Sample records for nasa direct question

  1. NASA directives master list and index

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Handbook sets forth in two parts the following information for the guidance of users of the NASA Management Directives System. Part A is a master list of management directives in force as of March 31, 1993. Chapter 1 contains introductory informative material on how to use this Handbook. Chapter 2 is a complete master list of Agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or installation to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA Handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA management directives published in the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 7. Part B is the index to NASA management directives in force as of March 31, 1993. This part contains an in-depth alphabetical index to all NASA management directives other than Handbooks. NHB's 1610.6, 'NASA Personnel Security Handbook,' 1620.3, 'NASA Physical Security Handbook,' 1640.4, 'NASA Information Security Program,' 1900.1, 'Standards of Conduct for NASA Employees,' 5103.6, 'Source Evaluation Board Handbook,' and 7400.1, 'Budget Administration Manual,' are indexed in-depth. All other NHB's are indexed by titles only.

  2. NASA directives master list and index

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This handbook sets forth in two parts, Master List of Management Directives and Index to NASA Management Directives, the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this handbook. Chapter 2 is a complete master list of agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or center to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA regulations published in the Code of Federal Regulations. Chapter 7 is a consolidated list of NASA regulations published in Title 14 of the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 8. The second part contains an in depth alphabetical index to all NASA management directives other than handbooks, most of which are indexed by titles only.

  3. NASA directives: Master list and index

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Handbook sets forth in two parts the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this Handbook. Chapter 2 is a complete master list of Agency-wide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office of Installation to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA Handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA management directives published in the code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 7. Part B contains an in-depth alphabetical index to all NASA management directives other than Handbooks.

  4. NASA directives master list and index

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Handbook sets forth in two parts the information for the guidance of users of the NASA Management Directives System. Complementary to this Handbook is the NASA Online Directives Information System (NODIS), an electronic computer text retrieval system. The first part contains the Master List of Management Directives in force as of 30 Sep. 1993. The second part contains an Index to NASA Management Directives in force as of 30 Sep. 1993.

  5. Master list and index to NASA directives

    NASA Technical Reports Server (NTRS)

    1984-01-01

    All NASA management directives in force as of August 1, 1984 are listed by major subject headings showing number, effective date, title, responsible office, and distribution code. Delegations of authority in print by that date are listed numerically as well as by the installation or office to which special authority is assigned. Other consolidated lists show all management handbooks, directives applicable to the Jet Propulsion Laboratory, directives published in the Code of Federal Regulations, complementary manuals, and NASA safety standards. Distribution policies and instructions for ordering directives are included.

  6. Master list and index to NASA directives

    NASA Technical Reports Server (NTRS)

    1982-01-01

    All NASA management directives in force as of August 1, 1982 are listed by major subject headings showing number, effective data, title, responsible office, and distribution code. Delegations of authority in print by that date are listed numerically as well as by the installation or office to which special authority is assigned. Other consolidated lists show all management handbooks, directives applicable to the Jet Propulsion Laboratory, directions published in the Code of Federal Regulations, complementary manuals, and NASA safety standards. Distribution policies and instructions for ordering directives are included.

  7. Science@NASA: Direct to People!

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Adams, Mitzi; Gallagher, Dennis; Whitaker, Ann (Technical Monitor)

    2002-01-01

    Science@NASA is a science communication effort sponsored by NASA's Marshall Space Flight Center. It is the result of a four year research project between Marshall, the University of Florida College of Journalism and Communications and the internet communications company, Bishop Web Works. The goals of Science@NASA are to inform, inspire, and involve people in the excitement of NASA science by bringing that science directly to them. We stress not only the reporting of the facts of a particular topic, but also the context and importance of the research. Science@NASA involves several levels of activity from academic communications research to production of content for 6 websites, in an integrated process involving all phases of production. A Science Communications Roundtable Process is in place that includes scientists, managers, writers, editors, and Web technical experts. The close connection between the scientists and the writers/editors assures a high level of scientific accuracy in the finished products. The websites each have unique characters and are aimed at different audience segments: 1. http://science.nasa.gov. (SNG) Carries stories featuring various aspects of NASA science activity. The site carries 2 or 3 new stories each week in written and audio formats for science-attentive adults. 2. http://liftoff.msfc.nasa.gov. Features stories from SNG that are recast for a high school level audience. J-Track and J-Pass applets for tracking satellites are our most popular product. 3. http://kids. msfc.nasa.gov. This is the Nursemaids site and is aimed at a middle school audience. The NASAKids Club is a new feature at the site. 4. http://www.thursdaysclassroom.com . This site features lesson plans and classroom activities for educators centered around one of the science stories carried on SNG. 5. http://www.spaceweather.com. This site gives the status of solar activity and its interactions with the Earth's ionosphere and magnetosphere.

  8. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and NASA Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  9. NASA Update.

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Garver and NASA Administrator Charles Bolden took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  10. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver listens as NASA Administrator Charles Bolden answers a question during a NASA Update on Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  11. 2006 NASA Strategic Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On January 14, 2004, President George W. Bush announced A Renewed Spirit of Discovery: The President's Vision for U.S. Space Exploration, a new directive for the Nation's space program. The fundamental goal of this directive is "to advance U.S. scientific, security, and economic interests through a robust space exploration program." In issuing it, the President committed the Nation to a journey of exploring the solar system and beyond: returning to the Moon in the next decade, then venturing further into the solar system, ultimately sending humans to Mars and beyond. He challenged NASA to establish new and innovative programs to enhance understanding of the planets, to ask new questions, and to answer questions that are as old as humankind. NASA enthusiastically embraced the challenge of extending a human presence throughout the solar system as the Agency's Vision, and in the NASA Authorization Act of 2005, Congress endorsed the Vision for Space Exploration and provided additional guidance for implementation. NASA is committed to achieving this Vision and to making all changes necessary to ensure success and a smooth transition. These changes will include increasing internal collaboration, leveraging personnel and facilities, developing strong, healthy NASA Centers,a nd fostering a safe environment of respect and open communication for employees at all levels. NASA also will ensure clear accountability and solid program management and reporting practices. Over the next 10 years, NASA will focus on six Strategic Goals to move forward in achieving the Vision for Space Exploration. Each of the six Strategic Goals is clearly defined and supported by multi-year outcomes that will enhance NASA's ability to measure and report Agency accomplishments in this quest.

  12. Science@NASA: Direct to People Via the Internet

    NASA Technical Reports Server (NTRS)

    Koczor, R. J.; Phillips, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    NASA's founding charter includes the requirement for reporting all scientific results to the public. This requirement is based on the principal that the exploration of space results in real benefits to humanity and that those benefits are to be shared as widely as practical. When NASA was founded, the traditional education and outreach methods were through the news media and the formal and informal (museums, planetariums exhibits, etc.) educational communities. With the nearly ubiquitous availability of the Internet, a third choice presents itself: communicating directly with individuals in their homes. This powerful approach offers benefits and pitfalls that must be addressed to be effective. This paper covers an integrated approach to providing high quality NASA research information to multiple audiences via a family of websites. The paper discuss the content generation, review, and production process and provide metrics on evaluating the results.

  13. NASA Workshop on future directions in surface modeling and grid generation

    NASA Technical Reports Server (NTRS)

    Vandalsem, W. R.; Smith, R. E.; Choo, Y. K.; Birckelbaw, L. D.; Vogel, A. A.

    1992-01-01

    Given here is a summary of the paper sessions and panel discussions of the NASA Workshop on Future Directions in Surface Modeling and Grid Generation held a NASA Ames Research Center, Moffett Field, California, December 5-7, 1989. The purpose was to assess U.S. capabilities in surface modeling and grid generation and take steps to improve the focus and pace of these disciplines within NASA. The organization of the workshop centered around overviews from NASA centers and expert presentations from U.S. corporations and universities. Small discussion groups were held and summarized by group leaders. Brief overviews and a panel discussion by representatives from the DoD were held, and a NASA-only session concluded the meeting. In the NASA Program Planning Session summary there are five recommended steps for NASA to take to improve the development and application of surface modeling and grid generation.

  14. Self-directed questions to improve students' ability in solving chemical problems

    NASA Astrophysics Data System (ADS)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  15. NASA direct detection laser diode driver

    NASA Technical Reports Server (NTRS)

    Seery, B. D.; Hornbuckle, C. A.

    1989-01-01

    TRW has developed a prototype driver circuit for GaAs laser diodes as part of the NASA/Goddard Space Flight Center's Direct Detection Laser Transceiver (DDLT) program. The circuit is designed to drive the laser diode over a range of user-selectable data rates from 1.7 to 220 Mbps, Manchester-encoded, while ensuring compatibility with 8-bit and quaternary pulse position modulation (QPPM) formats for simulating deep space communications. The resulting hybrid circuit has demonstrated 10 to 90 percent rise and fall times of less than 300 ps at peak currents exceeding 100 mA.

  16. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., and Deputy Administrator Lori Garver deliver a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  17. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  18. The NASA land processes program - Status and future directions

    NASA Technical Reports Server (NTRS)

    Murphy, R. E.

    1984-01-01

    For most of the past decade, NASA focused its efforts on the immediate exploitation of space-based sensors in earth-oriented programs. After an assessment of the current situation with respect to the conducted programs, NASA has restructured its earth-oriented programs to concentrate on the scientific use of its satellites while other agencies and private enterprise have assumed responsibility for programs of interest to them. In making this change of direction, NASA has conducted a series of studies to obtain information as a basis for its planning activities regarding future programs. Attention is given to a plan for Land Global Habitability, the development of a basic structure for the land program, a program plan for global biology, and a study on the role of biochemical cycles. The three major facets of the land processes program are discussed along with some examples of current work.

  19. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Associate Administrator for the Office of Communications Bob Jacobs moderates the NASA Update program, Tuesday, Feb. 15, 2011 at NASA Headquarters in Washington. NASA's 12th Administrator Charles Bolden and Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  20. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  1. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, right, looks on as NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, second right on stage, speaks as NASA Administrator Charles F. Bolden Jr. looks on during a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  4. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, and Deputy Administrator Lori Garver are seen during their first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  5. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  6. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  7. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr., left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  8. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver makes a point as she speaks during a NASA Update with Administrator Charles F. Bolden Jr.,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  9. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, senior advisor to the NASA Administator, far left, makes a point as he introduces NASA Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  10. Medical Students' Understanding of Directed Questioning by Their Clinical Preceptors.

    PubMed

    Lo, Lawrence; Regehr, Glenn

    2017-01-01

    Phenomenon: Throughout clerkship, preceptors ask medical students questions for both assessment and teaching purposes. However, the cognitive and strategic aspects of students' approaches to managing this situation have not been explored. Without an understanding of how students approach the question and answer activity, medical educators are unable to appreciate how effectively this activity fulfills their purposes of assessment or determine the activity's associated educational effects. A convenience sample of nine 4th-year medical students participated in semistructured one-on-one interviews exploring their approaches to managing situations in which they have been challenged with questions from preceptors to which they do not know the answer. Through an iterative and recursive analytic reading of the interview transcripts, data were coded and organized to identify themes relevant to the students' considerations in answering such questions. Students articulated deliberate strategies for managing the directed questioning activity, which at times focused on the optimization of their learning but always included considerations of image management. Managing image involved projecting not only being knowledgeable but also being teachable. The students indicated that their considerations in selecting an appropriate strategy in a given situation involved their perceptions of their preceptors' intentions and preferences as well as several contextual factors. Insights: The medical students we interviewed were quite sophisticated in their understanding of the social nuances of the directed questioning process and described a variety of contextually invoked strategies to manage the situation and maintain a positive image.

  11. The NASA Earthdata Forums - An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Astrophysics Data System (ADS)

    Hearty, T. J., III; Acker, J. G.; Meyer, D. L.; Northup, E. A.; Bagwell, R.

    2017-12-01

    In this presentation, we will demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  12. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen through a television camera monitor during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  13. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen on a television camera monitor while speaking at his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  14. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    A NASA Social participant asks a question to the astronauts onboard the International Space Station in a live downlink from the ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  15. Questioning Questions: Elementary Teachers' Adaptations of Investigation Questions Across the Inquiry Continuum

    NASA Astrophysics Data System (ADS)

    Biggers, Mandy

    2018-02-01

    Questioning is a central practice in science classrooms. However, not every question translates into a "good" science investigation. Questions that drive science investigations can be provided by many sources including the teacher, the curriculum, or the student. The variations in the source of investigation questions were explored in this study. A dataset of 120 elementary science classroom videos and associated lesson plans from 40 elementary teachers (K-5) across 21 elementary school campuses were scored on an instrument measuring the amount of teacher-direction or student-direction of the lessons' investigation questions. Results indicated that the investigation questions were overwhelmingly teacher directed in nature, with no opportunities for students to develop their own questions for investigation. This study has implications for researchers and practitioners alike, calling attention to the teacher-directed nature of investigation questions in existing science curriculum materials, and the need for teacher training in instructional strategies to adapt their existing curriculum materials across the continuum of teacher-directed and student-directed investigation questions. Teachers need strategies for adapting the teacher-directed questions provided in their existing curriculum materials in order to allow students the opportunity to engage in this essential scientific practice.

  16. Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question

    NASA Image and Video Library

    2003-07-15

    Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question.

  17. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, Senior Advisor to the NASA Administrator, introduces Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, the agency's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  18. The NASA astrobiology program

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  19. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  20. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  1. NASA Social

    NASA Image and Video Library

    2012-12-04

    A NASA Social participant tweets during as astronaut Joe Acaba answers questions from the audience at NASA Headquaters, Tuesday, Dec. 4, 2012 in Washington. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  2. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  3. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Expedition 33/34 astronauts onboard the International Space Station answer questions in a live downlink at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Seen from left to right are NASA astronauts Tom Marshburn, Kevin Ford and Canadian Space Agency (CSA) astronaut Chris Hadfield. Photo Credit: (NASA/Carla Cioffi)

  4. Presidential Space Policy Directs NASA to Return Humans to Moon

    NASA Image and Video Library

    2017-12-11

    President Donald Trump signed a new Space Policy Directive-1 at the White House on Monday, Dec. 11, directing NASA’s human spaceflight program back to the Moon, as recommended by the National Space Council.    The directive calls for NASA to lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system, and to bring back to Earth new knowledge and opportunities for human advancement. This effort will more effectively organize government, private industry, and international efforts toward returning humans on the Moon, and will lay the foundation that will eventually enable human exploration of Mars.

  5. Effect of Directed Study of Mathematics Vocabulary on Standardized Mathematics Assessment Questions

    ERIC Educational Resources Information Center

    Waite, Adel Marlane

    2017-01-01

    The problems under investigation included (a) Did a directed study of mathematics vocabulary significantly affect student performance levels on standardized mathematical questions? and (b) Did the strategies used in this study significantly affect student performance levels on standardized mathematical questions? The population consisted of…

  6. Questions & Answers about Aeronautics and Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Answers to 27 questions about aeronautics, space, and the National Aeronautics and Space Administration (NASA) are provided in this pamphlet. Among the topics dealt with in these questions are: costs of the space program; NASA's role in aeronautics; benefits received from the space program; why the United States hasn't developed means of rescuing…

  7. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington engages in social media as he listens to astronaut Joe Acaba answer questions, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  8. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  9. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington tweets as he listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  10. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington asks astronaut Joe Acaba a question, Tuesday, Dec. 4, 2012, at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  11. Public stigma in intellectual disability: do direct versus indirect questions make a difference?

    PubMed

    Werner, S

    2015-10-01

    Stigma may negatively impact individuals with intellectual disabilities (ID). However, most studies in the field have been based on the use of direct measurement methods for assessing stigma. This study examined public stigma towards individuals with ID within a representative sample of the Israeli public by comparing direct versus indirect questioning. Vignette methodology was utilised with two questionnaire versions. In the direct questionnaire (n = 306), the participants were asked how they would think, feel and behave if a man with ID asked them a question in a public place. In the indirect questionnaire (n = 301), the participants were asked to report how a hypothetical 'other man' would think, feel and behave in the same situation. Higher levels of stigma were reported among participants that answered the indirect questionnaire version. Furthermore, among those participants that answered the indirect questionnaire version, subjective knowledge of ID was a less important correlate of stigma than for those participants that answered the direct questionnaire. Several explanations are suggested for the finding that indirect questioning elicits more negative stigmatic attitudes. Among others, indirect questioning may be a more appropriate methodology for eliciting immediate beliefs. Furthermore, the results call for implementing a comprehensive, multi-level programme to change stigma. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  12. NASA Technology Investments in Electric Propulsion: New Directions in the New Millennium

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    2002-01-01

    The last decade was a period of unprecedented acceptance of NASA developed electric propulsion by the user community. The benefits of high performance electric propulsion systems are now widely recognized, and new technologies have been accepted across the commonly. NASA clearly recognizes the need for new, high performance, electric propulsion technologies for future solar system missions and is sponsoring aggressive efforts in this area. These efforts are mainly conducted under the Office of Aerospace Technology. Plans over the next six years include the development of next generation ion thrusters for end of decade missions. Additional efforts are planned for the development of very high power thrusters, including magnetoplasmadynamic, pulsed inductive, and VASIMR, and clusters of Hall thrusters. In addition to the in-house technology efforts, NASA continues to work closely with both supplier and user communities to maximize the acceptance of new technology in a timely and cost-effective manner. This paper provides an overview of NASA's activities in the area of electric propulsion with an emphasis on future program directions.

  13. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA Social participants listen as astronaut Joe Acaba answers questions about his time living aboard the International Space Station at NASA Headquarters, Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  14. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  15. Physical and Mathematical Questions on Signal Processing in Multibase Phase Direction Finders

    NASA Astrophysics Data System (ADS)

    Denisov, V. P.; Dubinin, D. V.; Meshcheryakov, A. A.

    2018-02-01

    Questions on improving the accuracy of multiple-base phase direction finders by rejecting anomalously large errors in the process of resolving the measurement ambiguities are considered. A physical basis is derived and calculated relationships characterizing the efficiency of the proposed solutions are obtained. Results of a computer simulation of a three-base direction finder are analyzed, along with field measurements of a three-base direction finder along near-ground paths.

  16. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    A member of the audience asks a question to the technology and innovation panel at the 2011 NASA Future Forum, Thursday, Aug. 11, 2011, at the Riggs Alumni Center on the campus of the University of Maryland in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  17. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Deputy Administrator Lori Garver, far left at table, answers a students question at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. Garver is joined on the panel by NASA astronaut Tracy Caldwell Dyson, center, and NASA Aerospace Engineer Sabrina Thompson. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Photo Credit: (NASA/Carla Cioffi)

  18. NASA Chief Technologist Hosts Town Hall

    NASA Image and Video Library

    2010-05-24

    Bobby Braun, NASA's Chief Technologist, answers questions during a Town Hall meeting to discuss agency-wide technology policy and programs at NASA Headquarters on Tuesday, May 25, 2010, in Washington. Photo Credit: (NASA/Carla Cioffi)

  19. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks NASA Associate Administrator for the Science Mission Directorate John Grunsfeld a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  20. NASA Chief Technologist Hosts Town Hall

    NASA Image and Video Library

    2010-05-24

    Bobby Braun, right, NASA's Chief Technologist, answers questions during a Town Hall meeting to discuss agency-wide technology policy and programs at NASA Headquarters on Tuesday, May 25, 2010, in Washington. Photo Credit: (NASA/Carla Cioffi)

  1. Expedition 54 Postflight Presentation at NASA Headquarters

    NASA Image and Video Library

    2018-06-15

    NASA astronauts Joe Acaba, left, and Mark Vande Hei, right, answer questions from the audience after speaking about their time onboard the International Space Station, Friday, June 15, 2018 at NASA Headquarters in Washington. Acaba and Vande Hei answered questions from the audience and spoke about their experiences aboard the International Space Station for 168 days as part of Expedition 53 and 54. Photo Credit: (NASA/Joel Kowsky)

  2. "Let's Talk!": Increasing Novel Peer-Directed Questions by High School Students with Autism to Their General Education Peers

    ERIC Educational Resources Information Center

    Reilly, Caitlin; Hughes, Carolyn; Harvey, Michelle; Brigham, Nicolette; Cosgriff, Joseph; Kaplan, Lauren; Bernstein, Rebekah

    2014-01-01

    We taught three high school students with high-functioning autism to increase their novel peer-directed questions when using a communication book to converse with general education partners at school. Novel question training was associated with participants asking peer-directed questions not displayed in communication books across a variety of…

  3. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  4. NASA and Ethics: Training and Practice

    NASA Technical Reports Server (NTRS)

    Bruce, Willa Marie (Editor); Russell, Valerie (Editor)

    1997-01-01

    This paper is about the National Aeronautics and Space Administration(NASA) and the practice of professional ethics. It has been eleven years(Jan. 28, 1986) since the Challenger accident and the past decade has been a time of investigation, assessment, and finger-pointing, as well as a time for introspection and internal reform. While there has been a lot of rhetoric about ethical commitments at NASA, there has also been a dearth of empirically-based knowledge about what NASA and its various contractors are doing about professional ethics and what decisionmaking criteria are being used. It has been a decade of cost-cutting and personnel cut-backs. One has to wonder what, in all this time, NASA has done to create an ethical climate in which events like the Challenger accident are less likely to happen. In the fall of 1995, as part of competition for a mini-grant from NASA, a request for funding to complete an ethical profile of the agency was submitted. This papeR contributes to knowledge about NASA and ethics by reporting on the results of the first year of research which was spent in doing a comprehensive literature and web-site review along with phone interviews and e-mail correspondence with NASA ethics officers. The goal of this first year was to see what ethics activity has been documented and to ascertain what work is being done to raise the ethical question with NASA. Questions for which answers were sought include: (1) What is NASA now doing regarding ethics?; (2) What training is being provided? By whom? For whom?; (3) Are the answers to these questions different at different NASA installations?

  5. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    NASA Administrator Charles Bolden listens to questions during a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  6. Present Challenges, Critical Needs, and Future Technological Directions for NASA's GN and C Engineering Discipline

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is currently undergoing a substantial redirection. Notable among the changes occurring within NASA is the stated emphasis on technology development, integration, and demonstration. These new changes within the Agency should have a positive impact on the GN&C discipline given the potential for sizeable investments for technology development and in-space demonstrations of both Autonomous Rendezvous & Docking (AR&D) systems and Autonomous Precision Landing (APL) systems. In this paper the NASA Technical Fellow for Guidance, Navigation and Control (GN&C) provides a summary of the present technical challenges, critical needs, and future technological directions for NASA s GN&C engineering discipline. A brief overview of the changes occurring within NASA that are driving a renewed emphasis on technology development will be presented as background. The potential benefits of the planned GN&C technology developments will be highlighted. This paper will provide a GN&C State-of-the-Discipline assessment. The discipline s readiness to support the goals & objectives of each of the four NASA Mission Directorates is evaluated and the technical challenges and barriers currently faced by the discipline are summarized. This paper will also discuss the need for sustained investments to sufficiently mature the several classes of GN&C technologies required to implement NASA crewed exploration and robotic science missions.

  7. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    Sen. Richard Shelby, R-Ala., questions NASA Administrator Charles Bolden during a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  8. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    Sen. George Voinovich, R-Ohio, questions NASA Administrator Charles Bolden during a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  9. Current status and future direction of NASA's Space Life Sciences Program

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.

  10. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    Sen. Kay Bailey Hutchinson, R-Texas, questions NASA Administrator Charles Bolden during a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  11. NASA Space Engineering Research Center Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.

    1990-01-01

    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers.

  12. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    U.S. Sen. Barbara Mikulski, D-Md., Chairwoman of the Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee questions NASA Administrator Charles Bolden during a hearing on the FY 2011 NASA Budget, Thursday, April 22, 2011 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  13. House NASA FY 19' Budget Hearing

    NASA Image and Video Library

    2018-03-07

    Rep. Ed Perlmutter, D-Colo. is seen on a monitor as acting NASA Administrator Robert Lightfoot, foreground, answers his questions during a House Committee on Science, Space, and Technology, Subcommittee on Space, hearing overview of the NASA Budget for Fiscal Year 2019, Wednesday, March 7, 2018, at the Rayburn House Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. NASA Finds Direct Proof of Dark Matter

    NASA Astrophysics Data System (ADS)

    2006-08-01

    Dark matter and normal matter have been wrenched apart by the tremendous collision of two large clusters of galaxies. The discovery, using NASA's Chandra X-ray Observatory and other telescopes, gives direct evidence for the existence of dark matter. "This is the most energetic cosmic event, besides the Big Bang, which we know about," said team member Maxim Markevitch of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Lensing Illustration Gravitational Lensing Explanation These observations provide the strongest evidence yet that most of the matter in the universe is dark. Despite considerable evidence for dark matter, some scientists have proposed alternative theories for gravity where it is stronger on intergalactic scales than predicted by Newton and Einstein, removing the need for dark matter. However, such theories cannot explain the observed effects of this collision. "A universe that's dominated by dark stuff seems preposterous, so we wanted to test whether there were any basic flaws in our thinking," said Doug Clowe of the University of Arizona at Tucson, and leader of the study. "These results are direct proof that dark matter exists." Animation of Cluster Collision Animation of Cluster Collision In galaxy clusters, the normal matter, like the atoms that make up the stars, planets, and everything on Earth, is primarily in the form of hot gas and stars. The mass of the hot gas between the galaxies is far greater than the mass of the stars in all of the galaxies. This normal matter is bound in the cluster by the gravity of an even greater mass of dark matter. Without dark matter, which is invisible and can only be detected through its gravity, the fast-moving galaxies and the hot gas would quickly fly apart. The team was granted more than 100 hours on the Chandra telescope to observe the galaxy cluster 1E0657-56. The cluster is also known as the bullet cluster, because it contains a spectacular bullet-shaped cloud of hundred

  15. New Directions for NASA's Advanced Life Support Program

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2006-01-01

    Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The

  16. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  17. Expedition 54 Postflight Presentation at NASA Headquarters

    NASA Image and Video Library

    2018-06-15

    NASA astronaut Mark Vande Hei speaks about his time onboard the International Space Station, Friday, June 15, 2018 at NASA Headquarters in Washington. Vande Hei and astronaut Joe Acaba answered questions from the audience and spoke about their experiences aboard the International Space Station for 168 days as part of Expedition 53 and 54. Photo Credit: (NASA/Joel Kowsky)

  18. NASA Space Science Day Events-Engaging Students in Science

    NASA Technical Reports Server (NTRS)

    Foxworth, S.; Mosie, A.; Allen, J.; Kent, J.; Green, A.

    2015-01-01

    The NASA Space Science Day Event follows the same format of planning and execution at all host universities and colleges. These institutions realized the importance of such an event and sought funding to continue hosting NSSD events. In 2014, NASA Johnson Space Center ARES team has supported the following universities and colleges that have hosted a NSSD event; the University of Texas at Brownsville, San Jacinto College, Georgia Tech University and Huston-Tillotson University. Other universities and colleges are continuing to conduct their own NSSD events. NASA Space Science Day Events are supported through continued funding through NASA Discovery Program. Community Night begins with a NASA speaker and Astromaterials display. The entire community surrounding the host university or college is invited to the Community Night. This year at the Huston-Tillotson (HTU) NSSD, we had Dr. Laurie Carrillo, a NASA Engineer, speak to the public and students. She answered questions, shared her experiences and career path. The speaker sets a tone of adventure and discovery for the NSSD event. After the speaker, the public is able to view Lunar and Meteorite samples and ask questions from the ARES team. The students and teachers from nearby schools attended the NSSD Event the following day. Students are able to see the university or college campus and the university or college mentors are available for questions. Students rotate through hour long Science Technology Engineering and Mathematics (STEM) sessions and a display area. These activities are from the Discovery Program activities that tie in directly with k- 12 instruction. The sessions highlight the STEM in exploration and discovery. The Lunar and Meteorite display is again available for students to view and ask questions. In the display area, there are also other interactive displays. Angela Green, from San Jacinto College, brought the Starlab for students to watch a planetarium exhibit for the NSSD at Huston

  19. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  20. Response to Sputnik: The creation of NASA

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The merger of academic, industrial, and political forces in the United States after the launching of Sputnik 1 is described. The decisions and governmental policies that lead to the formation of NASA are summarized. The question of whether NASA would be a military of civilian operation is discussed and the importance of the decision to have NASA as a civilian organization is emphasized.

