometry, makes it is necessary to investigate and examine the system of astronomical constants carefully and rigorously in the relativistic framework. The mass of a celestial body in the solar system should be defined as its BD mass that changes relatively in an amount less than 10-19 and could be considered as a constant. The equations satisfied by the gravitational potentials are not Poisson equations anymore but depend on the choice of the coordinate gauge. Therefore the gravitational potentials cannot be expanded in the traditional harmonics. It is neccessary to choose the coordinate gauge and take BD multipole moments as astronomical constants. The obliquity of the ecliptic has been determined in high precision and it would be neccessary to give a conventional definition of the 1PN ecliptic. A relativistic definition of the geoid is important and left to be discussed. The astronomical constants that relate the units of time and length have been clearly defined but need to be clarified to avoid their misuse.

  11. Johann Leonhard Rost, "novelist" and astronomer; (German Title: Johann Leonhard Rost, "Romanist" und Astronom)

    NASA Astrophysics Data System (ADS)

    Gaab, Hans; Simons, Olaf

    Johann Leonhard Rost (1688-1727) of Nuremberg studied at Altdorf, Leipzig and Jena. During this time, he earned his living by writing gallant novels. In 1715, he returned to Nuremberg, where he pursued his juvenile inclination towards astronomy and became a serious astronomical observer. His introductions to astronomy, written around this time, contributed a lot to popularize astronomy. This contribution attempts to do justice to both the novelist and the astronomer Rost.

  12. High Energy Astronomical Data Processing and Analysis via the Internet

    NASA Astrophysics Data System (ADS)

    Valencic, Lynne A.; Snowden, S.; Pence, W.

    2012-01-01

    The HEASARC at NASA Goddard Space Flight Center and the US XMM-Newton GOF has developed Hera, a data processing facility for analyzing high energy astronomical data over the internet. Hera provides all the disk space and computing resources needed to do general processing of and advanced research on publicly available data from High Energy Astrophysics missions. The data and data products are kept on a server at GSFC and can be downloaded to a user's local machine. Further, the XMM-GOF has developed scripts to streamline XMM data reduction. These are available through Hera, and can also be downloaded to a user's local machine. These are free services provided to students, educators, and researchers for educational and research purposes.

  13. The Associate Principal Astronomer for AI Management of Automatic Telescopes

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.

    1998-01-01

    This research program in scheduling and management of automatic telescopes had the following objectives: 1. To field test the 1993 Automatic Telescope Instruction Set (ATIS93) programming language, which was specifically developed to allow real-time control of an automatic telescope via an artificial intelligence scheduler running on a remote computer. 2. To develop and test the procedures for two-way communication between a telescope controller and remote scheduler via the Internet. 3. To test various concepts in Al scheduling being developed at NASA Ames Research Center on an automatic telescope operated by Tennessee State University at the Fairborn Observatory site in southern Arizona. and 4. To develop a prototype software package, dubbed the Associate Principal Astronomer, for the efficient scheduling and management of automatic telescopes.

  14. RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M.; Rajagopalan, Ganesh; Stevenson, Thomas; Turner, Charles; Bulcha, Berhanu

    2017-01-01

    Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.

  15. The Chandra X-ray Observatory: An Astronomical Facility Available to the World

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.

    2006-01-01

    The Chandra X-ray observatory, one of NASA's "Great Observatories," provides high angular and spectral resolution X-ray data which is freely available to all. In this review I describe the instruments on chandra along with their current calibration, as well as the chandra proposal system, the freely-available Chandra analysis software package CIAO, and the Chandra archive. As Chandra is in its 6th year of operation, the archive already contains calibrated observations of a large range of X-ray sources. The Chandra X-ray Center is committed to assisting astronomers from any country who wish to use data from the archive or propose for observations

  16. The Climate Response to the Astronomical Forcing

    NASA Astrophysics Data System (ADS)

    Crucifix, M.; Loutre, M. F.; Berger, A.

    2006-08-01

    Links between climate and Earth’s orbit have been proposed for about 160 years. Two decisive advances towards an astronomical theory of palæoclimates were Milankovitch’s theory of insolation (1941) and independent findings, in 1976, of a double precession frequency peak in marine sediment data and from celestial mechanics calculations. The present chapter reviews three essential elements of any astronomical theory of climate: (1) to calculate the orbital elements, (2) to infer insolation changes from climatic precession, obliquity and eccentricity, and (3) to estimate the impact of these variations on climate. The Louvain-la-Neuve climate-ice sheet model has been an important instrument for confirming the relevance of Milankovitch’s theory, but it also evidences the critical role played by greenhouse gases during periods of low eccentricity. It is recognised today that climatic interactions at the global scale were involved in the processes of glacial inception and deglaciation. Three examples are given, related to the responses of the carbon cycle, hydrological cycle, and the terrestrial biosphere, respectively. The chapter concludes on an outlook on future research directions on this topic.

  17. Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don

    2017-01-01

    Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.

  18. An astronomical murder?

    NASA Astrophysics Data System (ADS)

    Belenkiy, Ari

    2010-04-01

    Ari Belenkiy examines the murder of Hypatia of Alexandria, wondering whether problems with astronomical observations and the date of Easter led to her becoming a casualty of fifth-century political intrigue.

  19. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    P/2013 P5 on September 23, 2013. --- This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    P/2013 P5 on September 10, 2013. --- This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. America's foremost early astronomer. [David Rittenhouse

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Rubincam, Milton, II

    1995-01-01

    The life of 18th century astronomer, craftsman, and partriot David Rittenhouse is detailed. As a craftsman, he distinguished himself as one of the foremost builders of clocks. He also built magnetic compasses and surveying instruments. The finest examples of his craftsmanship are considered two orreries, mechanical solar systems. In terms of astronomical observations, his best-known contribution was his observation of the transit of Venus in 1769. Rittenhouse constructed the first diffraction grating. Working as Treasurer of Pennsylvania throughout the Revolution, he became the first director of the Mint in 1792. Astronomical observations in later life included charting the position of Uranus after its discovery.

  2. NASA Hosts Live Science Chat about Europa Findings

    NASA Image and Video Library

    2018-05-14

    NASA hosted a Science Chat May 14 to discuss the latest analysis of Jupiter’s moon Europa and its status as one of the most promising places in the solar system to search for life. The event aired live on NASA Television, Facebook Live, Twitch TV, Ustream, YouTube, Twitter/Periscope and the agency's website. Europa has long been a high priority for exploration because beneath its icy crust lies a salty, liquid water ocean. NASA’s Europa Clipper, targeted to launch in 2022, will be equipped with the instruments necessary to determine whether Europa possesses the ingredients necessary to support life as we know it.

  3. Astronomical Station at Vidojevica

    NASA Astrophysics Data System (ADS)

    Ninković, S.; Pejović, N.; Mijajlović, Ž.

    2007-05-01

    Recently a project was started aimed at building a new astronomical station at the mountain of Vidojevica in Serbia (ASV) as an extension of the Astronomical Observatory in Belgrade. The first phase - ASV1 - is planned to be finished during 2006. ASV1 will consist of one observatory dome, a reflector of 60cm aperture, and a dormitory. In this year, the Faculty of Mathematics and its Department of Astronomy applied for the project of reinforcing and upgrading it to ASV2. The project objective is to improve the research capacities in astronomy and applied mathematics in Serbia and Western Balkan.

  4. NRAO Teams With NASA Gamma-Ray Satellite

    NASA Astrophysics Data System (ADS)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  5. Astronomers Reveal Extinct Extra-Terrestrial Fusion Reactor

    NASA Astrophysics Data System (ADS)

    2004-06-01

    An international team of astronomers, studying the left-over remnants of stars like our own Sun, have found a remarkable object where the nuclear reactor that once powered it has only just shut down. This star, the hottest known white dwarf, H1504+65, seems to have been stripped of its entire outer regions during its death throes leaving behind the core that formed its power plant. Scientists from the United Kingdom, Germany and the USA focused two of NASA's space telescopes, the Chandra X-ray Observatory and the Far Ultraviolet Spectroscopic Explorer (FUSE), onto H1504+65 to probe its composition and measure its temperature. The data revealed that the stellar surface is extremely hot, 200,000 degrees, and is virtually free of hydrogen and helium, something never before observed in any star. Instead, the surface is composed mainly of carbon and oxygen, the 'ashes' of the fusion of helium in a nuclear reactor. An important question we must answer is why has this unique star lost the hydrogen and helium, which usually hide the stellar interior from our view? Professor Martin Barstow (University of Leicester) said. 'Studying the nature of the ashes of dead stars give us important clues as to how stars like the Sun live their lives and eventually die. The nuclear waste of carbon and oxygen produced in the process are essential elements for life and are eventually recycled into interstellar space to form new stars, planets and, possibly, living beings.' Professor Klaus Werner (University of Tübingen) said. 'We realized that this star has, on astronomical time scales, only very recently shut down nuclear fusion (about a hundred years ago). We clearly see the bare, now extinct reactor that once powered a bright giant star.' Dr Jeffrey Kruk (Johns Hopkins University) said: 'Astronomers have long predicted that many stars would have carbon-oxygen cores near the end of their lives, but I never expected we would actually be able to see one. This is a wonderful opportunity to

  6. Infrared upconversion for astronomical applications. [laser applications to astronomical spectroscopy of infrared spectra

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Ogilvie, K. W.

    1975-01-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given.

  7. Early Astronomical Sequential Photography, 1873-1923

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor

    2011-11-01

    In 1873 Jules Janssen conceived the first automatic sequential photographic apparatus to observe the eagerly anticipated 1874 transit of Venus. This device, the 'photographic revolver', is commonly considered today as the earliest cinema precursor. In the following years, in order to study the variability or the motion of celestial objects, several instruments, either manually or automatically actuated, were devised to obtain as many photographs as possible of astronomical events in a short time interval. In this paper we strive to identify from the available documents the attempts made between 1873 and 1923, and discuss the motivations behind them and the results obtained. During the time period studied astronomical sequential photography was employed to determine the time of the instants of contact in transits and occultations, and to study total solar eclipses. The technique was seldom used but apparently the modern film camera invention played no role on this situation. Astronomical sequential photographs were obtained both before and after 1895. We conclude that the development of astronomical sequential photography was constrained by the reduced number of subjects to which the technique could be applied.

  8. Astronomía en la cultura

    NASA Astrophysics Data System (ADS)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  9. Astronomers Go Behind The Milky Way To Solve X-Ray Mystery

    NASA Astrophysics Data System (ADS)

    2001-08-01

    Through layers of gas and dust that stretch for more than 30,000 light years, astronomers using NASA's Chandra X-ray Observatory have taken a long, hard look at the plane of the Milky Way galaxy and found that its X-ray glow comes from hot and diffuse gas. The findings, published in the August 10 issue of Science, help to settle a long-standing mystery about the source of the X-ray emission from the galactic plane. Scientists have debated whether the Milky Way plane's X-ray emission was diffuse light or from individual stars. Armed with Chandra, an international team led Dr. Ken Ebisawa of NASA's Goddard Space Flight Center, Greenbelt, MD zoomed in on a tiny region of the galactic plane in the constellation Scutum. "The point sources we saw in the galactic plane were actually active galaxies with bright cores millions of light years behind our galaxy," said Ebisawa. "The number of these sources is consistent with the expected number of extragalactic sources in the background sky. We saw few additional point sources within our Galaxy." The observation marks the deepest X-ray look at the so-called "zone of avoidance" -- a region of space behind which no optical observation has ever been taken because thick dust and gas in the spiral arms of the Milky Way galaxy block out visible radiation. Infrared, radio, and X-rays, however, can penetrate this dust and gas. Detection of diffuse X rays emanating from the Galactic plane, what we call the "Milky Way" in visible light, indicates the presence of plasma gas with temperatures of tens of millions of degrees Celsius. Smoothed X-ray Image of the Galactic Plane Smoothed X-ray Image of the Galactic Plane Gas this hot would escape the gravitational confines of the Milky Way galaxy under normal circumstances. The fact that it still lingers within the Galactic plane is the next mystery to solve. One possibility, suggested by Ebisawa is that hot plasma may be confined to the Milky Way by magnetic fields. The Chandra observation

  10. VLBI2010 in NASA's Space Geodesy Project

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  11. POST WWII Astronomy and Rebuilding U.S. Astronomical Institutions--The U.S. Perspective

    NASA Astrophysics Data System (ADS)

    Howard, W. E.

    1993-12-01

    A belief that technology contributed substantially to the winning of World War II spurred the formation of ONR, then NSF which was formed in ONR's image. NASA's space support, cold war competition, and ARPA's funding of high risk, high payoff technologies led to state-of-the-art instrumentation in astronomy. Limits on funding for instrumentation at individual institutions led to the concept and growth of national astronomy observatories that made observing time available to the best ideas from astronomers who had no access to big telescopes at home. Success of these major observatories lay also in their treatment of visitors who were made to feel a part of the institution. As federal funding became available, several issues were heavily debated, among which were overhead costs on grant awards, what the breakdown of responsibility should be for institutional vs. federal funding, spreading vs. concentrating the available funding, the role of the AAS and advisory groups, federal vs. researcher specification of the research program, and the roots of the modern debate concerning research relevance. U.S. astronomers are unique because of our eclecticism, our development of a winning system of workplaces, our peer review system, our united front presented by our projective planning and our periodic decade reviews, our international orientation, all in the context of national support that is preeminent in the world. These features operate within an economic system that enables us to communicate and travel easily, and scientific and academic administrations that permit astronomers to concentrate on their research without excess internal or external politics.

  12. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  13. NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings

    NASA Technical Reports Server (NTRS)

    Comerford, Doreen; Brandt, Summer L.; Lachter, Joel B.; Wu, Shu-Chieh; Mogford, Richard H.; Battiste, Vernol; Johnson, Walter W.

    2013-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO.

  14. Astronomers without borders

    NASA Astrophysics Data System (ADS)

    Simmons, Mike

    2011-06-01

    ``Astronomers Without Borders'' is a new global organisational dedicated to furthering understanding and goodwill across national and cultural boundaries using the universal appeal of astronomy and space science. A growing network of affiliate organisations brings together clubs, magazines and other organizations involved in astronomy and space science. Forums, galleries, video conferences and other interactive technologies are used to connect participants around the world. Sharing of resources and direct connections through travel programs are also planned. One project, ``The World at Night'' (TWAN), has become an Special Project of IYA2009. TWAN creates wide-angle images of the night sky in important natural and historic settings around the world, dramatically demonstrating the universal nature and appeal of the night sky. ``Astronomers Without Borders'' is also a leader of the 100 Hours of Astronomy IYA2009 Global Cornerstone Project.

  15. Hubble Finds Misbehaving Spiral

    NASA Image and Video Library

    2016-01-29

    Despite its unassuming appearance, the edge-on spiral galaxy captured in the left half of this NASA/ESA Hubble Space Telescope image is actually quite remarkable. Located about one billion light-years away in the constellation of Eridanus, this striking galaxy — known as LO95 0313-192 — has a spiral shape similar to that of the Milky Way. It has a large central bulge, and arms speckled with brightly glowing gas mottled by thick lanes of dark dust. Its companion, sitting in the right of the frame, is known rather unpoetically as [LOY2001] J031549.8-190623. Jets, outbursts of superheated gas moving at close to the speed of light, have long been associated with the cores of giant elliptical galaxies, and galaxies in the process of merging. However, in an unexpected discovery, astronomers found LO95 0313-192, even though it is a spiral galaxy, to have intense radio jets spewing out from its center. The galaxy appears to have two more regions that are also strongly emitting in the radio part of the spectrum, making it even rarer still. The discovery of these giant jets in 2003 — not visible in this image, but indicated in this earlier Hubble composite — has been followed by the unearthing of a further three spiral galaxies containing radio-emitting jets in recent years. This growing class of unusual spirals continues to raise significant questions about how jets are produced within galaxies, and how they are thrown out into the cosmos. Image credit: ESA/Hubble & NASA; acknowledgement, Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. GASP-Galway astronomical Stokes polarimeter

    NASA Astrophysics Data System (ADS)

    Kyne, G.; Sheehan, B.; Collins, P.; Redfern, M.; Shearer, A.

    2010-06-01

    The Galway Astronomical Stokes Polarimeter (GASP) is an ultra-high-speed, full Stokes, astronomical imaging polarimeter based upon a Division of Amplitude Polarimeter. It has been developed to resolve extremely rapid stochastic (~ms) variations in objects such as optical pulsars, magnetars and magnetic cataclysmic variables. The polarimeter has no moving parts or modulated components so the complete Stokes vector can be measured from just one exposure - making it unique to astronomy. The time required for the determination of the full Stokes vector is limited only by detector efficiency and photon fluxes. The polarimeter utilizes a modified Fresnel rhomb that acts as a highly achromatic quarter wave plate and a beamsplitter (referred to as an RBS). We present a description of how the DOAP works, some of the optical design for the polarimeter. Calibration is an important and difficult issue with all polarimeters, but particularly in astronomical polarimeters. We give a description of calibration techniques appropriate to this type of polarimeter.

  17. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  18. NASA's Celebration of the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2010-01-01

    NASA celebrated the International Year of Astronomy (IYA) 2009 by developing a rich and vibrant educational and public outreach program that increased the exposure of the public and students to NASA discoveries reaching audiences far and wide. We kicked off the event at the American Astronomical Society meeting in January 2009, with a sneak preview of the multiwavelength image of M101, taken by the three NASA Great Observatories, Hubble Space Telescope, Chandra X-Ray Observatory, and Spitzer Space Telescope. There was a steady stream of visitors at the NASA booth at the Opening Ceremony in Paris. Since then NASA programs have touched the hearts and souls of the young and old both in the U.S. and internationally. NASA IYA programs in the form of teacher workshops, student contests, exhibits in libraries, museums, planetaria and non traditional venues such as airports and music festivals, podcasts and vodcasts have reached a wide audience. The NASA IYA Student Ambassadors engaged undergraduate and graduate students throughout the U.S. in outreach programs they created to spread NASA astronomy to their local communities. The year 2009 saw the launch of several space astronomy, heliophysics and planetary science missions. NASA developed IYA programs associated which each launch, to capitalize on the associated interest generated in the public. Some examples of the impact of these programs and building on their success beyond 2009 will be discussed in this talk. All NASA programs can be accessed via the website http://astronomy2009.nasa.gov/.

  19. Astronomical database and VO-tools of Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Mazhaev, A. E.; Protsyuk, Yu. I.

    2010-05-01

    Results of work in 2006-2009 on creation of astronomical databases aiming at development of Nikolaev Virtual Observatory (NVO) are presented in this abstract. Results of observations and theirreduction, which were obtained during the whole history of Nikolaev Astronomical Observatory (NAO), are included in the databases. The databases may be considered as a basis for construction of a data centre. Images of different regions of the celestial sphere have been stored in NAO since 1929. About 8000 photo plates were obtained during observations in the 20th century. Observations with CCD have been started since 1996. Annually, telescopes of NAO, using CCD cameras, create data volume of several tens of gigabytes (GB) in the form of CCD images and up to 100 GB of video records. At the end of 2008, the volume of accumulated data in the form of CCD images was about 300 GB. Problems of data volume growth are common in astronomy, nuclear physics and bioinformatics. Therefore, the astronomical community needs to use archives, databases and distributed grid computing to cope with this problem in astronomy. The International Virtual Observatory Alliance (IVOA) was formed in June 2002 with a mission to "enable the international utilization of astronomical archives..." The NVO was created at the NAO website in 2008, and consists of three main parts. The first part contains 27 astrometric stellar catalogues with short descriptions. The files of catalogues were compiled in the standard VOTable format using eXtensible Markup Language (XML), and they are available for downloading. This is an example of the so-called science-ready product. The VOTable format was developed by the International Virtual Observatory Alliance (IVOA) for exchange of tabular data. A user may download these catalogues and open them using any standalone application that supports standards of the IVOA. There are several directions of development for such applications, for example, search of catalogues and images

  20. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Won; Yang, Hong-Jin; Park, Myeong-Gu

    2008-06-01

    We investigate astronomical materials listed in the book of Bibliographie Coréenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (?) and thirty six Classes (?), and published them as three volumes (ranging from 1894 to 1896) and one supplement (in 1901). In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho ????, Si-Heon-Seo ??????, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do ????????, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (?) are related to astronomy or astrology, and verified that most ! of them are located in the Kyujanggak Royal Library ???. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do ??????????. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  1. Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery

    NASA Astrophysics Data System (ADS)

    Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.

    2017-05-01

    In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between “sources” and “noise?” What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By looking to the field of sports performance analysis, we consider an established, domain-wide approach, where the expertise of the viewer (i.e., a member of the coaching team) plays a crucial role in identifying and determining the subtle features of gameplay that provide a winning advantage. As an initial case study, we investigate whether the SportsCode performance analysis software can be used to understand and document how an experienced Hi astronomer makes discoveries in spectral data cubes. We find that the process of timeline-based coding can be applied to spectral cube data by mapping spectral channels to frames within a movie. SportsCode provides a range of easy to use methods for annotation, including feature-based codes and labels, text annotations associated with codes, and image-based drawing. The outputs, including instance movies that are uniquely associated with coded events, provide the basis for a training program or team-based analysis that could be used in unison with discipline specific analysis software. In this coordinated approach to visualization and analysis, SportsCode can act as a visual notebook, recording the insight and decisions in partnership with established analysis methods. Alternatively, in situ annotation and coding of features would be a valuable addition to existing and future visualization and analysis packages.

  2. NASA Astrophysics Data System's New Data

    NASA Astrophysics Data System (ADS)

    Eichhorn, G.; Accomazzi, A.; Demleitner, M.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    2000-05-01

    The NASA Astrophysics Data System has greatly increased its data holdings. The Physics database now contains almost 900,000 references and the Astronomy database almost 550,000 references. The Instrumentation database has almost 600,000 references. The scanned articles in the ADS Article Service are increasing in number continuously. Almost 1 million pages have been scanned so far. Recently the abstracts books from the Lunar and Planetary Science Conference have been scanned and put on-line. The Monthly Notices of the Royal Astronomical Society are currently being scanned back to Volume 1. This is the last major journal to be completely scanned and on-line. In cooperation with a conservation project of the Harvard libraries, microfilms of historical observatory literature are currently being scanned. This will provide access to an important part of the historical literature. The ADS can be accessed at: http://adswww.harvard.edu This project is funded by NASA under grant NCC5-189.

  3. 150th Anniversary of the Astronomical Observatory Library of Sciences

    NASA Astrophysics Data System (ADS)

    Solntseva, T.

    The scientific library of the Astronomical observatory of Kyiv Taras Shevchenko University is one of the oldest ones of such a type in Ukraine. Our Astronomical Observatory and its scientific library will celebrate 150th anniversary of their foundation. 900 volumes of duplicates of Olbers' private library underlay our library. These ones were acquired by Russian Academy of Sciences for Poulkovo observatory in 1841 but according to Struve's order were transmitted to Kyiv Saint Volodymyr University. These books are of great value. There are works edited during Copernicus', Kepler's, Galilei's, Newton's, Descartes' lifetime. Our library contains more than 100000 units of storage - monographs, periodical astronomical editions from the first (Astronomische Nachrichten, Astronomical journal, Monthly Notices etc.), editions of the majority of the astronomical observatories and institutions of the world, unique astronomical atlases and maps

  4. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.

    2015-06-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.

  5. ORCID Uptake in the Astronomical Community

    NASA Astrophysics Data System (ADS)

    Holmquist, Jane

    2015-08-01

    The IAU General Assembly provides librarians with a unique opportunity to interact with astronomers from all over the world. From the perspective of an ORCID Ambassador, the Focus Group Meeting on "Scholarly Publication in Astronomy" also provides an opportunity to demonstrate the cooperation and collaboration needed by individual astronomers, societies, librarians, publishers and bibliographic database providers to achieve universal adoption of ORCID, a standard unique identifier for authors, just as the DOI (digital object identifier) has been adopted for each journal article published.I propose to 1) present at the Focus Group Meeting an update on the uptake of ORCID by members of the astronomical community and 2) set up a small station (TBA) near the IAU registration area where librarians can show researchers how to register for an ORCID in 30 seconds.

  6. Stereoscopy in Astronomical Visualizations to Support Learning at Informal Education Settings

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, Hee-Sun

    2015-08-01

    Stereoscopy has been used in science education for 100 years. Recent innovations in low cost technology as well as trends in the entertainment industry have made stereoscopy popular among educators and audiences alike. However, experimental studies addressing whether stereoscopy actually impacts science learning are limited. Over the last decade, we have conducted a series of quasi-experimental and experimental studies on how children and adult visitors in science museums and planetariums learned about the structure and function of highly spatial scientific objects such as galaxies, supernova, etc. We present a synthesis of the results from these studies and implications for stereoscopic visualization development. The overall finding is that the impact of stereoscopy on perceptions of scientific objects is limited when presented as static imagery. However, when presented as full motion films, a significantly positive impact was detected. To conclude, we present a set of stereoscopic design principles that can help design astronomical stereoscopic films that support deep and effective learning. Our studies cover astronomical content such as the engineering of and imagery from the Mars rovers, artistic stereoscopic imagery of nebulae and a high-resolution stereoscopic film about how astronomers measure and model the structure of our galaxy.

  7. A Student-Centered Astronomical Research Community of Practice

    NASA Astrophysics Data System (ADS)

    Genet, Russell; Johnson, Jolyon; Boyce, Pat; Boyce, Grady; Buchheim, obert; Harshaw, Richard; Kenney, John; Collins, Dwight; Rowe, David; Brewer, Mark; Estrada, Reed; Estrada, Chris; Gillette, Sean; Ridgely, John; McNab, Christine; Freed, Rachel; Wallen, Vera

    2016-05-01

    For over a decade, students from Cuesta College and number of high schools have engaged in astronomical research during one-term seminars. A community of practice - consisting of students, educators, and astronomers - has formed that is centered on supporting the students' astronomical research. The seminar has recently adopted distance education technology and automated telescopes in a hybrid form of on-line and inperson collaborations between students, educators, and astronomers. This hybridization is not only resulting in new areas of growth and opportunity, but has created a number of challenges. For example, as more schools joined this seminar, standardized teaching materials such as a textbook and self-paced, online learning units had to be developed. Automated telescopes devoted to expanding student research opportunities within this community of practice are being brought on line by Concordia University and the Boyce Research Initiatives and Educational Foundation. The Institute for Student Astronomical Research supports this growing community in many ways including maintaining a website and editing books of student papers published through the Collins Foundation Press.

