NASA Docking System (NDS) Technical Integration Meeting
NASA Technical Reports Server (NTRS)
Lewis, James L.
2010-01-01
This slide presentation reviews the NASA Docking System (NDS) as NASA's implementation of the International Docking System Standard (IDSS). The goals of the NDS, is to build on proven technologies previously demonstrated in flight and to advance the state of the art of docking systems by incorporating Low Impact Docking System (LIDS) technology into the NDS. A Hardware Demonstration was included in the meeting, and there was discussion about software, NDS major system interfaces, integration information, schedule, and future upgrades.
NASA Docking System (NDS) Interface Definitions Document (IDD). Revision F, Dec. 15, 2011
NASA Technical Reports Server (NTRS)
Lewis, James
2011-01-01
The NASA Docking System (NDS) mating system supports low approach velocity docking and provides a modular and reconfigurable standard interface, supporting crewed and autonomous vehicles during mating and assembly operations. The NDS is NASA s implementation for the International Docking System Standard (IDSS) using low impact docking technology. All NDS configurations can mate with the configuration specified in the IDSS Interface Definition Document (IDD), Revision A, released May 13, 2011. The NDS evolved from the Low Impact Docking System (LIDS). The term (and its associated acronym), international Low Impact Docking System (iLIDS) is also used to describe this system. NDS and iLIDS may be used interchangeability. Some of the heritage documentation and implementations (e.g., software command names) used on the NDS will continue to use the LIDS acronym.
Linear Actuator System for the NASA Docking System
NASA Technical Reports Server (NTRS)
Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.
2017-01-01
The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.
Linear Actuator System for the NASA Docking System
NASA Technical Reports Server (NTRS)
Dick, Brandon; Oesch, Chris
2017-01-01
The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS, which implements the Soft Impact Mating and Attenuation Concept (SIMAC). This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.
NASA Docking System (NDS) Interface Definitions Document (IDD)
NASA Technical Reports Server (NTRS)
Tabakman, Alexander; England, Warren
2013-01-01
The contents of this document define the integrated performance and interface design for NASA Docking System (NDS) Block 1 and the International Docking Adapter. The intent of this IDD is to provide the interface design for using, installing, and interfacing to the NDS Block 1 that will enable successful docking to the IDA. This document is under the control of the ISS Development Projects Office (OG).
Overview of LIDS Docking Seals Development
NASA Technical Reports Server (NTRS)
Dunlap, Pat; Steinetz, Bruce; Daniels, Chris
2008-01-01
NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. GRC is evaluating the performance of candidate seal designs under simulated operating conditions at both sub-scale and full-scale levels. GRC is ultimately responsible for delivering flight hardware seals to NASA Johnson Space Center around 2013 for integration into LIDS flight units.
NASA Docking System (NDS) Interface Definitions Document (IDD). Revision C, Nov. 2010
NASA Technical Reports Server (NTRS)
2010-01-01
The NASA Docking System (NDS) mating system supports low approach velocity docking and provides a modular and reconfigurable standard interface, supporting crewed and autonomous vehicles during mating and assembly operations. The NDS is NASA's implementation for the emerging International Docking System Standard (IDSS) using low impact docking technology. All NDS configurations can mate with the configuration specified in the IDSS Interface Definition Document (IDD) released September 21, 2010. The NDS evolved from the Low Impact Docking System (LIDS). The acronym international Low Impact Docking System (iLIDS) is also used to describe this system. NDS and iLIDS may be used interchangeability. Some of the heritage documentation and implementations (e.g., software command names) used on NDS will continue to use the LIDS acronym. The NDS IDD defines the interface characteristics and performance capability of the NDS, including uses ranging from crewed to autonomous space vehicles and from low earth orbit to deep space exploration. The responsibility for developing space vehicles and for making them technically and operationally compatible with the NDS rests with the vehicle providers. Host vehicle examples include crewed/uncrewed spacecraft, space station modules, elements, etc. Within this document, any docking space vehicle will be referred to as the host vehicle. This document defines the NDS-to-NDS interfaces, as well as the NDS-to-host vehicle interfaces and performance capability.
Electro-optical rendezvous and docking sensors
NASA Technical Reports Server (NTRS)
Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.
1991-01-01
Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.
NASA Technical Reports Server (NTRS)
Gates, R. M.; Williams, J. E.
1974-01-01
Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.
NASA Technical Reports Server (NTRS)
Hinkel, Heather; Cryan, Scott; Zipay, John; Strube, Matthew
2015-01-01
This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current design status and the considerations and technologies involved in developing this docking mechanism.
NASA Technical Reports Server (NTRS)
Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott
2015-01-01
This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR and D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR and D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR and D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR and D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current design status and the considerations and technologies involved in developing this docking mechanism.
NASA Technical Reports Server (NTRS)
Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott
2016-01-01
This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current design status and the considerations and technologies involved in developing this docking mechanism.
Review of Full-Scale Docking Seal Testing Capabilities
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.; Steinetz, Bruce M.
2008-01-01
NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. To evaluate the performance of the seals under simulated operating conditions, NASA GRC is developing two new test rigs: a non-actuated version that will be used to measure seal leak rates and an actuated test rig that will be able to measure both seal leak rates and loads. Both test rigs will be able to evaluate the seals under seal-on-seal or seal-on-plate configurations at temperatures from -50 to 50 C (-58 to 122 F) under operational and pre-flight checkout pressure gradients in both aligned and misaligned conditions.
NASA Technical Reports Server (NTRS)
Lewis, James L.
2011-01-01
The NASA Docking System (NDS) is NASA's implementation for the emerging International Docking System Standard (IDSS) using low impact docking technology. The NASA Docking System Project (NDSP) is the International Space Station (ISS) Program's project to produce the NDS, Common Docking Adapter (CDA) and Docking Hub. The NDS design evolved from the Low Impact Docking System (LIDS). The acronym international Low Impact Docking System (iLIDS) is also used to describe this system as well as the Government Furnished Equipment (GFE) project designing the NDS for the NDSP. NDS and iLIDS may be used interchangeability. This document will use the acronym iLIDS. Some of the heritage documentation and implementations (e.g., software command names, requirement identification (ID), figures, etc.) used on NDS will continue to use the LIDS acronym. This specification defines the technical requirements for the iLIDS GFE delivered to the NDSP by the iLIDS project. This document contains requirements for two iLIDS configurations, SEZ29101800-301 and SEZ29101800-302. Requirements with the statement, iLIDS shall, are for all configurations. Examples of requirements that are unique to a single configuration may be identified as iLIDS (-301) shall or iLIDS (-302) shall. Furthermore, to allow a requirement to encompass all configurations with an exception, the requirement may be designated as iLIDS (excluding -302) shall. Verification requirements for the iLIDS project are identified in the Verification Matrix (VM) provided in the iLIDS Verification and Validation Document, JSC-63966. The following definitions differentiate between requirements and other statements: Shall: This is the only verb used for the binding requirements. Should/May: These verbs are used for stating non-mandatory goals. Will: This verb is used for stating facts or declaration of purpose. A Definition of Terms table is provided in Appendix B to define those terms with specific tailored uses in this document.
Dynamic Docking Test System (DDTS) active table computer program NASA Advanced Docking System (NADS)
NASA Technical Reports Server (NTRS)
Gates, R. M.; Jantz, R. E.
1974-01-01
A computer program was developed to describe the three-dimensional motion of the Dynamic Docking Test System active table. The input consists of inertia and geometry data, actuator structural data, forcing function data, hydraulics data, servo electronics data, and integration control data. The output consists of table responses, actuator bending responses, and actuator responses.
Full-Scale System for Quantifying Leakage of Docking System Seals for Space Applications
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Steinetz, Bruce M.; Erker, Arthur H.; Robbie, Malcolm G.; Wasowski, Janice L.; Drlik, Gary J.; Tong, Michael T.; Penney, Nicholas
2007-01-01
NASA is developing a new docking and berthing system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System, is designed to connect pressurized space vehicles and structures. NASA Glenn Research Center is playing a key role in developing advanced technology for the main interface seal for this new docking system. The baseline system is designed to have a fully androgynous mating interface, thereby requiring a seal-on-seal configuration when two systems mate. These seals will be approximately 147 cm (58 in.) in diameter. NASA Glenn has designed and fabricated a new test fixture which will be used to evaluate the leakage of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. This includes testing under seal-on-seal or seal-on-plate configurations, temperatures from -50 to 50 C (-58 to 122 F), operational and pre-flight checkout pressure gradients, and vehicle misalignment (plus or minus 0.381 cm (0.150 in.)) and gapping (up to 0.10 cm (0.040 in.)) conditions. This paper describes the main design features of the test rig and techniques used to overcome some of the design challenges.
Overall view of test set-up in bldg 13 at JSC during docking set-up tests
1974-08-04
S74-27049 (4 Aug. 1974) --- Overall view of test set-up in Building 23 at the Johnson Space Center during testing of the docking mechanisms for the joint U.S.-USSR Apollo-Soyuz Test Project. The cinematic check was being made when this picture was taken. The test control room is on the right. The Soviet-developed docking system is atop the USA-NASA developed docking system. Both American and Soviet engineers can be seen taking part in the docking testing. The ASTP docking mission in Earth orbit is scheduled for July 1975.
Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Wasowski, Janice L.; Garafolo, Nicholas G.; Penney, Nicholas; Steinetz, Bruce M.
2010-01-01
NASA is developing a new docking system to support future space exploration missions to low-Earth orbit and the Moon. This system, called the Low Impact Docking System, is a mechanism designed to connect the Orion Crew Exploration Vehicle to the International Space Station, the lunar lander (Altair), and other future Constellation Project vehicles. NASA Glenn Research Center is playing a key role in developing the main interface seal for this docking system. This seal will be relatively large with an outside diameter in the range of 54 to 58 in. (137 to 147 cm). As part of this effort, a new test apparatus has been designed, fabricated, and installed to measure leak rates of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Using this test apparatus, a pressure decay testing and data processing methodology has been developed to quantify full-scale seal leak rates. Tests performed on untreated 54 in. diameter seals at room temperature in a fully compressed state resulted in leak rates lower than the requirement of less than 0.0025 lbm, air per day (0.0011 kg/day).
ISS Interface Mechanisms and their Heritage
NASA Technical Reports Server (NTRS)
Cook, John G.; Aksamentov, Valery; Hoffman, Thomas; Bruner, Wes
2011-01-01
The International Space Station, by nurturing technological development of a variety of pressurized and unpressurized interface mechanisms fosters "competition at the technology level". Such redundancy and diversity allows for the development and testing of mechanisms that might be used for future exploration efforts. The International Space Station, as a test-bed for exploration, has 4 types of pressurized interfaces between elements and 6 unpressurized attachment mechanisms. Lessons learned from the design, test and operations of these mechanisms will help inform the design for a new international standard pressurized docking mechanism for the NASA Docking System. This paper will examine the attachment mechanisms on the ISS and their attributes. It will also look ahead at the new NASA docking system and trace its lineage to heritage mechanisms.
Enabling Exploration Through Docking Standards
NASA Technical Reports Server (NTRS)
Hatfield, Caris A.
2012-01-01
Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.
1995-09-11
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Russian-built Docking Module is lowered for installation into the payload bay of the space shuttle Atlantis while it is in bay 2 of the Orbiter Processing Facility. The module will fly as a primary payload on the second Space Shuttle/Mir space station docking mission, STS-74. During the mission, the module will first be attached with the orbiter's robot arm to the Orbiter Docking System in the payload bay of the orbiter Atlantis and then be docked with the Mir. When Atlantis undocks from the Mir, it will leave the new docking module permanently attached to the space station for use during future shuttle Mir docking missions. The new module will simplify future Shuttle linkups with Mir by improving orbiter clearances when it serves as a bridge between the two spacecraft. The white structures attached to the module's sides are solar panels that will be attached to the Mir after the conclusion of the STS-74 mission. Photo Credit: NASA
Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.
2015-01-01
NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.
GEMINI-TITAN (GT)-11 - EARTH - SKY - DOCKING - OUTER SPACE
1966-07-18
S66-46144 (18 July 1966) --- The Gemini-10 spacecraft is successfully docked with the Agena Target Docking Vehicle 5005. The Agena display panel is clearly visible. After docking with the Agena, astronauts John W. Young, command pilot, and Michael Collins, pilot, fired the 16,000-pound thrust engine of Agena-10's primary propulsion system to boost the combined vehicles into an orbit with an apogee of 413 nautical miles to set a new altitude record for manned spaceflight. Photo credit: NASA
A Comparison of Candidate Seal Designs for Future Docking Systems
NASA Technical Reports Server (NTRS)
Dunlap, Patrick, H., Jr.; Steinetz, Bruce, M.
2012-01-01
NASA is developing a new docking system to support future space exploration missions to low Earth orbit, the Moon, and other destinations. A key component of this system is the seal at the main docking interface which inhibits the loss of cabin air once docking is complete. Depending on the mission, the seal must be able to dock in either a seal-on-flange or seal-on-seal configuration. Seal-on-flange mating would occur when a docking system equipped with a seal docks to a system with a flat metal flange. This would occur when a vehicle docks to a node on the International Space Station. Seal-on-seal mating would occur when two docking systems equipped with seals dock to each other. Two types of seal designs were identified for this application: Gask-O-seals and multi-piece seals. Both types of seals had a pair of seal bulbs to satisfy the redundancy requirement. A series of performance assessments and comparisons were made between the candidate seal designs indicating that they meet the requirements for leak rate and compression and adhesion loads under a range of operating conditions. Other design factors such as part count, integration into the docking system tunnel, seal-on-seal mating, and cost were also considered leading to the selection of the multi-piece seal design for the new docking system. The results of this study can be used by designers of future docking systems and other habitable volumes to select the seal design best-suited for their particular application.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA's program requirements.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Gallo, Christopher A.; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA s program requirements.
2011-04-06
Top officials from the Russian Federal Space Agency and NASA hold a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Thursday, April 7, 2011. The Soyuz TMA-21 docked to the International Space Station carrying Expedition 27 Soyuz Commander Alexander Samokutyaev, NASA Flight Engineer Ron Garan and Russian Flight Engineer Andrey Borisenko. Photo Credit: (NASA/Carla Cioffi)
2010-04-03
Kirk Shireman, NASA's deputy ISS program manager, answers reporter’s questions during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Sunday, April 4, 2010. The Soyuz TMA-18 docked to the International Space Station carrying Expedition 23 Soyuz Commander Alexander Skvortsov, Flight Engineer Mikhail Kornienko and NASA Flight Engineer Tracy Caldwell Dyson. Photo Credit: (NASA/Carla Cioffi)
2010-04-03
Kirk Shireman, right, NASA's deputy ISS program manager, answers reporter’s questions during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Sunday, April 4, 2010. The Soyuz TMA-18 docked to the International Space Station carrying Expedition 23 Soyuz Commander Alexander Skvortsov, Flight Engineer Mikhail Kornienko and NASA Flight Engineer Tracy Caldwell Dyson. Photo Credit: (NASA/Carla Cioffi)
Orion Handling Qualities During ISS Proximity Operations and Docking
NASA Technical Reports Server (NTRS)
Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Brazzel, Jack; Spehar, Pete
2011-01-01
NASA's Orion spacecraft is designed to autonomously rendezvous and dock with many vehicles including the International Space Station. However, the crew is able to assume manual control of the vehicle s attitude and flight path. In these instances, Orion must meet handling qualities requirements established by NASA. Two handling qualities assessments were conducted at the Johnson Space Center to evaluate preliminary designs of the vehicle using a six degree of freedom, high-fidelity guidance, navigation, and control simulation. The first assessed Orion s handling qualities during the last 20 ft before docking, and included both steady and oscillatory motions of the docking target. The second focused on manual acquisition of the docking axis during the proximity operations phase and subsequent station-keeping. Cooper-Harper handling qualities ratings, workload ratings and comments were provided by 10 evaluation pilots for the docking study and 5 evaluation pilots for the proximity operations study. For the docking task, both cases received 90% Level 1 (satisfactory) handling qualities ratings, exceeding NASA s requirement. All ratings for the ProxOps task were Level 1. These evaluations indicate that Orion is on course to meet NASA's handling quality requirements for ProxOps and docking.
NASA Technical Reports Server (NTRS)
Oesch, Christopher; Dick, Brandon; Rupp, Timothy
2015-01-01
The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).
2011-06-10
Top officials from the Russian Federal Space Agency and NASA hold a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Friday, June 10, 2011. The Soyuz TMA-02M docked to the International Space Station carrying Expedition 28 Soyuz Commander Sergei Volkov, NASA Flight Engineer Mike Fossum and JAXA (Japanase Aerospace Exploration Agency) Flight Engineer Satoshi Furukawa. Photo Credit: (NASA/Carla Cioffi)
Low Impact Docking System (LIDS)
NASA Technical Reports Server (NTRS)
LaBauve, Tobie E.
2009-01-01
Since 1996, NASA has been developing a docking system that will simplify operations and reduce risks associated with mating spacecraft. This effort has focused on developing and testing an original, reconfigurable, active, closed-loop, force-feedback controlled docking system using modern technologies. The primary objective of this effort has been to design a docking interface that is tunable to the unique performance requirements for all types of mating operations (i.e. docking and berthing, autonomous and piloted rendezvous, and in-space assembly of vehicles, modules and structures). The docking system must also support the transfer of crew, cargo, power, fluid, and data. As a result of the past 10 years of docking system advancement, the Low Impact Docking System or LIDS was developed. The current LIDS design incorporates the lessons learned and development experiences from both previous and existing docking systems. LIDS feasibility was established through multiple iterations of prototype hardware development and testing. Benefits of LIDS include safe, low impact mating operations, more effective and flexible mission implementation with an anytime/anywhere mating capability, system level redundancy, and a more affordable and sustainable mission architecture with reduced mission and life cycle costs. In 1996 the LIDS project, then known as the Advanced Docking Berthing System (ADBS) project, launched a four year developmental period. At the end of the four years, the team had built a prototype of the soft-capture hardware and verified the control system that will be used to control the soft-capture system. In 2001, the LIDS team was tasked to work with the X- 38 Crew Return Vehicle (CRV) project and build its first Engineering Development Unit (EDU).
2005 NASA Seal/Secondary Air System Workshop, Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2006-01-01
The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.
Companies hone in on radar-docking technology
NASA Astrophysics Data System (ADS)
Howell, Elizabeth
2009-11-01
As NASA prepares to retire the Space Shuttle next year, two private space firms have tested docking technology that could be used on the next generation of US spacecraft. In September, Canadian firm Neptec tested a new radar system on the Space Shuttle Discovery that allows spacecraft to dock more easily. Meanwhile, Space Exploration Technologies (SpaceX) based in California has revealed that it tested out a new proximity sensor, dubbed "Dragoneye", on an earlier shuttle mission in July.
2009-03-27
Mike Hawes, NASA's Acting Associate Administrator, left, looks on as Kirk Shireman, NASA's deputy ISS program manager, answers reporters questions during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Saturday March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
External airlock assembly/Mir docking system being loaded
1994-11-15
S95-00057 (15 Nov 1994) --- In Rockwell's Building 290 at Downey, California, the external airlock assembly/Mir docking system is rotated into position for crating up for shipment to the Kennedy Space Center (KSC) in Florida. Jointly developed by Rockwell and RSC Energia, the external airlock assembly and Mir docking system will be mounted in the cargo bay of the Space Shuttle Atlantis to enable the shuttle to link up to Russia's Mir space station. The docking system contains hooks and latches compatible with the system currently housed on the Mir's Krystall module, to which Atlantis will attach for the first time next spring. STS-71 will carry two Russian cosmonauts, who will replace a three-man crew aboard Mir including Norman E. Thagard, a NASA astronaut. The combined 10-person crew will conduct almost five days of joint life sciences investigations both aboard Mir and in the Space Shuttle Atlantis's Spacelab module.
2006 NASA Seal/Secondary Air System Workshop; Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)
2007-01-01
The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).
2004 NASA Seal/Secondary Air System Workshop, Volume 1
NASA Technical Reports Server (NTRS)
2005-01-01
The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (1) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (2) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (3) Overview of NASA Glenn s seal program aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (4) Reviews of NASA prime contractor and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (5) Reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA s new Exploration Initiative. Plans to develop the necessary mechanism and androgynous seal technologies were reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes during operation, and durability to meet mission requirements.
2010-04-03
View from the balcony of the Russian Mission Control Center in Korolev, Russia as the Soyuz TMA-18 docks to the International Space Station on Sunday, April 4, 2010. The Soyuz TMA-18 docked to the International Space Station carrying Expedition 23 Soyuz Commander Alexander Skvortsov, Flight Engineer Mikhail Kornienko and NASA Flight Engineer Tracy Caldwell Dyson. Photo Credit: (NASA/Carla Cioffi)
Automatic Docking System Sensor Design, Test, and Mission Performance
NASA Technical Reports Server (NTRS)
Jackson, John L.; Howard, Richard T.; Cole, Helen J.
1998-01-01
The Video Guidance Sensor is a key element of an automatic rendezvous and docking program administered by NASA that was flown on STS-87 in November of 1997. The system used laser illumination of a passive target in the field of view of an on-board camera and processed the video image to determine the relative position and attitude between the target and the sensor. Comparisons of mission results with theoretical models and laboratory measurements will be discussed.
2010-04-03
Alexei Krasnov, Director of Manned Space Programs Department, Roscosmos, listens to reporter’s questions during a Soyuz post-docking press conference at the Russian mission Control Center in Korolev, Russia on Sunday, April 4, 2010. The Soyuz TMA-18 docked to the International Space Station carrying Expedition 23 Soyuz Commander Alexander Skvortsov, Flight Engineer Mikhail Kornienko and NASA Flight Engineer Tracy Caldwell Dyson. Photo Credit: (NASA/Carla Cioffi)
2009-03-27
Managers from NASA, Roscosmos, RSC-Energia and other related agencies answer reporters questions during a Soyuz post-docking press conference at the Russian mission Control Center in Korolev, Russia on Saturday March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
2011-04-06
Russian Federal Space Agency Director of Human Space Flight, Alexey Krasnov, third from right, answers reporter’s questions during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Thursday, April 7, 2011. The Soyuz TMA-21 docked to the International Space Station carrying Expedition 27 Soyuz Commander Alexander Samokutyaev, NASA Flight Engineer Ron Garan and Russian Flight Engineer Andrey Borisenko. Photo Credit: (NASA/Carla Cioffi)
2009-03-27
Managers from NASA, Roscosmos, RSC-Energia, TsNIIMash and other related agencies answer reporters questions during a Soyuz post-docking press conference at the Russian mission Control Center in Korolev, Russia on Saturday March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
Pilot in Rendezvous Docking Simulator
1962-12-19
Unidentified Pilot eyeballs his way to a docking by peering through the portal in his capsule. Photo published in Spaceflight Revolution, NASA Langley Research Center From Sputnik to Apollo. By James R. Hansen. NASA SP-4308, 1995, p. 372.
One Year Crew Docking to the International Space Station
2015-05-27
This video was taken by the crew members aboard the Soyuz TMA-16M spacecraft which docked to the International Space Station at 9:33 p.m. EDT March 27, 2015. NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka arrived just six hours after launching from Baikonur, Kazakhstan, completing four orbits around the Earth before catching up with the orbiting laboratory. The vehicle docked to the Poisk module (also known as the Mini-Research Module 2) on the space-facing side of the Russian Service Module. The spinning object in view is an antenna that is part of the automatic rendezvous and docking system known as KURS.
2010-04-03
George Dyson, right, speaks to his wife NASA Flight Engineer Tracy Caldwell Dyson onboard the International Space Station from the Russian Mission Control Center, Korolev, Russia, Sunday, April 4, 2010. The Soyuz TMA-18 docked to the International Space Station carrying Expedition 23 Soyuz Commander Alexander Skvortsov, Flight Engineer Mikhail Kornienko and NASA Flight Engineer Tracy Caldwell Dyson. Photo Credit: (NASA/Carla Cioffi)
2010-04-03
Mary Ellen Caldwell, center, speaks to her daughter NASA Flight Engineer Tracy Caldwell Dyson onboard the International Space Station from the Russian Mission Control Center, Korolev, Russia, Sunday, April 4, 2010. The Soyuz TMA-18 docked to the International Space Station carrying Expedition 23 Soyuz Commander Alexander Skvortsov, Flight Engineer Mikhail Kornienko and NASA Flight Engineer Tracy Caldwell Dyson. Photo Credit: (NASA/Carla Cioffi)
2011-06-10
Vladimir Popovkin, Head of the Russian Federal Space Agency (ROSCOSMOS) answers a reporter’s question during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Friday, June 10, 2011. The Soyuz TMA-02M docked to the International Space Station carrying Expedition 28 Soyuz Commander Sergei Volkov, NASA Flight Engineer Mike Fossum and JAXA (Japanase Aerospace Exploration Agency) Flight Engineer Satoshi Furukawa. Photo Credit: (NASA/Carla Cioffi)
2011-06-10
William Gerstenmaier, Associate Administrator for Space Operations, is interviewed by Russian Federal Space Agency (ROSCOSMOS) TV following a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Friday, June 10, 2011. The Soyuz TMA-02M docked to the International Space Station carrying Expedition 28 Soyuz Commander Sergei Volkov, NASA Flight Engineer Mike Fossum and JAXA (Japanase Aerospace Exploration Agency) Flight Engineer Satoshi Furukawa. Photo Credit: (NASA/Carla Cioffi)
2018-03-23
Icons for the International Space Station and Soyuz MS-08 spacecraft are seen on a tracking map on a screen in the Moscow Mission Control Center as the spacecraft approaches for docking, Friday, March 23, 2018 in Korolev, Russia. The Soyuz MS-08 spacecraft carrying Expedition 55-56 crewmembers Oleg Artemyev of Roscosmos and Ricky Arnold and Drew Feustel of NASA docked at 3:40 p.m. Eastern time (10:40 p.m. Moscow time) on March 23 and joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA). Photo Credit: (NASA/Joel Kowsky)
Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M
2008-01-01
Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.
NASA Technical Reports Server (NTRS)
Pei, Jing; Murchison, Luke; BenShabat, Adam; Stewart, Victor; Rosenthal, James; Follman, Jacob; Branchy, Mark; Sellers, Drew; Elandt, Ryan; Elliott, Sawyer;
2017-01-01
Small spacecraft autonomous rendezvous and docking is an essential technology for future space structure assembly missions. A novel magnetic capture and latching mechanism is analyzed that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. A CubeSat 3-DOF ground demonstration effort is on-going at NASA Langley Research Center that enables hardware-in-the loop testing of the autonomous approach and docking of a follower CubeSat to an identical leader CubeSat. The test setup consists of a 3 meter by 4 meter granite table and two nearly frictionless air bearing systems that support the two CubeSats. Four cold-gas on-off thrusters are used to translate the follower towards the leader, while a single reaction wheel is used to control the attitude of each CubeSat. An innovative modified pseudo inverse control allocation scheme was developed to address interactions between control effectors. The docking procedure requires relatively high actuator precision, a novel minimal impulse bit mitigation algorithm was developed to minimize the undesirable deadzone effects of the thrusters. Simulation of the ground demonstration shows that the Guidance, Navigation, and Control system along with the docking subsystem leads to successful docking under 3-sigma dispersions for all key system parameters. Extensive simulation and ground testing will provide sufficient confidence that the proposed docking mechanism along with the choosen suite of sensors and actuators will perform successful docking in the space environment.
NASA Technical Reports Server (NTRS)
Carlstrom, Nicholas Mercury
2016-01-01
This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User Training Materials version 2013.0 release was used to complete the Trick tutorial. Multiple network privilege and repository permission requests were required in order to access previous simulation models. The project was also an introduction to computer programming and the Linux operating system. Basic C++ and Python syntax was used during the completion of the Trick tutorial. Trick's engineering analysis and Monte Carlo simulation capabilities were observed and basic space mission planning procedures were applied in the conceptual design phase. Multiple professional development opportunities were completed in addition to project duties during this internship through the System for Administration, Training, and Education Resources for NASA (SATERN). Topics include: JSC Risk Management Workshop, CCP Risk Management, Basic Radiation Safety Training, X-Ray Radiation Safety, Basic Laser Safety, JSC Export Control, ISS RISE Ambassador, Basic SharePoint 2013, Space Nutrition and Biochemistry, and JSC Personal Protective Equipment. Additionally, this internship afforded the opportunity for formal project presentation and public speaking practice. This was my first experience at a NASA center. After completing this internship I have a much clearer understanding of certain aspects of the agency's processes and procedures, as well as a deeper appreciation from spaceflight simulation design and testing. I will continue to improve my technical skills so that I may have another opportunity to return to NASA and Johnson Space Center.