  1. Expedition 54 Postflight Presentation at NASA Headquarters

    NASA Image and Video Library

    2018-06-15

    NASA astronauts Joe Acaba, left, and Mark Vande Hei, right, speak about their time onboard the International Space Station, Friday, June 15, 2018 at NASA Headquarters in Washington. Acaba and Vande Hei answered questions from the audience and spoke about their experiences aboard the International Space Station for 168 days as part of Expedition 53 and 54. Photo Credit: (NASA/Joel Kowsky)

  2. NASA EPA MOA Signing

    NASA Image and Video Library

    2010-04-25

    NASA Administrator Charles Bolden, left, and U.S. Environmental Protection Agency (EPA) Administrator Lisa P. Jackson, right, answer questions from students and faculty from the Howard University Middle School of Mathematics and Science after signing a Memorandum of Agreement (MOA) to promote collaboration between the two agencies for cooperation in environmental and Earth sciences and environmental management applications, Monday, April 26, 2010, at the school in Washington. Photo Credit: (NASA/Paul E. Alers)

  3. The Quality of Questions and Use of Resources in Self-Directed Learning: Personal Learning Projects in the Maintenance of Certification

    ERIC Educational Resources Information Center

    Horsley, T.; O'Neill, J.; Campbell, C.

    2009-01-01

    Introduction: To engage effectively and efficiently in self-directed learning and knowledge-seeking practices, it is important that physicians construct well-formulated questions; yet, little is known about the quality of good questions and their relationship to self-directed learning or to change in practice behavior. Methods: Personal learning…

  4. NASA Virtual Institutes: International Bridges for Space Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  5. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and

  6. Estimating the prevalence of negative attitudes towards people with disability: a comparison of direct questioning, projective questioning and randomised response.

    PubMed

    Ostapczuk, Martin; Musch, Jochen

    2011-01-01

    Despite being susceptible to social desirability bias, attitudes towards people with disabilities are traditionally assessed via self-report. We investigated two methods presumably providing more valid prevalence estimates of sensitive attitudes than direct questioning (DQ). Most people projective questioning (MPPQ) attempts to reduce bias by asking interviewees to estimate the number of other people holding a sensitive attribute, rather than confirming or denying the attribute for themselves. The randomised-response technique (RRT) tries to reduce bias by assuring confidentiality through a random scrambling of the respondent's answers. We assessed negative attitudes towards people with physical and mental disability via MPPQ, RRT and DQ to compare the resulting estimates. The MPPQ estimates exceeded the DQ estimates. Employing a cheating-detection extension of the RRT, we determined the proportion of respondents disregarding the RRT instructions and computed an upper bound for the prevalence of negative attitudes. MPPQ estimates exceeded this upper bound and were thus shown to overestimate the prevalence. Furthermore, we found more negative attitudes towards people with mental disabilities than those with physical disabilities in all three questioning conditions. We recommend employing the cheating-detection variant of the RRT to gain additional insight in future studies on attitudes towards people with disabilities.

  7. Advanced Methodologies for NASA Science Missions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.

    2017-12-01

    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  8. AGU testifies on NASA Budget

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Witnesses from outside the U.S. government—including Frank Eden, representing AGU—testified about the National Aeronautics and Space Administration's budget on March 12 before the House Science Committee's subcommittee on space. One major topic of the hearing was familiar: what should NASA's top priority be, space science or human exploration of space.“Obviously this committee has a huge job of trying to set priorities—consistent with the budget restraints—that will end up giving the American taxpayer the most bang for his buck, as well as providing direction for our space program,” said F. James Sensenbrenner, Jr. (R-Wis.), the subcommittee's ranking Republican. Another recurring topic, cited by the subcommittee's new chairman, Ralph M. Hall (D-Tex.), as well as by other committee members, was how to translate NASA-developed technologies into commercial gain for the U.S. in the global marketplace. Hall and others also posed a number of questions on a topic the chairman called a special concern of his: whether it would be economically and scientifically plausible for the U.S. to use the Soviet space station Mir for certain activities, such as medical applications.

  9. The NASA Electronic Parts and Packaging (NEPP) Program: Results and Direction

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2007-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program's mission is to provide guidance to NASA for the selection and application of microelectronic technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. This viewgraph presentation reviews the NEPP program's goals and objectives, and reviews many of the missions that the NEPP program has impacted, both in and out of NASA. Also included are examples of the evaluation that the program performed.

  10. Searching for Potentially Habitable Extra Solar Planets: A Directed-Study Using Real Data from the NASA "Kepler"-Mission

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Ochoa, Hector

    2017-01-01

    What follows is a description of the procedure for a directed-study in which a student, guided by a faculty member, attempted to identify potentially habitable exoplanets using actual data available online from NASA's "Kepler" Mission.

  11. Estimation of the longitudinal and lateral-directional aerodynamic parameters from flight data for the NASA F/A-18 HARV

    NASA Technical Reports Server (NTRS)

    Napolitano, Marcello R.

    1996-01-01

    This progress report presents the results of an investigation focused on parameter identification for the NASA F/A-18 HARV. This aircraft was used in the high alpha research program at the NASA Dryden Flight Research Center. In this study the longitudinal and lateral-directional stability derivatives are estimated from flight data using the Maximum Likelihood method coupled with a Newton-Raphson minimization technique. The objective is to estimate an aerodynamic model describing the aircraft dynamics over a range of angle of attack from 5 deg to 60 deg. The mathematical model is built using the traditional static and dynamic derivative buildup. Flight data used in this analysis were from a variety of maneuvers. The longitudinal maneuvers included large amplitude multiple doublets, optimal inputs, frequency sweeps, and pilot pitch stick inputs. The lateral-directional maneuvers consisted of large amplitude multiple doublets, optimal inputs and pilot stick and rudder inputs. The parameter estimation code pEst, developed at NASA Dryden, was used in this investigation. Results of the estimation process from alpha = 5 deg to alpha = 60 deg are presented and discussed.

  12. Research and Development at NASA

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Vision for Space Exploration marks the next segment of NASA's continuing journey to find answers to compelling questions about the origins of the solar system, the existence of life beyond Earth, and the ability of humankind to live on other worlds. The success of the Vision relies upon the ongoing research and development activities conducted at each of NASA's 10 field centers. In an effort to promote synergy across NASA as it works to meet its long-term goals, the Agency restructured its Strategic Enterprises into four Mission Directorates that align with the Vision. Consisting of Exploration Systems, Space Operations, Science, and Aeronautics Research, these directorates provide NASA Headquarters and the field centers with a streamlined approach to continue exploration both in space and on Earth.

  13. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  14. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  15. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  16. When Is a Question a Question for Children and Adults?

    ERIC Educational Resources Information Center

    Saindon, Mathieu R.; Trehub, Sandra E.; Schellenberg, E. Glenn; van Lieshout, Pascal H. H. M.

    2017-01-01

    Terminal changes in fundamental frequency provide the most salient acoustic cues to declarative questions, but adults sometimes identify such questions from pre-terminal cues. In the present study, adults and 7- to 10-year-old children judged a single speaker's adult- and child-directed utterances as questions or statements in a gating task with…

  17. NASA Agency Overview Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing opened with Dean Acosta (NASA Press Secretary) introducing Michael Griffin (NASA Administrator) and Bill Gerstenmaier (Associate Administrator for Space Operations). Bill Griffin stated that they would resume the Shuttle Fight to Return process, that the vehicle was remarkably clean and if the weather was good, the Shuttle would be ready to launch as scheduled. Bill Gerstenmaier stated that the preparations and processing of the vehicle went extremely well and they are looking forward to increasing the crew size to three. Then the floor was open to questions from the press.

  18. NASA Sun Earth

    NASA Image and Video Library

    2017-12-08

    CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Ea CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Earth. This left portion is composed of an EIT 304 image superimposed on a LASCO C2 coronagraph. Two to four days later, the CME cloud is shown striking and beginning to be mostly deflected around the Earth’s magnetosphere. The blue paths emanating from the Earth’s poles represent some of its magnetic field lines. The magnetic cloud of plasma can extend to 30 million miles wide by the time it reaches earth. These storms, which occur frequently, can disrupt communications and navigational equipment, damage satellites, and even cause blackouts. (Objects in the illustration are not drawn to scale.) Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  19. NASA Facts, Weightlessness.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Weightlessness and how it can be artificially produced is described in this pamphlet written for junior high school students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review questions, suggested activities, and references are…

  20. NASA Technology Plan 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  1. NASA's supercomputing experience

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ron

    1990-01-01

    A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.

  2. NASA New England Outreach Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA New England Outreach Center in Nashua, New Hampshire was established to serve as a catalyst for heightening regional business awareness of NASA procurement, technology and commercialization opportunities. Emphasis is placed on small business participation, with the highest priority given to small disadvantaged businesses, women-owned businesses, HUBZone businesses, service disabled veteran owned businesses, and historically black colleges and universities and minority institutions. The Center assists firms and organizations to understand NASA requirements and to develop strategies to capture NASA related procurement and technology opportunities. The establishment of the NASA Outreach Center serves to stimulate business in a historically underserved area. NASA direct business awards have traditionally been highly present in the West, Midwest, South, and Southeast areas of the United States. The Center guides and assists businesses and organizations in the northeast to target opportunities within NASA and its prime contractors and capture business and technology opportunities. The Center employs an array of technology access, one-on-one meetings, seminars, site visits, and targeted conferences to acquaint Northeast firms and organizations with representatives from NASA and its prime contractors to learn about and discuss opportunities to do business and access the inventory of NASA technology. This stimulus of interaction also provides firms and organizations the opportunity to propose the use of their developed technology and ideas for current and future requirements at NASA. The Center provides a complement to the NASA Northeast Regional Technology Transfer Center in developing prospects for commercialization of NASA technology. In addition, the Center responds to local requests for assistance and NASA material and documents, and is available to address immediate concerns and needs in assessing opportunities, timely support to interact with NASA Centers on

  3. Flower development: open questions and future directions.

    PubMed

    Wellmer, Frank; Bowman, John L; Davies, Brendan; Ferrándiz, Cristina; Fletcher, Jennifer C; Franks, Robert G; Graciet, Emmanuelle; Gregis, Veronica; Ito, Toshiro; Jack, Thomas P; Jiao, Yuling; Kater, Martin M; Ma, Hong; Meyerowitz, Elliot M; Prunet, Nathanaël; Riechmann, José Luis

    2014-01-01

    Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.

  4. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, answers a question from the audience during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  5. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Dan Goldin, NASA's longest serving Administrator from 1992-2001 speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: ‚"How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?‚" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  6. NASA Technologies for Product Identification

    NASA Technical Reports Server (NTRS)

    Schramm, Fred, Jr.

    2006-01-01

    Since 1975 bar codes on products at the retail counter have been accepted as the standard for entering product identity for price determination. Since the beginning of the 21st century, the Data Matrix symbol has become accepted as the bar code format that is marked directly on a part, assembly or product that is durable enough to identify that item for its lifetime. NASA began the studies for direct part marking Data Matrix symbols on parts during the Return to Flight activities after the Challenger Accident. Over the 20 year period that has elapsed since Challenger, a mountain of studies, analyses and focused problem solutions developed by and for NASA have brought about world changing results. NASA Technical Standard 6002 and NASA Handbook 6003 for Direct Part Marking Data Matrix Symbols on Aerospace Parts have formed the basis for most other standards on part marking internationally. NASA and its commercial partners have developed numerous products and methods that addressed the difficulties of collecting part identification in aerospace operations. These products enabled the marking of Data Matrix symbols in virtually every situation and the reading of symbols at great distances, severe angles, under paint and in the dark without a light. Even unmarkable delicate parts now have a process to apply a chemical mixture called NanocodesTM that can be converted to a Data Matrix. The accompanying intellectual property is protected by 10 patents, several of which are licensed. Direct marking Data Matrix on NASA parts virtually eliminates data entry errors and the number of parts that go through their life cycle unmarked, two major threats to sound configuration management and flight safety. NASA is said to only have people and stuff with information connecting them. Data Matrix is one of the most significant improvements since Challenger to the safety and reliability of that connection. This presentation highlights the accomplishments of NASA in its efforts to develop

  7. Curating NASA's Extraterrestrial Samples - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael

    2011-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA s extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "documentation, preservation, preparation, and distribution of samples for research, education, and public outreach."

  8. Curating NASA's Extraterrestrial Samples - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael

    2010-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials," JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach.

  9. The Living Universe: NASA and the Development of Astrobiology

    NASA Technical Reports Server (NTRS)

    Dick, Steven J.; Strick, James E.

    2004-01-01

    In the opening weeks of 1998 a news article in the British journal Nature reported that NASA was about to enter biology in a big way. A "virtual" Astrobiology Institute was gearing up for business, and NASA administrator Dan Goldin told his external advisory council that he would like to see spending on the new institute eventually reach $100 million per year. "You just wait for the screaming from the physical scientists (when that happens)," Goldin was quoted as saying. Nevertheless, by the time of the second Astrobiology Science Conference in 2002, attended by seven hundred scientists from many disciplines, NASA spending on astrobiology had reached nearly half that amount and was growing at a steady pace. Under NASA leadership numerous institutions around the world applied the latest scientific techniques in the service of astrobiology's ambitious goal: the study of what NASA's 1996 Strategic Plan termed the "living universe." This goal embraced nothing less than an understanding of the origin, history, and distribution of life in the universe, including Earth. Astrobiology, conceived as a broad interdisciplinary research program, held the prospect of being the science for the twenty-first century which would unlock the secrets to some of the great questions of humanity. It is no surprise that these age-old questions should continue into the twenty-first century. But that the effort should be spearheaded by NASA was not at all obvious to those - inside and outside the agency - who thought NASA's mission was human spaceflight, rather than science, especially biological science. NASA had, in fact, been involved for four decades in "exobiology," a field that embraced many of the same questions but which had stagnated after the 1976 Viking missions to Mars. In this volume we tell the colorful story of the rise of the discipline of exobiology, how and why it morphed into astrobiology at the end of the twentieth century, and why NASA was the engine for both the

  10. Explore Mars from the NASA Website

    ERIC Educational Resources Information Center

    Zhaoyao, Meng

    2005-01-01

    Here we show how to explore Mars based on data obtainable from the NASA website. The analysis and calculations of some physics questions provide interesting and useful examples of inquiry-based learning.

  11. Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Allton, J. H.; Evans, C. A.; Fries, M. D.; Nakamura-Messenger, K.; Righter, K.; Zeigler, R. A.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "...curation of all extra-terrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "...documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the past, present, and future activities of the NASA Curation Office.

  12. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the NASA...

  13. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the NASA...

  14. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the NASA...

  15. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the NASA...

  16. 48 CFR 1842.271 - NASA clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA clause. 1842.271 Section 1842.271 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION... NASA clause. Insert the clause at 1852.242-70, Technical Direction, when paragraph 3(m) of the NASA...

  17. Current and Future Parts Management at NASA

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2011-01-01

    This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

  18. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James L. Green, Director for Planetary Science in NASA's Science Mission Directorate, helps kick off the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  19. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Tishkoff, Julian M.; Drummond, J. Philip; Edwards, Tim; Nejad, Abdollah S.

    1997-01-01

    The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: (1) examine the current state-of-the-art in hydrocarbon and/or hydrogen fueled scramjet research; (2) define the future direction and needs of basic research in support of scramjet technology; and (3) when appropriate, help transition basic research findings to solve the needs of developmental engineering programs in the area of supersonic combustion and fuels. A series of topical sessions were planned. Opening presentations were designed to focus and encourage group discussion and scientific exchange. The last half-day of the workshop was set aside for group discussion of the issues that were raised during the meeting for defining future research opportunities and directions. The following text attempts to summarize the discussions that took place at the workshop.

  20. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  1. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  2. Future directions for H sub x O sub y detection

    NASA Technical Reports Server (NTRS)

    Crosley, David R. (Editor); Hoell, James M. (Editor)

    1986-01-01

    The activities and recommendations of the NASA workshop on the Future Directions for H sub x O sub y detection are given. The objective of this workshop was to access future directions for the measurement of the OH radical as well as other H sub x O sub y species. The workshop discussions were focused by two broad questions: (1) What are the capabilities of potential measurement methods? and (2) Will the results from the most promising method be useful in furthering understanding of tropospheric chemistry?

  3. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  4. How to compete for NASA contracts

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Various studies and NASA experience have found that business concerns can provide a vital and significant impetus to technological innovation, not only in the fields of space and aeronautics, but also in national technological growth. NASA personnel are determined to foster the development of small business capabilities in technical areas that will support future projects and establish a small business base for the development and production of flight hardware for future missions. The solicitation process for Federal contracts has grown quite complex over the years. Where possible, we continue to try to simplify and streamline procedures for obtaining and performing these contracts. This booklet is designed to help understand NASA solicitations, find the information needed in deciding whether to respond, and improve chances for success. The first section of this booklet will answer general questions concerning the various types of NASA solicitations. Your specific questions on how to prepare bids will be answered in the second section, which is followed by a third section on the unique features of construction contracting. A fourth section describes how to submit technical and cost proposals for the negotiated procurement process. Some tips or suggestions, called DO's and DONT's, are placed at the end of the second, third, and fourth sections. Then, in the fifth section, ways to seek business as a subcontractor are identified.

  5. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  6. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne J.

    2016-10-01

    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  7. Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1985-01-01

    Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.

  8. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George

    1998-01-01

    The NASA Ambassadors Program is designed to present the excitement and importance of NASA's programs to its customers, the general public. Those customers, which are identified in the "Science Communications Strategy" developed by the Space Sciences Laboratory at the MSFC, are divided into three categories: (1) Not interested and not knowledgeable; (2) Interested but not knowledgeable; and (3) Science attentive. In it they recognize that it makes the most sense to attempt to communicate with those described in the last two categories. However, their plan suggests that the media and the educational institutions are the only means of outreach. The NASA Ambassadors Program allows NASA to reach its target audience directly. Steps to be taken in order for the program to commence: (1) MSFC chooses to support the NASA Ambassadors Program - decision point; (2) Designate an "Office In Charge". (3) Assign the "Operation" phase to in-house MSFC personnel or to a contractor - decision point; (4) Name a point of contact; (5) Identify partners in the program and enlist their assistance; (6) Process an unsolicited proposal from an outside source to accomplish those tasks which MSFC chooses to out-source.

  9. Intelligent Text Retrieval and Knowledge Acquisition from Texts for NASA Applications: Preprocessing Issues

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A system that retrieves problem reports from a NASA database is described. The database is queried with natural language questions. Part-of-speech tags are first assigned to each word in the question using a rule based tagger. A partial parse of the question is then produced with independent sets of deterministic finite state a utomata. Using partial parse information, a look up strategy searches the database for problem reports relevant to the question. A bigram stemmer and irregular verb conjugates have been incorporated into the system to improve accuracy. The system is evaluated by a set of fifty five questions posed by NASA engineers. A discussion of future research is also presented.

  10. Evolving directions in NASA's planetary rover requirements and technology

    NASA Astrophysics Data System (ADS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-10-01

    This paper reviews the evolution of NASA's planning for planetary rovers (i.e. robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that has been developed to achieve the desired capabilities. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. We first describe robotic vehicles, and their associated control systems, developed by NASA in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission. Suggested goals at that time for such an MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Subsequently, we present the current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions. This paper describes some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible.

  11. Evolving directions in NASA's planetary rover requirements and technology

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-01-01

    This paper reviews the evolution of NASA's planning for planetary rovers (i.e. robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that has been developed to achieve the desired capabilities. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. We first describe robotic vehicles, and their associated control systems, developed by NASA in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission. Suggested goals at that time for such an MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Subsequently, we present the current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions. This paper describes some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible.

  12. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James Lovelock, Honorary Visiting Fellow of Green Templeton College, University of Oxford speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  13. NASA unveils its big astrophysics dreams

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2014-02-01

    A task force appointed by the astrophysicists subcommittee of NASA's advisory council has published a report looking at the technologies needed to answer three big questions: Are we alone? How did we get here? And how does the universe work?

  14. James Webb Space Telescope (JWST) Town Hall - Panel question and

    NASA Image and Video Library

    2016-11-02

    James Webb Space Telescope (JWST) Town Hall - Panel question and answer - Bill Ochs; Dr. John Mather; Dr. Eric Smith; Thomas Zurbuchen; Center Director Chris Scolese; NASA Administrator Charlie Bolden.

  15. NASA tire/runway friction projects

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  16. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA

  17. Metrics for NASA Aeronautics Research Mission Directorate (ARMD) Strategic Thrust 3B Vertical Lift Strategic Direction

    NASA Technical Reports Server (NTRS)

    Hochstetler, Ronald D.; Salvano, Dan; Gorton, Susan A.

    2017-01-01

    The NASA Aeronautics Research Mission Directorate (ARMD) Strategic Implementation Plan details an ambitious plan for aeronautical research for the next quarter century and beyond. It includes a number of advanced technologies needed to address requirements of the overall aviation community (domestic and international), with an emphasis on safety, efficiency, operational flexibility, and alternative propulsion air transport options. The six ARMD Strategic Thrust Areas (STAs) represent a specific set of multi-decade research agendas for creating the global aviation improvements most in demand by the aviation service consumers and the general public. To provide NASA with a measurement of the preeminent value of these research areas, it was necessary to identify and quantify the measurable benefits to the aviation community from capabilities delivered by the research programs. This paper will describe the processes used and the conclusions reached in defining the principal metrics for ARMD Strategic Thrust Area 3B "Vertical Lift Strategic Direction."

  18. NASA/Goddard Thermal Technology Overview 2012

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2012-01-01

    New Technology program is underway at NASA NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce Future mission applications promise to be thermally challenging Direct technology funding is still very restricted

  19. NASA Human Spaceflight Scenarios - Do All Our Models Still Say No?

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    human spaceflight differently. 1) If costs have traditionally been so high that adding them up is discouraging, are there any new facts on the ground offering paths to significantly lower costs? 2) If NASA's spaceflight budget and process is an over-arching constraint, with its planning limitations favoring short-term outlooks, is there a way to step outside the budget box? 3) If life cycle answers have historically been too uncertain to be useful, is there a process where stakeholders gain valuable insights merely from emphasizing a common understanding around questions? We analyze the potential life cycle cost of assorted NASA human spaceflight architectures - an architecture as a sum of individual systems, working together. With the prior questions of high costs, limited budgets and uncertainties in mind, public private partnerships are central in these architectures. The cost data for current commercial public private partnerships is encouraging, as are cost estimates for future partnership approaches beyond low Earth orbit. Private capital, directly or indirectly, an ingredient of public private partnerships, may be a significant factor in finding a path around the limits of the NASA spaceflight budget. Also, understanding and reviewing the pros, cons and uncertainties of assorted architectures can assist in developing a common understanding around key questions as important if not more so than the numbers and answers. Lastly, a scenario planning technique is briefly explored that can mature a common understanding about the agencies situation at hand and how diverse stakeholders can go forward together. Scenario planning, rather than focusing on answers, places emphasis on stakeholders developing a common understanding about the future. Putting aside costs, this is especially true of questions about sustainability and growth, results, benefits and expectations. While efficiency exercises or analysis look to reduce resources in one place to apply them elsewhere

  20. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program's function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned-standards integration system. The Program maintains a 'one stop-shop' Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  1. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, WIlliam W.

    2003-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program s function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned - standards integration system. The Program maintains a "one stop-shop" Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  2. NASA spinoffs to public service

    NASA Technical Reports Server (NTRS)

    Ault, L. A.; Cleland, J. G.

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Division of the Office of Commercial Programs has been quite successful in directing the transfer to technology into the public sector. NASA developments of particular interest have been those in the areas of aerodynamics and aviation transport, safety, sensors, electronics and computing, and satellites and remote sensing. NASA technology has helped law enforcement, firefighting, public transportation, education, search and rescue, and practically every other sector of activity serving the U.S. public. NASA works closely with public service agencies and associations, especially those serving local needs of citizens, to expedite technology transfer benefits. A number of examples exist to demonstrate the technology transfer method and opportunities of NASA spinoffs to public service.

  3. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Lynn Margulis, Distinguished University Professor in the Department of Geosciences at the University of Massachusetts-Amherst speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  4. NASA supported research programs

    NASA Technical Reports Server (NTRS)

    Libby, W. F.

    1975-01-01

    A summary of the scientific NASA grants and achievements accomplished by the University of California, Los Angles, is presented. The development of planetary and space sciences as a major curriculum of the University, and statistical data on graduate programs in aerospace sciences are discussed. An interdisciplinary approach to aerospace science education is emphasized. Various research programs and scientific publications that are a direct result of NASA grants are listed.

  5. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  6. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    Vice President Mike Pence speaks before President Donald Trump signs Space Policy Directive - 1, directing NASA to return to the moon, alongside President Donald Trump. left, Acting NASA Administrator Robert Lightfoot, second left, NASA astronaut Peggy Whitson, third from left, NASA astronaut Christina Koch, right, and members of the Senate, Congress, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  7. Design and Fabrication of the ISTAR Direct-Connect Combustor Experiment at the NASA Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Lee, Jin-Ho; Krivanek, Thomas M.

    2005-01-01

    The Integrated Systems Test of an Airbreathing Rocket (ISTAR) project was a flight demonstration project initiated to advance the state of the art in Rocket Based Combined Cycle (RBCC) propulsion development. The primary objective of the ISTAR project was to develop a reusable air breathing vehicle and enabling technologies. This concept incorporated a RBCC propulsion system to enable the vehicle to be air dropped at Mach 0.7 and accelerated up to Mach 7 flight culminating in a demonstration of hydrocarbon scramjet operation. A series of component experiments was planned to reduce the level of risk and to advance the technology base. This paper summarizes the status of a full scale direct connect combustor experiment with heated endothermic hydrocarbon fuels. This is the first use of the NASA GRC Hypersonic Tunnel facility to support a direct-connect test. The technical and mechanical challenges involved with adapting this facility, previously used only in the free-jet configuration, for use in direct connect mode will be also described.

  8. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump signs Space Policy Directive - 1, directing NASA to return to the moon, alongside members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  9. NASA and energy

    NASA Technical Reports Server (NTRS)

    1974-01-01

    NASA technology contributions to create energy sources include direct solar heating and cooling systems, wind generation of electricity, solar thermal energy turbine drives, solar cells, and techniques for locating, producing, and collecting organic materials for conversion into fuel.

  10. This is NASA

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Highlights of NASA's first 20 years are described including the accomplishments of the National Advisory Committee for Aeronautics from its creation in 1915 until its absorption into NASA in 1958. Current and future activities are assessed in relation to the Federal R&D research plan for FY 1980 and to U.S. civil space policy. A NASA organization chart accompanies descriptions of the responsibilities of Headquarters, its various offices, and field installations. Directions are given for contacting the agency for business activities or contracting purposes; for obtaining educational publications and other media, and for tours. Manpower statistics are included with a list of career opportunities. Special emphasis is given to manned space flight, space launch vehicles, space shuttle, planetary exploration, and investigations of the stars and the solar system.

  11. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump prepares to sign Space Policy Directive - 1, directing NASA to return to the moon, alongside members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  12. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  13. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  14. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Stephen Price from Lockheed Martin Space Systems Company kicks off the ‚Äö√Ñ√∫Seeking Signs of Life‚Äö√Ñ√π Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  15. Assessment of the NASA Astrobiology Institute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astrobiology is a scientific discipline devoted to the study of life in the universe--its origins, evolution, distribution, and future. It brings together the physical and biological sciences to address some of the most fundamental questions of the natural world: How do living systems emerge? How do habitable worlds form and how do they evolve? Does life exist on worlds other than Earth? As an endeavor of tremendous breadth and depth, astrobiology requires interdisciplinary investigation in order to be fully appreciated and examined. As part of a concerted effort to undertake such a challenge, the NASA Astrobiology Institute (NAI) was established in 1998 as an innovative way to develop the field of astrobiology and provide a scientific framework for flight missions. Now that the NAI has been in existence for almost a decade, the time is ripe to assess its achievements. At the request of NASA's Associate Administrator for the Science Mission Directorate (SMD), the Committee on the Review of the NASA Astrobiology Institute undertook the assignment to determine the progress made by the NAI in developing the field of astrobiology. It must be emphasized that the purpose of this study was not to undertake a review of the scientific accomplishments of NASA's Astrobiology program, in general, or of the NAI, in particular. Rather, the objective of the study is to evaluate the success of the NAI in achieving its stated goals of: 1. Conducting, supporting, and catalyzing collaborative interdisciplinary research; 2. Training the next generation of astrobiology researchers; 3. Providing scientific and technical leadership on astrobiology investigations for current and future space missions; 4. Exploring new approaches, using modern information technology, to conduct interdisciplinary and collaborative research among widely distributed investigators; and 5. Supporting outreach by providing scientific content for use in K-12 education programs, teaching undergraduate classes, and

  16. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump holds up Space Policy Directive - 1 after signing it, directing NASA to return to the moon, alongside members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  17. NASA's Three Pronged Approach to Hurricane Research

    NASA Astrophysics Data System (ADS)

    Kakar, R. K.