  8. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. Illustration of a Magnetar Illustration of a Magnetar The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that

  9. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova

  10. NASA's Swift Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Plait, P.; Silva, S.; Graves, T.; Simonnet, A.; Cominsky, L.

    2003-05-01

    Few astronomical objects excite students more than big explosions and black holes. Gamma Ray Bursts (GRBs) are both: powerful explosions that signal the births of black holes. NASA's Swift satellite mission, set for launch in December 2003, will detect hundreds of black holes over its two-year nominal mission timeline. The NASA Education and Public Outreach (E/PO) group at Sonoma State University is leading the Swift E/PO effort, using the Swift mission to engage students in science and math learning. We have partnered with the Lawrence Hall of Science to create a "Great Explorations in Math and Science" guide entitled "Invisible Universe: from Radio Waves to Gamma Rays," which uses GRBs to introduce students to the electromagnetic spectrum and the scale of energies in the Universe. Three to four segments about Swift are being broadcast each year to millions of middle-school children as part of "What's In The News," an educational television series based at Penn State University. We are also creating new standards-based activities for grades 9-12 using GRBs: one activity puts the students in the place of astronomers 20 years ago, trying to sort out various types of stellar explosions that create high-energy radiation. Another mimics the use of the Interplanetary Network to let students figure out the direction to a GRB. Post-launch materials will include magazine articles about Swift and GRBs, more formal educational activities, and additions to the Swift E/PO website (http://swift.sonoma.edu) that will excite and inspire students to learn more about space science.

  11. Women Astronomers: Australia: Women astronomers in Australia

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2001-08-01

    Ragbir Bhathal summarizes the role played by women astronomers in Australia's astronomy, now and in the past. Australia has a great tradition in astronomy, from the early observations of Aboriginal people through the colonial drive to explore and understand, culminating in the established excellence of research there today. Women have contributed to this achievement in no small way, yet their contribution has been unremarked, if not ignored. Here I summarize the historical and present state of affairs and look forward to a brighter and more equitable future.

  12. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flares for landing at Edwards AFB after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flares for landing at Edwards AFB after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  13. The Use of Astronomical Seeing Measurements

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2002-12-01

    Very few observatories have access to a daily record of the astronomical seeing over an extended historical period. An exception to this is the Mount Wilson Observatory (MWO) whose astronomical seeing logs cover the period from shortly after the observatory was founded in 1904 through to the present day. These measurements provide a unique look into the changes to the seeing conditions at a major US observatory site. While the keeping of this record has been entrusted to many at the observatory, most often the telescope night assistants, these measurements have been taken diligently and from all accounts repeatably over the years. The early workers at MWO developed an 8-point scale that was used to evaluate the seeing. This scale began as a measure of how large a telescope aperture would provide diffraction limited seeing during a given night. If a small telescope aperture was needed to see diffraction rings, then the seeing was poor and the seeing number would be small. Of course a larger number on the scale then denotes better seeing. This became known as the Mount Wilson Seeing Scale and a variation of it is still in common use at the observatory. This scale has not always had the strongest support in the astronomical community, but its use has resulted in a nearly continuous set of comparable data. In this paper astronomical seeing data from MWO is presented and analyzed using several different approaches. It shows that there are very long period events that can be identified and also shows that the astronomical seeing, even at a very good site, is not guaranteed over the life of the observatory.

  14. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given

  15. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  16. NASA's Great Observatories May Unravel 400-Year Old Supernova Mystery

    NASA Astrophysics Data System (ADS)

    2004-10-01

    behind the shock front. These regions also show up in the HST observations and also align with the faint rim of material seen in the SST data. Cooler X-ray gas, lower-energy X-rays, resides in a thick interior shell and marks the location of the material expelled from the exploded star. There have been six known supernovas in our Milky Way over the past 1,000 years. Kepler's is the only one, which astronomers do not know what type of star exploded. By combining information from all three Great Observatories, astronomers may find the clues they need. "It's really a situation where the total is greater than the sum of the parts," Blair said. "When the analysis is complete, we will be able to answer several questions about this enigmatic object." Information and images from this research is available on the Web at: http://www.nasa.gov http://hubblesite.org/newscenter/newsdesk/archive/releases/2004/29/ http://chandra.harvard.edu and http://www.spitzer.caltech.edu/

  17. Serbian Astronomers in Science Citation Index in the XX Century

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, Milan S.

    The book is written paralelly in Serbian and English. The presence of works of Serbian astronomers and works in astronomical journals published by other Serbian scientists, in Science Citation Index within the period from 1945 up to the end of 2000, has been analyzed. Also is presented the list of 38 papers which had some influence on the development of astronomy in the twentieth century. A review of the development of astronomy in Serbia in the last century is given as well. Particular attention is payed to the Astronomical Observatory, the principal astronomical institution in Serbia, where it is one of the oldest scientific organizations and the only autonomous astronomical institute. Its past development forms an important part of the history of science and culture in these regions. In the book is also considered and the history of the university teaching of astronomy in Serbia after the second world war. First of all the development of the Chair of Astronomy at the Faculty of Mathematics in Belgrade, but also the teaching of astronomy at University in Novi Sad, Ni and Kragujevac is discussed. In addition to professional Astronomy, well developed in Serbia is also the amateur Astronomy. In the review is first of all included the largest and the oldest organization of amateur-astronomers in Serbia, founded in 1934. Besides, here are the Astronomical Society "Novi Sad", ADNOS and Research Station "Petnica". In Valjevo, within the framework of the Society of researchers "Vladimir Mandic - Manda", there is active also the Astronomical Group. In Kragujevac, on the roof of the Institute of Physics of the Faculty of Sciences, there is the "Belerofont" Observatory. In Ni, at the close of the sixties and the start of the seventies, there was operating a branch of the Astronomical Society "Rudjer Bokovic", while at the Faculty of Philosophy there existed in the period 1976-1980 the "Astro-Geophysical Society". In the year 1996 there was founded Astronomical Society

  18. Preservation and maintenance of the astronomical sites in Armenia

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2008-01-01

    Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.

  19. Hosting an `Ask the Astronomer' Site on the Internet

    NASA Astrophysics Data System (ADS)

    Odenwald, S. F.

    1996-12-01

    Since 1995, the World Wide Web has explosively evolved into a significant medium for dispensing astronomical information to the general public. In addition to the numerous image archives that have proliferated, an increasing number of sites invite visitors to pose questions about astronomy and receive answers provided by professional astronomers. In this paper, I describe the operation of an Ask the Astronomer site that was opened on the WWW during August, 1995 as part of an astronomy education resource area called the "Astronomy Cafe" (URL=http://www2.ari.net/home/odenwald/cafe.html). The Astronomy Cafe includes a number of documents describing: a career in astronomy; how research papers are written; essays about cosmology, hyperspace and infrared astronomy; and the results from a 100-question, just for fun, personality test which distinguishes astronomers from non-astronomers. The Ask the Astronomer site is operated by a single astronomer through private donations and is now approaching its 500th day of operation. It contains over 2000+ questions and answers with a growth rate of 5 - 10 questions per day. It has attracted 70,000 visitors who are responsible for nearly 1 million 'hits' during the site's lifetime. The monthly statistics provide a unique survey of the kinds of individuals and organizations who visit Ask the Astronomer-type web sites, moreover, the accumulated questions provide a diagnostic X-ray into the public mind in the area of astronomy. I will present an analysis of the user demographics, and the types of questions that appear to be the most frequently asked. A paper copy of the complete index of these questions will be available for inspection.

  20. Finding Our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2003-01-01

    NASA's Origins program is a series of space telescopes designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, I will concentrate on the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with the Hubble Space Telescope through to the present day. I will introduce several of the tools that astronomers use to measure distances, measure velocities, and look backwards in time. I will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope, which is designed to find the first galaxies that formed in the distant past. I will finish with a short discussion of other missions in the Origins theme, including the Terrestrial Planet Finder.

  1. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2004-01-01

    NASA s Origins program is a series of space telescopes designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, I will concentrate on the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with the Hubble Space Telescope through to the present day. I will introduce several of the tools that astronomers use to measure distances, measure velocities, and look backwards in time. I will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope, which is designed to find the first galaxies that formed in the distant past. I will finish with a short discussion of other missions in the Origins theme, including the Terrestrial Planet Finder.

  2. New astronomical references in two Catalonian late medieval documents.

    PubMed

    Martínez, María José; Marco, Francisco J

    2014-01-01

    In 2008, after 13 years of preparation, the Generalitat of Catalunya finished the publication of the 10 volumes of the Dietaris de la Generalitat de Catalunya. The Dietaris, as well as a closely related source, the llibre de Jornades 1411/1484 de Jaume Safont, cover the period of 1411 to 1539. In this article, we examine astronomical references contained in these two sources, and place them in their historical context. Our main focus lies on astronomical phenomena that have not previously been published in the astronomical literature. In fact, relatively few astronomical records are accessible in Spanish medieval and early modern history, and our paper intends to fill this gap partially.

  3. Interference in astronomical speckle patterns

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1976-01-01

    Astronomical speckle patterns are examined in an atmospheric-optics context in order to determine what kind of image quality is to be expected from several different imaging techniques. The model used to describe the instantaneous complex field distribution across the pupil of a large telescope regards the pupil as a deep phase grating with a periodicity given by the size of the cell of uniform phase or the refractive index structure function. This model is used along with an empirical formula derived purely from the physical appearance of the speckle patterns to discuss the orders of interference in astronomical speckle patterns.

  4. Long-publishing astronomers, or the problem of classification

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2012-03-01

    In response to several discussions among astronomers and historians of astronomy, I started out to prepare a paper on long-publishing astronomers-those who published for 70, 75, or even 80 years. However, I soon ran into a number of questions of classification, and that turned out to be at least as interesting. How do we decide on classifications? Every time we choose classes, such as asteroids, planets and stars, we run into objects that seem to be in between. In the present case a number of questions arise: Who is an astronomer? Several of those with the longest publication runs started out as physicists, published for years in that subject only, and later took up astrophysics, eventually publishing a few papers in astronomy journals. What is a publication? Should we count publications in physics, chemistry, or mathematics? What about philosophy of science or history of science? What about the elderly retired astronomer presenting a memoir of his or her own work? Abstracts of oral presentations? Monographs? Textbooks? Book reviews? Obituaries? Then there is the problem of posthumous publications. Probably most would include papers in the pipeline when the astronomer dies, but what about the case where the coauthor finally publishes the paper as much as twenty-two years after the death of the person of interest? I eventually decided to make two lists, one which would include most of the above, and one restricted to papers that make contributions to physical science. Note that I do not say 'refereed', as that presents its own problems, especially when applied to periods before the twentieth century. I present a list of astronomers who have published for periods of 68 to 80 years and discuss the problems of defining such terms as astronomer and publication.

  5. Source detection in astronomical images by Bayesian model comparison

    NASA Astrophysics Data System (ADS)

    Frean, Marcus; Friedlander, Anna; Johnston-Hollitt, Melanie; Hollitt, Christopher

    2014-12-01

    The next generation of radio telescopes will generate exabytes of data on hundreds of millions of objects, making automated methods for the detection of astronomical objects ("sources") essential. Of particular importance are faint, diffuse objects embedded in noise. There is a pressing need for source finding software that identifies these sources, involves little manual tuning, yet is tractable to calculate. We first give a novel image discretisation method that incorporates uncertainty about how an image should be discretised. We then propose a hierarchical prior for astronomical images, which leads to a Bayes factor indicating how well a given region conforms to a model of source that is exceptionally unconstrained, compared to a model of background. This enables the efficient localisation of regions that are "suspiciously different" from the background distribution, so our method looks not for brightness but for anomalous distributions of intensity, which is much more general. The model of background can be iteratively improved by removing the influence on it of sources as they are discovered. The approach is evaluated by identifying sources in real and simulated data, and performs well on these measures: the Bayes factor is maximized at most real objects, while returning only a moderate number of false positives. In comparison to a catalogue constructed by widely-used source detection software with manual post-processing by an astronomer, our method found a number of dim sources that were missing from the "ground truth" catalogue.

  6. The Most Popular Astronomical Web Server in China

    NASA Astrophysics Data System (ADS)

    Cui, Chenzhou; Zhao, Yongheng

    Affected by the consistent depressibility of IT economy free homepage space is becoming less and less. It is more and more difficult to construct websites for amateur astronomers who do not have ability to pay for commercial space. In last May with the support of Chinese National Astronomical Observatory and Large Sky Area Multi-Object Fiber Spectroscopic Telescope project we setup a special web server (amateur.lamost.org) to provide free huge stable and no-advertisement homepage space to Chinese amateur astronomers and non-professional organizations. After only one year there has been more than 80 websites hosted on the server. More than 10000 visitors from nearly 40 countries visit the server and the amount of data downloaded by them exceeds 4 Giga-Bytes per day. The server has become the most popular amateur astronomical web server in China. It stores the most abundant Chinese amateur astronomical resources. Because of the extremely success our service has been drawing tremendous attentions from related institutions. Recently Chinese National Natural Science Foundation shows great interest to support the service. In the paper the emergence of the thought construction of the server and its present utilization and our future plan are introduced

  7. Astrobiology: An astronomer's perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less

  8. Are opthalmic hydrophobic coatings useful for astronomical optics?

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Phillips, Andrew C.

    2010-07-01

    Astronomical optics are often exposed to moisture and dust in observatory environments, which frequently compromises their high-performance coatings. Suitable protective layers to resist dust and moisture accumulation would be extremely advantageous, but have received scant attention thus far. Hydrophobic and scratch-resistant coatings, developed primarily for opthalmic use, exhibit several attractive properties for astronomical optics. We examine the properties of one such coating and its applicability to astronomical mirrors and lenses. This includes efficiency of dust removal, abrasion resistance, moisture resistance, ease of stripping, and transmission across a wide wavelength range.

  9. Astronomical Observatory of Belgrade from 1924 to 1955

    NASA Astrophysics Data System (ADS)

    Radovanac, M.

    2014-12-01

    History of the Astronomical Observatory in Belgrade, as the presentation is done here, become the field of interest to the author of the present monograph in early 2002. Then, together with Luka C. Popovic, during the Conference "Development of Astronomy among Serbs II" held in early April of that year, he prepared a paper entitled "Astronomska opservatorija tokom Drugog Svetskog rata" (Astronomical Observatory in the Second World War). This paper was based on the archives material concerning the Astronomical Observatory which has been professionally bearing in mind the author's position the subject of his work.

  10. Future Directions for Astronomical Image Display

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    2000-01-01

    In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.

  11. Hartung's Astronomical Objects for Southern Telescopes

    NASA Astrophysics Data System (ADS)

    Malin, David; Frew, David J.

    1995-10-01

    Many of the most spectacular astronomical objects are found in the southern skies. With this up-to-date, superbly illustrated handbook, both the amateur with binoculars and the expert with a telescope can make discoveries about new and interesting objects. Professor E. J. Hartung first produced his comprehensive and highly respected guide in 1968. Now the book has been greatly expanded and thoroughly revised, enhancing its character as an indispensable information source. With over 150 illustrations, new material is included on constellations and celestial coordinate systems as well as more modern descriptions of stars, nebulae and galaxies. The authors have included a new "southern Messier" list of objects. The authors' passion for their subject make this a unique and inspirational book. Many of the beautiful photographs were taken by David Malin, the world's leading astronomical photographer. The result will fascinate active and armchair astronomers alike.

  12. The Role of Amateur Astronomy to Outreach Astronomical Knowledge

    NASA Astrophysics Data System (ADS)

    Khachatryan, Vachik; Voskanyan, Tsovak

    2016-12-01

    It is known that in the educational system of republic the astronomy is not taught as a separate subject. Moreover, there are no telescopes in the vast majority of schools. "Goodricke John" NGO of amateur astronomers tries to fill this gap by organizing practical lessons of astronomy in secondary schools. NGO is equipped with high quality portable amateur telescopes and organizes periodic mass observations of planets, Moon, star clusters, nebulae in Yerevan and in regions. In addition, mass observations of rare astronomical phenomena are organized, such as the transit of Venus and Mercury across the disk of the Sun. Being the only NGO of amateur astronomers, it has a goal to contribute to publicizing astronomical knowledge and to ensure the availability of astronomical equipment, telescopes also to those segments of the society who have no opportunity to deal with them, in particular, persons with disabilities, prisoners, persons with disabilities, prisoners, soldiers, children from orphanages, school children and others.

  13. Astronomical Orientation in the Ancient Dacian Sanctuaries of Romania

    NASA Astrophysics Data System (ADS)

    Stănescu, Florin

    Sarmizegetusa Regia, the former capital city of the Dacians' kingdom, is situated in the Şureanu (Orăştie) Mountains in the Southern Carpathians, Romania. This chapter reviews, from the astronomical point of view, two of the monuments located on its Sacred Terrace - the altar known as the "Andesite Sun" and the Central Apse of the Great Round Sanctuary - as well as sanctuaries at the nearby site of Costeşti. Astronomical analyses taking into consideration (a) the astronomical-geometrical methods of the time (the analemma of a sundial after Vitruvius and the stereographical projection in the sense of Hipparchus), (b) astronomical instruments of the time (the gnomon, the sundial and the astrolabe), and (c) other instruments known to the Dacians (the compass), have concluded that these monuments may have enabled the Dacians to carry out a number of astronomical observations. This would confirm several reports by contemporary historians regarding the Dacians' knowledge of astronomy.

  14. NASA's Chandra Finds That Saturn Reflects X-rays From Sun

    NASA Astrophysics Data System (ADS)

    2005-05-01

    When it comes to mysterious X-rays from Saturn, the ringed planet may act as a mirror, reflecting explosive activity from the sun, according to scientists using NASA's Chandra X-ray Observatory. The findings stem from the first observation of an X-ray flare reflected from Saturn's low-latitudes - the region that correlates to Earth's equator and tropics. Led by Dr. Anil Bhardwaj, a planetary scientist at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., the study revealed that Saturn acts as a diffuse mirror for solar X-rays. Counting photons - particles that carry electromagnetic energy including X-rays - was critical to this discovery. For every few thousand X-ray photons Saturn receives from the sun, it reflects a single X-ray photon back. Previous studies revealed that Jupiter, with a diameter 11 times that of Earth, behaves in a similar fashion. Saturn is about 9.5 times as big as Earth, but is twice as far from Earth as Jupiter. "The bigger the planet and nearer to the Sun, the more solar photons it will intercept - resulting in more reflected X-rays," said Bhardwaj. "These results imply we could use giant planets like Jupiter and Saturn as remote-sensing tools. By reflecting solar activity back to us, they could help us monitor X-ray flaring on portions of the sun facing away from Earth's space satellites." Massive solar explosions called flares often accompany coronal mass ejections, which emit solar material and magnetic field. When directed toward the Earth, these ejections can wreak havoc on communication systems from cell phones to satellites. Even as the research appears to have solved one mystery - the source of Saturn's X-rays, it fueled longstanding questions about magnetic fields. Earth's magnetic field is the reason compasses work, since the field acts like a huge bar magnet, causing the magnetic north pole of a compass to point to the magnetic south pole of the Earth. In addition, migratory birds seem to sense the magnetic field

  15. NASA's Hubble Shows Jupiter's Great Red Spot is Smaller than Ever

    NASA Image and Video Library

    2014-05-15

    In this comparison image the photo at the top was taken by Hubble's Wide Field Planetary Camera 2 in 1995 and shows the spot at a diameter of just under 21 000km; the second down shows a 2009 WFC3 photo of the spot at a diameter of just under 18 000km; and the lowest shows the newest image from WFC3 taken in 2014 with the spot at its smallest yet, with diameter of just 16 000km. -- Jupiter's trademark Great Red Spot -- a swirling anti-cyclonic storm larger than Earth -- has shrunk to its smallest size ever measured. According to Amy Simon of NASA's Goddard Space Flight Center in Greenbelt, Maryland, recent NASA Hubble Space Telescope observations confirm the Great Red Spot now is approximately 10,250 miles across. Astronomers have followed this downsizing since the 1930s. Historic observations as far back as the late 1800s gauged the storm to be as large as 25,500 miles on its long axis. NASA Voyager 1 and Voyager 2 flybys of Jupiter in 1979 measured it to be 14,500 miles across. In 1995, a Hubble photo showed the long axis of the spot at an estimated 13,020 miles across. And in a 2009 photo, it was measured at 11,130 miles across. Beginning in 2012, amateur observations revealed a noticeable increase in the rate at which the spot is shrinking -- by 580 miles per year -- changing its shape from an oval to a circle. Read more: 1.usa.gov/1mvuo0R Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Astronomers as Software Developers

    NASA Astrophysics Data System (ADS)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  17. Findings from NASA's 2015-2017 Electric Sail Investigations

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce. M.

    2017-01-01

    Electric Sail (E-Sail) propulsion systems will enable scientific spacecraft to obtain velocities of up to 10 astronomical units per year without expending any on-board propellant. The E-Sail propulsion is created from the interaction of a spacecraft's positively charged multi-kilometer-length conductor/s with protons that are present in the naturally occurring hypersonic solar wind. The protons are deflected via natural electrostatic repulsion forces from the Debye sheath that is formed around a charged wire in space, and this deflection of protons creates thrust or propulsion in the opposite direction. It is envisioned that this E-Sail propulsion system can provide propulsion throughout the solar system and to the heliosphere and beyond. Consistent with the concept of a "sail," no propellant is needed as electrostatic repulsion interactions between the naturally occurring solar wind protons and a positively charged wire creates the propulsion. The basic principle on which the Electric Sail operates is the exchange of momentum between an "electric sail" and solar wind, which continually flows radially away from the sun at speeds ranging from 300 to 700 kilometers per second. The "sail" consists of an array of long, charged wires which extend radially outward 10 to 30 kilometers from a slowly rotating spacecraft. Momentum is transferred from the solar wind to the array through the deflection of the positively charged solar wind protons by a high voltage potential applied to the wires. The thrust generated by an E-Sail is proportional to the area of the sail, which is given by the product of the total length of the wires and the effective wire diameter. The wire is approximately 0.1 millimeters in diameter. However, the effective diameter is determined by the distance the applied electric potential penetrates into space around the wire (on the order of 10 meters at 1 astronomical unit). As a result, the effective area over which protons are repelled is proportional

  18. Progress on the New York State Observatory: a new 12-meter astronomical telescope

    NASA Astrophysics Data System (ADS)

    Sebring, T.; O'Dea, C.; Baum, S.; Teran, J.; Loewen, N.; Stutzki, C.; Egerman, R.; Bonomi, G.

    2014-07-01

    Over the past two years, the New York Astronomical Corporation (NYAC), the business arm of the Astronomical Society of New York (ASNY), has continued planning and technical studies toward construction of a 12-meter class optical telescope for the use of all New York universities and research institutions. Four significant technical studies have been performed investigating design opportunities for the facility, the dome, the telescope optics, and the telescope mount. The studies were funded by NYAC and performed by companies who have provided these subsystems for large astronomical telescopes in the past. In each case, innovative and cost effective approaches were identified, developed, analyzed, and initial cost estimates developed. As a group, the studies show promise that this telescope could be built at historically low prices. As the project continues forward, NYAC intends to broaden the collaboration, pursue funding, to continue to develop the telescope and instrument designs, and to further define the scientific mission. The vision of a historically large telescope dedicated to all New York institutions continues to grow and find new adherents.

  19. The Most Productive Years of Average Astronomers

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2017-11-01

    We learned previously that geniuses and outstanding scientists have peak productivities in their 30s but produce little late in life. This time we consider average astronomers who have completed their careers (25 American Astronomical Society members who died recently) and found that they peak in their mid 40s and did half of their life's important output after age 50.

  20. Aristotle University Astronomical Station at Mt. Holomon

    NASA Astrophysics Data System (ADS)

    Avdellidou, C.; Ioannidis, P.; Kouroubatzakis, K.; Nitsos, A.; Vakoulis, J.; Seiradakis, J. H.

    2012-01-01

    The Aristotle University Astronomical Station was established seven years ago in order to fulfill the educational needs of its students. Astronomical observations are undertaken using three fully equipped small telescopes. Some interesting results are presented below, including the study of asteroids and flare stars, the detection of optical emission from supernovae remnants and follow up observations in extra solar planets.

  1. BOOK REVIEW: Treasure-Hunting in Astronomical Plate Archives.

    NASA Astrophysics Data System (ADS)

    Kroll, Peter; La Dous, Constanze; Brauer, Hans-Juergen; Sterken, C.

    This book consists of the proceedings of a conference on the exploration of the invaluable scientific treasure present in astronomical plate archives worldwide. The book incorporates fifty scientific papers covering almost 250 pages. There are several most useful papers, such as, for example, an introduction to the world's large plate archives that serves the purpose of a guide for the beginning user of plate archives. It includes a very useful list of twelve mayor archives with many details on their advantages (completeness, number of plates, classification system and homogeneity of time coverage) and their limitations (plate quality, access, electronic catalogues, photographic services, limiting magnitudes, search software and cost to the user). Other topics cover available contemporary digitization machines, the applications of commercial flatbed scanners, technical aspects of plate consulting, astrophysical applications and astrometric uses, data reduction, data archiving and retrieval, and strategies to find astrophysically useful information on plates. The astrophysical coverage is very broad: from solar-system bodies to variable stars, sky surveys and sky patrols covering the galactic and extragalactic domain and even gravitational lensing. The book concludes by an illuminating paper on ALADIN, the reference tool for identification of astronomical sources. This work can be considered as a kind of field guide, and is recommended reading for anyone who wishes to undertake small- or large-scale consulting of photographic plate material. A shortcoming of the proceedings is the fact that very few papers have abstracts. BOOK REVIEW: Treasure-Hunting in Astronomical Plate Archives. Proceedings of the international workshop held at Sonneberg Observatory, March 4-6, 1999. Peter Kroll, Constanze la Dous and Hans-Juergen Brauer (Eds.)