2011-04-06
Russian Mission Control Center is seen on Thursday, April 7, 2011 in Korolev, Russia. The Soyuz TMA-21 docked to the International Space Station carrying Expedition 27 Soyuz Commander Alexander Samokutyaev, NASA Flight Engineer Ron Garan and Russian Flight Engineer Andrey Borisenko. Photo Credit: (NASA/Carla Cioffi)
Dynamic Inversion based Control of a Docking Mechanism
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V.; Ippolito, Corey; Krishnakumar, Kalmanje
2006-01-01
The problem of position and attitude control of the Stewart platform based docking mechanism is considered motivated by its future application in space missions requiring the autonomous docking capability. The control design is initiated based on the framework of the intelligent flight control architecture being developed at NASA Ames Research Center. In this paper, the baseline position and attitude control system is designed using dynamic inversion with proportional-integral augmentation. The inverse dynamics uses a Newton-Euler formulation that includes the platform dynamics, the dynamics of the individual legs along with viscous friction in the joints. Simulation results are presented using forward dynamics simulated by a commercial physics engine that builds the system as individual elements with appropriate joints and uses constrained numerical integration,
Performance of Subscale Docking Seals Under Simulated Temperature Conditions
NASA Technical Reports Server (NTRS)
Smith, Ian M.; Daniels, Christopher C.
2008-01-01
A universal docking system is being developed by the National Aeronautics and Space Administration (NASA) to support future space exploration missions to low Earth orbit (LEO), to the moon, and to Mars. The candidate docking seals for the system are a composite design consisting of elastomer seal bulbs molded into the front and rear sides of a metal ring. The test specimens were subscale seals with two different elastomer cross-sections and a 12-in. outside diameter. The seal assemblies were mated in elastomer seal-on-metal plate and elastomer seal-on-elastomer seal configurations. The seals were manufactured from S0383-70 silicone elastomer compound. Nominal and off-nominal joint configurations were examined. Both the compression load required to mate the seals and the leak rate observed were recorded while the assemblies were subjected to representative docking system operating temperatures of -58, 73, and 122 F (-50, 23, and 50 C). Both the loads required to fully compress the seals and their leak rates were directly proportional to the test temperature.
2018-03-23
Guests watch a live view of the International Space Station, as seen by cameras onboard the Soyuz MS-08 spacecraft with Expedition 55-56 crewmembers Oleg Artemyev of Roscosmos and Ricky Arnold and Drew Feustel of NASA, on screens at the Moscow Mission Control Center as the spacecraft approaches for docking, Friday, March 23, 2018 in Korolev, Russia. The Soyuz MS-08 spacecraft carrying Artemyev, Feustel, and Arnold docked at 3:40 p.m. Eastern time (10:40 p.m. Moscow time) and joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA). Photo Credit: (NASA/Joel Kowsky)
2018-03-23
A live view of the International Space Station, as seen by cameras onboard the Soyuz MS-08 spacecraft with Expedition 55-56 crewmembers Oleg Artemyev of Roscosmos and Ricky Arnold and Drew Feustel of NASA, is seen on screens at the Moscow Mission Control Center as the spacecraft approaches for docking, Friday, March 23, 2018 in Korolev, Russia. The Soyuz MS-08 spacecraft carrying Artemyev, Feustel, and Arnold docked at 3:40 p.m. Eastern time (10:40 p.m. Moscow time) and joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA). Photo Credit: (NASA/Joel Kowsky)
2017-12-19
Icons for the International Space Station and Soyuz MS-07 spacecraft are seen on a tracking map on a screen in the Moscow Mission Control Center as the spacecraft approaches for docking, Tuesday, Dec. 19, 2017 in Korolev, Russia. The Soyuz MS-07 spacecraft carrying Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) docked with the International Space Station at 3:39 a.m. EST, Tuesday, Dec. 19 while 250 statute miles over the southern coast of Italy and joined Expedition 54 Commander Alexander Misurkin of Roscosmos, and NASA astronauts Joe Acaba and Mark Vande Hei. Photo Credit: (NASA/Joel Kowsky)
2017-12-19
U.S. Ambassador to Russia Jon Huntsman Jr. is seen during an interview with NASA Public Affairs Office Rob Navias in the Moscow Mission Control Center in Korolev, Russia after the Soyuz MS-07 spacecraft docked with the International Space Station, Tuesday, Dec. 19, 2017. Photo Credit: (NASA/Joel Kowsky)
American-built hardware for ASPT undergoes pre-delivery preparations
1974-09-11
S74-28295 (September 1974) --- American-built hardware for the joint U.S.-USSR Apollo-Soyuz Test Project mission undergoes pre-delivery preparations in the giant clean room at Rockwell International Corporation?s Space Division at Downey, California. The U.S. portion of the ASTP docking system is in the right foreground. In the right background is the cylindrical-shaped docking module, which is designed to link the Apollo and Soyuz spacecraft when they dock in Earth orbit next summer. In the left background is the Apollo Command Module which they will carry the three American astronauts into Earth orbit. Photo credit: NASA
Expedition 31 Soyuz TMA-04M Docking to ISS
2012-05-17
View from the balcony of the Russian Mission Control Center shows the Expedition 31 crew portrait along with a timeline of Soyuz TMA-04M docking events on Thursday, May 17, 2012, in Korolev, Russia. The Soyuz docked to the International Space Station at 8:36 a.m. Moscow time with Expedition 31 Soyuz Commander Gennady Padalka, Flight Engineer Sergei Revin, and NASA Flight Engineer Joe Acaba two days after they launched from the Baikonur Cosmodrome in Kazakhstan. Photo Credit (NASA/Bill Ingalls)
2014-03-28
A view of the Russian Mission Control Center in Korolev, Russia on Friday, March 28, 2014 prior to the docking of Soyuz TMA-12M. The Soyuz TMA-12M spacecraft docked to the International Space Station at 7:53 p.m. EDT bringing Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steve Swanson of NASA and Flight Engineer Oleg Artemyev of Roscosmos to the ISS for their six month stay aboard the orbiting labratory. Photo Credit: (NASA/Joel Kowsky)
Space Environment's Effects on Seal Materials
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Daniels, Christopher C.; Dunlap, Patrick; Miller, Sharon; Dever, Joyce; Waters, Deborah; Steinetz, Bruce M.
2007-01-01
A Low Impact Docking System (LIDS) is being developed by the NASA Johnson Space Center to support future missions of the Crew Exploration Vehicle (CEV). The LIDS is androgynous, such that each system half is identical, thus any two vehicles or modules with LIDS can be coupled. Since each system half is a replica, the main interface seals must seal against each other instead of a conventional flat metal surface. These sealing surfaces are also expected to be exposed to the space environment when vehicles are not docked. The NASA Glenn Research Center (NASA GRC) is supporting this project by developing the main interface seals for the LIDS and determining the durability of candidate seal materials in the space environment. In space, the seals will be exposed to temperatures of between 50 to 50 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). NASA GRC is presently engaged in determining the effects of these environments on our candidate elastomers. Since silicone rubber is the only class of seal elastomer that functions across the expected temperature range, NASA GRC is focusing on three silicone elastomers: two provided by Parker Hannifin (S0-899-50 and S0-383-70) and one from Esterline Kirkhill (ELA-SA-401). Our results from compression set, elastomer to elastomer adhesion, and seal leakage tests before and after various simulated space exposures will be presented.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Carpenter, James R.
2011-01-01
The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.
2017-12-19
NASA International Space Station Program Manager Kirk Shireman speaks with the Expedition 54 crew from the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)
Automated Rendezvous and Capture System Development and Simulation for NASA
NASA Technical Reports Server (NTRS)
Roe, Fred D.; Howard, Richard T.; Murphy, Leslie
2004-01-01
The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.
An autonomous rendezvous and docking system using cruise missile technologies
NASA Technical Reports Server (NTRS)
Jones, Ruel Edwin
1991-01-01
In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.
2011-04-06
View from the balcony of the Russian Mission Control Center in Korolev, Russia as the Soyuz TMA-21 nears the International Space Station on Thursday, April 7, 2011. The Soyuz TMA-21 docked to the International Space Station carrying Expedition 27 Soyuz Commander Alexander Samokutyaev, NASA Flight Engineer Ron Garan and Russian Flight Engineer Andrey Borisenko. Photo Credit: (NASA/Carla Cioffi)
2010-06-17
The Soyuz TMA-19 nears its docking with the International Space Station (ISS) as seen in the video monitor at Russian Mission Control Center in Korolev, Russia on Friday, June 18, 2010. The TMA-19 delivered the crew of Expedition 24 Soyuz Commander Fyodor Yurchikhin, and NASA Flight Engineers Doug Wheelock and Shannon Walker to the ISS. Photo Credit: (NASA/Carla Cioffi)
Results of prototype software development for automation of shuttle proximity operations
NASA Technical Reports Server (NTRS)
Hiers, Harry K.; Olszewski, Oscar W.
1991-01-01
A Rendezvous Expert System (REX) was implemented on a Symbolics 3650 processor and integrated with the 6 DOF, high fidelity Systems Engineering Simulator (SES) at the NASA Johnson Space Center in Houston, Texas. The project goals were to automate the terminal phase of a shuttle rendezvous, normally flown manually by the crew, and proceed automatically to docking with the Space Station Freedom (SSF). The project goals were successfully demonstrated to various flight crew members, managers, and engineers in the technical community at JSC. The project was funded by NASA's Office of Space Flight, Advanced Program Development Division. Because of the complexity of the task, the REX development was divided into two distinct efforts. One to handle the guidance and control function using perfect navigation data, and another to provide the required visuals for the system management functions needed to give visibility to the crew members of the progress being made towards docking the shuttle with the LVLH stabilized SSF.
NASA Technical Reports Server (NTRS)
1992-01-01
Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.
Berthing simulator for space station and orbiter
NASA Technical Reports Server (NTRS)
Veerasamy, Sam
1991-01-01
The development of a real-time man-in-the-loop berthing simulator is in progress at NASA Lyndon B. Johnson Space Center (JSC) to conduct a parametric study and to measure forces during contact conditions of the actual docking mechanisms for the Space Station Freedom and the orbiter. In berthing, the docking ports of the Space Station and the orbiter are brought together using the orbiter robotic arm to control the relative motion of the vehicles. The berthing simulator consists of a dynamics docking test system (DDTS), computer system, simulator software, and workstations. In the DDTS, the Space Station, and the orbiter docking mechanisms are mounted on a six-degree-of-freedom (6 DOF) table and a fixed platform above the table. Six load cells are used on the fixed platform to measure forces during contact conditions of the docking mechanisms. Two Encore Concept 32/9780 computers are used to simulate the orbiter robotic arm and to operate the berthing simulator. A systematic procedure for a real-time dynamic initialization is being developed to synchronize the Space Station docking port trajectory with the 6 DOF table movement. The berthing test can be conducted manually or automatically and can be extended for any two orbiting vehicles using a simulated robotic arm. The real-time operation of the berthing simulator is briefly described.
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.
2011-04-06
The Soyuz TMA-21 is seen as it approaches the International Space Station on a large screen TV at the Russian Mission Control Center in Korolev, Russia on Thursday, April 7, 2011. The Soyuz TMA-21 docked to the International Space Station carrying Expedition 27 Soyuz Commander Alexander Samokutyaev, NASA Flight Engineer Ron Garan and Russian Flight Engineer Andrey Borisenko. Photo Credit: (NASA/Carla Cioffi)
2010-04-03
A large TV screen in Russian Mission Control Center in Korolev, Russia shows Expedition 23 Commander Oleg Kotov, right, welcoming NASA astronaut and Flight Engineer Tracy Caldwell Dyson onboard the International Space Station after she and fellow crew members Expedition 23 Soyuz Commander Alexander Skvortsov and Flight Engineer Mikhail Kornienko docked their Soyuz TMA-18 spacecraft on Sunday, April 4, 2010. Photo Credit: (NASA/Carla Cioffi)
2009-03-27
Michelle Barratt wishes her husband, NASA Astronaut Michael Barratt, a happy wedding anniversary via phone to the International Space Station from the Russian Mission Control Center, Korolev, Russia, Saturday, March 28, 2009. The Soyuz TMA-14 spacecraft docked to the International Space Station and delivered Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
2009-03-27
Mike Hawes, NASA's Acting Associate Administrator, talks on the phone to the six crew members onboard the International Space Station from the Russian Mission Control Center, Korolev, Russia, Saturday, March 28, 2009. The Soyuz TMA-14 spacecraft docked to the International Space Station and delivered Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
2011-07-12
S135-E-007656 (12 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, waits at an International Space Station's pressurized mating adapter (PMA-2) docked to the space shuttle Atlantis, as the station's robotic system moves the failed pump module (out of frame) over to the spacewalking astronaut and the shuttle's cargo bay. Fossum and crewmate Ron Garan sent six hours and 31 minutes on their July 12 spacewalk. Photo credit: NASA
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians begin a functional test on the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians prepare to test the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
2009-08-21
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 1, technicians begin testing the orbital docking system on space shuttle Atlantis. The STS-129 mission will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Kim Shiflett
Overview of NASA Glenn Seal Project
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn;
2009-01-01
NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.
NASA Technical Reports Server (NTRS)
Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael
2011-01-01
In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.
GEMINI-TITAN (GT)-10 - EARTH SKY - RENDEZVOUS - OUTER SPACE
1966-07-18
S66-46122 (18 July 1966) --- Agena Target Docking Vehicle 5005 is photographed from the Gemini-Titan 10 (GT-10) spacecraft during rendezvous in space. The two spacecraft are about 38 feet apart. After docking with the Agena, astronauts John W. Young, command pilot, and Michael Collins, pilot, fired the 16,000 pound thrust engine of Agena X's primary propulsion system to boost the combined vehicles into an orbit with an apogee of 413 nautical miles to set a new altitude record for manned spaceflight. Photo credit: NASA
Application of neural networks to autonomous rendezvous and docking of space vehicles
NASA Technical Reports Server (NTRS)
Dabney, Richard W.
1992-01-01
NASA-Marshall has investigated the feasibility of numerous autonomous rendezvous and docking (ARD) candidate techniques. Neural networks have been studied as a viable basis for such systems' implementation, due to their intrinsic representation of such nonlinear functions as those for which analytical solutions are either difficult or nonexistent. Neural networks are also able to recognize and adapt to changes in their dynamic environment, thereby enhancing redundancy and fault tolerance. Outstanding performance has been obtained from ARD azimuth, elevation, and roll networks of this type.
2009-03-27
Michelle Barratt, 3rd from left, claps as she watches her husband, NASA Astronaut Mike Barratt, enter the International Space Station live on TV from the Russia Mission Control Center in Korolev, Russia, Saturday, March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
McDonald, Sue
1998-01-01
Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.
2018-04-09
Mark Nurge, Ph.D., a physicist in the Applied Physics Lab with the Exploration Research and Technology Programs at NASA's Kennedy Space Center in Florida, looks at data during the first optical quality test on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.
2010-04-03
The crew of Expedition 23 are seen on a large TV screen in the Russian Mission Control Center in Korolev, Russia, Sunday, April 4, 2010, shortly after the Soyuz TMA-18 spacecraft docked to the International Space Station and delivered Expedition 23 Flight Engineers Alexander Skvortsov, Mikhail Kornienko and Tracy Caldwell Dyson. Clockwise from top right are NASA astronaut TJ Creamer, NASA astronaut Tracy Caldwell Dyson, Russian cosmonaut Alexander Skvortsov, Russian cosmonaut Mikhail Kornienko, JAXA (Japan Aerospace Exploration Agency) astronaut Soichi Noguchi and Expedition 23 commander Russian cosmonaut Oleg Kotov . Photo Credit: (NASA/Carla Cioffi)
Autonomous docking ground demonstration (category 3)
NASA Technical Reports Server (NTRS)
Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.
1991-01-01
The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.
Autonomous docking ground demonstration (category 3)
NASA Astrophysics Data System (ADS)
Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.
The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Goodrich, Kenneth H.; Bailey, Randall E.; Barnes, James R.; Ragsdale, William A.; Neuhaus, Jason R.
2010-01-01
This paper documents the investigation into the manual docking of a preliminary version of the Crew Exploration Vehicle with stationary and rotating targets in Low Earth Orbit. The investigation was conducted at NASA Langley Research Center in the summer of 2008 in a repurposed fixed-base transport aircraft cockpit and involved nine evaluation astronauts and research pilots. The investigation quantified the benefits of a feed-forward reaction control system thruster mixing scheme to reduce translation-into-rotation coupling, despite unmodeled variations in individual thruster force levels and off-axis center of mass locations up to 12 inches. A reduced rate dead-band in the phase-plane attitude controller also showed some promise. Candidate predictive symbology overlaid on a docking ring centerline camera image did not improve handling qualities, but an innovative attitude status indicator symbol was beneficial. The investigation also showed high workload and handling quality problems when manual dockings were performed with a rotating target. These concerns indicate achieving satisfactory handling quality ratings with a vehicle configuration similar to the nominal Crew Exploration Vehicle may require additional automation.
A Ground Testbed to Advance US Capability in Autonomous Rendezvous and Docking Project
NASA Technical Reports Server (NTRS)
D'Souza, Chris
2014-01-01
This project will advance the Autonomous Rendezvous and Docking (AR&D) GNC system by testing it on hardware, particularly in a flight processor, with a goal of testing it in IPAS with the Waypoint L2 AR&D scenario. The entire Agency supports development of a Commodity for Autonomous Rendezvous and Docking (CARD) as outlined in the Agency-wide Community of Practice whitepaper entitled: "A Strategy for the U.S. to Develop and Maintain a Mainstream Capability for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond". The whitepaper establishes that 1) the US is in a continual state of AR&D point-designs and therefore there is no US "off-the-shelf" AR&D capability in existence today, 2) the US has fallen behind our foreign counterparts particularly in the autonomy of AR&D systems, 3) development of an AR&D commodity is a national need that would benefit NASA, our commercial partners, and DoD, and 4) an initial estimate indicates that the development of a standardized AR&D capability could save the US approximately $60M for each AR&D project and cut each project's AR&D flight system implementation time in half.
ISS Expedition 54-55 Docking, Hatch Opening and Welcome Activities
2017-12-19
After launching Dec. 17 in their Soyuz MS-07 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Expedition 54-55 Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) arrived at the International Space Station Dec. 19 to complete a two-day journey, docking their vehicle to the Rassvet module on the Russian segment of the complex. A few hours after docking their Soyuz MS-07 spacecraft to the International Space Station, Expedition 54-55 Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), opened hatches and were greeted by station Commander Alexander Misurkin of Roscosmos and Flight Engineers Joe Acaba and Mark Vande Hei of NASA.
2008-07-21
CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the protective wrapping has been removed from the Flight Support System for the Hubble Space Telescope revealing the soft capture mechanism , or SCM. The SCM will be permanently attached to Hubble’s aft shroud by spacewalking astronauts and will provide a rendezvous and docking target that can be easily seen and recognized by a docking vehicle. The Flight Support System, or FSS, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. The Super Lightweight Interchangeable Carrier, or SLIC, and the Orbital Replacement Unit Carrier, or ORUC, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.
Gemini Capsule and Rendezvous Docking Simulator
1962-12-19
Practicing with a full-scale model of the Gemini Capsule in Langley's Rendezvous Docking Simulator. -- Caption and photograph published in Winds of Change, 75th Anniversary NASA publication, (page 89), by James Schultz.
Development of robotics facility docking test hardware
NASA Technical Reports Server (NTRS)
Loughead, T. E.; Winkler, R. V.
1984-01-01
Design and fabricate test hardware for NASA's George C. Marshall Space Flight Center (MSFC) are reported. A docking device conceptually developed was fabricated, and two docking targets which provide high and low mass docking loads were required and were represented by an aft 61.0 cm section of a Hubble space telescope (ST) mockup and an upgrading of an existing multimission modular spacecraft (MSS) mockup respectively. A test plan is developed for testing the hardware.
STS-114 Flight Day 3 Highlights
NASA Technical Reports Server (NTRS)
2005-01-01
Video coverage of Day 3 includes highlights of STS-114 during the approach and docking of Discovery with the International Space Station (ISS). The Return to Flight continues with space shuttle crew members (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) seen in onboard activities on the fore and aft portions of the flight deck during the orbiter's approach. Camarda sends a greeting to his family, and Collins maneuvers Discovery as the ISS appears steadily closer in sequential still video from the centerline camera of the Orbiter Docking System. The approach includes video of Discovery from the ISS during the orbiter's Rendezvous Pitch Maneuver, giving the ISS a clear view of the thermal protection systems underneath the orbiter. Discovery docks with the Destiny Laboratory of the ISS, and the shuttle crew greets the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS onboard the station. Finally, the Space Station Remote Manipulator System hands the Orbiter Boom Sensor System to its counterpart, the Shuttle Remote Manipulator System.
Concepts for the evolution of the Space Station Program
NASA Technical Reports Server (NTRS)
Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.
1986-01-01
An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.
Preliminary GN&C Design for the On-Orbit Autonomous Assembly of Nanosatellite Demonstration Mission
NASA Technical Reports Server (NTRS)
Pei, Jing; Walsh, Matt; Roithmayr, Carlos; Karlgaard, Chris; Peck, Mason; Murchison, Luke
2017-01-01
Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology for future space structure assembly missions. The On-orbit Autonomous Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to demonstrate the technology to autonomously dock two nanosatellites to form an integrated system. The team has developed a novel magnetic capture and latching mechanism that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats, but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem capabilities on orbit, the GN&C subsystem should have a robust design such that it is capable of bringing the CubeSats from an arbitrary initial separation distance of as many as a few thousand kilometers down to a few meters. The main OAAN Mission can be separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the preliminary GN&C design and simulation results for each phase of the mission.
2009-03-27
Russian Orthodox Priest, Vladyka Feofan speaks during a Soyuz post-docking press conference at the Russian mission Control Center in Korolev, Russia on Saturday March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
2010-02-10
S130-E-006844 (10 Feb. 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, installs a Urine Processor Assembly / Distillation Assembly (UPA DA) in the Water Recovery System (WRS) rack in the Destiny laboratory of the International Space Station while space shuttle Endeavour (STS-130) remains docked with the station.
NASA Technical Reports Server (NTRS)
Garafolo, Nicholas G.; Daniels, Christopher C.
2011-01-01
A novel docking seal was developed for the main interface seal of NASA s Low Impact Docking System (LIDS). This interface seal was designed to maintain acceptable leak rates while being exposed to the harsh environmental conditions of outer space. In this experimental evaluation, a candidate docking seal assembly called Engineering Development Unit (EDU58) was characterized and evaluated against the Constellation Project leak rate requirement. The EDU58 candidate seal assembly was manufactured from silicone elastomer S0383-70 vacuum molded in a metal retainer ring. Four seal designs were considered with unique characteristic heights. The leak rate performance was characterized through a mass point leak rate method by monitoring gas properties within an internal control volume. The leakage performance of the seals were described herein at representative docking temperatures of -50, +23, and +50 C for all four seal designs. Leak performance was also characterized at 100, 74, and 48 percent of full closure. For all conditions considered, the candidate seal assemblies met the Constellation Project leak rate requirement.
GEMINI-TITAN (GT)-9 - EARTH-SKY - AUGMENTED TARGET DOCKING ADAPTER (ATDA) - MSC
1966-06-06
S66-37923 (3 June 1966) --- The Augmented Target Docking Adapter (ATDA) as seen from the Gemini-9 spacecraft during one of their three rendezvous in space. The ATDA and Gemini-9 spacecraft are 66.5 feet apart. Failure of the docking adapter protective cover to fully separate on the ATDA prevented the docking of the two spacecraft. The ATDA was described by the Gemini-9 crew as an "angry alligator." Photo credit: NASA
2011-06-10
Guests at the Russian Mission Control Center in Korolove, Russia watch on a large screen TV as the Soyuz TMA-02M nears its docking to the International Space Station on Friday, June 10, 2011. Photo Credit: (NASA/Carla Cioffi)
2018-03-24
Expedition 55 flight engineer Ricky Arnold of NASA is seen after the hatches were opened between the Soyuz MS-08 spacecraft and the International Space Station on screens at the Moscow Mission Control Center in Korolev, Russia, Saturday, March 24, 2018, a few hours after the Soyuz MS-08 docked to the International Space Station. Hatches were opened at 5:48 p.m. Eastern time on March 23 (12:48 a.m. Moscow time on March 24) and Arnold, Oleg Artemyev of Roscosmos, and Drew Feustel of NASA joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) onboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)
2018-03-24
Expedition 55 flight engineer Drew Feustel of NASA is seen after the hatches were opened between the Soyuz MS-08 spacecraft and the International Space Station on screens at the Moscow Mission Control Center in Korolev, Russia, Saturday, March 24, 2018, a few hours after the Soyuz MS-08 docked to the International Space Station. Hatches were opened at 5:48 p.m. Eastern time on March 23 (12:48 a.m. Moscow time on March 24) and Feustel, Oleg Artemyev of Roscosmos, and Ricky Arnold of NASA joined Expedition 55 Commander Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) onboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)
2017-12-19
Anton Shkaplerov of Roscosmos is seen after the opening of the hatches between the Soyuz MS-07 spacecraft and the International Space Station on the screens in the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Shkaplerov, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)
2017-12-19
Japan Aerospace Exploration Agency (JAXA) International Space Station Program Manager Koichi Wakata speaks with the Expedition 54 crew from the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Anton Shkaplerov of Roscosmos, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)
Space Environment Effects on Silicone Seal Materials
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Daniels, Christopher C.; Dever, Joyce A.; Miller, Sharon K.; Waters, Deborah L.; Finkbeiner, Joshua R.; Dunlap, Patrick H.; Steinetz, Bruce M.
2010-01-01
A docking system is being developed by the NASA to support future space missions. It is expected to use redundant elastomer seals to help contain cabin air during dockings between two spacecraft. The sealing surfaces are exposed to the space environment when vehicles are not docked. In space, the seals will be exposed to temperatures between 125 to -75 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). Silicone rubber is the only class of space flight-qualified elastomeric seal material that functions across the expected temperature range. NASA Glenn has tested three silicone elastomers for such seal applications: two provided by Parker (S0899-50 and S0383-70) and one from Esterline (ELA-SA-401). The effects of atomic oxygen (AO), UV and electron particle radiation, and vacuum on the properties of these three elastomers were examined. Critical seal properties such as leakage, adhesion, and compression set were measured before and after simulated space exposures. The S0899-50 silicone was determined to be inadequate for extended space seal applications due to high adhesion and intolerance to UV, but both S0383-70 and ELA-SA-401 seals were adequate.
SAMS Acceleration Measurements on Mir (NASA Increment 4)
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1998-01-01
During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFr), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine bum, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.
2012-07-24
LAS VEGAS -- The Boeing Company tests the forward heat shield FHS jettison system of its CST-100 spacecraft at the Bigelow Aerospace facility in Las Vegas as part of an agreement with NASA's Commercial Crew Program CCP during Commercial Crew Development Round 2 CCDev2) activities. The FHS will protect the spacecraft's parachutes, rendezvous-and-docking sensor packages, and docking mechanism during ascent and re-entry. During a mission to low Earth orbit, the shield will be jettisoned after re-entry heating, allowing the spacecraft's air bags to deploy for a safe landing. In 2011, NASA selected Boeing for CCDev2 to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also were selected to mature launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, Excalibur Almaz Inc., Blue Origin, Sierra Nevada Corp. SNC, Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Boeing The Ground Systems Development and Operations Program is developing the necessary ground systems, infrastructure and operational approaches required to safely process, assemble, transport and launch the next generation of rockets and spacecraft in support of NASA’s exploration objectives. Future work also will replace the antiquated communications, power and vehicle access resources with modern efficient systems. Some of the utilities and systems slated for replacement have been used since the VAB opened in 1965. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: Boeing
The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Bryan, Thomas C.
2009-01-01
The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.