    2006-12-01

    The direct question: How can weather forecast duration and reliability be improved and guide research within NASA's Weather Focus Area? A mandate of the Weather Focus Area is to investigate high impact weather events, such as severe tropical storms, through a combination of new and improved space-based observations, high-altitude research aircraft and sophisticated numerical models. The field experiments involving the NASA research aircraft are vital components of this three-pronged approach. The Convection and Moisture Experiment (CAMEX) - 3 studied inner core dynamics, synoptic flow environment, land falling intensity change and the genesis environment for several hurricanes in a field experiment carried out during the 1998 season. CAMEX-4 studied rapid intensification, storm structure and dynamics, scale interactions and intercomparison of remote sensing techniques during the 2001 hurricane season. Several state of the art remote sensing instruments were used in these studies from the NASA DC-8 and ER-2 aircraft. During July 2005, NASA conducted its Tropical Cloud Systems and Processes (TCSP) experiment from San Jose, Costa Rica. The purpose of TCSP was to investigate the genesis and intensification of tropical cyclones primarily in the eastern North Pacific. This ocean basin was chosen because climatologically it represents the most concentrated region of cyclone formation on the planet and is within range of research aircraft deploying from Costa Rica. In 2005, however, the Caribbean was particularly active instead. We were greeted by two of the strongest July hurricanes on record for the Caribbean. The NASA ER-2 high altitude research aircraft flew twelve separate missions, carrying a payload of several remote sensing instruments. Many of these missions were flown in coordination with the NOAA Hurricane Research Division (HRD) P-3 Orion research aircraft as part of NOAA's 2005 Intensity Forecast Experiment. TCSP's successor program, the NAMMA-06 (NASA African

  18. Prereading Questions and Online Text Comprehension

    ERIC Educational Resources Information Center

    Lewis, Mark Rose; Mensink, Michael C.

    2012-01-01

    Prereading questions can be an effective tool for directing students' learning. However, it is not always clear what the online effects of a set of prereading questions will be. In two experiments, this study investigated whether readers direct additional attention to and learn more from sentences that are potentially relevant to a set of…

  19. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  20. NASA Data Archive Evaluation

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Haight, Kyle G.; Lindstrom, Ted

    1997-01-01

    The purpose of this study was to expose a range of naive individuals to the NASA Data Archive and to obtain feedback from them, with the goal of learning how useful people with varied backgrounds would find the Archive for research and other purposes. We processed 36 subjects in four experimental categories, designated in this report as C+R+, C+R-, C-R+ and C-R-, for computer experienced researchers, computer experienced non-researchers, non-computer experienced researchers, and non-computer experienced non-researchers, respectively. This report includes an assessment of general patterns of subject responses to the various aspects of the NASA Data Archive. Some of the aspects examined were interface-oriented, addressing such issues as whether the subject was able to locate information, figure out how to perform desired information retrieval tasks, etc. Other aspects were content-related. In doing these assessments, answers given to different questions were sometimes combined. This practice reflects the tendency of the subjects to provide answers expressing their experiences across question boundaries. Patterns of response are cross-examined by subject category in order to bring out deeper understandings of why subjects reacted the way they did to the archive. After the general assessment, there will be a more extensive summary of the replies received from the test subjects.

  1. NASA's Current Directions in the CETDP Micro-Technology Thrust Area

    NASA Technical Reports Server (NTRS)

    Stocky, J.

    2000-01-01

    NASA's program in micro-technologies seeks to develop the advanced technologies needed to reduce the mass of Earth-orbiting and deep-space spacecraft by several orders of magnitude over the next decade.

  2. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump, speaks before signing Space Policy Directive - 1, directing NASA to return to the moon, alongside Vice President Mike Pence, members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  3. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    Vice President Mike Pence speaks before President Donald Trump signs Space Policy Directive - 1, directing NASA to return to the moon, alongside members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  4. Senate subcommittee examines NASA's identity crisis

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    With the Cold War fading into history, economic competitiveness becoming the watchwords of the decade, and the space race against the Russians turning into probable cooperation, NASA is struggling to redefine its role. On November 16, the Senate Commerce Subcommittee on Science, Technology and Space invited NASA Administrator Daniel Goldin, Martin Marietta CEO Norman Augustine, and Robert Frosch of Harvard University's John F. Kennedy School of Government to offer their thoughts on NASA's plans, priorities, and budgetary difficulties. Augustine, who chaired the Committee on the Future of the U.S. Space Program in 1990, posed two questions: What does America want its space program to be, and can the country afford to pay for the program it wants? He stated bluntly that if the answers were incompatible, “we are unlikely to have a satisfactory program.”

  5. Curating NASA's Future Extraterrestrial Sample Collections: How Do We Achieve Maximum Proficiency?

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Evans, Cynthia; Zeigler, Ryan; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "... documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working towards a state of maximum proficiency.

  6. NASA's Discovery Program

    NASA Astrophysics Data System (ADS)

    Kicza, Mary; Bruegge, Richard Vorder

    1995-01-01

    NASA's Discovery Program represents an new era in planetary exploration. Discovery's primary goal: to maintain U.S. scientific leadership in planetary research by conducting a series of highly focused, cost effective missions to answer critical questions in solar system science. The Program will stimulate the development of innovative management approaches by encouraging new teaming arrangements among industry, universities and the government. The program encourages the prudent use of new technologies to enable/enhance science return and to reduce life cycle cost, and it supports the transfer of these technologies to the private sector for secondary applications. The Near-Earth Asteroid Rendezvous and Mars Pathfinder missions have been selected as the first two Discovery missions. Both will be launched in 1996. Subsequent, competitively selected missions will be conceived and proposed to NASA by teams of scientists and engineers from industry, academia, and government organizations. This paper summarizes the status of Discovery Program planning.

  7. How NASA Sees the Earth and Its Climate

    NASA Technical Reports Server (NTRS)

    BrowndeColstoun, Eric

    2012-01-01

    NASA Research Addresses Broad Questions: (1) How are global ecosystems changing? (2) What changes are occurring in global land cover and land use and what are their causes? (3) How is the Earth s surface being transformed and how can such information be used to predict future changes? (4) What are the consequences of land cover and land use change for the sustainability of ecosystems and economic productivity? NASA uses the view from above to monitor our changing home. Different satellites help us study the various systems of the Earth. No one system can do it all. NASA tools and science helps us to understand how the planet is changing and what the changes mean for us.

  8. The Economics of NASA Mission Cost Reserves

    NASA Technical Reports Server (NTRS)

    Whitley, Sally; Shinn, Stephen

    2012-01-01

    Increases in NASA mission costs are well-noted but not well-understood, and there is little evidence that they are decreasing in frequency or amount over time. The need to control spending has led to analysis of the causes and magnitude of historical mission overruns, and many program control efforts are being implemented to attempt to prevent or mitigate the problem (NPR 7120). However, cost overruns have not abated, and while some direct causes of increased spending may be obvious (requirements creep, launch delays, directed changes, etc.), the underlying impetus to spend past the original budget may be more subtle. Gaining better insight into the causes of cost overruns will help NASA and its contracting organizations to avoid .them. This paper hypothesizes that one cause of NASA mission cost overruns is that the availability of reserves gives project team members an incentive to make decisions and behave in ways that increase costs. We theorize that the presence of reserves is a contributing factor to cost overruns because it causes organizations to use their funds less efficiently or to control spending less effectively. We draw a comparison to the insurance industry concept of moral hazard, the phenomenon that the presence of insurance causes insureds to have more frequent and higher insurance losses, and we attempt to apply actuarial techniques to quantifY the increase in the expected cost of a mission due to the availability of reserves. We create a theoretical model of reserve spending motivation by defining a variable ReserveSpending as a function of total reserves. This function has a positive slope; for every dollar of reserves available, there is a positive probability of spending it. Finally, the function should be concave down; the probability of spending each incremental dollar of reserves decreases progressively. We test the model against available NASA CADRe data by examining missions with reserve dollars initially available and testing whether

  9. Building Model NASA Satellites: Elementary Students Studying Science Using a NASA-Themed Transmedia Book Featuring Digital Fabrication Activities

    ERIC Educational Resources Information Center

    Tillman, Daniel; An, Song; Boren, Rachel; Slykhuis, David

    2014-01-01

    This study assessed the impact of nine lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students (n = 29) recognized as advanced in mathematics based on their academic record. Data collected included a pretest and posttest of science content questions taken from released Virginia Standards…

  10. Replacement/Refurbishment of JSC/NASA POD Specimens

    NASA Technical Reports Server (NTRS)

    Castner, Willard L.

    2010-01-01

    The NASA Special NDE certification process requires demonstration of NDE capability by test per NASA-STD-5009. This test is performed with fatigue cracked specimens containing very small cracks. The certification test results are usually based on binomial statistics and must meet a 90/95 Probability of Detection (POD). The assumption is that fatigue cracks are tightly closed, difficult to detect, and inspectors and processes passing such a test are well qualified for inspecting NASA fracture critical hardware. The JSC NDE laboratory has what may be the largest inventory that exists of such fatigue cracked NDE demonstration specimens. These specimens were produced by the hundreds in the late 1980s and early 1990s. None have been produced since that time and the condition and usability of the specimens are questionable.

  11. NASA Science Institutes Plan. Report of the NASA Science Institutes Team: Final Publication (Incorporating Public Comments and Revisions)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.

  12. Balance in the NASA Astrophysics Program

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2017-08-01

    The Decadal studies are usually instructed to come up with a “balanced program” for the coming decade of astrophysics initiatives, both on the ground and in space. The meaning of “balance” is left up to the Decadal panels. One meaning is that there should be a diversity of mission costs in the portfolio. Another that there should be a diversity of science questions addressed. A third is that there should be a diversity of signals (across electromagnetic wavebands, and of non-em carriers). It is timely for the astronomy community to debate the meaning of balance in the NASA astrophysics program as the “Statement of Task” (SoT) that defines the goals and process of the 2020 Astrophysics Decadal review are now being formulated.Here I propose some ways in which the Astro2020 SoT could be made more specific in order to make balance more evident and so avoid the tendency for a single science question, and a single mission to answer that question, to dominate the program. As an example of an alternative ambitious approach, I present a proof-of-principle program of 6, mostly “probe-class” missions, that would fit the nominal funding profile for the 2025-2035 NASA Astrophysics Program, while being more diverse in ambitious science goals and in wavelength coverage.

  13. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  14. Expert system verification and validation study. Delivery 1: Survey and interview questions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA funded questionnaire is presented to help define the state-of-the-practice in the formal evaluation of Expert Systems on current NASA and industry applications. The answers to this questionnaire, together with follow-up interviews, will provide realistic answers to the following questions: (1) How much evaluation is being performed; (2) What evaluation techniques are in use; and (3) What, if any, are the unique issues in evaluating Expert Systems.

  15. Take off with NASA's Kepler Mission!: The Search for Other "Earths"

    ERIC Educational Resources Information Center

    Koch, David; DeVore, Edna K.; Gould, Alan; Harman, Pamela

    2009-01-01

    Humans have long wondered about life in the universe. Are we alone? Is Earth unique? What is it that makes our planet a habitable one, and are there others like Earth? NASA's Kepler Mission seeks the answers to these questions. Kepler is a space-based, specially designed 0.95 m aperture telescope. Launching in 2009, Kepler is NASA's first mission…

  16. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump, speaks before signing Space Policy Directive - 1, directing NASA to return to the moon, in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  17. Lunar Colonization and NASA's Exploration Changes

    NASA Astrophysics Data System (ADS)

    Gavert, Raymond B.

    2006-01-01

    Space colonization is not part of NASA's mission planning. NASA's exploration vision, mission goals and program implementations, however, can have an important affect on private lunar programs leading towards colonization. NASA's exploration program has been described as a journey not a race. It is not like the Apollo mission having tight schedules and relatively unchanging direction. NASA of this era has competing demands from the areas of aeronautics, space science, earth science, space operations and, there are competing demands within the exploration program itself. Under the journey not a race conditions, an entrepreneur thinking about building a hotel on the Moon, with a road to an exploration site, might have difficulty determining where and when NASA might be at a particular place on the Moon. Lunar colonization advocates cannot depend on NASA or other nations with space programs to lead the way to colonization. They must set their own visions, mission goals and schedules. In implementing their colonization programs they will be resource limited. They would be like ``hitchhikers'' following the programs of spacefaring nations identifying programs that might have a fit with their vision and be ready to switch to other programs that may take them in the colonization direction. At times they will have to muster their own limited resources and do things themselves where necessary. The purpose of this paper is to examine current changes within NASA, as a lunar colonization advocate might do, in order to see where there might be areas for fitting into a lunar colonization strategy. The approach will help understand how the ``hitchhiking'' technique might be better utilized.

  18. The AEC-NASA Nuclear Rocket Program

    NASA Astrophysics Data System (ADS)

    Finger, Harold B.

    2002-01-01

    progress. There is no question that the entire program reflects the outstanding contributions of a tremendously effective and diversely capable team of organizations and people. I will then try to sum up the broad benefits that I, personally, had as a result of that experience, how it influenced my future activities throughout my working career, the management principles and lessons that guided me through all the diverse activities I led, as well as emphasizing the major national space system and mission capability benefits that we achieved in that nuclear rocket program and some of the international recognition of that work. There is no question that my assignment to lead the joint AEC-NASA nuclear rocket development when responsibility for nuclear propulsion was transferred from the Air Corps to NASA, on its establishment, involved significant persistence on the part of the then NASA Administrator, Dr. T. Keith Glennan, to overcome the very strong political preferences of powerful congressional figures. Some of that surprised me and I will review that period. Once named to the position of Manager of the joint AEC-NASA Nuclear Propulsion Office, I still had to prove myself to those powerful figures, including Senator Clinton Anderson, which the record and history indicate I did. But the real proof of my contribution to the program was in the positions I took to assure that the program was conducted in a consistently sound technological and management way to overcome and avoid technical problems that were encountered in the program. That required standing firmly with conviction for what I considered sound development.

  19. NASA Education Recommendation Report - Education Design Team 2011

    NASA Technical Reports Server (NTRS)

    Pengra, Trish; Stofan, James

    2011-01-01

    NASA people are passionate about their work. NASA's missions are exciting to learners of all ages. And since its creation in 1958, NASA's people have been passionate about sharing their inspiring discoveries, research and exploration with students and educators. In May 2010, NASA administration chartered an Education Design Team composed of 12 members chosen from the Office of Education, NASA's Mission Directorates and Centers for their depth of knowledge and education expertise, and directed them to evaluate the Agency's program in the context of current trends in education. By improving NASA's educational offerings, he was confident that the Agency can play a leading role in inspiring student interest in science, technology, engineering and mathematics (STEM) as few other organizations can. Through its unique workforce, facilities, research and innovations, NASA can expand its efforts to engage underserved and underrepresented communities in science and mathematics. Through the Agency's STEM education efforts and science and exploration missions, NASA can help the United States successfully compete, prosper and be secure in the 21st century global community. After several months of intense effort, including meeting with education experts; reviewing Administration policies, congressional direction and education research; and seeking input from those passionate about education at NASA, the Education Design Team made six recommendations to improve the impact of NASA's Education Program: (1) Focus the NASA Education Program to improve its impact on areas of greatest national need (2) Identify and strategically manage NASA Education partnerships (3) Participate in National and State STEM Education policy discussions (4) Establish a structure to allow the Office of Education, Centers and Mission Directorates to implement a strategically integrated portfolio (5) Expand the charter of the Education Coordinating Committee to enable deliberate Education Program design (6

  20. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  1. New Direction of NASA Exploration Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Lawson, B. Michael; Barta, Daniel J.

    2006-01-01

    NASA's activities in life support Research and Technology Development (R&TD) have changed in both focus and scope following implementation of recommendations from the Exploration System Architecture Study (ESAS). The limited resources available and the compressed schedule to conduct life support R&TD have required that future efforts address the needs of the Crew Exploration Vehicle (CEV), the Lunar Surface Access Module (LSAM) and Lunar Outpost (LO). Advanced Life Support (ALS) efforts related to long duration planetary bases have been deferred or canceled. This paper describes the scope of the new Exploration Life Support (ELS) project; how it differs from ALS, and how it supports critical needs for the CEV, LSAM and LO. In addition, this paper provides rationale for changes in the scope and focus of technical content within ongoing life support R&TD activities.

  2. Report on the NASA Soft and Complex Condensed Matter Workshop

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Technical Monitor); Chaikin, Paul; Nagel, Sidney

    2003-01-01

    During the past decade, NASA has been a leading U.S. supporter of soft and complex condensed matter research. Experiments in space shuttles, MIR, the International Space Station (ISS), as well as ground-based research have provided new insights into several areas including hard sphere colloids, crystal growth, phase ordering, and transport of complex fluids at the critical point. To help define the next generation of flight experiments needed to answer remaining important questions in the field of soft and complex condensed matter, NASA's Office of Biological and Physical Science sponsored a workshop on Soft and Complex Condensed Matter, March 6, 2003. This workshop asked leading members in the field of Soft and Complex Condensed Matter (at the APS March Meeting) to help identify exciting unanswered questions in the field, along with specific research topics for which the absence of gravity would enable significant results unobtainable by other means. The workshop was attended by 24 participants from universities across the U.S. and from five different countries (in addition to NASA GRC participants).

  3. NASA Mission: Encouraging the Pursuit of STEM Excellence

    NASA Technical Reports Server (NTRS)

    Lizcano, Maricela

    2015-01-01

    In this presentation, Dr. Maricela Lizcano will discuss her academic career path at UTPA that directed her to earn a PhD in Mechanical Engineering. Dr. Lizcano will also discuss her research area at NASA Glenn Research Center (NASA-GRC) and the various educational and career opportunities available at NASA. Her experiences, challenges, and goals will serve to both advise and encourage UTRGV students to pursue a STEM career.

  4. NASA's Exobiology Program.

    PubMed

    DeVincenzi, D L

    1984-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life, and life-related molecules, on Earth and throughout the universe. Emphasis is focused on determining how the rate and direction of these processes were affected by the chemical and physical environment of the evolving planet, as well as by planetary, solar, and astrophysical phenomena. This is accomplished by a multi-disciplinary program of research conducted by over 60 principal investigators in both NASA and university laboratories. Major program thrusts are in the following research areas: biogenic elements; chemical evolution; origin of life; organic geochemistry; evolution of higher life forms; solar system exploration; and the search for extraterrestrial intelligence (SETI).

  5. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.

  6. An overview of revised NASA safety standard 1740.14

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert; Eichler, Peter; Johnson, Nicholas

    1997-01-01

    Following a broad review of the debris control guidelines outside of NASA and according to additional feedback on the guidelines from within NASA, revisions were made to the NASA safety standard 1740.14. The NASA policy to limit the generation of orbital debris on NASA missions, stated in the NASA management instruction 1700.8 and implemented in the form of the NASA safety standard (NSS) 1740.14 is described together with the revisions implemented. The overall direction of the guidelines is the same, but the details of many of the guidelines were changed, including: changes for tether programs and for the control of operational debris. The NASA will continue to review the guidelines as new measurements and improved models of the environment are obtained.

  7. NASA SMD STEM Activation: Enabling NASA Science Experts and Content into the Learning Environment

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Erickson, Kristen

    2018-01-01

    The NASA Science Mission Directorate (SMD) restructured its efforts to enhance learning in science, technology, engineering, and mathematics (STEM) content areas through a cooperative agreement notice issued in 2015. This effort resulted in the competitive selection of 27 organizations to implement a strategic approach that leverages SMD’s unique assets. Three of these are exclusively directed towards Astrophysics. These unique assets include SMD’s science and engineering content and Science Discipline Subject Matter Experts. Awardees began their work during 2016 and span all areas of Earth and space science and the audiences NASA SMD intends to reach. The goal of the restructured STEM Activation program is to further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages. The objectives are to enable STEM education, improve US scientific literacy, advance national educational goals, and leverage efforts through partnerships. This presentation will provide an overview of the NASA SMD STEM Activation landscape and its commitment to meeting user needs.

  8. NASA Uniform Files Index

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This handbook is a guide for the use of all personnel engaged in handling NASA files. It is issued in accordance with the regulations of the National Archives and Records Administration, in the Code of Federal Regulations Title 36, Part 1224, Files Management; and the Federal Information Resources Management Regulation, Subpart 201-45.108, Files Management. It is intended to provide a standardized classification and filing scheme to achieve maximum uniformity and ease in maintaining and using agency records. It is a framework for consistent organization of information in an arrangement that will be useful to current and future researchers. The NASA Uniform Files Index coding structure is composed of the subject classification table used for NASA management directives and the subject groups in the NASA scientific and technical information system. It is designed to correlate files throughout NASA and it is anticipated that it may be useful with automated filing systems. It is expected that in the conversion of current files to this arrangement it will be necessary to add tertiary subjects and make further subdivisions under the existing categories. Established primary and secondary subject categories may not be changed arbitrarily. Proposals for additional subject categories of NASA-wide applicability, and suggestions for improvement in this handbook, should be addressed to the Records Program Manager at the pertinent installation who will forward it to the NASA Records Management Office, Code NTR, for approval. This handbook is issued in loose-leaf form and will be revised by page changes.

  9. The NASA Space Power Technology Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Hudson, W. R.; Randolph, L. P.

    1979-01-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.

  10. Advanced Curation Activities at NASA: Implications for Astrobiological Studies of Future Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  11. Evolving directions in NASA's planetary rover requirements and technology

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-01-01

    The evolution of NASA's planning for planetary rovers (that is robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that was developed to achieve the desired capabilities is reviewed. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. Robotic vehicles and their associated control systems, developed in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission, are described. Goals suggested at the time for such a MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions are presented. Some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible are described.

  12. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  13. NASA’s Universe of Learning: Providing a Direct Connection to NASA Science for Learners of all Ages with ViewSpace

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Rhue, Timothy; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Godfrey, John; Lee, Janice C.; Manning, Colleen

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. As one example, NASA’s Universe of Learning program is uniquely able to provide informal learning venues with a direct connection to the science of NASA astrophysics via the ViewSpace platform. ViewSpace is a modular multimedia exhibit where people explore the latest discoveries in our quest to understand the universe. Hours of awe-inspiring video content connect users’ lives with an understanding of our planet and the wonders of the universe. This experience is rooted in informal learning, astronomy, and earth science. Scientists and educators are intimately involved in the production of ViewSpace material. ViewSpace engages visitors of varying backgrounds and experience at museums, science centers, planetariums, and libraries across the United States. In addition to creating content, the Universe of Learning team is updating the ViewSpace platform to provide for additional functionality, including the introduction of digital interactives to make ViewSpace a multi-modal learning experience. During this presentation we will share the ViewSpace platform, explain how Subject Matter Experts are critical in creating content for ViewSpace, and how we are addressing audience

  14. NASA's Research in Aircraft Vulnerability Mitigation

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    2005-01-01

    Since its inception in 1958, the National Aeronautics and Space Administration s (NASA) role in civil aeronautics has been to develop high-risk, high-payoff technologies to meet critical national aviation challenges. Following the events of Sept. 11, 2001, NASA recognized that it now shared the responsibility for improving homeland security. The NASA Strategic Plan was modified to include requirements to enable a more secure air transportation system by investing in technologies and collaborating with other agencies, industry, and academia. NASA is conducting research to develop and advance innovative and commercially viable technologies that will reduce the vulnerability of aircraft to threats or hostile actions, and identify and inform users of potential vulnerabilities in a timely manner. Presented in this paper are research plans and preliminary status for mitigating the effects of damage due to direct attacks on civil transport aircraft. The NASA approach to mitigation includes: preventing loss of an aircraft due to a hit from man-portable air defense systems; developing fuel system technologies that prevent or minimize in-flight vulnerability to small arms or other projectiles; providing protection from electromagnetic energy attacks by detecting directed energy threats to aircraft and on/off-board systems; and minimizing the damage due to high-energy attacks (explosions and fire) by developing advanced lightweight, damage-resistant composites and structural concepts. An approach to preventing aircraft from being used as weapons of mass destruction will also be discussed.

  15. NASA's Microgravity Fluid Physics Strategic Research Roadmap

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Singh, Bhim S.

    2004-01-01

    The Microgravity Fluid Physics Program at NASA has developed a substantial investigator base engaging a broad crosssection of the U.S. scientific community. As a result, it enjoys a rich history of many significant scientific achievements. The research supported by the program has produced many important findings that have been published in prestigious journals such as Science, Nature, Journal of Fluid Mechanics, Physics of Fluids, and many others. The focus of the program so far has primarily been on fundamental scientific studies. However, a recent shift in emphasis at NASA to develop advanced technologies to enable future exploration of space has provided motivation to add a strategic research component to the program. This has set into motion a year of intense planning within NASA including three workshops to solicit inputs from the external scientific community. The planning activities and the workshops have resulted in a prioritized list of strategic research issues along with a corresponding detailed roadmap specific to fluid physics. The results of these activities were provided to NASA s Office of Biological and Physical Research (OBPR) to support the development of the Enterprise Strategy document. This paper summarizes these results while showing how the planned research supports NASA s overall vision through OBPR s organizing questions.

  16. SMD Technology Development Story for NASA Annual Technology report

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  17. Early Results from NASA's Assessment of Satellite Servicing

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Reed, Benjamin B.; Townsend, Jacqueline A.; Ahmed, Mansoor; Whipple, Arthur O.; Oegerle, William R.

    2010-01-01

    Following recommendations by the NRC, NASA's FY 2008 Authorization Act and the FY 2009 and 2010 Appropriations bills directed NASA to assess the use of the human spaceflight architecture to service existing/future observatory-class scientific spacecraft. This interest in satellite servicing, with astronauts and/or with robots, reflects the success that NASA achieved with the Shuttle program and HST on behalf of the astronomical community as well as the successful construction of ISS. This study, led by NASA GSFC, will last about a year, leading to a final report to NASA and Congress in autumn 2010. We will report on its status, results from our March satellite servicing workshop, and recent concepts for serviceable scientific missions.

  18. Preparing for Eclipse 2017 on This Week @NASA – August 11, 2017

    NASA Image and Video Library

    2017-08-11

    The Aug. 21 total solar eclipse across America is generating a lot of interest – and a lot of questions. You’ll find answers to many of your eclipse questions at NASA’s Eclipse 2017 website -- eclipse2017.nasa.gov. The site is full of information to help you prepare for this rare celestial event – including eclipse-related activities, events, viewing safety tips, and other resources. Then, on the day of the eclipse, you can see the event “Through the Eyes of NASA” – during a special NASA TV broadcast that includes coast-to-coast coverage from the ground, from the air and from space. Coverage begins with a special pre-show at noon eastern – followed by in-depth coverage at 1pm. You can also watch on Aug. 21 at www.nasa.gov/eclipselive. Also, TDRS-M Update, Webb’s Sunshield Layers Installed, RS-25 Engine Testing Rolls On, and Chief Technologist Visits Industry Partner!

  19. Exploiting Expertise and Knowledge Sharing Online for the Benefit of NASA's GN&C Community of Practice

    NASA Technical Reports Server (NTRS)

    Topousis, Daria E.; Lebsock, Kenneth L.; Dennehy, Cornelius J.