  2. An Astronomer In The Classroom: Observatoire de Paris's Partnership Between Teachers and Astronomers

    NASA Astrophysics Data System (ADS)

    Doressoundiram, A.; Barban, C.

    2006-08-01

    The Observatoire de Paris is offering a partnership between teachers and astronomers. The principle is simple: any teacher wishing to undertake a pedagogical project in astronomy, in the classroom or involving the entire school, can request the help of a mentor. An astronomer from the Observatoire de Paris will then follow the teacher's project progress and offer advice and scientific support throughout the school year. The projects may take different forms: construction projects (models, instruments), lectures, posters, exhibitions, etc. The type of assistance offered is as varied as the projects: lecture(s) in class, telephone and e-mail exchanges, visits to the Observatoire; an almost made-to-measure approach that delighted the thirty or so groups that benefited such partnership in the 2005-2006 academic year. And this number is continuously growing. There was a rich variety of projects undertaken, from mounting a show and building a solar clock to visiting a high altitude observatory, or resolving the mystery of Jupiter's great red spot. The Universe and its mysteries fascinate the young (and the not so- young) and provide a multitude of scientific topics that can be exploited in class. Astronomy offers the added advantage of being a multidisciplinary field. Thus, if most projects are generally initiated by a motivated teacher, they are often taken over by teachers in other subjects: Life and Earth Sciences (SVT), history, mathematics, French, and so forth. The project may consist in an astronomy workshop or be part of the school curriculum. Whatever the case, the astronomer's task is not to replace the teacher or the textbooks, but to propose activities or experiments that are easy to implement. Representing the Solar system on a school-yard scale, for instance, is a perfect way to make youngsters realize that the Universe consists mostly of empty space. There is no shortage of topics, and the students' enthusiasm, seldom absent, is the best reward for the

  3. Ancient Maya astronomical tables from Xultun, Guatemala.

    PubMed

    Saturno, William A; Stuart, David; Aveni, Anthony F; Rossi, Franco

    2012-05-11

    Maya astronomical tables are recognized in bark-paper books from the Late Postclassic period (1300 to 1521 C.E.), but Classic period (200 to 900 C.E.) precursors have not been found. In 2011, a small painted room was excavated at the extensive ancient Maya ruins of Xultun, Guatemala, dating to the early 9th century C.E. The walls and ceiling of the room are painted with several human figures. Two walls also display a large number of delicate black, red, and incised hieroglyphs. Many of these hieroglyphs are calendrical in nature and relate astronomical computations, including at least two tables concerning the movement of the Moon, and perhaps Mars and Venus. These apparently represent early astronomical tables and may shed light on the later books.

  4. The Galway astronomical Stokes polarimeter: optical development

    NASA Astrophysics Data System (ADS)

    Collins, P.; Redfern, M.; Shearer, A.; Sheehan, B.

    2010-06-01

    The acquisition time of astronomical polarimeters has in the past been restricted to by the use of polarimeters utilizing modulated or rotating components [1]. If the polarisation state being measured is changing in the order of nanoseconds, how does one measure this? The Galway Astronomical Stokes Polarimeter (GASP) is an instantaneous full Stokes Division Of Amplitude Polarimeter (DOAP) that has been developed for astronomical imaging polarimetry. It also uses just one camera thus restricting the acquisition time to photon statistics. Following the work of Compain and Drévillon [2], the main component - the Retarding Beam-Splitter, was redesigned and enhanced for imaging use. We present how the polarization and imaging optics were developed to create a broadband imaging instantaneous polarimeter. unknown author type, collab

  5. Star Ware: The Amateur Astronomer's Guide to Choosing, Buying, and Using Telescopes and Accessories, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Harrington, Philip S.

    2002-05-01

    Praise for the Second Edition of Star Ware "Star Ware is still a tour de force that any experienced amateur will find invaluable, and which hardware-minded beginners will thoroughly enjoy." -Robert Burnham, Sky & Telescope magazine "Star Ware condenses between two covers what would normally take a telescope buyer many months to accumulate." -John Shibley, Astronomy magazine Now more than ever, the backyard astronomer has a dazzling array of choices when it comes to telescope shopping-which can make choosing just the right sky-watching equipment a formidable challenge. In this revised and updated edition of Star Ware, the essential guide to buying astronomical equipment, award-winning astronomy writer Philip Harrington does the work for you, analyzing and exploring today's astronomy market and offering point-by-point comparisons of everything you need. Whether you're an experienced amateur astronomer or just getting started, Star Ware, Third Edition will prepare you to explore the farthest reaches of space with: Extensive, expanded reviews of leading models and accessories, including dozens of new products, to help you buy smart

  6. A clear, step-by-step guide to all aspects of purchasing everything from telescopes and binoculars to filters, mounts, lenses, cameras, film, star charts, guides and references, and much more Eleven new do-it-yourself projects for making unique astronomical equipment at home Easy tips on maintenance, photography, and star-mapping to help you get the most out of your telescope Lists of where to find everything astronomical, including Internet sites and Web resources; distributors, dealers, and conventions; and corporate listings for products and services

  7. Next Generation Astronomical Data Processing using Big Data Technologies from the Apache Software Foundation

    NASA Astrophysics Data System (ADS)

    Mattmann, Chris

    2014-04-01

    In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.

  8. On the Astronomical Knowledge and Traditions of Aboriginal Australians

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2011-12-01

    Historian of science David Pingree defines science in a broad context as the process of systematically explaining perceived or imaginary phenomena. Although Westerners tend to think of science being restricted to Western culture, I argue in this thesis that astronomical scientific knowledge is found in Aboriginal traditions. Although research into the astronomical traditions of Aboriginal Australians stretches back for more than 150 years, it is relatively scant in the literature. We do know that the sun, moon, and night sky have been an important and inseparable component of the landscape to hundreds of Australian Aboriginal groups for thousands (perhaps tens-of-thousands) of years. The literature reveals that astronomical knowledge was used for time keeping, denoting seasonal change and the availability of food sources, navigation, and tidal prediction. It was also important for rituals and ceremonies, birth totems, marriage systems, cultural mnemonics, and folklore. Despite this, the field remains relatively unresearched considering the diversity of Aboriginal cultures and the length of time people have inhabited Australia (well over 40,000 years). Additionally, very little research investigating the nature and role of transient celestial phenomena has been conducted, leaving our understanding of Indigenous astronomical knowledge grossly incomplete. This thesis is an attempt to overcome this deficiency, with a specific focus on transient celestial phenomena. My research, situated in the field of cultural astronomy, draws from the sub-disciplines of archaeoastronomy, ethnoastronomy, historical astronomy, and geomythology. This approach incorporates the methodologies and theories of disciplines in the natural sciences, social sciences, and humanities. This thesis, by publication, makes use of archaeological, ethnographic, and historical records, astronomical software packages, and geographic programs to better understand the ages of astronomical traditions and the

  9. Engaging Scientists in NASA Education and Public Outreach: Informal Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Discovery Guides Collaborative, Universe; Collaborative, NASAScience4Girls; SEPOF Informal Education Working Group; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Informal Science Education and Outreach communities. Members of the Informal Science Education and Outreach communities include museum/science center/planetarium professionals, librarians, park rangers, amateur astronomers, and other out-of-school-time educators. The Forums’ efforts for the Informal Science Education and Outreach communities include a literature review, appraisal of informal educators’ needs, coordination of audience-based NASA resources and opportunities, and professional development. Learn how to join in our collaborative efforts to reach the informal science education and outreach communities based upon mutual needs and interests.

  10. NASA Team Begins Testing of a New-Fangled Optic

    NASA Image and Video Library

    2017-12-08

    It’s an age-old astronomical truth: To resolve smaller and smaller physical details of distant celestial objects, scientists need larger and larger light-collecting mirrors. This challenge is not easily overcome given the high cost and impracticality of building and — in the case of space observatories — launching large-aperture telescopes. However, a team of scientists and engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has begun testing a potentially more affordable alternative called the photon sieve. This new-fangled telescope optic could give scientists the resolution they need to see finer details still invisible with current observing tools – a jump in resolution that could help answer a 50-year-old question about the physical processes heating the sun's million-degree corona. Read more: go.nasa.gov/2abhanr Credit: NASA/Goddard/W. Hrybyk

  11. THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauschlicher, C. W.; Ricca, A.; Boersma, C.

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 {mu}m (5000-5 cm{sup -1}). These data are now available on the World Wide Web at www.astrochem.org/pahdb. This paper presents an overview of the computational spectra in the database and the tools developed to analyzemore » and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented.« less

  12. Effectiveness of Amateur Astronomers as Informal Science Educators

    ERIC Educational Resources Information Center

    Gibbs, Michael G.; Berendsen, Margaret

    2007-01-01

    The Astronomical Society of the Pacific (ASP) conducted a national survey of in-service teachers participating in Project ASTRO. The survey results document (1) the value that teachers place on supplemental astronomy education provided by professional and amateur astronomers, and (2) the difference that teachers perceive in the value provided by…

  13. Coronagraph for astronomical imaging and spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  14. Chandra Finds Most Distant X-ray Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2001-02-01

    The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the

  15. The Expansion of the Astronomical Photographic Data Archive at PARI

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Barker, Thurburn; Castelaz, Michael

    2017-01-01

    A diverse set of photometric, astrometric, spectral and surface brightness data exist on decades of photographic glass plates. The Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI) was established in November 2007 and is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and PARI continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data available in a digital format.In 2016, APDA expanded from 50 collections with about 220,000 plates to more than 55 collections and more than 340,000 plates and films. These account for more than 30% of all astronomical photographic data in the United States. The largest of the new acquisitions are the astronomical photographic plates in the Yale University collection. We present details of the newly added collections and review of other collections in APDA.

  16. Knowing the people who come to public astronomical observatories: The case of Akita prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, N.

    2015-03-01

    The purpose of this research is to know and gain a better understanding of people who come to astronomical observatories and to find out more about their experiences and thoughts on astronomy. To find some of the issues about science communication in astronomy, the author carried out questionnaire research studies involving high school students and junior high school and elementary school teachers.

  17. The NASA airborne astronomy program - A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1992-01-01

    The publication records from NASA's airborne observatories are examined to evaluate the contribution of the airborne astronomy program to technological development and scientific/educational progress. The breadth and continuity of program is detailed with reference to its publication history, discipline representation, literature citations, and to the ability of such a program to address nonrecurring and unexpected astronomical phenomena. Community involvement in the airborne-observation program is described in terms of the number of participants, institutional affiliation, and geographic distribution. The program utilizes instruments including heterodyne and grating spectrometers, high-speed photometers, and Fabry-Perot spectrometers with wide total spectral ranges, resolutions, and numbers of channels. The potential of the program for both astronomical training and further scientific, theoretical, and applied development is underscored.

  18. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    NASA Astrophysics Data System (ADS)

    Hanzalová, K.; Klokočník, J.; Kostelecký, J.

    2014-06-01

    This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993). He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005) deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007) documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices), which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation

  19. The associate principal astronomer telescope operations model

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John; Swanson, Keith; Edgington, Will; Henry, Greg

    1994-01-01

    This paper outlines a new telescope operations model that is intended to achieve low operating costs with high operating efficiency and high scientific productivity. The model is based on the existing Principal Astronomer approach used in conjunction with ATIS, a language for commanding remotely located automatic telescopes. This paper introduces the notion of an Associate Principal Astronomer, or APA. At the heart of the APA is automatic observation loading and scheduling software, and it is this software that is expected to help achieve efficient and productive telescope operations. The purpose of the APA system is to make it possible for astronomers to submit observation requests to and obtain resulting data from remote automatic telescopes, via the Internet, in a highly-automated way that minimizes human interaction with the system and maximizes the scientific return from observing time.

  20. Astronomical Microdensitometry Conference

    NASA Technical Reports Server (NTRS)

    Klinglesmith, D. A. (Editor)

    1984-01-01

    The status of the current microdensitometers used for digitizing astronomical imagery is discussed. The tests and improvements that have and can be made to the Photometric Data System PDS microdensitometer are examined. The various types of microdensitometers that currently exist in the world are investigated. Papers are presented on the future needs and the data processing problems associated with digitizing large images.

  21. Developing an Undergraduate Astronomical Research Program

    NASA Astrophysics Data System (ADS)

    Genet, R. M.

    2007-05-01

    Time-series astronomical photometry is an area of scientific research well suited to amateurs and undergraduates, and their backyard and campus observatories. I describe two past one-semester community college research programs, one six year ago and one last fall (2006), as well as a program planned for this coming fall (2007). The 2001 program, a course at Central Arizona College, utilized a robotic telescope at the Fairborn Observatory. Results were presented at the 200th meeting of the American Astronomical Society. This past fall, three students, in a 17-week, one-semester course at Cuesta College, were able to plan a research program, make several thousand CCD photometric observations, reduce and analyze their data, write up their results and, on the last day of class, send their paper off to a refereed journal, the JAAVSO. A course is being offered this coming fall (2007) that will involve about a dozen students (including high school students), several local amateur astronomers, and at least three CCD- equipped semi-automatic telescopes. Potential solutions to "scaling up" challenges created by increased class size are discussed.

  1. Elizabeth Brown (1830-1899), solar astronomer

    NASA Astrophysics Data System (ADS)

    Creese, M.

    1998-08-01

    Were it not for the fact that she was a woman, Elizabeth Brown might well be thought of as a fairly typical nineteenth-century British amateur astronomer. She has a place, although a relatively modest one, in the distinguished group of people who, with their own fortunes, carried out much of the astronomical research being done in the country at a time before extensive government support was forthcoming for the work.1 Her career in fact follows a pattern common to several of the nineteenth-century men astronomers in that her full productive period came only after she was freed from her primary responsibilities; she did not have to amass the necessary financial resources as did many of the men,2 but she had the time-consuming responsibility, not unusual for a Victorian woman, of caring for a parent through a lengthy old age. Only after her father died at the age of ninety-one, did Elizabeth, then in her early fifties, begin her sixteen years of remarkable public activity in astronomy.

  2. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  3. The challengers of an astronomer being a journalist

    NASA Astrophysics Data System (ADS)

    Podorvanyuk, N.

    2015-03-01

    As the weakness of russian astronomers in observational astronomy became chronic Russia should enter European Southern Observatory. But the Russian government is still not providing any financing of the entrance of Russia to ESO. The author states this situation as an example of his experience of work as an astronomer and as a journalist at the same time.

  4. Student-to-Scientist (S2S) via the PACA Project: Connecting Astronomers, Educators and Students

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2015-12-01

    Student to Scientist (S2S), provides pathways for observational and research tools for K-12 and undergraduate students to improve science proficiency through conducting real scientific observations. Our approach lies in the integration of professional and amateur astronomers, educators, students, and communicators to identify multiple paths for the student to become a scientist. I report on the ensuing project, also known as the PACA Project, which is an ecosystem of various activities that take advantage of the social media and immediate connectivity amongst amateur astronomers worldwide and that can be galvanized to participate in a given observing campaign. The PACA Project has participated in organized campaigns such as NASA Comet ISON Observing Campaign in 2013; NASA Comet Integrated Observations Campaign to observe Comet Siding Spring as it flew by very close to Mars on 19 October 2014. Currently the PACA Project is involved in the Ground-based Amateur campaign to observer ESA/Rosetta mission's target, 67P/Churyumov-Gerasimenko (CG) that is en route to its perihelion on 13 August 2015 (at the time of abstract submission). The PACA Project provides access to the professional community and the student/educator and informal/public communities via various social media like Facebook, Twitter, Flickr, Pinterest, Vimeo, Google+. With the popularity of mobile platforms and instant connections with other peers globally, the multi-faceted social universe has become a vital part of engagement of multiple communities. The PACA project currently has initiated a Comet Tails and Disconnection Events campaign to relate to the changing solar wind conditions. Other PACA projects include Saturn Solstice 2017 and outreach projects with Astroproject (India). These and other citizen-science enabled activities and their integration with S2S project will be discussed.

  5. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  6. Astronomical Symbolism in Bronze-Age and Iron-Age Rock Art

    NASA Astrophysics Data System (ADS)

    García Quintela, Marco V.; Santos-Estévez, Manuel

    The best-known rock art from Late Prehistory is found in Scandinavia, the Alps, and Galicia, North West Spain. In this chapter, we explore its association with astronomical symbolism from three perspectives: the representation of heavenly bodies, the visibility conditions of the carvings, and their position on astronomical alignments. We also consider temporal variables and the impact of aspects of Indo-European ideology on the construction of the representations in their astronomical relationships.

  7. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    NASA Astrophysics Data System (ADS)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of

  8. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  9. PyEphem: Astronomical Ephemeris for Python

    NASA Astrophysics Data System (ADS)

    Rhodes, Brandon Craig

    2011-12-01

    PyEphem provides scientific-grade astronomical computations for the Python programming language. Given a date and location on the Earth’s surface, it can compute the positions of the Sun and Moon, of the planets and their moons, and of any asteroids, comets, or earth satellites whose orbital elements the user can provide. Additional functions are provided to compute the angular separation between two objects in the sky, to determine the constellation in which an object lies, and to find the times at which an object rises, transits, and sets on a particular day. The numerical routines that lie behind PyEphem are those from the wonderful XEphem astronomy application, whose author, Elwood Downey, generously gave permission for us to use them as the basis for PyEphem.

  10. Division XII / Commission 46 / Program Group Exchnage of Astronomers

    NASA Astrophysics Data System (ADS)

    Percy, John R.; Leung, Kam-Ching; Tolbert, Charles R.

    The Commission 46 Program Group Exchange of Astronomers (PG-EA) provides travel grants to astronomers and advanced students for research or study trips of at least three months duration. Highest priority is given to applicants from developing countries whose visits will benefit them, their institution and country, and the institution visited. This program, if used strategically, has the potential to support other Commission 46 programs such as Teaching for Astronomical Development (PG-TAD) and World Wide Development of Astronomy (PG-WWDA). Complete information about the program, and the application procedure, can be found at .

  11. The Astronomer Magazine

    Science.gov Websites

    graph shows the lightcurve for this supernovae. NASA ADS NASA ADS 28 January 2017 Back issues of magazines from 1964 to 2014 (volume 50) are available on the NASA Astrophysical Data System (ADS). Welcome 2018 February to 2019 January Lightcurve for SN 2017eaw in NGC 6946 NASA ADS Welcome Tags awards

  12. Astronomers Discover Clue to Origin of Milky Way Gas Clouds

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A surprising discovery that hydrogen gas clouds found in abundance in and above our Milky Way Galaxy have preferred locations has given astronomers a key clue about the origin of such clouds, which play an important part in galaxy evolution. We've concluded that these clouds are gas that has been blown away from the Galaxy's plane by supernova explosions and the fierce winds from young stars in areas of intense star formation," said H. Alyson Ford of the University of Michigan, whose Ph.D thesis research from Swinburne University formed the basis for this result. The team, consisting of Ford and collaborators Felix J. Lockman, of the National Radio Astronomy Observatory (NRAO), and Naomi Mclure-Griffiths of CSIRO Astronomy and Space Science, presented their findings to the American Astronomical Society's meeting in Miami, Florida. The astronomers studied gas clouds in two distinct regions of the Galaxy. The clouds they studied are between 400 and 15,000 light-years outside the disk-like plane of the Galaxy. The disk contains most of the Galaxy's stars and gas, and is surrounded by a "halo" of gas more distant than the clouds the astronomers studied. "These clouds were first detected with the National Science Foundation's Robert C. Byrd Green Bank Telescope, and are quite puzzling. They are in a transitional area between the disk and the halo, and their origin has been uncertain," Lockman explained. The research team used data from the Galactic All-Sky Survey, made with CSIRO's Parkes radio telescope in Australia. When the astronomers compared the observations of the two regions, they saw that one region contained three times as many hydrogen clouds as the other. In addition, that region's clouds are, on average, twice as far above the Galaxy's plane. The dramatic difference, they believe, is because the region with more clouds lies near the tip of the Galaxy's central "bar," where the bar merges with a major spiral arm. This is an area of intense star formation

  13. Sounding Rocket Instrument Development at UAHuntsville/NASA MSFC

    NASA Technical Reports Server (NTRS)

    Kobayashi, Ken; Cirtain, Jonathan; Winebarger, Amy; Savage, Sabrina; Golub, Leon; Korreck, Kelly; Kuzin, Sergei; Walsh, Robert; DeForest, Craig; DePontieu, Bart; hide

    2013-01-01

    We present an overview of solar sounding rocket instruments developed jointly by NASA Marshall Space Flight Center and the University of Alabama in Huntsville. The High Resolution Coronal Imager (Hi-C) is an EUV (19.3 nm) imaging telescope which was flown successfully in July 2012. The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a Lyman Alpha (121.6 nm) spectropolarimeter developed jointly with the National Astronomical Observatory of Japan and scheduled for launch in 2015. The Marshall Grazing Incidence X-ray Spectrograph is a soft X-ray (0.5-1.2 keV) stigmatic spectrograph designed to achieve 5 arcsecond spatial resolution along the slit.

  14. XEphem: Interactive Astronomical Ephemeris

    NASA Astrophysics Data System (ADS)

    Downey, Elwood Charles

    2011-12-01

    XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. Among other things, XEphem: computes heliocentric, geocentric and topocentric information for all objects; has built-in support for all planets; the moons of Mars, Jupiter, Saturn, Uranus and Earth; central meridian longitude of Mars and Jupiter; Saturn's rings; and Jupiter's Great Red Spot; allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites; provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC; displays data in configurable tabular formats in conjunction with several interactive graphical views; displays a night-at-a-glance 24 hour graphic showing when any selected objects are up; displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories; quickly finds all close pairs of objects in the sky; and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

  15. Starstuff.org - Bridging the Cosmos Between Astronomers and the Public

    NASA Astrophysics Data System (ADS)

    Hamm, J. J.; Howell, D. A.

    1998-12-01

    Starstuff.org is a new web site featuring articles written by astronomers to promote general interest in astronomy and communicate directly the ideas and excitement that make astronomy popular with the public. Traditional media are limited as an outreach tool, because journalists and publishers decide which topics are newsworthy, and many facts are lost in the translation. Starstuff.org circumvents these problems by removing the middleman and allowing astronomers to communicate with the public directly. Readers can be assured of getting accurate information through the firsthand accounts of leaders in the field. This format also allows for the discussion of astronomical concepts and issues that may be important to astronomers but not considered newsworthy by journalists. The unique power of the computers and the internet as instructive tools is harnessed with features such as virtual reality (VRML) explorations of 3D concepts, interactive equations, animations to explain dynamic events, and hyperlinks to emphasize the connections between concepts and direct the reader to further resources. Topics may be explored in more creative ways and in greater depth than in traditional media, and astronomers can reach a wider audience than they could in a traditional lecture. The site's infrastructure, automated processing, and professional programmer/digital artist free contributors from having to know HTML, allowing them to concentrate on creative ways of presenting ideas. Any astronomer with email is encouraged to contribute.

  16. Preserving and Archiving Astronomical Photographic Plates

    NASA Astrophysics Data System (ADS)

    Castelaz, M. W.; Cline, J. D.

    2005-05-01

    Astronomical objects change with time. New observations complement past observations recorded on photographic plates. Analyses of changes provide essential routes to information about an object's formation, constitution and evolution. Preserving a century of photographic plate observations is thus of paramount importance. Plate collections are presently widely dispersed; plates may be stored in poor conditions, and are effectively inaccessible to both researchers and historians. We describe a planned project at Pisgah Astronomical Research Institute to preserve the collections of astronomical plates in the United States by gathering them into a single storage location. Collections will be sorted, cleaned, and cataloged on-line so as to provide access to researchers. Full scientific and historic use of the material then requires the observations themselves to be accessible digitally. The project's goal will be the availability of these data as a unique, fully-maintained scientific and educational resource. The new archive will support trans-disciplinary research such as the chemistry of the Earth's atmosphere, library information science, trends in local weather patterns, and impacts of urbanization on telescope use, while the hand-written observatory logs will be a valuable resource for science historians and biographers.

  17. Astronomers Without Borders: A Global Astronomy Community

    NASA Astrophysics Data System (ADS)

    Simmons, M.

    2011-10-01

    Astronomers Without Borders (AWB) brings together astronomy enthusiasts of all types - amateur astronomers, educators, professionals and "armchair" astronomers for a variety of online and physicalworld programs. The AWB web site provides social networking and a base for online programs that engage people worldwide in astronomy activities that transcend geopolitical and cultural borders. There is universal interest in astronomy, which has been present in all cultures throughout recorded history. Astronomy is also among the most accessible of sciences with the natural laboratory of the sky being available to people worldwide. There are few other interests for which people widely separated geographically can engage in activities involving the same objects. AWB builds on those advantages to bring people together. AWB also provides a platform where projects can reach a global audience. AWB also provides unique opportunities for multidisciplinary collaboration in EPO programs. Several programs including The World at Night, Global Astronomy Month and others will be described along with lessons learned.

  18. Learning from FITS: Limitations in use in modern astronomical research

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.; Kitaeff, S.; Fay, J.; Laurino, O.; Alexov, A.; Landry, W.; Masters, J.; Brazier, A.; Schaaf, R.; Edwards, K.; Redman, R. O.; Marsh, T. R.; Streicher, O.; Norris, P.; Pascual, S.; Davie, M.; Droettboom, M.; Robitaille, T.; Campana, R.; Hagen, A.; Hartogh, P.; Klaes, D.; Craig, M. W.; Homeier, D.

    2015-09-01

    The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships. There are members of the community today who find some or all of these limitations unworkable, and have decided to move ahead with storing data in other formats. If this fragmentation continues, we risk abandoning the advantages of broad interoperability, and ready archivability, that the FITS format provides for astronomy. In this paper we detail some selected important problems which exist within the FITS standard today. These problems may provide insight into deeper underlying issues which reside in the format and we provide a discussion of some lessons learned. It is not our intention here to prescribe specific remedies to these issues; rather, it is to call attention of the FITS and greater astronomical computing communities to these problems in the hope that it will spur action to address them.

  19. Misconceptions of Astronomical Distances

    ERIC Educational Resources Information Center

    Miller, Brian W.; Brewer, William F.