2009-03-27
Vladimir Solovyov, Chief Flight Director, MCC-M, answers reporters questions during a Soyuz post-docking press conference at the Russian mission Control Center in Korolev, Russia on Saturday March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
2009-03-27
Vitaly Lopota, President, General Designer, RSC-Energia, answers reporters questions during a Soyuz post-docking press conference at the Russian mission Control Center in Korolev, Russia on Saturday March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
2009-03-27
Alexei Krasnov, Director of Manned Space Programs Department, Roscosmos, answers reporters questions during a Soyuz post-docking press conference at the Russian mission Control Center in Korolev, Russia on Saturday March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
2010-06-17
Alexei Krasnov, Director of Manned Space Programs Department, ROSCOSMOS, answers a reporter’s question during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Friday, June 18, 2010. Photo Credit: (NASA/Carla Cioffi)
Expedition 48/49 crew visit to MSFC
2017-04-06
NASA astronaut Kate Rubins presents highlights from Expedition 48/49, her mission to the International Space Station, to team members and Space Camp students from the U.S. Space & Rocket Center in Huntsville, April 6 at NASA's Marshall Space Flight Center. During her mission, Rubins became the first person to sequence DNA in space, researching technology development for deep-space exploration by humans, Earth and space science. She also conducted two spacewalks, in which she and NASA astronaut Jeff Williams installed an International Docking Adapter and performed maintenance of the station's external thermal control system and installed high-definition cameras.
Machine Vision for Relative Spacecraft Navigation During Approach to Docking
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong; Baker, Kenneth
2011-01-01
This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.
Multiple Exposure of Rendezvous Docking Simulator - Gemini Program
1964-02-07
Multiple exposure of Rendezvous Docking Simulator. Francis B. Smith, described the simulator as follows: The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. This figure illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft. -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203 Francis B. Smith, Simulators for Manned Space Research, Paper presented at the 1966 IEEE International convention, March 21-25, 1966.
Automated Rendezvous and Capture System Development and Simulation for NASA
NASA Technical Reports Server (NTRS)
Roe, Fred D.; Howard, Richard T.; Murphy, Leslie
2004-01-01
The United States does not have an Automated Rendezvous and Capture Docking (AR&C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. T h i s reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR&C) system for U.S. space vehicles. This A M C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized as the primary navigation sensor on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004. Realtime closed-loop simulations will be performed to validate the improved AR&C systems prior to flight.
2010-12-18
Vitaly Davyidov, second from right, Deputy Head of the Russian Federal Space Agency, answers reporter’s questions during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Saturday, Dec. 18, 2010. The Soyuz TMA-20 docked to the International Space Station carrying Expedition 26 Soyuz Commander Dmitry Kondratyev, Flight Engineer Catherine Coleman and European Space Agency Flight Engineer Paolo Nespoli. Photo Credit: (NASA/Carla Cioffi)
2009-10-24
CAPE CANAVERAL, Fla. – Tugboats safely deliver the Pegasus barge, carrying external tank 134, to the dock in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – Tugboats safely deliver the Pegasus barge, carrying external tank 134, to the dock in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – Tugboats safely deliver the Pegasus barge, carrying external tank 134, to the dock in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2009-10-24
CAPE CANAVERAL, Fla. – Workers prepare to offload external tank 134 from the Pegasus barge docked in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
Hydra Rendezvous and Docking Sensor
NASA Technical Reports Server (NTRS)
Roe, Fred; Carrington, Connie
2007-01-01
The U.S. technology to support a CEV AR&D activity is mature and was developed by NASA and supporting industry during an extensive research and development program conducted during the 1990's and early 2000 time frame at the Marshall Space Flight Center. Development and demonstration of a rendezvous/docking sensor was identified early in the AR&D Program as the critical enabling technology that allows automated proxinity operations and docking. A first generation rendezvous/docking sensor, the Video Guidance Sensor (VGS) was developed and successfully flown on STS 87 and again on STS 95, proving the concept of a video-based sensor. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development of a new generation of video based rendezvous/docking sensor. The Advanced Video Guidance Sensor (AVGS) has greatly increased performance and additional capability for longer-range operation. A Demonstration Automatic Rendezvous Technology (DART) flight experiment was flown in April 2005 using AVGS as the primary proximity operations sensor. Because of the absence of a docking mechanism on the target satellite, this mission did not demonstrate the ability of the sensor to coltrold ocking. Mission results indicate that the rendezvous sensor operated successfully in "spot mode" (2 km acquisition of the target, bearing data only) but was never commanded to "acquire and track" the docking target. Parts obsolescence issues prevent the construction of current design AVGS units to support the NASA Exploration initiative. This flight proven AR&D technology is being modularized and upgraded with additional capabilities through the Hydra project at the Marshall Space Flight Center. Hydra brings a unique engineering approach and sensor architecture to the table, to solve the continuing issues of parts obsolescence and multiple sensor integration. This paper presents an approach to sensor hardware trades, to address the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS). It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for modularizing the sensor to provide configuration flexibility for multiple vehicle applications. Options for complementary sensors to be integrated into the multi-head Hydra system will also be presented. Complementary sensor options include ULTOR, a digital image correlator system that could provide relative six-degree-of-freedom information independently from AVGS, and time-of-flight sensors, which determine the range between vehicles by timing pulses that travel from the sensor to the target and back. Common targets and integrated targets, suitable for use with the multi-sensor options in Hydra, will also be addressed.
2017-12-19
Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) is seen after the opening of the hatches between the Soyuz MS-07 spacecraft and the International Space Station on the screens in the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Shkaplerov, Scott Tingle of NASA, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)
2017-12-19
Scott Tingle of NASA is seen embracing Expedition 54 Commander Alexander Misurkin after the opening of the hatches between the Soyuz MS-07 spacecraft and the International Space Station on the screens in the Moscow Mission Control Center in Korolev, Russia a few hours after the Soyuz MS-07 docked to the International Space Station on Tuesday, Dec. 19, 2017. Hatches were opened at 5:55 a.m. EST and Tingle, Anton Shkaplerov of Roscosmos, and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) joined Expedition 54 Commander Alexander Misurkin of Roscosmos and crewmates Mark Vande Hei and Joe Acaba of NASA aboard the orbiting laboratory. Photo Credit: (NASA/Joel Kowsky)
Expedition 31 Soyuz TMA-04M Docking to ISS
2012-05-17
Russian flight controllers at the Russian Mission Control Center in Korolev, Russia monitor the Soyuz TMA-04M as it docks to the International Space Station on Thursday, May 17, 2012. Onboard the soyuz spacecraft are Expedition 31 Soyuz Commander Gennady Padalka, Flight Engineer Sergei Revin, and NASA Flight Engineer Joe Acaba. The crew of three launched at 9:01 a.m. Kazakhstan time on Tuesday, May 15 from the Baikonur Cosmodrome in Kazakhstan. Photo Credit (NASA/Bill Ingalls)
Expedition 31 Soyuz TMA-04M Docking to ISS
2012-05-17
A television screen as seen from the balcony of the Russian Mission Control Center in Korolev, Russia shows the Soyuz TMA-04M as it docks to the International Space Station on Thursday, May 17, 2012. Onboard the soyuz spacecraft are Expedition 31 Soyuz Commander Gennady Padalka, Flight Engineer Sergei Revin, and NASA Flight Engineer Joe Acaba. The crew of three launched at 9:01 a.m. Kazakhstan time on Tuesday, May 15 from the Baikonur Cosmodrome in Kazakhstan. Photo Credit (NASA/Bill Ingalls)
Expedition 32 Docking with ISS
2012-07-17
A television screen as seen from the balcony of the Russian Mission Control Center in Korolev, Russia shows the Soyuz TMA-05M as it docks to the International Space Station on Tuesday, July 17, 2012. Onboard the soyuz spacecraft are Expedition 32 Soyuz Commander Yuri Malenchenko, NASA Flight Engineer Sunita Williams, and JAXA Flight Engineer Akihiko Hoshide. The crew of three launched at 8:40 a.m. Kazakhstan time on Tuesday, July 15 from the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Carla Cioffi)
An overview of autonomous rendezvous and docking system technology development at General Dynamics
NASA Technical Reports Server (NTRS)
Kuenzel, Fred
1991-01-01
The Centaur avionics suite is undergoing a dramatic modernization for the commercial, DoD Atlas and Titan programs. The system has been upgraded to the current state-of-the-art in ring laser gyro inertial sensors and Mil-Std-1750A processor technology. The Cruise Missile avionic system has similarly been evolving for many years. Integration of GPS into both systems has been underway for over five years with a follow-on cruise missile system currently in flight test. Rendezvous and Docking related studies have been conducted for over five years in support of OMV, CTV, and Advanced Upper Stages, as well as several other internal IR&D's. The avionics system and AR&D simulator demonstrated to the SATWG in November 1990 has been upgraded considerably under two IR&D programs in 1991. The Centaur modern avionics system is being flown in block upgrades which started in July of 1990. The Inertial Navigation Unit will fly in November of 1991. The Cruise Missile avionics systems have been fully tested and operationally validated in combat. The integrated AR&D system for space vehicle applications has been under development and testing since 1990. A Joint NASA / GD ARD&L System Test Program is currently being planned to validate several aspects of system performance in three different NASA test facilities in 1992.
Proximity Operations and Docking Sensor Development
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.
2009-01-01
The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the brassboard and proto-type NGAVGS units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.
Embedded Relative Navigation Sensor Fusion Algorithms for Autonomous Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
DeKock, Brandon K.; Betts, Kevin M.; McDuffie, James H.; Dreas, Christine B.
2008-01-01
bd Systems (a subsidiary of SAIC) has developed a suite of embedded relative navigation sensor fusion algorithms to enable NASA autonomous rendezvous and docking (AR&D) missions. Translational and rotational Extended Kalman Filters (EKFs) were developed for integrating measurements based on the vehicles' orbital mechanics and high-fidelity sensor error models and provide a solution with increased accuracy and robustness relative to any single relative navigation sensor. The filters were tested tinough stand-alone covariance analysis, closed-loop testing with a high-fidelity multi-body orbital simulation, and hardware-in-the-loop (HWIL) testing in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL).
Orion Handling Qualities During ISS Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Hart, Jeremy J.; Stephens, J. P.; Spehar, P.; Bilimoria, K.; Foster, C.; Gonzalex, R.; Sullivan, K.; Jackson, B.; Brazzel, J.; Hart, J.
2011-01-01
The Orion spacecraft was designed to rendezvous with multiple vehicles in low earth orbit (LEO) and beyond. To perform the required rendezvous and docking task, Orion must provide enough control authority to perform coarse translational maneuvers while maintaining precision to perform the delicate docking corrections. While Orion has autonomous docking capabilities, it is expected that final approach and docking operations with the International Space Station (ISS) will initially be performed in a manual mode. A series of evaluations was conducted by NASA and Lockheed Martin at the Johnson Space Center to determine the handling qualities (HQ) of the Orion spacecraft during different docking and rendezvous conditions using the Cooper-Harper scale. This paper will address the specifics of the handling qualities methodology, vehicle configuration, scenarios flown, data collection tools, and subject ratings and comments. The initial Orion HQ assessment examined Orion docking to the ISS. This scenario demonstrates the Translational Hand Controller (THC) handling qualities of Orion. During this initial assessment, two different scenarios were evaluated. The first was a nominal docking approach to a stable ISS, with Orion initializing with relative position dispersions and a closing rate of approximately 0.1 ft/sec. The second docking scenario was identical to the first, except the attitude motion of the ISS was modeled to simulate a stress case ( 1 degree deadband per axis and 0.01 deg/sec rate deadband per axis). For both scenarios, subjects started each run on final approach at a docking port-to-port range of 20 ft. Subjects used the THC in pulse mode with cues from the docking camera image, window views, and range and range rate data displayed on the Orion display units. As in the actual design, the attitude of the Orion vehicle was held by the automated flight control system at 0.5 degree deadband per axis. Several error sources were modeled including Reaction Control System (RCS) jet angular and position misalignment, RCS thrust magnitude uncertainty, RCS jet force direction uncertainty due to self plume impingement, and Orion center of mass uncertainty.
GEMINI-TITAN (GT)-12 - EARTH SKY - AGENA RENDEZVOUS - OUTER SPACE
1966-11-11
S66-62755 (11 Nov. 1966) --- Excellent stereo and side view of the Agena Target Docking Vehicle as seen from the Gemini-12 spacecraft during rendezvous and docking mission in space. The two spacecraft are 50 feet apart. Photo credit: NASA
POSE Algorithms for Automated Docking
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Howard, Richard T.
2011-01-01
POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data.
Michoud Recovering From Tornado on This Week @NASA – February 10, 2017
2017-02-10
Recovery efforts are underway at NASA’s Michoud Assembly Facility in New Orleans, which was hit by a tornado Feb. 7. In accounting for all 3,500 employees at the facility, officials reported five suffered minor injuries. Buildings, structures and parked cars sustained damage, but there was no reported damage to hardware for NASA’s Space Launch System (SLS) rocket, Orion spacecraft, or the barge Pegasus docked at Michoud. NASA will release updates on the facility’s status as they become available. Also, SpaceX Launch Targeted for Mid-February, SLS Booster Hardware Arrives at KSC, and NASA Aerospace Days!
SAMS Acceleration Measurements on Mir From January to May 1997 (NASA Increment 4)
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1998-01-01
During NASA Increment 4 (January to May 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurements System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 28 optical disks which were returned to Earth on STS-84. During this increment, SAMS data were collected in the Priroda module to support the Mir Structural Dynamics Experiment (MiSDE), the Binary Colloidal Alloy Tests (BCAT), Angular Liquid Bridge (ALB), Candle Flames in Microgravity (CFM), Diffusion Controlled Apparatus Module (DCAM), Enhanced Dynamic Load Sensors (EDLS), Forced Flow Flame Spreading Test (FFFT), Liquid Metal Diffusion (LMD), Protein Crystal Growth in Dewar (PCG/Dewar), Queen's University Experiments in Liquid Diffusion (QUELD), and Technical Evaluation of MIM (TEM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-84 operations, a Progress engine burn, Soyuz vehicle docking and undocking, and Progress vehicle docking. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. The analyses included herein complement those presented in previous summary reports prepared by the Principal Investigator Microgravity Services (PIMS) group.
NASA Astrophysics Data System (ADS)
de Groh, Henry C.; Puleo, Bernadette J.; Steinetz, Bruce M.
An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pre-treatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Puleo, Bernadette J.; Steinetz, Bruce M.
2011-01-01
An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Sili-cone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Bray-cote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pre-treatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Puleo, Bernadette J.; Steinetz, Bruce M.
2012-01-01
An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pretreatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.
A manipulator arm for zero-g simulations
NASA Technical Reports Server (NTRS)
Brodie, S. B.; Grant, C.; Lazar, J. J.
1975-01-01
A 12-ft counterbalanced Slave Manipulator Arm (SMA) was designed and fabricated to be used for resolving the questions of operational applications, capabilities, and limitations for such remote manned systems as the Payload Deployment and Retrieval Mechanism (PDRM) for the shuttle, the Free-Flying Teleoperator System, the Advanced Space Tug, and Planetary Rovers. As a developmental tool for the shuttle manipulator system (or PDRM), the SMA represents an approximate one-quarter scale working model for simulating and demonstrating payload handling, docking assistance, and satellite servicing. For the Free-Flying Teleoperator System and the Advanced Tug, the SMA provides a near full-scale developmental tool for satellite servicing, docking, and deployment/retrieval procedures, techniques, and support equipment requirements. For the Planetary Rovers, it provides an oversize developmental tool for sample handling and soil mechanics investigations. The design of the SMA was based on concepts developed for a 40-ft NASA technology arm to be used for zero-g shuttle manipulator simulations.
1966-06-06
S66-37972 (3 June 1966) ?-- The Augmented Target Docking Adapter (ATDA) is photographed from the Gemini-9 spacecraft during one of three rendezvous occasions in space. The ATDA and Gemini-9 spacecraft are 35.5 feet apart in this view. Failure of the docking adapter protective cover on the ATDA to fully separate prevented the docking of the two spacecraft. The ATDA was described by the Gemini-9 crew members as an ?angry alligator.? Photo credit: NASA
Exterior view looking down through the approximate centerline of the ...
Exterior view looking down through the approximate centerline of the upper hatch and docking ring on the external airlock on the Orbiter Discovery. This photograph was take in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Fincke holds the active docking assembly inside the SM during Expedition 9
2004-08-14
ISS009-E-18539 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, holds the Progress 15 supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).
Laser Range and Bearing Finder for Autonomous Missions
NASA Technical Reports Server (NTRS)
Granade, Stephen R.
2004-01-01
NASA has recently re-confirmed their interest in autonomous systems as an enabling technology for future missions. In order for autonomous missions to be possible, highly-capable relative sensor systems are needed to determine an object's distance, direction, and orientation. This is true whether the mission is autonomous in-space assembly, rendezvous and docking, or rover surface navigation. Advanced Optical Systems, Inc. has developed a wide-angle laser range and bearing finder (RBF) for autonomous space missions. The laser RBF has a number of features that make it well-suited for autonomous missions. It has an operating range of 10 m to 5 km, with a 5 deg field of view. Its wide field of view removes the need for scanning systems such as gimbals, eliminating moving parts and making the sensor simpler and space qualification easier. Its range accuracy is 1% or better. It is designed to operate either as a stand-alone sensor or in tandem with a sensor that returns range, bearing, and orientation at close ranges, such as NASA's Advanced Video Guidance Sensor. We have assembled the initial prototype and are currently testing it. We will discuss the laser RBF's design and specifications. Keywords: laser range and bearing finder, autonomous rendezvous and docking, space sensors, on-orbit sensors, advanced video guidance sensor
Gemini Rendezvous Docking Simulator
1964-05-11
Gemini Rendezvous Docking Simulator suspended from the roof of the Langley Research Center s aircraft hangar. Francis B. Smith wrote: The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. This figure illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft. -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203 Francis B. Smith, Simulators for Manned Space Research, Paper presented at the 1966 IEEE International convention, March 21-25, 1966.
Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory
NASA Technical Reports Server (NTRS)
Mitchell, J.; Johnston, A.; Howard, R.; Williamson, M.; Brewster, L.; Strack, D.; Cryan, S.
2007-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, AR&D). The crewed versions may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the CEV requirements. The relatively low technology readiness of relative navigation sensors for AR&D has been carried as one of the CEV Projects top risks. The AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation, and to allow the CEV Project to assess the relative navigation sensors.
Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Williamson, Marlin L.; Johnston, Albert S.; Brewster, Linda L.; Mitchell, Jennifer D.; Cryan, Scott P.; Strack, David; Key, Kevin
2007-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as Automated Rendezvous and Docking, (AR&D).) The crewed versions of the spacecraft may also perform AR&D, possibly with a different level of automation and/or autonomy, and must also provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the CEV requirements. The relatively low technology readiness of relative navigation sensors for AR&D has been carried as one of the CEV Projects top risks. The AR&D Sensor Technology Project seeks to reduce this risk by increasing technology maturation of selected relative navigation sensor technologies through testing and simulation, and to allow the CEV Project to assess the relative navigation sensors.
Expedition 31 Soyuz TMA-04M Docking to ISS
2012-05-17
View from the balcony of the Russian Mission Control Center in Korolev, Russia a little more than an hour before the planned docking of the Soyuz TMA-04M to the International Space Station on Thursday, May 17, 2012. Onboard the soyuz spacecraft are Expedition 31 Soyuz Commander Gennady Padalka, Flight Engineer Sergei Revin, and NASA Flight Engineer Joe Acaba. The crew of three launched at 9:01 a.m. Kazakhstan time on Tuesday, May 15 from the Baikonur Cosmodrome in Kazakhstan. Photo Credit (NASA/Bill Ingalls)
Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission
NASA Technical Reports Server (NTRS)
Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob
2014-01-01
This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.
Improved Ball-and-Socket Docking Mechanism
NASA Technical Reports Server (NTRS)
Cloyd, Richard; Bryan, Tom
2004-01-01
A proposed docking mechanism would form a ball-and-socket joint in the docked condition. The mechanism could tolerate significant initial misalignment because it would include an alignment cone that would guide the ball into the socket. Like other ball-and-socket joints, the joint would have three rotational degrees of freedom. This docking mechanism would be a successor to the one described in Passive Capture Joint With Three Degrees of Freedom (MFS-31146), NASA Tech Briefs, Vol. 22, No. 7 (July 1998), page 65. It would contain most of the components of the prior mechanism, plus some additional components that would expand its capabilities.
Design and fabrication of an autonomous rendezvous and docking sensor using off-the-shelf hardware
NASA Technical Reports Server (NTRS)
Grimm, Gary E.; Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.
1991-01-01
NASA Marshall Space Flight Center (MSFC) has developed and tested an engineering model of an automated rendezvous and docking sensor system composed of a video camera ringed with laser diodes at two wavelengths and a standard remote manipulator system target that has been modified with retro-reflective tape and 830 and 780 mm optical filters. TRW has provided additional engineering analysis, design, and manufacturing support, resulting in a robust, low cost, automated rendezvous and docking sensor design. We have addressed the issue of space qualification using off-the-shelf hardware components. We have also addressed the performance problems of increased signal to noise ratio, increased range, increased frame rate, graceful degradation through component redundancy, and improved range calibration. Next year, we will build a breadboard of this sensor. The phenomenology of the background scene of a target vehicle as viewed against earth and space backgrounds under various lighting conditions will be simulated using the TRW Dynamic Scene Generator Facility (DSGF). Solar illumination angles of the target vehicle and candidate docking target ranging from eclipse to full sun will be explored. The sensor will be transportable for testing at the MSFC Flight Robotics Laboratory (EB24) using the Dynamic Overhead Telerobotic Simulator (DOTS).
Third Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1994-01-01
In May 1994, the Task Force on the Shuttle-Mir Rendezvous and Docking Missions was established by the NASA Advisory Council. Its purpose is to review Phase 1 (Shuttle-Mir) planning, training, operations, rendezvous and docking, and management and to provide interim reports containing specific recommendations to the Advisory Council. Phase 1 represents the building block to create the experience and technical expertise for an International Space Station. The Phase 1 program brings together the United States and Russia in a major cooperative and contractual program that takes advantage of both countries' capabilities. The content of the Phase 1 program consists of the following elements as defined by the Phase 1 Program Management Plan, dated October 6, 1994: Shuttle-Mir rendezvous and docking missions; astronaut long duration presence on Mir Requirements for Mir support of Phase 1 when astronauts are not on board; outfitting Spektr and Priroda modules with NASA science, research, and risk mitigation equipment Related ground support requirements of NASA and the Russian Space Agency (RSA) to support Phase 1 Integrated NASA and RSA launch schedules and manifests The first meeting of the Task Force was held at the Johnson Space Center (JSC) on May 24 and 25, 1994 with a preliminary report submitted to the NASA Advisory Council on June 6, 1994. The second meeting of the Task Force was held at JSC on July 12 and 13, 1994 and a detailed report containing a series of specific recommendations was submitted on July 29, 1994. This report reflects the results of the third Task Force meeting which was held at JSC on 11 and 12 October, 1994. The briefings presented at that meeting reviewed NASA's response to the Task Force recommendations made to date and provided background data and current status on several critical areas which the Task Force had not addressed in its previous reports.
2009-03-27
View from the balcony of the Russian Mission Control Center in Korolev, Russia moments before the Soyuz TMA-14 docks to the International Space Station on Saturday, March 28, 2009. A view of the International Space Station from Soyuz onboard cameras is visible in the upper right display. Photo Credit: (NASA/Bill Ingalls)
2009-03-27
View from the balcony of the Russian Mission Control Center in Korolev, Russia moments before the Soyuz TMA-14 docks to the International Space Station on Saturday, March 28, 2009. A view of the International Space Station from Soyuz onboard cameras is visible in the upper display. Photo Credit: (NASA/Bill Ingalls)
NASA MSFC hardware in the loop simulations of automatic rendezvous and capture systems
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Naumann, Charles B.; Sutton, William; Bryan, Thomas C.
1991-01-01
Two complementary hardware-in-the-loop simulation facilities for automatic rendezvous and capture systems at MSFC are described. One, the Flight Robotics Laboratory, uses an 8 DOF overhead manipulator with a work volume of 160 by 40 by 23 feet to evaluate automatic rendezvous algorithms and range/rate sensing systems. The other, the Space Station/Station Operations Mechanism Test Bed, uses a 6 DOF hydraulic table to perform docking and berthing dynamics simulations.
Expedition 31 Soyuz TMA-04M Docking to ISS
2012-05-17
The family of Expedition 31 Flight Engineer Joe Acaba applauds as they watch the docking of the Soyuz TMA-04M spacecraft on the TV screen at the Russian Mission Control Center in Korolev, Russia, Thursday, May 17, 2012. The Soyuz docked to the International Space Station with Acaba and fellow crew members, Soyuz Commander Gennady Padalka, and Flight Engineer Sergei Revin two days after they launched from the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Bill Ingalls)
1966-06-06
S66-37943 (3 June 1966) --- The Augmented Target Docking Adapter is photographed against the background of the blackness of space from the Gemini-9 spacecraft during one of their three rendezvous in space. The ATDA and Gemini-9 spacecraft are 71.5 feet apart. Failure of the docking adapter protective cover to fully separate on the ATDA prevented the docking of the two spacecraft. The ATDA was described by the Gemini-9 crew as an ?Angry Alligator.? Photo credit: NASA
New Gateway Installed onto Space Station on This Week @NASA – August 19, 2016
2016-08-19
Outside the International Space Station, Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA installed the first of two International Docking Adapters onto the forward end of the station’s Harmony module, during a spacewalk on Aug. 19. The new docking port will be used by the Boeing CST-100 “Starliner” and SpaceX Crew Dragon commercial crew spacecraft being developed to transport U.S. astronauts to and from the station. The second International Docking Adapter – currently under construction – eventually will be placed on the space-facing side of the Harmony module. Also, Commercial Crew Access Arm Installed on Launchpad, Behind the Scenes of our Journey to Mars, Asteroid Redirect Mission Milestone, Asteroid Sample Return Mission Approaches, and Chasing Greenhouse Gases in the Midwest!
Optoelectronic Sensor System for Guidance in Docking
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Bryan, Thomas C.; Book, Michael L.; Jackson, John L.
2004-01-01
The Video Guidance Sensor (VGS) system is an optoelectronic sensor that provides automated guidance between two vehicles. In the original intended application, the two vehicles would be spacecraft docking together, but the basic principles of design and operation of the sensor are applicable to aircraft, robots, vehicles, or other objects that may be required to be aligned for docking, assembly, resupply, or precise separation. The system includes a sensor head containing a monochrome charge-coupled- device video camera and pulsed laser diodes mounted on the tracking vehicle, and passive reflective targets on the tracked vehicle. The lasers illuminate the targets, and the resulting video images of the targets are digitized. Then, from the positions of the digitized target images and known geometric relationships among the targets, the relative position and orientation of the vehicles are computed. As described thus far, the VGS system is based on the same principles as those of the system described in "Improved Video Sensor System for Guidance in Docking" (MFS-31150), NASA Tech Briefs, Vol. 21, No. 4 (April 1997), page 9a. However, the two systems differ in the details of design and operation. The VGS system is designed to operate with the target completely visible within a relative-azimuth range of +/-10.5deg and a relative-elevation range of +/-8deg. The VGS acquires and tracks the target within that field of view at any distance from 1.0 to 110 m and at any relative roll, pitch, and/or yaw angle within +/-10deg. The VGS produces sets of distance and relative-orientation data at a repetition rate of 5 Hz. The software of this system also accommodates the simultaneous operation of two sensors for redundancy
Astronaut William Pogue using Skylab Viewfinder Tracking System experiment
1973-09-10
S73-32854 (10 Sept. 1973) --- Astronaut William R. Pogue, Skylab 4 pilot, uses the Skylab Viewfinder Tracking System (S191 experiment) during a training exercise in the Multiple Docking Adapter (MDA) one-G trainer at Johnson Space Center. In the background is astronaut Gerald P. Carr, seated at the control panel for the Earth Resources Experiments Package (EREP). Carr is Skylab 4 crew commander, and Gibson is science pilot. Photo credit: NASA
Orion-CEV Project Overview To the NASA Sports and Exploration "Kick-Off" Meeting
NASA Technical Reports Server (NTRS)
Marshall, Paul F.
2007-01-01
This viewgraph presentation reviews the Orion Crew Exploration vehicle (CEV) and its usage in the exploration of the moon and subsequent travel to Mars. Schedules for development and testing of the CEV are shown. Also displayed are various high level design views of the CEV, the launch abort system, the Atlas Docking adapter, and the service module.