    2010-01-01

    In 2004, NASA faced major knowledge sharing challenges due to geographically isolated field centers that inhibited engineers from sharing their experiences, expertise, ideas, and lessons learned. The necessity to collaborate on complex development projects and the reality of constrained project resources together drove the need for ensuring that personnel at all NASA centers had comparable skill sets and that engineers could find resources in a timely fashion. Mission failures and new directions for the Agency also demanded better collaborative tools for NASA's engineering workforce. In response to these needs, the online NASA Engineering Network (NEN) was formed by the NASA Office of the Chief Engineer to provide a multi-faceted system for overcoming geographic and cultural barriers. NEN integrates communities of practice with a cross-repository search and the Lessons Learned Information System. This paper describes the features of the GN&C engineering discipline CoP site which went live on NEN in May of 2008 as an online means of gathering input and guidance from practitioners. It allows GN&C discipline expertise captured at one field center to be shared in a collaborative way with the larger discipline CoP spread across the entire Agency. The site enables GN&C engineers to find the information they need quickly, to find solutions to questions from experienced engineers, and to connect with other practitioners regardless of geographic location, thus increasing the probability of project success.

  20. A Nominal Balloon Instrument Payload to Address Questions from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Kremic, Tibor; Dankanich, John

    The Planetary Science Decadal Survey (entitled "Visions and Voyages for Planetary Science in the Decade 2013 - 2022", available online at https://solarsystem.nasa.gov/2013decadal/) serves as a roadmap for activities to be pursued by the Planetary Science Division of NASA's Science Mission Directorate. This document outlines roughly 200 key research areas and questions in chapters covering different parts of the solar system (e.g., Mars, Small Bodies, etc.). We have reviewed the Decadal Survey to assess whether any of the key questions can be addressed by high altitude balloon-borne payloads. Although some questions can only be answered by in situ experiments, we found that approximately one quarter of the key questions were well suited to balloon payloads. In many of those cases, balloons were competitive or superior to other existing facilities, including HST, SOFIA or Keck telescopes. We will present specific telescope and instrument bench designs that are capable of addressing key questions in the Decadal Survey. The instrument bench takes advantage of two of the main benefits of high-altitude observations: diffraction-limited imaging in visible and UV wavelengths and unobstructed spectroscopy in near-IR (1 - 5 microns) wavelengths. Our optical prescription produces diffraction-limited PSFs in both visible and IR beams. We will discuss pointing and thermal stability, two of the main challenges facing a balloon-borne telescope.

  1. Protein Electrochemistry: Questions and Answers.

    PubMed

    Fourmond, V; Léger, C

    This chapter presents the fundamentals of electrochemistry in the context of protein electrochemistry. We discuss redox proteins and enzymes that are not photoactive. Of course, the principles described herein also apply to photobioelectrochemistry, as discussed in later chapters of this book. Depending on which experiment is considered, electron transfer between proteins and electrodes can be either direct or mediated, and achieved in a variety of configurations: with the protein and/or the mediator free to diffuse in solution, immobilized in a thick, hydrated film, or adsorbed as a sub-monolayer on the electrode. The experiments can be performed with the goal to study the protein or to use it. Here emphasis is on mechanistic studies, which are easier in the configuration where the protein is adsorbed and electron transfer is direct, but we also explain the interpretation of signals obtained when diffusion processes affect the response.This chapter is organized as a series of responses to questions. Questions 1-5 are related to the basics of electrochemistry: what does "potential" or "current" mean, what does an electrochemical set-up look like? Questions 6-9 are related to the distinction between adsorbed and diffusive redox species. The answers to questions 10-13 explain the interpretation of slow and fast scan voltammetry with redox proteins. Questions 14-19 deal with catalytic electrochemistry, when the protein studied is actually an enzyme. Questions 20, 21 and 22 are general.

  2. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  3. Current state and future direction of computer systems at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)

    1992-01-01

    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  4. NASA Capability Roadmaps Executive Summary

    NASA Technical Reports Server (NTRS)

    Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan

    2005-01-01

    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.

  5. Direct Broadcast Satellite: Radio Program

    NASA Astrophysics Data System (ADS)

    Hollansworth, James E.

    1992-10-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  6. Exobiology: The NASA program

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Harper, Lynn; Andersen, Dale

    1992-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life in the universe. To do this, the Exobiology Program seeks to provide a critical framework and some key research to allow NASA to bear the combined talents and capabilities of the agency and the scientific community, and the unique opportunities afforded by space exploration. To provide structure and direction to the quest for answers, the Exobiology Program has instituted a comprehensive research program divided into four elements which are being implemented at several of NASA's research centers and in the university community. These program elements correspond to the four major epochs in the evolution of living systems: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life. The overall research program is designed to trace the pathways leading from the origin of the universe through the major epochs in the story of life.

  7. Quantifying the Aerosol Semi-Direct Effect in the NASA GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Randles, Cynthia A.; Colarco, Peter R.; daSilva, Arlindo

    2011-01-01

    Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorological analyses introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available

  8. Teaching with Cases: Learning to Question.

    ERIC Educational Resources Information Center

    Boehrer, John; Linsky, Marty

    1990-01-01

    This chapter discusses the origins of the case method, looks at the question of what is a case, gives ideas about learning in case teaching, the purposes it can serve in the classroom, the ground rules for case discussion, including the role of questions, and new directions for case teaching. (MLW)

  9. Modeling Guru: Knowledge Base for NASA Modelers

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  10. Building Knowledge Graphs for NASA's Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of

  11. NASA/OAI Research Associates program

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1994-01-01

    The intent of this activity was the development of a cooperative program between the Ohio Aerospace Institute and the NASA Lewis Research Center with the objective of better preparing recent university graduates for careers in government aerospace research laboratories. The selected individuals were given the title of research associate. To accomplish the aims of this effort: (1) the research associates were introduced to the NASA Lewis Research Center and its mission/programs, (2) the research associates directly participated in NASA research and development programs, and (3) the research associates were given continuing educational opportunities in specialized areas. A number of individuals participated in this project during the discourse of this cooperative agreement. Attached are the research summaries of eight of the research associates. These reports give a very good picture of the research activities that were conducted by the associates.

  12. The Economics of NASA Mission Cost Reserves

    NASA Technical Reports Server (NTRS)

    Whitley, Sally; Shinn, Stephen

    2012-01-01

    Increases in NASA mission costs have led to analysis of the causes and magnitude of historical mission overruns as well as mitigation and prevention attempts. This paper hypothesizes that one cause is that the availability of reserves may reduce incentives to control costs. We draw a comparison to the insurance concept of moral hazard, and we use actuarial techniques to better understand the increase in mission costs due to the availability of reserves. NASA's CADRe database provided the data against which we tested our hypothesis and discovered that there is correlation between the amount of available reserves and project overruns, particularly for mission hardware cost increases. We address the question of how to prevent reserves from increasing mission spending without increasing cost risk to projects.

  13. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  14. The Effects of Adjunct Questions on Prose Learning.

    ERIC Educational Resources Information Center

    Hamaker, Christiaan

    1986-01-01

    The research literature on the effects of factual and higher order adjunct questions is reviewed. The influence of 13 design variables on the direction and size of adjunct-questions effects is investigated. It is indicated that higher order adjunct questions may have a more general facilitative effect. (Author/JAZ)

  15. The Sun Forms a Question

    NASA Image and Video Library

    2017-12-29

    Oddly enough, an elongated coronal hole (the darker area near the center) seems to shape itself into a single, recognizable question mark over the period of one day (Dec. 21-22, 2017). Coronal holes are areas of open magnetic field that appear darker in extreme ultraviolet light, as is seen here. These holes are the source of streaming plasma that we call solar wind. While this exercise is akin to seeing shapes in clouds, it is fun to consider what the sun might be asking? Perhaps what the new year will bring? Guess what I am going to do next? Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22197

  16. Questioning the Questions

    ERIC Educational Resources Information Center

    Tienken, Christopher H.; Goldberg, Stephanie; DiRocco, Dominic

    2010-01-01

    Historical accounts of questioning used in the education process trace back to Socrates. One of the best examples of his use of questioning is found in Plato's "The Republic." Socrates used a series of strategic questions to help his student Glaucon come to understand the concept of justice. Socrates purposefully posed a series of…

  17. Reflections on Descriptive Psychology: NASA, Media and Technology, Observation

    NASA Technical Reports Server (NTRS)

    Aucoin, Paschal J., Jr.

    1999-01-01

    At NASA, we have used methods of Descriptive Psychology (DP) to solve problems in several areas: Simulation of proposed Lunar/Mars missions at high level to assess feasibility and needs in the robotics and automation areas. How we would go about making a "person-like" robot. Design and implementation of Systems Engineering practices on behalf of future projects with emphasis on interoperability. Design of a Question and Answer dialog system to handle student questions about Advanced Life Support (ALS) systems - students learn biology by applying it to ALS projects.

  18. A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.

    PubMed

    Sarrouti, Mourad; Ouatik El Alaoui, Said

    2017-05-18

    Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.

  19. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    Ivanka Trump, advisor to President Donald Trump, touches a sample from the moon that former astronaut Jack Schmitt, left, collected during the Apollo 17 mission, just after President Trump signed Space Policy Directive - 1, directing NASA to return to the moon, in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  20. Creating a NASA-Wide Museum Alliance

    NASA Technical Reports Server (NTRS)

    Sohus, Anita M.

    2006-01-01

    NASA's Museum Alliance is a nationwide network of informal educators at museums, science centers, and planetariums that present NASA information to their local audiences. Begun in 2002 as the Mars Museum Visualization Alliance with advisors from a dozen museums, the network has grown to over 300 people from 200 organizations, including a dozen or so international partners. The network has become a community of practice among these informal educators who work with students, educators, and the general public on a daily basis, presenting information and fielding questions about space exploration. Communications are primarily through an active listserve, regular telecons, and a pass word protected website. Professional development is delivered via telecons and downloadable presentations. Current content offerings include Mars exploration, Cassini, Stardust, Genesis, Deep Impact, Earth observations, STEREO, and missions to explore beyond our solar system.

  1. Standards of conduct for NASA employees

    NASA Technical Reports Server (NTRS)

    1987-01-01

    'Standards of Conduct' for employees (14 CFR Part 1207) is set forth in this handbook and is hereby incorporated in the NASA Directives System. This handbook incorporates, for the convenience of NASA employees, the regulations now in effect prescribing standards of conduct for NASA employees. These regulations set forth the high ethical standards of conduct required of NASA employees in carrying out their duties and responsibilities. These regulations have been approved by the Office of Government Ethics, Office of Personnel Management. The regulations incorporated in this handbook were first published in the Federal Register on October 21, 1967 (32 FR 14648-14659); Part B concerning the acceptance of gifts, gratuities, or entertainment was extensively revised on January 19, 1976 (41 FR 2631-2633) to clarify and generally to restrict the exceptions to the general rule against the acceptance by a NASA employee from persons or firms doing or seeking business with NASA. Those regulations were updated on January 29, 1985 (50 FR 3887) to ensure conformity to the Ethics in Government Act of 1978 regarding the public financial disclosure statement. These regulations were published in the Federal Register on June 16, 1987 (52 FR 22755-764) and a correction was printed on Sept. 28, 1987 (52 FR 36234).

  2. NASA Update

    NASA Image and Video Library

    2010-04-08

    "NASA Update" program with NASA Administrator Charles Bolden, NASA Deputy Administrator Lori Garver and NASA Acting Asistant Administrator for Public Affairs Bob Jacobs as moderator, NASA Headquarters, Thursday, April 8, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. NASA's EOSDIS, Trust and Certification

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, managing most of NASA's Earth science data from satellites, airborne sensors, filed campaigns and other activities. Having been designated by the Federal Government as a project responsible for production, archiving and distribution of these data through its Distributed Active Archive Centers (DAACs), the Earth Science Data and Information System Project (ESDIS) is responsible for EOSDIS, and is legally bound by the Office of Management and Budgets circular A-130, the Federal Records Act. It must follow the regulations of the National Institute of Standards and Technologies (NIST) and National Archive and Records Administration (NARA). It must also follow the NASA Procedural Requirement 7120.5 (NASA Space Flight Program and Project Management). All these ensure that the data centers managed by ESDIS are trustworthy from the point of view of efficient and effective operations as well as preservation of valuable data from NASA's missions. Additional factors contributing to this trust are an extensive set of internal and external reviews throughout the history of EOSDIS starting in the early 1990s. Many of these reviews have involved external groups of scientific and technological experts. Also, independent annual surveys of user satisfaction that measure and publish the American Customer Satisfaction Index (ACSI), where EOSDIS has scored consistently high marks since 2004, provide an additional measure of trustworthiness. In addition, through an effort initiated in 2012 at the request of NASA HQ, the ESDIS Project and 10 of 12 DAACs have been certified by the International Council for Science (ICSU) World Data System (WDS) and are members of the ICSUWDS. This presentation addresses questions such as pros and cons of the certification process, key outcomes and next steps regarding certification. Recently, the ICSUWDS and Data Seal of Approval (DSA) organizations

  4. Contested Ground: The Historical Debate Over NASA's Mission

    NASA Technical Reports Server (NTRS)

    Kay, W. D.

    2000-01-01

    This book manuscript studies in depth the development and maturation of the NASA mission from the inception of the organization until the present. This study is involved in a wide divergence of questions over roles and missions: the agency's R&D/operational activities, the decentralized/centralized approaches to management, the debate over methods of conducting business. A fundamental part of this work involves the analysis of not only how NASA has defined its role but how senior government leaders, the Congress, and society at large have viewed this matter. It is be especially useful in tracing the evolution of mission ideas in the space agency and, therefore, of great use to officials wrestling with this perennial issue.

  5. The NASA Space Biology Program

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1982-01-01

    A discussion is presented of the research conducted under the auspices of the NASA Space Biology Program. The objectives of this Program include the determination of how gravity affects and how it has shaped life on earth, the use of gravity as a tool to investigate relevant biological questions, and obtaining an understanding of how near-weightlessness affects both plants and animals in order to enhance the capability to use and explore space. Several areas of current developmental research are discussed and the future focus of the Program is considered.

  6. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  7. NASA Performance Plan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Government Performance and Results Act (GPRA) passed by Congress and signed by the President in 1993 provides a new tool to improve the efficiency of all Federal agencies. The goals of GPRA are to: Improve citizen confidence in Government performance; Improve Federal program management, effectiveness, and public accountability; and Improve congressional decisionmaking on where to commit the Nation's financial and human resources. The Act directs Executive Branch agencies to develop a customer-focused strategic plan that aligns activities with concrete missions and goals. The first plans were submitted in September 1998 as part of the Fiscal Year 1999 (FY99) budget process. These budget submissions were expected to support the goals expressed in the agency strategic plans. The Act also directs agencies to manage and measure results to justify congressional appropriations and authorizations. Six months after the completion of the fiscal year, agencies will report on the degree of success in achieving the goals and evaluation measures defined in the strategic and performance plans. The plans required by GPRA have been submitted to the Office of Management and Budget (OMB) and to Congress. Copies of NASA plans are available from the Office of Policy and Plans at NASA Headquarters and can be accessed on the i nterinet web sites identified in the Appendix.

  8. Advanced Curation Activities at NASA: Preparing to Receive, Process, and Distribute Samples Returned from Future Missions

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Zeigler, Ryan A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  9. NASA News Conference on Mercury's Polar Regions

    NASA Image and Video Library

    2017-12-08

    Tune in to NASA's News Conference today, November 29, 2012, at 2 p.m. EST for new findings about Mercury's polar regions. www.nasa.gov/multimedia/nasatv/index.html Due to its nearly vertical spin axis, Mercury's north pole is never fully sunlit. If it were, it might look something like this image, which is an orthographic projection of a global mosaic. The dark area towards the center of the image contains the north pole. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  11. The role of questions in the science classroom - how girls and boys respond to teachers' questions

    NASA Astrophysics Data System (ADS)

    Eliasson, Nina; Karlsson, Karl Göran; Sørensen, Helene

    2017-03-01

    The purpose of this study was to explore (a) to what extent male and female science teachers pose different types of questions and (b) if the type of science question posed influences the extent to which boys or girls respond to them. Transcripts of the teacher-student interaction in a whole-class situation were analysed, with attention paid to interactions that involved science questions. Closed and open questions were used. Results revealed that the percentage of closed questions posed corresponded to 87%. Results show that teachers mainly use closed questions, and responses from boys to closed questions are in the majority regardless of if the question is posed by a female teacher (56%) or a male teacher (64%). Both categories of closed questions are mainly considered lower order questions that do not facilitate higher cognitive levels in students. Thus, a direct consequence of an excessive use of this type of questions may be that both boys and girls will be given less opportunities to practise their ability to talk about science. Less access to general classroom interaction may also affect girls' attitudes to science in a negative way which could ultimately hamper the recruitment of girls to higher scientific studies.

  12. Turbine Seal Research at NASA GRC

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Steinetz, Bruce M.; Delgado, Irebert R.; Hendricks, Robert C.

    2011-01-01

    Low-leakage, long-life turbomachinery seals are important to both Space and Aeronautics Missions. (1) Increased payload capability (2) Decreased specific fuel consumption and emissions (3) Decreased direct operating costs. NASA GRC has a history of significant accomplishments and collaboration with industry and academia in seals research. NASA's unique, state-of-the-art High Temperature, High Speed Turbine Seal Test Facility is an asset to the U.S. Engine / Seal Community. Current focus is on developing experimentally validated compliant, non-contacting, high temperature seal designs, analysis, and design methodologies to enable commercialization.

  13. NASA Goddard Thermal Technology Overview 2016

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2016-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  14. NASA Goddard Thermal Technology Overview 2018

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  15. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  16. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Astrophysics Data System (ADS)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  17. Future Directions for Fusion Propulsion Research at NASA

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Cassibry, Jason T.

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. .If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. Arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  18. NASA's Agency-Wide Strategy for Environmental Regulatory Risk Analysis and Communication

    NASA Technical Reports Server (NTRS)

    Duda, Kristen; Scroggins, Sharon

    2008-01-01

    NASA's mission is to pioneer the future in space exploration, scientific discovery, and aeronautics research. To help enable existing and future programs to pursue this mission, NASA has established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) to proactively identify, analyze, and communicate environmental regulatory risks to the NASA community. The RRAC PC is chartered to evaluate the risks posed to NASA Programs and facilities by environmentally related drivers. The RRAC PC focuses on emerging environmental regulations, as well as risks related to operational changes that can trigger existing environmental requirements. Changing regulations have the potential to directly affect program activities. For example, regulatory changes can restrict certain activities or operations by mandating changes in how operations may be done or limiting where or how certain operations can take place. Regulatory changes also can directly affect the ability to use certain materials by mandating a production phase-out or restricting usage applications of certain materials. Such changes can result in NASA undertaking material replacement efforts. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented several strategies for proactively managing regulatory change to minimize potential adverse impacts to NASA Programs and facilities. This presentation highlights the lessons learned through establishing the RRAC PC, the process by which the RRAC PC monitors and distributes information about emerging regulatory requirements, and the cross

  19. NASA's Agency-wide Strategy for Environmental Regulatory Risk Analysis and Communication

    NASA Technical Reports Server (NTRS)

    Duda, Kristen; Scroggins. Sharon

    2008-01-01

    NASA's mission is to pioneer the future in space exploration, scientific discovery, and aeronautics research. To help enable existing and future programs to pursue this mission, NASA has established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) to proactively identify, analyze, and communicate environmental regulatory risks to the NASA community. The RRAC PC is chartered to evaluate the risks posed to NASA Programs and facilities by environmentally related drivers. The RRAC PC focuses on emerging environmental regulations, as well as risks related to operational changes that can trigger existing environmental requirements. Changing regulations have the potential to directly affect program activities. For example, regulatory changes can restrict certain activities or operations by mandating changes in how operations may be done or limiting where or how certain operations can take place. Regulatory changes also can directly affect the ability to use certain materials by mandating a production phase-out or restricting usage aPi'iications of certain materials. Such changes can result in NASA undertaking material replacement efforts. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented several strategies for proactively managing regulatory change to minimize potential adverse impacts to NASA Programs and facilities. This presentation highlights the lessons learned through establishing the RRAC PC, the process by which the RRAC PC monitors and distributes information about emerging regulatory requirements, and the cross

  20. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    For the past 5 years, the MY NASA DATA (MND) project at NASA Langley has developed and adapted tools and materials aimed at enabling student access to real NASA Earth science satellite data. These include web visualization tools including Google Earth capabilities, but also GPS and graphing calculator exercises, Excel spreadsheet analyses, and more. The project team, NASA scientists, and over 80 classroom science teachers from around the country, have created over 85 lesson plans and science fair project ideas that demonstrate NASA satellite data use in the classroom. With over 150 Earth science parameters to choose from, the MND Live Access Server enables scientific inquiry on numerous interconnected Earth and environmental science topics about the Earth system. Teachers involved in the project report a number of benefits, including networking with other teachers nationwide who emphasize data collection and analysis in the classroom, as well as learning about other NASA resources and programs for educators. They also indicate that the MND website enhances the inquiry process and facilitates the formation of testable questions by students (a task that is typically difficult for students to do). MND makes science come alive for students because it allows them to develop their own questions using the same data scientists use. MND also provides educators with a rich venue for science practice skills, which are often overlooked in traditional curricula as teachers concentrate on state and national standards. A teacher in a disadvantaged school reports that her students are not exposed to many educational experiences outside the classroom. MND allows inner city students to be a part of NASA directly. They are able to use the same information that scientists are using and this gives them inspiration. In all classrooms, the MND microsets move students out of their local area to explore global data and then zoom back into their homes realizing that they are a part of the

  1. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George R.

    1996-01-01

    It is widely known that the average American citizen has either no idea or the wrong impression of what NASA is doing. The most common impression is that NASA's sole mission is to build and launch spacecraft and that the everyday experience of the common citizen would be impacted very little if NASA failed to exist altogether. Some feel that most of NASA's efforts are much too expensive and that the money would be better used on other efforts. Others feel that most of NASA's efforts either fail altogether or fail to meet their original objectives. Yet others feel that NASA is so mired in bureaucracy that it is no longer able to function. The goal of the NASA Ambassadors Program (NAP) is to educate the general populace as to what NASA's mission and goals actually are, to re-excite the "man on the street" with NASA's discoveries and technologies, and to convince him that NASA really does impact his everyday experience and that the economy of the U.S. is very dependent on NASA-type research. Each of the NASA centers currently run a speakers bureau through its Public Affairs Office (PAO). The speakers, NASA employees, are scheduled on an "as available" status and their travel is paid by NASA. However, there are only a limited number of them and their message may be regarded as being somewhat biased as they are paid by NASA. On the other hand, there are many members of NASA's summer programs which come from all areas of the country. Most of them not only believe that NASA's mission is important but are willing and able to articulate it to others. Furthermore, in the eyes of the public, they are probably more effective as ambassadors for NASA than are the NASA employees, as they do not derive their primary funding from it. Therefore it was decided to organize materials for them to use in presentations to general audiences in their home areas. Each person who accepted these materials was to be called a "NASA Ambassador".

  2. Evaluating the Effectiveness of the 2003-2004 NASA SCIence Files(trademark) Program

    NASA Technical Reports Server (NTRS)

    Caton, Randall H.; Ricles, Shannon S.; Pinelli, Thomas E.; Legg, Amy C.; Lambert, Matthew A.

    2005-01-01

    The NASA SCI Files is an Emmy award-winning series of instructional programs for grades 3-5. Produced by the NASA Center for Distance Learning, programs in the series are research-, inquiry-, standards-, teacher- and technology-based. Each NASA SCI Files program (1) integrates mathematics, science, and technology; (2) uses Problem-Based Learning (PBL) to enhance and enrich the teaching and learning of science; (3) emphasizes science as inquiry and the scientific method; (4) motivates students to become critical thinkers and active problem solvers; and (5) uses NASA research, facilities, and personnel to raise student awareness of careers and to exhibit the "real-world" application of mathematics, science, and technology. In April 2004, 1,500 randomly selected registered users of the NASA SCI Files were invited to complete a survey containing a series of questions. A total of 263 surveys were received. This report contains the quantitative and qualitative results of that survey.

  3. What is a Question?

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A given question can be defined in terms of the set of statements or assertions that answer it. Application of the logic of inference to this set of assertions allows one to derive the logic of inquiry among questions. There are interesting symmetries between the logics of inference and inquiry; where probability describes the degree to which a premise implies an assertion, there exists an analogous quantity that describes the bearing or relevance that a question has on an outstanding issue. These have been extended to suggest that the logic of inquiry results in functional relationships analogous to, although more general than, those found in information theory. Employing lattice theory, I examine in greater detail the structure of the space of assertions and questions demonstrating that the symmetries between the logical relations in each of the spaces derive directly from the lattice structure. Furthermore, I show that while symmetries between the spaces exist, the two lattices are not isomorphic. The lattice of assertions is described by a Boolean lattice 2(sup N) whereas the lattice of real questions is shown to be a sublattice of the free distributive lattice FD(N) = 2(sup 2(sup N)). Thus there does not exist a one-to-one mapping of assertions to questions, there is no reflection symmetry between the two spaces, and questions in general do not possess unique complements. Last, with these lattice structures in mind, I discuss the relationship between probability, relevance and entropy.

  4. NASA metric transition plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA science publications have used the metric system of measurement since 1970. Although NASA has maintained a metric use policy since 1979, practical constraints have restricted actual use of metric units. In 1988, an amendment to the Metric Conversion Act of 1975 required the Federal Government to adopt the metric system except where impractical. In response to Public Law 100-418 and Executive Order 12770, NASA revised its metric use policy and developed this Metric Transition Plan. NASA's goal is to use the metric system for program development and functional support activities to the greatest practical extent by the end of 1995. The introduction of the metric system into new flight programs will determine the pace of the metric transition. Transition of institutional capabilities and support functions will be phased to enable use of the metric system in flight program development and operations. Externally oriented elements of this plan will introduce and actively support use of the metric system in education, public information, and small business programs. The plan also establishes a procedure for evaluating and approving waivers and exceptions to the required use of the metric system for new programs. Coordination with other Federal agencies and departments (through the Interagency Council on Metric Policy) and industry (directly and through professional societies and interest groups) will identify sources of external support and minimize duplication of effort.

  5. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  6. Benefit from NASA

    NASA Image and Video Library

    2004-04-15

    Technology derived by NASA for monitoring control gyros in the Skylab program is directly applicable to the problems of fault detection of railroad wheel bearings. Marhsall Space Flight Center's scientists have developed a detection concept based on the fact that bearing defects excite resonant frequency of rolling elements of the bearing as they impact the defect. By detecting resonant frequency and subsequently analyzing the character of this signal, bearing defects may be detected and identified as to source.

  7. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    NASA Technical Reports Server (NTRS)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  8. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

  9. Wicked problems in space technology development at NASA

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Stevens, John

    2016-01-01

    Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards

  10. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  11. NASA Risk-Informed Decision Making Handbook

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Stamatelatos, Michael; Maggio, Gaspare; Everett, Christopher; Youngblood, Robert; Rutledge, Peter; Benjamin, Allan; Williams, Rodney; Smith, Curtis; Guarro, Sergio

    2010-01-01

    This handbook provides guidance for conducting risk-informed decision making in the context of NASA risk management (RM), with a focus on the types of direction-setting key decisions that are characteristic of the NASA program and project life cycles, and which produce derived requirements in accordance with existing systems engineering practices that flow down through the NASA organizational hierarchy. The guidance in this handbook is not meant to be prescriptive. Instead, it is meant to be general enough, and contain a sufficient diversity of examples, to enable the reader to adapt the methods as needed to the particular decision problems that he or she faces. The handbook highlights major issues to consider when making decisions in the presence of potentially significant uncertainty, so that the user is better able to recognize and avoid pitfalls that might otherwise be experienced.

  12. Reshaping NASA's Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Liang, Anita D.

    2007-01-01

    We will dedicate ourselves to the mastery and intellectual stewardship of the core competencies of Aeronautics for the Nation in all flight regimes. We will focus our research in areas that are appropriate to NASA's unique capabilities. we will directly address the R&D needs of the Next Generation Air Transportation System (NGATS) in partnership with the member agencies of the Joint Planning and development Office (JPDO).