    2010-01-01

    Previous empirical studies using multiple-choice procedures have suggested that there are misconceptions about the scale of astronomical distances. The present study provides a quantitative estimate of the nature of this misconception among US university students by asking them, in an open-ended response format, to make estimates of the distances…

  20. ASURV: Astronomical SURVival Statistics

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  1. Authentic Astronomy Research Experiences for Teachers: the NASA/IPAC Teacher Archive Research Program (NITARP)

    NASA Astrophysics Data System (ADS)

    Rebull, L.; NITARP Team

    2011-12-01

    Since 2004, we have provided authentic astronomy research experiences for teachers using professional astronomical data. (The program used to be called the Spitzer Teacher Program for Teachers and Students, and in 2009 was renamed NITARP--NASA/IPAC Teacher Archive Research Program.) We partner small groups of teachers with a mentor astronomer, the team does research, writes up a poster, and presents it at the major annual meeting for professional US astronomers, the American Astronomical Society (winter meeting). The teachers incorporate this research experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program, to the best of our knowledge, is completely unique in the following three ways: (1) Each team does original research using real astronomical data, not canned labs or reproductions of previously done research. (2) Each team writes up the results of their research and presents it at an AAS meeting. Each team also presents the educational results of their experience. (3) The 'products' of the program are primarily the scientific results, as opposed to curriculum packets. The teachers in the program involve students at their school and incorporate the experience into their teaching in a way that works for them, their environment, and their local/state standards. The educators in the program are selected from a nationwide annual application process, and they get three trips, all reasonable expenses paid. First, they attend a winter AAS meeting to get their bearings as attendees of the largest professional astronomy meetings in the world. We sponsor a kickoff workshop specifically for the NITARP educators on the day before the AAS meeting starts. After the meeting, they work remotely with their team to write a proposal, as well as read background literature. In the summer (at a time convenient to all team members), the educators plus up to two students per teacher come

  2. The Next Generation of NASA Night Sky Network: A Searchable Nationwide Database of Astronomy Events

    NASA Astrophysics Data System (ADS)

    Ames, Z.; Berendsen, M.; White, V.

    2010-08-01

    With support from NASA, the Astronomical Society of the Pacific (ASP) first developed the Night Sky Network (NSN) in 2004. The NSN was created in response to research conducted by the Institute for Learning Innovation (ILI) to determine what type of support amateur astronomers could use to increase the efficiency and extent of their educational outreach programs. Since its creation, the NSN has grown to include an online searchable database of toolkit resources, Presentation Skills Videos covering topics such as working with kids and how to answer difficult questions, and a searchable nationwide calendar of astronomy events that supports club organization. The features of the NSN have allowed the ASP to create a template that amateur science organizations might use to create a similar support network for their members and the public.

  3. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  4. Astronomy and astronomical education in the FSU (Former Soviet Union)

    NASA Astrophysics Data System (ADS)

    Bochkarev, Nikolai G.

    The current situation in astronomy and astronomical education over the territory of the Former Soviet Union is traced. New facilities for radioastronomy are being put into work - the most important of them being the 2 coupled 32-m dishes, VLBI network "Quasar"; a number of observatories are acquiring an international status (in the frame of CIS); INTERNET is becoming available for an increasing number of astronomical institutions. Azerbaijan astronomers have overcome their isolation from the rest of the world and cooperate actively with the astronomical community. All-Russia and international olympics in astronomy for high school students are held and attract participants from increasing number of regions of Russia and other states. The outcome of the 9th JENAM in Moscow and of the events attached to the Meeting is presented.

  5. GEOMETRY-INDEPENDENT DETERMINATION OF RADIAL DENSITY DISTRIBUTIONS IN MOLECULAR CLOUD CORES AND OTHER ASTRONOMICAL OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu

    2016-05-01

    We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less

  6. Project ASTRO: How-To Manual for Teachers and Astronomers.

    ERIC Educational Resources Information Center

    Richter, Jessica; Fraknoi, Andrew

    Project ASTRO is an innovative program to support science education by linking teachers and students in grades 4-9 with amateur and professional astronomers with the overall goal being to increase students' interest in astronomy and science in general. This manual was designed for teachers, amateur and professional astronomers, youth group…

  7. Astronomical databases of Nikolaev Observatory

    NASA Astrophysics Data System (ADS)

    Protsyuk, Y.; Mazhaev, A.

    2008-07-01

    Several astronomical databases were created at Nikolaev Observatory during the last years. The databases are built by using MySQL search engine and PHP scripts. They are available on NAO web-site http://www.mao.nikolaev.ua.

  8. The Impact of and Lessons Learned from NITARP, the NASA/IPAC Teacher Archive Research Program

    NASA Astrophysics Data System (ADS)

    Rebull, L. M.; Nitarp Team

    2014-07-01

    NITARP, the NASA/IPAC Teacher Archive Research Program, gets teachers involved in authentic astronomical research. We partner small groups of educators with a professional astronomer mentor for a year-long original research project. The teams echo the entire research process, from writing a proposal, to doing the research, to presenting the results at an American Astronomical Society (AAS) meeting. The program runs from January through January. Applications are available annually in May and are due in September. The educators' experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other programs we know of that get real astronomy data into the classroom in three ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters in science sessions at an American Astronomical Society meeting alongside other researchers' work (participants are not given a “free pass” because they are educators or students). Third, the “product” is the scientific result, not any sort of curriculum packet. The teachers adapt their project and their experiences to fit in their classroom environment. NITARP changes the way teachers think about science and scientists. More information is available online at http://nitarp.ipac.caltech.edu/.

  9. The Production Rate and Employment of Ph.D. Astronomers

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2007-05-01

    As in many sciences, the production rate of new Ph.D. astronomers is decoupled from the global demand for trained scientists. As noted by Thronson (1991, PASP, 103, 90), overproduction appears to be built into the system, making the mathematical formulation of surplus astronomer production similar to that for industrial pollution models -- an unintended side effect of the process. Following Harris (1994, ASP Conf., 57, 12), I document the production of Ph.D. astronomers from 1990 to 2005 using the online Dissertation Abstracts database. To monitor the changing patterns of employment, I examine the number of postdoctoral, tenure-track, and other jobs advertised in the AAS Job Register during this same period. Although the current situation is clearly unsustainable, it was much worse a decade ago with nearly 7 new Ph.D. astronomers in 1995 for every new tenure-track job. While the number of new permanent positions steadily increased throughout the late 1990's, the number of new Ph.D. recipients gradually declined. After the turn of the century, the production of new astronomers leveled off, but new postdoctoral positions grew dramatically. There has also been recent growth in the number of non-tenure-track lecturer, research, and support positions. This is just one example of a larger cultural shift to temporary employment that is happening throughout society -- it is not unique to astronomy.

  10. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  11. Giovanni Schiaparelli: Visions of a colour blind astronomer

    NASA Astrophysics Data System (ADS)

    Sheehan, W.

    1997-02-01

    The greatest observer of Mars of the nineteenth century was the Italian astronomer Giovanni Virginio Schiaparelli. In his classic compilation of Martian observations, La Planete Mars, published in 1892, Camille Flammarion readily conceded that Schiaparelli's was 'the greatest work which has been carried out with regard to Mars,'1 while another eminent Martian, Percival Lowell, referred to the Italian astronomer alone as his Martian master ('cher maitre Martien').

  12. Annotations of a Public Astronomer

    NASA Astrophysics Data System (ADS)

    Adamo, A.

    2011-06-01

    Angelo Adamo is an Italian astronomer and artist interested in inspiring people with scientifically-based tales. He has recently published two illustrated books exploring the relationships between mankind and cosmos through physics, art, literature, music, cartoons, and movies.

  13. NASA space and Earth science data on CD-ROM

    NASA Technical Reports Server (NTRS)

    Towheed, Syed S.

    1993-01-01

    The National Space Science Data Center (NSSDC) is very interested in facilitating the widest possible use of the scientific data acquired through NASA spaceflight missions. Therefore, NSSDC has participated with projects and data management elements throughout the NASA science environment in the creation, archiving, and dissemination of data using Compact Disk-Read Only Memory (CD-ROM). This CD-ROM technology has the potential to enable the dissemination of very large data volumes at very low prices to a great many researchers, students and their teachers, and others. This catalog identifies and describes the scientific CD-ROM's now available from NSSDC including the following data sets: Einstein Observatory CD-ROM, Galileo Cruise Imaging on CD-ROM, International Halley Watch, IRAS Sky Survey Atlas, Infrared Thermal Mapper (IRTM), Magellan (MIDR), Magellan (ARCDR's), Magellan (GxDR's), Mars Digital Image Map (MDIM), Outer Planets Fields & Particles Data, Pre-Magellan, Selected Astronomical Catalogs, TOMS Gridded Ozone Data, TOMS Ozone Image Data, TOMS Update, Viking Orbiter Images of Mars, and Voyager Image.

  14. The "visibility" of West European astronomical research.

    NASA Astrophysics Data System (ADS)

    Jaschek, C.

    Publications and citations of five West European astronomical communities (Switzerland, Sweden, GFR, France and Spain) are compared. A large proportion of astronomers are sparsely cited or not cited at all, a fact which shows that estimations of the number of scientists based upon citation statistics are underestimates. It is found that publication rates are similar but citation rates very dissimilar in the five countries. No clear explanation of these differences is found, except for Spain. A plea is made to use citation statistics rather than publication statistics for evaluation.

  15. Astronomical Activities with Disabled People

    NASA Astrophysics Data System (ADS)

    Gil, Amelia Ortiz

    With this contribution we would like to share our experiences in organizing astronomical activities addressed to people with disabilities. The goal is twofold: we would like to invite all those with similar experiences to contribute to the compilation of a document to guide other astronomers who might be interested in carrying out these kind of activities aimed at groups of people with special needs. We also want to persuade public outreach officers that working with disabled people is not as difficult as it may seem at first, as long as they are provided with adequate educational material and guidelines about how to do it. The final goal is to build a repository that can be used by educators and public outreach officers as a guide when working with disabled people, specially during the International Year of Astronomy.

  16. Reports on Astronomical Constants

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    Recent progress in the determination of astronomical constants is reviewed. By using the latest numerical integration of LC (Irwin and Fukushima, 1999) and the latest value of the geoidal potential W0 (Groten, 1999), we reestimated the general relativistic scale constants as LC = 1.480~826~867~4 × 10-8 ± 1.4 × 10-17, LG = 6.969~290~13 × 10-10 ± 6 × 10-18, and LB = 1.550~519~767~5 × 10-8 ± 2.0 × 10-17. Presented is a proposal to fix the numerical value of LG as the above in order to remove the geophysical ambiguity in its evaluation in the future. Next focused upon is the correction to the IAU 1976 Precession (Lieske et al., 1977). By simply averaging the latest VLBI-based determinations (Mathews et al., 2000; Petrov, 2000; Shirai and Fukushima, 2000; Vondrak and Ron, 2000) and the latest LLR-based determinations (Chapront et al., 1999), we obtained the best estimates of precession-related quantities at J2000.0: the general precession in longitude, p = 5~028.78 ± 0.03 ''/cy; obliquity of the ecliptic, ɛ0 = 23o26'21.''405~6 ± 0.''0005; and the pole offsets of the CEP of ICRS, Δ ψ0 sin ɛ0 = (-17.5 ± 0.8) mas, and Δ ɛ0 = (-5.2 ± 0.4) mas. After quoting the latest determination of mass of Pluto-Charon system (Tholen and Buie, 1997) and the recent change of G (Mohr and Taylor, 1999), proposed is a draft IAU 2000 File of Current Best Estimates of Astronomical Constants to replace the former 1994 version (Standish, 1995). It may even supplant the IAU 1976 System of Astronomical Constants (Duncombe et al., 1977), subject to discussion at this General Assembly.

  17. In the Jungle of Astronomical On--line Data Services

    NASA Astrophysics Data System (ADS)

    Egret, D.

    The author tried to survive in the jungle of astronomical on--line data services. In order to find efficient answers to common scientific data retrieval requests, he had to collect many pieces of information, in order to formulate typical user scenarios, and try them against a number of different data bases, catalogue services, or information systems. He discovered soon how frustrating treasure coffers may be when their keys are not available, but he realized also that nice widgets and gadgets are of no help when the information is not there. And, before long, he knew he would have to navigate through several systems because no one was yet offering a general answer to all his questions. I will present examples of common user scenarios and show how they were tested against a number of services. I will propose some elements of classification which should help the end-user to evaluate how adequate the different services may be for providing satisfying answers to specific queries. For that, many aspects of the user interaction will be considered: documentation, access, query formulation, functionalities, qualification of the data, overall efficiency, etc. I will also suggest possible improvements to the present situation: the first of them being to encourage system managers to increase collaboration between one another, for the benefit of the whole astronomical community. The subjective review I will present, is based on publicly available astronomical on--line services from the U.S. and from Europe, most of which (excepting the newcomers) were described in ``Databases and On-Line Data in Astronomy", (Albrecht & Egret, eds, 1991): this includes databases (such as NED and Simbad ), catalog services ( StarCat , DIRA , XCatScan , etc.), and information systems ( ADS and ESIS ).

  18. SPHEREx: Science Opportunities for the Astronomical Community

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha R.; SPHEREx Science Team

    2016-01-01

    SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A study in July 2015, will perform an all-sky near-infrared spectral survey between 0.75 - 4.8 microns, reaching 19th mag (5sigma) in narrow R=40 filters. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.5 billion galaxies with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for all WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including several hundred bright QSOs seen during the epoch of reionization. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx could also produce all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will discuss the data release schedule and some example science studies the broader astronomical community will beable to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software tools and facilitate easy access on a timely

  19. Professional Ethics for Astronomers

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.

    2005-05-01

    There is a growing recognition that professional ethics is an important topic for all professional scientists, especially physical scientists. Situations at the National Laboratories have dramatically proven this point. Professional ethics is usually only considered important for the health sciences and the legal and medical professions. However, certain aspects of the day to day work of professional astronomers can be impacted by ethical issues. Examples include refereeing scientific papers, serving on grant panels or telescope allocation committees, submitting grant proposals, providing proper references in publications, proposals or talks and even writing recommendation letters for job candidates or serving on search committees. This session will feature several speakers on a variety of topics and provide time for questions and answers from the audience. Confirmed speakers include: Kate Kirby, Director Institute for Theoretical Atomic and Molecular Physics - Professional Ethics in the Physical Sciences: An Overview Rob Kennicutt, Astrophysical Journal Editor - Ethical Issues for Publishing Astronomers Peggy Fischer, Office of the NSF Inspector General - Professional Ethics from the NSF Inspector General's Point of View

  20. Long-publishing Astronomers, or the Problem of Classification

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2012-01-01

    In response to several discussions among astronomers and historians of astronomy, I started out to prepare a paper on long-publishing astronomers--those who published for 70, 75, or even 80 years. However, I soon ran into a number of questions of classification, and that turned out to be at least as interesting. How do we decide on classifications? Every time we choose classes, such as asteroids, planets and stars, we run into objects that seem to be in between. In the present case a number of questions arise: Who is an astronomer? Several of those with the longest publication runs started out as physicists, published for years in that subject only, and later took up astrophysics, eventually publishing a few (or even no) papers in astronomy journals. What is a publication? Should we count publications in physics, chemistry, or mathematics? What about philosophy of science or history of science? What about the elderly retired astronomer presenting a memoir of his or her own work? Abstracts of oral presentations? Textbooks? Monographs? Book reviews? Obituaries? Then there is the problem of posthumous publications. Probably most would include papers in the pipeline when the astronomer dies, but what about the case where the coauthor finally publishes the paper eight years after the death of the person of interest? I eventually decided to make two lists, one which would include most of the above, and one restricted to papers that make contributions to physical science. Note that I do not say "refereed,” as that presents its own problems, especially when applied to periods before the twentieth century.

  1. The space telescope: A study of NASA, science, technology, and politics

    NASA Technical Reports Server (NTRS)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  2. This Month in Astronomical History: Preliminary Survey Results

    NASA Astrophysics Data System (ADS)

    Wilson, Teresa

    2017-01-01

    This Month in Astronomical History is a short (~500 word) column on the AAS website that revisits significant astronomical events or the lives of people who have made a large impact on the field. The monthly column began in July 2016 at the request of the Historical Astronomical Division. Examples of topics that have been covered include Comet Shoemaker-Levy’s collision with Jupiter, the discovery of the moons of Mars, the life of Edwin Hubble, Maria Mitchell’s comet discovery, and the launch of Sputnik II. A survey concerning the column is in progress to ensure the column addresses the interests and needs of a broad readership, including historians, educators, research astronomers, and the general public. Eleven questions focus on the style and content of the column, while eight collect simple demographics. The survey has been available on the AAS website since and was mentioned in several AAS newsletters; however, non-members of AAS were also recruited to include respondents from a variety of backgrounds. Preliminary results of the survey are presented and will be used to hone the style and content of the column to serve the widest possible audience. Responses continue to be collected at: https://goo.gl/forms/Lhwl2aWJl2Vkoo7v1

  3. Astronomical dating in the 19th century

    NASA Astrophysics Data System (ADS)

    Hilgen, Frederik J.

    2010-01-01

    Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective. Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation. In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the

  4. NASA Spitzer Space Telescope

    Science.gov Websites

    -2016 'Enterprise' Nebulae Seen by Spitzer Credits: NASA, ESA, G. Bacon and A. Feild (STScI), and H . Wakeford (STScI/Univ. of Exeter) 03.01.18 NASA Finds a Large Amount of Water in an Exoplanet's Atmosphere Tweet In the year since NASA announced the seven Earth-sized planets of the TRAPPIST-1 system

  5. Division B Commission 6: Astronomical Telegrams

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Green, D. W. E.; Samus, N. N.; Aksnes, K.; Gilmore, A. C.; Nakano, S.; Sphar, T.; Tichá, J.; Williams, G. V.

    2016-04-01

    IAU Commission 6 ``Astronomical Telegrams'' had a single business meeting during Honolulu General Assembly of the IAU. It took place on Tuesday, 11 August 2015. The meeting was attended by Hitoshi Yamaoka (President), Daniel Green (Director of the Central Bureau for Astronomical Telegrams, CBAT, via Skype), Steven Chesley (JPL), Paul Chodas (JPL), Alan Gilmore (Canterbury University), Shinjiro Kouzuma (Chukyo University), Paolo Mazzali (Co-Chair of the Supernova Working Group), Elena Pian (Scuola Normale Superiore di Pisa), Marion Schmitz (chair IAU Working Group Designations + NED), David Tholen (University of Hawaii), Jana Ticha (Klet Observatory), Milos Tichy (Klet Observatory), Giovanni Valsecchi (INAF\\slash Italy), Gareth Williams (Minor Planet Center). Apologies: Nikolai Samus (General Catalogue of Variable Stars, GCVS).

  6. Automated microdensitometer for digitizing astronomical plates

    NASA Technical Reports Server (NTRS)

    Angilello, J.; Chiang, W. H.; Elmegreen, D. M.; Segmueller, A.

    1984-01-01

    A precision microdensitometer was built under control of an IBM S/1 time-sharing computer system. The instrument's spatial resolution is better than 20 microns. A raster scan of an area of 10x10 sq mm (500x500 raster points) takes 255 minutes. The reproducibility is excellent and the stability is good over a period of 30 hours, which is significantly longer than the time required for most scans. The intrinsic accuracy of the instrument was tested using Kodak standard filters, and it was found to be better than 3%. A comparative accuracy was tested measuring astronomical plates of galaxies for which absolute photoelectric photometry data were available. The results showed an accuracy excellent for astronomical applications.

  7. Astronomical Network for Teachers in Thailand

    NASA Astrophysics Data System (ADS)

    Kramer Hutawarakorn, Busaba; Soonthornthum, Boonraksar; Poshyachinda, Saran

    We report the latest development of a pilot project in establishing the astronomical network for teachers in Thailand. The project has been recently granted by the Institute for the Promotion of Teaching Science and Technology Thailand and operated by Sirindhorn Observatory Chiangmai University. The objectives of the project are (1) to establish a16-inch semi-robotic telescope which can be accessed from schools nationwide; and (2) to establish an educational website in Thai language which contains electronic textbook of astronomy online encyclopedia of astronomy observing projects astronomical database and links to other educational websites worldwide. The network will play important role in the development of teaching and learning astronomy in Thailand.

  8. International Astronomical Search Collaboration: An Online Student-Based Discovery Program in Astronomy (Invited)

    NASA Astrophysics Data System (ADS)

    Pennypacker, C.; Miller, P.

    2009-12-01

    The past 15 years has seen the development of affordable small telescopes, advanced digital cameras, high speed Internet access, and widely-available image analysis software. With these tools it is possible to provide student programs where they make original astronomical discoveries. High school aged students, even younger, have discovered Main Belt asteroids (MBA), near-Earth objects (NEO), comets, supernovae, and Kuiper Belt objects (KBO). Student-based discovery is truly an innovative way to generate enthusiasm for learning science. The International Astronomical Search Collaboration (IASC = “Isaac”) is an online program where high school and college students make original MBA discoveries and important NEO observations. MBA discoveries are reported to the Minor Planet Center (Harvard) and International Astronomical Union. The NEO observations are included as part of the NASA Near-Earth Object Program (JPL). Provided at no cost to participating schools, IASC is centered at Hardin-Simmons University (Abilene, TX). It is a collaboration of the University, Lawrence Hall of Science (University of California, Berkeley), Astronomical Research Institute (ARI; Charleston, IL), Global Hands-On Universe Association (Portugal),and Astrometrica (Austria). Started in Fall 2006, IASC has reached 135 schools in 14 countries. There are 9 campaigns per year, each with 15 schools and lasting 45 days. Students have discovered 150 MBAs and made > 1,000 NEO observations. One notable discovery was 2009 BD81, discovered by two high school teachers and a graduate student at the Bulgarian Academy of Science. This object, about the size of 3 football fields, crosses Earth’s orbit and poses a serious impact risk. Each night with clear skies and no Moon, the ARI Observatory uses its 24" and 32" prime focus telescopes to take images along the ecliptic. Three images are taken of the same field of view (FOV) over a period of 30 minutes. These are bundled together and placed online at

  9. The Undergraduate Research Resources at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, Michael W.

    2016-01-01

    Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.

  10. Recent Astronomical Development in Asia Pacific Rim

    NASA Astrophysics Data System (ADS)

    Leung, K.-C.

    2009-08-01

    For over two decades The Pacific Rim Conference on Stellar Astrophysics series has been held exclusively at the Asian Rim. The primary reason is that the majority of nations in Asia are less developed in Astronomy than many countries on the American Rim. At time same time, many nations in Asia are less able to afford the costs of long distance travel for astronomical conferences. As a result Asia has had a hold on the Pacific Rim Conferences. Over the last few years new research institutes have been coming on board. The ones that have most visibly emerged are; National Astronomical Research Institute of Thailand, NARIT, The Astrophysical Research Center for the Structure and Evolution of the Cosmos, ARCSEC, and Kavli Institute of Astronomy and Astrophysics at Peking University, KIAA-PKU. It is interesting to note the development and structure of each is very different. So far they all appear to be working well. Hopefully they will provide a variety of models for astronomical institutes in developing nations of the region and perhaps beyond.

  11. Different Categories of Astronomical Heritage: Issues and Challenges

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive

    2012-09-01

    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between

  12. Visible light scatter measurements of the Advanced X-ray Astronomical Facility /AXAF/ mirror samples

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1981-01-01

    NASA is studying the properties of mirror surfaces for X-ray telescopes, the data of which will be used to develop the telescope system for the Advanced X-ray Astronomical Facility. Visible light scatter measurements, using a computer controlled scanner, are made of various mirror samples to determine surface roughness. Total diffuse scatter is calculated using numerical integration techniques and used to estimate the rms surface roughness. The data measurements are then compared with X-ray scatter measurements of the same samples. A summary of the data generated is presented, along with graphs showing changes in scatter on samples before and after cleaning. Results show that very smooth surfaces can be polished on the common substrate materials (from 2 to 10 Angstroms), and nickel appears to give the lowest visible light scatter.

  13. http://www.nasa.gov/feature/goddard/2016/hubble-team-breaks-cosmic-distance-record

    NASA Image and Video Library

    2016-03-03

    By pushing NASA’s Hubble Space Telescope to its limits, an international team of astronomers has shattered the cosmic distance record by measuring the farthest galaxy ever seen in the universe. This surprisingly bright infant galaxy, named GN-z11, is seen as it was 13.4 billion years in the past, just 400 million years after the Big Bang. GN-z11 is located in the direction of the constellation of Ursa Major. Read more: go.nasa.gov/1oSqHad

  14. The first massive astronomical observation event in Mexico City

    NASA Astrophysics Data System (ADS)

    Espinosa, Mariana; Hernandez, Xavier

    2011-06-01

    On the night of the 20th of February 2008 there was a total eclipse of the moon visible from Mexico City, with a total duration from 19:42 hrs to 23:09 hrs. At the Instituto de Astronomía, UNAM, we took this opportunity to organise a massive astronomical party on the central plaza of the city, the Zocalo. Over a period of about 6 hrs. we set up a huge astro-party, with free use of over 100 telescopes, where we estimate over 40,000 persons looked through an astronomical telescope at the moon and Saturn, most for the first time in their lives. Numerous stands including a children's games, an Astronomy conference room, and the free distribution of Astronomical material were organised. Here we describe some of the issues associated with the planning and implementation of the event. Coordination issues were complex, involving interaction with divers and numerous authorities, city, national, police, traffic, medical assistance in readiness, aide from other universities, and amateur astronomical societies, which supplied most of the telescopes. An extensive publicity campaign was launched with several weeks of anticipation, and although we had no way of estimating the public response, we were ready with over 800 volunteers at the Zócalo on the 20th of February. The public response was massive and overwhelmingly positive, thousands swarmed the square in a completely peaceful and well organised interaction between Astronomy and society at large, over many complementary levels

  15. Encouraging A Culture Of Outreach In Astronomy Clubs: Findings From The Astronomical Society Of The Pacific, The Institute For Learning Innovation, And Inverness Research

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Jones, E.; St. John, M.; Berendsen, M.; Schultz, G. R.; Gurton, S.; Yocco, V.; Castori, P.; Santascoy, J.; White, V.; FRANK, K.