Phillips with probe-and-cone docking mechanism (StM) in the Zvezda module
2005-06-19
ISS011-E-09205 (19 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, works on the dismantled probe-and-cone docking mechanism from the Progress 18 spacecraft in the Zvezda Service Module of the International Space Station (ISS). The Progress docked to the aft port of the Service Module at 7:42 p.m. (CDT) as the two spacecraft flew approximately 225 statute miles, above a point near Beijing, China.
Lindsey and Boe on forward flight deck
2011-02-26
S133-E-006081 (25 Feb. 2011) --- On space shuttle Discovery’s forward flight deck, astronauts Steve Lindsey (right), STS-133 commander, and Eric Boe, pilot, switch seats for a brief procedure as the crew heads toward a weekend docking with the International Space Station. Earlier the crew conducted thorough inspections of the shuttle’s thermal tile system using the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) and special cameras. Photo credit: NASA or National Aeronautics and Space Administration
MSFC Three Point Docking Mechanism design review
NASA Technical Reports Server (NTRS)
Schaefer, Otto; Ambrosio, Anthony
1992-01-01
In the next few decades, we will be launching expensive satellites and space platforms that will require recovery for economic reasons, because of initial malfunction, servicing, repairs, or out of a concern for post lifetime debris removal. The planned availability of a Three Point Docking Mechanism (TPDM) is a positive step towards an operational satellite retrieval infrastructure. This study effort supports NASA/MSFC engineering work in developing an automated docking capability. The work was performed by the Grumman Space & Electronics Group as a concept evaluation/test for the Tumbling Satellite Retrieval Kit. Simulation of a TPDM capture was performed in Grumman's Large Amplitude Space Simulator (LASS) using mockups of both parts (the mechanism and payload). Similar TPDM simulation activities and more extensive hardware testing was performed at NASA/MSFC in the Flight Robotics Laboratory and Space Station/Space Operations Mechanism Test Bed (6-DOF Facility).
2018-04-09
The first optical quality testing on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft is underway inside a laboratory in the Neil Armstrong Operations and Checkout Building at the agency's Kennedy Space Center in Florida. The test is being performed by a team from the center's Exploration Research and Technology Programs. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.
2011-06-10
Mitchell Fossum, right, son of Expedition 28 NASA Flight Engineer Mike Fossum, is seen at Russian Mission Control in Korolev, Russia speaking to his father shortly after his arrival at the International Space Station on Friday, June 10, 2011. Photo Credit: (NASA/Carla Cioffi)
2011-04-06
Carmel Garan, center, wife of Expedition 27 NASA Flight Engineer Ron Garan, is seen at Russian Mission Control in Korolev, Russia speaking to her husband shortly after his arrival at the International Space Station on Thursday, April 7, 2011. Photo Credit: (NASA/Carla Cioffi)
2011-06-10
Melanie Fossum, right, wife of Expedition 28 NASA Flight Engineer Mike Fossum, is seen at Russian Mission Control in Korolev, Russia speaking to her husband shortly after his arrival at the International Space Station on Friday, June 10, 2011. Photo Credit: (NASA/Carla Cioffi)
2011-06-10
John Fossum, right, son of Expedition 28 NASA Flight Engineer Mike Fossum, is seen at Russian Mission Control in Korolev, Russia speaking to his father shortly after his arrival at the International Space Station on Friday, June 10, 2011. Photo Credit: (NASA/Carla Cioffi)
Space-to-Ground: Light Storm: 180216
2018-02-16
This week on station, a spacewalk and vehicle docking. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. For more information about STEM on Station: https://www.nasa.gov/audience/foreducators/stem_on_station/
Barratt on Middeck with camera
2011-02-28
S133-E-007943 (28 Feb. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses a still camera on the middeck of space shuttle Discovery while docked with the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration
2011-02-28
S133-E-007236 (27 Feb. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, is pictured in the Cupola of the International Space Station while space shuttle Discovery remains docked with the station. Photo credit: NASA or National Aeronautics and Space Administration
2011-03-01
S133-E-007475 (1 March 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, is pictured in the Cupola of the International Space Station while space shuttle Discovery remains docked with the station. Photo credit: NASA or National Aeronautics and Space Administration
NASA Docking System (NDS) Users Guide: International Space Station Program. Type 4
NASA Technical Reports Server (NTRS)
Tabakman, Alexander
2010-01-01
The NASA Docking System (NDS) Users Guide provides an overview of the basic information needed to integrate the NDS onto a Host Vehicle (HV). This Users Guide is intended to provide a vehicle developer with a fundamental understanding of the NDS technical and operations information to support their program and engineering integration planning. The Users Guide identifies the NDS Specification, Interface Definition or Requirement Documents that contain the complete technical details and requirements that a vehicle developer must use to design, develop and verify their systems will interface with NDS. This Guide is an initial reference and must not be used as a design document. In the event of conflict between this Users Guide and other applicable interface definition or requirements documents; the applicable document will take precedence. This Users Guide is organized in three main sections. Chapter 1 provides an overview of the NDS and CDA hardware and the operations concepts for the NDS. Chapter 2 provides information for Host Vehicle Program integration with the NDS Project Office. Chapter 2 describes the NDS Project organization, integration and verification processes, user responsibilities, and specification and interface requirement documents. Chapter 3 provides a summary of basic technical information for the NDS design. Chapter 3 includes NDS hardware component descriptions, physical size and weight characteristics, and summary of the capabilities and constraints for the various NDS sub-systems.
CANYVAL-X: Enabling a new class of scientific instruments
NASA Astrophysics Data System (ADS)
Shah, Neerav; Calhoun, Philip C.; Park, Sang-young; Keidar, Michael
2016-05-01
Significant new discoveries in space science can be realized by replacing the traditional large monolithic space telescopes with precision formation flying spacecraft to form a “virtual telescope.” Such virtual telescopes will revolutionize occulting imaging systems, provide images of the Sun, accretion disks, and other astronomical objects with unprecedented milli-arcsecond resolution (several orders of magnitude beyond current capability).Since the days of Apollo, NASA and other organizations have been conducting formation flying in space, but not with the precision required for virtual telescopes. These efforts have focused on rendezvous and docking (e.g., crew docking, satellite servicing, etc.) and/or ground-controlled coordinated flight (e.g., EO-1, GRAIL, MMS, etc.). While the TRL of the component level technology for formation flying is high, the capability for the system-level guidance, navigation, and control (GN&C) technology required to align a virtual telescope to an inertial astronomical target with sub-arcsecond precision is not fully developed.The CANYVAL-X (CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment) mission is an engineering proof of concept featuring a pair of CubeSats flying as a tandem telescope with a goal of demonstrating the system-level GN&C needed to form a virtual telescope. NASA partnered with the George Washington University and the Yonsei University to design and develop CANYVAL-X. CANYVAL-X will demonstrate key technologies for using virtual telescopes in space, including micro-propulsion using millinewton thrusters, relative position sensing, and communications control between the two spacecraft. CANYVAL-X is scheduled to launch on a Flacon-9 in summer of 2016.
Remote operation of an orbital maneuvering vehicle in simulated docking maneuvers
NASA Technical Reports Server (NTRS)
Brody, Adam R.
1990-01-01
Simulated docking maneuvers were performed to assess the effect of initial velocity on docking failure rate, mission duration, and delta v (fuel consumption). Subjects performed simulated docking maneuvers of an orbital maneuvering vehicle (OMV) to a space station. The effect of the removal of the range and rate displays (simulating a ranging instrumentation failure) was also examined. Naive subjects were capable of achieving a high success rate in performing simulated docking maneuvers without extensive training. Failure rate was a function of individual differences; there was no treatment effect on failure rate. The amount of time subjects reserved for final approach increased with starting velocity. Piloting of docking maneuvers was not significantly affected in any way by the removal of range and rate displays. Radial impulse was significant both by subject and by treatment. NASA's 0.1 percent rule, dictating an approach rate no greater than 0.1 percent of the range, is seen to be overly conservative for nominal docking missions.
2009-03-27
A large TV screen in Russian Mission Control Center in Korolev, Russia shows Cosmonaut Yury Lonchakov, right, welcoming Expedition 19 Flight Engineer Michael R. Barratt onboard the International Space Station after he fellow crew members Expedition 19 Commander Gennady I. Padalka and Spaceflight Participant Charles Simonyi docked their Soyuz TMA-14 spacecraft on Saturday, March 28, 2009. Photo Credit: (NASA/Bill Ingalls)
2010-10-09
The Soyuz TMA-01M nears its docking with the International Space Station as seen in the video monitor at Russian Mission Control Center in Korolev, Russia on Sunday, Oct. 10, 2010. The TMA-01M delivered the crew of Expedition 25 Soyuz Commander Alexander Kaleri, Flight Engineer Scott Kelly and Flight Engineer Oleg Skripochka to the ISS. Photo Credit: (NASA/Carla Cioffi)
Apollo Rendezvous Docking Simulator
1964-11-02
Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. The pilot is shown maneuvering the LEM into position for docking with a full-scale Apollo Command Module. From A.W. Vogeley, Piloted Space-Flight Simulation at Langley Research Center, Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966. The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect. Apollo Rendezvous Docking Simulator: Langley s Rendezvous Docking Simulator was developed by NASA scientists to study the complex task of docking the Lunar Excursion Module with the Command Module in Lunar orbit.
2011-06-10
Kenny Fossum, right, youngest son of Expedition 28 NASA Flight Engineer Mike Fossum, is seen at Russian Mission Control in Korolev, Russia speaking to his father shortly after his arrival at the International Space Station on Friday, June 10, 2011. Photo Credit: (NASA/Carla Cioffi)
2010-06-17
NASA astronaut and Expedition 24 back-up crew member, Cady Coleman, speaks with the crew of Expedition 24 upon their arrival to the International Space Station on Friday, June 18, 2010 at Russian Mission Control Center in Korolev, Russia. Photo Credit: (NASA/Carla Cioffi)
2010-12-18
Kirk Shireman, second from right, NASA's ISS Deputy Program Manager, is seen at Russian Mission Control in Korolev, Russia speaking to the crew of Expedition 26 shortly after their arrival at the International Space Station on Saturday, Dec. 18, 2010. Photo Credit: (NASA/Carla Cioffi)
2011-03-03
S133-E-008328 (3 March 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, works in the Destiny laboratory of the International Space Station while space shuttle Discovery remains docked with the station. Photo credit: NASA or National Aeronautics and Space Administration
2011-03-03
S133-E-008327 (3 March 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, works in the Destiny laboratory of the International Space Station while space shuttle Discovery remains docked with the station. Photo credit: NASA or National Aeronautics and Space Administration
Training - Apollo-Soyuz Test Project (ASTP) - JSC
1975-07-12
S75-28485 (12 July 1975) --- Astronaut Vance D. Brand, command module pilot of the American ASTP prime crew, practices operating a Docking Module hatch during Apollo-Soyuz Test Project preflight training at NASA's Johnson Space Center. The Docking Module is designed to link the Apollo and Soyuz spacecraft during their docking mission in Earth orbit. Gary L. Doerre of JSC?s Crew Training and Procedures Division is working with Brand. Doerre is wearing a face mask to help prevent possible exposure to Brand of disease prior to the ASTP launch.
2018-04-09
Inside a laboratory in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida, Mark Nurge, Ph.D., at left, a physicist in the Applied Physics Lab with the center's Exploration Research and Technology Programs, and Bence Bartha, Ph.D., a specialist in non-destructive testing with URS Federal Services, are performing the first optical quality testing on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.
2007-11-27
KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett
2007-11-27
KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett
2007-11-27
KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett
2007-11-27
KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett
2007-11-27
KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett
2007-11-27
KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett
Modular, Reconfigurable, High-Energy Technology Development
NASA Technical Reports Server (NTRS)
Carrington, Connie; Howell, Joe
2006-01-01
The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed containing software models representing the technologies being matured in the laboratory demos. The testbed would have also included models for non-MRHE developed subsystems such as electric propulsion, so that end-to-end performance could have been assessed. This paper presents an overview of the MRHE Phase I activities at MSFC and its contractor partners. One of the major Phase I accomplishments is the assembly demonstration in the Lockheed Martin Advanced Technology Center (LMATC) Robot-Satellite facility, in which three robot-satellites successfully demonstrated rendezvous & docking, self-assembly, reconfiguration, adaptable GN&C, deployment, and interfaces between modules. Phase I technology maturation results from ENTECH include material recommendations for radiation hardened Stretched Lens Array (SLA) concentrator lenses, and a design concept and test results for a hi-voltage PV receiver. UAH's accomplishments include Supertube heatpipe test results, which support estimates of thermal conductivities at 30,000 times that of an equivalent silver rod. MSFC performed systems trades and developed a preliminary concept design for a 100kW-class modular reconfigurable solar electric propulsion transport vehicle, and Boeing Phantom Works in Huntsville performed assembly and rendezvous and docking trades. A concept animation video was produced by SAIC, wllich showed rendezvous and docking and SLA-square-rigger deployment in LEO.
Gemini rendezvous docking simulator
1963-11-04
Multiple exposure of Gemini rendezvous docking simulator. Francis B. Smith wrote in his paper "Simulators for Manned Space Research," "The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. [This figure] illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft." A.W. Vogeley further described the simulator in his paper "Discussion of Existing and Planned Simulators For Space Research," "Docking operations are considered to start when the pilot first can discern vehicle target size and aspect and terminate, of course, when soft contact is made. ... This facility enables simulation of the docking operation from a distance of 200 feet to actual contact with the target. A full-scale mock-up of the target vehicle is suspended near one end of the track. ... On [the Agena target] we have mounted the actual Agena docking mechanism and also various types of visual aids. We have been able to devise visual aids which have made it possible to accomplish nighttime docking with as much success as daytime docking." -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203; Francis B. Smith, "Simulators for Manned Space Research," Paper presented at the 1966 IEEE International convention, March 21-25, 1966; A.W. Vogeley, "Discussion of Existing and Planned Simulators For Space Research," Paper presented at the Conference on the Role of Simulation in Space Technology, August 17-21, 1964.
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag slides through the docking ring into the Space Exploration Technologies Dragon capsule for stowage for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2011-02-28
S133-E-007242 (28 Feb. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, reads a procedure checklist in the Unity node of the International Space Station while space shuttle Discovery remains docked with the station. Photo credit: NASA or National Aeronautics and Space Administration
2009-03-27
The crews of Expedition 18 and 19 are seen on a large TV screen in the Russian Mission Control Center in Korolev, Russia, Saturday, March 28, 2009 shortly after the Soyuz TMA-14 spacecraft docked to the International Space Station and delivered Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
2009-03-27
Michelle Barratt, right, prepares to talk on the phone to her husband onboard the International Space Station from the Russian Mission Control Center, Korolev, Russia, Saturday, March 28, 2009. The Soyuz TMA-14 spacecraft docked to the International Space Station and delivered Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
Overview of NASA's In Space Robotic Servicing
NASA Technical Reports Server (NTRS)
Reed, Benjamin B.
2015-01-01
The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.
jsc2017m001161_AstroMoment_Drew-Feustel_MP4
2018-03-21
Astronaut Moments with NASA astronaut Drew Feustel-------------------------------- Drew Feustel went from being an automobile mechanic to repairing the Hubble Space Telescope as a NASA astronaut. Now, he is preparing to launch to the International Space Station on March 21, 2018 to live and work aboard the orbiting laboratory for about six months. https://www.nasa.gov/astronauts/biographies/andrew-j-feustel https://www.nasa.gov/press-release/nasa-television-coverage-set-for-space-station-crew-launch-docking
Crew Training - Apollo 9 - Grumman Aircraft Eng. Corp. (GAEC)
1969-01-25
S69-17615 (25 Jan. 1969) --- Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 prime crew, participates in a press conference at the Grumman Aircraft Engineering Corporation. Grumman is the contractor to NASA for the Lunar Module. Schweickart is holding a model of a docked Lunar Module/Command and Service Modules. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight.
Bowen with LiOH cans on Discovery middeck
2011-03-01
S133-E-007462 (28 Feb. 2011) --- NASA astronaut Steve Bowen, STS-133 mission specialist, works with lithium hydroxide (LiOH) canisters from beneath space shuttle Discovery’s middeck while docked with the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration
Boe, Stott and Barratt on middeck
2011-03-03
S133-E-008336 (3 March 2011) --- NASA astronauts Eric Boe (left), STS-133 pilot; Nicole Stott and Michael Barratt, both mission specialists, work on the middeck of space shuttle Discovery while docked with the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration
Material Properties of Three Candidate Elastomers for Space Seals Applications
NASA Technical Reports Server (NTRS)
Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.
2010-01-01
A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.
WEB - A Wireless Experiment Box for the Dextre Pointing Package ELC Payload
NASA Technical Reports Server (NTRS)
Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason William
2012-01-01
The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.
Web: A Wireless Experiment Box for the Dextre Pointing Package ELC Payload
NASA Technical Reports Server (NTRS)
Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason W.
2012-01-01
The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.
2009-03-27
Valery Grin, Deputy Head of State Commission, talks on the phone to the six crew members onboard the International Space Station from the Russian Mission Control Center, Korolev, Russia, Saturday, March 28, 2009. The Soyuz TMA-14 spacecraft docked to the International Space Station and delivered Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)
Expedition 53-54 Crew Docks to the Space Station
2017-09-12
After launching in their Soyuz MS-06 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA arrived at the International Space Station. The trio docked their Soyuz to the Poisk module on the Russian segment of the complex, to complete their six-hour journey to the station.
SKYLAB (SL)-3 CREW - 1-G TRAINER - MULTIPLE DOCKING ADAPTER (MDA) - JSC
1973-06-22
S73-28714 (29 June 1973) --- These three men are the prime crewmen for the Skylab 3 mission. Pictured in the one-G trainer Multiple Docking Adapter (MDA) at the Johnson Space Center (JSC) are, left to right, scientist-astronaut Owen K. Garriott, science pilot; and astronauts Jack R. Lousma and Alan L. Bean, pilot and commander, respectively. Photo credit: NASA
Photograph of MSC-8 color patch outside spacecraft during docking
1966-07-18
S66-46025 (18 July 1966) --- Astronaut Michael Collins, Gemini-10 pilot, photographed this MSC-8 color patch outside the spacecraft during the Gemini-10/Agena docking mission. The experiment was for the purpose of showing what effect the environment of space will have upon the color photography taken in cislunar space and on the lunar surface during an Apollo mission. Photo credit: NASA
Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations
NASA Technical Reports Server (NTRS)
Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine
2006-01-01
Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.
2010-06-17
William Gerstenmaier, second from right, NASA Associate Administrator for Space Operations, speaks to the crew of Expedition 24 shortly after their arrival to the International Space Station (ISS) aboard their Soyuz TMA-19 on Friday, June 18, 2010 at Russian Mission Control in Korolev, Russia. Photo Credit: (NASA/Carla Cioffi)
2011-02-28
S133-E-007255 (28 Feb. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, is pictured between two Extravehicular Mobility Unit (EMU) spacesuits in the Quest airlock of the International Space Station while space shuttle Discovery remains docked with the station. Photo credit: NASA or National Aeronautics and Space Administration
2010-09-22
LOUISIANA -- A tug boat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, from NASA's Michoud Assembly Facility in New Orleans toward a dock in Gulfport, La. The barge will meet up with Freedom Star, NASA's solid rocket booster retrieval ship, which will escort it to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
Gemini Simulator and Neil Armstrong
1963-11-06
Astronaut Neil Armstrong (left) was one of 14 astronauts, 8 NASA test pilots, and 2 McDonnell test pilots who took part in simulator studies. Armstrong was the first astronaut to participate (November 6, 1963). A.W. Vogeley described the simulator in his paper "Discussion of Existing and Planned Simulators For Space Research," "Many of the astronauts have flown this simulator in support of the Gemini studies and they, without exception, appreciated the realism of the visual scene. The simulator has also been used in the development of pilot techniques to handle certain jet malfunctions in order that aborts could be avoided. In these situations large attitude changes are sometimes necessary and the false motion cues that were generated due to earth gravity were somewhat objectionable; however, the pilots were readily able to overlook these false motion cues in favor of the visual realism." Roy F. Brissenden, noted in his paper "Initial Operations with Langley's Rendezvous Docking Facility," "The basic Gemini control studies developed the necessary techniques and demonstrated the ability of human pilots to perform final space docking with the specified Gemini-Agena systems using only visual references. ... Results... showed that trained astronauts can effect the docking with direct acceleration control and even with jet malfunctions as long as good visual conditions exist.... Probably more important than data results was the early confidence that the astronauts themselves gained in their ability to perform the maneuver in the ultimate flight mission." Francis B. Smith, noted in his paper "Simulators for Manned Space Research," "Some major areas of interest in these flights were fuel requirements, docking accuracies, the development of visual aids to assist alignment of the vehicles, and investigation of alternate control techniques with partial failure modes. However, the familiarization and confidence developed by the astronaut through flying and safely docking the simulator during these tests was one of the major contributions. For example, it was found that fuel used in docking from 200 feet typically dropped from about 20 pounds to 7 pounds after an astronaut had made a few training flights." -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203; A.W. Vogeley, "Discussion of Existing and Planned Simulators For Space Research," Paper presented at the Conference on the Role of Simulation in Space Technology, August 17-21, 1964; Roy F. Brissenden, "Initial Operations with Langley's Rendezvous Docking Facility," Langley Working Paper, LWP-21, 1964; Francis B. Smith, "Simulators for Manned Space Research," Paper presented at the 1966 IEEE International convention, March 21-25, 1966.
2004-04-20
NASA Deputy Administrator Fred Gregory, left, joins Russian Federal Space Agency Deputy General-Director Nikolai Moiseev, Wednesday, April 21, 2004, at the Russian Mission Control Center outside Moscow to view the docking of the Expedition 9 crew to the International Space Station in a Russian Soyuz spacecraft. Photo Credit: (NASA/Bill Ingalls)
Boe and Bowen on Middeck with LiOH canisters
2011-02-28
S133-E-007942 (28 Feb. 2011) --- NASA astronauts Eric Boe (left), STS-133 pilot; and Steve Bowen, mission specialist, work with lithium hydroxide (LiOH) canisters from beneath space shuttle Discovery’s middeck while docked with the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration
2011-02-26
S133-E-006555 (26 Feb. 2011) --- NASA astronauts Nicole Stott and Michael Barratt, both STS-133 mission specialists, are pictured in the European Space Agency's "Johannes Kepler" Automated Transfer Vehicle-2 (ATV-2) currently docked to the International Space Station. Photo credit: NASA or National Aeronautics and Space Administration
3D Lasers Increase Efficiency, Safety of Moving Machines
NASA Technical Reports Server (NTRS)
2015-01-01
Canadian company Neptec Design Group Ltd. developed its Laser Camera System, used by shuttles to render 3D maps of their hulls for assessing potential damage. Using NASA funding, the firm incorporated LiDAR technology and created the TriDAR 3D sensor. Its commercial arm, Neptec Technologies Corp., has sold the technology to Orbital Sciences, which uses it to guide its Cygnus spacecraft during rendezvous and dock operations at the International Space Station.
2007-10-05
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, workers remove the rain gutters from space shuttle Discovery's payload bay. The gutters prevent leaks into the bay from rain while the shuttle is on the pad. Beneath is the orbital docking system. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.
Expedition 32 Docking with ISS
2012-07-17
Dina Pandya, Expedition 32 Flight Engineer Sunita Williams’ sister, says hello after her arrival to the International Space Station on Tuesday, July 17, 2012 at the Russian Mission Control Center in Korolev, Russia. The Soyuz docked to the International Space Station with Williams and fellow crew members Soyuz Commander Yuri Malenchenko and JAXA Flight Engineer Akihiko Hoshide two days after they launched from the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Carla Cioffi)
2009-10-01
The entire crew onboard the International Space Station (ISS) can be seen on the center screen of the Mission Control Center Moscow in Korolev, Russia shortly after the successful docking of the Soyuz TMA-16 spacecraft with the International Space Station marking the start of Expedition 21 with Flight Engineer Jeffrey N. Williams, Expedition 21 Flight Engineer Maxim Suraev, and Spaceflight Participant Guy Laliberté, Friday, Oct. 2, 2009. Photo Credit: (NASA/Bill Ingalls)
2009-10-01
The entire crew onboard the International Space Station (ISS) can be seen on a screen of the Mission Control Center Moscow in Korolev, Russia shortly after the successful docking of the Soyuz TMA-16 spacecraft with the International Space Station marking the start of Expedition 21 with Flight Engineer Jeffrey N. Williams, Expedition 21 Flight Engineer Maxim Suraev, and Spaceflight Participant Guy Laliberté, Friday, Oct. 2, 2009. Photo Credit: (NASA/Bill Ingalls)
Why NASA and the Space Electronics Community Cares About Cyclotrons
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2017-01-01
NASA and the space community are faced with the harsh reality of operating electronic systems in the space radiation environment. Systems need to work reliably (as expected for as long as expected) and be available during critical operations such as docking or firing a thruster. This talk will provide a snapshot of the import of ground-based research on the radiation performance of electronics. Discussion topics include: 1) The space radiation environment hazard, 2) Radiation effects on electronics, 3) Simulation of effects with cyclotrons (and other sources), 4) Risk prediction for space missions, and, 5) Real-life examples of both ground-based testing and space-based anomalies and electronics performance. The talk will conclude with a discussion of the current state of radiation facilities in North America for ground-based electronics testing.
General view looking aft along the port side of the ...
General view looking aft along the port side of the Orbiter Discovery into its payload bay. Note the Remote Manipulator System, Canadarm, in the foreground mounted on the port side longeron. The Remote Sensor Arm is mounted on the opposite, starboard, longeron. Also note the airlock and the protective covering over the docking mechanism. This image was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Demonstration of Autonomous Rendezvous Technology (DART) Project Summary
NASA Technical Reports Server (NTRS)
Rumford, TImothy E.
2003-01-01
Since the 1960's, NASA has performed numerous rendezvous and docking missions. The common element of all US rendezvous and docking is that the spacecraft has always been piloted by astronauts. Only the Russian Space Program has developed and demonstrated an autonomous capability. The Demonstration of Autonomous Rendezvous Technology (DART) project currently funded under NASA's Space Launch Initiative (SLI) Cycle I, provides a key step in establishing an autonomous rendezvous capability for the United States. DART's objective is to demonstrate, in space, the hardware and software necessary for autonomous rendezvous. Orbital Sciences Corporation intends to integrate an Advanced Video Guidance Sensor and Autonomous Rendezvous and Proximity Operations algorithms into a Pegasus upper stage in order to demonstrate the capability to autonomously rendezvous with a target currently in orbit. The DART mission will occur in April 2004. The launch site will be Vandenburg AFB and the launch vehicle will be a Pegasus XL equipped with a Hydrazine Auxiliary Propulsion System 4th stage. All mission objectives will be completed within a 24 hour period. The paper provides a summary of mission objectives, mission overview and a discussion on the design features of the chase and target vehicles.
NASA Astrophysics Data System (ADS)
1995-11-01
On this fourth day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hatfield, perform a successful docking between the space shuttle and the Mir space station using the Russian-made docking module that had been previously installed on the third day of the mission. The astronauts and the Mir 20 cosmonauts, Cmdr. Yuri Gidzenko, Flight Engineer Gergei Avdeyev, and Cosmonaut-Researcher (ESA) Thomas Reiter, are shown greeting each other from inside the docking module and an in-orbit interview between the crews and NASA is conducted in both English and Russian.
NASA Technical Reports Server (NTRS)
1995-01-01
On this fourth day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hadfield, perform a successful docking between the space shuttle and the Mir space station using the Russian-made docking module that had been previously installed on the third day of the mission. The astronauts and the Mir 20 cosmonauts, Cmdr. Yuri Gidzenko, Flight Engineer Gergei Avdeyev, and Cosmonaut-Researcher (ESA) Thomas Reiter, are shown greeting each other from inside the docking module and an in-orbit interview between the crews and NASA is conducted in both English and Russian.
Autonomous Deep-Space Optical Navigation Project
NASA Technical Reports Server (NTRS)
D'Souza, Christopher
2014-01-01
This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.
Automated Rendezvous and Docking: 1994-2004
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for human exploration and robotic sample return missions. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
Constellation crew exploration vehicle, or CEV, is being prepare
2007-11-27
In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars.