  13. NASA Telescopes Help Discover Surprisingly Young Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release April 12, 2011 Astronomers have uncovered one of the youngest galaxies in the distant universe, with stars that formed 13.5 billion years ago, a mere 200 million years after the Big Bang. The finding addresses questions about when the first galaxies arose, and how the early universe evolved. NASA's Hubble Space Telescope was the first to spot the newfound galaxy. Detailed observations from the W.M. Keck Observatory on Mauna Kea in Hawaii revealed the observed light dates to when the universe was only 950 million years old; the universe formed about 13.7 billion years ago. Infrared data from both Hubble and NASA's Spitzer Space Telescope revealed the galaxy's stars are quite mature, having formed when the universe was just a toddler at 200 million years old. The galaxy's image is being magnified by the gravity of a massive cluster of galaxies (Abell 383) parked in front of it, making it appear 11 times brighter. This phenomenon is called gravitational lensing. Hubble imaged the lensing galaxy Abell 383 with the Wide Field Camera 3 and the Advanced Camera for Surveys in November 2010 through March 2011. Credit: NASA, ESA, J. Richard (Center for Astronomical Research/Observatory of Lyon, France), and J.-P. Kneib (Astrophysical Laboratory of Marseille, France) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  14. NASA Goddard Thermal Technology Overview 2017

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2017-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  15. On the comprehensibility and perceived privacy protection of indirect questioning techniques.

    PubMed

    Hoffmann, Adrian; Waubert de Puiseau, Berenike; Schmidt, Alexander F; Musch, Jochen

    2017-08-01

    On surveys that assess sensitive personal attributes, indirect questioning aims at increasing respondents' willingness to answer truthfully by protecting confidentiality. However, the assumption that subjects understand questioning procedures fully and trust them to protect their privacy is rarely tested. In a scenario-based design, we compared four indirect questioning procedures in terms of their comprehensibility and perceived privacy protection. All indirect questioning techniques were found to be less comprehensible by respondents than a conventional direct question used for comparison. Less-educated respondents experienced more difficulties when confronted with any indirect questioning technique. Regardless of education, the crosswise model was found to be the most comprehensible among the four indirect methods. Indirect questioning in general was perceived to increase privacy protection in comparison to a direct question. Unexpectedly, comprehension and perceived privacy protection did not correlate. We recommend assessing these factors separately in future evaluations of indirect questioning.

  16. NASA and Education

    NASA Technical Reports Server (NTRS)

    1990-01-01

    President Bush endorsed a package of six goals developed by the governors of the 50 states, among them making the United States first in the world in mathematics and science achievement. The crux of the technical manpower problem is that too few people in the workforce today have the skills required to function in a technologically advanced society. All over the U.S., government, industry and academic organizations, individually and in concert, at the national, state and local levels, are accelerating efforts to find remedies for the educational and training maladies that threaten America's scientific and technological future. NASA is among the leading education promoting organizations and the agency is expanding its effort. In May 1990, NASA and the Department of Energy concluded an agreement for a cooperative program directed at encouraging more U.S. students to pursue careers in science, engineering and mathematics, and at improving the instructional process in those areas at the precollege and university levels.

  17. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  18. A NASA Technician directs loading of the crated SOFIA primary mirror assembly into a C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  19. Management of government quality assurance functions for NASA contracts

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  20. Management of government quality assurance functions for NASA contracts

    NASA Astrophysics Data System (ADS)

    1993-04-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  1. Workshop on Advances in NASA-Relevant, Minimally Invasive Instrumentation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The purpose of this meeting is to highlight those advances in instrumentation and methodology that can be applied to the medical problems that will be encountered as the duration of manned space missions is extended. Information on work that is presently being done by NASA as well as other approaches in which NASA is not participating will be exchanged. The NASA-sponsored efforts that will be discussed are part of the overall Space Medicine Program that has been undertaken by NASA to address the medical problems of manned spaceflight. These problems include those that have been observed in the past as well as those which are anticipated as missions become longer, traverse different orbits, or are in any way different. This conference is arranged in order to address the types of instrumentation that might be used in several major medical problem areas. Instrumentation that will help in the cardiovascular, musculoskeletal, and psychological areas, among others will be presented. Interest lies in identifying instrumentation which will help in learning more about ourselves through experiments performed directly on humans. Great emphasis is placed on non-invasive approaches, although every substantial program basic to animal research will be needed in the foreseeable future. Space Medicine is a rather small affair in what is primarily an engineering organization. Space Medicine is conducted throughout NASA by a very small skeleton staff at the headquarters office in Washington and by our various field centers. These centers include the Johnson Space Center in Houston, Texas, the Ames Research Center in Moffett Field, California, the Jet Propulsion Laboratory in Pasadena, California, the Kennedy Space Center in Florida, and the Langley Research Center in Hampton, Virginia. Throughout these various centers, work is conducted in-house by NASA's own staff scientists, physicians, and engineers. In addition, various universities, industries, and other government laboratories

  2. NASA Research Bearing on Jet Engine Reliability

    NASA Technical Reports Server (NTRS)

    Mason, S. S.; Ault, G. M.; Pinkel, B.

    1959-01-01

    Turbojet engine reliability has long been an intense interest to the military users of this type of aircraft propulsion. With the recent inauguration of commercial jet transport this subject has assumed a new dimension of importance. In January l96 the Lewis Research Center of the NASA (then the MACA) published the results of an extensive study on the factors that affect the opera- center dot tional reliability of turbojet engines (ref. 1). At that time the report was classified Confidential. In July l98 this report was declassified. It is thus appropriate at this time to present some of the highlights of the studies described in the NASA report. In no way is it intended to outline the complete contents of the report; rather it is hoped to direct attention to it among those who are center dot directly concerned with this problem. Since the publication of our study over three years ago, the NASA has completed a number of additional investigations that bear significantly on this center dot subject. A second object of this paper, therefore, is to summarize the results of these recent studies and to interpret their significance in relation to turbojet operational reliability.

  3. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshops. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This presentation provides an overview of the NASA Rotorcraft Program as an introduction to the technical sessions of the Advanced Rotorcraft Technology Workshop. It deals with the basis for NASA's increasing emphasis on rotorcraft technology, NASA's research capabilities, recent program planning efforts, highlights of its 10-year plan and future directions and opportunities.

  4. Evaluating the Effectiveness of the 1999-2000 NASA CONNECT Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou

    2002-01-01

    NASA CONNECT is a standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (satellite and television) programs for students in grades 6-8. Each of the five programs in the 1999-2000 NASA CONNECT series included a lesson, an educator guide, a student activity or experiment, and a web-based component. In March 2000, a mail (self-reported) survey (booklet) was sent to a randomly selected sample of 1,000 NASA CONNECT registrants. A total of 336 surveys (269 usable) were received by the established cut-off date. Most survey questions employed a 5-point Likert-type response scale. Survey topics included (1) instructional technology and teaching, (2) instructional programming and technology in the classroom, (3) the NASA CONNECT program, (4) classroom use of computer technology, and (5) demographics. About 73% of the respondents were female, about 92% identified "classroom teacher" as their present professional duty, about 90% worked in a public school, and about 62% held a master's degree or master's equivalency. Regarding NASA CONNECT, respondents reported that (1) they used the five programs in the 1999-2000 NASA CONNECT series; (2) the stated objectives for each program were met (4.54); (3) the programs were aligned with the national mathematics, science, and technology standards (4.57); (4) program content was developmentally appropriate for grade level (4.17); and (5) the programs in the 1999-2000 NASA CONNECT series enhanced/enriched the teaching of mathematics, science, and technology (4.51).

  5. Evaluating the Effectiveness of the 1998-1999 NASA CONNECT Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; House, Patricia L.

    2000-01-01

    NASA CONNECT is a standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (satellite and television) programs for students in grades 5-8. Each of the five programs in the 1998-1999 NASA CONNECT series included a lesson, an educator guide, a student activity or experiment, and a web-based component. In March 1999, a mail (self-reported) survey (booklet) was sent to a randomly selected sample of 1,000 NASA CONNECT registrants. A total of 401 surveys (351 usable) were received by the established cut-off date. Most survey questions employed a 5-point Likert-type response scale. Survey topics included: (1) instructional technology and teaching, (2) instructional programming and technology in the classroom, (3) the NASA CONNECT program, (4) classroom use of computer technology, and (5) demographics. About 68% of the respondents were female, about 88% identified "classroom teacher" as their present professional duty, about 75% worked in a public school, and about 67% held a master's degree or master's equivalency. Regarding NASA CONNECT, respondents reported that: (1) they used the five programs in the 1998-1999 NASA CONNECT series; (2) the stated objectives for each program were met (4.49); (3) the programs were aligned with the national mathematics, science, and technology standards (4.61); (4) program content was developmentally appropriate for grade level (4.25); and (5) the programs in the 1998-1999 NASA CONNECT series enhanced/enriched the teaching of mathematics, science, and technology (4.45).

  6. NASA's Electronic Procurement System and the Impact on Small Business

    NASA Technical Reports Server (NTRS)

    Dozier, Ken

    1998-01-01

    Three workshops, held in Lancaster, Orange County and Compton, were produced by the Los Angeles Regional Technology Alliance (LARTA) and NASA Far West Technology Transfer Center (FWRTTC). The workshops were held on December 12, 1997, February 5, 1998, and March 30, 1998, respectively. The purpose behind these workshops was to spread information regarding NASA procurement opportunities to small businesses in the region. This was accomplished by inviting economic and business development organizations to the three workshops, presenting NASA procurement resources to them, and asking them to distribute this information to the small businesses in their communities. With the assistance of LARTA, marketing and publicity in the form of direct mail, telemarketing, and promotion via a web site was implemented to publicize the workshops. These methods were remarkably effective because they enabled the workshops to attain its full capacity. Further publicity was provided by Wendy Reed of Valley Focus Magazine, an Antelope Valley Magazine aimed at business people. Her article entitled, "Doing Business with the Government" recapped the Lancaster workshop that she had attended and made references to several presentations. In the article, she discussed selling to the government via electronic commerce, and specifically mentioned Robert Medina, the NASA Dryden Small Business Specialist, as a contact person for those interested in pursuing procurement opportunities. The feedback provided by the participants is illustrated by the enclosed graphs and charts. These figures represent the number of participants who have frequented web sites presented at workshops, specifically the NASA procurement resources, and how extensive information dissemination was. Input from participants was favorable and encouraged more NASA Dryden workshops directly to the small business communities. There was an overwhelming response to the benefit of the NASA procurement opportunities presented at the

  7. The NASA role in major areas of human concern: Health care

    NASA Technical Reports Server (NTRS)

    Freeman, J. E.; Kottenstette, J. P.; Rusnak, J. J.

    1973-01-01

    Benefits derived from the civilian aeronautics and space effort are discussed in a statement whose focus is on the developments in health care which can be traced to specific NASA program elements. A summary is provided for each case where NASA has been involved in expanding the biomedical technical base, as well as where NASA has been directly instrumental in providing solutions in maintaining adequate health, and correcting health problems when they occur.

  8. 2002 NASA Faculty Fellowship Program at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    While several objectives are served with this program, the central mechanism involved is the conduct of research assignments by faculty in direct support of NASA programs. In general, the results of the research will be assimilated by NASA program managers into an overall effort and will ultimately find their way into the literature. Occasionally, specific assignments result directly in reports for publication or conference presentation. Taken as a body, the assignments represent a large intellectual contribution by the academic community to NASA programs. It is appropriate therefore to summarize the research that was accomplished. The remainder of this report consists of research summaries arranged alphabetically by participant name. For each summary, the faculty fellow is briefly identified and the assignment prepared by the GRC host organization is given. This is followed by a brief narrative, prepared by the fellow, of the research performed. Narratives provided by the accompanying students immediately follow the narratives of their professors.

  9. NASA's Space Launch System (SLS) Program: Mars Program Utilization

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.

  10. An Overview of Electric Propulsion Activities at NASA

    NASA Technical Reports Server (NTRS)

    Dunning, John W., Jr.; Hamley, John A.; Jankovsky, Robert S.; Oleson, Steven R.

    2004-01-01

    This paper provides an overview of NASA s activities in the area of electric propulsion with an emphasis on project directions, recent progress, and a view of future project directions. The goals of the electric propulsion programs are to develop key technologies to enable new and ambitious science missions and to transfer these technologies to industry. Activities include the development of gridded ion thruster technology, Hall thruster technology, pulsed plasma thruster technology, and very high power electric propulsion technology, as well as systems technology that supports practical implementation of these advanced concepts. The performance of clusters of ion and Hall thrusters is being revisited. Mission analyses, based on science requirements and preliminary mission specifications, guide the technology projects and introduce mission planners to new capabilities. Significant in-house activity, with strong industrial/academia participation via contracts and grants, is maintained to address these development efforts. NASA has initiated a program covering nuclear powered spacecraft that includes both reactor and radioisotope power sources. This has provided an impetus to investigate higher power and higher specific impulse thruster systems. NASA continues to work closely with both supplier and user communities to maximize the understanding and acceptance of new technology in a timely and cost-effective manner. NASA s electric propulsion efforts are closely coordinated with Department of Defense and other national programs to assure the most effective use of available resources. Several NASA Centers are actively involved in these electric propulsion activities, including, the Glenn Research Center, Jet Propulsion Laboratory, Johnson Space Center, and Marshall Space Flight Center.

  11. The artful dodger: answering the wrong question the right way.

    PubMed

    Rogers, Todd; Norton, Michael I

    2011-06-01

    What happens when speakers try to "dodge" a question they would rather not answer by answering a different question? In 4 studies, we show that listeners can fail to detect dodges when speakers answer similar-but objectively incorrect-questions (the "artful dodge"), a detection failure that goes hand-in-hand with a failure to rate dodgers more negatively. We propose that dodges go undetected because listeners' attention is not usually directed toward a goal of dodge detection (i.e., Is this person answering the question?) but rather toward a goal of social evaluation (i.e., Do I like this person?). Listeners were not blind to all dodge attempts, however. Dodge detection increased when listeners' attention was diverted from social goals toward determining the relevance of the speaker's answers (Study 1), when speakers answered a question egregiously dissimilar to the one asked (Study 2), and when listeners' attention was directed to the question asked by keeping it visible during speakers' answers (Study 4). We also examined the interpersonal consequences of dodge attempts: When listeners were guided to detect dodges, they rated speakers more negatively (Study 2), and listeners rated speakers who answered a similar question in a fluent manner more positively than speakers who answered the actual question but disfluently (Study 3). These results add to the literatures on both Gricean conversational norms and goal-directed attention. We discuss the practical implications of our findings in the contexts of interpersonal communication and public debates.

  12. An Overview-NASA LeRC Structures Program

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1997-01-01

    The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP). A general overview is given discussing these programs and other technologies that are being developed at NASA LeRC.

  13. NASA Investigating the Life of Comet ISON

    NASA Image and Video Library

    2013-12-02

    Comet ISON comes in from the bottom right and moves out toward the upper right, growing more faint, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA's Solar Dynamics Observatory. Credit: ESA/NASA/SOHO/SDO/GSFC After several days of fading, scientists continue to work to determine and to understand the fate of Comet ISON: There's no doubt that the comet shrank in size considerably as it rounded the sun and there's no doubt that something made it out on the other side to shoot back into space. The question remains as to whether the bright spot seen moving away from the sun was simply debris, or whether a small nucleus of the original ball of ice was still there. Regardless, it is likely that it is now only dust. Comet ISON, which began its journey from the Oort Cloud some 3 million years ago, made its closest approach to the sun on Nov. 28, 2013. The comet was visible in instruments on NASA's Solar Terrestrial Relations Observatory, or STEREO, and the joint European Space Agency/NASA Solar and Heliospheric Observatory, or SOHO, via images called coronagraphs. Coronagraphs block out the sun and a considerable distance around it, in order to better observe the dim structures in the sun's atmosphere, the corona. As such, there was a period of several hours when the comet was obscured in these images, blocked from view along with the sun. During this period of time, NASA's Solar Dynamics Observatory could not see the comet, leading many scientists to surmise that the comet had disintegrated completely. However, something did reappear in SOHO and STEREO coronagraphs some time later – though it was significantly less bright. Read more: 1.usa.gov/18hGYag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments

  14. Expanded Guidance for NASA Systems Engineering. Volume 1: Systems Engineering Practices

    NASA Technical Reports Server (NTRS)

    Hirshorn, Steven R.

    2016-01-01

    This document is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the expanded guidance is to increase awareness and consistency across the Agency and advance the practice of SE. This guidance provides perspectives relevant to NASA and data particular to NASA. This expanded guidance should be used as a companion for implementing NPR 7123.1, Systems Engineering Processes and Requirements, the Rev 2 version of SP-6105, and the Center-specific handbooks and directives developed for implementing systems engineering at NASA. It provides a companion reference book for the various systems engineering-related training being offered under NASA's auspices.

  15. Records of Achievement. NASA Special Publications.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    When Congress created the National Aeronautics and Space Administration (NASA) 25 years ago, it directed that information derived from the agency's pursuit of knowledge through space exploration and aeronautical research be made available to all Americans. This has been accomplished through a series of scientific and technical publications. One…

  16. NASA's aircraft icing technology program

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1991-01-01

    NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.

  17. Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Morris, K. R.; Petersen, W. A.

    2007-01-01

    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.

  18. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  19. Development of Network-based Communications Architectures for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2007-01-01

    Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by

  20. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  1. NASA Marshall Engineering Thermosphere Model. 2.0

    NASA Technical Reports Server (NTRS)

    Owens, J. K.

    2002-01-01

    This Technical Memorandum describes the NASA Marshall Engineering Thermosphere Model-Version 2.0 (MET-V 2.0) and contains an explanation on the use of the computer program along with an example of the MET-V 2.0 model products. The MET-V 2.0 provides an update to the 1988 version of the model. It provides information on the total mass density, temperature, and individual species number densities for any altitude between 90 and 2,500 km as a function of latitude, longitude, time, and solar and geomagnetic activity. A description is given for use of estimated future 13-mo smoothed solar flux and geomagnetic index values as input to the model. Address technical questions on the MET-V 2.0 and associated computer program to Jerry K. Owens, Spaceflight Experiments Group, Marshall Space Flight Center, Huntsville, AL 35812 (256-961-7576; e-mail Jerry.Owens@msfc.nasa.gov).

  2. NASA Releases 'NASA App HD' for iPad

    NASA Image and Video Library

    2012-07-06

    The NASA App HD invites you to discover a wealth of NASA information right on your iPad. The application collects, customizes and delivers an extensive selection of dynamically updated mission information, images, videos and Twitter feeds from various online NASA sources in a convenient mobile package. Come explore with NASA, now on your iPad. 2012 Updated Version - HD Resolution and new features. Original version published on Sept. 1, 2010.

  3. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  4. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  5. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  6. NASA Social

    NASA Image and Video Library

    2012-05-19

    A NASA Social follower holds up a mobile device as NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  7. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  8. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  9. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Paul Hertz, Astrophysics Division director, NASA Headquarters, answered questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  10. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Felicia Chou, NASA Communications, asks questions from online participants during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  11. Overview of NASA MSFC IEC Federated Engineering Collaboration Capability

    NASA Technical Reports Server (NTRS)

    Moushon, Brian; McDuffee, Patrick

    2005-01-01

    The MSFC IEC federated engineering framework is currently developing a single collaborative engineering framework across independent NASA centers. The federated approach allows NASA centers the ability to maintain diversity and uniqueness, while providing interoperability. These systems are integrated together in a federated framework without compromising individual center capabilities. MSFC IEC's Federation Framework will have a direct affect on how engineering data is managed across the Agency. The approach is directly attributed in response to the Columbia Accident Investigation Board (CAB) finding F7.4-11 which states the Space Shuttle Program has a wealth of data sucked away in multiple databases without a convenient way to integrate and use the data for management, engineering, or safety decisions. IEC s federated capability is further supported by OneNASA recommendation 6 that identifies the need to enhance cross-Agency collaboration by putting in place common engineering and collaborative tools and databases, processes, and knowledge-sharing structures. MSFC's IEC Federated Framework is loosely connected to other engineering applications that can provide users with the integration needed to achieve an Agency view of the entire product definition and development process, while allowing work to be distributed across NASA Centers and contractors. The IEC DDMS federation framework eliminates the need to develop a single, enterprise-wide data model, where the goal of having a common data model shared between NASA centers and contractors is very difficult to achieve.

  12. Circulation Control in NASA's Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Rich, Paul; McKinley, Bob; Jones, Greg

    2005-01-01

    Specific to the application of any technology to a vehicle, such as circulation control, it is important to understand the process that NASA is using to set its direction in research and development. To see how circulation control fits into any given NASA program requires the reader to understand NASA's Vehicle Systems (VS) Program. The VS Program recently celebrated its first year of existence with an annual review - an opportunity to look back on accomplishments, solicit feedback, expand national advocacy and support for the program, and recognize key contributions. Since its formation last year, Vehicle Systems has coordinated seven existing entities in a streamlined aeronautics research effort. It invests in vehicle technologies to protect the environment, make air travel more accessible and affordable for Americans, enable exploration through new aerospace missions, and augment national security. This past year has seen a series of valuable partnerships with industry, academia, and government agencies to make crucial aeronautics advances and assure America s future in flight.

  13. NASA Science Served Family Style

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Mitchell, S.; Drobnes, E.

    2010-01-01

    Family oriented innovative programs extend the reach of many traditional out-of-school venues to involve the entire family in learning in comfortable and fun environments. Research shows that parental involvement is key to increasing student achievement outcomes, and family-oriented programs have a direct impact on student performance. Because families have the greatest influence on children's attitudes towards education and career choices, we have developed a Family Science program that provides families a venue where they can explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science. NASA Family Science Night strives to change the way that students and their families participate in science, within the program and beyond. After three years of pilot implementation and assessment, our evaluation data shows that Family Science Night participants have positive change in their attitudes and involvement in science.  Even after a single session, families are more likely to engage in external science-related activities and are increasingly excited about science in their everyday lives.  As we enter our dissemination phase, NASA Family Science Night will be compiling and releasing initial evaluation results, and providing facilitator training and online support resources. Support for NASA Family Science Nights is provided in part through NASA ROSES grant NNH06ZDA001N.

  14. NASA Nebraska Space Grant Consortium 1995-1999 Self Evaluation

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M.; Bowen, Brent D.; Schaffart, Mary M.

    1999-01-01

    The NASA Nebraska Space Grant Consortium receives funds from NASA to allow Nebraska colleges and universities to implement balanced programs of research, education and public service related to aeronautics, space science and technology. Nebraska is a capability enhancement state which directs efforts and resources toward developing research infrastructure and enhancing the quality of aerospace research and education for all Nebraskans. Furthermore, the Nebraska Space Grant strives to provide national leadership in applied aspects of aeronautics. Nebraska has met, meets and will continue to meet all requirements set forth by NASA. Nebraska is a top-tier consortium and will continue to be a model program.

  15. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  16. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  17. Facilitating Learning from Animated Instruction: Effectiveness of Questions and Feedback as Attention-Directing Strategies

    ERIC Educational Resources Information Center

    Lin, Huifen

    2011-01-01

    The purpose of this study was to investigate the relative effectiveness of different types of visuals (static and animated) and instructional strategies (no strategy, questions, and questions plus feedback) used to complement visualized materials on students' learning of different educational objectives in a computer-based instructional (CBI)…

  18. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  19. NASA Museum Alliance

    NASA Astrophysics Data System (ADS)

    Sohus, Anita

    2006-12-01

    NASA’s Museum Alliance is a nationwide network of informal educators at museums, science centers, and planetariums that present NASA information to their local audiences. Begun in 2002 as the Mars Museum Visualization Alliance with advisors from a dozen museums, the network has grown to over 300 people from 200 organizations, including a dozen or so international partners. The network has become a community of practice among these informal educators who work with students, educators, and the general public on a daily basis, presenting information and fielding questions about space exploration. Communications are primarily through an active listserve, regular telecons, and a password-protected website. Professional development is delivered via telecons and downloadable presentations. Current content offerings include Mars exploration, Cassini, Stardust, Genesis, Deep Impact, Earth observations, STEREO, and missions to explore beyond our solar system.

  20. Choose Your Own Adventure: Designing an Environment that Supports NASA Scientists' Goals in Education, Outreach, and Inreach

    NASA Astrophysics Data System (ADS)

    DeWitt, S.

    2015-12-01

    What is your communication goal? That is the opening question asked in NASA's first agency-wide science communication leadership development program. Many scientists know what they want to communicate, some know to whom they'd like to communicate, but few can clearly express why they want to do it. So what? First, being clear about one's goal is critical in being able to measure success. Second, when asked to think critically about communication goals, some scientists may shift their communication behaviors and practices to better achieve those goals. To that end, NASA has designed a deep learning experience for scientists (and engineers and others) to: critically examine their communication goals; learn techniques for getting to know their intended audience; and develop and apply specific communication skills to a project of their choice. Participants in this program come into the classroom with projects that span a wide spectrum including: formal and informal education, public outreach, media interviews, public speaking, stakeholder briefings, and internal awareness-building. Through expert advisors, professional coaches and peer networks, this program provides a supportive environment for individuals to workshop their project in the classroom and receive feedback before, during, and after the project is complete. This program also provides an opportunity for scientists and other participants to learn more about communication at NASA, and to directly influence the agency's science communication culture through action learning. In this presentation, I will summarize NASA's dual-design science communication leadership development program and present some lessons-learned, participant feedback and evaluation data from the initial course offerings.

  1. The NASA Computational Fluid Dynamics (CFD) program - Building technology to solve future challenges

    NASA Technical Reports Server (NTRS)

    Richardson, Pamela F.; Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1993-01-01

    This paper presents the NASA Computational Fluid Dynamics program in terms of a strategic vision and goals as well as NASA's financial commitment and personnel levels. The paper also identifies the CFD program customers and the support to those customers. In addition, the paper discusses technical emphasis and direction of the program and some recent achievements. NASA's Ames, Langley, and Lewis Research Centers are the research hubs of the CFD program while the NASA Headquarters Office of Aeronautics represents and advocates the program.

  2. NASA CORE - A Worldwide Distribution Center for Educational Materials.

    NASA Astrophysics Data System (ADS)

    Kaiser-Holscott, K.

    2005-05-01

    The Lorain County Joint Vocational School District (JVS) administers NASA's Central Operation of Resources for Educators (CORE) for the purpose of: A. Operating a mail order service to supply educators around the world with NASA's educational materials; B. Servicing NASA Education Programs/Projects with NASA's educational materials; C. Supporting the NASA Educator Resource Center Network with technology resources for the next generation of ERC. D. Support NASA's mission to inspire the next generation of explorers...as only NASA can; E. Inspire and motivate students to pursue careers in geography, science, technology, engineering and mathematics. This is accomplished by the continued operation of a central site that educators can contact to obtain information about NASA educational programs and research; obtain NASA educational publications and media; and receive technical support for NASA multimedia materials. In addition CORE coordinates the efforts of the 67 NASA Educator Resource Centers to establish a more effective network to serve educators. CORE directly supports part of NASA's core mission, To Inspire the Next Generation of Explorers.as only NASA can. CORE inspires and motivates students to pursue careers in geography, science, technology, engineering and mathematics by providing educators with exciting and NASA-unique educational material to enhance the students' learning experience. CORE is located at the Lorain County Joint Vocational School (JVS) in Oberlin, Ohio. Students at the JVS assist with the daily operations of CORE. This assistance provides the students with valuable vocational training opportunities and helps the JVS reduce the amount of funding needed to operate CORE. CORE has vast experience in the dissemination of NASA educational materials as well as a network of NASA Education Resource Centers who distribute NASA materials to secondary and post-secondary schools and universities, informal educators, and other interested individuals and

  3. Enabling a Science Support Structure for NASAs Global Hawk UASs

    NASA Technical Reports Server (NTRS)

    Sullivan, Donald V.

    2014-01-01

    In this paper we describe the information technologies developed by NASA for the Winter/Spring 2013/2014, and Fall 2014, NASA Earth Venture Campaigns, Hurricane and Severe Storm Sentinel (HS3) and Airborne Tropical TRopopause EXperiment (ATTREX). These campaigns utilized Global Hawk UAS vehicles equipped at the NASA Armstrong (previously Dryden) Flight Research Facility (AFRC), Edwards Air Force Base, California, and operated from there, the NASA Wallops Flight Facility (WFF), Virginia, and Anderson Air Force Base (AAFB), Guam. Part of this enabling infrastructure utilized a layer 2 encrypted terrestrial Virtual Local Area Network (VLAN) that, at times, spanned greater than ten thousand miles (AAFB <-> AFRC <-> WFF) and was routed over geosynchronous Ku band communication Satellites directly to the aircraft sensor network. This infrastructure enabled seamless hand off between Satellites, and Satellite ground stations in Guam, California and Virginia, so allowing simultaneous Aircraft Command and Control and Science operations from remote locations. Additionally, we will describe the other elements of this infrastructure, from on-board geo-enabled databases, to real time communications directly from the instruments (in some cases, more than twelve were carried, and simultaneously operated, on one aircraft) to the researchers and other interested parties, world wide.