    2013-01-01

    Astronomy clubs constitute a “marching army” of knowledgeable and experienced astronomy enthusiasts deployed in a national network: an enormously valuable and important resource for engaging the public through educational outreach events and activities. The Astronomical Society of the Pacific (ASP) in partnership with the Institute for Learning Innovation (ILI) and Inverness Research, Inc., has been engaged in a multiyear NSF-supported project focusing on this network and its potential to advance common astronomy education and outreach objectives. The project has explored the culture of astronomy clubs, identified impediments to building cultures of outreach within clubs, and developed and introduced new mechanisms to overcome these impediments and enhance clubs’ abilities to encourage and sustain cultures that value and promote outreach efforts. The presenter will share initial research, development and evaluation findings of the project, and describe ongoing supplemental efforts that continue to advance project objectives.

  16. Encouraging A Culture Of Outreach In Astronomy Clubs: Findings From The Astronomical Society Of The Pacific, The Institute For Learning Innovation, And Inverness Research

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Jones, E.; St. John, M.; Berendsen, M.; Schultz, G.; Gurton, S.; Yocco, V.; Castori, P.; Santascoy, J.; White, V.; Frank, K.

    2012-05-01

    Astronomy clubs constitute a “marching army” of knowledgeable and experienced astronomy enthusiasts deployed in a national network: an enormously valuable and important resource for engaging the public through educational outreach events and activities. The Astronomical Society of the Pacific (ASP) in partnership with the Institute for Learning Innovation (ILI) and Inverness Research, Inc., has been engaged in a multi-year NSF-supported project focusing on this network and its potential to advance common astronomy education and outreach objectives. The project has explored the culture of astronomy clubs, identified impediments to building cultures of outreach within clubs, and developed and introduced new mechanisms to overcome these impediments and enhance clubs’ abilities to encourage and sustain cultures that value and promote outreach efforts. The presenter will share initial research, development and evaluation findings of the project, and describe ongoing supplemental efforts that continue to advance project objectives.

  17. Possible Astronomical meaning of some El Molle findings at the ESO Observatory of La Silla

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Bernardi, Gabriella; Bucciarelli, Beatrice

    2015-08-01

    The slopes surrounding the buildings of the European Southern Observatory at La Silla are known to house several hundred rock engravings dating back to the pre-Columbian populations that once inhabited this region. Although precise archaeological studies are missing since none of these sites has been excavated, these petroglyphs are attributed to people of the El Molle Culture, who around AD 300 had just abandoned their original lifestyle of hunting and gathering and developed more evolved settlements based on herding and farming.While it is difficult to ascertain precisely the meaning of these ancient rock engravings, it seems that a specific astronomical alignment can be attributed to a simple yet peculiar, man-made stone structure, which can be found in the same site. The archaeoastronomical dating of this alignment coincides to that of the petroglyphs. Moreover it allows to highlight a noticeable and intriguing connection with a practical function which appears quite reasonable for the population to whom this structure is attributed.

  18. NASA Cribs: Human Exploration Research Analog

    NASA Image and Video Library

    2017-07-20

    Follow along as interns at NASA’s Johnson Space Center show you around the Human Exploration Research Analog (HERA), a mission simulation environment located onsite at the Johnson Space Center in Houston. HERA is a unique three-story habitat designed to serve as an analog for isolation, confinement, and remote conditions in exploration scenarios. This video gives a tour of where crew members live, work, sleep, and eat during the analog missions. Find out more about HERA mission activities: https://www.nasa.gov/analogs/hera Find out how to be a HERA crew member: https://www.nasa.gov/analogs/hera/want-to-participate For more on NASA internships: https://intern.nasa.gov/ For Johnson Space Center specific internships: https://pathways.jsc.nasa.gov/ https://www.nasa.gov/centers/johnson/education/interns/index.html HD download link: https://archive.org/details/jsc2017m000730_NASA-Cribs-Human-Exploration-Research-Analog --------------------------------- FOLLOW JOHNSON SPACE CENTER INTERNS! Facebook: @NASA.JSC.Students https://www.facebook.com/NASA.JSC.Students/ Instagram: @nasajscstudents https://www.instagram.com/nasajscstudents/ Twitter: @NASAJSCStudents https://twitter.com/nasajscstudents

  19. Astronomía Mocoví

    NASA Astrophysics Data System (ADS)

    López, A.; Giménez Benitez, S.; Fernández, L.

    El presente trabajo, es una revisión crítica de la astronomía en la cultura Mocoví, aportando a lo realizado previamente por Lehmann Nistche (Lehmann Nistche, 1924 y 1927) el resultado de nuestro trabajo de campo. Un mayor conocimiento de las cosmovisiones de las etnias de esta área es fundamental para una mejor comprensión de la dispersión de las ideas cosmológicas entre los pueblos aborígenes americanos, dada la importancia del corredor chaqueño como conexión entre las altas culturas andinas, la mesopotamia y la región pampeana (Susnik, 1972). Para ello se realiza una comparación con otras cosmovisiones del área americana. Nuestro aporte se enmarca dentro de las actuales líneas de trabajo mundialmente en desarrollo en Astronomía en la Cultura.

  20. Super resolution for astronomical observations

    NASA Astrophysics Data System (ADS)

    Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng

    2018-05-01

    In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.

  1. Developing Generic Image Search Strategies for Large Astronomical Data Sets and Archives using Convolutional Neural Networks and Transfer Learning

    NASA Astrophysics Data System (ADS)

    Peek, Joshua E. G.; Hargis, Jonathan R.; Jones, Craig K.

    2018-01-01

    Astronomical instruments produce petabytes of images every year, vastly more than can be inspected by a member of the astronomical community in search of a specific population of structures. Fortunately, the sky is mostly black and source extraction algorithms have been developed to provide searchable catalogs of unconfused sources like stars and galaxies. These tools often fail for studies of more diffuse structures like the interstellar medium and unresolved stellar structures in nearby galaxies, leaving astronomers interested in observations of photodissociation regions, stellar clusters, diffuse interstellar clouds without the crucial ability to search. In this work we present a new path forward for finding structures in large data sets similar to an input structure using convolutional neural networks, transfer learning, and machine learning clustering techniques. We show applications to archival data in the Mikulski Archive for Space Telescopes (MAST).

  2. Astronomical Honeymoon Continues as X-Ray Observatory Marks First Anniversary

    NASA Astrophysics Data System (ADS)

    2000-08-01

    of the X-ray background, a glow throughout the universe whose source or sources are unknown. Astronomers are now pinpointing the various sources of the X-ray glow because Chandra has resolution eight times better than that of previous X-ray telescopes, and is able to detect sources more than 20 times fainter. "The Chandra team had to develop technologies and processes never tried before," said Tony Lavoie, Chandra program manager at Marshall. "One example is that we built and validated a measurement system to make sure the huge cylindrical mirrors of the telescope were ground correctly and polished to the right shape." The polishing effort resulted in an ultra-smooth surface for all eight of Chandra's mirrors. If the state of Colorado were as smooth as the surface of Chandra's mirrors, Pike's Peak would be less than an inch tall. "Chandra has experienced a great first year of discovery and we look forward to many more tantalizing science results as the mission continues," said Alan Bunner, program director, Structure and Evolution of the universe, NASA Headquarters, Washington, DC. Marshall manages the Chandra program for the Office of Space Science, NASA Headquarters. TRW Space and Electronics Group, Redondo Beach, CA, is the prime contractor. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, CT, coated by Optical Coating Laboratory, Inc., Santa Rosa, CA, and assembled and inserted into the telescope portion of Chandra by Eastman Kodak Co., Rochester, NY. The scientific instruments were supplied by collaborations led by Pennsylvania State University, University Park; Smithsonian Astrophysical Observatory, Cambridge, MA; Massachusetts Institute of Technology, Cambridge; and the Space Research Organization Netherlands, Utrecht. The Smithsonian's Chandra X-ray Center controls science and operations from Cambridge, working with astronomers around the globe to record the activities

  3. NASA Announces Contest to Name X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1998-04-01

    NASA is searching for a new name for the Advanced X-ray Astrophysics Facility (AXAF), currently scheduled for launch Dec. 3, 1998, from the Space Shuttle Columbia. AXAF is the third of NASA's Great Observatories, after the Hubble Space Telescope and the Compton Gamma Ray Observatory. Once in orbit around Earth, it will explore hot, turbulent regions in the universe where X-rays are produced. Dr. Alan Bunner, director of NASA's Structure and Evolution of the universe science program, will announce April 18 at the National Science Teacher's Association meeting in Las Vegas, NV, the start of a contest, open to people worldwide, to find a new name for the observatory. Entries should contain the name of a person (not living), place, or thing from history, mythology, or fiction. Contestants should describe in a few sentences why this choice would be a good name for AXAF. The name must not have been used before on space missions by NASA or other organizations or countries. The grand prize will be a trip to NASA's Kennedy Space Center in Cape Canaveral, FL, to see the launch of the satellite aboard the Space Shuttle. Ten runner-up prizes will be awarded and all entrants will receive an AXAF poster. The grand prize is sponsored by TRW Inc., AXAF's prime contractor. The AXAF Science Center in Cambridge, MA, will run the contest for NASA. NASA will announce the final selection of the winning name later this year. Entries also can be mailed to: AXAF Contest, AXAF Science Center, Office of Education and Public Outreach, 60 Garden Street, MS 83, Cambridge, MA 02138. Mailed entries must be postmarked no later than June 30, 1998. All entries must state a name for the mission, along with the reason the name would make a good choice. The observatory, now in the final stages of assembly and testing at TRW's facility in Redondo Beach, CA, is more than 45 feet long and weighs 10,500 pounds. AXAF is the largest and most powerful X-ray observatory ever constructed, and its images will be

  4. Future Astronomical Observatories on the Moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.

  5. Conducting Original, Hands-On Astronomical Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Corneau, M. J.

    2009-12-01

    Since 2007 I have been a Team Leader for the Tzec Maun Foundation, a non-profit foundation dedicated to providing free, research grade, Internet telescopes to students, teachers and researchers around the world. The name Tzec Maun (pronounced “Teh-Zeck-Moan”) comes from Mayan culture. Tzec Maun was the jovial messenger, laughed at adversity. Based on the challenges students, researchers and professional astronomers face with finances, equipment, and telescope access, the jovial mascot seems to fit. Hundreds of hours performing astronomical outreach as a NASA/JPL Solar System Ambassador and Astronomical League Master of outreach taught me that the best way to inspirationally teach astronomy and space science (and most subjects) is actually being at the eyepiece. I’m NOT a fan of the traditional planetarium experience as a teaching tool because it inhibits inspiration and the learning experience to a 2-D mat on a faux horizon with artificial representations. Once, a student at my dark sky observatory excitedly commented that the night sky was like a 3-D planetarium. I have hosted several classes at my own personal dark sky observatory, but this resource is impractical for all but a few lucky students. Experience has taught me that the next best thing to being at the eyepiece is to control a remote telescope via the Internet. Tzec Maun’s arsenal of telescopes is all research capable, linked to the Internet and positioned for round-the-clock dark skies. The final conditions described above, mean that I can enter an 8:30am science class, log onto the Tzec Maun telescope Portal and turn over control of an Australian system (where it is night) to a student or teacher. Working as a group, the class can either begin their investigations. My Tzec Maun science team (TARP) is engaged in searching for potentially hazardous asteroids (PHAs). PHA work excites student and teacher alike. Teaching from telescopes can unleash powerful attention-getting tools that enable

  6. Daytime School Guided Visits to an Astronomical Observatory in Brazil

    ERIC Educational Resources Information Center

    Colombo, Pedro Donizete, Jr.; Silva, Cibelle Celestino; Aroca, Silvia Calbo

    2010-01-01

    This article analyzes the activity "Daytime School Guided Visits" at an astronomical observatory in Brazil with pupils from primary school. The adopted research methodology relied on questionnaire applications and semistructured interviews. The objectives were to identify the influences of the visits on learning of astronomical concepts…

  7. Significant Problems in FITS Limit Its Use in Modern Astronomical Research

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E. M.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.

    2014-05-01

    The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists, and the public to exchange astronomical information easily. The FITS standard is, however, showing its age. Developed in the late 1970s the FITS authors made a number of implementation choices for the format that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not appreciate the challenges which we would be facing today in astronomical computing. Difficulties we now face include, but are not limited to, having to address the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets and the need to capture significantly more complex and data relationships. There are members of the community today who find some (or all) of these limitations unworkable, and have decided to move ahead with storing data in other formats. This reaction should be taken as a wakeup call to the FITS community to make changes in the FITS standard, or to see its usage fall. In this paper we detail some selected important problems which exist within the FITS standard today. It is not our intention to prescribe specific remedies to these issues; rather, we hope to call attention of the FITS and greater astronomical computing communities to these issues in the hopes that it will spur action to address them.

  8. Web-Enhanced Instruction and Learning: Findings of a Short- and Long-Term Impact Study and Teacher Use of NASA Web Resources

    NASA Technical Reports Server (NTRS)

    McCarthy, Marianne C.; Grabowski, Barbara L.; Koszalka, Tiffany

    2003-01-01

    Over a three-year period, researchers and educators from the Pennsylvania State University (PSU), University Park, Pennsylvania, and the NASA Dryden Flight Research Center (DFRC), Edwards, California, worked together to analyze, develop, implement and evaluate materials and tools that enable teachers to use NASA Web resources effectively for teaching science, mathematics, technology and geography. Two conference publications and one technical paper have already been published as part of this educational research series on Web-based instruction and learning. This technical paper, Web-Enhanced Instruction and Learning: Findings of a Short- and Long-Term Impact Study, is the culminating report in this educational research series and is based on the final report submitted to NASA. This report describes the broad spectrum of data gathered from teachers about their experiences using NASA Web resources in the classroom. It also describes participating teachers responses and feedback about the use of the NASA Web-Enhanced Learning Environment Strategies reflection tool on their teaching practices. The reflection tool was designed to help teachers merge the vast array of NASA resources with the best teaching methods, taking into consideration grade levels, subject areas and teaching preferences. The teachers described their attitudes toward technology and innovation in the classroom and their experiences and perceptions as they attempted to integrate Web resources into science, mathematics, technology and geography instruction.

  9. Some early astronomical sites in the Kashmir region

    NASA Astrophysics Data System (ADS)

    Iqbal, Naseer; Vahia, M. N.; Masood, Tabasum; Ahmad, Aijaz

    2009-03-01

    We discuss a number of early rock art sites in the Kashmir Valley in northern India and neighbouring Pakistan, and suggest that some of these contain depictions of astronomical objects or events. The sites are in the Srinagar and Sopore regions and in or near the Ladakh region, and date to Neolithic or Upper Paleolithic times. Our studies suggest that during this period some of the ancient astronomers recorded supernovae, meteorite impacts, the Sun, the Moon and the seasons in their rock art.

  10. Nikolay N. Donitch - the astronomer

    NASA Astrophysics Data System (ADS)

    Gaina, Alex B.; Volyanskaya, M. Yu.

    1999-08-01

    in 1927. In 1933 he was cartying out observations of Saturn and determined the rotational period of the planet. Eight scientific papers on the zodiacal light investigations were published by N.D.. Due to a H. Shapley's recommmendation he obtained in his observatory a number of stelar sky photos. N.N. Donitch was a brillant personality in the astronomical community of his time. He was a member of many scientific societies. Hard and sad times came to Donitch during the last years of his life. At first he leaved Bessarabia for Bucharest (1940), then Romania for Germany (1944), then Germany for France (1945), where he worked at the Meudon Observatory. At last he found himself under tryiung financial situation. According to some findings he spent the last days in an old men house near Nice and died in 1956.

  11. AWOB: A Collaborative Workbench for Astronomers

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lemson, G.; Bulatovic, N.; Makarenko, V.; Vogler, A.; Voges, W.; Yao, Y.; Kiefl, R.; Koychev, S.

    2015-09-01

    We present the Astronomers Workbench (AWOB1), a web-based collaboration and publication platform for a scientific project of any size, developed in collaboration between the Max-Planck institutes of Astrophysics (MPA) and Extra-terrestrial Physics (MPE) and the Max-Planck Digital Library (MPDL). AWOB facilitates the collaboration between geographically distributed astronomers working on a common project throughout its whole scientific life cycle. AWOB does so by making it very easy for scientists to set up and manage a collaborative workspace for individual projects, where data can be uploaded and shared. It supports inviting project collaborators, provides wikis, automated mailing lists, calendars and event notification and has a built in chat facility. It allows the definition and tracking of tasks within projects and supports easy creation of e-publications for the dissemination of data and images and other resources that cannot be added to submitted papers. AWOB extends the project concept to larger scale consortia, within which it is possible to manage working groups and sub-projects. The existing AWOB instance has so far been limited to Max-Planck members and their collaborators, but will be opened to the whole astronomical community. AWOB is an open-source project and its source code is available upon request. We intend to extend AWOB's functionality also to other disciplines, and would greatly appreciate contributions from the community.

  12. Skype Me! Astronomers, Students, and Cutting-Edge Research

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Gauthier, Adrienne J.

    2014-06-01

    A primary goal of many university science courses is to promote understanding of the process of contemporary scientific inquiry. One powerful way to achieve this is for students to explore current research and then interact directly with the leading scientist, the feasibility of which has recently increased dramatically due to free online video communication tools. We report on a program implemented at Dartmouth College in which students connect with a guest astronomer through Skype (video chat). The Skype session is wrapped in a larger activity where students explore current research articles, interact with the astronomer, and then reflect on the experience. The in-class Skype discussions require a small time commitment from scientists (20-30 minutes, with little or no need for preparation) while providing students direct access to researchers at the cutting edge of modern astronomy. We outline the procedures used to implement these discussions, and present qualitative assessments of student's understanding of the process of research, as well as feedback from the guest astronomers.

  13. The PACA Project: When Amateur Astronomers Become Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-12-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers

  14. John Twysden and John Palmer: 17th-century Northamptonshire astronomers

    NASA Astrophysics Data System (ADS)

    Frost, M. A.

    2008-01-01

    John Twysden (1607-1688) and John Palmer (1612-1679) were two astronomers in the circle of Samuel Foster (circa 1600-1652), the subject of a recent paper in this journal. John Twysden qualified in law and medicine and led a peripatetic life around England and Europe. John Palmer was Rector of Ecton, Northamptonshire and later Archdeacon of Northampton. The two astronomers catalogued observations made from Northamptonshire from the 1640s to the 1670s. In their later years Twysden and Palmer published works on a variety of topics, often astronomical. Palmer engaged in correspondence with Henry Oldenburg, the first secretary of the Royal Society, on topics in astronomy and mathematics.

  15. Custom Sky-Image Mosaics from NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David

    2005-01-01

    yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user

  16. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  17. Profiling Some of the Lesser-Known Historical Women Astronomers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley

    2016-01-01

    Although some historical women astronomers such as Henrietta Swan Leavitt and Cecilia Payne Gaposchkin have recently become somewhat well known among the astronomical community, many others--especially those from non-Western cultures--remain a mystery even to those of us who are actively aware of and interested in the role of early women in astronomy. As part of a project to educate myself on some of these women, I started a blog series (http://ashpags.tumblr.com/tagged/lady-astronomers) to share this newfound knowledge with a population that is on average relatively young, extremely tech savvy, and generally would not consider themselves to be science-inclined. I will discuss some of the more interesting women I have profiled, as well as my observations on the efficacy of this method of history education.

  18. NASA Center for Astronomy Education: Building a Community of Practice

    NASA Astrophysics Data System (ADS)

    Brissenden, Gina; Prather, E.; Slater, T. F.; Greene, W. M.; Thaller, M.

    2006-12-01

    The NASA Center for Astronomy Education (CAE) is devoted to the professional development of introductory college astronomy instructors teaching at community colleges. The primary goal is building a "community of practice." Evaluation results suggest this community of practice model is effective at improving instructional practices, particularly in settings where instructors feel isolated from their peers. For community college faculty this isolation can be quite real. Many are the only astronomer, if not the only scientist, at their institution. In addition, they may be adjunct instructors who have no office, no institutional email address, nor appear in the campus directory. CAE works to prevent this sense of isolation by building both actual and virtual communities for these instructors, as well as provide actual and virtual professional development opportunities. CAE’s major effort is providing multi-tiered "Teaching Excellence Workshops" offered at national and regional venues. Ongoing support is offered through the CAE website. Instructors can learn about, and register for, upcoming workshops. They can engage in discussions about educational issues and share best practices with peers using the moderated discussion group AstroLrner@CAE. CAE also provides an updated article "This Month’s Teaching Strategy” which is a reflection on teaching strategies discussed in the workshops. Instructors can also find their peers through the online map of US community colleges offering introductory astronomy courses. Lastly, CAE Regional Teaching Exchanges facilitate local, and sustained, community building. CAE is supported by the NASA/JPL Navigator Public Engagement Program and the Spitzer Space Telescope Education and Public Outreach Program.

  19. Astronomical masers and lasers

    NASA Astrophysics Data System (ADS)

    Townes, C. H.

    1997-12-01

    A brief account is given of the discovery of the astronomical maser and laser effects in OH radicals and in molecules of water (H2O), carbon monoxide and dioxide (CO and CO2), ammonia (NH3), methyl alcohol (CH3OH), formaldehyde (CH2O), and silicon oxide (SiO). A detailed table is given of all the currently known molecular stimulated-emission lines.

  20. Low Dimensional Embedding of Climate Data for Radio Astronomical Site Testing in the Colombian Andes

    NASA Astrophysics Data System (ADS)

    Chaparro Molano, Germán; Ramírez Suárez, Oscar Leonardo; Restrepo Gaitán, Oscar Alberto; Marcial Martínez Mercado, Alexander

    2017-10-01

    We set out to evaluate the potential of the Colombian Andes for millimeter-wave astronomical observations. Previous studies for astronomical site testing in this region have suggested that nighttime humidity and cloud cover conditions make most sites unsuitable for professional visible-light observations. Millimeter observations can be done during the day, but require that the precipitable water vapor column above a site stays below ˜10 mm. Due to a lack of direct radiometric or radiosonde measurements, we present a method for correlating climate data from weather stations to sites with a low precipitable water vapor column. We use unsupervised learning techniques to low dimensionally embed climate data (precipitation, rain days, relative humidity, and sunshine duration) in order to group together stations with similar long-term climate behavior. The data were taken over a period of 30 years by 2046 weather stations across the Colombian territory. We find six regions with unusually dry, clear-sky conditions, ranging in elevations from 2200 to 3800 masl. We evaluate the suitability of each region using a quality index derived from a Bayesian probabilistic analysis of the station type and elevation distributions. Two of these regions show a high probability of having an exceptionally low precipitable water vapor column. We compared our results with global precipitable water vapor maps and find a plausible geographical correlation with regions with low water vapor columns (˜10 mm) at an accuracy of ˜20 km. Our methods can be applied to similar data sets taken in other countries as a first step toward astronomical site evaluation.

  1. NASA's SOFIA infrared observatory in flight for the first of a series of test flights to verify the flight performance of the highly modified Boeing 747SP

    NASA Image and Video Library

    2007-10-11

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  2. NASA's SOFIA infrared observatory lifts off on the first of a series of test flights to verify the flight performance of the highly modified Boeing 747SP

    NASA Image and Video Library

    2007-10-11

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  3. Simple Astronomical Theory of Climate.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1979-01-01

    The author derives, applying perturbation theory, from a simple astronomical model the approximate periods of secular variation of some of the parameters of the Earth's orbit and relates these periods to the past climate of the Earth, indicating the difficulties in predicting the climate of the future. (GA)

  4. Astronomers Gain Clues About Fundamental Physics

    NASA Astrophysics Data System (ADS)

    2005-12-01

    An international team of astronomers has looked at something very big -- a distant galaxy -- to study the behavior of things very small -- atoms and molecules -- to gain vital clues about the fundamental nature of our entire Universe. The team used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to test whether the laws of nature have changed over vast spans of cosmic time. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) "The fundamental constants of physics are expected to remain fixed across space and time; that's why they're called constants! Now, however, new theoretical models for the basic structure of matter indicate that they may change. We're testing these predictions." said Nissim Kanekar, an astronomer at the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. So far, the scientists' measurements show no change in the constants. "We've put the most stringent limits yet on some changes in these constants, but that's not the end of the story," said Christopher Carilli, another NRAO astronomer. "This is the exciting frontier where astronomy meets particle physics," Carilli explained. The research can help answer fundamental questions about whether the basic components of matter are tiny particles or tiny vibrating strings, how many dimensions the Universe has, and the nature of "dark energy." The astronomers were looking for changes in two quantities: the ratio of the masses of the electron and the proton, and a number physicists call the fine structure constant, a combination of the electron charge, the speed of light and the Planck constant. These values, considered fundamental physical constants, once were "taken as time independent, with values given once and forever" said German particle physicist Christof Wetterich. However, Wetterich explained, "the viewpoint of modern particle theory has changed in recent years," with ideas such as

  5. STELAR: An experiment in the electronic distribution of astronomical literature

    NASA Technical Reports Server (NTRS)

    Warnock, A.; Vansteenburg, M. E.; Brotzman, L. E.; Gass, J.; Kovalsky, D.

    1992-01-01

    STELAR (Study of Electronic Literature for Astronomical Research) is a Goddard-based project designed to test methods of delivering technical literature in machine readable form. To that end, we have scanned a five year span of the ApJ, ApJ Supp, AJ and PASP, and have obtained abstracts for eight leading academic journals from NASA/STI CASI, which also makes these abstracts available through the NASA RECON system. We have also obtained machine readable versions of some journal volumes from the publishers, although in many instances, the final typeset versions are no longer available. The fundamental data object for the STELAR database is the article, a collection of items associated with a scientific paper - abstract, scanned pages (in a variety of formats), figures, OCR extractions, forward and backward references, errata and versions of the paper in various formats (e.g., TEX, SGML, PostScript, DVI). Articles are uniquely referenced in the database by journal name, volume number and page number. The selection and delivery of articles is accomplished through the WAIS (Wide Area Information Server) client/server models requiring only an Internet connection. Modest modifications to the server code have made it capable of delivering the multiple data types required by STELAR. WAIS is a platform independent and fully open multi-disciplinary delivery system, originally developed by Thinking Machines Corp. and made available free of charge. It is based on the ISO Z39.50 standard communications protocol. WAIS servers run under both UNIX and VMS. WAIS clients run on a wide variety of machines, from UNIX-based Xwindows systems to MS-DOS and macintosh microcomputers. The WAIS system includes full-test indexing and searching of documents, network interface and easy access to a variety of document viewers. ASCII versions of the CASI abstracts have been formatted for display and the full test of the abstracts has been indexed. The entire WAIS database of abstracts is now

  6. Project of space research and technology center in Engelhardt astronomical observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.; Gusev, A.; Sherstukov, O.; Kascheev, R.; Zagretdinov, R.