Expedition 53-54 Crew Docks to the Space Station
2017-09-13
After launching in their Soyuz MS-06 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA arrived at the International Space Station Sept. 13. Following their six-hour journey, they docked their Soyuz to the Poisk module on the Russian segment of the complex. Misurkin, Vande Hei and Acaba opened hatches and were greeted by station Commander Randy Bresnik of NASA and flight engineers Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of the European Space Agency. As the hatches were opened, the families of the newly arrived crew members and American and Russian space officials viewed the activities from a conference facility in Baikonur.
Building Safer Systems With SpecTRM
NASA Technical Reports Server (NTRS)
2003-01-01
System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.
2011-07-11
S135-E-007350 (11 July 2011) --- NASA astronaut Chris Ferguson, STS-135 mission commander, toggles switches on the overhead panel of the forward flight deck of the space shuttle Atlantis. The image was recorded during the mission's fourth day of activities in Earth orbit and second day while being docked with the International Space Station. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.
2010-01-01
The National Aeronautics and Space Administration (NASA) is currently undergoing a substantial redirection. Notable among the changes occurring within NASA is the stated emphasis on technology development, integration, and demonstration. These new changes within the Agency should have a positive impact on the GN&C discipline given the potential for sizeable investments for technology development and in-space demonstrations of both Autonomous Rendezvous & Docking (AR&D) systems and Autonomous Precision Landing (APL) systems. In this paper the NASA Technical Fellow for Guidance, Navigation and Control (GN&C) provides a summary of the present technical challenges, critical needs, and future technological directions for NASA s GN&C engineering discipline. A brief overview of the changes occurring within NASA that are driving a renewed emphasis on technology development will be presented as background. The potential benefits of the planned GN&C technology developments will be highlighted. This paper will provide a GN&C State-of-the-Discipline assessment. The discipline s readiness to support the goals & objectives of each of the four NASA Mission Directorates is evaluated and the technical challenges and barriers currently faced by the discipline are summarized. This paper will also discuss the need for sustained investments to sufficiently mature the several classes of GN&C technologies required to implement NASA crewed exploration and robotic science missions.
Expedition 31 Soyuz TMA-04M Docking to ISS
2012-05-17
The family of Expedition 31 Flight Engineer Joe Acaba sings happy birthday to him from the Russian Mission Control Center in Korolev, Russia, Thursday, May 17, 2012. Acaba, Expedition 31 Soyuz Commander Gennady Padalka, and Flight Engineer Sergei Revin, docked their Soyuz TMA-04M spacecraft to the space station at 8:36 a.m. Moscow time, two days after they launched from the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Bill Ingalls)
2009-03-27
12-year-old Anna Chibiskova of Moscow speaks during the Soyuz post-docking press conference at the Russian mission Control Center in Korolev, Russia on Saturday March 28, 2009. Chibiskova was the winner of an International logo design contest for the Expedition 19 mission. Stas Pyatkin, (not pictured) from the Uglegorsk Amur region, won third place and 12-year-old Keytlin Riley (not pictured) from New York won second place. Photo Credit: (NASA/Bill Ingalls)
2007-10-05
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, workers are removing the rain gutters from space shuttle Discovery's payload bay. The gutters prevent leaks into the bay from rain while the shuttle is on the pad. Beneath is the orbital docking system. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton
Advanced optical technologies for space exploration
NASA Astrophysics Data System (ADS)
Clark, Natalie
2007-09-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems
Advanced Optical Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Clark, Natalie
2007-01-01
NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.
Satellite Docking Simulator with Generic Contact Dynamics Capabilities
NASA Astrophysics Data System (ADS)
Ma, O.; Crabtree, D.; Carr, R.; Gonthier, Y.; Martin, E.; Piedboeuf, J.-C.
2002-01-01
Satellite docking (and capture) systems are critical for the servicing or salvage of satellites. Satellite servicing has comparatively recently become a realistic and promising space operation/mission. Satellite servicing includes several of the following operations: rendezvous; docking (capturing); inspection; towing (transporting); refueling; refurbishing (replacement of faulty or "used-up" modules/boxes); and un-docking (releasing). Because spacecraft servicing has been, until recently non-feasible or non-economical, spacecraft servicing technology has been neglected. Accordingly, spacecraft designs have featured self- contained systems without consideration for operational servicing. Consistent with this view, most spacecrafts were designed and built without docking interfaces. If, through some mishap, a spacecraft was rendered non-operational, it was simply considered expendable. Several feasibility studies are in progress on salvaging stranded satellites (which, in fact had led to this project). The task of the designer of the docking system for a salvaging task is difficult. He/she has to work with whatever it is on orbit, and this excludes any special docking interfaces, which might have made his/her task easier. As satellite servicing becomes an accepted design requirement, many future satellites will be equipped with appropriate docking interfaces. The designer of docking systems will be faced with slightly different challenges: reliable, cost-effective, docking (and re-supply) systems. Thus, the role of designers of docking systems will increase from one of a kind, ad-hoc interfaces intended for salvaging operations, to docking systems for satellites and "caretaker" spacecraft which are meant for servicing and are produced in larger numbers. As in any space system (for which full and representative ground hardware test-beds are very expensive and often impossible to develop), simulations are mandatory for the development of systems and operations for satellite servicing. Simulations are also instrumental in concept studies during proposals and early development stages. Finally, simulations are useful during the operational phase of satellite servicing: improving the operational procedures; training ground operators; command and control, etc. Hence the need exists for a Satellite Servicing Simulator, which will support a project throughout its lifecycle. The paper addresses a project to develop a Simulink-based Satellite Docking Simulator (SDS) with generic Contact Dynamics (CD) capabilities. The simulator is intended to meet immediate practical demands for development of complex docking systems and operations at MD Robotics. The docking phase is the most critical and complex phase of the entire servicing sequence, and without docking there is no servicing. Docking mechanisms are often quite complex, especially when built to dock with a satellite manufactured without special docking interfaces. For successful docking operations, the design of a docking system must take into consideration: complexity of 3D geometric shapes defining the contact interfaces; sophistication of the docking mechanism; friction and stiction at the contacting surfaces; compliance (stiffness) and damping, in all axes; positional (translation and rotation) misalignments and relative velocities, in all axes; inertial properties of the docking satellites (including their distribution); complexity of the drive mechanisms and control sub-systems for the overall docking system; fully autonomous or tele-operated docking from the ground; etc. The docking simulator, which makes use of the proven Contact Dynamics Toolkit (CDT) developed by MD Robotics, is thus practically indispensable for the docking system designer. The use of the simulator could greatly reduce the prototyping and development time of a docking interface. A special feature of the simulator, which required an update of CDT, is variable step-size integration. This new capability permits increases in speed to accomplish all the simulation tasks.
OFFICIAL EMBLEM - APOLLO-SOYUZ TEST PROJECT (ASTP)
1974-03-01
S74-17843 (March 1974) --- This is the official emblem of the Apollo-Soyuz Test Project chosen by NASA and the Soviet Academy of Sciences. The joint U.S.-USSR space mission is scheduled to be flown in July 1975. Of circular design, the emblem has the words Apollo in English and Soyuz in Russian around a center disc which depicts the two spacecraft docked together in Earth orbit. The Apollo-Soyuz Test Project will be carried out by a Soviet Soyuz spacecraft and a U.S. Apollo spacecraft which will rendezvous and dock in orbit. Soyuz and Apollo will remain docked for as long as two days in which period, the three Apollo astronauts will enter Soyuz and the two Soyuz cosmonauts will visit Apollo via a docking module. The Russian word "soyuz" means "union" in English.
Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Roback, Vincent E.; Brewster, Paul F.; Hines, Glenn D.; Bulyshev, Alexander E.
2016-01-01
3-D Imaging flash lidar is recognized as a primary candidate sensor for safe precision landing on solar system bodies (Moon, Mars, Jupiter and Saturn moons, etc.), and autonomous rendezvous proximity operations and docking/capture necessary for asteroid sample return and redirect missions, spacecraft docking, satellite servicing, and space debris removal. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard fli1ght computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station from several kilometers distance. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument design and capabilities as demonstrated by the closed-loop flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus). Then a plan for continued advancement of the flash lidar technology will be explained. This proposed plan is aimed at the development of a common sensor that with a modest design adjustment can meet the needs of both landing and proximity operation and docking applications.
Free-flying teleoperator requirements and conceptual design.
NASA Technical Reports Server (NTRS)
Onega, G. T.; Clingman, J. H.
1973-01-01
A teleoperator, as defined by NASA, is a remotely controlled cybernetic man-machine system designed to augment and extend man's sensory, manipulative, and cognitive capabilities. Teleoperator systems can fulfill an important function in the Space Shuttle program. They can retrieve automated satellites for refurbishment and reuse. Cargo can be transferred over short or large distances and orbital operations can be supported. A requirements analysis is discussed, giving attention to the teleoperator spacecraft, docking and stowage systems, display and controls, propulsion, guidance, navigation, control, the manipulators, the video system, the electrical power, and aspects of communication and data management. Questions of concept definition and evaluation are also examined.
Advanced Video Guidance Sensor and next-generation autonomous docking sensors
NASA Astrophysics Data System (ADS)
Granade, Stephen R.
2004-09-01
In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.
Advanced Video Guidance Sensor and Next Generation Autonomous Docking Sensors
NASA Technical Reports Server (NTRS)
Granade, Stephen R.
2004-01-01
In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.
Docking - Gemini-Titan (GT)-11 - Outer Space
1966-09-14
S66-54555 (14 Sept. 1966) --- The Gemini-11 spacecraft is docked to the Agena Target Vehicle in this photograph taken by astronaut Richard F. Gordon Jr., pilot, as he stood in the open hatch of the Gemini-11 spacecraft during his extravehicular activity (EVA). Note Agena's L-band antenna. Taken during Gemini-11's 29th revolution of Earth, using a modified 70mm Hasselblad camera, with Eastman Kodak, Ektachrome, MS (S.O. 368) color film. Photo credit: NASA
Expedition 32 Docking with ISS
2012-07-17
Expedition 32 Flight Engineer Sunita Williams’ sister and friend brought a photo of William’s dog “Gorby” in support of her arrival to the International Space Station on Tuesday, July 17, 2012 at the Russian Mission Control Center in Korolev, Russia. The Soyuz docked to the International Space Station with Williams and fellow crew members Soyuz Commander Yuri Malenchenko and JAXA Flight Engineer Akihiko Hoshide two days after they launched from the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Carla Cioffi)
2009-10-01
Spaceflight Participant Guy Laliberté is in the foreground as the entire crew onboard the International Space Station (ISS) is seen on a screen in the Mission Control Center Moscow in Korolev, Russia shortly after the successful docking of the Soyuz TMA-16 spacecraft with the International Space Station marking the start of Expedition 21 with Flight Engineer Jeffrey N. Williams, Expedition 21 Flight Engineer Maxim Suraev, and Spaceflight Participant Guy Laliberté, Friday, Oct. 2, 2009. Photo Credit: (NASA/Bill Ingalls)
2009-11-23
ISS021-E-032275 (23 Nov. 2009) --- NASA astronaut Leland Melvin, STS-129 mission specialist, holds the failed Urine Processor Assembly / Distillation Assembly (UPA DA) in the Destiny laboratory of the International Space Station while space shuttle Atlantis remains docked with the station. Melvin and European Space Agency astronaut Frank De Winne (out of frame), Expedition 21 commander, removed and packed the UPA DA, then transferred it from the Water Recovery System 2 (WRS-2) rack to Atlantis for stowage on the middeck.
2009-11-23
ISS021-E-032273 (23 Nov. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, holds the failed Urine Processor Assembly / Distillation Assembly (UPA DA) in the Destiny laboratory of the International Space Station while space shuttle Atlantis remains docked with the station. De Winne and NASA astronaut Leland Melvin (out of frame), STS-129 mission specialist, removed and packed the UPA DA, then transferred it from the Water Recovery System 2 (WRS-2) rack to Atlantis for stowage on the middeck.
NASA Astrophysics Data System (ADS)
Ui, Kyoichi; Matunaga, Saburo; Satori, Shin; Ishikawa, Tomohiro
2005-09-01
Laboratory for Space Systems (LSS), Tokyo Institute of Technology (Tokyo Tech) conducted three-dimensional microgravity environment experiments about a docking mechanism for mothership-daughtership (MS-DS) nano-satellite using the facility of Japan Micro Gravity Center (JAMIC) with Hokkaido Institute of Technology (HIT). LSS has studied and developed a docking mechanism for MS-DS nano-satellite system in final rendezvous approach and docking phase since 2000. Consideration of the docking mechanism is to mate a nano-satellite stably while remaining control error of relative velocity and attitude because it is difficult for nano-satellite to have complicated attitude control and mating systems. Objective of the experiments is to verify fundamental grasping function based on our proposed docking methodology. The proposed docking sequence is divided between approach/grasping phase and guiding phase. In the approach/grasping phase, the docking mechanism grasps the nano-satellite even though the nano-satellite has relative position and attitude control errors as well as relative velocity in a docking space. In the guiding function, the docking mechanism guides the nano-satellite to a docking port while adjusting its attitude in order to transfer electrical power and fuel to the nano-satellite. In the paper, we describe the experimental system including the docking mechanism, control system, the daughtership system and the release mechanism, and describe results of microgravity experiments in JAMIC.
Skylab 3,Skylab as the CM moves in for docking
1973-07-28
SL3-114-1683 (28 July 1973) --- A close-up view of the Skylab space station photographed against an Earth background from the Skylab 3 Command and Service Modules (CSM) during station-keeping maneuvers prior to docking. Aboard the Command Module (CM) were astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma, who remained with the Skylab Space Station in Earth orbit for 59 days. This picture was taken with a hand-held 70mm Hasselblad camera using a 100mm lens and SO-368 medium speed Ektachrome film. Note the one solar array system wing on the Orbital Workshop (OWS) which was successfully deployed during extravehicular activity (EVA) on the first manned Skylab flight. The parasol solar shield which was deployed by the Skylab 2 crew can be seen through the support struts of the Apollo Telescope Mount (ATM). Photo credit: NASA
Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station
NASA Technical Reports Server (NTRS)
Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.
2011-01-01
The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.
Six degree of freedom FORTRAN program, ASTP docking dynamics, users guide
NASA Technical Reports Server (NTRS)
Mount, G. O., Jr.; Mikhalkin, B.
1974-01-01
The digital program ASTP Docking Dynamics as outlined is intended to aid the engineer using the program to determine the docking system loads and attendant vehicular motion resulting from docking two vehicles that have an androgynous, six-hydraulic-attenuator, guide ring, docking interface similar to that designed for the Apollo/Soyuz Test Project (ASTP). This program is set up to analyze two different vehicle combinations: the Apollo CSM docking to Soyuz and the shuttle orbiter docking to another orbiter. The subroutine modifies the vehicle control systems to describe one or the other vehicle combinations; the rest of the vehicle characteristics are changed by input data. To date, the program has been used to predict and correlate ASTP docking loads and performance with docking test program results from dynamic testing. The program modified for use on IBM 360 computers. Parts of the original docking system equations in the areas of hydraulic damping and capture latches are modified to better describe the detail design of the ASTP docking system.
NASA's Automated Rendezvous and Docking/Capture Sensor Development and Its Applicability to the GER
NASA Technical Reports Server (NTRS)
Hinkel, Heather; Cryan, Scott; DSouza, Christopher; Strube, Matthew
2014-01-01
This paper will address how a common Automated Rendezvous and Docking/Capture (AR&D/C) sensor suite can support Global Exploration Roadmap (GER) missions, and discuss how the model of common capability development to support multiple missions can enable system capability level partnerships and further GER objectives. NASA has initiated efforts to develop AR&D/C sensors, that are directly applicable to GER. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. NASA's AR&D/C sensor development path could benefit the International Exploration Coordination Group (ISECG) and support the GER mission scenario by providing a common sensor suite upon which GER objectives could be achieved while minimizing development costs. The paper will describe the concepts of operations of these missions and how the common sensors are utilized by each mission. It will also detail the potential partnerships and contribution of the International community in the development of this common AR&D/C sensor suite.
2010-09-28
CAPE CANAVERAL, Fla. -- This panoramic image shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, through the Port Canaveral locks on its way to the Turn Basin at NASA's Kennedy Space Center in Florida. Once docked, the tank will be offloaded from the barge and transported to the Vehicle Assembly Building (VAB). The tank traveled 900 miles by sea, carried in the barge, from NASA's Michoud Assembly Facility in New Orleans. Once inside the VAB, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch Feb. 2011. STS-134 currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
1995-12-20
STS074-361-035 (12-20 Nov 1995) --- This medium close-up view centers on the IMAX Cargo Bay Camera (ICBC) and its associated IMAX Camera Container Equipment (ICCE) at its position in the cargo bay of the Earth-orbiting Space Shuttle Atlantis. With its own ?space suit? or protective covering to protect it from the rigors of space, this version of the IMAX was able to record scenes not accessible with the in-cabin cameras. For docking and undocking activities involving Russia?s Mir Space Station and the Space Shuttle Atlantis, the camera joined a variety of in-cabin camera hardware in recording the historical events. IMAX?s secondary objectives were to film Earth views. The IMAX project is a collaboration between NASA, the Smithsonian Institution?s National Air and Space Museum (NASM), IMAX Systems Corporation, and the Lockheed Corporation to document significant space activities and promote NASA?s educational goals using the IMAX film medium.
Human Exploration and Avionic Technology Challenges
NASA Technical Reports Server (NTRS)
Benjamin, Andrew L.
2005-01-01
For this workshop, I will identify critical avionic gaps, enabling technologies, high-pay off investment opportunities, promising capabilities, and space applications for human lunar and Mars exploration. Key technology disciplines encompass fault tolerance, miniaturized instrumentation sensors, MEMS-based guidance, navigation, and controls, surface communication networks, and rendezvous and docking. Furthermore, I will share bottom-up strategic planning relevant to manned mission -driven needs. Blending research expertise, facilities, and personnel with internal NASA is vital to stimulating collaborative technology solutions that achieve NASA grand vision. Retaining JSC expertise in unique and critical areas is paramount to our long-term success. Civil servants will maintain key roles in setting technology agenda, ensuring quality results, and integrating technologies into avionic systems and manned missions. Finally, I will present to NASA, academia, and the aerospace community some on -going and future advanced avionic technology programs and activities that are relevant to our mission goals and objectives.
Automated Rendezvous and Capture in Space: A Technology Assessment
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1998-01-01
This paper presents the results of a study to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows: First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is reviewed. In light of these, AR&C systems are proposed that meet NASA's future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented; cost and schedule are included.
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner is secured to the dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner prepares to dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner nears the dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Delta Mariner arrival with EFT-1 Booster
2014-03-03
CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner docks in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin
Quick Attach Docking Interface for Lunar Electric Rover
NASA Technical Reports Server (NTRS)
Schuler, Jason M.; Nick, Andrew J.; Immer, Christopher; Mueller, Robert P.
2010-01-01
The NASA Lunar Electric Rover (LER) has been developed at Johnson Space Center as a next generation mobility platform. Based upon a twelve wheel omni-directional chassis with active suspension the LER introduces a number of novel capabilities for lunar exploration in both manned and unmanned scenarios. Besides being the primary vehicle for astronauts on the lunar surface, LER will perform tasks such as lunar regolith handling (to include dozing, grading, and excavation), equipment transport, and science operations. In an effort to support these additional tasks a team at the Kennedy Space Center has produced a universal attachment interface for LER known as the Quick Attach. The Quick Attach is a compact system that has been retro-fitted to the rear of the LER giving it the ability to dock and undock on the fly with various implements. The Quick Attach utilizes a two stage docking approach; the first is a mechanical mate which aligns and latches a passive set of hooks on an implement with an actuated cam surface on LER. The mechanical stage is tolerant to misalignment between the implement and the LER during docking and once the implement is captured a preload is applied to ensure a positive lock. The second stage is an umbilical connection which consists of a dust resistant enclosure housing a compliant mechanism that is optionally actuated to mate electrical and fluid connections for suitable implements. The Quick Attach system was designed with the largest foreseen input loads considered including excavation operations and large mass utility attachments. The Quick Attach system was demonstrated at the Desert Research And Technology Studies (D-RA TS) field test in Flagstaff, AZ along with the lightweight dozer blade LANCE. The LANCE blade is the first implement to utilize the Quick Attach interface and demonstrated the tolerance, speed, and strength of the system in a lunar analog environment.
2010-04-10
S131-E-008489 (10 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, is pictured in the Quest airlock of the International Space Station while space shuttle Discovery remains docked with the station.
Soyuz TMA-03M Docking Mechanism
2012-07-01
ISS032-E-005028 (1 July 2012) --- This close-up view shows the docking mechanism of the Soyuz TMA-03M spacecraft as it undocks from the International Space Station?s Rassvet Mini-Research Module 1 (MRM-1) on July 1, 2012. Russian cosmonaut Oleg Kononenko, Expedition 31 commander; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, both flight engineers, are returning from more than six months aboard the space station where they served as members of the Expedition 30 and 31 crews.
Soyuz TMA-03M Docking Mechanism
2012-07-01
ISS032-E-005023 (1 July 2012) --- This close-up view shows the docking mechanism of the Soyuz TMA-03M spacecraft as it undocks from the International Space Station?s Rassvet Mini-Research Module 1 (MRM-1) on July 1, 2012. Russian cosmonaut Oleg Kononenko, Expedition 31 commander; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, both flight engineers, are returning from more than six months aboard the space station where they served as members of the Expedition 30 and 31 crews.
Node 1 CPA docking mechanism installation
2015-05-26
ISS043E256577 (05/26/2015) --- Expedition 43 commander and NASA astronaut Terry Virts is seen here closing the hatch to the Leonardo Permanent Multipurpose Module (PMM.) The PMM was moved on May 27, 2015 from the Unity node to the Tranquility node. This freed up a docking port on the Earth-facing side of Unity for visiting cargo vehicles and was the latest activity in the ongoing upgrades to the station to prepare for future U.S. commercial crew vehicles.
Romanenko Haircut in US Laboratory Destiny
2009-09-05
S128-E-007611 (5 Sept. 2009) --- NASA astronaut Tim Kopra, STS-128 mission specialist, trims Russian cosmonaut Roman Romanenko’s hair in the Destiny laboratory of the International Space Station while Space Shuttle Discovery remains docked with the station. NASA astronaut Nicole Stott, Expedition 20 flight engineer, looks on. Kopra used hair clippers fashioned with a vacuum device to garner freshly cut hair.
NASA payload data book: Payload analysis for space shuttle applications, volume 2
NASA Technical Reports Server (NTRS)
1972-01-01
Data describing the individual NASA payloads for the space shuttle are presented. The document represents a complete issue of the original payload data book. The subjects discussed are: (1) astronomy, (2) space physics, (3) planetary exploration, (4) earth observations (earth and ocean physics), (5) communications and navigation, (6) life sciences, (7) international rendezvous and docking, and (8) lunar exploration.
Autonomous Mission Manager for Rendezvous, Inspection and Mating
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
2003-01-01
To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.
2002-03-13
NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.
2009-09-02
ISS020-E-037856 (2 Sept. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-128) remains docked with the station.
2010-04-10
S131-E-008504 (10 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander, floats freely in the Unity node of the International Space Station while space shuttle Discovery remains docked with the station.
APOLLO-SOYUZ TEST PROJECT (ASTP) - CREWMEN - JSC
1975-07-09
S75-28361 (9 July 1975) --- These ten American astronauts compose the U.S. prime crew, the backup crew and the crew support team for the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. They are, left to right, Robert L. Crippen, support team; Robert F. Overmyer, support team; Richard H. Truly, support team; Karol J. Bobko, support team; Donald K. Slayton, prime crew docking module pilot; Thomas P. Stafford, prime crew commander; Vance D. Brand, prime crew command module pilot; Jack R. Lousma, backup crew docking module pilot; Ronald E. Evans, backup crew command module pilot; and Alan L. Bean, backup crew commander. They are photographed by the Apollo Mission Simulator console in Building 5 at NASA's Johnson Space Center.
Nitrogen Oxygen Recharge System for the International Space Station
NASA Technical Reports Server (NTRS)
Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan
2009-01-01
The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.
MS Lucid places samples in the TEHOF aboard the Spektr module
1997-03-26
STS079-S-082 (16-26 Sept. 1996) --- Cosmonaut guest researcher Shannon W. Lucid and Valeri G. Korzun, her Mir-22 commander, are pictured on the Spektr Module aboard Russia's Earth-orbiting Mir Space Station. Korzun was the third of four commanders that Lucid served with during her record-setting 188 consecutive days in space. Later, Lucid returned to Earth with her fourth commander-astronaut William F. Readdy-and five other NASA astronauts to complete the STS-79 mission. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the space shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.
Space Tethers Programmatic Infusion Opportunities
NASA Technical Reports Server (NTRS)
Bonometti, J. A.; Frame, K. L.
2005-01-01
Programmatic opportunities abound for space Cables, Stringers and Tethers, justified by the tremendous performance advantages that these technologies offer and the rather wide gaps that must be filled by the NASA Exploration program, if the "sustainability goal" is to be met. A definition and characterization of the three categories are presented along with examples. A logical review of exploration requirements shows how each class can be infused throughout the program, from small experimental efforts to large system deployments. The economics of tethers in transportation is considered along with the impact of stringers for structural members. There is an array of synergistic methodologies that interlace their fabrication, implementation and operations. Cables, stringers and tethers can enhance a wide range of other space systems and technologies, including power storage, formation flying, instrumentation, docking mechanisms and long-life space components. The existing tether (i.e., MXER) program's accomplishments are considered consistent with NASA's new vision and can readily conform to requirements-driven technology development.
2010-02-15
S130-E-008276 (15 Feb. 2010) --- NASA astronaut Terry Virts, STS-130 pilot, is pictured near food packages and scissors floating freely on the middeck of space shuttle Endeavour while docked with the International Space Station.
2014-08-21
ISS040-E-103985 (21 Aug. 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, is pictured during cargo transfer operations in the "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) currently docked with the International Space Station.
NASA Technical Reports Server (NTRS)
Hohwiesner, Bill; Claudinon, Bernard
1991-01-01
The European Space Agency (ESA) has been working to develop an autonomous rendezvous and docking capability since 1984 to enable Hermes to automatically dock with Columbus. As a result, ESA with Matra, MBB, and other space companies have developed technologies that are also directly supportive of the current NASA initiative for Automated Rendezvous and Capture. Fairchild and Matra would like to discuss the results of the applicable ESA/Matra rendezvous and capture developments, and suggest how these capabilities could be used, together with an existing NASA Explorer Platform satellite, to minimize new development and accomplish a cost effective automatic closure and capture demonstration program. Several RV sensors have been developed at breadboard level for the Hermes/Columbus program by Matra, MBB, and SAAB. Detailed algorithms for automatic rendezvous, closure, and capture have been developed by ESA and CNES for application with Hermes to Columbus rendezvous and docking, and they currently are being verified with closed-loop software simulation. The algorithms have multiple closed-loop control modes and phases starting at long range using GPS navigation. Differential navigation is used for coast/continuous thrust homing, holdpoint acquisition, V-bar hopping, and station point acquisition. The proximity operation sensor is used for final closure and capture. A subset of these algorithms, comprising the proximity operations algorithms, could easily be extracted and tailored to a limited objective closure and capture flight demonstration.
Fourth Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1995-01-01
On December 6, 1994, the NASA Administrator, Mr. Daniel Goldin, requested that Lt. Gen. Thomas P. Stafford, in his role as the Chairman of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions, lead a team composed of several Task Force members and technical advisors' to Russia with the goal of reviewing preparations and readiness for the upcoming international Space Station Phase 1 missions. In his directions to Gen. Stafford, Mr. Goldin requested that the review team focus its initial efforts on safety of flight issues for the following Phase 1A missions: the Soyuz TM-21 mission which will carry U.S. astronaut Dr. Norman Thagard and cosmonauts Lt. Col. Vladimir Dezhurov and Mr. Gennady Strekalov aboard a Soyuz spacecraft to the Mir Station; the Mir 18 Main Expedition during which Thagard and his fellow cosmonauts, Dezhurov and Strokalov, will spend approximately three months aboard the Mir Station; the STS-71 Space Shuttle mission which will perform the first Shuttle-Mir docking, carry cosmonauts Col. Anatoly SoloViev and Mr. Nikolai Budarin to the Mir Station, and return Thagard, Dezhurov, and Strekalov to Earth.
Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab
NASA Technical Reports Server (NTRS)
Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.