  4. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  5. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  6. Connecting NASA Airborne Scientists, Engineers, and Pilots to K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2015-12-01

    The NASA Airborne Science Program (ASP) conducts Earth system science research missions with NASA aircraft all over the world. During ASP missions, NASA scientists, engineers and pilots are deployed to remote parts of the world such as Greenland, Antarctica, Chile, and Guam. These ASP mission personnel often have a strong desire to share the excitement of their mission with local classrooms near their deployment locations as well as classrooms back home in the United States. Here we discuss ongoing efforts to connect NASA scientists, engineers and pilots in the field directly with K-12 classrooms through both in-person interactions and remotely via live web-based chats.

  7. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Pham, Thai; Seery, Bernard; Ganel, Opher

    2016-01-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies

  8. Overview of Fundamental High-Lift Research for Transport Aircraft at NASA

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

    2007-01-01

    NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

  9. NASA Technology Protects Webb Telescope from Contamination

    NASA Image and Video Library

    2015-06-25

    Contamination from organic molecules can harm delicate instruments and engineers are taking special care at NASA to prevent that from affecting the James Webb Space Telescope (and all satellites and instruments). Recently, Nithin Abraham, a Thermal Coatings Engineer placed Molecular Adsorber Coating or "MAC" panels in the giant chamber where the Webb telescope will be tested. This contamination can occur through a process when a vapor or odor is emitted by a substance. This is called "outgassing." The "new car smell" is an example of that, and is unhealthy for people and sensitive satellite instruments. So, NASA engineers have created a new way to protect those instruments from the damaging effects of contamination coming from outgassing. "The Molecular Adsorber Coating (MAC) is a NASA Goddard coatings technology that was developed to adsorb or entrap outgassed molecular contaminants for spaceflight applications," said Nithin Abraham, Thermal Coatings Engineer at NASA's Goddard Space Flight Center in Greenbelt, Maryland. MAC is currently serving as an innovative contamination mitigation tool for Chamber A operations at NASA Johnson Space Center in Houston, Texas. MAC can be used to keep outgassing from coming in from outside areas or to capture outgassing directly from hardware, components, and within instrument cavities. In this case, MAC is helping by capturing outgassed contaminants outside the test chamber from affecting the Webb components. MAC is expected to capture the outgassed contaminants that exist in the space of the vacuum chamber (not from the Webb components). Credit: NASA/GoddardChris Gunn Read more: www.nasa.gov/feature/goddard/nasa-technology-protects-web... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge

  10. NASA Social

    NASA Image and Video Library

    2011-05-18

    Ed Mango, of the NASA Commercial Crew Office, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  11. Heliogyro Solar Sail Research at NASA

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Guerrant, Daniel V.; Lawrence, Dale A.; Gibbs, S. Chad; Dowell, Earl H.; Heaton, Andrew F.; Heaton, Andrew F.; Juang, Jer-Nan; Horta, Lucas G.; hide

    2013-01-01

    The recent successful flight of the JAXA IKAROS solar sail has renewed interest within NASA in spinning solar sail concepts for high-performance solar sailing. The heliogyro solar sail, in particular, is being re-examined as a potential game-changing architecture for future solar sailing missions. In this paper, we present an overview of ongoing heliogyro technology development and feasibility assessment activities within NASA. In particular, a small-scale heliogyro solar sail technology demonstration concept will be described. We will also discuss ongoing analytical and experimental heliogyro structural dynamics and controls investigations and provide an outline of future heliogyro development work directed toward enabling a low cost heliogyro technology demonstration mission ca. 2020.

  12. 2nd NASA CFD Validation Workshop

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The purpose of the workshop was to review NASA's progress in CFD validation since the first workshop (held at Ames in 1987) and to affirm the future direction of the NASA CFD validation program. The first session consisted of overviews of CFD validation research at each of the three OAET research centers and at Marshall Space Flight Center. The second session consisted of in-depth technical presentations of the best examples of CFD validation work at each center (including Marshall). On the second day the workshop divided into three working groups to discuss CFD validation progress and needs in the subsonic, high-speed, and hypersonic speed ranges. The emphasis of the working groups was on propulsion.

  13. Partnering to Change the Way NASA and the Nation Communicate Through Space

    NASA Technical Reports Server (NTRS)

    Vrotsos, Pete A.; Budinger, James M.; Bhasin, Kul; Ponchak, Denise S.

    2000-01-01

    For at least 20 years, the Space Communications Program at NASA Glenn Research Center (GRC) has focused on enhancing the capability and competitiveness of the U.S. commercial communications satellite industry. GRC has partnered with the industry on the development of enabling technologies to help maintain U.S. preeminence in the worldwide communications satellite marketplace. The Advanced Communications Technology Satellite (ACTS) has been the most significant space communications technology endeavor ever performed at GRC, and the centerpiece of GRC's communication technology program for the last decade. Under new sponsorship from NASA's Human Exploration and Development of Space Enterprise, GRC has transitioned the focus and direction of its program, from commercial relevance to NASA mission relevance. Instead of one major experimental spacecraft and one headquarters sponsor, GRC is now exploring opportunities for all of NASA's Enterprises to benefit from advances in space communications technologies, and accomplish their missions through the use of existing and emerging commercially provided services. A growing vision within NASA is to leverage the best commercial standards, technologies, and services as a starting point to satisfy NASA's unique needs. GRC's heritage of industry partnerships is closely aligned with this vision. NASA intends to leverage the explosive growth of the telecommunications industry through its impressive technology advancements and potential new commercial satellite systems. GRC's partnerships with the industry, academia, and other government agencies will directly support all four NASA's future mission needs, while advancing the state of the art of commercial practice. GRC now conducts applied research and develops and demonstrates advanced communications and network technologies in support of all four NASA Enterprises (Human Exploration and Development of Space, Space Science, Earth Science, and Aero-Space Technologies).

  14. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This handbook is designed to promote a better understanding of NASA's interests and the process of doing business with NASA. The document is divided into the following sections: (1) this is NASA; (2) the procurement process; (3) marketing your capabilities; (4) special assistance programs; (5) NASA field installations; (6) sources of additional help; (7) listing of NASA small/minority business personnel; and (8) NASA organization chart.

  15. NASA's Role in Aeronautics: A Workshop. Volume 2: Military aviation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While the National Aeronautics and Space Act of 1958 makes DOD primarily responsible for military aeronautics, it stipulates a role for NASA in providing direct and indirect support for national defense. The existing role of NASA in support of military aeronautics is working well and is well coordinated. The role needs only to be kept effective and then improved by increasing its responsiveness to changing military requirements and by the selective application of additional people. Funding resources should also be made available to NASA for research. Specific roles that NASA could or should play were examined. It was determined that the most important areas for this support are in basic research, generic technology evolution, and facility support in the fields of aerodynamics, structures and materials, and propulsion.

  16. The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Bontempi, Paula; Maring, Hal

    2011-01-01

    In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community

  17. Overview of NASA's space radiation research program.

    PubMed

    Schimmerling, Walter

    2003-06-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  18. What the Heck is Going On at NASA?

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell

    2010-01-01

    On February 1, 2010, the federal budget for Fiscal Year 2011 was released. NASA received an increase, unlike almost any other federal agency. At the same time, the budget revealed that the Constellation Program would be cancelled and that NASA would look to private sector providers for transportation of cargo, and eventually crew members, to the International Space Station. The Constellation Program had included a human return to the Moon by the year 2020, and the program plans called for a permanent surface facility capable of supporting human explorers. In the FY2011 announcement, the prescription of a lunar objective was replaced by a concept called flexible path that was advertised to open possibilities of other types of human missions beyond low Earth orbit. The policy direction has polarized the U.S. space community, where the reactions have been swift and polemical. The new policy has been described both as the death knell of human space exploration and as the only hope to save human space exploration. Some members of Congress have threatened legal action based on the current law regarding appropriation of funds to NASA, which states that Constellation cannot be cancelled without prior consultation with Congress. As might be expected, some of the reaction is directly related to losses or gains of jobs in districts associated with NASA facilities. However, various statements show high emotional content, suggesting that personal belief systems have been challenged. Meanwhile, many details of the new policy are not yet clear; and some aspects seem to be shifting in response to political reaction. The final direction for NASA will not be known until the FY2011 budget has been passed by Congress and signed by the President. I will draw upon my 28 years of studying, writing, and speaking on the topic of future human exploration beyond low Earth orbit to discuss the various issues at stake and the historical context for the debate. My own work has had a central

  19. 2003 NASA Faculty Fellowship Program at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Heyward, An O.; Kankam, Mark D.

    2003-01-01

    The Office of Education at NASA Headquarters provides overall policy and direction for the NASA Faculty Fellowship Program (NFFP). The American Society for Engineering Education (ASEE) and the Universities Space Research Association (USRA) have joined in partnership to recruit participants, accept applications from a broad range of participants, and provide overall evaluation of the NFFP. The NASA Centers, through their University Affairs Officers, develop and operate the experiential part of the program. In concert with co-directing universities and the Centers, Fellows are selected and provided the actual research experiences. This report summarizes the 2003 session conducted at the Glenn Research Center (GRC).Research topics covered a variety of areas including, but not limited to, biological sensors, modeling of biological fluid systems, electronic circuits, ceramics and coatings, unsteady probablistic analysis and aerodynamics, gas turbines, environmental monitoring systems for water quality, air quality, gaseous and particulate emissions, bearings for flywheel energy storage, shape memory alloys,photonic interrogation and nanoprocesses,carbon nanotubes, polymer synthesis for fuel cells, aviation communications, algorithm development and RESPlan Database.

  20. Powered by a laser beam directed at it from a pedestal, a model plane makes the first flight of an aircraft powered by laser energy inside a building at NASA Marshall.

    NASA Image and Video Library

    2003-09-18

    Powered by a laser beam directed at it from a center pedestal, a lightweight model plane makes the first flight of an aircraft powered by laser energy inside a building at NASA's Marshall Space Flight Center.

  1. The NASA Scientific and Technical Information Program: Prologue to the Future

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA STI Program offers researchers an infrastructure of people and systems that facilitates access to STI; worldwide. The Program is also NASA's institutional mechanism for disseminating the results of its research and developing activities. Through discussions in 1991, the STI Program formulated its Strategic Plan. The plan gives the Program a renewed sense of direction by focusing on future opportunities, customer requirements and Program goals, along with the changes needed to achieve those goals. The Program provides users access to a massive flow of STI which, in fact, represents the largest collection of aeronautical and space science information in the world. The STI Program products and services are outlined, along with the NASA centers, international operations, and the fact that total quality management drives NASA wide program developments. As is detailed, the NASA STI Program is using its resources as effectively as possible to meet the missing needs of NASA.

  2. NASA 2014 The Hyperspectral Infrared Imager (HyspIRI) - Science Impact of Deploying Instruments on Separate Platforms

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin; Veraverbeke, Sander; Wright, Robert; Anderson, Martha; Prakash, Anupma; Quattrochi, Dale

    2014-01-01

    The Hyperspectral Infrared Imager (HyspIRI) mission was recommended for implementation by the 2007 report from the U.S. National Research Council Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also known as the Earth Science Decadal Survey. The HyspIRI mission is science driven and will address a set of science questions identified by the Decadal Survey and broader science community. The mission includes a visible shortwave infrared (VSWIR) imaging spectrometer, a multispectral thermal infrared (TIR) imager and an intelligent payload module (IPM). The IPM enables on-board processing and direct broadcast for those applications with short latency requirements. The science questions are organized as VSWIR-only, TIR-only and Combined science questions, the latter requiring data from both instruments. In order to prepare for the mission NASA is undertaking pre-phase A studies to determine the optimum mission implementation, in particular, cost and risk reduction activities. Each year the HyspIRI project is provided with feedback from NASA Headquarters on the pre-phase A activities in the form of a guidance letter which outlines the work that should be undertaken the subsequent year. The 2013 guidance letter included a recommendation to undertake a study to determine the science impact of deploying the instruments from separate spacecraft in sun synchronous orbits with various time separations and deploying both instruments on the International Space Station (ISS). This report summarizes the results from that study. The approach taken was to evaluate the impact on the combined science questions of time separations between the VSWIR and TIR data of <3 minutes, <1 week and a few months as well as deploying both instruments on the ISS. Note the impact was only evaluated for the combined science questions which require data from both instruments (VSWIR and TIR). The study concluded the impact of a separation of <3 minutes was

  3. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Dr. Laurie Leshin, NASA Deputy Associate Administrator Exploration Systems Mission Directortorate, second from right, speaks as Dr. Waleed Abdalati, NASA Chief Scientist, right, Dr. Robert Braun, NASA Chief Technologist, and Leland Melvin, Assoicate Administrator for NASA Education, far left, at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  4. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology, answered questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  5. NASA Social

    NASA Image and Video Library

    2012-05-19

    NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  6. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba speaks at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  7. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba, center, greets participants at a behind-the-scenes NASA Social in Washington, Tuesday, Dec. 4, 2012 at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  8. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  9. NASA Technology Applications Team: Commercial applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  10. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2010-01-01

    NASA-MSFC directive MID 5340.1 requires FOD prevention for all flight hardware projects, and requires all support organizations to comply. MSFC-STD-3598 implements a standard approach for FOD prevention, tailored from NAS 412. Three levels of FOD Sensitive Area are identified, adopting existing practices at other NASA facilities. Additional emphasis is given to prevention of impact damage and mitigation of facility FOD sources, especially leaks and spills. Impact Damage Susceptible (IDS) items are identified as FOD-sensitive as well as hardware vulnerable to entrapment of small items.

  11. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2011-01-01

    NASA now requires all flight hardware projects to develop and implement a Foreign Object Damage (FOD) Prevention Program. With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items. In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage. The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.

  12. NASA mobile satellite program

    NASA Technical Reports Server (NTRS)

    Knouse, G.; Weber, W.

    1985-01-01

    A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.

  13. NASA mobile satellite program

    NASA Astrophysics Data System (ADS)

    Knouse, G.; Weber, W.

    1985-04-01

    A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.

  14. The Suomi National Polar-Orbiting Partnership (SNPP): Continuing NASA Research and Applications

    NASA Technical Reports Server (NTRS)

    Butler, James; Gleason, James; Jedlovec, Gary; Coronado, Patrick

    2015-01-01

    The Suomi National Polar-orbiting Partnership (SNPP) satellite was successfully launched into a polar orbit on October 28, 2011 carrying 5 remote sensing instruments designed to provide data to improve weather forecasts and to increase understanding of long-term climate change. SNPP provides operational continuity of satellite-based observations for NOAA's Polar-orbiting Operational Environmental Satellites (POES) and continues the long-term record of climate quality observations established by NASA's Earth Observing System (EOS) satellites. In the 2003 to 2011 pre-launch timeframe, NASA's SNPP Science Team assessed the adequacy of the operational Raw Data Records (RDRs), Sensor Data Records (SDRs), and Environmental Data Records (EDRs) from the SNPP instruments for use in NASA Earth Science research, examined the operational algorithms used to produce those data records, and proposed a path forward for the production of climate quality products from SNPP. In order to perform these tasks, a distributed data system, the NASA Science Data Segment (SDS), ingested RDRs, SDRs, and EDRs from the NOAA Archive and Distribution and Interface Data Processing Segments, ADS and IDPS, respectively. The SDS also obtained operational algorithms for evaluation purposes from the NOAA Government Resource for Algorithm Verification, Independent Testing and Evaluation (GRAVITE). Within the NASA SDS, five Product Evaluation and Test Elements (PEATEs) received, ingested, and stored data and performed NASA's data processing, evaluation, and analysis activities. The distributed nature of this data distribution system was established by physically housing each PEATE within one of five Climate Analysis Research Systems (CARS) located at either at a NASA or a university institution. The CARS were organized around 5 key EDRs directly in support of the following NASA Earth Science focus areas: atmospheric sounding, ocean, land, ozone, and atmospheric composition products. The PEATES provided

  15. Science education: A meta-analysis of major questions

    NASA Astrophysics Data System (ADS)

    Anderson, Ronald D.; Kahl, Stuart R.; Glass, Gene V.; Smith, Mary Lee

    A multi-institutional endeavor was initiated to integrate the findings of extant research studies directed toward the major science education research questions. The research questions were selected by a largely empirical process of identifiying the most frequently researched questions in the literature. These questions were assigned to various researchers who developed coding sheets and procedures with many features in common. This article describes the overall operation of the project, the research questions identified, and some rudiments of meta-analysis. The results of the several meta-analysis are reported in the other articles of this issue of the Journal. The final article in this issue deals with research topics for which data are drawn from one or more of the separate meta-analyses.

  16. The NASA Scientific and Technical Information Program: Exploring challenges, creating opportunities

    NASA Technical Reports Server (NTRS)

    Sepic, Ronald P.

    1993-01-01

    The NASA Scientific and Technical Information (STI) Program offers researchers access to the world's largest collection of aerospace information. An overview of Program activities, products and services, and new directions is presented. The R&D information cycle is outlined and specific examples of the NASA STI Program in practice are given. Domestic and international operations and technology transfer activities are reviewed and an agenda for the STI Program NASA-wide is presented. Finally, the incorporation of Total Quality Management and evaluation metrics into the STI Program is discussed.

  17. NASA names unique solar mission after University of Chicago physicist Eugene Parker

    NASA Image and Video Library

    2017-05-31

    On May 31, NASA renamed humanity’s first mission to fly a spacecraft directly into the sun’s atmosphere in honor of Professor Eugene Parker, a pioneering physicist at the University of Chicago. This is the first time in agency history a spacecraft has been named for a living individual. Parker, the S. Chandrasekhar Distinguished Service Professor Emeritus in Physics, is best known for developing the concept of solar wind—the stream of electrically charged particles emitted by the sun. Previously named Solar Probe Plus, the Parker Solar Probe will launch in summer 2018. Placed in orbit within four million miles of the sun’s surface, and facing heat and radiation unlike any spacecraft in history, the spacecraft will explore the sun’s outer atmosphere and make critical observations that will answer decades-old questions about the physics of how stars work. The resulting data will improve forecasts of major space weather events that impact life on Earth, as well as satellites and astronauts in space.

  18. Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.

    2006-01-01

    Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.

  19. Complex Decision-Making Applications for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  20. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Dr. Robert Braun, NASA Chief Technologist, second from left, makes a point, as panelists Leland Melvin, Assoicate Administrator for NASA Education, left, Dr. Laurie Leshin, NASA Deputy Associate Administrator Exploration Systems Mission Directortorate, and Dr. Waleed Abdalati, NASA Chief Scientist, right, look on during a panel discussion at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  1. Congress Examines NASA Budget, Space Station, and Relations With Russia

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    Concerns about recent Russian activities related to Ukraine loomed over an 8 April congressional hearing focusing on NASA's fiscal year (FY) 2015 budget request. Rep. Frank Wolf (R-Va.), chair of the House of Representatives Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies, and several other committee members questioned NASA administrator Charles Bolden about the agency's contingency plans if tensions between Russia and the United States cause key joint scientific endeavors between the two countries to break off. That concern is particularly critical given the countries' longtime partnership on the International Space Station (ISS) and with the United States currently relying on Russian transport to and from the station until U.S. commercial vehicles are ready to transport astronauts back and forth.

  2. Acquiescence and Resistance in Disconfirming Responses to Polar Questions

    ERIC Educational Resources Information Center

    Lee, Seung-Hee

    2017-01-01

    Here I examine three forms of disconfirming responses to polar questions in Korean conversation: type-conforming "no" responses, direct nonconforming responses such as repetitions of the question with negation, and nondirect nonconforming responses such as replacements. The use of these forms tends to be different depending on the…

  3. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    NASA Astronaut Don Pettit, speaks about his experience onboard the International Space Station at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  4. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  5. Questioning supports effective transmission of knowledge and increased exploratory learning in pre-kindergarten children.

    PubMed

    Yu, Yue; Landrum, Asheley R; Bonawitz, Elizabeth; Shafto, Patrick

    2018-06-19

    How can education optimize transmission of knowledge while also fostering further learning? Focusing on children at the cusp of formal schooling (N = 180, age = 4.0-6.0 y), we investigate learning after direct instruction by a knowledgeable teacher, after questioning by a knowledgeable teacher, and after questioning by a naïve informant. Consistent with previous findings, instruction by a knowledgeable teacher allows effective information transmission but at the cost of exploration and further learning. Critically, we find a dual benefit for questioning by a knowledgeable teacher: Such pedagogical questioning both effectively transmits knowledge and fosters exploration and further learning, regardless of whether the question was directed to the child or directed to a third party and overheard by the child. These effects are not observed when the same question is asked by a naïve informant. We conclude that a teacher's choice of pedagogical method may differentially influence learning through their choices of how, and how not, to present evidence, with implications for transmission of knowledge and self-directed discovery. © 2018 John Wiley & Sons Ltd.

  6. NASA's Astronant Family Support Office

    NASA Technical Reports Server (NTRS)

    Beven, Gary; Curtis, Kelly D.; Holland, Al W.; Sipes, Walter; VanderArk, Steve

    2014-01-01

    During the NASA-Mir program of the 1990s and due to the challenges inherent in the International Space Station training schedule and operations tempo, it was clear that a special focus on supporting families was a key to overall mission success for the ISS crewmembers pre-, in- and post-flight. To that end, in January 2001 the first Family Services Coordinator was hired by the Behavioral Health and Performance group at NASA JSC and matrixed from Medical Operations into the Astronaut Office's organization. The initial roles and responsibilities were driven by critical needs, including facilitating family communication during training deployments, providing mission-specific and other relevant trainings for spouses, serving as liaison for families with NASA organizations such as Medical Operations, NASA management and the Astronaut Office, and providing assistance to ensure success of an Astronaut Spouses Group. The role of the Family Support Office (FSO) has modified as the ISS Program matured and the needs of families changed. The FSO is currently an integral part of the Astronaut Office's ISS Operations Branch. It still serves the critical function of providing information to families, as well as being the primary contact for US and international partner families with resources at JSC. Since crews launch and return on Russian vehicles, the FSO has the added responsibility for coordinating with Flight Crew Operations, the families, and their guests for Soyuz launches, landings, and Direct Return to Houston post-flight. This presentation will provide a summary of the family support services provided for astronauts, and how they have changed with the Program and families the FSO serves. Considerations for future FSO services will be discussed briefly as NASA proposes one year missions and beyond ISS missions. Learning Objective: 1) Obtain an understanding of the reasons a Family Support Office was important for NASA. 2) Become familiar with the services provided for

  7. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1990

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1990-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are to further the professional knowledge of qualified engineering and science members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center. The study program consists of lectures and seminars on topics of interest or that are directly relevant to the research topics.

  8. Commercial Crew Astronauts Visit Kennedy on This Week @NASA – August 12, 2016

    NASA Image and Video Library

    2016-08-12

    Two of the NASA astronauts training for the first flight tests for the agency’s Commercial Crew Program visited with employees during an Aug. 11 event at Kennedy Space Center. Astronauts Eric Boe and Suni Williams, alongside Commercial Crew Program Manager Kathy Lueders, responded to questions during a panel discussion, moderated by Kennedy Director Robert Cabana. NASA has contracted with Boeing and SpaceX to develop crew transportation systems and provide crew transportation services to and from the International Space Station. The agency will select the commercial crew astronauts from the group that includes Boe, Williams, Bob Behnken and Doug Hurley The first flight tests are targeted for next year. Also, Air Quality Flight over California Wildfire, CYGNSS Media Day, Putting NASA Earth Science to Work, and more!

  9. Question analysis for Indonesian comparative question

    NASA Astrophysics Data System (ADS)

    Saelan, A.; Purwarianti, A.; Widyantoro, D. H.

    2017-01-01

    Information seeking is one of human needs today. Comparing things using search engine surely take more times than search only one thing. In this paper, we analyzed comparative questions for comparative question answering system. Comparative question is a question that comparing two or more entities. We grouped comparative questions into 5 types: selection between mentioned entities, selection between unmentioned entities, selection between any entity, comparison, and yes or no question. Then we extracted 4 types of information from comparative questions: entity, aspect, comparison, and constraint. We built classifiers for classification task and information extraction task. Features used for classification task are bag of words, whether for information extraction, we used lexical, 2 previous and following words lexical, and previous label as features. We tried 2 scenarios: classification first and extraction first. For classification first, we used classification result as a feature for extraction. Otherwise, for extraction first, we used extraction result as features for classification. We found that the result would be better if we do extraction first before classification. For the extraction task, classification using SMO gave the best result (88.78%), while for classification, it is better to use naïve bayes (82.35%).

  10. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  11. NASA DOEPOD NDE Capabilities Data Book

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. Although 0.90 POD with 95% confidence at critical flaw sizes is often stated as an inspection requirement in inspection documents, including NASA Standards, NASA critical aerospace applications have historically only accepted 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes, a90/95.

  12. NASA flight controllers - Meeting cultural and leadership challenges on the critical path to mission success

    NASA Technical Reports Server (NTRS)

    Clement, James L., Jr.; Ritsher, Jennifer Boyd

    2006-01-01

    As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.

  13. The NASA Exploration Design Team; Blueprint for a New Design Paradigm

    NASA Technical Reports Server (NTRS)

    Oberto, Robert E.; Nilsen, Erik; Cohen, Ron; Wheeler, Rebecca; DeFlorio, Paul

    2005-01-01

    NASA has chosen JPL to deliver a NASA-wide rapid-response real-time collaborative design team to perform rapid execution of program, system, mission, and technology trade studies. This team will draw on the expertise of all NASA centers and external partners necessary. The NASA Exploration Design Team (NEDT) will be led by NASA Headquarters, with field centers and partners added according to the needs of each study. Through real-time distributed collaboration we will effectively bring all NASA field centers directly inside Headquarters. JPL's Team X pioneered the technique of real time collaborative design 8 years ago. Since its inception, Team X has performed over 600 mission studies and has reduced per-study cost by a factor of 5 and per-study duration by a factor of 10 compared to conventional design processes. The Team X concept has spread to other NASA centers, industry, academia, and international partners. In this paper, we discuss the extension of the JPL Team X process to the NASA-wide collaborative design team. We discuss the architecture for such a process and elaborate on the implementation challenges of this process. We further discuss our current ideas on how to address these challenges.

  14. NASA historical data book. Volume 4: NASA resources 1969-1978

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y.; Fedor, Helen

    1994-01-01

    This is Volume 4, NASA Resources 1969-1978, of a series providing a 20-year statistical summary of NASA programs. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies. This volume combines statistical data of the component facilities with the data of the parent installation.

  15. NASA historical data book. Volume 1: NASA resources 1958-1968

    NASA Technical Reports Server (NTRS)

    Vannimmen, Jane; Bruno, Leonard C.; Rosholt, Robert L.

    1988-01-01

    This is Volume 1, NASA Resources 1958-1968, of a multi-volume series providing a 20-year compilation of summary statistical and other data descriptive of NASA's programs in aeronautics and manned and unmanned spaceflight. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies.

  16. NASA Technology Applications Team: Commercial applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  17. Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review

    NASA Technical Reports Server (NTRS)

    Martzaklis, K. Gus (Compiler)

    2003-01-01

    The Second NASA Aviation Safety Program (AvSP) Weather Accident Prevention (WxAP) Annual Project Review held June 5-7, 2001, in Cleveland, Ohio, presented the NASA technical plans and accomplishments to the aviation community. NASA-developed technologies presented included an Aviation Weather Information System with associated digital communications links, electronic atmospheric reporting technologies, forward-looking turbulence warning systems, and turbulence mitigation procedures. The meeting provided feedback and insight from the aviation community of diverse backgrounds and assisted NASA in steering its plans in the direction needed to meet the national safety goal of 80-percent reduction of aircraft accidents by 2007. The proceedings of the review are enclosed.