    2012-09-01

    Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions: • EDUCATION • SCIENCE • ASTRONOMICAL TOURISM

  7. NASA's P-3 at Sunrise

    NASA Image and Video Library

    2017-12-08

    NASA's P-3B airborne laboratory on the ramp at Thule Air Base in Greenland early on the morning of Mar. 21, 2013. Credit: NASA/Goddard/Christy Hansen NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Considerations for the Use of STEREO -HI Data for Astronomical Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappin, S. J., E-mail: james.tappin@stfc.ac.uk

    Recent refinements to the photometric calibrations of the Heliospheric Imagers (HI) on board the Solar TErrestrial RElations Observatory ( STEREO ) have revealed a number of subtle effects in the measurement of stellar signals with those instruments. These effects need to be considered in the interpretation of STEREO -HI data for astronomy. In this paper we present an analysis of these effects and how to compensate for them when using STEREO -HI data for astronomical studies. We determine how saturation of the HI CCD detectors affects the apparent count rates of stars after the on-board summing of pixels and exposures.more » Single-exposure calibration images are analyzed and compared with binned and summed science images to determine the influence of saturation on the science images. We also analyze how the on-board cosmic-ray scrubbing algorithm affects stellar images. We determine how this interacts with the variations of instrument pointing to affect measurements of stars. We find that saturation is a significant effect only for the brightest stars, and that its onset is gradual. We also find that degraded pointing stability, whether of the entire spacecraft or of the imagers, leads to reduced stellar count rates and also increased variation thereof through interaction with the on-board cosmic-ray scrubbing algorithm. We suggest ways in which these effects can be mitigated for astronomical studies and also suggest how the situation can be improved for future imagers.« less

  9. Improved instrumental magnitude prediction expected from version 2 of the NASA SKY2000 master star catalog

    NASA Technical Reports Server (NTRS)

    Sande, C. B.; Brasoveanu, D.; Miller, A. C.; Home, A. T.; Tracewell, D. A.; Warren, W. H., Jr.

    1998-01-01

    The SKY2000 Master Star Catalog (MC), Version 2 and its predecessors have been designed to provide the basic astronomical input data needed for satellite acquisition and attitude determination on NASA spacecraft. Stellar positions and proper motions are the primary MC data required for operations support followed closely by the stellar brightness observed in various standard astronomical passbands. The instrumental red-magnitude prediction subsystem (REDMAG) in the MMSCAT software package computes the expected instrumental color index (CI) [sensor color correction] from an observed astronomical stellar magnitude in the MC and the characteristics of the stellar spectrum, astronomical passband, and sensor sensitivity curve. The computation is more error prone the greater the mismatch of the sensor sensitivity curve characteristics and those of the observed astronomical passbands. This paper presents the preliminary performance analysis of a typical red-sensitive CCDST during acquisition of sensor data from the two Ball CT-601 ST's onboard the Rossi X-Ray Timing Explorer (RXTE). A comparison is made of relative star positions measured in the ST FOV coordinate system with the expected results computed from the recently released Tycho Catalogue. The comparison is repeated for a group of observed stars with nearby, bright neighbors in order to determine the tracker behavior in the presence of an interfering, near neighbor (NN). The results of this analysis will be used to help define a new photoelectric photometric instrumental sensor magnitude system (S) that is based on several thousand bright star magnitudes observed with the PXTE ST's. This new system will be implemented in Version 2 of the SKY2000 MC to provide improved predicted magnitudes in the mission run catalogs.

  10. Astronomical Applications - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You Information Center Background information on common astronomical phenomena, calendars and time, and related topics Rise, Set, and Twilight Definitions World Time Zone Map Phases of the Moon and Percent of the Moon

  11. Spectroscopy of neutral and ionized PAHs. From laboratory studies to astronomical observations

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrochemistry is to reproduce (in a realistic way) the physical conditions that are associated with the emission and absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. PAHs, neutrals and ions, are expanded through a pulsed discharge nozzle (PDN) and probed with high-sensitivity cavity ringdown spectroscopy (CRDS). These laboratory experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase from the ultraviolet and visible range to the near-infrared range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations of interstellar and circumstellar environments will also be discussed.

  12. TMT in the Astronomical Landscape of the 2020s

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark; Inami, Hanae

    2014-07-01

    Thirty Meter Telescope Observatory and NOAO will host the second TMT Science Forum at Loews Ventana Canyon Resort in Tucson, Arizona. The TMT Science Forum is an an annual gathering of astronomers, educators, and observatory staff, who meet to explore TMT science, instrumentation, observatory operations, archiving and data processing, astronomy education, and science, technology, engineering, and math (STEM) issues. It is an opportunity for astronomers from the international TMT partners and from the US-at-large community to learn about the observatory status, discuss and plan cutting-edge science, establish collaborations, and to help shape the future of TMT. One important theme for this year's Forum will be the synergy between TMT and other facilities in the post-2020 astronomical landscape. There will be plenary sessions, an instrumentation workshop, topical science sessions and meetings of the TMT International Science Development Teams (ISDTs).

  13. Astronomical and Cosmological Aspects of Maya Architecture and Urbanism

    NASA Astrophysics Data System (ADS)

    Šprajc, I.

    2009-08-01

    Archaeoastronomical studies carried out so far have shown that the orientations in the ancient Maya architecture were, like elsewhere in Mesoamerica, largely astronomical, mostly referring to sunrises and sunsets on particular dates and allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. However, the astronomical alignments cannot be understood in purely utilitarian terms. Since the repeatedly occurring directions are most consistently incorporated in monumental architecture of civic and ceremonial urban cores, they must have had an important place in religion and worldview. The characteristics of urban layouts, as well as architectural and other elements associated with important buildings, reveal that the Maya architectural and urban planning was dictated by a complex set of rules, in which astronomical considerations related to practical needs were embedded in a broader framework of cosmological concepts substantiated by political ideology.

  14. NASA's SOFIA infrared observatory and F/A-18 safety chase during the first series of test flights to verify the flight performance of the modified Boeing 747SP

    NASA Image and Video Library

    2007-10-11

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  15. Astronomía y Física: un matrimonio Sartriano

    NASA Astrophysics Data System (ADS)

    Vucetich, H.

    Desde el siglo XVII, Física y Astronomía han formado un matrimonio similar al de Sartre y Beauvoir: lleno de amores contingentes, pero firme y duradero. En la charla examino tres de los frutos más recientes de este matrimonio: - La confirmación de la Relatividad General con datos astronómicos. - Astrofísica y Física de neutrinos. - Teorías de supercuerdas y astronomía.

  16. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  17. Astronomical random numbers for quantum foundations experiments

    NASA Astrophysics Data System (ADS)

    Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason

    2018-04-01

    Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedanken experiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design of an astronomical random number generator developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017), 10.1103/PhysRevLett.118.060401], in this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars with redshifts up to z =3.9 . With stars, we achieved bit rates of ˜1 ×106Hz/m 2 , limited by saturation of our single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ˜102 and 2 ×103Hz /m2 . For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used to set the measurement settings in a test of the Bell-CHSH inequality.

  18. Astronomers Win Protection for Key Part of Radio Spectrum

    NASA Astrophysics Data System (ADS)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the

  19. Nasa s near earth object program office

    NASA Astrophysics Data System (ADS)

    Yeomans, D.; Chamberlin, A.; Chesley, S.; Chodas, P.; Giorgini, J.; Keesey, M.

    In 1998, NASA formed the Near-Earth Object Program Office at JPL to provide a focal point for NASA's efforts to discover and monitor the motions of asteroids and comets that can approach the Earth. This office was charged with 1.) facilitating communication between the near-Earth object (NEO) community and the public, 2.) helping coordinate the search efforts for NEOs, 3.) monitoring the progress in finding NEOs at NASA -supported sites, and 4.) monitoring the future motions of all known NEOs and cataloging their orbits. There are far more near-Earth asteroids (NEAs) than near-Earth comets and one of the driving motivations for NASA's NEO Program is the Spaceguard Goal to find 90% of the NEAs larger than one kilometer by 2008. While the total population of NEAs is not clearly established, the consensus opinion seems to be that the total population of NEAs larger than one kilometer is about 1000 (with a range of perhaps 800 - 1200). By April 2002, nearly 60% of the total population of large NEAs had been discovered and while the discovery rate will likely drop off as the easy ones are found, these early discovery efforts are encouraging. The five NASA-supported NEO discovery teams are the Lincoln Laboratory Near-Earth Asteroid Research effort (LINEAR, Grant Stokes, Principal Investigator), the Near-Earth Asteroid Tracking team at JPL (NEAT, Eleanor Helin, P.I.), the Lowell Observatory Near-Earth Object Search (LONEOS, E. Bowell, P.I.), and two discovery teams near Tucson Arizona - the Spacewatch effort (R. McMillan, P.I.) and the Catalina Sky Survey group (S. Larson, P.I.). Mention should also be made of the Japanese Spaceguard discovery site at Bisei Japan (S. Isobe, P.I.). A substantial portion of the critical follow-up observations necessary to secure the orbits of NEOs and provide information on their physical characteristics is provided by a group of very sophisticated amateur astronomers who might better be described as unfunded professionals. After nearly two

  20. GalileoMobile: Astronomical activities in schools

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  1. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  2. Hubble Solves Mystery on Source of Supernova in Nearby Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release January 11, 2012 Using NASA's Hubble Space Telescope, astronomers have solved a longstanding mystery on the type of star, or so-called progenitor, that caused a supernova in a nearby galaxy. The finding yields new observational data for pinpointing one of several scenarios that could trigger such outbursts. Based on previous observations from ground-based telescopes, astronomers knew that a kind of supernova called a Type Ia created a remnant named SNR 0509-67.5, which lies 170,000 light-years away in the Large Magellanic Cloud galaxy. The type of system that leads to this kind of supernova explosion has long been a high importance problem with various proposed solutions but no decisive answer. All these solutions involve a white dwarf star that somehow increases in mass to the highest limit. Astronomers failed to find any companion star near the center of the remnant, and this rules out all but one solution, so the only remaining possibility is that this one Type Ia supernova came from a pair of white dwarfs in close orbit. To read more go to: www.nasa.gov/mission_pages/hubble/science/supernova-sourc... Image Credit: NASA, ESA, CXC, SAO, the Hubble Heritage Team (STScI/AURA), and J. Hughes (Rutgers University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Isaac Newton and the astronomical refraction.

    PubMed

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  4. Design and Implement of Astronomical Cloud Computing Environment In China-VO

    NASA Astrophysics Data System (ADS)

    Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu

    2017-06-01

    Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.

  5. Grigor Narekatsi's astronomical insights

    NASA Astrophysics Data System (ADS)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  6. Amateur astronomers in support of observing campaigns

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P.

    2014-07-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding

  7. The Aosta Valley Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Carbognani, A.

    2011-06-01

    OAVdA stands for Astronomical Observatory of the Autonomous Region of the Aosta Valley (Italy). The centre is located in the northwestern Italian Alps, near the border with France and Switzerland (Lat: 45° 47' 22" N, Long: 7° 28' 42" E), at 1675 m above sea level in the Saint-Barthélemy Valley and is managed by the "Fondazione Clément Fillietroz", with funding from local administrations. OAVdA was opened in 2003 as a centre for the popularization of astronomy but, since 2006, the main activity has been scientific research, as a consequence of an official cooperation agreement established with the Italian National Institute for Astrophysics (INAF). In 2009, a planetarium was built near the observatory with a 10-meter dome and 67 seats, which is currently used for educational astronomy. In the year 2009 about 15,200 people visited OAVdA and the planetarium. The staff in 2010 was made up of 12 people, including a scientific team of 5 physicists and astronomers on ESF (European Social Fund) grants and permanently residing at the observatory.

  8. LGBT Workplace Issues for Astronomers

    NASA Astrophysics Data System (ADS)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  9. NASA's Chandra Reveals Origin of Key Cosmic Explosions

    NASA Astrophysics Data System (ADS)

    2010-02-01

    WASHINGTON -- New findings from NASA's Chandra X-ray Observatory have provided a major advance in understanding a type of supernova critical for studying the dark energy that astronomers think pervades the universe. The results show mergers of two dense stellar remnants are the likely cause of many of the supernovae that have been used to measure the accelerated expansion of the universe. These supernovae, called Type Ia, serve as cosmic mile markers to measure expansion of the universe because they can be seen at large distances, and they follow a reliable pattern of brightness. However, until now, scientists have been unsure what actually causes the explosions. "These are such critical objects in understanding the universe," said Marat Gilfanov of the Max Planck Institute for Astrophysics in Germany and lead author of the study that appears in the Feb. 18 edition of the journal Nature. "It was a major embarrassment that we did not know how they worked. Now we are beginning to understand what lights the fuse of these explosions." Most scientists agree a Type Ia supernova occurs when a white dwarf star -- a collapsed remnant of an elderly star -- exceeds its weight limit, becomes unstable and explodes. Scientists have identified two main possibilities for pushing the white dwarf over the edge: two white dwarfs merging or accretion, a process in which the white dwarf pulls material from a sun-like companion star until it exceeds its weight limit. "Our results suggest the supernovae in the galaxies we studied almost all come from two white dwarfs merging," said co-author Akos Bogdan, also of Max Planck. "This is probably not what many astronomers would expect." The difference between these two scenarios may have implications for how these supernovae can be used as "standard candles" -- objects of a known brightness -- to track vast cosmic distances. Because white dwarfs can come in a range of masses, the merger of two could result in explosions that vary somewhat in

  10. All In The Family: Chandra Finds Evidence That Massive Stars Are More Like The Sun Than Previously Believed

    NASA Astrophysics Data System (ADS)

    2000-10-01

    NASA's Chandra X-ray Observatory has found evidence that massive stars may be much more like the Sun than previously thought. Astronomers determined that magnetic loop structures, similar to those on the Sun, may exist on the surface of so-called O-type stars, some of the most luminous stars in the universe. "This result is quite surprising," says Wayne Waldron of Emergent Information Technologies, Inc., and co-author of a paper submitted to the Astrophysical Journal Letters. "This bucks conventional wisdom to find that these stars may really resemble our Sun." Zeta Orionis Press Image and Caption Using Chandra's High-Energy Transmission Grating Spectrometer (HETGS) in conjunction with a CCD X-ray camera, astronomers observed the star Zeta Orionis (one of the three belt stars in the constellation of Orion) and found strong X-ray line emission from ions of iron, oxygen, and other elements. The high-resolution X-ray spectrum enabled astronomers to determine that the X-ray emitting gas has a density 1000 times larger than predicted by current models, an amount comparable to the atmospheric density just above the surface of the star. For many years, solar astronomers have derived densities of X-ray producing plasmas on the Sun using emission lines of ions like helium, those with just two bound electrons remaining. Chandra allows this approach to be used for other stars and it has detected X-rays from silicon ions that have been stripped of 12 of their usual complement of 14 electrons. This ion is an especially useful diagnostic of plasma densities in the extremely ultraviolet-bright environment surrounding O-stars. Following the discovery of X-ray emission from O-class stars some 20 years ago, astronomers assumed that the X-rays were created in a hot corona near the star, similar to the Sun's corona. Those models were then abandoned in favor of the currently preferred explanation: the X-ray radiation is created by energetic shocks in the stellar winds (steady streams

  11. Preserving Astronomy's Photographic Legacy: Current State and the Future of North American Astronomical Plates

    NASA Astrophysics Data System (ADS)

    Osborn, W.; Robbins, L.

    2009-08-01

    This book contains articles on preserving astronomy's valuable heritage of photographic observations, most of which are on glass plates. It is intended to serve as a reference for institutions charged with preserving and managing plate archives and astronomers interested in using archival photographic plates in their research. The first portion of the book focuses on previous activities and recommendations related to plate archiving. These include actions taken by the International Astronomical Union, activities in Europe and a detailed account of a workshop on preserving astronomical photographic data held in 2007 at the Pisgah Astronomical Research Institute, North Carolina. The workshop discussions covered a wide range of issues that must be considered in any effort to archive plates and culminated in a set of recommendations on preserving, cataloging and making publicly available these irreplaceable data. The second part of the book reports on some recent efforts to implement the recommendations. These include essays on the recently established Astronomical Photographic Data Archive, projects to make photographic collections available electronically, evaluations of commercial scanners for digitization of astronomical plates and the case for the continuing value of these data along with a report on the census of astronomical plate collections in North America carried out in 2008. The census cataloged the locations, numbers, and types of astronomical plates in the US and Canada. Comprehensive appendices identify all the significant collections in North America and detail the current contents, state and status of their holdings.

  12. The SOFIA flight crew descends the stairs after ferrying the 747SP airborne observatory from Waco, TX, to NASA's Dryden Flight Research Center in California

    NASA Image and Video Library

    2007-05-31

    The SOFIA flight crew, consisting of Co-pilot Gordon Fullerton; DFRC, Pilot Bill Brocket; DFRC, Test Conductor Marty Trout; DFRC, Test Engineer Don Stonebrook; L-3, and Flight Engineer Larry Larose; JSC, descend the stairs after ferrying the 747SP airborne observatory from Waco, Texas, to its new home at NASA's Dryden Flight Research Center in California. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  13. The Astronomical Low-Frequency Array

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Allen, R. J.; Blume, W. H.; Desch, M. M.; Erickson, W. C.; Kaiser, M. L.; Kassim, N. E.; Kuiper, T. B. H.; Mahoney, M. J.; Marsh, K. A.; hide

    1996-01-01

    An array of satellites is proposed to make astronomic observations in the low frequency range of a few tens of MHz down to roughly 100 kHz, a range that cannot be observed through the ionosphere. The array would be in a solar orbit to avoid radio interference from Earth and to simplify trajectory tracking and control.

  14. Recent Advances for LGBT Astronomers in the United States

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Rigby, Jane; Oppenheimer, Rebecca

    2015-08-01

    The legal environment for lesbian, gay, bisexual, and transgender (LGBT) astronomers in the United States has changed dramatically in recent years. In 2013, the Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA), which had barred the federal government from recognizing same-sex marriages, was unconstitutional. This decision particularly affects astronomers, since astronomers in the U.S. are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In 2014, the Attorney General directed the Department of Justice to take the position in litigation that the protection of Title VII of the Civil Rights Act of 1964 extends to claims of discrimination based on an individual’s gender identity, including transgender status. Title VII makes it unlawful for employers to discriminate in the employment of an individual “because of such individual’s... sex,” among other protected characteristics. As of March 2015, more than 70% of the population lives in states that recognize same-sex marriage, and the Supreme Court is expected to rule on the constitutionality of the remaining same-sex marriage bans during the current term. In this poster, we discuss these advances and their implications for the personal and professional lives of LGBT astronomers across the United States.

  15. Silicon carbide optics for space and ground based astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  16. Conceptual Astronomy Knowledge among Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Berendsen, Margaret L.

    Amateur astronomers regularly serve as informal astronomy educators for their communities. This research inquires into the level of knowledge of basic astronomy concepts among amateur astronomers and examines factors related to amateur astronomy that affect that knowledge. Using the concept questions from the Astronomy Diagnostic Test Version 2, an online survey was developed as an assessment. In particular, astronomy club members with at least some college-level astronomy education score substantially higher on the assessment (mean score: 85) than do college undergraduates after taking their first astronomy course (mean score: 47). Astronomy club members scored up to 17% higher than unaffiliated amateurs, an indication that regular contact with like-minded hobbyists improves basic knowledge. Proportionally more astronomy club members report doing outreach than do unaffiliated amateurs (87% vs. 46%). It appears that those who are likely to be more knowledgeable are also those doing more outreach.

  17. SPHEREx: Science Opportunities for the Astronomical Community

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 microns. The survey will reach 18.3 AB mag (5 sigma) in R=41 filters, with R=135 coverage between 4.2 - 5.0 microns. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.4 billion galaxies, with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for most WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including 300 bright QSOs at z > 7 during the epoch of reionization, based on observational extrapolations. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx produces all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will show example science studies the broader astronomical community will be able to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software

  18. Exploratory visualization of astronomical data on ultra-high-resolution wall displays

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé

    2016-07-01

    Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.

  19. ARNICA, the Arcetri near-infrared camera: Astronomical performance assessment.

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.; Lisi, F.; Testi, L.; Baffa, C.; Borelli, S.; Maiolino, R.; Moriondo, G.; Stanga, R. M.

    1996-01-01

    The Arcetri near-infrared camera ARNICA was built as a users' instrument for the Infrared Telescope at Gornergrat (TIRGO), and is based on a 256x256 NICMOS 3 detector. In this paper, we discuss ARNICA's optical and astronomical performance at the TIRGO and at the William Herschel Telescope on La Palma. Optical performance is evaluated in terms of plate scale, distortion, point spread function, and ghosting. Astronomical performance is characterized by camera efficiency, sensitivity, and spatial uniformity of the photometry.

  20. Astronomical Instrumentation Systems Quality Management Planning: AISQMP

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse

    2017-06-01

    The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  1. How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers

    PubMed Central

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-01-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date. PMID:25165807

  2. How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers.

    PubMed

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-01-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  3. How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers

    NASA Astrophysics Data System (ADS)

    Pepe, Alberto; Goodman, Alyssa; Muench, August; Crosas, Merce; Erdmann, Christopher

    2014-08-01

    We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  4. Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk

    2007-02-01

    The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

  5. Ernesto Vasconcellos' Astronomia Photographica: the earliest popular book on astronomical photography?

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor; Malaquias, Isabel; Fernandes, João

    2008-07-01

    Portugal, albeit with its own cultural distinctiveness, was not immune to the ideologies permeating nineteenth-century European society, in particular those concerning the social advantages of science and science popularisation. The country's high illiteracy rate hampered but did not prevent several popularisation efforts, which were usually led by professors and armed forces officers. In 1886 Astronomia Photographica (Astronomical Photography), a book popularising astrophotography, was published in Lisbon as part of a collection entitled People and Schools Library. The book seems an odd editorial choice given that, at the time, Portugal's major astronomical institutions pursued astrometric research and there was a virtual absence in the country of amateur astronomers. International astronomical developments, the author's interest in the scientific applications of photography and even the editorial timing are likely explanations for the publication of Astronomia Photographica, but we believe a definitive answer is still not available. The style of Astronomia Photographica is historical and informative, without being technical; clearly it is not a ‘hands-on guide’. The contents of the book show that the author, Ernesto Júlio de Carvalho e Vasconcellos, a naval officer, contacted several experts and was aware of the latest developments in astronomical photography. What makes this a unique book is its content, and its inclusion in a popularisation collection with an exceptionally high circulation at such an early time.

  6. Building a VO-compliant Radio Astronomical DAta Model for Single-dish radio telescopes (RADAMS)

    NASA Astrophysics Data System (ADS)

    Santander-Vela, Juan de Dios; García, Emilio; Leon, Stephane; Espigares, Victor; Ruiz, José Enrique; Verdes-Montenegro, Lourdes; Solano, Enrique

    2012-11-01

    The Virtual Observatory (VO) is becoming the de-facto standard for astronomical data publication. However, the number of radio astronomical archives is still low in general, and even lower is the number of radio astronomical data available through the VO. In order to facilitate the building of new radio astronomical archives, easing at the same time their interoperability with VO framework, we have developed a VO-compliant data model which provides interoperable data semantics for radio data. That model, which we call the Radio Astronomical DAta Model for Single-dish (RADAMS) has been built using standards of (and recommendations from) the International Virtual Observatory Alliance (IVOA). This article describes the RADAMS and its components, including archived entities and their relationships to VO metadata. We show that by using IVOA principles and concepts, the effort needed for both the development of the archives and their VO compatibility has been lowered, and the joint development of two radio astronomical archives have been possible. We plan to adapt RADAMS to be able to deal with interferometry data in the future.

  7. Orbiting Water Molecules Dance to Tune Of Galaxy's "Central Engine," Astronomers Say

    NASA Astrophysics Data System (ADS)

    2000-01-01

    A disk of water molecules orbiting a supermassive black hole at the core of a galaxy 60 million light-years away is "reverberating" in response to variations in the energy output from the galaxy's powerful "central engine" close to the black hole, astronomers say. The team of astronomers used the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope in New Mexico and the 100-meter-diameter radio telescope of the Max Planck Institute for Radio Astronomy at Effelsberg, Germany, to observe the galaxy NGC 1068 in the constellation Cetus. They announced their findings today at the American Astronomical Society's meeting in Atlanta. The water molecules, in a disk some 5 light-years in diameter, are acting as a set of giant cosmic radio-wave amplifiers, called masers. Using energy radiated by the galaxy's "central engine," the molecules strengthen, or brighten, radio emission at a particular frequency as seen from Earth. "We have seen variations in the radio 'brightness' of these cosmic amplifiers that we believe were caused by variations in the energy output of the central engine," said Jack Gallimore, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA. "This could provide us with a valuable new tool for learning about the central engine itself," he added. Gallimore worked with Stefi Baum of the Space Telescope Science Institute in Baltimore, MD; Christian Henkel of the Max Planck Institute for Radio Astronomy in Bonn, Germany; Ian Glass of the South African Astronomical Observatory; Mark Claussen of the NRAO in Socorro, NM; and Almudena Prieto of the European Southern Observatory in Munich, Germany. "Our observations show that NGC 1068 is the second-known case of a giant disk of water molecules orbiting a supermassive black hole at a galaxy's core," Gallimore said. The first case was the galaxy NGC 4258 (Messier 106), whose disk of radio-amplifying water molecules was measured by the NSF's Very Long Baseline

  8. Australian sites of astronomical heritage

    NASA Astrophysics Data System (ADS)

    Stevenson, T.; Lomb, N.