2008-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS.' The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (l) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multisensor series oftrajectories
STS-79 crew watches from aft flight deck during undocking from Mir
1997-03-26
STS079-S-097 (16-26 Sept. 1996) --- Left to right, Terrence W. (Terry) Wilcutt, pilot; Shannon W. Lucid, mission specialist; and William F. Readdy, mission commander, are pictured on the space shuttle Atlantis' aft flight deck during undocking operations with Russia's Mir Space Station. Mir had served as both work and home for Lucid for over six months before greeting her American colleagues upon docking of Mir and Atlantis last week. Following her lengthy stay aboard Mir and several days on Atlantis, Lucid went on to spend 188 consecutive days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.
Lindsey beside hatch to PMM (Permanent Multipurpose Module)
2011-03-01
S133-E-007799 (1 March 2011) --- NASA astronaut Steve Lindsey, STS-133 commander, is pictured at the hatch of the Earth-facing port of the International Space Station’s Unity node while space shuttle Discovery remains docked with the station. On the other side of the hatch door is the newly-installed Permanent Multipurpose Module (PMM). Photo credit: NASA or National Aeronautics and Space Administration
2011-07-11
S135-E-007351 (11 July 2011) --- NASA astronaut Rex Walheim, STS-135 mission specialist, watches as astronaut Chris Ferguson (out of frame at right) toggles switches on the overhead panel of the forward flight deck of the space shuttle Atlantis. The action came during the mission's fourth day of activities in Earth orbit and second day while being docked with the International Space Station. Photo credit: NASA
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are transferred to a U.S. Navy ship from a floating dock system. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred from a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are transferred by floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article is transferred to a U.S. Navy ship from a floating dock system for a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are secured on a floating dock system for transfer to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, a floating dock system carries the Orion boilerplate test article and support equipment for a stationary recovery test aboard a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article has been secured on a U.S. Navy ship after arriving by floating dock system for a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred from a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred on a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test have been secured on a U.S. Navy ship from a floating dock system. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred on a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred from a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test have been secured on a U.S. Navy ship after arriving by floating dock system. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred on a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are transferred by floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred on a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred on a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are transferred by floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred from a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are transferred by floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred on a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article was secured on a U.S. Navy ship after arriving by floating dock system for a stationary recovery test. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are secured on a floating dock system for transfer to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, a floating dock system carries the Orion boilerplate test article and support equipment for a stationary recovery test aboard a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, a floating dock system carries the Orion boilerplate test article and support equipment for a stationary recovery test aboard a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article and support equipment for a stationary recovery test are being transferred on a floating dock system to a U.S. Navy ship. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
2010-04-11
S131-E-008742 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, is pictured near a spoon and food package floating freely on the middeck of space shuttle Discovery while docked with the International Space Station.
Magnetic docking aid for orbiter to ISS docking
NASA Technical Reports Server (NTRS)
Schneider, William C.; Nagy, Kornel; Schliesing, John A.
1996-01-01
The present docking system for the Orbiter uses mechanical capture latches that are actuated by contact forces. The forces are generated when the two approaching masses collide at the docking mechanism. There is always a trade-off between having high enough momentum to effect capture and low enough momentum to avoid structural overload or unacceptable angular displacements. The use of the present docking system includes a contact thrusting maneuver that causes high docking loads to be included into Space Station. A magnetic docking aid has been developed to reduce the load s during docking. The magnetic docking aid is comprised of two extendible booms that are attached adjacent to the docking structure with electromagnets attached on the end of the boom. On the mating vehicle, two steel plates are attached. As the Orbiter approaches Space Station, the booms are extended, and the magnets attach to the actuated (without thrusting), by slowly driving the extendible booms to the stowed position, thus reacting the load into the booms. This results in a docking event that has lower loads induced into Space Station structure. This method also greatly simplifies the Station berthing tasks, since the Shuttle Remote Manipulation System (SRMS) arm need only place the element to be berthed on the magnets (no load required), rather than firing the Reaction Control System (RCS) jets to provide the required force for capture latch actuation. The Magnetic Docking Aid was development testing on a six degree-of-freedom (6 DOF) system at JSC.
Forward end (+XA side) of the PMA-2 prior to mating to the Orbiter Docking System (ODS).
1998-12-05
STS088-335-017 (5 Dec. 1998) --- One of the STS-88 astronauts aimed a 35mm camera through Endeavour's aft flight deck windows to record this Dec. 5 image of the Unity connecting module as it was being unberthed in the cargo bay. The berthing and mating process constituted the first link in a long chain of events that led up to the eventual deployment in Earth orbit of the connected Unity and Zarya modules later in the 11-day mission. Photo credit: NASA
NASA's Asteroid Redirect Mission: The Boulder Capture Option
NASA Technical Reports Server (NTRS)
Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.
2014-01-01
NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA's physical characteristics and reduces mission risk. This increases the return on investment for NASA's future activities with respect to science, human exploration, resource utilization, and planetary defense
GEMINI-TITAN (GT)-9 PREFLIGHT ACTIVITY - ASTRONAUT THOMAS P. STAFFORD - MISC. - KSC
1969-01-21
S66-32044 (17 May 1966) --- Astronauts Eugene A. Cernan (left), pilot, and Thomas P. Stafford, command pilot, discuss the postponed Gemini-9 mission just after egressing their spacecraft in the white room atop Pad 19. The Agena Target Vehicle failed to achieve orbit, causing a termination of the mission. The spaceflight (to be called Gemini-9A) has been rescheduled for May 31. A Gemini Augmented Target Docking Adapter will be used as the rendezvous and docking vehicle for the Gemini-9 spacecraft. Photo credit: NASA
Closeup view from the starboard side looking towards the port ...
Close-up view from the starboard side looking towards the port side of the Orbiter Discovery looking at the airlock and payload bay. The docking ring has been removed from the airlock prior to this photo being taken. Note that the Orbiter Boom Sensor System is still attached while the Remote Manipulator System has been removed. Also note the suspended protective panels and walkways in place to protect the interior surfaces of the payload bay doors while in their open position. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Interdisciplinary analysis procedures in the modeling and control of large space-based structures
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Stockwell, Alan E.; Kim, Zeen C.
1987-01-01
The paper describes a computer software system called the Integrated Multidisciplinary Analysis Tool, IMAT, that has been developed at NASA Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven interactive executive program, IMAT links a relational database to commercial structural and controls analysis codes. The paper describes the procedures followed to analyze a complex satellite structure and control system. The codes used to accomplish the analysis are described, and an example is provided of an application of IMAT to the analysis of a reference space station subject to a rectangular pulse loading at its docking port.
Autonomous berthing/unberthing of a Work Attachment Mechanism/Work Attachment Fixture (WAM/WAF)
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1992-01-01
Discussed here is the autonomous berthing of a Work Attachment Mechanism/Work Attachment Fixture (WAM/WAF) developed by NASA for berthing and docking applications in space. The WAM/WAF system enables fast and reliable berthing (unberthing) of space hardware. A successful operation of the WAM/WAF requires that the WAM motor velocity be precisely controlled. The operating principle and the design of the WAM/WAF is described as well as the development of a control system used to regulate the WAM motor velocity. The results of an experiment in which the WAM/WAF is used to handle an orbital replacement unit are given.
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2010-01-01
The National Aeronautics and Space Administration (NASA) is currently developing a new universal docking mechanism for future space exploration missions called the Low Impact Docking System (LIDS). A candidate LIDS main interface seal design is a composite assembly of silicone elastomer seals vacuum molded into grooves in an electroless nickel plated aluminum retainer. The strength of the silicone-tometal bond is a critical consideration for the new system, especially due to the presence of small areas of disbond created during the molding process. In the work presented herein, seal-to-retainer bonds of subscale seal specimens with different sizes of intentional disbond were destructively tensile tested. Nominal specimens without intentional disbonds were also tested. Tension was applied either uniformly on the entire seal circumference or locally in one short circumferential length. Bond failure due to uniform tension produced a wide scatter of observable failure modes and measured load-displacement behaviors. Although the preferable failure mode for the seal-to-retainer bond is cohesive failure of the elastomer material, the dominant observed failure mode under the uniform loading condition was found to be the less desirable adhesive failure of the bond in question. The uniform tension case results did not show a correlation between disbond size and bond strength. Localized tension was found to produce failure either as immediate tearing of the elastomer material outside the bond region or as complete peel-out of the seal in one piece. The obtained results represent a valuable benchmark for comparison in the future between adhesion loads under various separation conditions and composite seal bond strength.
Multilevel Parallelization of AutoDock 4.2.
Norgan, Andrew P; Coffman, Paul K; Kocher, Jean-Pierre A; Katzmann, David J; Sosa, Carlos P
2011-04-28
Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4). Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers. Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.
2009-09-06
S128-E-007771 (6 Sept. 2009) --- NASA astronaut John “Danny” Olivas, STS-128 mission specialist, is pictured on the middeck of Space Shuttle Discovery with a floating piece of chocolate while docked with the International Space Station.
2013-07-02
ISS036-E-013924 (2 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, works in the European Space Agency's Automated Transfer Vehicle-4 (ATV-4) "Albert Einstein" currently docked to the Zvezda Service Module of the International Space Station.
2010-12-18
Josh Simpson, husband of Expedition 26 Flight Engineer Catherine Coleman, is seen at Russian Mission Control in Korolev, Russia speaking to his wife shortly after her arrival at the International Space Station on Saturday, Dec. 18, 2010. Photo Credit: (NASA/Carla Cioffi)
2011-06-10
William Gerstenmaier, Associate Administrator for Space Operations, is seen at Russian Mission Control in Korolev, Russia speaking to the crew of Expedition 28 shortly after their arrival at the International Space Station on Friday, June 10, 2011. Photo Credit: (NASA/Carla Cioffi)
2010-12-18
Jamey Simpson, son of Expedition 26 Flight Engineer Catherine Coleman, is seen at Russian Mission Control in Korolev, Russia speaking to his mother shortly after her arrival at the International Space Station on Saturday, Dec. 18, 2010. Photo Credit: (NASA/Carla Cioffi)
2010-12-18
Vladislav Kondratyev, son of Expedition 26 Soyuz Commander Dmitry Kondratyev, is seen at Russian Mission Control in Korolev, Russia speaking to his father shortly after his arrival at the International Space Station on Saturday, Dec. 18, 2010. Photo Credit: (NASA/Carla Cioffi)
Sellers in sleeping bag on the MDDK during STS-132
2010-05-17
S132-E-007710 (17 May 2010) --- NASA astronaut Piers Sellers, STS-132 mission specialist, rests in his sleeping bag on the middeck of the space shuttle Atlantis while docked with the International Space Station.
2010-04-10
S131-E-008502 (10 April 2010) --- NASA astronaut Stephanie Wilson, STS-131 mission specialist, retrieves a tool from a drawer in the Unity node of the International Space Station while space shuttle Discovery remains docked with the station.
Expedition 9 Russian News Conference
2004-04-20
NASA Deputy Administrator Fred Gregory, second from right, and Russian Federal Space Agency Deputy General-Director Nikolai Moiseev, center, answer questions from reporters along with other Russian space officials at a news conference, Wednesday, April 21, 2004, at the Russian Mission Control Center outside Moscow following the docking of the Expedition 9 crew and a European Space Agency astronaut to the International Space Station in a Russian Soyuz spacecraft. Photo Credit: (NASA/Bill Ingalls)
Kononenko, Padalka and Pettit in the US Lab
2012-05-17
ISS031-E-081644 (17 May 2012) --- Russian cosmonaut Oleg Kononenko (left), Expedition 31 commander, conducts a crew safety briefing in the Destiny laboratory of the International Space Station shortly after Russian cosmonauts Gennady Padalka (center) and Sergei Revin (out of frame); along with NASA astronaut Joe Acaba (not pictured) docked with the space station in their Soyuz TMA-04M spacecraft. NASA astronaut Don Pettit, flight engineer, is at right.
Walker,Wheelock and Yurchikhin in MRM-1
2010-11-19
ISS025-E-017118 (22 Nov. 2010)--- From left, NASA astronaut Shannon Walker, Expedition 25 flight engineer; NASA astronaut Doug Wheelock, Expedition 25 commander; and Russian cosmonaut Fyodor Yurchikhin, flight engineer, are all suited up in their Sokol (Russian word for 'Falcon') pressure suits in the Russian MRM-1 module aboard the Earth-orbiting International Space Station. They ingressed the docked Soyuz capsule to conduct pressurization and leak checks on their suits.
2011-12-22
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, the controller used during docking to the airlock of space shuttle Atlantis stands among the switches filling the control panel on the flight deck. The flight deck is illuminated one last time as preparations are made for the shuttle's final power down during Space Shuttle Program transition and retirement activities. Atlantis is being prepared for public display in 2013 at the Kennedy Space Center Visitor Complex. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat
NASA Technical Reports Server (NTRS)
Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.
2014-01-01
NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat module consists of a 2-m-high barrel with 0.6-mhigh end domes forming the 56-cubicmeter pressure vessel, and a 19-squaremeter floor area. The module has up to four docking ports located orthogonally from each other around the perimeter, and up to one docking port each on the top or bottom end domes. In addition, the module has mounting trusses top and bottom for equipment, and to allow docking with the ATHLETE mobility system. Novel or unique features of the HDU vertical habitat module include the nodelike function with multiple pressure hatches for docking with other versions of itself and other modules and vehicles; the capacity to be carried by an ATHLETE mobility system; and the ability to attach inflatable 'attic' domes to the top for additional pressurized volume.
Emblem - NASA Skylab (SL) Program
1973-04-25
S73-23952 (May 1973) --- This is the official emblem for the National Aeronautics and Space Administration's (NASA) Skylab Program. The emblem depicts the United States Skylab space station cluster in Earth orbit with the sun in the background. Skylab will evaluate systems and techniques designed to gather information on Earth resources and environmental problems. Solar telescopes will increase man's knowledge of our sun and the multitude of solar influences on Earth environment. Medical experiments will increase knowledge of man himself and his relationship to his earthly environment and adaptability to spaceflight. Additionally, Skylab will experiment with industrial processes which may be enhanced by the unique weightless, vacuum environment of orbital spaceflight. The 100-ton laboratory complex Skylab space station is composed of the Command/Service Module (CSM), Orbital Workshop (OW), Apollo Telescope Mount (ATM), Multiple Docking Adapter (MDA), and Airlock Module (AM). The NASA insignia design for Skylab is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced. Photo credit: NASA
Flexible Electrostatic Technology for Capture and Handling Project
NASA Technical Reports Server (NTRS)
Keys, Andrew; Bryan, Tom; Horwitz, Chris; Rakoczy, John; Waggoner, Jason
2015-01-01
To NASA unfunded & planned missions: This new capability to sense proximity, flexibly align to, and attractively grip and capture practically any object in space without any pre-designed physical features or added sensors or actuators will enable or enhance many of MSFC's strategic emphasis areas in space transportation, and space systems such as: 1. A Flexible Electrostatic gripper can enable the capture, gripping and releasing of an extraterrestrial sample of different minerals or a sample canister (metallic or composite) without requiring a handle or grapple fixture.(B) 2. Flexible self-aligning in-space capture/soft docking or berthing of ISS resupply vehicles, pressurized modules, or nodes for in-space assembly and shielding, radiator, and solar Array deployment for space habitats (C) 3. The flexible electrostatic gripper when combined with a simple steerable extendible boom can grip, position, and release objects of various shapes and materials with low mass and power without any prior handles or physical accommodations or surface contamination for ISS experiment experiments and in-situ repair.(F)(G) 4. The Dexterous Docking concept previously proposed to allow simple commercial resupply ships to station-keep and capture either ISS or an Exploration vehicle for supply or fluid transfer lacked a self-sensing, compliant, soft capture gripper like FETCH that could retract and attach to a CBM. (I) 5. To enable a soft capture and de-orbit of a piece of orbital debris will require self-aligning gripping and holding an object wherever possible (thermal coverings or shields of various materials, radiators, solar arrays, antenna dishes) with little or no residual power while adding either drag or active low level thrust.(K) 6. With the scalability of the FETCH technology, small satellites can be captured and handled or can incorporate FETCH gripper to dock to and handle other small vehicles and larger objects for de-orbiting or mitigating Orbital debris (L) 7. Many of previous MSFC and NASA proposals or concepts can now be realized or simplified by the development of the this initial and future FETCH grippers including commercial resupply, Exploration vehicle assembly, Satellite servicing, and orbital debris removal since a major part of these missions is to align to and capture some handle. Completed Project (2013 - 2014) Flexible Electrostatic Technology for Capture & Handling Project Center Innovation Fund: MSFC CIF Program | Space Technology Mission Directorate (STMD) For more information visit techport.nasa.gov Some NASA technology projects are smaller (for example SBIR/STTR, NIAC and Center Innovation Fund), and will have less content than other, larger projects. Newly created projects may not sensors or injection of permanent adhesives. With gripping forces estimated between 0.5 and 2.5 pounds per square inch or 70-300 lb./sq. ft. of surface contact, the FETCH can turn-on and turn-off rapidly and repeatedly to enable sample handling, soft docking, in-space assembly, and precision relocation for accurate anchor adhesion.
jsc2017m001162_AstroMoment_RickyArnold_MP4
2018-03-21
Astronaut Moments with NASA astronaut Ricky Arnold----------------------------------- Ricky Arnold was selected to be an astronaut 2004. Before his NASA career, he worked in the marine sciences and as a teacher in places like Morocco, Saudi Arabia, and Indonesia. He recalls watching the Challenger accident with Christa McAuliffe, NASA’s first “Teacher in Space”. During his mission to the International Space Station launching on March 21, 2018, Ricky will conduct some of the lost lessons that Christa had planned to film during her mission. Learn more: https://www.nasa.gov/feature/nasa-challenger-center-collaborate-to-perform-christa-mcauliffe-s-legacy-experiments https://www.nasa.gov/astronauts/biographies/richard-r-arnold https://www.nasa.gov/press-release/nasa-television-coverage-set-for-space-station-crew-launch-docking
2009-03-20
Expedition 19 Commander Gennady I. Padalka is seen through a quarantine windowed room as he and other crew memebers participate in Soyuz rendezvous and docking training at the Cosmonaut Hotel, Saturday, March 21, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)
2013-06-18
ISS036-E-009246 (18 June 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, takes inventory of cargo in the European Space Agency's Automated Transfer Vehicle-4 (ATV-4) "Albert Einstein" currently docked to the Zvezda Service Module of the International Space Station.
2010-04-12
S131-E-009294 (12 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.
2011-03-04
ISS026-E-031616 (3 March 2011) --- NASA astronaut Alvin Drew, STS-133 mission specialist, is pictured in his sleeping bag, which is attached in the Columbus laboratory of the International Space Station while space shuttle Discovery remains docked with the station.
2011-03-04
ISS026-E-031615 (3 March 2011) --- NASA astronaut Alvin Drew, STS-133 mission specialist, is pictured in his sleeping bag, which is attached in the Columbus laboratory of the International Space Station while space shuttle Discovery remains docked with the station.
Space Launch Initiative (SLI) Engine Test
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.
2010-01-05
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, External Tank-135 is offloaded from the Pegasus barge docked in the turn basin near the Vehicle Assembly Building. Pegasus arrived in Florida on Dec. 26, towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. ET-135 will be used to launch space shuttle Discovery on the STS-131 mission to the International Space Station. Launch is targeted for March 18. For information on the components of the space shuttle and the STS-131 mission, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Jack Pfaller
2010-01-05
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, workers inspect External Tank-135, newly offloaded from the Pegasus barge docked in the turn basin near the Vehicle Assembly Building. Pegasus arrived in Florida on Dec. 26, towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. ET-135 will be used to launch space shuttle Discovery on the STS-131 mission to the International Space Station. Launch is targeted for March 18. For information on the components of the space shuttle and the STS-131 mission, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Jack Pfaller
2010-01-05
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, preparations are under way to offload External Tank-135 from the Pegasus barge docked in the turn basin near the Vehicle Assembly Building. Pegasus arrived in Florida on Dec. 26, towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. ET-135 will be used to launch space shuttle Discovery on the STS-131 mission to the International Space Station. Launch is targeted for March 18. For information on the components of the space shuttle and the STS-131 mission, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
Spacecraft capture and docking system
NASA Technical Reports Server (NTRS)
Kong, Kinyuen (Inventor); Rafeek, Shaheed (Inventor); Myrick, Thomas (Inventor)
2001-01-01
A system for capturing and docking an active craft to a passive craft has a first docking assembly on the active craft with a first contact member and a spike projecting outwardly, a second docking assembly on the passive craft having a second contact member and a flexible net deployed over a target area with an open mesh for capturing the end of the spike of the active craft, and a motorized net drive for reeling in the net and active craft to mate with the passive craft's docking assembly. The spike has extendable tabs to allow it to become engaged with the net. The net's center is coupled to a net spool for reeling in. An alignment funnel has inclined walls to guide the net and captured spike towards the net spool. The passive craft's docking assembly includes circumferentially spaced preload wedges which are driven to lock the wedges against the contact member of the active craft. The active craft's docking assembly includes a rotary table and drive for rotating it to a predetermined angular alignment position, and mating connectors are then engaged with each other. The system may be used for docking spacecraft in zero or low-gravity environments, as well as for docking underwater vehicles, docking of ancillary craft to a mother craft in subsonic flight, in-flight refueling systems, etc.
Advanced Docking System With Magnetic Initial Capture
NASA Technical Reports Server (NTRS)
Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang
2004-01-01
An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.
Design of an algorithm for autonomous docking with a freely tumbling target
NASA Astrophysics Data System (ADS)
Nolet, Simon; Kong, Edmund; Miller, David W.
2005-05-01
For complex unmanned docking missions, limited communication bandwidth and delays do not allow ground operators to have immediate access to all real-time state information and hence prevent them from playing an active role in the control loop. Advanced control algorithms are needed to make mission critical decisions to ensure safety of both spacecraft during close proximity maneuvers. This is especially true when unexpected contingencies occur. These algorithms will enable multiple space missions, including servicing of damaged spacecraft and missions to Mars. A key characteristic of spacecraft servicing missions is that the target spacecraft is likely to be freely tumbling due to various mechanical failures or fuel depletion. Very few technical references in the literature can be found on autonomous docking with a freely tumbling target and very few such maneuvers have been attempted. The MIT Space Systems Laboratory (SSL) is currently performing research on the subject. The objective of this research is to develop a control architecture that will enable safe and fuel-efficient docking of a thruster based spacecraft with a freely tumbling target in presence of obstacles and contingencies. The approach is to identify, select and implement state estimation, fault detection, isolation and recovery, optimal path planning and thruster management algorithms that, once properly integrated, can accomplish such a maneuver autonomously. Simulations and demonstrations on the SPHERES testbed developed by the MIT SSL will be executed to assess the performance of different combinations of algorithms. To date, experiments have been carried out at the MIT SSL 2-D Laboratory and at the NASA Marshall Space Flight Center (MSFC) flat floor.
Expedition 9 Russian News Conference
2004-04-20
NASA Deputy Administrator Fred Gregory, far right, and Russian Federal Space Agency Deputy General-Director Nikolai Moiseev, second from right, answer questions from reporters along with other Russian space officials at a news conference, Wednesday, April 21, 2004, at the Russian Mission Control Center outside Moscow following the docking of the Expedition 9 crew and a European Space Agency astronaut to the International Space Station in a Russian Soyuz spacecraft. Photo Credit: (NASA/Bill Ingalls)
Renita Fincke at Russian Mission Control Center
2004-04-20
Renita Fincke, wife of Expedition 9 Flight Engineer and NASA International Space Station Science Officer Michael Fincke, smiles with their two-year old son Chandra at the Russian Mission Control Center outside Moscow, Wednesday, April 21, 2004, following the successful docking of the Russian Soyuz capsule carrying Fincke, Expedition 9 Commander Gennady Padalka and European Space Agency astronaut Andre Kuipers of the Netherlands to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Expedition 53-54 Crew Safely Onboard the Space Station
2017-09-13
After docking their Soyuz MS-06 spacecraft to the Poisk module on the Russian segment of the International Space Station, Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA were greeted by station Commander Randy Bresnik of NASA and flight engineers Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of the European Space Agency, as the hatches between the spacecraft were opened.
Hurricane Irma Damage Assessment
2017-09-12
A boat dock torn apart is seen during a survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
2009-03-20
Expedition 19 Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi, background, are seen through a quarantine windowed room as they participate in Soyuz rendezvous and docking training at the Cosmonaut Hotel, Saturday, March 21, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)
2013-06-18
ISS036-E-009256 (18 June 2013) --- NASA astronauts Chris Cassidy and Karen Nyberg, both Expedition 36 flight engineers, perform cargo operations in the European Space Agency's Automated Transfer Vehicle-4 (ATV-4) "Albert Einstein" currently docked to the Zvezda Service Module of the International Space Station.
Antonelli in the MRM-1 during Joint Operations
2010-05-23
S132-E-010163 (23 May 2010) --- NASA astronaut Tony Antonelli, STS-132 pilot, is pictured in the newly-attached Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station while space shuttle Atlantis remains docked with the station.
2010-04-12
S131-E-009277 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.
2010-04-12
S131-E-009299 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC.
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. STA emerges from Barge Pegasus.
2012-03-31
ISS030-E-178667 (31 March 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works in the newly attached European Space Agency?s ?Edoardo Amaldi? Automated Transfer Vehicle-3 (ATV-3). The ATV docked with the space station on March 28, 2012.
NASA Technical Reports Server (NTRS)
Ghofranian, Siamak (Inventor); Chuang, Li-Ping Christopher (Inventor); Motaghedi, Pejmun (Inventor)
2016-01-01
A method and apparatus for docking a spacecraft. The apparatus comprises elongate members, movement systems, and force management systems. The elongate members are associated with a docking structure for a spacecraft. The movement systems are configured to move the elongate members axially such that the docking structure for the spacecraft moves. Each of the elongate members is configured to move independently. The force management systems connect the movement systems to the elongate members and are configured to limit a force applied by the each of the elongate members to a desired threshold during movement of the elongate members.
Magnet-Based System for Docking of Miniature Spacecraft
NASA Technical Reports Server (NTRS)
Howard, Nathan; Nguyen, Hai D.
2007-01-01
A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet. A typical docking operation begins with the docking spacecraft maneuvering into position near the docking port on the parent vehicle. The electromagnet( s) are then turned on, and, if necessary, the docking spacecraft is then maneuvered within the capture envelope of the docking port. The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube centered on the front of the docking-port electromagnet and within an angular misalignment of <30 . Thereafter, the magnetic forces draw the smaller spacecraft toward the larger one and this brings the spacecraft into approximate alignment prior to contact. Mechanical alignment guides provide the final rotational alignment into one of 12 positions. Once the docking vehicle has been captured magnetically in the docking port, the ball-lock mechanism is activated, which locks the two spacecraft together. At this point the electromagnet( s) are turned off, and the service probe extended if recharge and refueling are to be performed. Additionally, during undocking, the polarity of one electromagnet can be reversed to provide a gentle push to separate the two spacecraft. This system is currently being incorporated into the design of Mini AERCam vehicle.
VIew of Mission Control on first day of ASTP docking in Earth orbit
1975-07-15
S75-28483 (15 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center on the first day of the Apollo-Soyuz Test Project docking mission in Earth orbit. The American ASTP flight controllers at NASA's Johnson Space Center were monitoring the progress of the Soviet ASTP launch when this photograph was taken. The television monitor shows cosmonaut Yuri V. Romanenko at his spacecraft communicator?s console in the ASTP mission control center in the Soviet Union. The American ASTP liftoff followed the Soviet ASTP launch by seven and one-half hours.
President Ford and both the Soviet and American ASTP crews
NASA Technical Reports Server (NTRS)
1974-01-01
President Gerald R. Ford removes the Soviet Soyuz spacecraft model from a model set depicting the 1975 Apollo Soyuz Test Project (ASTP), an Earth orbital docking and rendezvous mission with crewmen from the U.S. and USSR. From left to right, Vladamir A. Shatalov, Chief, Cosmonaut training; Valeriy N. Kubasov, ASTP Soviet engineer; Aleksey A. Leonov, ASTP Soviet crew commander; Thomas P. Stafford, commander of the American crew; Donald K. Slayton, American docking module pilot; Vance D. Brand, command module pilot for the American crew. Dr. George M Low, Deputy Administrator for NASA is partially obscured behind President Ford.