  18. Overview of NASA/OAST efforts related to manufacturing technology

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1976-01-01

    An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.

  19. Questioning Questions: Elementary Teachers' Adaptations of Investigation Questions across the Inquiry Continuum

    ERIC Educational Resources Information Center

    Biggers, Mandy

    2018-01-01

    Questioning is a central practice in science classrooms. However, not every question translates into a "good" science investigation. Questions that drive science investigations can be provided by many sources including the teacher, the curriculum, or the student. The variations in the source of investigation questions were explored in…

  20. NASA's Education Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

  1. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  2. Remote sensing education in NASA's technology transfer program

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  3. What and How Are We Evaluating? Meta-Evaluation Study of the NASA Innovations in Climate Education (NICE) Portfolio

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.

    2011-12-01

    As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and

  4. What and How Are We Evaluating? Meta-Evaluation Study of the NASA Innovations in Climate Education (NICE) Portfolio

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.

    2013-12-01

    As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and

  5. The NASA Astrobiology Institute: early history and organization.

    PubMed

    Blumberg, Baruch S

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  6. The NASA Astrobiology Institute: early history and organization

    NASA Technical Reports Server (NTRS)

    Blumberg, Baruch S.

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  7. Questions, Questioning Techniques, and Effective Teaching.

    ERIC Educational Resources Information Center

    Wilen, William W., Ed.

    This book focuses on questioning techniques and strategies teachers may employ to make the difference between active and passive learning in the classroom. There are nine chapters: (1) Why Questions? (Ambrose A. Clegg, Jr.); (2) Review of Research on Questioning Techniques (Meredith D. Gall and Tom Rhody); (3) The Multidisciplinary World of…

  8. Prediction Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the

  9. NASA Team Begins Testing of a New-Fangled Optic

    NASA Image and Video Library

    2017-12-08

    It’s an age-old astronomical truth: To resolve smaller and smaller physical details of distant celestial objects, scientists need larger and larger light-collecting mirrors. This challenge is not easily overcome given the high cost and impracticality of building and — in the case of space observatories — launching large-aperture telescopes. However, a team of scientists and engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has begun testing a potentially more affordable alternative called the photon sieve. This new-fangled telescope optic could give scientists the resolution they need to see finer details still invisible with current observing tools – a jump in resolution that could help answer a 50-year-old question about the physical processes heating the sun's million-degree corona. Read more: go.nasa.gov/2abhanr Credit: NASA/Goddard/W. Hrybyk

  10. A summary of major NASA launches, 1 October 1958 - 31 December 1979

    NASA Technical Reports Server (NTRS)

    Jarrett, F.

    1980-01-01

    Major NASA launches conducted under the direction of the John F. Kennedy Space Center (or its precursors) are listed within broad categories. Individual launches are summarized in chronological order under each category. The mission name, launch date/time, launch vehicle, NASA code, and site/pad are identified as well as the degree of success of the mission.

  11. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  12. Preceptor questioning and student critical thinking.

    PubMed

    Myrick, Florence; Yonge, Olive

    2002-01-01

    Questioning is fundamental to student learning. Not only does it enable students to elevate their level of thinking, but in the process it also affords them the opportunity to deal with their world intelligently. The practice setting is an environment rich in opportunity for enabling critical thinking through the use of questioning. In the preceptorship experience, preceptors are in a prime position to use questioning behaviors that can challenge the way preceptees think, encourage them to justify or clarify their assertions, promote the generation of original ideas, explanations, or solutions to patient problems, provide mental and emotional tools to help resolve dilemmas, promote discussion, and evaluate learning. This article discusses the importance of preceptor questioning for the development and promotion of student critical thinking. Contextually, the authors draw on the findings of a recent study in which preceptor questioning of the knowledge base, decision making, and actions of the preceptee were found to directly bring about or trigger their critical thinking. This article allows for some further reflection on that process and its contribution to the enhancement of the preceptorship experience. Copyright 2002, Elsevier Science (USA). All rights reserved.

  13. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  14. NASA Education: Yesterday's Dream...Today's Vision...Tomorrow's Hope

    NASA Technical Reports Server (NTRS)

    Winterton, Joyce L.

    2010-01-01

    and informal STEM education providers. Through hands-on, interactive, educational activities, NASA will engage students, educators, families, the general public, and all agency stakeholders in increasing America's science and technology literacy. NASA Education uses multiple methods to assess and evaluate the success of its programs and projects. Methods include strategic planning, management and control, expert evaluations and assessments, competitive acquisition, and analysis of performance measurement data and metrics. Additional control measures are in development. These measures will further improve data collection, assist in assessing return on investments, and provide information for accountability in project and program management. In 2009, NASA directly reached over one million students and over 115,000 educators.

  15. One hundred questions of importance to the conservation of global biological diversity.

    PubMed

    Sutherland, W J; Adams, W M; Aronson, R B; Aveling, R; Blackburn, T M; Broad, S; Ceballos, G; Côté, I M; Cowling, R M; Da Fonseca, G A B; Dinerstein, E; Ferraro, P J; Fleishman, E; Gascon, C; Hunter, M; Hutton, J; Kareiva, P; Kuria, A; Macdonald, D W; Mackinnon, K; Madgwick, F J; Mascia, M B; McNeely, J; Milner-Gulland, E J; Moon, S; Morley, C G; Nelson, S; Osborn, D; Pai, M; Parsons, E C M; Peck, L S; Possingham, H; Prior, S V; Pullin, A S; Rands, M R W; Ranganathan, J; Redford, K H; Rodriguez, J P; Seymour, F; Sobel, J; Sodhi, N S; Stott, A; Vance-Borland, K; Watkinson, A R

    2009-06-01

    We identified 100 scientific questions that, if answered, would have the greatest impact on conservation practice and policy. Representatives from 21 international organizations, regional sections and working groups of the Society for Conservation Biology, and 12 academics, from all continents except Antarctica, compiled 2291 questions of relevance to conservation of biological diversity worldwide. The questions were gathered from 761 individuals through workshops, email requests, and discussions. Voting by email to short-list questions, followed by a 2-day workshop, was used to derive the final list of 100 questions. Most of the final questions were derived through a process of modification and combination as the workshop progressed. The questions are divided into 12 sections: ecosystem functions and services, climate change, technological change, protected areas, ecosystem management and restoration, terrestrial ecosystems, marine ecosystems, freshwater ecosystems, species management, organizational systems and processes, societal context and change, and impacts of conservation interventions. We anticipate that these questions will help identify new directions for researchers and assist funders in directing funds. ©2009 Society for Conservation Biology.

  16. NASA's Universe of Learning: Engaging Learners in Discovery

    NASA Astrophysics Data System (ADS)

    Cominsky, L.; Smith, D. A.; Lestition, K.; Greene, M.; Squires, G.

    2016-12-01

    NASA's Universe of Learning is one of 27 competitively awarded education programs selected by NASA's Science Mission Directorate (SMD) to enable scientists and engineers to more effectively engage with learners of all ages. The NASA's Universe of Learning program is created through a partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University. The program will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of over 500 partners to advance the objectives of SMD's newly restructured education program. The multi-institutional team will develop and deliver a unified, consolidated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Exoplanet Exploration theme. Program elements include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; providing professional development for pre-service educators, undergraduate instructors, and informal educators; and, producing resources for special needs and underserved/underrepresented audiences. This presentation will provide an overview of the program and process for mapping discoveries to products and programs for informal, lifelong, and self-directed learning environments.

  17. TechTracS: NASA's commercial technology management system

    NASA Astrophysics Data System (ADS)

    Barquinero, Kevin; Cannon, Douglas

    1996-03-01

    The Commercial Technology Mission is a primary NASA mission, comparable in importance to those in aeronautics and space. This paper will discuss TechTracS, NASA Commercial Technology Management System that has been put into place in FY 1995 to implement this mission. This system is designed to identify and capture the NASA technologies which have commercial potential into an off-the-shelf database application, and then track the technologies' progress in realizing the commercial potential through collaborations with industry. The management system consists of four stages. The first is to develop an inventory database of the agency's entire technology portfolio and assess it for relevance to the commercial marketplace. Those technologies that are identified as having commercial potential will then be actively marketed to appropriate industries—this is the second stage. The third stage is when a NASA-industry partnership is entered into for the purposes of commercializing the technology. The final stage is to track the technology's success or failure in the marketplace. The collection of this information in TechTracS enables metrics evaluation and can accelerate the establishment on direct contacts between and NASA technologist and an industry technologist. This connection is the beginning of the technology commercialization process.

  18. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld talks during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  19. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) Program Scientist Sarah Noble talks during a NASA Social about the LADEE mission at NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  20. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Bob Barber, Lunar Atmosphere and Dust Environment Explorer (LADEE) Spacecraft Systems Engineer at NASA Ames Research Center, points to a model of the LADEE spacecraft a NASA Social, Thursday, Sept. 5, 2013 at NASA Wallops Flight Facility in Virginia. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  1. MY NASA DATA: Making Earth Science Data Accessible to the K-12 Community

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-12-01

    In 2004, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project began. The goal of this project is to enable K-12 and citizen science communities to make use of the large volume of Earth System Science data that NASA has collected and archived. One major outcome is to allow students to select a problem of real-life importance, and to explore it using high quality data sources without spending months looking for and then learning how to use a dataset. The key element of the MY NASA DATA project is the implementation of a Live Access Server (LAS). The LAS is an open source software tool, developed by NOAA, that provides access to a variety of data sources through a single, fairly simple, point- and- click interface. This tool truly enables use of the available data - more than 100 parameters are offered so far - in an inquiry-based educational setting. It readily gives students the opportunity to browse images for times and places they define, and also provides direct access to the underlying data values - a key feature of this educational effort. The team quickly discovered, however, that even a simple and fairly intuitive tool is not enough to make most teachers comfortable with data exploration. User feedback has led us to create a friendly LAS Introduction page, which uses the analogy of a restaurant to explain to our audience the basic concept of an LAS. In addition, we have created a "Time Coverage at a Glance" chart to show what data are available when. This keeps our audience from being too confused by the patchwork of data availability caused by the start and end of individual missions. Finally, we have found it necessary to develop a substantial amount of age appropriate documentation, including topical pages and a science glossary, to help our audience understand the parameters they are exploring and how these parameters fit into the larger picture of Earth System Science. MY NASA DATA

  2. NASA grievance system: Employee handbook

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This revised handbook updates the minimum provisions of the agency-wide Grievance System and applies to NASA Headquarters and field installations. All grievances initiated on or after June 15, 1981, will be processed under these provisions. NASA recognizes and endorses the importance of bringing to light and adjusting grievances promptly and of treating all employees reasonably and fairly. Achieving these objectives requires great competence, mature judgment, and true willingness to reach a satisfactory solution. Provisions of the NASA Grievance System are directed to this purpose. Grievances and misunderstandings can arise in almost any working situation. It follows then that an employee's initiation of a grievance in good faith should not cast any reflection on the employee's standing with his or her supervisor or loyalty and importance to the organization. At the same time, the initiation of a grievance should not automatically be considered as a reflection on the employee's supervisor or on the general management of the activity. This handbook should be used in conjunction with Office of Personnel Management regulations in 5 CFR Part 771 and Chapter 771 of the Federal Personnel Manual. Installations may issue implementing instructions, e.g. specifying when fact-finding is required or when an unresolved grievance must be referred to a higher level of authority.

  3. NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.

  4. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs, left, and present NASA Administrator Charles Bolden conduct a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. Bolden took over the post as NASA's 12th administrator in July 2009. The dialogue is part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  5. 14 CFR 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  6. Questioning the Community College Role. New Directions for Community Colleges, Number 32.

    ERIC Educational Resources Information Center

    Vaughan, George B., Ed.

    1980-01-01

    These nine articles question the community college's fulfillment of its educational and social roles. George Vaughan summarizes the writings of prominent critics of the community college and suggests that two-year college educators analyze and profit from their criticisms. Burton Clark reconsiders the community college's "cooling out" function and…

  7. Acting Administrator Robert Lightfoot Discusses NASAs FY2018 NASA Budget Request

    NASA Image and Video Library

    2017-05-23

    Acting NASA Administrator Robert Lightfoot discussed the agency’s Fiscal Year 2018 budget request on May 23, during an agencywide town hall State of NASA address at NASA Headquarters in Washington. The address also was broadcast on NASA Television and streamed on the agency’s homepage and mobile apps.

  8. KENNEDY SPACE CENTER, FLA. -- At a press conference, U.S. Rep. Tom Feeney responds to a question from a reporter about the new mission for NASA outlined by President George W. Bush Jan. 14. Present with Feeney are Center Director Jim Kennedy (left) and U.S. Rep. Dave Weldon (right).

    NASA Image and Video Library

    2004-01-16

    KENNEDY SPACE CENTER, FLA. -- At a press conference, U.S. Rep. Tom Feeney responds to a question from a reporter about the new mission for NASA outlined by President George W. Bush Jan. 14. Present with Feeney are Center Director Jim Kennedy (left) and U.S. Rep. Dave Weldon (right).

  9. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Hans Koenigsmann, vice president of Build and Flight Reliability at SpaceX, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  10. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Jeff Volosin, TESS project manager, NASA’s Goddard Space Flight Center, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  11. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Mike McAleenan, weather officer, 45th Weather Squadron, gives a weather update and answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  12. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Sandra Connelly, deputy associate administrator of programs, NASA’s Science Mission Directorate, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  13. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Omar Baez, launch director, NASA’s Launch Services Program, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  14. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Robert Lockwood, TESS spacecraft program manager, Orbital ATK, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  15. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  16. The NASA Aircraft VOrtex Spacing System (AVOSS): Concept Demonstration Results and Future Direction

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; OConnor, Cornelius J.

    2004-01-01

    Since the late 1990s the national airspace system has been recognized as approaching a capacity crisis. In the light of this condition, industry, government, user organizations, and educational institutions have been working on procedural and technological solutions to the problem. One aspect of system operations that holds potential for improvement is the separation criteria applied to aircraft for wake vortex avoidance. These criteria, applied when operations are conducted under instrument flight rules (IFR), were designed to represent safe spacing under weather conditions conducive to the longest wake hazards. It is well understood that wake behavior is dependent on meteorological conditions as well as the physical parameters of the generating aircraft. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft VOrtex Spacing System (AVOSS). Successfully demonstrated in a realtime field demonstration during July 2000 at the Dallas Ft. Worth International Airport (DFW), AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. AVOSS provides dynamic wake separation criteria that are a function of the ambient weather conditions for a particular airport, and the predicted wake behavior under those conditions. Wake sensing subsystems provide safety checks and validation for the predictions. The AVOSS was demonstrated in shadow mode; no actual spacing changes were applied to aircraft. This paper briefly reviews the system architecture and operation, reports the latest performance results from the DFW deployment, and describes the future direction of the project.

  17. Research in NASA history: A guide to the NASA history program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes the research opportunities and accomplishments of NASA's agency wide history program. It also offers a concise guide to the historical documentary resources available at NASA Headquarters in Washington D.C., at NASA facilities located around the country, and through the federal records system. In addition, this report contains expanded contributions by Lee D. Saegessor and other members of the NASA Headquarters History Division and by those responsible for historical documents and records at some NASA centers.

  18. Beyond Kepler: Direct Imaging of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan

    2012-01-01

    Is there another Earth out there? Is there life on it? People have been asking these questions for over two thousand years, and we finally stand on the verge of answering them. The Kepler space telescope is NASA's first mission designed to study Earthlike exoplanets (exo-Earths), and it will soon tell us how often exo-Earths occur in the habitable zones of their stars. The next natural step after Kepler is spectroscopic characterization of exo-Earths, which would tell us whether they possess an atmosphere, oxygen, liquid water, as well as other biomarkers. In order to do this, directly imaging an exo-Earth may be necessary (at least for Sun-like stars). Directly imaging an exo-Earth is challenging and likely requires a flagship-size optical space telescope with an unprecedented imaging system capable of achieving contrasts of 1(exp 10) very close to the diffraction limit. Several coronagraphs and external occulters have been proposed to meet this challenge and are in development. After first overviewing the history and current state of the field, my talk will focus on the work proceeding at the Ames Coronagraph Experiment (ACE) at the NASA Ames Research Center, where we are developing the Phase Induced Amplitude Apodization (PIAA) coronagraph in a collaboration with JPL. PIAA is a powerful technique with demonstrated aggressive performance that defines the state of the art at small inner working angles. At ACE, we have achieved contrasts of 2(exp -8) with an inner working angle of 2 lambda/D and 1(exp -6) at 1.4 lambda/D. On the path to exo-Earth imaging, we are also pursuing a smaller telescope concept called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which was recently selected for technology development (Category III) by NASA's Explorer program. EXCEDE will do fundamental science on debris disks as well as serve as a technological and scientific pathfinder for an exo-Earth imaging mission.

  19. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld is seen in a video monitor during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  20. Complex Decision-Making Applications for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  1. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-148)] NASA Advisory Council; NASA... Committee of the NASA Advisory Council. DATES: Tuesday, December 14, 2010, 1:30 p.m.-4:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center Room 1Q39, Washington, DC 20546...

  2. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  3. NASA Human Spaceflight Scenarios - Do All Our Models Still Say 'No'?

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    We analyze the potential life cycle cost of assorted NASA human spaceflight architectures an architecture as a sum of individual systems, working together. With the prior questions of high costs, limited budgets and uncertainties in mind, public private partnerships are central in these architectures. The cost data for current commercial public private partnerships is encouraging, as are cost estimates for future partnership approaches beyond low Earth orbit.

  4. Heat Flux and Wall Temperature Estimates for the NASA Langley HIFiRE Direct Connect Rig

    NASA Technical Reports Server (NTRS)

    Cuda, Vincent, Jr.; Hass, Neal E.

    2010-01-01

    An objective of the Hypersonic International Flight Research Experimentation (HIFiRE) Program Flight 2 is to provide validation data for high enthalpy scramjet prediction tools through a single flight test and accompanying ground tests of the HIFiRE Direct Connect Rig (HDCR) tested in the NASA LaRC Arc Heated Scramjet Test Facility (AHSTF). The HDCR is a full-scale, copper heat sink structure designed to simulate the isolator entrance conditions and isolator, pilot, and combustor section of the HIFiRE flight test experiment flowpath and is fully instrumented to assess combustion performance over a range of operating conditions simulating flight from Mach 5.5 to 8.5 and for various fueling schemes. As part of the instrumentation package, temperature and heat flux sensors were provided along the flowpath surface and also imbedded in the structure. The purpose of this paper is to demonstrate that the surface heat flux and wall temperature of the Zirconia coated copper wall can be obtained with a water-cooled heat flux gage and a sub-surface temperature measurement. An algorithm was developed which used these two measurements to reconstruct the surface conditions along the flowpath. Determinations of the surface conditions of the Zirconia coating were conducted for a variety of conditions.

  5. NASA Airborne Campaigns Focus on Climate Impacts in the Arctic

    NASA Image and Video Library

    2017-12-08

    This red plane is a DHC-3 Otter, the plane flown in NASA's Operation IceBridge-Alaska surveys of mountain glaciers in Alaska. Credit: Chris Larsen, University of Alaska-Fairbanks Over the past few decades, average global temperatures have been on the rise, and this warming is happening two to three times faster in the Arctic. As the region’s summer comes to a close, NASA is hard at work studying how rising temperatures are affecting the Arctic. NASA researchers this summer and fall are carrying out three Alaska-based airborne research campaigns aimed at measuring greenhouse gas concentrations near Earth’s surface, monitoring Alaskan glaciers, and collecting data on Arctic sea ice and clouds. Observations from these NASA campaigns will give researchers a better understanding of how the Arctic is responding to rising temperatures. The Arctic Radiation – IceBridge Sea and Ice Experiment, or ARISE, is a new NASA airborne campaign to collect data on thinning sea ice and measure cloud and atmospheric properties in the Arctic. The campaign was designed to address questions about the relationship between retreating sea ice and the Arctic climate. Arctic sea ice reflects sunlight away from Earth, moderating warming in the region. Loss of sea ice means more heat from the sun is absorbed by the ocean surface, adding to Arctic warming. In addition, the larger amount of open water leads to more moisture in the air, which affects the formation of clouds that have their own effect on warming, either enhancing or reducing it. Read more: www.nasa.gov/earthrightnow NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  7. NASA Discovery Program Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of the workshop was to review concepts for Discover-class missions that would follow the first two missions (MESUR-Pathfinder and NEAR) of this new program. The concepts had been generated by scientists involved in NASA's Solar System Exploration Program to carry out scientifically important investigations within strict guidelines -- $150 million cap on development cost and 3 year cap on development schedule. Like the Astrophysics Small Explorers (SMEX), such 'faster and cheaper' missions could provide vitality to solar system exploration research by returning high quality data more frequently and regularly and by involving many more young researchers than normally participate directly in larger missions. An announcement of opportunity (AO) to propose a Discovery mission to NASA is expected to be released in about two years time. One purpose of the workshop was to assist Code SL in deciding how to allocate its advanced programs resources. A second, complimentary purpose was to provide the concept proposers with feedback to allow them to better prepare for the AO.

  8. An historical summary of advisory boards for aerospace medicine at NASA.

    PubMed

    Doarn, Charles R

    2013-03-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has interacted with numerous advisory committees. These committees include those established by NASA, the National Academy of Sciences, the Institute of Medicine, or through Congressional oversight. Such groups have had a relatively passive role while providing sage advice on a variety of important issues. While these groups cover a wide range of disciplines, the focus of this paper is on those that impacted aerospace medicine and human spaceflight from NASA's beginning to the present time. The intent is to provide an historical narrative of the committees, their purpose, their outcome, and how they influenced the development of aerospace medicine within NASA. Aerospace medicine and life sciences have been closely aligned and intertwined from NASA's beginning. While several committees overlap life sciences within NASA, life sciences will not be presented unless it is in direct reference to aerospace medicine. This paper provides an historical summary chronicling those individuals and the groups they led when aerospace medicine was emerging as a discipline for human spaceflight beginning in 1957.

  9. NASA Social

    NASA Image and Video Library

    2011-05-18

    Gwynne Shotwell, President of SpaceX, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  10. NASA Social

    NASA Image and Video Library

    2012-05-18

    Models of various rockets line a table at a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  11. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs is seen during a dialogue with present NASA Administrator Charles Bolden on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  12. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. In the foreground is pictured Veggie, a container used for growing plants on the ISS. Photo Credit: (NASA/Carla Cioffi)

  13. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  14. NASA Social

    NASA Image and Video Library

    2012-05-18

    Participants with the NASA Social stand together, Friday, May 18, 2012, in front of the Vehicle Assembly Building (VAB) at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  15. The Five Key Questions of Human Performance Modeling.

    PubMed

    Wu, Changxu

    2018-01-01

    Via building computational (typically mathematical and computer simulation) models, human performance modeling (HPM) quantifies, predicts, and maximizes human performance, human-machine system productivity and safety. This paper describes and summarizes the five key questions of human performance modeling: 1) Why we build models of human performance; 2) What the expectations of a good human performance model are; 3) What the procedures and requirements in building and verifying a human performance model are; 4) How we integrate a human performance model with system design; and 5) What the possible future directions of human performance modeling research are. Recent and classic HPM findings are addressed in the five questions to provide new thinking in HPM's motivations, expectations, procedures, system integration and future directions.

  16. Eclipse 2017: Partnering with NASA MSFC to Inspire Students

    NASA Technical Reports Server (NTRS)

    Fry, Craig " Ghee" ; Adams, Mitzi; Gallagher, Dennis; Krause, Linda

    2017-01-01

    NASA's Marshall Space Flight Center (MSFC) is partnering with the U.S. Space and Rocket Center (USSRC), and Austin Peay State University (APSU) to engage citizen scientists, engineers, and students in science investigations during the 2017 American Solar Eclipse. Investigations will support the Citizen Continental America Telescopic Eclipse (CATE), Ham Radio Science Citizen Investigation(HamSCI), and Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE). All planned activities will engage Space Campers and local high school students in the application of the scientific method as they seek to explore a wide range of observations during the eclipse. Where planned experiments touch on current scientific questions, the camper/students will be acting as citizen scientists, participating with researchers from APSU and MSFC. Participants will test their expectations and after the eclipse, share their results, experiences, and conclusions to younger Space Campers at the US Space & Rocket Center.

  17. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Jason Townsend, NASA's Deputy Social Media Manager, kicks off the Lunar Atmosphere and Dust Environment Explorer (LADEE) NASA Social at Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  18. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    William Gerstenmaier, Associate Administrator Human Exploration and Operations, speaks at a NASA Social on Science on the International Space Station at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  19. NASA's upper atmosphere research satellite: A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.

    1992-01-01

    The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.

  20. NASA Video Catalog

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  1. NASA Satellite Gives a Clear View for NASA's LADEE Launch

    NASA Image and Video Library

    2013-09-06

    NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new

  2. NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Arrighi, Robert S.

    2016-01-01

    "There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best

  3. NASA Social

    NASA Image and Video Library

    2012-05-18

    NASA Social participants are reflected in the sunglasses of former NASA astronaut Garrett Reisman, now a senior engineer working on astronaut safety and mission assurance for Space Exploration Technologies, or SpaceX, as he speaks with them, Friday, May 18, 2012, at the launch complex where the company's Falcon 9 rocket is set to launch early Friday morning at Cape Canaveral Air Force Station in Cape Canaveral, Fla. Photo Credit: (NASA/Paul E. Alers)

  4. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs smiles during a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  5. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  6. @NASA Wins Shorty Award

    NASA Image and Video Library

    2013-04-10

    A Shorty Award is seen Wednesday, April 10, 2013 at NASA Headquarters in Washington. NASA's official Twitter feed, @NASA, has won its second consecutive Shorty award for the best government use of social media. The Shorty Award honors the best of social media across sites such as Twitter, Facebook, Tumblr, YouTube, Foursquare and others. NASA took the prize Monday, April 8, at the fifth Shorty Awards ceremony in New York. The @NASA acceptance tweet was, "We're sharing the universe 1 tweet at a time. Be inspired! Follow @NASA & RT if you love science & space. #ShortyAwards." Photo Credit: (NASA/Carla Cioffi)

  7. NASA's Support to Flood Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Murray, J. J.; Stough, T.

    2016-12-01

    The extent of flood and inundation, the impacts on people and infrastructure, and generally the situational awareness on all scales for decision making are areas where NASA is mobilizing scientific results, advanced sensing and technologies, experts and partnerships to support response. NASA has targeted mature application science and ready technology for flood and inundation monitoring and assessment. This includes supporting timely data management and product dissemination with users and partners. Requirements are captured in the form of science-area questions, while solutions measure readiness for use by considering standard tools and approaches that make information more accessible, interoperable, understandable and reliable. The program collaborates with capacity building and areas of education and outreach needed to create and leverage non-traditional partnerships in transdisciplinary areas including socio-economic practice, preparedness and resilience assessment, early warning and forecast response, and emergency management, relief and recovery. The program outcomes also seek alignment with and support to global and community priorities related to water resources and food security. This presentation will examine the achievements of individual projects and the challenges and opportunities of more comprehensive and collaborative teams behind NASA's response to global flooding. Examples from recent event mobilization will be reviewed including to the serious of domestic floods across the south and Midwest United States throughout 2015 and 2016. Progress on the combined use of optical, microwave and SAR remote sensing measurements, topographic and geodetic data and mapping, data sharing practices will be reviewed. Other response case studies will examine global flood events monitored, characterized and supported in various boundary regions and nations. Achievements and future plans will be described for capabilities including global flood modeling, near real

  8. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  9. Can we share questions? Performance of questions from different question banks in a single medical school.

    PubMed

    Freeman, Adrian; Nicholls, Anthony; Ricketts, Chris; Coombes, Lee

    2010-01-01

    To use progress testing, a large bank of questions is required, particularly when planning to deliver tests over a long period of time. The questions need not only to be of good quality but also balanced in subject coverage across the curriculum to allow appropriate sampling. Hence as well as creating its own questions, an institution could share questions. Both methods allow ownership and structuring of the test appropriate to the educational requirements of the institution. Peninsula Medical School (PMS) has developed a mechanism to validate questions written in house. That mechanism can be adapted to utilise questions from an International question bank International Digital Electronic Access Library (IDEAL) and another UK-based question bank Universities Medical Assessment Partnership (UMAP). These questions have been used in our progress tests and analysed for relative performance. Data are presented to show that questions from differing sources can have comparable performance in a progress testing format. There are difficulties in transferring questions from one institution to another. These include problems of curricula and cultural differences. Whilst many of these difficulties exist, our experience suggests that it only requires a relatively small amount of work to adapt questions from external question banks for effective use. The longitudinal aspect of progress testing (albeit summatively) may allow more flexibility in question usage than single high stakes exams.