    2015-03-01

    The heritage of astronomy in Australia has proven an effective communication medium. By interpreting science as a social and cultural phenomenon new light is thrown on challenges, such as the dispersal of instruments and problems identifying contemporary astronomy heritage. Astronomers are asked to take note and to consider the communication of astronomy now and in the future through a tangible heritage legacy.

  9. Visiting Astronomers Travel Guide | CTIO

    Science.gov Websites

    please advise Ximena Herreros at the time that you initiate travel plans, if your stay in Chile will , well in advance of their travel time, regarding current visa requirements for Chile. back to top Visiting Astronomers Travel Guide Director's Discretionary (DD) Time CTIO 2016 Ephemeris ToO Policy CTIO

  10. Factors Contributing to Amateur Astronomers' Involvement in Education and Public Outreach

    ERIC Educational Resources Information Center

    Yocco, Victor; Jones, Eric C.; Storksdieck, Martin

    2012-01-01

    Amateur astronomers play a critical role engaging the general public in astronomy. The role of individual and club-related factors is explored using data from two surveys (Survey 1 N = 1142; Survey 2 N = 1242) of amateur astronomers. Analysis suggests that formal or informal training in astronomy, age, club membership, length of club membership,…

  11. Application of Astronomical Compositions in Small Architectural Forms

    NASA Astrophysics Data System (ADS)

    Haykazun, Ani

    2016-12-01

    The small architectural forms are an important part of the Armenian architecture. Their compositions are diverse including quadrihedral structures, cross-stones, monuments, gravestones, memorial stones, etc. From ancient times to the late middle ages, and up to themodern small architectural forms, there are many decorative elements of astronomical character. Among them, one can more often see stars, the sun, the moon, the sky, the planets, the sign of eternity and other symbolic decorative images, which play a major role in the formation of the artistic image of the architectural compositions. The analysis of application of astronomical compositions will help more comprehensively introduce the compositional peculiarities of the small architectural forms.

  12. NASA GIBS Use in Live Planetarium Shows

    NASA Astrophysics Data System (ADS)

    Emmart, C. B.

    2015-12-01

    The American Museum of Natural History's Hayden Planetarium was rebuilt in year 2000 as an immersive theater for scientific data visualization to show the universe in context to our planet. Specific astrophysical movie productions provide the main daily programming, but interactive control software, developed at AMNH allows immersive presentation within a data aggregation of astronomical catalogs called the Digital Universe 3D Atlas. Since 2006, WMS globe browsing capabilities have been built into a software development collaboration with Sweden's Linkoping University (LiU). The resulting Uniview software, now a product of the company SCISS, is operated by about fifty planetariums around that world with ability to network amongst the sites for global presentations. Public presentation of NASA GIBS has allowed authoritative narratives to be presented within the range of data available in context to other sources such as Science on a Sphere, NASA Earth Observatory and Google Earth KML resources. Specifically, the NOAA supported World Views Network conducted a series of presentations across the US that focused on local ecological issues that could then be expanded in the course of presentation to national and global scales of examination. NASA support of for GIBS resources in an easy access multi scale streaming format like WMS has tremendously enabled particularly facile presentations of global monitoring like never before. Global networking of theaters for distributed presentations broadens out the potential for impact of this medium. Archiving and refinement of these presentations has already begun to inform new types of documentary productions that examine pertinent, global interdependency topics.

  13. Astronomical calibration of the geological timescale: closing the middle Eocene gap

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Frederichs, T.; Bohaty, S. M.; Zachos, J. C.

    2015-09-01

    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

  14. OpenCluster: A Flexible Distributed Computing Framework for Astronomical Data Processing

    NASA Astrophysics Data System (ADS)

    Wei, Shoulin; Wang, Feng; Deng, Hui; Liu, Cuiyin; Dai, Wei; Liang, Bo; Mei, Ying; Shi, Congming; Liu, Yingbo; Wu, Jingping

    2017-02-01

    The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing. However, current high-performance data processing architectures/frameworks are not well suited for astronomers because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-source distributed computing framework to support rapidly developing high-performance processing pipelines of astronomical big data. We first detail the OpenCluster design principles and implementations and present the APIs facilitated by the framework. We then demonstrate a case in which OpenCluster is used to resolve complex data processing problems for developing a pipeline for the Mingantu Ultrawide Spectral Radioheliograph. Finally, we present our OpenCluster performance evaluation. Overall, OpenCluster provides not only high fault tolerance and simple programming interfaces, but also a flexible means of scaling up the number of interacting entities. OpenCluster thereby provides an easily integrated distributed computing framework for quickly developing a high-performance data processing system of astronomical telescopes and for significantly reducing software development expenses.

  15. Astronomical Data Bank: The Solar System.

    ERIC Educational Resources Information Center

    Morrison, David

    1983-01-01

    Provided are two tables which contain the latest orbital and physical characteristics of the planets and their main satellites. These tables are part of a series of information materials available from the Astronomical Society of the Pacific, 1290 24th Avenue, San Francisco, CA 94122. (JN)

  16. Nathaniel Bowditch, Early American Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Williams, Thomas R.

    1984-10-01

    Nathaniel Bowditch had very successful careers as a seaman/ship's master and as an actuary/insurance executive. In addition he managed to make very substantial contributions to mathematics and astronomy. Bowditch is therefore important as one of the earliest significant amateur astronomers in the United States.

  17. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Compton Tucker’s presentation on NASA’s earth science research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Photo Credit: NASA/Goddard/Rebecca Roth Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Compton Tucker’s presentation on NASA’s earth science research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Joihn Mather’s presentation on NASA’s astrophysics research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2016-01-06

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2016-01-06

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. The Impact of the Qur'anic Conception of Astronomical Phenomena on Islamic Civilization

    NASA Astrophysics Data System (ADS)

    Ahmad, I. A.

    Discussions of astronomical phenomena in religious texts usually center around either their literal astronomical content or their symbolic significance. We shall instead consider the use of frequent references to astronomical phenomena in the Qur'an as exhortations to a worldview that ushered in the modern era. The Qur'anic conception of astronomical phenomena had a critical impact on Islamic civilization and the civilizations that followed because it introduced and mandated the adoption of certain attitudes. Among these were a greater respect for empirical data than was common in the preceding Greek civilization and an insistence that the Universe is ruled by a single set of laws. Both of these were rooted in the Islamic concept of tawhîd, the unity of God.

  5. Recruitment and Retention of LGBTIQ Astronomers

    NASA Astrophysics Data System (ADS)

    Dixon, William Van Dyke

    2012-01-01

    While lesbian, gay, bisexual, transgender, intersex, or questioning (LGBTIQ) astronomers face many of the same workplace challenges as women and racial/ethnic minorities, from implicit bias to overt discrimination, other challenges are unique to this group. An obvious example is the absence at many institutions of health insurance and other benefits for the same-sex domestic partners of their employees. More subtle is the psychological toll paid by LGBTIQ astronomers who remain "in the closet," self-censoring every statement about their personal lives. Paradoxically, the culture of the physical sciences, in which sexuality, gender identity, and gender expression are considered irrelevant, can discourage their discussion, further isolating LGBTIQ researchers. Addressing these challenges is not just a matter of fairness; it is an essential tool in the recruitment and retention of the brightest researchers and in assuring their productivity. We will discuss these issues and what individuals and departments can to make their institutions more welcoming to their LGBTIQ colleagues.

  6. NASA's Hubble Universe in 3-D

    NASA Image and Video Library

    2017-12-08

    gaseous layers on the isolated Carina pillar. Frattare then replaced the stars into both foreground and background layers to complete the 3-D model. For added effect, the same separation was done for both visible and infrared Hubble images, allowing the film to cross-fade between wavelength views in 3-D. In another sequence viewers fly into a field of 170,000 stars in the giant star cluster Omega Centauri. STScI astronomer Jay Anderson used his stellar database to create a synthetic star field in 3-D that matches recent razor-sharp Hubble photos. The film's final four-minute sequence takes viewers on a voyage from our Milky Way Galaxy past many of Hubble's best galaxy shots and deep into space. Some 15,000 galaxies from Hubble's deepest surveys stretch billions of light-years across the universe in a 3-D sequence created by STScI astronomers and visualizers. The view dissolves into a cobweb that traces the universe's large-scale structure, the backbone from which galaxies were born. In addition to creating visualizations, STScI's education group also provided guidance on the "Hubble 3D" Educator Guide, which includes standards-based lesson plans and activities about Hubble and its mission. Students will use the guide before or after seeing the movie. "The guide will enhance the movie experience for students and extend the movie into classrooms," says Bonnie Eisenhamer, STScI's Hubble Formal Education manager. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA) and is managed by NASA’s Goddard Space Flight Center (GSFC) in Greenbelt, Md. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, D.C.

  7. NASA Satellite View of Antarctica

    NASA Image and Video Library

    2017-12-08

    NASA image acquired November 2, 2011 The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite captured this image of the Knox, Budd Law Dome, and Sabrina Coasts, Antarctica on November 2, 2011 at 01:40 UTC (Nov. 1 at 9:40 p.m. EDT). Operation Ice Bridge is exploring Antarctic ice, and more information can be found at www.nasa.gov/icebridge. Image Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Marshal Wrubel and the Electronic Computer as an Astronomical Instrument

    NASA Astrophysics Data System (ADS)

    Mutschlecner, J. P.; Olsen, K. H.

    1998-05-01

    In 1960, Marshal H. Wrubel, professor of astrophysics at Indiana University, published an influential review paper under the title, "The Electronic Computer as an Astronomical Instrument." This essay pointed out the enormous potential of the electronic computer as an instrument of observational and theoretical research in astronomy, illustrated programming concepts, and made specific recommendations for the increased use of computers in astronomy. He noted that, with a few scattered exceptions, computer use by the astronomical community had heretofore been "timid and sporadic." This situation was to improve dramatically in the next few years. By the late 1950s, general-purpose, high-speed, "mainframe" computers were just emerging from the experimental, developmental stage, but few were affordable by or available to academic and research institutions not closely associated with large industrial or national defense programs. Yet by 1960 Wrubel had spent a decade actively pioneering and promoting the imaginative application of electronic computation within the astronomical community. Astronomy upper-level undergraduate and graduate students at Indiana were introduced to computing, and Ph.D. candidates who he supervised applied computer techniques to problems in theoretical astrophysics. He wrote an early textbook on programming, taught programming classes, and helped establish and direct the Research Computing Center at Indiana, later named the Wrubel Computing Center in his honor. He and his students created a variety of algorithms and subroutines and exchanged these throughout the astronomical community by distributing the Astronomical Computation News Letter. Nationally as well as internationally, Wrubel actively cooperated with other groups interested in computing applications for theoretical astrophysics, often through his position as secretary of the IAU commission on Stellar Constitution.

  9. Interconnecting astronomical networks: evolving from single networks to meta-networks

    NASA Astrophysics Data System (ADS)

    White, R. R.; Allan, A.; Evans, S.; Vestrand, W. T.; Wren, J.; Wozniak, P.

    2006-06-01

    Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.

  10. Astronomical diaries and observations from the time of the Great War

    NASA Astrophysics Data System (ADS)

    Shanklin, J. D.

    2003-10-01

    My great grandfather Harry Thomas, of Llandudno, kept diaries for many years. Only those for 1913 to 1916 survive, though they contain passing references to earlier volumes. Items of astronomical interest are presented here. Harry's brother, Dr Bernard Thomas (1868?1935 May 13), at this time lived in Hobart, Tasmania and was a more serious amateur astronomer.

  11. NASA's Global Hawk

    NASA Image and Video Library

    2014-09-23

    View from a Chase Plane; HS3 Science Flight 8 Wraps Up The chase plane accompanying NASA's Global Hawk No. 872 captured this picture on Sept. 19 after the Global Hawk completed science flight #8 where it gathered data from a weakening Tropical Storm Edouard over the North Atlantic Ocean. Credit: NASA -- The Hurricane and Severe Storm Sentinel (HS3) is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. HS3 is motivated by hypotheses related to the relative roles of the large-scale environment and storm-scale internal processes. Read more: espo.nasa.gov/missions/hs3/mission-gallery NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Lynda Barry Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Cartoonist and professor of creativity Lynda Barry presented the benefits of creativity in everyday life as part of Goddard's Office of Communications Story Lab seminar series. Read more: www.nasa.gov/feature/goddard/2016/cartoonist-discusses-cr... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Connecting the time domain community with the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Plante, Raymond L.; Kantor, Jeffrey; Good, John C.

    2012-09-01

    The time domain has been identied as one of the most important areas of astronomical research for the next decade. The Virtual Observatory is in the vanguard with dedicated tools and services that enable and facilitate the discovery, dissemination and analysis of time domain data. These range in scope from rapid notications of time-critical astronomical transients to annotating long-term variables with the latest modelling results. In this paper, we will review the prior art in these areas and focus on the capabilities that the VAO is bringing to bear in support of time domain science. In particular, we will focus on the issues involved with the heterogeneous collections of (ancilllary) data associated with astronomical transients, and the time series characterization and classication tools required by the next generation of sky surveys, such as LSST and SKA.

  14. Harold F. Weaver: California Astronomer

    NASA Astrophysics Data System (ADS)

    Shields, J. C.

    1993-05-01

    This talk will give an overview of an oral history recently completed with Harold F. Weaver, Professor Emeritus of Astronomy at the University of California at Berkeley. Weaver grew up in California and studied as an undergraduate at Berkeley, where he also pursued graduate work incorporating research at Lick and Mount Wilson Observatories. After pursuing postdoctoral research at Yerkes Observatory and war work in Cambridge (Massachusetts) and Berkeley, Weaver was appointed to the staff of Lick Observatory. In 1951 he joined the faculty at Berkeley, where he later played a major role in founding Hat Creek Radio Observatory. As Director of the Berkeley Radio Astronomy Laboratory, Weaver oversaw construction of the 85-foot telescope at Hat Creek, which is the subject of a special session at this meeting. Two aspects of Weaver's career will be highlighted. The first is the somewhat unusual and very successful transition in Weaver's observational research from emphasis on classical photographic techniques at optical wavelengths to use of emerging radio technology for the study of Galactic structure. The second is service provided by Weaver to the American Astronomical Society and Astronomical Society of the Pacific at several key junctures in the development of both organizations.

  15. NASA Engineers Conduct Low Light Test on New Technology for NASA Webb Telescope

    NASA Image and Video Library

    2014-09-02

    NASA engineers inspect a new piece of technology developed for the James Webb Space Telescope, the micro shutter array, with a low light test at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Developed at Goddard to allow Webb's Near Infrared Spectrograph to obtain spectra of more than 100 objects in the universe simultaneously, the micro shutter array uses thousands of tiny shutters to capture spectra from selected objects of interest in space and block out light from all other sources. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Astroinformatics, data mining and the future of astronomical research

    NASA Astrophysics Data System (ADS)

    Brescia, Massimo; Longo, Giuseppe

    2013-08-01

    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies.

  17. Free-space laser communication system with rapid acquisition based on astronomical telescopes.

    PubMed

    Wang, Jianmin; Lv, Junyi; Zhao, Guang; Wang, Gang

    2015-08-10

    The general structure of a free-space optical (FSO) communication system based on astronomical telescopes is proposed. The light path for astronomical observation and for communication can be easily switched. A separate camera is used as a star sensor to determine the pointing direction of the optical terminal's antenna. The new system exhibits rapid acquisition and is widely applicable in various astronomical telescope systems and wavelengths. We present a detailed analysis of the acquisition time, which can be decreased by one order of magnitude compared with traditional optical communication systems. Furthermore, we verify software algorithms and tracking accuracy.

  18. How Much Mass Makes a Black Hole? - Astronomers Challenge Current Theories

    NASA Astrophysics Data System (ADS)

    2010-08-01

    huge quantities of mass from the progenitor star. While no such companion is currently visible at the site of the magnetar, this could be because the supernova that formed the magnetar caused the binary to break apart, ejecting both stars at high velocity from the cluster. "If this is the case it suggests that binary systems may play a key role in stellar evolution by driving mass loss - the ultimate cosmic 'diet plan' for heavyweight stars, which shifts over 95% of their initial mass," concludes Clark. Notes [1] The open cluster Westerlund 1 was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970-74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100 000, and this is why it has taken so long to uncover the true nature of this particular cluster. Westerlund 1 is a unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Milky Way live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100 000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way galaxy. All stars so far analysed in Westerlund 1 have masses at least 30-40 times that of the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a "newborn" cluster in our galaxy. More information The research presented in this ESO Press Release will soon appear in the research journal Astronomy and Astrophysics ("A VLT/FLAMES survey for massive binaries in Westerlund 1: II. Dynamical

  19. Working data together: the accountability and reflexivity of digital astronomical practice.

    PubMed

    Hoeppe, Götz

    2014-04-01

    Drawing on ethnomethodology, this article considers the sequential work of astronomers who combine observations from telescopes at two observatories in making a data set for scientific analyses. By witnessing the induction of a graduate student into this work, it aims at revealing the backgrounded assumptions that enter it. I find that these researchers achieved a consistent data set by engaging diverse evidential contexts as contexts of accountability. Employing graphs that visualize data in conventional representational formats of observational astronomy, experienced practitioners held each other accountable by using an 'implicit cosmology', a shared (but sometimes negotiable) characterization of 'what the universe looks like' through these formats. They oriented to data as malleable, that is, as containing artifacts of the observing situation which are unspecified initially but can be defined and subsequently removed. Alternating between reducing data and deducing astronomical phenomena, they ascribed artifacts to local observing conditions or computational procedures, thus maintaining previously stabilized phenomena reflexively. As researchers in data-intensive sciences are often removed from the instruments that generated the data they use, this example demonstrates how scientists can achieve agreement by engaging stable 'global' data sets and diverse contexts of accountability, allowing them to bypass troubling features and limitations of data generators.

  20. Explanatory Supplement to the Astronomical Almanac (3rd Edition)

    NASA Astrophysics Data System (ADS)

    Urban, Sean E.; Seidelmann, P. K.

    2014-01-01

    Publications and software from the the Astronomical Applications Department of the US Naval Observatory (USNO) are used throughout the world, not only in the Department of Defense for safe navigation, but by many people including other navigators, astronomers, aerospace engineers, and geodesists. Products such as The Nautical Almanac, The Astronomical Almanac, and the Multiyear Interactive Computer Almanac (MICA) are regarded as international standards. To maintain credibility, it is imperative that the methodologies employed and the data used are well documented. "The Explanatory Supplement to the Astronomical Almanac" (hereafter, "The ES") is a major source of such documentation. It is a comprehensive reference book on positional astronomy, covering the theories and algorithms used to produce The Astronomical Almanac, an annual publication produced jointly by the Nautical Almanac Office of USNO and Her Majesty's Nautical Almanac Office (HMNAO). The first edition of The ES appeared in 1961, and the second followed in 1992. Several major changes have taken place in fundamental astronomy since the second edition was published. Advances in radio observations allowed the celestial reference frame to be tied to extragalactic radio sources, thus the International Celestial Reference System replaced the FK5 system. The success of ESA's Hipparcos satellite dramatically altered observational astrometry. Improvements in Earth orientation observations lead to new precession and nutation theories. Additionally, a new positional paradigm, no longer tied to the ecliptic and equinox, was accepted. Largely because of these changes, staff at USNO and HMNAO decided the time was right for the next edition of The ES. The third edition is now available; it is a complete revision of the 1992 book. Along with subjects covered in the previous two editions, the book also contains descriptions of the major advancements in positional astronomy over the last 20 years, some of which are

  1. Political Repression Against Soviet Astronomers in the 1930s

    NASA Astrophysics Data System (ADS)

    Eremmeva, A. I.

    1993-12-01

    The Soviet government's repression of the Russian intelligentsia in the late 1930s had a devastating effect on astronomy. This period was marked by the strengthening of a rigid ideology in society and a growing atmosphere of suspicion, fear, and spy mania. Under these conditions the international nature of astronomy--in particular the need for foreign contacts--became the excuse for accusations of "wrecking" against astronomers. The fate of individual astronomers and institutions depended greatly, however, on local circumstances. For example, the general political repression of the 1930s began in Leningrad at a time when Pulkovo Observatory director B. P. Gerasimovich was engaged in a sharp conflict with a small group of junior staff led by V. A. Ambartsumian. In addition, the very first arrest of a Leningrad astronomer--namely the arrest of B. V. Numerov--appears to have initiated a cascading series of arrests that spread like an avalanche through the close-knit com- munity of Leningrad astronomers. These two factors led to the devastating ruin of Pulkovo. Completely different circumstances saved GAISh. This was a com- paratively young institute whose junior staff had spent its formative years at GAISh rather than joining the staff from out- side (as had been the case at Pulkovo). Thus the GAISh staff had a greater degree of homogeneity and solidarity, and this, in turn, may explain why the ideological department at GAISh (the "partburo") conducted itself in a manner that differed sharply from that of the "partburo" at Pulkovo. Thanks to these circum- stances not even one arrest occurred at GAISh. The directors of Pulkovo and GAISh came from very similar back- grounds, but the different conditions at Pulkovo and GAISh led to dramatic differences in their fates: execution for B. P. Gerasimovich in 1937 and "only" the persecution of GAISh director V. G. Fesenkov. The persecution of V. G. Fesenkov included his dismissal from the post of chairman of the Astronomical

  2. "Word of Discovery": A Planetary Example from Volume I of the Astronomical Journal

    NASA Astrophysics Data System (ADS)

    Hockey, T.

    1998-09-01

    In 1850, William Lassell (1799-1880) discovered a series of bright white spots, in the south temperate latitudes of Jupiter, unlike any that that been seen before. Lassell's note on these STZ features is a useful example of how astronomical discoveries of the day were communicated among astronomers. Word of Lassell's Spots spread quickly by nineteenth-century standards. This was due, in part, to the recent appearance of journals devoted exclusively to astronomy. The transition from letters as a means of conveying scientific information to journals is reflected in the propagation of Lassell's announcement: a report of Lassell's description of the white spots to the Royal Astronomical Society appeared in the Monthly Notices of the Royal Astronomical Society along with a woodblock print of one of his drawings. This report reappeared shortly thereafter in German translation. It was part of a letter to the editor of the Astronomische Nachrichten, Heinrich Schumacher (1780-1850), from an English correspondent of his, the Reverend Richard Sheepshanks (1974-1855). (Sheepshanks was himself editor of the Monthly Notices of the Royal Astronomical Society.) It then made its way across the Atlantic as a letter from Schumacher to Benjamin Gould (1824-1896), who published it in the first volume of his upstart Astronomical Journal. There it appears in English, again, as Schumacher quoting Sheepshanks quoting Lassell! The observations by Lassell and William Dawes (1799-1868) of this phenomenon also were the first major planetary discovery made using a silvered-glass reflecting telescope. Lassell's Spots have remained in the "astronomical news" of the last 150 years: Most recently, they appeared worldwide in images showing the Comet Shoemaker-Levy 9 impact sites.

  3. NASA Taxonomy 2.0 Project Overview

    NASA Technical Reports Server (NTRS)

    Dutra, Jayne; Busch, Joseph

    2004-01-01

    This viewgraph presentation reviews the project to develop a Taxonomy for NASA. The benefits of this project are: Make it easy for various audiences to find relevant information from NASA programs quickly, specifically (1) Provide easy access for NASA Web resources (2) Information integration for unified queries and management reporting ve search results targeted to user interests the ability to move content through the enterprise to where it is needed most (3) Facilitate Records Management and Retention Requirements. In addition the project will assist NASA in complying with E-Government Act of 2002 and prepare NASA to participate in federal projects.

  4. Survival analysis, or what to do with upper limits in astronomical surveys

    NASA Technical Reports Server (NTRS)

    Isobe, Takashi; Feigelson, Eric D.

    1986-01-01

    A field of applied statistics called survival analysis has been developed over several decades to deal with censored data, which occur in astronomical surveys when objects are too faint to be detected. How these methods can assist in the statistical interpretation of astronomical data are reviewed.

  5. The System for Quick Search of the Astronomical Objects and Events in the Digital Plate Archives.

    NASA Astrophysics Data System (ADS)

    Sergeev, A. V.; Sergeeva, T. P.

    From the middle of the XIX century observatories all over the world have accumulated about three millions astronomical plates contained the unique information about the Universe which can not be obtained or restored with the help of any newest facilities and technologies but may be useful for many modern astronomical investigations. The threat of astronomical plate archives loss caused by economical, technical or some other causes have put before world astronomical community a problem: the preservation of the unique information kept on those plates. The problem can be solved by transformation of the information from plates to digital form and keeping it on electronic data medium. We began a creation of a system for quick search and analysing of astronomical events and objects in digital plate archive of the Ukrainian Main astronomical observatory of NAS. Connection of the system to Internet will allow a remote user (astronomer or observer) to have access to digital plate archive and to work with it. For providing of the high efficiency of this work the plate database (list of the plates with all information about them and access software) are preparing. Modular structure of the system basic software and standard format of the plate image files allow future development of problem-oriented software for special astronomical researches.

  6. Astronomers Discover Fastest-Spinning Pulsar

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  7. Primary Objective Grating Astronomical Telescope

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas D.

    2007-01-01

    It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a

  8. ESO takes the public on an astronomical journey "Around the World in 80 Telescopes"

    NASA Astrophysics Data System (ADS)

    2009-03-01

    A live 24-hour free public video webcast, "Around the World in 80 Telescopes", will take place from 3 April 09:00 UT/GMT to 4 April 09:00 UT/GMT, chasing day and night around the globe to let viewers "visit" some of the most advanced astronomical telescopes on and off the planet. The webcast, organised by ESO for the International Year of Astronomy 2009 (IYA2009), is the first time that so many large observatories have been linked together for a public event. ESO PR Photo 13a/09 Map of Participating Observatories ESO PR Photo 13b/09 100 Hours of Astronomy logo Viewers will see new images of the cosmos, find out what observatories in their home countries or on the other side of the planet are discovering, send in questions and messages, and discover what astronomers are doing right now. Participating telescopes include those at observatories in Chile such as ESO's Very Large Telescope and La Silla, the Hawaii-based telescopes Gemini North and Keck, the Anglo-Australian Telescope, telescopes in the Canary Islands, the Southern African Large Telescope, space-based telescopes such as the NASA/ESA Hubble Space Telescope, ESA XMM-Newton and Integral, and many more. "Around the World in 80 Telescopes" will take viewers to every continent, including Antarctica! The webcast production will be hosted at ESO's headquarters near Munich, Germany, with live internet streaming by Ustream.tv. Anyone with a web browser supporting Adobe Flash will be able to follow the show, free of charge, from the website www.100hoursofastronomy.org and be a part of the project by sending messages and questions. The video player can be freely embedded on other websites. TV stations, web portals and science centres can also use the high quality feed. Representatives of the media who wish to report from the "front-line" and interview the team should get in touch. "Around the World in 80 Telescopes" is a major component of the 100 Hours of Astronomy (100HA), a Cornerstone project of the International

  9. On AIPS++, a new astronomical information processing system

    NASA Technical Reports Server (NTRS)

    Croes, G. A.