2012-02-17
Apollo-Soyuz Test Project: The first international crewed spaceflight was a joint U.S.-U.S.S.R. rendezvous and docking mission. The Apollo-Soyuz Test Project, or ASTP, took its name from the spacecraft employed: the American Apollo and the Soviet Soyuz. The three-man Apollo crew lifted off from Kennedy Space Center aboard a Saturn IB rocket on July 15, 1975, to link up with the Soyuz that had launched a few hours earlier. A cylindrical docking module served as an airlock between the two spacecraft for transfer of the crew members. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
NASA Technical Reports Server (NTRS)
Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.
2007-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS. The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (1) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multi-sensor series of trajectories.
Orbital docking system centerline color television camera system test
NASA Technical Reports Server (NTRS)
Mongan, Philip T.
1993-01-01
A series of tests was run to verify that the design of the centerline color television camera (CTVC) system is adequate optically for the STS-71 Space Shuttle Orbiter docking mission with the Mir space station. In each test, a mockup of the Mir consisting of hatch, docking mechanism, and docking target was positioned above the Johnson Space Center's full fuselage trainer, which simulated the Orbiter with a mockup of the external airlock and docking adapter. Test subjects viewed the docking target through the CTVC under 30 different lighting conditions and evaluated target resolution, field of view, light levels, light placement, and methods of target alignment. Test results indicate that the proposed design will provide adequate visibility through the centerline camera for a successful docking, even with a reasonable number of light failures. It is recommended that the flight deck crew have individual switching capability for docking lights to provide maximum shadow management and that centerline lights be retained to deal with light failures and user preferences. Procedures for light management should be developed and target alignment aids should be selected during simulated docking runs.
SPARTAN: A High-Fidelity Simulation for Automated Rendezvous and Docking Applications
NASA Technical Reports Server (NTRS)
Turbe, Michael A.; McDuffie, James H.; DeKock, Brandon K.; Betts, Kevin M.; Carrington, Connie K.
2007-01-01
bd Systems (a subsidiary of SAIC) has developed the Simulation Package for Autonomous Rendezvous Test and ANalysis (SPARTAN), a high-fidelity on-orbit simulation featuring multiple six-degree-of-freedom (6DOF) vehicles. SPARTAN has been developed in a modular fashion in Matlab/Simulink to test next-generation automated rendezvous and docking guidance, navigation,and control algorithms for NASA's new Vision for Space Exploration. SPARTAN includes autonomous state-based mission manager algorithms responsible for sequencing the vehicle through various flight phases based on on-board sensor inputs and closed-loop guidance algorithms, including Lambert transfers, Clohessy-Wiltshire maneuvers, and glideslope approaches The guidance commands are implemented using an integrated translation and attitude control system to provide 6DOF control of each vehicle in the simulation. SPARTAN also includes high-fidelity representations of a variety of absolute and relative navigation sensors that maybe used for NASA missions, including radio frequency, lidar, and video-based rendezvous sensors. Proprietary navigation sensor fusion algorithms have been developed that allow the integration of these sensor measurements through an extended Kalman filter framework to create a single optimal estimate of the relative state of the vehicles. SPARTAN provides capability for Monte Carlo dispersion analysis, allowing for rigorous evaluation of the performance of the complete proposed AR&D system, including software, sensors, and mechanisms. SPARTAN also supports hardware-in-the-loop testing through conversion of the algorithms to C code using Real-Time Workshop in order to be hosted in a mission computer engineering development unit running an embedded real-time operating system. SPARTAN also contains both runtime TCP/IP socket interface and post-processing compatibility with bdStudio, a visualization tool developed by bd Systems, allowing for intuitive evaluation of simulation results. A description of the SPARTAN architecture and capabilities is provided, along with details on the models and algorithms utilized and results from representative missions.
General view looking forward from the starboard side of the ...
General view looking forward from the starboard side of the Orbiter Discovery looking into the payload bay and the bulkhead of the forward fuselage with the airlock. The docking ring and airlock hatches have been removed from the airlock prior to this photo being taken. Note that the Orbiter Boom Sensor System is still attached while the Remote Manipulator System has been removed. Also note the suspended protective panels and walkways in place to protect the interior surfaces of the payload bay doors while in their open position. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
MS Lucid and Blaha with MGBX aboard the Mir space station Priroda module
1997-03-26
STS079-S-092 (16-26 Sept. 1996) --- Astronauts Shannon W. Lucid and John E. Blaha work at a microgravity glove box on the Priroda Module aboard Russia's Mir Space Station complex. Blaha, who flew into Earth-orbit with the STS-79 crew, and Lucid are the first participants in a series of ongoing exchanges of NASA astronauts serving time as cosmonaut guest researchers onboard Mir. Lucid went on to spend a total of 188 days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules, with the cooperation of the Russian Space Agency (RSA). A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.
1975-04-01
S75-27289 (May 1975) --- An artist?s concept depicting the American Apollo spacecraft docked with a Soviet Soyuz spacecraft in Earth orbit. During the joint U.S.-USSR Apollo-Soyuz Test Project mission, scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. The mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions. Each nation has developed separately docking systems based on a mutually agreeable single set of interface design specifications. The major new U.S. program elements are the docking module and docking system necessary to achieve compatibility of rendezvous and docking systems with the USSR-developed hardware to be used on the Soyuz spacecraft. The DM and docking system together with an Apollo Command/Service Module will be launched by a Saturn 1B launch vehicle. This artwork is by Paul Fjeld.
Kotov practices the manual docking techniques with the TORU
2013-11-22
ISS038-E-006656 (22 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 38 commander, practices manual docking techniques with the TORU, or telerobotically operated rendezvous system, in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 53 spacecraft. Kotov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system. The Progress 53 craft is scheduled to complete its automated docking to the aft port of Zvezda at 5:28 p.m. (EST) on Nov. 29.
2014-07-22
ISS040-E-070857 (22 July 2014) --- Russian cosmonaut Alexander Skvortsov, Expedition 40 flight engineer, practices manual docking techniques with the TORU, or telerobotically operated rendezvous system, in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 56 spacecraft. Skvortsov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system. The Progress 56 craft is scheduled to complete its automated docking to the Pirs docking compartment at 11:30 p.m. (EDT) on July 23, 2014.
Tyurin practices the manual docking techniques with the TORU
2013-11-22
ISS038-E-006663 (22 Nov. 2013) --- Russian cosmonaut Mikhail Tyurin, Expedition 38 flight engineer, practices manual docking techniques with the TORU, or telerobotically operated rendezvous system, in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 53 spacecraft. Tyurin, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system. The Progress 53 craft is scheduled to complete its automated docking to the aft port of Zvezda at 5:28 p.m. (EST) on Nov. 29.
2014-07-22
ISS040-E-070859 (22 July 2014) --- Russian cosmonaut Alexander Skvortsov, Expedition 40 flight engineer, practices manual docking techniques with the TORU, or telerobotically operated rendezvous system, in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 56 spacecraft. Skvortsov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system. The Progress 56 craft is scheduled to complete its automated docking to the Pirs docking compartment at 11:30 p.m. (EDT) on July 23, 2014.
2014-09-11
SAN DIEGO, Calif. – The USS Anchorage is docked at Naval Base San Diego during loading operations in its well deck for Orion Underway Recovery Test 3. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-09-11
SAN DIEGO, Calif. – The USS Anchorage is docked at Naval Base San Diego during loading operations in its well deck for Orion Underway Recovery Test 3. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-09-11
SAN DIEGO, Calif. – The USS Anchorage is docked at Naval Base San Diego during loading operations in its well deck for Orion Underway Recovery Test 3. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2013-08-12
HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article is reflected in water on a U.S. Navy ship. The test article and support equipment for a stationary recovery test were transferred to the ship from a floating dock system. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis
Control - Demands mushroom as station grows
NASA Technical Reports Server (NTRS)
Szirmay, S. Z.; Blair, J.
1983-01-01
The NASA space station, which is presently in the planning stage, is to be composed of both rigid and nonrigid modules, rotating elements, and flexible appendages subjected to environmental disturbances from the earth's atmospheric gravity gradient, and magnetic field, as well as solar radiation and self-generated disturbances. Control functions, which will originally include attitude control, docking and berthing control, and system monitoring and management, will with evolving mission objectives come to encompass such control functions as articulation control, autonomous navigation, space traffic control, and large space structure control. Attention is given to the advancements in modular, distributed, and adaptive control methods, as well as system identification and hardware fault tolerance techniques, which will be required.
An Assessment of the Technology of Automated Rendezvous and Capture in Space
NASA Technical Reports Server (NTRS)
Polites, M. E.
1998-01-01
This paper presents the results of a study to assess the technology of automated rendezvous and capture (AR&C) in space. The outline of the paper is as follows. First, the history of manual and automated rendezvous and capture and rendezvous and dock is presented. Next, the need for AR&C in space is established. Then, today's technology and ongoing technology efforts related to AR&C in space are reviewed. In light of these, AR&C systems are proposed that meet NASA's future needs, but can be developed in a reasonable amount of time with a reasonable amount of money. Technology plans for developing these systems are presented; cost and schedule are included.
Endeavour lands atop 747 after downtime at Palmdale, CA
NASA Technical Reports Server (NTRS)
1997-01-01
The Space Shuttle Orbiter Endeavour arrives at KSCs Shuttle Landing Facility atop NASAs Boeing 747 Shuttle Carrier Aircraft (SCA) as it returns March 27, 1997 from Palmdale, Calif., after an eight-month Orbiter Maintenance Down Period (OMDP). Nearly 100 modifications were made to Endeavour during that time period, including some that were directly associated with work required to support International Space Station Operations. The most extensive of those was the installation of an external airlock to allow the orbiter to dock with the Station. Other modifications included upgrades to Endeavours power supply system, general purpose computers and thermal protection system, along with the installation of new light-weight commander and pilot seats and other weight-saving modifications.
Pre-Proposal Assessment of Reliability for Spacecraft Docking with Limited Information
NASA Technical Reports Server (NTRS)
Brall, Aron
2013-01-01
This paper addresses the problem of estimating the reliability of a critical system function as well as its impact on the system reliability when limited information is available. The approach addresses the basic function reliability, and then the impact of multiple attempts to accomplish the function. The dependence of subsequent attempts on prior failure to accomplish the function is also addressed. The autonomous docking of two spacecraft was the specific example that generated the inquiry, and the resultant impact on total reliability generated substantial interest in presenting the results due to the relative insensitivity of overall performance to basic function reliability and moderate degradation given sufficient attempts to try and accomplish the required goal. The application of the methodology allows proper emphasis on the characteristics that can be estimated with some knowledge, and to insulate the integrity of the design from those characteristics that can't be properly estimated with any rational value of uncertainty. The nature of NASA's missions contains a great deal of uncertainty due to the pursuit of new science or operations. This approach can be applied to any function where multiple attempts at success, with or without degradation, are allowed.
USS Anchorage Leaves Port for Launch of Orion
2014-12-01
The USNS Salvor, a safeguard-class rescue and salvage ship, is docked at Naval Base San Diego in California. The ship will head out to sea along with the USS Anchorage ahead of Orion's first flight test. NASA and U.S. Navy personnel are making preparations ahead of Orion's flight test for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. If needed, the Salvor would be used for an alternate recovery method. Ground Systems Development and Operations Program is leading the recovery efforts.
General view looking forward along the centerline of the Orbiter ...
General view looking forward along the centerline of the Orbiter Discovery looking into the payload bay. This view shows the external airlock and the beam-truss attach structure supporting it and attaching it to the payload bay sill longerons. Also note the protective covering over the docking mechanism on top of the airlock assembly. This external airlock configuration was for mating to the International Space Station. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Poindexter and Yamazaki with LIOH Canisters
2010-04-13
S131-E-009609 (13 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander; and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, mission specialist, work with lithium hydroxide (LiOH) canisters on space shuttle Discovery’s middeck while docked with the International Space Station.
Poindexter and Yamazaki with LIOH Canisters
2010-04-13
S131-E-009607 (13 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander; and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, mission specialist, work with lithium hydroxide (LiOH) canisters on space shuttle Discovery’s middeck while docked with the International Space Station.
Barratt inside new crew quarters in Kibo
2009-09-02
ISS020-E-037855 (2 Sept. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works inside a newly installed crew quarters compartment in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-128) remains docked with the station.
NASA life sciences. An improvement in vital signs.
Lawler, A
2000-08-04
Last week a hefty Russian module with living and working quarters for astronauts docked with the pieces of the international space station already in orbit, a critical step in creating a full-time orbiting laboratory. Meanwhile, NASA bureaucrats put the finishing touches on a realignment of the agency's struggling biology effort that should bolster fundamental research and allow scientists to make better use of the facility, scheduled to be completed in 2005. The two events raise the hopes of U.S. academic space life scientists that their discipline is at last on the ascent at NASA.
2009-09-07
S128-E-007979 (7 Sept. 2009) --- Crew members onboard the International Space Station share a meal in the Unity node while Space Shuttle Discovery remains docked with the station. Pictured from the left (bottom) are NASA astronauts Rick Sturckow, STS-128 commander; Tim Kopra and Jose Hernandez, both STS-128 mission specialists; along with Kevin Ford, STS-128 pilot; and John “Danny” Olivas, STS-128 mission specialist. Pictured from the left (top) are NASA astronaut Nicole Stott (mostly out of frame) and Canadian Space Agency astronaut Robert Thirsk, both Expedition 20 flight engineers; along with NASA astronaut Patrick Forrester, STS-128 mission specialist.
2014-08-10
LOS ANGELES, Calif. – U.S. Naval Sea Cadets sign a banner on the USS Anchorage docked in the Port of Los Angeles during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days. In the background is a model of NASA’s Space Launch System heavy-lift rocket, under development. A boilerplate test version of NASA's new Orion spacecraft that was used during the Underway Recovery Test 2 in the Pacific Ocean off the coast of San Diego also was on display. A combined team from NASA’s Ground Systems Development and Operations Program and the U.S. Navy were in San Diego to practice recovering Orion from the ocean, as they will do in December following the spacecraft's first trip to space during Exploration Flight Test-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Expedition 9 Russian News Conference
2004-04-20
NASA Deputy Administrator Fred Gregory, right, and Nikolai Moiseev, Deputy General-Director of the Russian Federal Space Agency, center, share a light-hearted moment at the Russian Mission Control Center outside Moscow, Wednesday, April 21, 2004, following the successful docking of a Russian Soyuz spacecraft to the International Space Station. The Soyuz brought the new Expedition 9 crew and a European Space Agency researcher to the Station following their launch from the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Bill Ingalls)
2012-02-17
Project Gemini: On Jan. 3, 1962, NASA announced the advanced Mercury Mark II project had been named "Gemini." After 12 missions – 2 uncrewed and 10 crewed – Project Gemini ended Nov. 15, 1966, following a nearly four-day, 59 orbit-flight. Its achievements included long-duration spaceflight, rendezvous and docking of two spacecraft in Earth orbit, extravehicular activity, and precision-controlled re-entry and landing of the spacecraft. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
STS-133 and Expedition 26 Crewmembers
2011-02-26
ISS026-E-030338 (26 Feb. 2011) --- STS-133 and Expedition 26 crew members are pictured shortly after space shuttle Discovery and the International Space Station docked in space and the hatches were opened. Pictured are NASA astronauts Scott Kelly (left foreground), Expedition 26 commander; Steve Bowen (left) and Michael Barratt (right foreground), both STS-133 mission specialists. Visible in the background are NASA astronauts Eric Boe (left), STS-133 pilot; and Steve Lindsey (mostly obscured at right), STS-133 commander.
Vinogradov practices docking procedures of the Progress 21 in the SM during Expedition 13
2006-04-26
ISS013-E-10225 (26 April 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, practices docking procedures with the TORU teleoperated control system in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 21 spacecraft. Vinogradov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system.
2009-10-24
CAPE CANAVERAL, Fla. – External tank 134 emerges from the Pegasus barge docked in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. The fuel tank next will be transported into the VAB where it will be stored until needed. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2011-10-23
A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
2011-10-23
Workers lift the transportation canister from the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
2011-10-23
Workers lower the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
2011-10-23
A truck brings the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
2011-10-23
Workers unwrap the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule inside a building at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
2011-10-23
A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
2011-10-23
A truck carries the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
2011-10-23
Workers unwrap the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule inside a building at Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
2011-10-23
Workers lift the transportation canister away from the latest Space Exploration Technologies Corp. (SpaceX) Dragon capsule to Cape Canaveral Air Force Station in Florida on Oct. 23 so it can be processed and attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/ Charisse Nahser
Vinogradov at TORU control system in Zvezda
2006-06-26
ISS013-E-42209 (26 June 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, practices docking procedures with the TORU teleoperated control system in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 22 spacecraft. Vinogradov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system.
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje S.; Stillwater, Ryan A.; Babula, Maria; Moreau, Michael C.; Riedel, J. Ed; Mrozinski, Richard B.; Bradley, Arthur; Bryan, Thomas C.
2012-01-01
The ability of space assets to rendezvous and dock/capture/berth is a fundamental enabler for numerous classes of NASA fs missions, and is therefore an essential capability for the future of NASA. Mission classes include: ISS crew rotation, crewed exploration beyond low-Earth-orbit (LEO), on-orbit assembly, ISS cargo supply, crewed satellite servicing, robotic satellite servicing / debris mitigation, robotic sample return, and robotic small body (e.g. near-Earth object, NEO) proximity operations. For a variety of reasons to be described, NASA programs requiring Automated/Autonomous Rendezvous and Docking/Capture/Berthing (AR&D) capabilities are currently spending an order-of-magnitude more than necessary and taking twice as long as necessary to achieve their AR&D capability, "reinventing the wheel" for each program, and have fallen behind all of our foreign counterparts in AR&D technology (especially autonomy) in the process. To ensure future missions' reliability and crew safety (when applicable), to achieve the noted cost and schedule savings by eliminate costs of continually "reinventing the wheel ", the NASA AR&D Community of Practice (CoP) recommends NASA develop an AR&D Warehouse, detailed herein, which does not exist today. The term "warehouse" is used herein to refer to a toolbox or capability suite that has pre-integrated selectable supply-chain hardware and reusable software components that are considered ready-to-fly, low-risk, reliable, versatile, scalable, cost-effective, architecture and destination independent, that can be confidently utilized operationally on human spaceflight and robotic vehicles over a variety of mission classes and design reference missions, especially beyond LEO. The CoP also believes that it is imperative that NASA coordinate and integrate all current and proposed technology development activities into a cohesive cross-Agency strategy to produce and utilize this AR&D warehouse. An initial estimate indicates that if NASA strategically coordinates the development of a robust AR&D capability across the Agency, the cost of implementing AR&D on a spacecraft could be reduced from roughly $70M per mission to as low as $7M per mission, and the associated development time could be reduced from 4 years to 2 years, after the warehouse is completely developed. Table 1 shows the clear long-term benefits to the Agency in term of costs and schedules for various missions. (The methods used to arrive at the Table 1 numbers is presented in Appendices A and B.)
2009-03-20
Spaceflight Participant Charles Simonyi and Expedition 19 Flight Engineer Michael R. Barratt, foreground, along with cosmonaut instructors are seen through a quarantine windowed room as they participate in Soyuz rendezvous and docking training at the Cosmonaut Hotel, Saturday, March 21, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)
Commanders Kotov and Ham Bid Farewell
2010-05-23
ISS023-E-051146 (23 May 2010) --- Russian cosmonaut Oleg Kotov (left), Expedition 23 commander; and NASA astronaut Ken Ham, STS-132 commander, are pictured during a farewell ceremony in the Harmony node of the International Space Station while space shuttle Atlantis remains docked with the station.
2010-04-08
S131-E-008357 (9 April 2010) --- NASA astronaut Dorothy Metcalf-Lindenburger, STS-131 mission specialist, finds floating room hard to come by inside the multi-purpose logistics module Leonardo, which is filled with supplies and hardware for the International Space Station, to which it is temporarily docked.
Barratt and Nespoli in the A/L
2011-02-28
ISS026-E-031180 (28 Feb. 2011) --- NASA astronaut Michael Barratt (left), STS-133 mission specialist; and European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, work in the Quest airlock of the International Space Station while space shuttle Discovery remains docked with the station.
Forrester and Kopra pose in Army T-shirts in JEM
2009-09-07
S128-E-008350 (7 Sept. 2009) --- NASA astronauts Patrick Forrester (left) and Tim Kopra, both STS-128 mission specialists, pose for a photo in the Kibo laboratory of the International Space Station while Space Shuttle Discovery remains docked with the station.
Video-Guidance Design for the DART Rendezvous Mission
NASA Technical Reports Server (NTRS)
Ruth, Michael; Tracy, Chisholm
2004-01-01
NASA's Demonstration of Autonomous Rendezvous Technology (DART) mission will validate a number of different guidance technologies, including state-differenced GPS transfers and close-approach video guidance. The video guidance for DART will employ NASA/Marshall s Advanced Video Guidance Sensor (AVGS). This paper focuses on the terminal phase of the DART mission that includes close-approach maneuvers under AVGS guidance. The closed-loop video guidance design for DART is driven by a number of competing requirements, including a need for maximizing tracking bandwidths while coping with measurement noise and the need to minimize RCS firings. A range of different strategies for attitude control and docking guidance have been considered for the DART mission, and design decisions are driven by a goal of minimizing both the design complexity and the effects of video guidance lags. The DART design employs an indirect docking approach, in which the guidance position targets are defined using relative attitude information. Flight simulation results have proven the effectiveness of the video guidance design.
Krikalev works with the TORU teleoperated control system in the SM during Expedition 11
2005-06-19
ISS011-E-09184 (18 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, practices docking procedures with the TORU teleoperated control system in the Zvezda Service Module of the International Space Station (ISS) in preparation for the docking of the Progress 18 spacecraft. Krikalev, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the Station in the event of a failure of the Kurs automated docking system.
Tyurin works with the TORU teleoperated control system in the SM during Expedition 14
2007-01-20
ISS014-E-12482 (19 Jan. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, practices docking procedures with the TORU teleoperated control system in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 24 spacecraft. Tyurin, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system.
STS-74 view of MIR Docking module at Pad 39A
NASA Technical Reports Server (NTRS)
1995-01-01
Workers at Launch Pad 39A are preparing to close the payload bay doors on the Space Shuttle Atlantis for its upcoming launch on Mission STS-74 and the second docking with the Russian Space Station Mir. Uppermost in the payload bay is the Orbiter Docking System (ODS), which also flew on the first docking flight between the Space Shuttle and MIR. Lowermost is the primary payload of STS-74, the Russian-built Docking Module. During the mission, the Docking Module will first be attached to ODS and then to Mir. It will be left attached to Mir to become a permanent extension that will afford adequate clearance between the orbiter and the station during future dockings. At left in the payload bay, looking like a very long pole, is the Canadian-built Remote Manipulator System arm that will be used by the crew to hoist the Docking Module and attach it to the ODS.
Kotov in SM during Progress 37P Docking
2010-05-01
ISS023-E-031743 (1 May 2010) --- Russian cosmonaut Oleg Kotov, Expedition 23 commander, is pictured at the manual TORU docking system controls in the Zvezda Service Module of the International Space Station just before conducting a manual control docking of the Progress 37 due to a jet failure on the Progress that forced a shutdown of the Kurs automated rendezvous system. Progress 37 docked to the Pirs Docking Compartment at 2:30 p.m. (EDT) on May 1, 2010, after a three-day flight from the Baikonur Cosmodrome in Kazakhstan.
2007-12-11
KENNEDY SPACE CENTER, FLA. -- After arrival at the dock, the Delta IV first stage that will be used to launch the GOES-O satellite moves through Cape Canaveral Air Force Station in Florida. It is being transported to Complex 37. The satellite is part of the series developed by the Geostationary Operational Environmental Satellite Program, a joint effort of NASA and the National Oceanic and Atmospheric Administration, known as NOAA. Currently, the GOES system consists of GOES-12 operating as GOES-East in the eastern part of the constellation at 75° west longitude, and GOES-10 operating as GOES-West at 135° west longitude. These spacecraft help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES observations have proven helpful in monitoring dust storms, volcanic eruptions and forest fires. GOES-O is targeted for launch on July 20 aboard a Boeing Delta IV rocket. Photo credit: NASA/Jim Grossmann
2007-12-11
KENNEDY SPACE CENTER, FLA. -- The Delta IV first stage that will be used to launch the GOES-O satellite has been offloaded on the dock on Cape Canaveral Air Force Station in Florida. It will be transported to Complex 37. The satellite is part of the series developed by the Geostationary Operational Environmental Satellite Program, a joint effort of NASA and the National Oceanic and Atmospheric Administration, known as NOAA. Currently, the GOES system consists of GOES-12 operating as GOES-East in the eastern part of the constellation at 75° west longitude, and GOES-10 operating as GOES-West at 135° west longitude. These spacecraft help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES observations have proven helpful in monitoring dust storms, volcanic eruptions and forest fires. GOES-O is targeted for launch on July 20 aboard a Boeing Delta IV rocket. Photo credit: NASA/Jim Grossmann
2007-12-11
KENNEDY SPACE CENTER, FLA. -- After its arrival at the dock, the Delta IV first stage that will be used to launch the GOES-O satellite nears Complex 37 on Cape Canaveral Air Force Station in Florida. The satellite is part of the series developed by the Geostationary Operational Environmental Satellite Program, a joint effort of NASA and the National Oceanic and Atmospheric Administration, known as NOAA. Currently, the GOES system consists of GOES-12 operating as GOES-East in the eastern part of the constellation at 75° west longitude, and GOES-10 operating as GOES-West at 135° west longitude. These spacecraft help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES observations have proven helpful in monitoring dust storms, volcanic eruptions and forest fires. GOES-O is targeted for launch on July 20 aboard a Boeing Delta IV rocket. Photo credit: NASA/Jim Grossmann
2007-12-11
KENNEDY SPACE CENTER, FLA. -- The GOES-O satellite moves through the gate on Cape Canaveral Air Force Station in Florida after arrival at the dock. It is being transported to Complex 37. The satellite is part of the series developed by the Geostationary Operational Environmental Satellite Program, a joint effort of NASA and the National Oceanic and Atmospheric Administration, known as NOAA. Currently, the GOES system consists of GOES-12 operating as GOES-East in the eastern part of the constellation at 75° west longitude, and GOES-10 operating as GOES-West at 135° west longitude. These spacecraft help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES observations have proven helpful in monitoring dust storms, volcanic eruptions and forest fires. GOES-O is targeted for launch on July 20 aboard a Boeing Delta IV rocket. Photo credit: NASA/Jim Grossmann
2007-12-11
KENNEDY SPACE CENTER, FLA. -- The Delta IV first stage that will be used to launch the GOES-O satellite arrives at the dock on Cape Canaveral Air Force Station in Florida. It will be transported to Complex 37. The satellite is part of the series developed by the Geostationary Operational Environmental Satellite Program, a joint effort of NASA and the National Oceanic and Atmospheric Administration, known as NOAA. Currently, the GOES system consists of GOES-12 operating as GOES-East in the eastern part of the constellation at 75° west longitude, and GOES-10 operating as GOES-West at 135° west longitude. These spacecraft help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES observations have proven helpful in monitoring dust storms, volcanic eruptions and forest fires. GOES-O is targeted for launch on July 20 aboard a Boeing Delta IV rocket. Photo credit: NASA/Jim Grossmann
2007-12-11
KENNEDY SPACE CENTER, FLA. -- The Delta IV first stage that will be used to launch the GOES-O satellite has been offloaded on the dock on Cape Canaveral Air Force Station in Florida. It will be transported to Complex 37. The satellite is part of the series developed by the Geostationary Operational Environmental Satellite Program, a joint effort of NASA and the National Oceanic and Atmospheric Administration, known as NOAA. Currently, the GOES system consists of GOES-12 operating as GOES-East in the eastern part of the constellation at 75° west longitude, and GOES-10 operating as GOES-West at 135° west longitude. These spacecraft help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES observations have proven helpful in monitoring dust storms, volcanic eruptions and forest fires. GOES-O is targeted for launch on July 20 aboard a Boeing Delta IV rocket. Photo credit: NASA/Jim Grossmann
2007-12-11
KENNEDY SPACE CENTER, FLA. -- The Delta IV first stage that will be used to launch the GOES-O satellite has been offloaded on the dock on Cape Canaveral Air Force Station in Florida. It will be transported to Complex 37. The satellite is part of the series developed by the Geostationary Operational Environmental Satellite Program, a joint effort of NASA and the National Oceanic and Atmospheric Administration, known as NOAA. Currently, the GOES system consists of GOES-12 operating as GOES-East in the eastern part of the constellation at 75° west longitude, and GOES-10 operating as GOES-West at 135° west longitude. These spacecraft help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES observations have proven helpful in monitoring dust storms, volcanic eruptions and forest fires. GOES-O is targeted for launch on July 20 aboard a Boeing Delta IV rocket. Photo credit: NASA/Jim Grossmann
2007-12-11
KENNEDY SPACE CENTER, FLA. -- The Delta IV first stage that will be used to launch the GOES-O satellite is offloaded on the dock on Cape Canaveral Air Force Station in Florida. It will be transported to Complex 37. The satellite is part of the series developed by the Geostationary Operational Environmental Satellite Program, a joint effort of NASA and the National Oceanic and Atmospheric Administration, known as NOAA. Currently, the GOES system consists of GOES-12 operating as GOES-East in the eastern part of the constellation at 75° west longitude, and GOES-10 operating as GOES-West at 135° west longitude. These spacecraft help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES observations have proven helpful in monitoring dust storms, volcanic eruptions and forest fires. GOES-O is targeted for launch on July 20 aboard a Boeing Delta IV rocket. Photo credit: NASA/Jim Grossmann
Eastern Iowa, Northwestern Illinois
1973-06-22
SL2-10-250 (May-June 1973) --- A vertical view of eastern Iowa and northwestern Illinois, as photographed from Skylab space station in Earth orbit. Davenport, Burlington and Muscatine, Iowa; and Rock Island and Moline, Illinois can be delineated on opposite sides of the Mississippi River. The Iowa River and tributaries of it can also be delineated. This photograph was taken with one of six lenses of the Itek-furnished Multispectral Photographic Facility Experiment S190-A mounted in the Multiple Docking Adapter (MDA) of the space station. A six-inch lens, using 70mm medium speed Ektachrome (SO-356) film, was used. Agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce and Interior; the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior's Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
Russian Mission Control Center
2004-04-20
Helen Conijn, fiancée of European Space Agency astronaut Andre Kuipers of the Netherlands, far right, joins Renita Fincke, second from right, wife of Expedition 9 Flight Engineer and NASA International Space Station Science Officer Michael Fincke, along with family members at the Russian Mission Control Center outside Moscow, Wednesday, April 21, 2004 to view the docking of the Soyuz capsule to the International Space Station that brought Kuipers, Fincke and Expedition 9 Commander Gennady Padalka to the complex following their launch Monday from Kazakhstan. Photo Credit: (NASA/Bill Ingalls)
2010-09-08
CAPE CANAVERAL, Fla. -- In the LC-39 Complex Turn Basin area across from the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a major water main leak in a 24-inch pipe caused soil to wash away near the Press Site. The center was closed for the morning while workers assessed and repaired the break. In the background is the Pegasus barge docked at the Turn Basin which is used to deliver the space shuttle external fuel tank. Photo credit: NASA/Jack Pfaller
2010-09-08
CAPE CANAVERAL, Fla. -- In the LC-39 Complex Turn Basin area across from the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a major water main leak in a 24-inch pipe caused soil to wash away near the Press Site. The center was closed for the morning while workers assessed and repaired the break. In the background is the Pegasus barge docked at the Turn Basin which is used to deliver the space shuttle external fuel tank. Photo credit: NASA/Jack Pfaller
2010-09-08
CAPE CANAVERAL, Fla. -- In the LC-39 Complex Turn Basin area across from the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a major water main leak in a 24-inch pipe caused soil to wash away near the Press Site. The center was closed for the morning while workers assessed and repaired the break. In the background is the Pegasus barge docked at the Turn Basin which is used to deliver the space shuttle external fuel tank. Photo credit: NASA/Jack Pfaller
2015-10-28
ISS045E082789 (10/28/2015) --- NASA astronaut Kjell Lindgren is photographed through a window during a night pass while on his first spacewalk on Oct. 28, 2015. Lindgren and NASA astronaut Scott Kelly worked outside for seven hours and 16 minutes on a series of tasks to service and upgrade the International Space Station. They wrapped a dark matter detection experiment in a thermal blanket, lubricated the tip of the Canadarm2 robotic arm and then routed power and data cables for a future docking port.