  10. NASA - Beyond Boundaries

    NASA Technical Reports Server (NTRS)

    McMillan, Courtenay

    2016-01-01

    NASA is able to achieve human spaceflight goals in partnership with international and commercial teams by establishing common goals and building connections. Presentation includes photographs from NASA missions - on orbit, in Mission Control, and at other NASA facilities.

  11. Working at NASA

    NASA Technical Reports Server (NTRS)

    Harding, Adam

    2010-01-01

    This slide presentation reviews the author's educational and work background prior to working at NASA. It then presents an overview of NASA Dryden, a brief review of the author's projects while working at NASA, and some closing thoughts.

  12. NASA(Field Center Based) Technology Commercialization Centers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  13. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  14. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  15. A report on NASA software engineering and Ada training requirements

    NASA Technical Reports Server (NTRS)

    Legrand, Sue; Freedman, Glenn B.; Svabek, L.

    1987-01-01

    NASA's software engineering and Ada skill base are assessed and information that may result in new models for software engineering, Ada training plans, and curricula are provided. A quantitative assessment which reflects the requirements for software engineering and Ada training across NASA is provided. A recommended implementation plan including a suggested curriculum with associated duration per course and suggested means of delivery is also provided. The distinction between education and training is made. Although it was directed to focus on NASA's need for the latter, the key relationships to software engineering education are also identified. A rationale and strategy for implementing a life cycle education and training program are detailed in support of improved software engineering practices and the transition to Ada.

  16. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Chief Technologist Mason Peck talks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  17. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Deputy Administrator Lori Garver speaks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  18. NASA Aerospace Flight Battery Systems Program: An update

    NASA Astrophysics Data System (ADS)

    Manzo, Michelle A.

    1992-02-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  19. NASA Aerospace Flight Battery Systems Program: An Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  20. NASA GISS Climate Change Research Initiative: A Multidisciplinary Vertical Team Model for Improving STEM Education by Using NASA's Unique Capabilities.

    NASA Astrophysics Data System (ADS)

    Pearce, M. D.

    2017-12-01

    CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and

  1. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  2. Education and outreach bring NASA heliophysics to the public

    NASA Astrophysics Data System (ADS)

    Barbier, Beth

    2011-11-01

    Educating and inspiring students, teachers, and the public by communicating advances in heliophysics science is the objective of the education and public outreach (E/PO) specialists at the Heliophysics Science Division (HSD) at NASA Goddard Space Flight Center (GSFC) in Greenbelt, Md. The specialists carry out NASA's E/PO goal to enhance the nation's formal education system and contribute to the broad public understanding of science, math, and technology. HSD E/PO projects exploit community best practices to meet or surpass NASA's requirements, which include attention to quality; leverage through internal and external partnerships; and a focus on customer needs, project sustainability, and audience diversity. One key to the group's success is the involvement of enthusiastic HSD research scientists who directly interface with E/PO specialists and various audiences, verify scientific content, and/or provide data access or other resources. Scientists also mentor interns from high school to graduate school through NASA and GSFC programs, and several have shared their science with the public via appearances on national media, including the National Geographic and History channels as well as local news.

  3. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Tara Ruttley, International Space Station Program Scientist, talks about the benefits of conducting science experiments on ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  4. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    NASA Administrator Charles Bolden delivers opening remarks at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  5. 14 CFR § 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  6. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  7. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably

  8. Error Patterns in Young German Children's "Wh"-Questions

    ERIC Educational Resources Information Center

    Schmerse, Daniel; Lieven, Elena; Tomasello, Michael

    2013-01-01

    In this article we report two studies: a detailed longitudinal analysis of errors in "wh"-questions from six German-learning children (age 2 ; 0-3 ; 0) and an analysis of the prosodic characteristics of "wh"-questions in German child-directed speech. The results of the first study demonstrate that German-learning children…

  9. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. WaterNet:The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Belvedere, D. R.; Houser, P. R.; Pozzi, W.; Imam, B.; Schiffer, R.; Schlosser, C. A.; Gupta, H.; Martinez, G.; Lopez, V.; Vorosmarty, C.; Fekete, B.; Matthews, D.; Lawford, R.; Welty, C.; Seck, A.

    2008-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering. Projections of the effects of such factors will remain speculative until more effective global prediction systems and applications are implemented. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction, and has taken steps to collaborate and improve interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. WaterNet is a Solutions Network, devoted to the identification and recommendation of candidate solutions that propose ways in which water-cycle related NASA research results can be skillfully applied by partner agencies, international organizations, state, and local governments. It is designed to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment Decision Support Tools that address national needs.

  12. NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings

    NASA Technical Reports Server (NTRS)

    Comerford, Doreen; Brandt, Summer L.; Lachter, Joel B.; Wu, Shu-Chieh; Mogford, Richard H.; Battiste, Vernol; Johnson, Walter W.

    2013-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO.

  13. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  14. NASA's Modern Era Retrospective-Analysis for Research and Applications (MERRA): Early Results and Future Directions

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2008-01-01

    This talk will review the status and progress of the NASA/Global Modeling and Assimilation Office (GMAO) atmospheric global reanalysis project called the Modern Era Retrospective-Analysis for Research and Applications (MERRA). An overview of NASA's emerging capabilities for assimilating a variety of other Earth Science observations of the land, ocean, and atmospheric constituents will also be presented. MERRA supports NASA Earth science by synthesizing the current suite of research satellite observations in a climate data context (covering the period 1979-present), and by providing the science and applications communities with of a broad range of weather and climate data with an emphasis on improved estimates of the hydrological cycle. MERRA is based on a major new version of the Goddard Earth Observing System Data Assimilation System (GEOS-5), that includes the Earth System Modeling Framework (ESMF)-based GEOS-5 atmospheric general circulation model and the new NOAA National Centers for Environmental Prediction (NCEP) unified grid-point statistical interpolation (GST) analysis scheme developed as a collaborative effort between NCEP and the GMAO. In addition to MERRA, the GMAO is developing new capabilities in aerosol and constituent assimilation, ocean, ocean biology, and land surface assimilation. This includes the development of an assimilation capability for tropospheric air quality monitoring and prediction, the development of a carbon-cycle modeling and assimilation system, and an ocean data assimilation system for use in coupled short-term climate forecasting.

  15. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Public Affairs Officer Lauren Worley kicks off the second day of the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  16. Composites research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Duffy, Stephen; Vary, Alex; Nathal, Michael V.; Miner, Robert V.; Arnold, Steven M.; Castelli, Michael G.; Hopkins, Dale A.; Meador, Michael A.

    1994-01-01

    Composites research at NASA Lewis is focused on their applications in aircraft propulsion, space propulsion, and space power, with the first being predominant. Research on polymer-, metal-, and ceramic-matrix composites is being carried out from an integrated materials and structures viewpoint. This paper outlines some of the topics being pursued from the standpoint of key technical issues, current status, and future directions.

  17. Answering the question, "what is a clinical nurse leader?": transition experience of four direct-entry master's students.

    PubMed

    Bombard, Emily; Chapman, Kimberly; Doyle, Marcy; Wright, Danielle K; Shippee-Rice, Raelene V; Kasik, Dot Radius

    2010-01-01

    Understanding the experience of students learning the clinical nurse leader (CNL) role can be useful for faculty, preceptors, staff nurses, and interdisciplinary team members who guide them. This article analyzes the experience of four direct-entry master's students in the first cohort to complete the CNL curriculum and to sit for the pilot CNL certification examination. Using action research methodology, the students worked with the clinical immersion practicum faculty and a writing consultant to develop the study purpose, collect and analyze data, and prepare a manuscript. The main theme that emerged was, answering the question, "what is a CNL?" Subthemes supporting the main theme involved coming to the edge, trusting the process, rounding the corner, and valuing becoming. The analysis confirmed the value the CNL offers as a new vision to nursing education and practice. The students offered suggestions for the CNL curriculum and practicum. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. NASA's Lunar and Planetary Mapping and Modeling Program

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  19. Questioning Our Questions: Assessing Question Asking Practices to Evaluate a yPAR Program

    ERIC Educational Resources Information Center

    Grace, Sarah; Langhout, Regina Day

    2014-01-01

    The purpose of this research was to examine question asking practices in a youth participatory action research (yPAR) after school program housed at an elementary school. The research question was: In which ways did the adult question asking practices in a yPAR setting challenge and/or reproduce conventional models of power in educational…

  20. NASA IYA Programs

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2009-05-01

    NASA's Science Mission Directorate (SMD) launched a variety of programs to celebrate the International Year of Astronomy (IYA) 2009. A few examples will be presented to demonstrate how the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics has been given an IYA2009 flavor and made available to students, educators and the public worldwide. NASA participated in the official kickoff of US IYA activities by giving a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions that are now traveling to 40 public libraries around the country. NASA IYA Student Ambassadors represented the USA at the international Opening Ceremony in Paris, and have made strides in connecting with local communities throughout the USA. NASA's Object of the Month activities have generated great interest in the public through IYA Discovery Guides. Images from NASA's Great Observatories are included in the From Earth to the Universe (FETTU) exhibition, which was inaugurated both in the US and internationally. The Hubble Space Telescope Project had a tremendous response to its 100 Days of Astronomy "You Decide” competition. NASA's IYA programs have started a journey into the world of astronomy by the uninitiated and cultivated the continuation of a quest by those already enraptured by the wonders of the sky.

  1. Easing the Discovery of NASA and International Near-Real-Time Data Using the Global Change Master Directory

    NASA Technical Reports Server (NTRS)

    Olsen, Lola; Morahan, Michael; Aleman, Alicia; Cepero, Laurel; Stevens, Tyler; Ritz, Scott; Holland, Monica

    2011-01-01

    The Global Change Master Directory (GCMD) provides an extensive directory of descriptive and spatial information about data sets and data-related services, which are relevant to Earth science research. The directory's data discovery components include controlled keywords, free-text searches, and map/date searches. The GCMD portal for NASA's Land Atmosphere Near-real-time Capability for EOS (LANCE) data products leverages these discovery features by providing users a direct route to NASA's Near-Real-Time (NRT) collections. This portal offers direct access to collection entries by instrument name, informing users of the availability of data. After a relevant collection entry is found through the GCMD's search components, the "Get Data" URL within the entry directs the user to the desired data. http://gcmd.nasa.gov/r/p/gcmd_lance_nrt.

  2. One of NASA's Two Modified Boeing 747 Shuttle Carrier (SCA) Aircraft in Flight over NASA Dryden Flig

    NASA Technical Reports Server (NTRS)

    1999-01-01

    One of NASA's Boeing 747 Shuttle Carrier Aircraft flies over the Dryden Flight Research Center main building at Edwards Air Force Base, Edwards, California, in May 1999. NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are: o Three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached o Two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability o Removal of all interior furnishings and equipment aft of the forward No. 1 doors o Instrumentation used by SCA flight crews and engineers to monitor orbiter electrical loads during the ferry flights and also during pre- and post-ferry flight operations. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Tex. NASA 905 NASA 905 was the first SCA. It was obtained from American Airlines in 1974. Shortly after it was accepted by NASA it was flown in a series of wake vortex research flights at the Dryden Flight Research Center in a study to

  3. Garver NASA Social

    NASA Image and Video Library

    2011-05-18

    NASA Deputy Administrator Lori Garver, in yellow jacket, stands with participants from the NASA Social underneath the engines of the Saturn V rocket at the Apollo Saturn V visitor center, Thursday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  4. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  5. NASA thrusts in high-speed aeropropulsion research and development: An overview

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.

    1990-01-01

    NASA is conducting aeronautical research over a broad range of Mach numbers. In addition to the advanced conventional takeoff or landing (CTOL) propulsion research described elsewhere, NASA Lewis has intensified its efforts towards propulsion technology for selected high speed flight applications. In a companion program, NASA Langley has also accomplished significant research in supersonic combustion ramjet (SCRAM) propulsion. An unclassified review is presented of the propulsion research results that are applicable for supersonic to hypersonic vehicles. This overview not only provides a preview of the more detailed presentations which follow, it also presents a viewpoint on future research directions by calling attention to the unique cycles, components, and facilities involved in this expanding area of work.

  6. Research in NASA History: A Guide to the NASA History Program

    NASA Technical Reports Server (NTRS)

    Garber, Stephen J. (Compiler)

    1997-01-01

    This monograph details the archival and other related resources held by the NASA History Office at Headquarters, and at NASA's Field Centers and other related government agencies. It also gives information on the NASA History publications, World Wide Web pages and the like.

  7. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  8. NASA Overview

    NASA Technical Reports Server (NTRS)

    Sheffner, Edwin J.

    2007-01-01

    The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.

  9. Lessons from the Hot Seat: NASA Scientists in Live Broadcast and Documentary Television (Invited)

    NASA Astrophysics Data System (ADS)

    Thaller, M.

    2013-12-01

    NASA sends hundreds of scientists a year to media training, where they are taught to stick to their talking points, resist off-topic questions, and stand up to bullying. In over 15 years of television work representing NASA, I have yet to put any of the practices I learned in these sessions into action. Honestly, in over 99% of cases, reporters and documentarians are looking for totally different things from scientists on their programs. For most TV interviews, there are two or three minutes to get a few points across (and it is *amazing* how fast that time goes), show an animation, and smile engagingly to give the impression that NASA scientists are not arrogant jerks and might even be worth some tax money. But we are never trained to do this! In this session, I'll talk about some of my television experiences (good, bad, and totally embarrassing), show some examples of the short video segments we film, and discuss why most science organizations, including NASA, aren't training their scientists to give the media what they really want.

  10. When is a research question not a research question?

    PubMed

    Mayo, Nancy E; Asano, Miho; Barbic, Skye Pamela

    2013-06-01

    Research is undertaken to answer important questions yet often the question is poorly expressed and lacks information on the population, the exposure or intervention, the comparison, and the outcome. An optimal research question sets out what the investigator wants to know, not what the investigator might do, nor what the results of the study might ultimately contribute. The purpose of this paper is to estimate the extent to which rehabilitation scientists optimally define their research questions. A cross-sectional survey of the rehabilitation research articles published during 2008. Two raters independently rated each question according to pre-specified criteria; a third rater adjudicated all discrepant ratings. The proportion of the 258 articles with a question formulated as methods or expected contribution and not as what knowledge was being sought was 65%; 30% of questions required reworking. The designs which most often had poorly formulated research questions were randomized trials, cross-sectional and measurement studies. Formulating the research question is not purely a semantic concern. When the question is poorly formulated, the design, analysis, sample size calculations, and presentation of results may not be optimal. The gap between research and clinical practice could be bridged by a clear, complete, and informative research question.

  11. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    NASA Technical Reports Server (NTRS)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  12. NASA Langley Research and Technology-Transfer Program in Formal Methods

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  13. 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report presents the essential features and highlights of the 1998 Summer Faculty Fellowship Program at Ames Research Center and Dryden Flight Research Center in a comprehensive and concise form. Summary reports describing the fellows' technical accomplishments are enclosed in the attached technical report. The proposal for the 1999 NASA-ASEE-Stanford Summer Faculty Fellowship Program is being submitted under separate cover. Of the 31 participating fellows, 27 were at Ames and 4 were at Dryden. The Program's central feature is the active participation by each fellow in one of the key technical activities currently under way at either the NASA Ames Research Center or the NASA Dryden Flight Research Center. The research topic is carefully chosen in advance to satisfy the criteria of: (1) importance to NASA, (2) high technical level, and (3) a good match to the interests, ability, and experience of the fellow, with the implied possibility of NASA-supported follow-on work at the fellow's home institution. Other features of the Summer Faculty Fellowship Program include participation by the fellows in workshops and seminars at Stanford, the Ames Research Center, and other off-site locations. These enrichment programs take place either directly or remotely, via the Stanford Center for Professional Development, and also involve specific interactions between fellows and Stanford faculty on technical and other academic subjects. A few, brief remarks are in order to summarize the fellows' opinions of the summer program. It is noteworthy that 90% of the fellows gave the NASA-Ames/Dryden- Stanford program an "excellent" rating and the remaining 10%, "good." Also, 100% would recommend the program to their colleagues as an effective means of furthering their professional development as teachers and researchers. Last, but not least, 87% of the fellows stated that a continuing research relationship with their NASA colleagues' organization probably would be maintained. Therefore

  14. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1989

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler)

    1989-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are: to further the professional knowledge of qualified engineering and science faculty; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teachning activities of participants' institutions; and to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lecture and seminars on topics of interest or that are directly relevant to the Fellows' research topic.

  15. The Development of Fuel Cell Technology for NASA's Human Spaceflight Program

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    My task this morning is to review the history and current direction of fuel cell technology development for NASA's human spaceflight program and to compare it to the directions being taken in that field for The Hydrogen Economy. The concept of "The Hydrogen Economy" involves many applications for fuel cells, but for today's discussion, I'll focus on automobiles.

  16. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Leland Melvin, NASA Associate Administrator for Education, speaks during a panel discussion on inspiration in education at the 2011 NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011, in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  3. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  4. Developing a NASA strategy for the verification of large space telescope observatories

    NASA Astrophysics Data System (ADS)

    Crooke, Julie A.; Gunderson, Johanna A.; Hagopian, John G.; Levine, Marie

    2006-06-01

    In July 2005, the Office of Program Analysis and Evaluation (PA&E) at NASA Headquarters was directed to develop a strategy for verification of the performance of large space telescope observatories, which occurs predominantly in a thermal vacuum test facility. A mission model of the expected astronomical observatory missions over the next 20 years was identified along with performance, facility and resource requirements. Ground testing versus alternatives was analyzed to determine the pros, cons and break points in the verification process. Existing facilities and their capabilities were examined across NASA, industry and other government agencies as well as the future demand for these facilities across NASA's Mission Directorates. Options were developed to meet the full suite of mission verification requirements, and performance, cost, risk and other analyses were performed. Findings and recommendations from the study were presented to the NASA Administrator and the NASA Strategic Management Council (SMC) in February 2006. This paper details the analysis, results, and findings from this study.

  5. Supreme Court Hears Privacy Case Between NASA and Jet Propulsion Laboratory Scientists

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    After NASA put into practice the 2004 Homeland Security Presidential Directive-12, known as HSPD-12, Dennis Byrnes talked to then-NASA administrator Michael Griffin. Byrnes recalls that Griffin told him in 2007 that if he didn’t like the agency's implementation of HSPD-12, he should go to court. That's exactly what Byrnes, an employee of the California Institute of Technology (Caltech) working as a senior engineer at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., did. Concerned about prying and open-ended background investigations of federal contractors through NASA's implementation of HSPD-12, he, along with lead plaintiff Robert Nelson and 26 other Caltech employees working at JPL, sued NASA. Following several lower court decisions, including an injunction issued by a U.S. federal appeals court in response to a plaintiff motion, the case made it all the way to the U.S. Supreme Court, which heard oral arguments on 5 October.

  6. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Prospective contractors are acquainted with the organizational structure of NASA, and the major technical program offices and selected staff offices at the Headquarters level are briefly described. The basic procedures for Federal procurement are covered. A primer is presented on how to market to NASA. While the information is specific to NASA, many of the principles are applicable to other agencies as well. Some of the major programs are introduced which are available to small and disadvantaged businesses. The major research programs and fields of interest at individual NASA centers are summarized.

  7. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Fayette Collier, Aeronautics Research Mission Directorate, NASA Headquarters talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  8. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Technology Transfer Program Executive Daniel Lockney moderates the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  9. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most

  10. The NASA earth resources spectral information system: A data compilation, second supplement

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1973-01-01

    The NASA Earth Resources Spectral Information System (ERSIS) and the information contained therein are described. It is intended for use as a second supplement to the NASA Earth Resources Spectral Information System: A Data Compilation, NASA CR-31650-24-T, May 1971. The current supplement includes approximately 100 rock and mineral, and 375 vegetation directional reflectance spectral curves in the optical region from 0.2 to 22.0 microns. The data were categorized by subject and each curve plotted on a single graph. Each graph is fully titled to indicate curve source and indexed by subject to facilitate user retrieval from ERSIS magnetic tape records.

  11. NASA Ground-Truthing Capabilities Demonstrated

    NASA Technical Reports Server (NTRS)

    Lopez, Isaac; Seibert, Marc A.

    2004-01-01

    NASA Research and Education Network (NREN) ground truthing is a method of verifying the scientific validity of satellite images and clarifying irregularities in the imagery. Ground-truthed imagery can be used to locate geological compositions of interest for a given area. On Mars, astronaut scientists could ground truth satellite imagery from the planet surface and then pinpoint optimum areas to explore. These astronauts would be able to ground truth imagery, get results back, and use the results during extravehicular activity without returning to Earth to process the data from the mission. NASA's first ground-truthing experiment, performed on June 25 in the Utah desert, demonstrated the ability to extend powerful computing resources to remote locations. Designed by Dr. Richard Beck of the Department of Geography at the University of Cincinnati, who is serving as the lead field scientist, and assisted by Dr. Robert Vincent of Bowling Green State University, the demonstration also involved researchers from the NASA Glenn Research Center and the NASA Ames Research Center, who worked with the university field scientists to design, perform, and analyze results of the experiment. As shown real-time Hyperion satellite imagery (data) is sent to a mass storage facility, while scientists at a remote (Utah) site upload ground spectra (data) to a second mass storage facility. The grid pulls data from both mass storage facilities and performs up to 64 simultaneous band ratio conversions on the data. Moments later, the results from the grid are accessed by local scientists and sent directly to the remote science team. The results are used by the remote science team to locate and explore new critical compositions of interest. The process can be repeated as required to continue to validate the data set or to converge on alternate geophysical areas of interest.

  12. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2017-12-08

    NASA image release April 6, 2011 NASA's Chandra X-ray Observatory completed this four-hour exposure of GRB 110328A on April 4. The center of the X-ray source corresponds to the very center of the host galaxy imaged by Hubble (red cross). Credit: NASA/CXC/ Warwick/A. Levan NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  13. Support System Effects on the NASA Common Research Model

    NASA Technical Reports Server (NTRS)

    Rivers, S. Melissa B.; Hunter, Craig A.

    2012-01-01

    An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-Foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experimental and the computational data from the 4th Drag Prediction Workshop. This difference led to the present work. In this study, a computational assessment has been undertaken to investigate model support system interference effects on the Common Research Model. The configurations computed during this investigation were the wing/body/tail=0deg without the support system and the wing/body/tail=0deg with the support system. The results from this investigation confirm that the addition of the support system to the computational cases does shift the pitching moment in the direction of the experimental results.

  14. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial

  15. Toward automated consumer question answering: automatically separating consumer questions from professional questions in the healthcare domain.

    PubMed

    Liu, Feifan; Antieau, Lamont D; Yu, Hong

    2011-12-01

    Both healthcare professionals and healthcare consumers have information needs that can be met through the use of computers, specifically via medical question answering systems. However, the information needs of both groups are different in terms of literacy levels and technical expertise, and an effective question answering system must be able to account for these differences if it is to formulate the most relevant responses for users from each group. In this paper, we propose that a first step toward answering the queries of different users is automatically classifying questions according to whether they were asked by healthcare professionals or consumers. We obtained two sets of consumer questions (~10,000 questions in total) from Yahoo answers. The professional questions consist of two question collections: 4654 point-of-care questions (denoted as PointCare) obtained from interviews of a group of family doctors following patient visits and 5378 questions from physician practices through professional online services (denoted as OnlinePractice). With more than 20,000 questions combined, we developed supervised machine-learning models for automatic classification between consumer questions and professional questions. To evaluate the robustness of our models, we tested the model that was trained on the Consumer-PointCare dataset on the Consumer-OnlinePractice dataset. We evaluated both linguistic features and statistical features and examined how the characteristics in two different types of professional questions (PointCare vs. OnlinePractice) may affect the classification performance. We explored information gain for feature reduction and the back-off linguistic category features. The 10-fold cross-validation results showed the best F1-measure of 0.936 and 0.946 on Consumer-PointCare and Consumer-OnlinePractice respectively, and the best F1-measure of 0.891 when testing the Consumer-PointCare model on the Consumer-OnlinePractice dataset. Healthcare consumer

  16. NASA Webb Telescope

    NASA Image and Video Library

    2017-12-08

    NASA image release September 17, 2010 In preparation for a cryogenic test NASA Goddard technicians install instrument mass simulators onto the James Webb Space Telescope ISIM structure. The ISIM Structure supports and holds the four Webb telescope science instruments : the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec) and the Fine Guidance Sensor (FGS). Credit: NASA/GSFC/Chris Gunn To learn more about the James Webb Space Telescope go to: www.jwst.nasa.gov/ NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  17. NASA SAVE Award Winner

    NASA Image and Video Library

    2012-01-09

    NASA Goddard Space Flight Center Financial Manager and White House 2011 SAVE award winner Matthew Ritsko is seen during a television interview at NASA Headquarters shortly after meeting with President Obama at the White House on Monday, Jan. 9, 2011, in Washington. The Presidential Securing Americans' Value and Efficiency (SAVE) program gives front-line federal workers the chance to submit their ideas on how their agencies can save money and work more efficiently. Matthew's proposal calls for NASA to create a "lending library" where specialized space tools and hardware purchased by one NASA organization will be made available to other NASA programs and projects. Photo Credit: (NASA/Bill Ingalls)

  18. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    2012-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration (NASA)-designated center for the development of space launch systems. MSFC is particularly known for propulsion system development. Many engineering skills and technical disciplines are needed to accomplish this mission. This presentation will focus on the work of the Fluid Dynamics Branch (ER42). ER42 resides in the Propulsion Systems Department at MSFC. The branch is responsible for all aspects of the discipline of fluid dynamics applied to propulsion or propulsion-induced loads and environments. This work begins with design trades and parametric studies, and continues through development, risk assessment, anomaly investigation and resolution, and failure investigations. Applications include the propellant delivery system including the main propulsion system (MPS) and turbomachinery; combustion devices for liquid engines and solid rocket motors; coupled systems; and launch environments. An advantage of the branch is that it is neither analysis nor test centric, but discipline centric. Fluid dynamics assessments are made by analysis, from lumped parameter modeling through unsteady computational fluid dynamics (CFD); testing, which can be cold flow or hot fire; or a combination of analysis and testing. Integration of all discipline methods into one branch enables efficient and accurate support to the projects. To accomplish this work, the branch currently employs approximately fifty engineers divided into four teams -- Propellant Delivery CFD, Combustion Driven Flows CFD, Unsteady and Experimental Flows, and Acoustics and Stability. This discussion will highlight some of the work performed in the branch and the direction in which the branch is headed.

  19. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  20. NASA specification for manufacturing and performance requirements of NASA standard aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On November 25, 1985, the NASA Chief Engineer established a NASA-wide policy to maintain and to require the use of the NASA standard for aerospace nickel-cadmium cells and batteries. The Associate Administrator for Safety, Reliability, Maintainability, and Quality Assurance stated on December 29, 1986, the intent to retain the NASA standard cell usage policy established by the Office of the Chief Engineer. The current NASA policy is also to incorporate technological advances as they are tested and proven for spaceflight applications. This policy will be implemented by modifying the existing standard cells or by developing new NASA standards and their specifications in accordance with the NASA's Aerospace Battery Systems Program Plan. This NASA Specification for Manufacturing and Performance Requirements of NASA Standard Aerospace Nickel-Cadmium Cells is prepared to provide requirements for the NASA standard nickel-cadmium cell. It is an interim specification pending resolution of the separator material availability. This specification has evolved from over 15 years of nickel-cadmium cell experience by NASA. Consequently, considerable experience has been collected and cell performance has been well characterized from many years of ground testing and from in-flight operations in both geosynchronous (GEO) and low earth orbit (LEO) applications. NASA has developed and successfully used two standard flight qualified cell designs.