    1992-01-01

    The AIPS system that has served the needs of the radio astronomical community remarkably well during the last 15 years is showing signs of age and is being replaced by a more modern system, AIPS++. As the name implies, AIPS++ will be developed in a object oriented fashion and will use C++ as its main programming language. The work is being done by a consortium of seven organizations, with coordinated activities worldwide. After a review of the history of the project to this date from management, astronomical and technical viewpoints, and the current state of the project, the paper concentrates on the tradeoffs implied by the choice of implementation style and the lessons we have learned, good and bad.

  10. Precise Modelling of Telluric Features in Astronomical Spectra

    NASA Astrophysics Data System (ADS)

    Seifahrt, A.; Käufl, H. U.; Zängl, G.; Bean, J.; Richter, M.; Siebenmorgen, R.

    2010-12-01

    Ground-based astronomical observations suffer from the disturbing effects of the Earth's atmosphere. Oxygen, water vapour and a number of atmospheric trace gases absorb and emit light at discrete frequencies, shaping observing bands in the near- and mid-infrared and leaving their fingerprints - telluric absorption and emission lines - in astronomical spectra. The standard approach of removing the absorption lines is to observe a telluric standard star: a time-consuming and often imperfect solution. Alternatively, the spectral features of the Earth's atmosphere can be modelled using a radiative transfer code, often delivering a satisfying solution that removes these features without additional observations. In addition the model also provides a precise wavelength solution and an instrumental profile.

  11. A Class for Teachers Featuring a NASA Satellite Mission

    NASA Astrophysics Data System (ADS)

    Battle, R.; Hawkins, I.

    1996-05-01

    As part of the NASA IDEA (Initiative to Develop Education through Astronomy) program, the UC Berkeley Center for EUV Astrophysics (CEA) received a grant to develop a self-contained teacher professional development class featuring NASA's Extreme Ultraviolet Explorer (EUVE) satellite mission. This class was offered in collaboration with the Physics/Astronomy Department and the Education Department of San Francisco State University during 1994, and in collaboration with the UCB Graduate School of Education in 1995 as an extension course. The class served as the foundation for the Science Education Program at CEA, providing valuable lessons and experience through a full year of intense collaboration with 50 teachers from the diverse school districts of the San Francisco Bay Area teaching in the 3rd--12th grade range. The underlying theme of the class focused on how scientists carry out research using a NASA satellite mission. Emphasis was given to problem-solving techniques, with specific examples taken from the pre- and post-launch stages of the EUVE mission. The two, semester-long classes were hosted by the CEA, so the teachers spent an average of 4 hours/week during 17 weeks immersed in astrophysics, collaborating with astronomers, and working with colleagues from the Lawrence Hall of Science and the Graduate School of Education. The teachers were taught the computer skills and space astrophysics concepts needed to perform hands-on analysis and interpretation of the EUVE satellite data and the optical identification program. As a final project, groups of teachers developed lesson plans based on NASA and other resources that they posted on the World Wide Web using html. This project's model treats teachers as professionals, and allows them to collaborate with scientists and to hone their curriculum development skills, an important aspect of their professional growth. We will summarize class highlights and showcase teacher-developed lesson plans. A detailed evaluation

  12. The re-definition of the astronomical unit of length:reasons and consequences

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole; Klioner, Sergei; McCarthy, Dennis

    2012-08-01

    The astronomical unit (au) is a unit of length approximating the Sun - Earth distance that is used mainly to express the scale of the solar system. Its current definition is based on the value of the Gaussian gravitational constant, k. This conveniently provided accurate relative distances (expressed in astronomical units) when absolute distances could not be estimated with high accuracy. The huge improvement achieved in solar system ephemerides during the last decade provides an opportunity to re - consider the definition and status of the au. This issue was discussed recently by Klioner (2008), Capitaine & Guinot (2009) and Capitaine et al. (2011), as well as within the IAU Working Group on "Numerical Standards for Fundamental astronomy". This resulted in a proposed IAU Resolution recommending that the astronomical unit be re - defined as a fixed number of Système International d ’ Unités (SI) metres through a defining constant. For continuity that constant should be the value of the current best estimate in metres as adopted by IAU 2009 Resolution B2 (i.e. 149 597 870 700 m). After reviewing the properties of the IAU 1976 astronomical unit and its status in the IAU 2009 System of Astronomical Constants, we explain the main reasons for a change; we present and discuss the proposed new definition as well as the advantages over the historical definition. One important consequence is that the heliocentric gravitational constant, GM(Sun), would cease to have a fixed value in astronomical units and will have to be determined experimentally. This would be compliant with modern dynamics of the solar system as it would allow

  13. The Amateur Astronomer's Introduction to the Celestial Sphere

    NASA Astrophysics Data System (ADS)

    Millar, William

    2005-12-01

    This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.

  14. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 –Goddard Space Flight Center senior management and members of the Royal Swedish Academy walk towards Building 29 as part of the Swedish delegation’s tour of the center. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. NASA Goddard All Hands Meeting

    NASA Image and Video Library

    2017-12-08

    Monday, September 30, 2013 - NASA Goddard civil servant and contractor employees were invited to an all hands meeting with Center Director Chris Scolese and members of the senior management team to learn the latest information about a possible partial government shutdown that could happen as early as midnight. Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Climate and carbon-cycle response to astronomical forcing over the last 35 Ma.

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Palike, H.; Vahlenkamp, M.; Crucifix, M.

    2017-12-01

    On a million-year time scale, the characteristics of insolation forcing caused by cyclical variations in the astronomical parameters of the Earth remain stable. Nevertheless, Earth's climate responded very differently to this forcing during different parts of the Cenozoic. The recently-published ∂18Obenthic megasplice (De Vleeschouwer et al., 2017) allowed for a clear visualization of these changes in global climate response to astronomical forcing. However, many open questions remain regarding how carbon-cycle dynamics influence Earth's climate sensitivity to astronomical climate forcing. To provide insight into the interaction between the carbon cycle and astronomical insolation forcing, we built a benthic carbon isotope (∂13Cbenthic) megasplice for the last 35 Ma, employing the same technique used to build the ∂18Obenthic megasplice. The ∂13Cbenthic megasplice exhibits a strong imprint of the 405 and 100-kyr eccentricity cycles throughout the last 35 Ma. This is intriguing, as the oxygen isotope megasplice looses its eccentricity imprint after the mid-Miocene climatic transition (MMCT; see Fig. 1 in De Vleeschouwer et al., 2017). In other words, the carbon cycle responded completely differently to astronomical forcing, compared to global climate during the late Miocene. We visualize this difference in response by the application of a Gaussian process, which renders the dependence of one variable (here ∂18Obenthic or ∂13Cbenthic) in a multidimensional space (here precession, obliquity and eccentricity). Together, the ∂13Cbenthic and ∂18Obenthic megasplices thus provide a unique tool for paleoclimatology, allowing for the quantification and visualization of the changing paleoclimate and carbon-cycle response to astronomical forcing throughout geologic time. References De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m

  17. NASA Finds Direct Proof of Dark Matter

    NASA Astrophysics Data System (ADS)

    2006-08-01

    Dark matter and normal matter have been wrenched apart by the tremendous collision of two large clusters of galaxies. The discovery, using NASA's Chandra X-ray Observatory and other telescopes, gives direct evidence for the existence of dark matter. "This is the most energetic cosmic event, besides the Big Bang, which we know about," said team member Maxim Markevitch of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Lensing Illustration Gravitational Lensing Explanation These observations provide the strongest evidence yet that most of the matter in the universe is dark. Despite considerable evidence for dark matter, some scientists have proposed alternative theories for gravity where it is stronger on intergalactic scales than predicted by Newton and Einstein, removing the need for dark matter. However, such theories cannot explain the observed effects of this collision. "A universe that's dominated by dark stuff seems preposterous, so we wanted to test whether there were any basic flaws in our thinking," said Doug Clowe of the University of Arizona at Tucson, and leader of the study. "These results are direct proof that dark matter exists." Animation of Cluster Collision Animation of Cluster Collision In galaxy clusters, the normal matter, like the atoms that make up the stars, planets, and everything on Earth, is primarily in the form of hot gas and stars. The mass of the hot gas between the galaxies is far greater than the mass of the stars in all of the galaxies. This normal matter is bound in the cluster by the gravity of an even greater mass of dark matter. Without dark matter, which is invisible and can only be detected through its gravity, the fast-moving galaxies and the hot gas would quickly fly apart. The team was granted more than 100 hours on the Chandra telescope to observe the galaxy cluster 1E0657-56. The cluster is also known as the bullet cluster, because it contains a spectacular bullet-shaped cloud of hundred

  18. Nasa Unveils Cosmic Images Book in Braille for Blind Readers

    NASA Astrophysics Data System (ADS)

    2008-01-01

    BALTIMORE - At a Tuesday ceremony at the National Federation of the Blind, NASA unveiled a new book that brings majestic images taken by its Great Observatories to the fingertips of the blind. "Touch the Invisible Sky" is a 60-page book with color images of nebulae, stars, galaxies and some of the telescopes that captured the original pictures. Each image is embossed with lines, bumps and other textures. These raised patterns translate colors, shapes and other intricate details of the cosmic objects, allowing visually impaired people to experience them. Braille and large-print descriptions accompany each of the book's 28 photographs, making the book's design accessible to readers of all visual abilities. Sample page Sample page The book contains spectacular images from the Hubble Space Telescope, Chandra X-ray Observatory, Spitzer Space Telescope and powerful ground-based telescopes. The celestial objects are presented as they appear through visible-light telescopes and different spectral regions invisible to the naked eye, from radio to infrared, visible, ultraviolet and X-ray light. The book introduces the concept of light and the spectrum and explains how the different observatories complement each others' findings. Readers take a cosmic journey beginning with images of the sun, and travel out into the galaxy to visit relics of exploding and dying stars, as well as the Whirlpool galaxy and colliding Antennae galaxies. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Jet Power and Black Hole Assortment Revealed in New Chandra Image Action Replay of Powerful Stellar Explosion Black Holes Are The Rhythm at The Heart of Galaxies "Touch the Invisible Sky" was written by astronomy educator and accessibility specialist Noreen Grice of You Can Do Astronomy LLC and the Museum of Science, Boston, with authors Simon Steel, an astronomer with the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and Doris Daou, an astronomer

  19. Pulkovo Observatory - One of the Main Centers of Astronomical Education in Russia

    NASA Astrophysics Data System (ADS)

    Shakht, Natalia A.

    2007-08-01

    Since the beginning of the activity in 1839, Pulkovo observatory was an important center of the teaching of astronomy and geodesy in Russia. The first director of Pulkovo observatory W. Ja. Struve together with Pulkovo astronomers taught the topographers and specialists in geodesy and to naval officers the methods of geographic coordinates determinations. Pulkovo observatory was the center of the improvement of such specialists till 1928. Pulkovo astronomers lecture for students in the leading educational centers during many decades and at present and also lead the aspirants and researchers. The works of Pulkovo astronomers have been united in the known textbooks of astronomy and stellar astronomy with several re-editions. In 1957-1965 after the first launch of artificial satellite, many seminars and schools, which were dedicated to study of observations of artificial satellites and to the space geodesy have been organized at Pulkovo. Each year, about 10-15 thousands of guests visit Pulkovo. Our astronomers have the contact with the amateurs of astronomy in many countries and collect the information on their observations. More than 1,000,000 observations of asteroids and comets made by amateurs are collected with the scientific aims, particularly for the enlargement of the information about NEOs. Pulkovo astronomers lecture and give the practical lessons in ecological expeditions, which unite young people of various places of Russia.

  20. The Hunt for Pristine Cretaceous Astronomical Rhythms at Demerara Rise (Cenomanian-Coniacian)

    NASA Astrophysics Data System (ADS)

    Ma, C.; Meyers, S. R.

    2014-12-01

    Rhythmic Upper Cretaceous strata from Demerara Rise (ODP leg 207) preserve a strong astronomical signature, and this attribute has facilitated the development of continuous astrochronologies to refine the geologic time scale and calibrate Late Cretaceous biogeochemical events. While the mere identification of astronomical rhythms is a crucial first step in many deep-time paleoceanographic investigations, accurate evaluation of often subtle amplitude and frequency modulations are required to: (1) robustly constrain the linkage between climate and sedimentation, and (2) evaluate the plausibility of different theoretical astrodynamical models. The availability of a wide range of geophysical, lithologic and geochemical data from multiple sites drilled at Demerara Rise - when coupled with recent innovations in the statistical analysis of cyclostratigraphic data - provides an opportunity to hunt for the most pristine record of Cretaceous astronomical rhythms at a tropical Atlantic location. To do so, a statistical metric is developed to evaluate the "internal" consistency of hypothesized astronomical rhythms observed in each data set, particularly with regard to the expected astronomical amplitude modulations. In this presentation, we focus on how the new analysis yields refinements to the existing astrochronologies, provides constraints on the linkages between climate and sedimentation (including the deposition of organic carbon-rich sediments at Demerara Rise), and allows a quantitative evaluation of the continuity of deposition across sites at multiple temporal scales.

  1. Critical factors for a successful astronomical research program in a developing country

    NASA Astrophysics Data System (ADS)

    Hearnshaw, John B.

    I discuss the critical conditions for undertaking a successful research program in a developing country. There are many important factors, all or most of which have to be satisfied: funding, library holdings, computing access, Internet access (e-mail, WWW, ftp, telnet), collaboration with astronomers in developed countries, provision of proper offices for staff, supply of graduate students, access to travel for conferences, ability to publish in international journals, critical mass of researchers, access to a telescope (for observational astronomers), support from and interaction with national electronics, optics and precision engineering industries, a scientific culture backed by a national scientific academy, and lack of inter-institutional rivalry. I make a list of a total of 15 key factors and rank them in order of importance, and discuss the use of an astronomical research index (ARI) suitable for measuring the research potential of a given country or institution. I also discuss whether astronomers in developing countries in principle fare better in a university or in the environment of a government national observatory or research institution, and topics such as the effect of the cost of page charges and journal subscriptions on developing countries. Finally I present some statistics on astronomy in developing countries and relate the numbers of astronomers to the size of the economy and population in each country.

  2. Achievements of the Armenian Astronomy and the Present Activities of the Armenian Astronomical Society

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2014-10-01

    A report is given on the achievements of the Armenian astronomy during the last years and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, international collaboration, Armenian Virtual Observatory (ArVO), membership in international organizations, grants, prizes, meetings, summer schools, astronomical Olympiads, other matters related to astronomical education, archaeoastronomy, astronomy outreach and ArAS further projects are discussed.

  3. Supporting Evidence for the Astronomically Calibrated Age of Fish Canyon Sanidine

    NASA Astrophysics Data System (ADS)

    Rivera, T. A.; Storey, M.; Zeeden, C.; Kuiper, K.; Hilgen, F.

    2010-12-01

    The relative nature of the 40Ar/39Ar radio-isotopic dating technique requires that the age and error of the monitor mineral be accurately known. The most widely accepted monitor for Cenozoic geochronology is the Fish Canyon sanidine (FCs), whose recommended published ages have varied by up to 2% over the past two decades. To reconcile the discrepancy among recommended ages, researchers have turned to the use of (i) intercalibration experiments with primary argon standards, (ii) cross-calibration with U-Pb ages, and (iii) cross-calibration with sanidine-hosted tephras present in astronomically tuned stratigraphic sections. The increasingly robust quality of the astronomical timescale, with precision better than 0.1% for the last 10 million years, suggests this method of intercalibration as the best way to proceed with addressing the true age of FCs. Recently, Kuiper, et al. (2008) determined an astronomically calibrated age of 28.201 ± 0.046 Ma (2σ), based upon the Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from a tephra intercalated in another Mediterranean-based astronomically tuned section. The direct tuning of this section was achieved through correlation to long (~400 kyr) and short (~100 kyr) eccentricity, followed by tuning of basic sedimentary cycles to precession and summer insolation, using the La2004(1,1) astronomical solution (Laskar, et al., 2004). We employed a Nu Instruments Noblesse multi-collector noble gas mass spectrometer for the 40Ar/39Ar experiments, analyzing single crystals of FCs relative to sanidines from the astronomically dated tephra. The use of the multi-collector instrument allowed us to obtain high precision analyses with a level of precision for fully propagated external errors for FCs near the 0.1% goal of EARTHTIME. The research leading to these results has received funding from the European Community's Seventh Framework

  4. Astronomical fire: Richard Carrington and the solar flare of 1859.

    PubMed

    Clark, Stuart

    2007-09-01

    An explosion on the Sun in 1859, serendipitously witnessed by amateur astronomer Richard Carrington, plunged telegraphic communications into chaos and bathed two thirds of the Earth's skies in aurorae. Explaining what happened to the Sun and how it could affect Earth, 93 million miles away, helped change the direction of astronomy. From being concerned principally with charting the stars to aid navigation, astronomers became increasingly concerned with what the celestial objects were, how they behaved and how they might affect life on Earth.

  5. US Gateway to SIMBAD Astronomical Database

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.

    1998-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. User registration is required by the SIMBAD project in France. Currently, there are almost 3000 US users registered. We also provide user support by answering questions from users and handling requests for lost passwords. We have worked with the CDS SIMBAD project to provide access to the SIMBAD database to US users on an Internet address basis. This will allow most US users to access SIMBAD without having to enter passwords. This new system was installed in August, 1998. The SIMBAD mirror database at SAO is fully operational. We worked with the CDS to adapt it to our computer system. We implemented automatic updating procedures that update the database and password files daily. This mirror database provides much better access to the US astronomical community. We also supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We shipped computer equipment to the meeting and provided support for the demonstration activities at the SIMBAD booth. We continued to improve the cross-linking between the SIMBAD project and the Astro- physics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative called Urania. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers.

  6. ScienceCast 105: Big Weather on Hot Jupiters

    NASA Image and Video Library

    2013-05-24

    Astronomers using NASA's Spitzer Space Telescope are making weather maps of an exotic class of exoplanets called "hot Jupiters." What they're finding is wilder than anything we experience here in our own solar system.

  7. NASA's DC-8 Desert Shadow

    NASA Image and Video Library

    2017-12-08

    The DC-8 research aircraft casting its shadow on the ground in California's Mojave Desert during an IceBridge instrument check flight. Prior to field campaigns, IceBridge instrument and aircraft teams run the aircraft through a series of tests to ensure that everything is operating at peak condition. Credit: NASA / Jim Yungel NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA's Initiative to Develop Education through Astronomy (IDEA)

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-04-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  9. NASA's initiative to develop education through astronomy (IDEA)

    NASA Technical Reports Server (NTRS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-01-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  10. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Digitization and Position Measurement of Astronomical Plates of Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Yan, D.; Yu, Y.; Zhang, H. Y.; Qiao, R. C.

    2014-05-01

    Using the advanced commercial scanners to digitize astronomical plates may be a simple and effective way. In this paper, we discuss the method of digitizing and astrometrically reducing six astronomical plates of Saturnian satellites, which were taken from the 1 m RCC (Ritchey Chretien Coude) telescope of Yunnan Observatory in 1988, by using the 10000XL scanner of Epson. The digitized images of the astronomical plates of Saturnian satellites are re-reduced, and the positions of Saturnian satellites based on the UCAC2 (The Second US Naval Observatory CCD Astrograph Catalog) catalogue are given. A comparison of our measured positions with the IMCCE (Institut de Mecanique Celeste et de Calcul des Ephemerides) ephemeris of Saturnian satellites shows the high quality of our measurements, which have an accuracy of 106 mas in right ascension and 89 mas in declination. Moreover, our measurements appear to be consistent with this ephemeris within only about 56 mas in right ascension and 9 mas in declination.

  12. Astronomers in the Chemist's War

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-01-01

    World War II, with radar, rockets, and "atomic" bombs was the physicists' war. And many of us know, or think we know, what our more senior colleagues did during it, with Hubble and Hoffleit at Aberdeen; M. Schwarzschild on active duty in Italy; Bondi, Gold, and Hoyle hunkered down in Dunsfeld, Surrey, talking about radar, and perhaps steady state; Greenstein and Henyey designing all-sky cameras; and many astronomers teaching navigation. World War I was The Chemists' War, featuring poison gases, the need to produce liquid fuels from coal on one side of the English Channel and to replace previously-imported dyesstuffs on the other. The talke will focus on what astronomers did and had done to them between 1914 and 1919, from Freundlich (taken prisoner on an eclipse expedition days after the outbreak of hostilities) to Edwin Hubble, returning from France without ever having quite reached the front lines. Other events bore richer fruit (Hale and the National Research Council), but very few of the stories are happy ones. Most of us have neither first nor second hand memories of The Chemists' War, but I had the pleasure of dining with a former Freundlich student a couple of weeks ago.

  13. The League of Astronomers: Outreach

    NASA Astrophysics Data System (ADS)

    Paat, Anthony; Brandel, A.; Schmitz, D.; Sharma, R.; Thomas, N. H.; Trujillo, J.; Laws, C. S.; Astronomers, League of

    2014-01-01

    The University of Washington League of Astronomers (LOA) is an organization comprised of University of Washington (UW) undergraduate students. Our main goal is to share our interest in astronomy with the UW community and with the general public. The LOA hosts star parties on the UW campus and collaborates with the Seattle Astronomical Society (SAS) on larger Seattle-area star parties. At the star parties, we strive to teach our local community about what they can view in our night sky. LOA members share knowledge of how to locate constellations and use a star wheel. The relationship the LOA has with members of SAS increases both the number of events and people we are able to reach. Since the cloudy skies of the Northwest prevent winter star parties, we therefore focus our outreach on the UW Mobile Planetarium, an inflatable dome system utilizing Microsoft’s WorldWide Telescope (WWT) software. The mobile planetarium brings astronomy into the classrooms of schools unable to travel to the UW on-campus planetarium. Members of the LOA volunteer their time towards this project and we make up the majority of the Mobile Planetarium volunteers. Our outreach efforts allow us to connect with the community and enhance our own knowledge of astronomy.

  14. Propellant for the NASA Standard Initiator

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl; Tipton, Bill, Jr.; Dutton, Maureen

    2000-01-01

    This paper discusses processes employed in manufacturing zirconium-potassium perchlorate propellant for the NASA standard initiator. It provides both a historical background on the NSI device-detailing problem areas and their resolution--and on propellant blending techniques. Emphasis is placed on the precipitation blending method. The findings on mixing equipment, processing, and raw materials are described. Also detailed are findings on the bridgewire slurry operation, one of the critical steps in the production of the NASA standard initiator.

  15. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  16. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)

    NASA Astrophysics Data System (ADS)

    Goldbaum, J.

    2017-12-01

    (Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  17. Ancient Astronomical Hieroglyphs of the Armenian Highland and their Echo in Architectural Structures

    NASA Astrophysics Data System (ADS)

    Ter-Gulanyan, Ani

    2014-10-01

    The credo-spiritual structure formed as a result of astronomical knowledge in the Armenian Highland and recognition of the universe, with its symbolistic signs - which, in our opinion, were expressed in particular by astronomic horoscope hieroglyphs - have had their worship and spiritual speculative feedback both in architecture and in different other arts, especially in symbolic jewelry. A visible link is noticed between the shift of constellations and the civilization development phases. Identification of archeological sources gives the ground to conclude that Armenia has been one of the centers of astronomy. The astronomical signs, having a local origin and having formed ancient astronomical-worship, spiritual-credo structure, have found the feedback of its developments also in other biospheres with respective unique manifestations, in both ancient pagan church architecture and the Christian church architecture, both as a volume form and as a spiritual ideology, with its credosymbolistic signs.

  18. Astronomers' Race to Test Relativity, 1911-1930

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2006-11-01

    Einstein's theory of relativity changed our notions of space and time and has dramatically altered the way we look at the universe and our place in it. Yet to this day a working knowledge of the theory is beyond most people. In today's popular culture, Einstein is a remote, loveable genius and his theory is incomprehensible. While Einstein's theory ultimately laid the foundation for modern studies of the universe, it took a long time to be accepted. Between 1905 and 1930, relativity was poorly understood and Einstein worked hard to try to make it more accessible to scientists and scientifically literate laypeople. Its acceptance was largely due to the astronomy community, which undertook precise measurements to test Einstein's astronomical predictions. How astronomers approached the ``Einstein problem'' in these early years and how the public reacted to what they reported helped to shape attitudes we hold today about Einstein and his ideas.

  19. Astronomical chemistry.

    PubMed

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  20. "She is an astronomer" in Spain; the International Year of Astronomy 2009 and beyond

    NASA Astrophysics Data System (ADS)

    Márquez, I.

    2011-11-01

    The work of the Spanish node for the IYA2009 Cornerstoneproject, "She is an Astronomer" is presented. Our team developedseveral projects with the common goal of promoting gender equality andwomen participation in professional and amateur astronomy, andsupporting the training of young women researchers andtechnologists. The main ones were: 1)Calendar "Women astronomerswho made history". We highlighted exceptional women, fromdifferent epochs and countries, whose contributions to theadvancement of science deserve to transcend anonymity and occupy aplace in history.2) "Women in the stars" was a series of 8 TV programsdevoted to the contribution of Spanish women astronomers, made incollaboration with the UNED.3) "Women in Spanish Astronomy: analysis of a peculiar situation: A universe to discover", was the first sociological study of this type, including quantitative and qualitative (individual and group interviews) analyses. 4) The exhibit "She Astronomer", was aimed at teaching astronomy from a new perspective: the relevant contributions by women astronomers from different times and places.The main aims of the "Commission for Women and Astronomy",recently created within the Spanish Astronomical Society (SEA), are alsodescribed.