View of Kelly outside the A/L during EVA 32
2015-10-28
ISS045E082968 (10/28/2015) --- NASA astronaut Scott Kelly is photographed just outside the airlock during his first ever spacewalk on Oct 28, 2015. Kelly and NASA astronaut Kjell Lindgren worked outside for seven hours and 16 minutes on a series of tasks to service and upgrade the International Space Station. They wrapped a dark matter detection experiment in a thermal blanket, lubricated the tip of the Canadarm2 robotic arm and then routed power and data cables for a future docking port.
Kelly takes a Self-Portrait during EVA 32
2015-10-28
ISS045E082998 (10/28/2015) --- NASA astronaut Scott Kelly snaps a quick space selfie during his first ever spacewalk on Oct 28, 2015. Kelly and NASA astronaut Kjell Lindgren worked outside for seven hours and 16 minutes on a series of tasks to service and upgrade the International Space Station. They wrapped a dark matter detection experiment in a thermal blanket, lubricated the tip of the Canadarm2 robotic arm and then routed power and data cables for a future docking port.
Exterior view of ISS taken with a Fisheye Camera during EVA
2011-07-12
ISS028-E-016128 (12 July 2011) --- This picture, photographed by NASA astronaut Ron Garan during the spacewalk conducted on July 12, 2011, shows the International Space Station with space shuttle Atlantis docked at center frame and a Russian Soyuz docked to Pirs, at left. In the center foreground is the Alpha Magnetic Spectrometer (AMS) experiment installed during the STS-134 mission. AMS is a state-of-the-art particle physics detector designed to use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter, and measuring cosmic rays.
Exterior view of ISS taken with a Fisheye Camera during EVA
2011-07-12
ISS028-E-016137 (12 July 2011) --- This picture, photographed by NASA astronaut Ron Garan during the spacewalk conducted on July 12, 2011, shows the International Space Station with space shuttle Atlantis docked at right and a Russian Soyuz docked to Pirs, at upper left. In the lower right foreground is the Alpha Magnetic Spectrometer (AMS) experiment installed during the STS-134 mission. AMS is a state-of-the-art particle physics detector designed to use the unique environment of space to advance knowledge of the universe and lead to the understanding of the universe's origin by searching for antimatter and dark matter, and measuring cosmic rays.
Saturn 1B space vehicle for ASTP moves from VAB to launch complex
1975-03-24
S75-24007 (24 March 1975) --- The Saturn 1B space vehicle for the Apollo-Soyuz Test Project mission, with its launch umbilical tower, rides atop a huge crawler-transporter as it moves slowly away from the Vehicle Assembly Building on its 4.24-mile journey to Pad B, Launch Complex 39, at NASA's Kennedy Space Center. The ASTP vehicle is composed of a Saturn 1B (first) stage, a Saturn IVB (second) stage, and a payload consisting of a Command/Service Module and a Docking Module. The joint U.S.-USSR ASTP docking mission in Earth orbit is scheduled for July 1975.
View of Expedition 24 Crew Members in the MRM2
2010-09-24
ISS024-E-015327 (24 Sept. 2010) --- Russian cosmonaut Alexander Skvortsov (right), Expedition 24 commander; NASA astronaut Tracy Caldwell Dyson and Russian cosmonaut Mikhail Kornienko, both flight engineers, pose for a photo during final preparations for their departure in the Soyuz TMA-18 docked to the Poisk Mini-Research Module 2 (MRM2) of the International Space Station. Originally scheduled for Sept. 23, the Soyuz undocked a day later due to a Poisk-side hatch sensor problem, which prevented hooks on the Poisk side of the docking interface from opening. The Soyuz undocked at 10:02 p.m. (EDT) on Sept. 24, 2010.
2016-07-20
ISS048e041836 (07/20/2016) --- NASA astronauts Kate Rubins (left) and Jeff Williams (right) prepare to grapple the SpaceX Dragon supply spacecraft from aboard the International Space Station. The nearly 5,000 pounds of supplies and equipment includes science supplies and hardware, including instruments to perform the first-ever DNA sequencing in space, and the first of two identical international docking adapters (IDA.) The IDAs will provide a means for commercial crew spacecraft to dock to the station in the near future as part of NASA’s Commercial Crew Program. Dragon is scheduled to depart the space station Aug. 29 when it will return critical science research back to Earth.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. STA hardware completely free of barge and flanked by tug boats.
2009-09-07
S128-E-007977 (7 Sept. 2009) --- Crew members onboard the International Space Station share a meal in the Unity node while Space Shuttle Discovery remains docked with the station. Pictured from the left (bottom) are NASA astronauts Rick Sturckow, STS-128 commander; Tim Kopra and Jose Hernandez, both STS-128 mission specialists; along with Kevin Ford, STS-128 pilot; and John “Danny” Olivas (mostly out of frame at right), STS-128 mission specialist. Pictured from the left (top, partially out of frame) are NASA astronaut Nicole Stott and Canadian Space Agency astronaut Robert Thirsk, both Expedition 20 flight engineers; along with NASA astronaut Patrick Forrester, STS-128 mission specialist.
Experimental Investigation of Elastomer Docking Seal Compression Set, Adhesion, and Leakage
NASA Technical Reports Server (NTRS)
Daniels, Christopher C.; Oswald, Jay J.; Bastrzyk, Marta B.; Smith, Ian; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.
2008-01-01
A universal docking and berthing system is being developed by the National Aeronautics and Space Administration (NASA) to support all future space exploration missions to low-Earth orbit (LEO), to the Moon, and to Mars. An investigation of the compression set of two seals mated in a seal-on-seal configuration and the force required to separate the two seals after periods of mating was conducted. The leakage rates of seals made from two silicone elastomer compounds, S0383-70 and S0899-50, configured in seal-on-seal mating were quantified. The test specimens were sub-scale seals with representative cross-sections and a 12 inch outside diameter. The leakage rate of the seals manufactured from S0899-50 was higher than that of the seals made from S0383-70 by a factor of 1.8. Similarly, the adhesion of the 50 durometer elastomer was significantly higher than that of the 70 durometer compound. However, the compression set values of the S0899-50 material were observed to be significantly lower than those for the S0383-70.
Project EGRESS: The design of an assured crew return vehicle for the space station
NASA Technical Reports Server (NTRS)
1990-01-01
Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.
2009-10-24
CAPE CANAVERAL, Fla. – A worker tows external tank 134 off the Pegasus barge docked in the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After the fuel tank is offloaded, it will be transported into the VAB where it will be stored until needed. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
2008-12-03
CAPE CANAVERAL, Fla. -- An alligator basks in the sun on the bank of the Banana River near NASA's Kennedy Space Center in Florida. It is witness to the passage of the Pegasus barge through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus, carrying external tank 130, arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After the Pegasus docks, the fuel tank will be offloaded and transported to the VAB. External tank 130 is the one designated for space shuttle Endeavour on the STS-127 mission targeted for launch on May 15. Photo credit: NASA/Troy Cryder
2008-12-03
CAPE CANAVERAL, Fla. -- An alligator basks in the sun on the bank of the Banana River near NASA's Kennedy Space Center in Florida. It is witness to the passage of the Pegasus barge through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Pegasus, carrying external tank 130, arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After the Pegasus docks, the fuel tank will be offloaded and transported to the VAB. External tank 130 is the one designated for space shuttle Endeavour on the STS-127 mission targeted for launch on May 15. Photo credit: NASA/Troy Cryder
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001
NASA Technical Reports Server (NTRS)
2001-01-01
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a 'lifeboat' to enable a full seven-person station crew to evacuate in an emergency.
2011-11-16
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies Corp. (SpaceX) Dragon capsule is placed atop its cargo ring inside a processing hangar at Cape Canaveral Air Force Station in Florida on Nov. 16. Later, the combination will be attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Kim Shiflett
2011-11-16
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies Corp. (SpaceX) Dragon capsule is placed atop its cargo ring inside a processing hangar at Cape Canaveral Air Force Station in Florida on Nov. 16. Later, the combination will be attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Kim Shiflett
2011-11-16
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies Corp. (SpaceX) Dragon capsule is placed atop its cargo ring inside a processing hangar at Cape Canaveral Air Force Station in Florida on Nov. 16. Later, the combination will be attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Kim Shiflett
2011-11-16
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies Corp. (SpaceX) Dragon capsule is readied for lifting and placement to its cargo ring inside a processing hangar at Cape Canaveral Air Force Station in Florida on Nov. 16. Later, the combination will be attached to the top of a Falcon 9 rocket on Space Launch Complex-40 for the company's next demonstration test flight for NASA's Commercial Orbital Transportation Services (COTS) program. SpaceX is one of two companies under contract with NASA to take cargo to the International Space Station. NASA is working with SpaceX to combine its last two demonstration flights, and if approved, the Falcon 9 rocket would launch the Dragon capsule to the orbiting laboratory for a docking within the next several months. Photo credit: NASA/Kim Shiflett
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001
2001-07-10
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency.
Structures and mechanisms - Streamlining for fuel economy
NASA Technical Reports Server (NTRS)
Card, M. F.
1983-01-01
The design of prospective NASA space station components which inherently possess the means for structural growth without compromising initial system characteristics is considered. In structural design terms, space station growth can be achieved by increasing design safety factors, introducing dynamic isolators to prevent loads from reaching the initial components, or preplanning the refurbishment of the original structure with stronger elements. Design tradeoffs will be based on the definition of on-orbit loads, including docking and maneuvering, whose derived load spectra will allow the estimation of fatigue life. Improvements must be made in structural materials selection in order to reduce contamination, slow degradation, and extend the life of coatings. To minimize on-orbit maintenance, long service life lubrication systems with advanced sealing devices must be developed.
Outpost Assembly Using the ATHLETE Mobility System
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Wilcox, Brian
2016-01-01
A planetary surface outpost will likely consist of elements delivered on multiple manifests, that will need to be assembled from a scattering of landings. Using the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) limbed robotic mobility system, the outpost site can be prepared in advance through leveling, paving, and in-situ structures. ATHLETE will be able to carry pressurized and non-pressurized payloads overland from the lander descent stage to the outpost location, and perform precision docking and assembly of components. In addition, spent descent stages can be carried to assembly locations to form elevated decks for external work platforms above the planet surface. This paper discusses several concepts that have been studied for possible inclusion in the NASA Evolvable Mars Campaign human exploration mission scenarios.
Rendezvous Integration Complexities of NASA Human Flight Vehicles
NASA Technical Reports Server (NTRS)
Brazzel, Jack P.; Goodman, John L.
2009-01-01
Propellant-optimal trajectories, relative sensors and navigation, and docking/capture mechanisms are rendezvous disciplines that receive much attention in the technical literature. However, other areas must be considered. These include absolute navigation, maneuver targeting, attitude control, power generation, software development and verification, redundancy management, thermal control, avionics integration, robotics, communications, lighting, human factors, crew timeline, procedure development, orbital debris risk mitigation, structures, plume impingement, logistics, and in some cases extravehicular activity. While current and future spaceflight programs will introduce new technologies and operations concepts, the complexity of integrating multiple systems on multiple spacecraft will remain. The systems integration task may become more difficult as increasingly complex software is used to meet current and future automation, autonomy, and robotic operation requirements.
The 22nd Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1988-01-01
The proceedings of the symposium, which was held at the NASA Langley Research Center, on May 4 to 6, 1988, are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft latches, deployment, positioning, and pointing. Devices for space station docking and manipulator and teleoperator mechanisms are also described.
1966-11-11
S66-59963 (9 Nov. 1966) --- Monument at Pad 14 honoring Project Mercury. The Arabic number seven represents the seven original astronauts. The other figure is the astronomical symbol of the Planet Mercury. In background is the Gemini-12 Agena Target Docking Vehicle atop its Atlas launch vehicle at Cape Kennedy, Florida. Photo credit: NASA
2017-05-04
An American bald eagle eats its prey on a wooden dock at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.
Whitson and Nespoli open Node 2 hatch
2007-10-27
ISS016-E-006856 (27 Oct. 2007) --- NASA astronaut Peggy A. Whitson (left), Expedition 16 commander, and European Space Agency (ESA) astronaut Paolo Nespoli, STS-120 mission specialist, open the hatch to the Harmony node -- the newest additional to the International Space Station -- while Space Shuttle Discovery is docked with the station.
Barratt during Soyuz TMA-14 relocation
2009-07-02
ISS020-E-016870 (2 July 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, looks through a window on the Soyuz TMA-14 spacecraft during preparations for the relocation of the Soyuz from the Zvezda Service Module’s aft port to the Pirs Docking Compartment of the International Space Station.
Barratt during Soyuz TMA-14 relocation
2009-07-02
ISS020-E-016868 (2 July 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, looks through a window on the Soyuz TMA-14 spacecraft during preparations for the relocation of the Soyuz from the Zvezda Service Module’s aft port to the Pirs Docking Compartment of the International Space Station.
2005-08-05
S114-E-7139 (5 August 2005) --- Astronaut Eileen M. Collins, STS-114 commander, floats in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery was docked to the Station. Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, is visible at bottom right.
2011-07-10
S135-E-006777 (10 July 2011) --- This is one of a series of images showing the International Space Station photographed by a crewmember onboard the space shuttle Atlantis as the two spacecraft performed rendezvous and docking operations on the STS-135 mission's third day in Earth orbit. Photo credit: NASA
2011-07-10
S135-E-006784 (10 July 2011) --- This is one of a series of images showing the International Space Station photographed by a crewmember onboard the space shuttle Atlantis as the two spacecraft performed rendezvous and docking operations on the STS-135 mission's third day in Earth orbit. Photo credit: NASA
ISS Segments during STS-135 Approach
2011-07-10
S135-E-006787 (10 July 2011) --- This is one of a series of images showing the International Space Station photographed by a crewmember onboard the space shuttle Atlantis as the two spacecraft performed rendezvous and docking operations on the STS-135 mission's third day in Earth orbit. Photo credit: NASA
2011-07-10
S135-E-006700 (10 July 2011) --- This is one of a series of images showing the International Space Station photographed by a crewmember onboard the space shuttle Atlantis as the two spacecraft performed rendezvous and docking operations on the STS-135 mission's third day in Earth orbit. Photo credit: NASA
2011-07-10
S135-E-006698 (10 July 2011) --- This is one of a series of images showing the International Space Station photographed by a crewmember onboard the space shuttle Atlantis as the two spacecraft performed rendezvous and docking operations on the STS-135 mission's third day in Earth orbit. Photo credit: NASA
2011-07-10
S135-E-006702 (10 July 2011) --- This is one of a series of images showing the International Space Station photographed by a crewmember onboard the space shuttle Atlantis as the two spacecraft performed rendezvous and docking operations on the STS-135 mission's third day in Earth orbit. Photo credit: NASA
Gorie and Doi look over crew procedures on aft FD of Space Shuttle Endeavour
2008-03-13
S123-E-006512 (13 March 2008) --- NASA astronaut Dominic Gorie (right), STS-123 commander, and Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, mission specialist, look over checklists on the flight deck of Space Shuttle Endeavour while docked with the International Space Station.
SKYLAB (SL)-4 - CREW TRAINING (ORBITAL WORKSTATION [OWS]) - JSC
1973-08-22
S73-32847 (10 Sept. 1973) --- Astronaut Gerald P. Carr, Skylab 4 commander, changes a dial on the control and display panel for the Earth Resources Experiments package (EREP) during a training exercise in the Multiple Docking Adapter (MDA) one-G trainer at Johnson Space Center. Photo credit: NASA
STS-129 Crew Members in the Node 2
2009-11-20
ISS021-E-032172 (20 Nov. 2009) --- NASA astronauts Charles O. Hobaugh (center), STS-129 commander; along with Leland Melvin (left) and Robert L. Satcher Jr., both mission specialists, are pictured in the Harmony node of the International Space Station while space shuttle Atlantis remains docked with the station.
Behnken and Eyharts look through crew procedures in the Node 2 during Joint Operations
2008-03-24
S123-E-009821 (24 March 2008) --- NASA astronaut Robert L. Behnken (left) and European Space Agency (ESA) astronaut Leopold Eyharts, both STS-123 mission specialists, work in the Harmony node of the International Space Station while Space Shuttle Endeavour is docked with the station.
1967-10-01
Workmen at the Marshall Space Flight Center's (MSFC's) dock on the Ternessee River unload S-IB-211, the flight version of the Saturn IB launch vehicle's first stage, from the NASA barge Palaemon. Between December 1967 and April 1968, the stage would undergo seven static test firings in MSFC's S-IB static test stand.
1967-10-01
Workmen at the Marshall Space Flight Center's (MSFC's) dock on the Ternessee River unload S-IB-211, the flight version of the Saturn IB launch vehicle's first stage, from the NASA barge Palaemon. Between December 1967 and April 1968, the stage would undergo seven static test firings in Marshall's S-IB static test stand.
A dynamic motion simulator for future European docking systems
NASA Technical Reports Server (NTRS)
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... brief comments up to 6,000 characters, without prior registration, using the eComment system at http... docks, and add 1,330 feet of breakwater. The completed development would have 18 docks (16 boat docks, 1 swim dock, and 1 fishing dock) with 240 boat slips and 156 personal watercraft lifts; boat fueling...
Connection stiffness and dynamical docking process of flux pinned spacecraft modules
NASA Astrophysics Data System (ADS)
Lu, Yong; Zhang, Mingliang; Gao, Dong
2014-02-01
This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.
Connection stiffness and dynamical docking process of flux pinned spacecraft modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yong; Zhang, Mingliang, E-mail: niudun12@126.com; Gao, Dong
2014-02-14
This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improvedmore » image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.« less
22. Detail of interior corner showing truss system, dock no. ...
22. Detail of interior corner showing truss system, dock no. 492. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
2007-10-05
KENNEDY SPACE CENTER, FLA. -- From the payload changeout room on Launch Pad 39A, the payloads for mission STS-120 have been transferred into space shuttle Discovery's payload bay. Seen at the lower end is the Italian-built U.S. Node 2 module, named Harmony. At the top is the orbital docking system. The red ring at top comprises rain gutters to prevent leaks into the bay from rain while the shuttle is on the pad. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton
2013-08-27
ISS036-E-037288 (27 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites with ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS, Nyberg performed a demonstration of how power can be transferred between two satellites without physical contact. Station crews beginning with Expedition 8 have operated these robots to test techniques that could lead to advancements in automated dockings, satellite servicing, spacecraft assembly and emergency repairs.
Closeup view looking forward along the centerline of the Orbiter ...
Close-up view looking forward along the centerline of the Orbiter Discovery looking into the payload bay. This view is a close-up view of the external airlock and the beam-truss attach structure supporting it and attaching it to the payload bay sill longerons. Also note the protective covering over the docking mechanism on top of the airlock assembly. This external airlock configuration was for mating to the International Space Station. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Cente - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Detail view of the flight deck looking aft. The aft ...
Detail view of the flight deck looking aft. The aft viewing windows are uncovered in this view and look out towards the payload bay. The overhead viewing windows have exterior covers in place in this view. The aft flight deck contains displays and controls for executing maneuvers for rendezvous, docking, payload deployment and retrieval, payload monitoring and the remote manipulator arm controls. Payload bay doors are also operated from this location. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
1975-01-14
CAPE CANAVERAL, Fla. – Model of docked Apollo and Soyuz spacecraft in the foreground and skylight in the Vehicle Assembly Building high bay frame the second stage of the Saturn 1B booster that will launch the United States ASTP mission as a crane raises it prior to its mating with the Saturn 1B first stage. Mating of the Saturn 1B first and second stages was completed this morning. The U. S. ASTP launch with mission commander Thomas Stafford, command module pilot Vance Brand and docking module pilot Donald Slayton is scheduled at 3:50 p.m. EDT July 15. The first international crewed spaceflight was a joint U.S.-U.S.S.R. rendezvous and docking mission. The Apollo-Soyuz Test Project, or ASTP, took its name from the spacecraft employed: the American Apollo and the Soviet Soyuz. The three-man Apollo crew lifted off from Kennedy Space Center aboard a Saturn IB rocket on July 15, 1975, to link up with the Soyuz that had launched a few hours earlier. A cylindrical docking module served as an airlock between the two spacecraft for transfer of the crew members. Photo credit: NASA
2017-12-08
On Jan. 22, 2015, robotic flight controllers successfully installed NASA’s Cloud Aerosol Transport System (CATS) onboard the International Space Station. CATS will collect data about clouds, volcanic ash plumes and tiny airborne particles that can help improve our understanding of aerosol and cloud interactions, and improve the accuracy of climate change models. CATS had been mounted inside the SpaceX Dragon cargo craft’s unpressurized trunk since it docked at the station on Jan. 12. Ground controllers at NASA’s Johnson Space Center in Houston, Texas, used one of the space station’s robotic arms, called the Special Purpose Dexterous Manipulator, to extract the instrument from the capsule. The NASA-controlled arm passed the instrument to a second robotic arm— like passing a baton in a relay race. This second arm, called the Japanese Experiment Module Remote Manipulator System, is controlled by the Japanese Aerospace Exploration Agency. The Japanese-controlled arm installed the instrument to the Space Station’s Japanese Experiment Module, making CATS the first NASA-developed payload to fly on the Japanese module. CATS is a lidar remote-sensing instrument designed to last from six months to three years. It is specifically intended to demonstrate a low-cost, streamlined approach to developing science payloads on the space station. CATS launched aboard the SpaceX Dragon spacecraft on Jan. 10 at Cape Canaveral Air Force Station in Florida. To learn more about the impact of CATS data, visit: www.nasa.gov/cats/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
STS-74 view of ODS from Payload Changout Room
NASA Technical Reports Server (NTRS)
1995-01-01
Workers at Launch Pad 39A are preparing to close the payload bay doors on the Space Shuttle Atlantis for its upcoming launch on Mission STS-74 and the second docking with the Russian Space Station Mir. Uppermost in the payload bay is the Orbiter Docking System (ODS), which also flew on the first docking flight between the Space Shuttle and MIR. Lowermost is the primary payload of STS-74, the Russian-built Docking Module. During the mission, the Docking Module will first be attached to ODS and then to Mir. It will be left attached to Mir to become a permanent extension that will afford adequate clearance between the orbiter and the station during future dockings. At left in the payload bay, looking like a very long pole, is the Canadian-built Remote Manipulator System arm that will be used by the crew to hoist the Docking Module and attach it to the ODS.
Apollo Soyuz, mission evaluation report
NASA Technical Reports Server (NTRS)
1975-01-01
The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.
International Docking Standard (IDSS) Interface Definition Document (IDD) . E; Revision
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Cryan, Scott P.
2016-01-01
This International Docking System Standard (IDSS) Interface Definition Document (IDD) is the result of a collaboration by the International Space Station membership to establish a standard docking interface to enable on-orbit crew rescue operations and joint collaborative endeavors utilizing different spacecraft. This IDSS IDD details the physical geometric mating interface and design loads requirements. The physical geometric interface requirements must be strictly followed to ensure physical spacecraft mating compatibility. This includes both defined components and areas that are void of components. The IDD also identifies common design parameters as identified in section 3.0, e.g., docking initial conditions and vehicle mass properties. This information represents a recommended set of design values enveloping a broad set of design reference missions and conditions, which if accommodated in the docking system design, increases the probability of successful docking between different spacecraft. This IDD does not address operational procedures or off-nominal situations, nor does it dictate implementation or design features behind the mating interface. It is the responsibility of the spacecraft developer to perform all hardware verification and validation, and to perform final docking analyses to ensure the needed docking performance and to develop the final certification loads for their application. While there are many other critical requirements needed in the development of a docking system such as fault tolerance, reliability, and environments (e.g. vibration, etc.), it is not the intent of the IDSS IDD to mandate all of these requirements; these requirements must be addressed as part of the specific developer's unique program, spacecraft and mission needs. This approach allows designers the flexibility to design and build docking mechanisms to their unique program needs and requirements. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.
2014-09-11
SAN DIEGO, Calif. – The USS Anchorage is docked at Naval Base San Diego during loading operations in its well deck for Orion Underway Recovery Test 3. A crane is used to lift the Orion forward bay cover for loading on the ship. The ship will head out to sea, off the coast of San Diego, in search of conditions to support test needs for a full dress rehearsal of recovery operations. NASA, Lockheed Martin and U.S. Navy personnel will conduct tests in the Pacific Ocean to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston